WorldWideScience

Sample records for supercooled cloud fraction

  1. Effects of atmospheric dynamics and aerosols on the fraction of supercooled water clouds

    Science.gov (United States)

    Li, Jiming; Lv, Qiaoyi; Zhang, Min; Wang, Tianhe; Kawamoto, Kazuaki; Chen, Siyu; Zhang, Beidou

    2017-02-01

    Based on 8 years of (January 2008-December 2015) cloud phase information from the GCM-Oriented Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Cloud Product (GOCCP), aerosol products from CALIPSO and meteorological parameters from the ERA-Interim products, the present study investigates the effects of atmospheric dynamics on the supercooled liquid cloud fraction (SCF) during nighttime under different aerosol loadings at global scale to better understand the conditions of supercooled liquid water gradually transforming to ice phase. Statistical results indicate that aerosols' effect on nucleation cannot fully explain all SCF changes, especially in those regions where aerosols' effect on nucleation is not a first-order influence (e.g., due to low ice nuclei aerosol frequency). By performing the temporal and spatial correlations between SCFs and different meteorological factors, this study presents specifically the relationship between SCF and different meteorological parameters under different aerosol loadings on a global scale. We find that the SCFs almost decrease with increasing of aerosol loading, and the SCF variation is closely related to the meteorological parameters but their temporal relationship is not stable and varies with the different regions, seasons and isotherm levels. Obviously negative temporal correlations between SCFs versus vertical velocity and relative humidity indicate that the higher vertical velocity and relative humidity the smaller SCFs. However, the patterns of temporal correlation for lower-tropospheric static stability, skin temperature and horizontal wind are relatively more complex than those of vertical velocity and humidity. For example, their close correlations are predominantly located in middle and high latitudes and vary with latitude or surface type. Although these statistical correlations have not been used to establish a certain causal relationship, our results may provide a unique point of view

  2. Polarized View of Supercooled Liquid Water Clouds

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  3. Polarized View of Supercooled Liquid Water Clouds

    Science.gov (United States)

    Alexandrov, Mikhail D.; Cairns, Brian; Van Diedenhoven, Bastiaan; Ackerman, Andrew S.; Wasilewski, Andrzej P.; McGill, Matthew J.; Yorks, John E.; Hlavka, Dennis L.; Platnick, Steven E.; Arnold, G. Thomas

    2016-01-01

    Supercooled liquid water (SLW) clouds, where liquid droplets exist at temperatures below 0 C present a well known aviation hazard through aircraft icing, in which SLW accretes on the airframe. SLW clouds are common over the Southern Ocean, and climate-induced changes in their occurrence is thought to constitute a strong cloud feedback on global climate. The two recent NASA field campaigns POlarimeter Definition EXperiment (PODEX, based in Palmdale, California, January-February 2013) and Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, based in Houston, Texas in August- September 2013) provided a unique opportunity to observe SLW clouds from the high-altitude airborne platform of NASA's ER-2 aircraft. We present an analysis of measurements made by the Research Scanning Polarimeter (RSP) during these experiments accompanied by correlative retrievals from other sensors. The RSP measures both polarized and total reflectance in 9 spectral channels with wavelengths ranging from 410 to 2250 nm. It is a scanning sensor taking samples at 0.8deg intervals within 60deg from nadir in both forward and backward directions. This unique angular resolution allows for characterization of liquid water droplet size using the rainbow structure observed in the polarized reflectances in the scattering angle range between 135deg and 165deg. Simple parametric fitting algorithms applied to the polarized reflectance provide retrievals of the droplet effective radius and variance assuming a prescribed size distribution shape (gamma distribution). In addition to this, we use a non-parametric method, Rainbow Fourier Transform (RFT),which allows retrieval of the droplet size distribution without assuming a size distribution shape. We present an overview of the RSP campaign datasets available from the NASA GISS website, as well as two detailed examples of the retrievals. In these case studies we focus on cloud fields with spatial features

  4. Microphysical Effects of Cloud Seeding in Supercooled Stratiform Clouds Observed from NOAA Satellite

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Based on the satellite retrieval methodology, the spectral characteristics and cloud microphysical properties were analyzed that included brightness temperatures of Channels 4 and 5, and their brightness temperature difference (BTD), the particle effective radius of seeded cloud track caused by an operational cloud seeding and the microphysical effects of cloud seeding were revealed by the comparisons of their differences inside and outside the seeded track. The cloud track was actually a cloud channel reaching 1.5-km deep and 14-km wide lasting for more than 80 min. The effective radius of ambient clouds was 10-15μm, while that within the cloud track ranged from 15 to 26 μm. The ambient clouds were composed of supercooled droplets, and the composition of the cloud within the seeding track was ice. With respect to the rather stable reflectance of two ambient sides around the track, the visible spectral reflectance in the cloud track varied at least 10%, and reached a maximum of 35%, the reflectance of 3.7 μm in the seeded track relatively decreased at least 10%. As cloud seeding advanced, the width and depth were gradually increased. Simultaneously the cloud top temperature within the track became progressively warmer with respect to the ambient clouds,and the maximum temperature differences reached 4.2 and 3.9℃ at the first seeding position for Channels 4 and 5. In addition, the BTD in the track also increased steadily to a maximum of 1.4℃, compared with 0.2-0.4℃ of the ambient clouds. The evidence that the seeded cloud became thinner comes from the visible image showing a channel, the warming of the cloud tops, and the increase of BTD in the seeded track.The seeded cloud became thinner mainly because the cloud top descended and it lost water to precipitation throughout its depth. For this cloud seeding case, the glaciation became apparent at cloud tops about 22min after seeding. The formation of a cloud track in the supercooled stratiform clouds was

  5. Fractional Walden rule for electrolytes in supercooled disaccharide aqueous solutions.

    Science.gov (United States)

    Longinotti, M Paula; Corti, Horacio R

    2009-04-23

    The electrical conductivity of CsCl, KCl, Bu(4)NBr, and Bu(4)NI was studied in stable and supercooled (metastable) sucrose and trehalose aqueous solutions over a wide viscosity range. The results indicate that large positive deviations from the Walden rule occur in these systems due to the higher tendency of the ions to move in water-rich regions, as previously observed for NaCl and MgCl(2). The electrical molar conductivity viscosity dependence can be described with a fractional Walden rule (Lambdaeta(alpha) = constant), where alpha is a decoupling parameter which increases with ionic size and varies between 0.61 and 0.74 for all of the studied electrolytes. Using the electrical molar conductivity dependence of ion-ion interactions, an effective dielectric constant was calculated for a trehalose 39 wt% aqueous solution as a function of temperature. Above 278 K, the effective and the bulk solution dielectric constants are similar, but at lower temperatures, where the carbohydrate becomes less mobile than water, the effective dielectric constant approaches the dielectric constant of water. We also conclude that the solute-solvent dielectric friction contribution can be neglected, reinforcing the idea that the observed breakdown of the Walden rule is due to the existence of local microheterogeneities. The Walden plots for the studied ionic solutes show a decoupling similar to that found for the diffusion of water in the same solutions.

  6. Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds

    Directory of Open Access Journals (Sweden)

    P. M. Rowe

    2013-07-01

    Full Text Available Simulations of cloud radiative properties for climate modeling and remote sensing rely on accurate knowledge of the complex refractive index (CRI of water. Although conventional algorithms employ a temperature independent assumption (TIA, recent infrared measurements of supercooled water have demonstrated that the CRI becomes increasingly ice-like at lower temperatures. Here, we assess biases that result from ignoring this temperature dependence. We show that TIA-based cloud retrievals introduce spurious ice into pure, supercooled clouds, or underestimate cloud thickness and droplet size. TIA-based downwelling radiative fluxes are lower than those for the temperature-dependent CRI by as much as 1.7 W m−2 (in cold regions, while top-of-atmosphere fluxes are higher by as much as 3.4 W m−2 (in warm regions. Proper accounting of the temperature dependence of the CRI, therefore, leads to significantly greater local greenhouse warming due to supercooled clouds than previously predicted. The current experimental uncertainty in the CRI at low temperatures must be reduced to properly account for supercooled clouds in both climate models and cloud property retrievals.

  7. Radiative consequences of low-temperature infrared refractive indices for supercooled water clouds

    Directory of Open Access Journals (Sweden)

    P. M. Rowe

    2013-12-01

    Full Text Available Simulations of cloud radiative properties for climate modeling and remote sensing rely on accurate knowledge of the complex refractive index (CRI of water. Although conventional algorithms employ a temperature-independent assumption (TIA, recent infrared measurements of supercooled water have demonstrated that the CRI becomes increasingly ice-like at lower temperatures. Here, we assess biases that result from ignoring this temperature dependence. We show that TIA-based cloud retrievals introduce spurious ice into pure, supercooled clouds, or underestimate cloud optical thickness and droplet size. TIA-based downwelling radiative fluxes are lower than those for the temperature-dependent CRI by as much as 1.7 W m−2 (in cold regions, while top-of-atmosphere fluxes are higher by as much as 3.4 W m−2 (in warm regions. Proper accounting of the temperature dependence of the CRI, therefore, leads to significantly greater local greenhouse warming due to supercooled clouds than previously predicted. The current experimental uncertainty in the CRI at low temperatures must be reduced to account for supercooled clouds properly in both climate models and cloud-property retrievals.

  8. Measuring ice and liquid water content in moderately supercooled clouds with Cloudnet

    Science.gov (United States)

    Bühl, Johannes; Seifert, Patric; Myagkov, Alexander; Albert, Ansmann

    2016-04-01

    The interaction between ice nuclei and clouds is an important topic in weather and climate research. Recent laboratory experiments and field in-situ field campaigns present more and more detailed measurements of ice nucleating particles (INP) at temperatures close to 0°C. This brings moderately supercooled mixed-phase clouds into the focus of current cloud research. One current example is the European Union BACCHUS project. A major goal of BACCHUS is the analysis of the anthropogenic impact on ice nucleation. Within this project, we use the Leipzig Aerosol Cloud Remote Observations System (LACROS) and the Cloudnet framework in order to get quantitative insight into the formation of ice in mixed-phase layered clouds with cloud top temperature (CTT) from -40 to 0°C. Depolarization measurements from lidar and radar show a clear dependence between particle shape and the temperature under which the particles have been formed. The special focus of this work is on the CTT range from -10 to 0°C. An algorithm is presented to decide between ice and liquid water precipitation falling from the clouds showing that between 10% and 30% of all layered clouds show ice precipitation with CTT between -5 and 0°C. For these slightly supercooled clouds an average ice-water-content between 10e-7 and 10e-8 [kg per cubic meter] is found.

  9. Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Jiwen; Leung, L. Ruby; Rosenfeld, Daniel; DeMott, Paul J.

    2017-01-01

    How orographic mixed-phase clouds respond to the change in cloud condensation nuclei (CCN) and ice nucleating particles (INPs) are highly uncertain. The main snow production mechanism in warm and cold mixed-phase orographic clouds (referred to as WMOCs and CMOCs, respectively, distinguished here as those having cloud tops warmer and colder than -20°C) could be very different. We quantify the CCN and INP impacts on supercooled water content, cloud phases, and precipitation for a WMOC case and a CMOC case, with sensitivity tests using the same CCN and INP concentrations between the WMOC and CMOC cases. It was found that deposition plays a more important role than riming for forming snow in the CMOC case, while the role of riming is dominant in the WMOC case. As expected, adding CCN suppresses precipitation, especially in WMOCs and low INPs. However, this reverses strongly for CCN of 1000 cm-3 and larger. We found a new mechanism through which CCN can invigorate mixed-phase clouds over the Sierra Nevada and drastically intensify snow precipitation when CCN concentrations are high (1000 cm-3 or higher). In this situation, more widespread shallow clouds with a greater amount of cloud water form in the Central Valley and foothills west of the mountain range. The increased latent heat release associated with the formation of these clouds strengthens the local transport of moisture to the windward slope, invigorating mixed-phase clouds over the mountains, and thereby producing higher amounts of snow precipitation. Under all CCN conditions, increasing the INPs leads to decreased riming and mixed-phase fraction in the CMOC as a result of liquid-limited conditions, but has the opposite effects in the WMOC as a result of ice-limited conditions. However, precipitation in both cases is increased by increasing INPs due to an increase in deposition for the CMOC but enhanced riming and deposition in the WMOC. Increasing the INPs dramatically reduces

  10. Icing Characteristics of Low Altitude, Supercooled Layer Clouds. Revision

    Science.gov (United States)

    1980-05-01

    Buffalo (BUF), NY, the upper layer appeared to be cirrus or cirro- stratus which provided about 30% sky cover in the two northern quadrants at this time...Aircraft still below cloud base at this altitude and position 13 mi south of BUF at the completion of the final data run for the day. Aircraft starL - ing...Otherwise the sky was cloudless with good ve;tical and horizontal visibility during the transit into Ohio. At about 1530 E.S.T., near Belleaire, Ohio, the

  11. Detection of supercooled liquid water-topped mixed-phase clouds >from shortwave-infrared satellite observations

    Science.gov (United States)

    NOH, Y. J.; Miller, S. D.; Heidinger, A. K.

    2015-12-01

    Many studies have demonstrated the utility of multispectral information from satellite passive radiometers for detecting and retrieving the properties of cloud globally, which conventionally utilizes shortwave- and thermal-infrared bands. However, the satellite-derived cloud information comes mainly from cloud top or represents a vertically integrated property. This can produce a large bias in determining cloud phase characteristics, in particular for mixed-phase clouds which are often observed to have supercooled liquid water at cloud top but a predominantly ice phase residing below. The current satellite retrieval algorithms may report these clouds simply as supercooled liquid without any further information regarding the presence of a sub-cloud-top ice phase. More accurate characterization of these clouds is very important for climate models and aviation applications. In this study, we present a physical basis and preliminary results for the algorithm development of supercooled liquid-topped mixed-phase cloud detection using satellite radiometer observations. The detection algorithm is based on differential absorption properties between liquid and ice particles in the shortwave-infrared bands. Solar reflectance data in narrow bands at 1.6 μm and 2.25 μm are used to optically probe below clouds for distinction between supercooled liquid-topped clouds with and without an underlying mixed phase component. Varying solar/sensor geometry and cloud optical properties are also considered. The spectral band combination utilized for the algorithm is currently available on Suomi NPP Visible/Infrared Imaging Radiometer Suite (VIIRS), Himawari-8 Advanced Himawari Imager (AHI), and the future GOES-R Advance Baseline Imager (ABI). When tested on simulated cloud fields from WRF model and synthetic ABI data, favorable results were shown with reasonable threat scores (0.6-0.8) and false alarm rates (0.1-0.2). An ARM/NSA case study applied to VIIRS data also indicated promising

  12. Discrimination of micrometre-sized ice and super-cooled droplets in mixed-phase cloud

    Science.gov (United States)

    Hirst, E.; Kaye, P. H.; Greenaway, R. S.; Field, P.; Johnson, D. W.

    Preliminary experimental results are presented from an aircraft-mounted probe designed to provide in situ data on cloud particle shape, size, and number concentration. In particular, the probe has been designed to facilitate discrimination between super-cooled water droplets and ice crystals of 1-25 μm size within mixed-phase clouds and to provide information on cloud interstitial aerosols. The probe acquires spatial light scattering data from individual particles at throughput rates of several thousand particles per second. These data are logged at 100 ms intervals to allow the distribution and number concentration of each particle type to be determined with 10 m spatial resolution at a typical airspeed of 100 m s -1. Preliminary results from flight data recorded in altocumulus castellanus, showing liquid water phase, mixed phase, and ice phase are presented to illustrate the probe's particle discrimination capabilities.

  13. Dynamic heterogeneity in crossover spin facilitated model of supercooled liquid and fractional Stokes-Einstein relation

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Seo-Woo; Kim, Soree; Jung, YounJoon, E-mail: yjjung@snu.ac.kr [Department of Chemistry, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2015-06-28

    Kinetically constrained models have gained much interest as models that assign the origins of interesting dynamic properties of supercooled liquids to dynamical facilitation mechanisms that have been revealed in many experiments and numerical simulations. In this work, we investigate the dynamic heterogeneity in the fragile-to-strong liquid via Monte Carlo method using the model that linearly interpolates between the strong liquid-like behavior and the fragile liquid-like behavior by an asymmetry parameter b. When the asymmetry parameter is sufficiently small, smooth fragile-to-strong transition is observed both in the relaxation time and the diffusion constant. Using these physical quantities, we investigate fractional Stokes-Einstein relations observed in this model. When b is fixed, the system shows constant power law exponent under the temperature change, and the exponent has the value between that of the Frederickson-Andersen model and the East model. Furthermore, we investigate the dynamic length scale of our systems and also find the crossover relation between the relaxation time. We ascribe the competition between energetically favored symmetric relaxation mechanism and entropically favored asymmetric relaxation mechanism to the fragile-to-strong crossover behavior.

  14. CALIPSO Observations of Near-Cloud Aerosol Properties as a Function of Cloud Fraction

    Science.gov (United States)

    Yang, Weidong; Marshak, Alexander; Varnai, Tamas; Wood, Robert

    2015-01-01

    This paper uses spaceborne lidar data to study how near-cloud aerosol statistics of attenuated backscatter depend on cloud fraction. The results for a large region around the Azores show that: (1) far-from-cloud aerosol statistics are dominated by samples from scenes with lower cloud fractions, while near-cloud aerosol statistics are dominated by samples from scenes with higher cloud fractions; (2) near-cloud enhancements of attenuated backscatter occur for any cloud fraction but are most pronounced for higher cloud fractions; (3) the difference in the enhancements for different cloud fractions is most significant within 5km from clouds; (4) near-cloud enhancements can be well approximated by logarithmic functions of cloud fraction and distance to clouds. These findings demonstrate that if variability in cloud fraction across the scenes used to composite aerosol statistics are not considered, a sampling artifact will affect these statistics calculated as a function of distance to clouds. For the Azores-region dataset examined here, this artifact occurs mostly within 5 km from clouds, and exaggerates the near-cloud enhancements of lidar backscatter and color ratio by about 30. This shows that for accurate characterization of the changes in aerosol properties with distance to clouds, it is important to account for the impact of changes in cloud fraction.

  15. The ionization fraction in dense clouds

    CERN Document Server

    De Boisanger, C B; Van Dishoeck, E F

    1995-01-01

    We present submillimeter observations of various molecular ions toward two dense clouds, NGC 2264 IRS1 and W 3 IRS5, in order to investigate their ionization fraction. Analysis of the line intensity ratios by the way of statistical equilibrium calculations allows determination of the physical parameters: n(H2)~(1-2)e6 cm-3 and T(kin)~50-100 K. Column densities and abundances are also derived. Together, the abundances of the observed ions provide a lower limit to the ionization fraction, which is (2-3)e-9 in both clouds. In order to better constrain the electron abundance, a simple chemical model is built which calculates the steady state abundances of the major positive ions, using the observed abundances wherever available. With reasonable assumptions, good agreement within a factor of two with the observations can be achieved. The calculated electron fraction is x(e)= (1.0-3.3)e-8 in the case of NGC 2264 and x(e)=(0.5-1.1)e-8 for W 3 IRS5. In the first case, the high abundance of N2H+ requires a rather high...

  16. Super-cooled liquid water topped sub-arctic clouds and precipitation - investigation based on combination of ground-based in-situ and remote-sensing observations

    Science.gov (United States)

    Hirsikko, Anne; Brus, David; O'Connor, Ewan J.; Filioglou, Maria; Komppula, Mika; Romakkaniemi, Sami

    2017-04-01

    In the high and mid latitudes super-cooled liquid water layers are frequently observed on top of clouds. These layers are difficult to forecast with numerical weather prediction models, even though, they have strong influence on atmospheric radiative properties, cloud microphysical properties, and subsequently, precipitation. This work investigates properties of super-cooled liquid water layer topped sub-arctic clouds and precipitation observed with ground-based in-situ (cloud probes) and remote-sensing (a cloud radar, Doppler and multi-wavelength lidars) instrumentation during two-month long Pallas Cloud Experiment (PaCE 2015) in autumn 2015. Analysis is based on standard Cloudnet scheme supplemented with new retrieval products of the specific clouds and their properties. Combination of two scales of observation provides new information on properties of clouds and precipitation in the sub-arctic Pallas region. Current status of results will be presented during the conference. The authors acknowledge financial support by the Academy of Finland (Centre of Excellence Programme, grant no 272041; and ICINA project, grant no 285068), the ACTRIS2 - European Union's Horizon 2020 research and innovation programme under grant agreement No 654109, the KONE foundation, and the EU FP7 project BACCHUS (grant no 603445).

  17. Deuterium Fractionation in the Ophiuchus Molecular Cloud

    CERN Document Server

    Punanova, A; Pon, A; Belloche, A; André, Ph

    2015-01-01

    Aims. We measure the deuterium fraction, RD, and the CO-depletion factor, fd, toward a number of starless and protostellar cores in the L1688 region of the Ophiuchus molecular cloud complex and search for variations based upon environmental differences across L1688. The kinematic properties of the dense gas traced by the N2H+ and N2D+ (1-0) lines are also discussed. Methods. RD has been measured via observations of the J=1-0 transition of N2H+ and N2D+ toward 33 dense cores in different regions of L1688. fd estimates have been done using C17O(1-0) and 850 micron dust continuum emission from the SCUBA survey. All line observations were carried out with the IRAM 30 meter antenna. Results. The dense cores show large (2-40%) deuterium fractions, with significant variations between the sub-regions of L1688. The CO-depletion factor also varies from one region to another (1-7). Two different correlations are found between deuterium fraction and CO-depletion factor: cores in regions A, B2 and I show increasing RD wit...

  18. Some Technical Aspects of a CALIOP and MODIS Data Analysis that Examines Near-Cloud Aerosol Properties as a Function of Cloud Fraction

    Science.gov (United States)

    Varnai, Tamas; Yang, Weidong; Marshak, Alexander

    2016-01-01

    CALIOP shows stronger near-cloud changes in aerosol properties at higher cloud fractions. Cloud fraction variations explain a third of near-cloud changes in overall aerosol statistics. Cloud fraction and aerosol particle size distribution have a complex relationship.

  19. Determination of Ice Crystal Growth Parameters in a Supercooled Cloud Tunnel.

    Science.gov (United States)

    1981-06-01

    quite well with the findings of Fukuta (1968) during his studies of the use of "vapor activated" metaldehyde as an ice nucleation agent. At other...Some remarks on ice nucleation by metaldehyde . Proc. Intl. Conf. on Cloud Phys., Toronto, 26 - 30 Aug. 1968, 1947-- - , 1969: Experimental studies on

  20. Synergetic cloud fraction determination for SCIAMACHY using MERIS

    Directory of Open Access Journals (Sweden)

    C. Schlundt

    2011-02-01

    Full Text Available Since clouds play an essential role in the Earth's climate system, it is important to understand the cloud characteristics as well as their distribution on a global scale using satellite observations. The main scientific objective of SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY onboard the ENVISAT satellite is the retrieval of vertical columns of trace gases.

    On the one hand, SCIAMACHY has to be sensitive to low variations in trace gas concentrations which means the ground pixel size has to be large enough. On the other hand, such a large pixel size leads to the problem that SCIAMACHY spectra are often contaminated by clouds. SCIAMACHY spectral measurements are not well suitable to derive a reliable sub-pixel cloud fraction that can be used as input parameter for subsequent retrievals of cloud properties or vertical trace gas columns. Therefore, we use MERIS/ENVISAT spectral measurements with its high spatial resolution as sub-pixel information for the determination of MerIs Cloud fRation fOr Sciamachy (MICROS. Since MERIS covers an even broader swath width than SCIAMACHY, no problems in spatial and temporal collocation of measurements occur. This enables the derivation of a SCIAMACHY cloud fraction with an accuracy much higher as compared with other current cloud fractions that are based on SCIAMACHY's PMD (Polarization Measurement Device data.

    We present our new developed MICROS algorithm, based on the threshold approach, as well as a qualitative validation of our results with MERIS satellite images for different locations, especially with respect to bright surfaces such as snow/ice and sands. In addition, the SCIAMACHY cloud fractions derived from MICROS are intercompared with other current SCIAMACHY cloud fractions based on different approaches demonstrating a considerable improvement regarding geometric cloud fraction determination using the MICROS algorithm.

  1. Estimation of cloud fraction profile in shallow convection using a scanning cloud radar: Cloud Fraction of Shallow Cumuli

    Energy Technology Data Exchange (ETDEWEB)

    Oue, Mariko [School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook New York USA; Kollias, Pavlos [School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook New York USA; Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; North, Kirk W. [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal Quebec Canada; Tatarevic, Aleksandra [Department of Atmospheric and Oceanic Sciences, McGill University, Montreal Quebec Canada; Endo, Satoshi [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Vogelmann, Andrew M. [Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton New York USA; Gustafson, William I. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA

    2016-10-18

    Large spatial inhomogeneity in shallow convection raises uncertainties in estimation of the domain-averaged cloud fraction profile (CFP). Here, numerical model simulations of shallow convection over land, coupled with a sophisticated radar simulator, are used to address this issue, and an objective method for estimating domain-averaged CFP is proposed. The analysis clearly indicates that profiling observations are inadequate to provide reliable CFP estimates. The use of Scanning Cloud Radar (SCR) performing a sequence of cross-wind horizon-to-horizon scans is not straightforward due to the strong dependency of its sensitivity with range. The retrieved CFP by a novel methodology that uses the observed statistics of SCR hydrometeor detections with height to estimate optimum ranges shows very good agreement with the model CFP. On average of CFP estimates more than 40 min of SCR observations are required to converge on the model domain average. The proposed technique is expected to improve our ability to compare model and observations in broken cloud conditions.

  2. Remote Sensing of Supercooled Cloud Layers in Cold Climate Using Ground Based Integrated Sensors System and Comparison with Pilot Reports and model forecasts

    Science.gov (United States)

    Boudala, Faisal; Wu, Di; Gultepe, Ismail; Anderson, Martha; turcotte, marie-france

    2017-04-01

    In-flight aircraft icing is one of the major weather hazards to aviation . It occurs when an aircraft passes through a cloud layer containing supercooled drops (SD). The SD in contact with the airframe freezes on the surface which degrades the performance of the aircraft.. Prediction of in-flight icing requires accurate prediction of SD sizes, liquid water content (LWC), and temperature. The current numerical weather predicting (NWP) models are not capable of making accurate prediction of SD sizes and associated LWC. Aircraft icing environment is normally studied by flying research aircraft, which is quite expensive. Thus, developing a ground based remote sensing system for detection of supercooled liquid clouds and characterization of their impact on severity of aircraft icing one of the important tasks for improving the NWPs based predictions and validations. In this respect, Environment and Climate Change Canada (ECCC) in cooperation with the Department of National Defense (DND) installed a number of specialized ground based remote sensing platforms and present weather sensors at Cold Lake, Alberta that includes a multi-channel microwave radiometer (MWR), K-band Micro Rain radar (MRR), Ceilometer, Parsivel distrometer and Vaisala PWD22 present weather sensor. In this study, a number of pilot reports confirming icing events and freezing precipitation that occurred at Cold Lake during the 2014-2016 winter periods and associated observation data for the same period are examined. The icing events are also examined using aircraft icing intensity estimated using ice accumulation model which is based on a cylindrical shape approximation of airfoil and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model predicted LWC, median volume diameter and temperature. The results related to vertical atmospheric profiling conditions, surface observations, and the Canadian High Resolution Regional Deterministic Prediction System (HRDPS) model

  3. Thermal Cloud Point Fractionation of Poly(vinyl alcohol-co-vinyl acetate): Partition of Nanogels in the Fractions

    OpenAIRE

    Gérard Riess; Leonard I. Atanase

    2011-01-01

    Poly(vinyl acetate-co-vinyl alcohol) (PVA), well-known as emulsion stabilizers, are obtained by partial hydrolysis of poly(vinyl acetate) (PVAc). Their thermal cloud point fractionation was performed in aqueous medium between 40 and 75 °C. This fractionation was carried out in order to get an insight in the partition of the initially present nanogels in the different fractions. All the fractions were characterized by size exclusion chromatography (SEC), NMR and dynamic light scattering (DLS) ...

  4. A comparison of global reanalyses to satellite observations: quantifying errors in Cloud Fraction and TOA cloud radiative forcings

    Science.gov (United States)

    Dolinar, E. K.; Dong, X.; Xi, B.

    2014-12-01

    As the improvements of observing systems, model parameterizations, and advanced assimilation techniques, a few reanalyses data sets become available; however, it is necessary to understand their strengths and biases before exploiting them. In this study, we investigate five contemporary reanalyses (20CR, CFSR, Era-Interim, JRA-25, and MERRA). In detail, we first compared the cloud fraction, TOA radiation fluxes and cloud radiative forcings using CERES MODIS SYN1deg and EBAF products on the global scale. We then analyze the differences and similarities between these parameters in tropical and mid-latitudes under convective and subsidence regimes. It is important to note that CERES MODIS and EBAF results are used as reference to evaluate these simulated parameters, and these data cover the period from 03/2000 to 02/2012. The preliminary results show that most of the reanalyses under estimate cloud fraction on global average, and the SW, LW, and Net CRFs are biased by as much as 3.9 (CFSR), -8.7 (JRA-25), and -5.7 (JRA-25) Wm-2, respectively. Convective and subsidence regimes are identified as the strong ascending and descending branches of the large general circulation in the tropics and mid-latitudes. This metric helps to identify the physical characteristics in specific areas and the types of clouds that reside there. Clouds are typically over estimated in convective areas while in the subsidence region clouds are under estimated. Sensitivity studies show that these regimes exhibit different regressive behaviors when comparing cloud fraction to CRFs, especially in the LW CRF. The error analysis reveals information that can be useful for modelers so that they may develop better parameterizations for clouds and how they interact with incoming solar and outgoing infrared radiation.

  5. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    Directory of Open Access Journals (Sweden)

    R. Lutz

    2015-12-01

    Full Text Available This paper describes an approach for cloud parameter retrieval (radiometric cloud fraction estimation using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2 on-board the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude and to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud top height (CTH, cloud top pressure (CTP, cloud top albedo (CTA and cloud optical thickness (COT with the Retrieval Of Cloud Information using Neural Networks (ROCINN algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than six years of GOME-2A data (February 2007–June 2013, reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing angle dependent and latitude dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with co-located AVHRR geometrical cloud fractions shows a general good agreement with a mean difference of −0.15±0.20. From operational point of view, an advantage of the OCRA algorithm is its extremely fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument, TROPOMI (TROPOspheric Monitoring Instrument on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud fraction estimation for GOME-2 can be achieved with OCRA by using the polarization measurement devices (PMDs.

  6. OCRA radiometric cloud fractions for GOME-2 on MetOp-A/B

    Science.gov (United States)

    Lutz, Ronny; Loyola, Diego; Gimeno García, Sebastián; Romahn, Fabian

    2016-05-01

    This paper describes an approach for cloud parameter retrieval (radiometric cloud-fraction estimation) using the polarization measurements of the Global Ozone Monitoring Experiment-2 (GOME-2) onboard the MetOp-A/B satellites. The core component of the Optical Cloud Recognition Algorithm (OCRA) is the calculation of monthly cloud-free reflectances for a global grid (resolution of 0.2° in longitude and 0.2° in latitude) to derive radiometric cloud fractions. These cloud fractions will serve as a priori information for the retrieval of cloud-top height (CTH), cloud-top pressure (CTP), cloud-top albedo (CTA) and cloud optical thickness (COT) with the Retrieval Of Cloud Information using Neural Networks (ROCINN) algorithm. This approach is already being implemented operationally for the GOME/ERS-2 and SCIAMACHY/ENVISAT sensors and here we present version 3.0 of the OCRA algorithm applied to the GOME-2 sensors. Based on more than five years of GOME-2A data (April 2008 to June 2013), reflectances are calculated for ≈ 35 000 orbits. For each measurement a degradation correction as well as a viewing-angle-dependent and latitude-dependent correction is applied. In addition, an empirical correction scheme is introduced in order to remove the effect of oceanic sun glint. A comparison of the GOME-2A/B OCRA cloud fractions with colocated AVHRR (Advanced Very High Resolution Radiometer) geometrical cloud fractions shows a general good agreement with a mean difference of -0.15 ± 0.20. From an operational point of view, an advantage of the OCRA algorithm is its very fast computational time and its straightforward transferability to similar sensors like OMI (Ozone Monitoring Instrument), TROPOMI (TROPOspheric Monitoring Instrument) on Sentinel 5 Precursor, as well as Sentinel 4 and Sentinel 5. In conclusion, it is shown that a robust, accurate and fast radiometric cloud-fraction estimation for GOME-2 can be achieved with OCRA using polarization measurement devices (PMDs).

  7. Modulation of the Atmospheric-ocean Oscillations on Seasonal Cloud Fraction in China

    Science.gov (United States)

    Gao, Yuan; Wang, Kaicun

    2016-04-01

    Currently, the studies of China's monsoon region are generally based on the relationship between the precipitation and circulation indexes. However, the skewness of precipitation's time series is obvious and of non-normal distribution, and the precipitation is inhomogeneous regionally and seasonally, it makes the analysis inaccurate. To avoid these limitations, our research uses the cloud fraction data from MODIS and EECRA (Extended Edited Synoptic Cloud Reports Archive) which is relatively stable. This research analyzes the mechanism of how the different atmospheric-ocean oscillations including ENSO, AMO, PDO, NAO and AO influence the monsoon region in China. We use EOF analysis to decompose the cloud fraction and get several significant modes which can contribute more than 50% of the whole ones, then calculate the correlations of the cloud fraction with the five circulation indexes in different regions of China seasonally. The analysis reveals that AMO, NAO and AO have high correlation with the cloud fraction in the whole year especially in the spring, the correlation coefficient may reach 0.8 in mode 3 of EOF analysis. Besides, ENSO and PDO are both highly correlated with the cloud fraction except in winter. To illustrate regionally, Northern China, Northeast China and Southwest China are influenced by NAO mostly, Northwest China is affected by AMO, and Eastern China is highly correlated with PDO and ENSO. It brings some new understandings of the monsoon region.

  8. The binary fraction of the young cluster NGC 1818 in the Large Magellanic Cloud

    CERN Document Server

    Hu, Yi; deGrijs, Richard; Goodwin, Simon P; Liu, Qiang

    2008-01-01

    We use high-resolution {\\sl Hubble Space Telescope} imaging observations of the young ($\\sim 15-25$ Myr) star cluster NGC 1818 in the Large Magellanic Cloud to derive an estimate for the binary fraction of F stars ($1.3 0.4$, the binary fraction is $\\sim 0.35$. This suggests a total binary fraction for F stars of 0.6 to unity depending on assumptions about the form of the mass ratio distribution at low $q$.

  9. Effective cloud fractions of GOME-2 measurements using an enhanced HICRU implementation

    Science.gov (United States)

    Sihler, Holger; Beirle, Steffen; Grzegorski, Michael; Hörmann, Christoph; Lampel, Johannes; Penning de Vries, Marloes; Wagner, Thomas

    2016-04-01

    The physics of clouds is one of the most important drivers of meteorology and the climate system. Apart from this, the distribution of clouds interferes with the majority of satellite measurement techniques. Tropospheric trace gas retrievals are particularly sensitivity to the distribution of clouds within the field-of-view of the instrument, because already small cloud fractions have the potential to alter the measurement error and significantly increase the uncertainty of the measurement. Hence, the accuracy of tropospheric trace gas retrievals depends on the accuracy of the cloud fraction, particularly for small cloud fractions. The original HICRU Iterative Cloud Retrieval Utilities (HICRU) algorithm has been specifically developed for the retrieval of small cloud fractions at high accuracy. This is achieved by inferring a clear sky top of atmosphere reflectance map from the dataset itself, minimising the influence of instrument degradation and/or insufficient calibration. HICRU thus requires a minimum of a-priori knowledge. So far, this approach was limited to measurements at sufficiently small viewing angles, such as GOME and SCIAMACHY, for which the use of a single, viewing-angle independent background albedo map is justified. Here, we demonstrate how this empirical approach may be enhanced by parametrising the viewing angle dependence of the TOA reflectance. It then becomes applicable to satellite instruments like GOME-2, OMI, and the upcoming TROPOMI/S5P with viewing angles up to 45 or even 70 degrees, by parametrising the viewing angle dependence of the TOA reflectance. Furthermore, the enhanced HICRU algorithm comprises an advanced treatment of the temporal evolution using a spatially averaged Fourier series fit. The enhanced HICRU has the potential to be applied also to instruments with moderate spectral resolution like MERIS, MODIS, or AVHRR as well.

  10. The chemistry of interstellar argonium and other probes of the molecular fraction in diffuse clouds

    CERN Document Server

    Neufeld, David A

    2016-01-01

    We present a general parameter study, in which the abundance of interstellar argonium (ArH$^+$) is predicted using a model for the physics and chemistry of diffuse interstellar gas clouds. Results have been obtained as a function of UV radiation field, cosmic-ray ionization rate, and cloud extinction. No single set of cloud parameters provides an acceptable fit to the typical ArH$^+$, OH$^+$ and $\\rm H_2O^+$ abundances observed in diffuse clouds within the Galactic disk. Instead, the observed abundances suggest that ArH$^+$ resides primarily in a separate population of small clouds of total visual extinction of at most 0.02 mag per cloud, within which the column-averaged molecular fraction is in the range $10^{-5} - 10^{-2}$, while OH$^+$ and $\\rm H_2O^+$ reside primarily in somewhat larger clouds with a column-averaged molecular fraction $\\sim 0.2$. This analysis confirms our previous suggestion that the argonium molecular ion is a unique tracer of almost purely atomic gas.

  11. A neural network algorithm for cloud fraction estimation using NASA-Aura OMI VIS radiance measurements

    Directory of Open Access Journals (Sweden)

    G. Saponaro

    2013-09-01

    Full Text Available The discrimination of cloudy from cloud-free pixels is required in almost any estimate of a parameter retrieved from satellite data in the ultraviolet (UV, visible (VIS or infrared (IR parts of the electromagnetic spectrum. In this paper we report on the development of a neural network (NN algorithm to estimate cloud fractions using radiances measured at the top of the atmosphere with the NASA-Aura Ozone Monitoring Instrument (OMI. We present and discuss the results obtained from the application of two different types of neural networks, i.e., extreme learning machine (ELM and back propagation (BP. The NNs were trained with an OMI data sets existing of six orbits, tested with three other orbits and validated with another two orbits. The results were evaluated by comparison with cloud fractions available from the MODerate Resolution Imaging Spectrometer (MODIS flying on Aqua in the same constellation as OMI, i.e., with minimal time difference between the OMI and MODIS observations. The results from the ELM and BP NNs are compared. They both deliver cloud fraction estimates in a fast and automated way, and they both performs generally well in the validation. However, over highly reflective surfaces, such as desert, or in the presence of dust layers in the atmosphere, the cloud fractions are not well predicted by the neural network. Over ocean the two NNs work equally well, but over land ELM performs better.

  12. Parameterization of cirrus optical depth and cloud fraction

    Energy Technology Data Exchange (ETDEWEB)

    Soden, B. [Princeton Univ., Princeton, NJ (United States)

    1995-09-01

    This research illustrates the utility of combining satellite observations and operational analysis for the evaluation of parameterizations. A parameterization based on ice water path (IWP) captures the observed spatial patterns of tropical cirrus optical depth. The strong temperature dependence of cirrus ice water path in both the observations and the parameterization is probably responsible for the good correlation where it exists. Poorer agreement is found in Southern Hemisphere mid-latitudes where the temperature dependence breaks down. Uncertainties in effective radius limit quantitative validation of the parameterization (and its inclusion into GCMs). Also, it is found that monthly mean cloud cover can be predicted within an RMS error of 10% using ECMWF relative humidity corrected by TOVS Upper Troposphere Humidity. 1 ref., 2 figs.

  13. 15N fractionation in infrared-dark cloud cores

    Science.gov (United States)

    Zeng, S.; Jiménez-Serra, I.; Cosentino, G.; Viti, S.; Barnes, A. T.; Henshaw, J. D.; Caselli, P.; Fontani, F.; Hily-Blant, P.

    2017-07-01

    Context. Nitrogen is one of the most abundant elements in the Universe and its 14N/15N isotopic ratio has the potential to provide information about the initial environment in which our Sun formed. Recent findings suggest that the solar system may have formed in a massive cluster since the presence of short-lived radioisotopes in meteorites can only be explained by the influence of a supernova. Aims: We seek to determine the 14N/15N ratio towards a sample of cold and dense cores at the initial stages in their evolution. Methods: We observed the J = 1 → 0 transitions of HCN, H13CN, HC15N, HN13C, and H15NC towards a sample of 22 cores in four infrared-dark clouds (IRDCs) which are believed to be the precursors of high-mass stars and star clusters. Assuming LTE and a temperature of 15 K, the column densities of HCN, H13CN, HC15N, HN13C, and H15NC are calculated and their 14N/15N ratio is determined for each core. Results: The 14N/15N ratios measured in our sample of IRDC cores range between 70 and ≥763 in HCN and between 161 and 541 in HNC. These ratios are consistent with the terrestrial atmosphere (TA) and protosolar nebula (PSN) values, and with the ratios measured in low-mass prestellar cores. However, the 14N/15N ratios measured in cores C1, C3, F1, F2, and G2 do not agree with the results from similar studies towards the same cores using nitrogen bearing molecules with nitrile functional group (-CN) and nitrogen hydrides (-NH) although the ratio spread covers a similar range. Conclusions: Relatively low 14N/15N ratios amongst the four-IRDCs were measured in IRDC G which are comparable to those measured in small cosmomaterials and protoplanetary disks. The low average gas density of this cloud suggests that the gas density, rather than the gas temperature, may be the dominant parameter influencing the initial nitrogen isotopic composition in young PSN. The reduced spectra (FITS files) are only available at the CDS via anonymous ftp to http

  14. The ionization fraction gradient across the Horsehead edge: An archetype for molecular clouds

    CERN Document Server

    Goicoechea, J R; Gerin, M; Hily-Blant, P; Bourlot, J Le

    2009-01-01

    The ionization fraction plays a key role in the chemistry and dynamics of molecular clouds. We study the H13CO+, DCO+ and HOC+ line emission towards the Horsehead, from the shielded core to the UV irradiated cloud edge, i.e., the Photodissociation Region (PDR), as a template to investigate the ionization fraction gradient in molecular clouds. We analyze a PdBI map of the H13CO+ J=1-0 line, complemented with IRAM-30m H13CO+ and DCO+ higher-J line maps and new HOC+ and CO+ observations. We compare self-consistently the observed spatial distribution and line intensities with detailed depth-dependent predictions of a PDR model coupled with a nonlocal radiative transfer calculation. The chemical network includes deuterated species, 13C fractionation reactions and HCO+/HOC+ isomerization reactions. The role of neutral and charged PAHs in the cloud chemistry and ionization balance is investigated. The detection of HOC+ reactive ion towards the Horsehead PDR proves the high ionization fraction of the outer UV irradia...

  15. Perturbation of Fractional Multi-Agent Systems in Cloud Entropy Computing

    Directory of Open Access Journals (Sweden)

    Rabha W. Ibrahim

    2016-01-01

    Full Text Available A perturbed multi-agent system is a scheme self-possessed of multiple networking agents within a location. This scheme can be used to discuss problems that are impossible or difficult for a specific agent to solve. Intelligence cloud entropy management systems involve functions, methods, procedural approaches, and algorithms. In this study, we introduce a new perturbed algorithm based on the fractional Poisson process. The discrete dynamics are suggested by using fractional entropy and fractional type Tsallis entropy. Moreover, we study the algorithm stability.

  16. Simulation of cloud microphysical effects on water isotope fractionation in a frontal system

    Science.gov (United States)

    Chen, J. P.; Tsai, I. C.; Chen, W. Y.; Liang, M. C.

    2014-12-01

    The stable water isotopic composition changes due to fractionation during phase changes. This information is useful for understanding the water cycle, such as the water vapor source, transport and cloud microphysical processes. In conventional atmospheric models, the isotope exchange between liquid and gas phase is usually assumed to be in an equilibrium state, which is not sufficient to describe the highly kinetic phase transformation processes in clouds. In this study, a two-moment microphysical scheme incorporated into the NCAR Weather Research and Forecasting (WRF) model is modified to simulate the isotope fractionations. Experimentally determined stable water isotope thermal equilibrium data are converted into isotope saturation vapor pressure, which is then put into the two-stream Maxwellian kinetic equation to calculate the fractionation during vapor condensation/evaporation or deposition/sublimation. Isotope mass transfer between liquid- and ice-phase hydrometeors during freezing/melting are also considered explicitly. The simulation results were compared with rainwater isotope measurements and showed fairly good agreement. Sensitivity tests were also conducted to quantify the contribution of rainwater isotopic due to water vapor source and transport, condensation environment conditions, and cloud microphysical processes. The results show that isotopic water vapor source dominates the stable isotope concentration in rainwater but the cloud microphysical processes including the ice-phase processes are also quite important. The results also showed that the two-stream Maxwellian kinetic method would cause significantly more deuterium to be transported into higher altitudes during convection than the thermal equilibrium method.

  17. Supercooled liquids for pedestrians

    Science.gov (United States)

    Cavagna, Andrea

    2009-06-01

    When we lower the temperature of a liquid, at some point we meet a first order phase transition to the crystal. Yet, under certain conditions it is possible to keep the system in its metastable phase and to avoid crystallization. In this way the liquid enters in the supercooled phase. Supercooled liquids have a very rich phenomenology, which is still far from being completely understood. To begin with, there is the problem of how to prevent crystallization and how deeply the liquid can be supercooled before a metastability limit is hit. But by far the most interesting feature of supercooled liquids is the dynamic glass transition: when the temperature is decreased below a certain point, the relaxation time increases so much that a dramatic dynamical arrest intervenes and we are unable to equilibrate the system within reasonable experimental times. The glass transition is a phenomenon whose physical origin has stirred an enormous interest in the last hundred years. Why does it occur? Is it just a conventional reference point, or does it have a more profound physical meaning? Is it a purely dynamical event, or the manifestation of a true thermodynamic transition? What is the correlation length associated to the sharp increase of the relaxation time? Can we define a new kind of amorphous order? A shared theory of supercooled liquids and the glass transition does not yet exist and these questions are still largely open. Here, I will illustrate in the most elementary fashion the main phenomenological traits of supercooled liquids and discuss in a very partial way a few theoretical ideas on the subject.

  18. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Westesen, K; Drechsler, M

    2004-01-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester....

  19. Supercooled Liquids and Glasses

    OpenAIRE

    1999-01-01

    In these lectures, which were presented at "Soft and Fragile Matter, Nonequilibrium Dynamics, Metastability and Flow" University of St. Andrews, 8 July - 22 July, 1999, I give an introduction to the physics of supercooled liquids and glasses and discuss some computer simulations done to investigate these systems.

  20. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Westesen, K; Drechsler, M

    2004-01-01

    The possibility of preparing nanoparticles in the supercooled thermotropic liquid crystalline state from cholesterol esters with saturated acyl chains as well as the incorporation of model drugs into the dispersions was investigated using cholesteryl myristate (CM) as a model cholesterol ester....

  1. Seeding Conditions of Precipitation Enhancement Revealed by Multiple Spectral Data of Satellite.Ⅱ: Super-cooled Layer Clouds%卫星遥感人工增雨作业条件Ⅱ:层状云

    Institute of Scientific and Technical Information of China (English)

    刘贵华; 余兴; 岳治国; 戴进; 徐小红; 朱延年

    2012-01-01

    通过卫星多光谱资料的定标,利用可见光反射率、3.7 μm和11 μm辐射亮温,反演了云顶粒子有效半径、云顶温度等云特征参数.运用图像合成技术,建立了反映云宏、微观特征的RGB合成图.利用发展的多光谱云微物理综合分析方法,通过极轨卫星分析了不同过冷层状云及其降水特征,结合增雨假设,总结出适宜人工增雨作业的卫星判据为:云厚大于1.5 km,云顶温度-5~-15℃时,有效半径小于25 μm;或云顶温度-15~-25℃时,有效半径小于15 μm.利用可见光反射率、云顶温度和有效半径多阈值建立人工增雨播云等级和分级显示.通过静止卫星跟踪云系演变,进一步确定播云部位和作业时机,指导人工增雨作业.%On the basis of calibration of multiple spectral satellite data, parameters of cloud properties such as particle effective radius and temperature of cloud tops were retrieved from the reflectance of visible channel and brightness temperature at 3.7 urn and 11 μm wavelengths. By means of imagery compositions such as code reflectance at visible and 3.7 μrn channels and a brightness temperature of 11 μm channel with primary colors of red, blue, and green (RGB), RGB composite imagery was developed to reflect the micro- and macrophysical properties of clouds. Multiple-spectral comprehensive methodology was used to analyze the microphysical properties and precipitation for super-cooled layer clouds via polar-orbit satellite data. On the basis of the assumption of precipitation enhancement and the analyzed results, the suitable criterion for rainfall enhancement for these types of clouds is summarized by the following parameters: Cloud thickness is greater than 1.5 km, and effective radius should be less than 25 μm when the temperature ranges between -5 ℃ and -15 ℃ and less than 15 μm when temperature is between -15 ℃ and -25 ℃. The classes of cloud seed ability for precipitation enhancement and

  2. Satellite retrieval of the liquid water fraction in tropical clouds between −20 and −38 °C

    Directory of Open Access Journals (Sweden)

    D. L. Mitchell

    2012-07-01

    Full Text Available This study describes a satellite remote sensing method for directly retrieving the liquid water fraction in mixed phase clouds, and appears unique in this respect. The method uses MODIS split-window channels for retrieving the liquid fraction from cold clouds where the liquid water fraction is less than 50% of the total condensate. This makes use of the observation that clouds only containing ice exhibit effective 12-to-11 μm absorption optical thickness ratios (βeff that are quasi-constant with retrieved cloud temperature T. This observation was made possible by using two CO2 channels to retrieve T and then using the 12 and 11 μm channels to retrieve emissivities and βeff. Thus for T < −40 °C, βeff is constant, but for T > −40 °C, βeff slowly increases due to the presence of liquid water, revealing mean liquid fractions of ~ 10% around −22 °C from tropical clouds identified as cirrus by the cloud mask. However, the uncertainties for these retrievals are large, and extensive in situ measurements are needed to refine and validate these retrievals. Such liquid levels are shown to reduce the cloud effective diameter De such that cloud optical thickness will increase by more than 50% for a given water path, relative to De corresponding to pure ice clouds. Such retrieval information is needed for validation of the cloud microphysics in climate models. Since low levels of liquid water can dominate cloud optical properties, tropical clouds between −25 and −20 °C may be susceptible to the first aerosol indirect effect.

  3. User Observed Estimates of Cloud Fraction for Modifying a Cloud-free UV Index for Use in an Educational Smart-phone Application on Erythema

    Science.gov (United States)

    Lantz, K. O.; Long, C. S.; Buller, D.; Berwick, M.; Buller, M.; Kane, I.; Shane, J.

    2012-12-01

    The UV Index (UVI) is a measure of the skin-damaging UV radiation levels at the Earth's surface. Clouds, haze, air pollution, total ozone, surface elevation, and ground reflectivity affect the levels of UV radiation reaching the ground. The global UV Index was developed as a simple tool to educate the public for taking precautions when exposed to UV radiation to avoid sun-burning, which has been linked to the development of skin cancer. The purpose of this study was to validate an algorithm to modify a cloud-free UV Index forecast for cloud conditions as observed by adults in real-time. The cloud attenuation algorithm is used in a smart-phone application to modify a clear-sky UV Index forecast. In the United States, the Climate Prediction Center of the National Oceanic and Atmospheric Administration's (NOAA) issues a daily UV Index Forecast. The NOAA UV Index is an hourly forecast for a 0.5 x 0.5 degree area and thus has a degree of uncertainty. Cloud cover varies temporally and spatially over short times and distances as weather conditions change and can have a large impact on the UV radiation. The smart-phone application uses the cloud-based UV Index forecast as the default but allows the user to modify a cloud-free UV Index forecast when the predicted sky conditions do not match observed conditions. Eighty four (n=84) adults were recruited to participate in the study through advertisements posted online and in a university e-newsletter. Adults were screened for eligibility (i.e., 18 or older, capable to traveling to test site, had a smart phone with a data plan to access online observation form). A sky observation measure was created to assess cloud fraction. The adult volunteers selected from among four photographs the image that best matched the cloud conditions they observed. Images depicted no clouds (clear sky), thin high clouds, partly cloudy sky, and thick clouds (sky completely overcast). When thin high clouds or partly cloudy images were selected

  4. Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    Science.gov (United States)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of 5 years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anticorrelation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice!free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7% and 10%, respectively, as year average sea ice extent has decreased by 5% 7%. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Because longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  5. The Influence of Arctic Sea Ice Extent on Polar Cloud Fraction and Vertical Structure and Implications for Regional Climate

    Science.gov (United States)

    Palm, Stephen P.; Strey, Sara T.; Spinhirne, James; Markus, Thorsten

    2010-01-01

    Recent satellite lidar measurements of cloud properties spanning a period of five years are used to examine a possible connection between Arctic sea ice amount and polar cloud fraction and vertical distribution. We find an anti-correlation between sea ice extent and cloud fraction with maximum cloudiness occurring over areas with little or no sea ice. We also find that over ice free regions, there is greater low cloud frequency and average optical depth. Most of the optical depth increase is due to the presence of geometrically thicker clouds over water. In addition, our analysis indicates that over the last 5 years, October and March average polar cloud fraction has increased by about 7 and 10 percent, respectively, as year average sea ice extent has decreased by 5 to 7 percent. The observed cloud changes are likely due to a number of effects including, but not limited to, the observed decrease in sea ice extent and thickness. Increasing cloud amount and changes in vertical distribution and optical properties have the potential to affect the radiative balance of the Arctic region by decreasing both the upwelling terrestrial longwave radiation and the downward shortwave solar radiation. Since longwave radiation dominates in the long polar winter, the overall effect of increasing low cloud cover is likely a warming of the Arctic and thus a positive climate feedback, possibly accelerating the melting of Arctic sea ice.

  6. Ultra Violet Escape Fractions from Giant Molecular Clouds During Early Cluster Formation

    CERN Document Server

    Howard, Corey S; Klessen, Ralf S

    2016-01-01

    The UV photon escape fraction from molecular clouds is a key parameter for understanding the ionization of the Interstellar Medium (ISM), and extragalactic processes, such as cosmic reionization. We present the ionizing photon flux and the corresponding photon escape fraction (f$_{esc}$) arising as a consequence of star cluster formation in a turbulent, 10$^6$ M$_{\\odot}$ GMC, simulated using the code FLASH. We make use of sink particles to represent young, star-forming clusters coupled with a radiative transfer scheme to calculate the emergent UV flux. We find that the ionizing photon flux across the cloud boundary is highly variable in time and space due to the turbulent nature of the intervening gas. The escaping photon fraction remains at $\\sim$5% for the first 2.5 Myr, followed by two pronounced peaks at 3.25 and 3.8 Myr with a maximum f$_{esc}$ of 30% and 37%, respectively. These peaks are due to the formation of large HII regions, that expand into regions of lower density and some of which reach the cl...

  7. An estimate of the temporal fraction of cloud cover at San Pedro M\\'artir Observatory

    CERN Document Server

    Carrasco, E; Sánchez, L J; Avila, R; Cruz-González, I

    2011-01-01

    San Pedro M\\'artir in the Northwest of Mexico is the site of the Observatorio Astron\\'omico Nacional. It was one of the five candidates sites for the Thirty Meter Telescope, whose site-testing team spent four years measuring the atmospheric properties on site with a very complete array of instrumentation. Using the public database created by this team, we apply a novel method to solar radiation data to estimate the daytime fraction of time when the sky is clear of clouds. We analyse the diurnal, seasonal and annual cycles of cloud cover. We find that 82.4 per cent of the time the sky is clear of clouds. Our results are consistent with those obtained by other authors, using different methods, adding support to this value and proving the potential of the applied method. The clear conditions at the site are particularly good showing that San Pedro M\\'artir is an excellent site for optical and infrared observations.

  8. Cloud fraction at the ARM SGP site: reducing uncertainty with self-organizing maps

    Science.gov (United States)

    Kennedy, Aaron D.; Dong, Xiquan; Xi, Baike

    2016-04-01

    Instrument downtime leads to uncertainty in the monthly and annual record of cloud fraction (CF), making it difficult to perform time series analyses of cloud properties and perform detailed evaluations of model simulations. As cloud occurrence is partially controlled by the large-scale atmospheric environment, this knowledge is used to reduce uncertainties in the instrument record. Synoptic patterns diagnosed from the North American Regional Reanalysis (NARR) during the period 1997-2010 are classified using a competitive neural network known as the self-organizing map (SOM). The classified synoptic states are then compared to the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) instrument record to determine the expected CF. A number of SOMs are tested to understand how the number of classes and the period of classifications impact the relationship between classified states and CFs. Bootstrapping is utilized to quantify the uncertainty of the instrument record when statistical information from the SOM is included. Although all SOMs significantly reduce the uncertainty of the CF record calculated in Kennedy et al. (Theor Appl Climatol 115:91-105, 2014), SOMs with a large number of classes and separated by month are required to produce the lowest uncertainty and best agreement with the annual cycle of CF. This result may be due to a manifestation of seasonally dependent biases in NARR. With use of the SOMs, the average uncertainty in monthly CF is reduced in half from the values calculated in Kennedy et al. (Theor Appl Climatol 115:91-105, 2014).

  9. An estimate of the temporal fraction of cloud cover at San Pedro Mártir Observatory

    Science.gov (United States)

    Carrasco, E.; Carramiñana, A.; Sánchez, L. J.; Avila, R.; Cruz-González, I.

    2012-02-01

    San Pedro Mártir in the north-west of Mexico is the site of the Observatorio Astronómico Nacional. It was one of the five candidate sites for the Thirty Meter Telescope, whose site-testing team spent four years measuring the atmospheric properties on site with a very complete array of instrumentation. Using the public data base created by this team, we apply a novel method to solar radiation data to estimate the daytime fraction of time when the sky is clear of clouds. We analyse the diurnal, seasonal and annual cycles of cloud cover. We find that 82.4 per cent of the time the sky is clear of clouds. Our results are consistent with those obtained by other authors, using different methods, adding support to this value and proving the potential of the applied method. The clear conditions at the site are particularly good showing that San Pedro Mártir is an excellent site for optical and infrared observations.

  10. Uncertainty in Observed and Modelled Cloud Fraction Over Greenland and its Impact on the Ice Sheet Energy Balance

    Science.gov (United States)

    Griggs, J.; Bamber, J.

    2006-12-01

    Clouds have an important controlling influence on the radiative balance, and as a consequence ablation rates, over the Greenland ice sheet. In addition, to derive reliable estimates of surface albedo, temperature and radiative fluxes from satellite data, it is necessary to adequately identify clouds in imagery. Energy balance models (EBM) for the ice sheet have been developed that use both parameterizations for cloud cover and numerical weather prediction re-analysis data. Little is known, however, about the true cloud cover characteristics over Greenland to assess the quality of these EBM inputs. Here, we attempt to address this knowledge gap by examining cloud characteristics, as determined by three different satellites sensors: AVHRR, ATSR-2 and MODIS. The first provides a multi-decadal time series of clouds, albedo and surface temperature and is available as a homogeneous, consistent data set from 1982. AVHRR data, however, is also the most challenging to cloud clear over snow-covered terrain, due to the limited spectral capabilities of the instrument, while ATSR-2 permits identification and classification using stereo- photogrammetric techniques and MODIS has enhanced spectral sampling in the visible. We compare spatial and seasonal cloud fractions from the three sensors against each other and with synoptic coastal and automatic weather station data. We then assess the cloud fractions, and inferred patterns of accumulation, from the two most commonly used re-analysis data sets: NCEP/NCAR and ERA-40. We find poor agreement between the two re-analysis data sets. In addition, they bear little similarity to the observed cloud fractions derived from the satellite observations. This implies that they likely produce poor accumulation estimates over the ice sheet, but also poor estimates of radiation balance. Using the re-analysis data to force an EBM, without appropriate downscaling and correction for the substantial biases present, would, therefore, produce serious

  11. The Deuterium Fractionation Timescale in Dense Cloud Cores: A Parameter Space Exploration

    CERN Document Server

    Kong, Shuo; Tan, Jonathan C; Wakelam, Valentine

    2013-01-01

    The deuterium fraction of simple species such as N$_2$H$^+$ can be easily measured and can provide information about the age of dense and cold material, important to compare with dynamical models of cloud core formation and evolution. Here we perform a parameter space exploration using a gas-phase chemical model which includes deuterium chemistry and the spin states of H$_2$ and H$_3^+$ isotopologues. This allows us to study the effect of various poorly known parameters on the timescale to achieve the deuterium fractions observed in starless cores and clumps in various star-forming regions. We conclude that for a broad range of parameters, the relatively large deuterium fractions ($\\gtrsim$ 0.1) observed towards both low- and high-mass starless cores require core ages to be at least a few times longer than the free-fall timescale. This condition could be relaxed if cosmic ray ionization rates are very high $\\gtrsim 10^{-16}\\:{\\rm s}^{-1}$ or initial ortho-to-para ratios of $\\rm H_2$ are very low ($\\lesssim 10...

  12. Supercooled smectic nanoparticles

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Koch, Michel H J; Fahr, Alfred

    2009-01-01

    , laser diffraction combined with polarizing intensity differential scattering, DSC and SAXS. The morphology of selected formulations was studied by freeze-fracture electron microscopy. All smectic nanoparticles with a mixed cholesterol ester matrix were stable against recrystallization when stored...... in the bulk was studied by polarizing light microscopy, differential scanning calorimetry (DSC) and small angle X-ray scattering (SAXS). Colloidal dispersions with pure and mixed cholesterol ester matrices were prepared by high-pressure melt homogenization and characterized by photon correlation spectroscopy...... administration of lipophilic drugs, the cytotoxicity of selected formulations was compared with that of a clinically used colloidal fat emulsion (Lipofundin MCT) in the murine fibroblast cell line L929 using the sulforhodamine B assay. The supercooled smectic nanoparticle formulations display a good overall cell...

  13. Thermal Cloud Point Fractionation of Poly(vinyl alcohol-co-vinyl acetate: Partition of Nanogels in the Fractions

    Directory of Open Access Journals (Sweden)

    Gérard Riess

    2011-07-01

    Full Text Available Poly(vinyl acetate-co-vinyl alcohol (PVA, well-known as emulsion stabilizers, are obtained by partial hydrolysis of poly(vinyl acetate (PVAc. Their thermal cloud point fractionation was performed in aqueous medium between 40 and 75 °C. This fractionation was carried out in order to get an insight in the partition of the initially present nanogels in the different fractions. All the fractions were characterized by size exclusion chromatography (SEC, NMR and dynamic light scattering (DLS giving access to average degree of polymerization , DPw average degree of hydrolysis DH, average sequence lengths of vinyl acetate VAc, volume fraction and average size diameter (Dv of nanogels and “free PVA chains”. The polydispersity of the samples in DPw, DH and VAc could be confirmed. The nanogels characterized by the highest values of volume fraction and Dv, in the range of 40–43 nm, were separated in the first coacervate fraction, whereas the most soluble fraction with low VAc content does not contain nanogels but only “free chains” of a Dv value of around 7–8 nm. The nanogels in the various fractions could further be disaggregated into “free chains” by complex formation with sodium dodecyl sulfate (SDS.

  14. The Common Occurrence of Highly Supercooled Drizzle and Rain near the Coastal Regions of the Western United States

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Daniel; Chemke, Rei; DeMott, Paul J.; Sullivan, Ryan C.; Rasmussen, R M.; McDonough, Frank; Comstock, Jennifer M.; Schmid, Beat; Tomlinson, Jason M.; Jonsson, Haf; Suski, Kaitlyn; Cazorla, Alberto; Prather, Kimberly

    2013-09-05

    The formation of highly supercooled rain was documented by aircraft observations in clouds at a wide range of conditions near the coastal region of the western United States. Several case studies are described in detail using combined cloud and aerosol measurements to document both the highly super-cooled condition and the relatively pristine aerosol conditions under which it forms. The case studies include: (1) Marine convective clouds over the coastal waters of northern California, as measured by cloud physics probes flown on a Gulfstream-1 aircraft during the CALWATER campaign in February and early March 2011. The clouds had extensive drizzle in their tops, which extended downward to the 0°C isotherm as supercooled rain. Ice multiplication was observed only in mature parts of the clouds where cloud water was already depleted. (2) Orographically triggered convective clouds in marine air mass over the foothills of the Sierra Nevada to the east of Sacramento, as measured in CALWATER. Supercooled rain was observed down to -21°C. No indications for ice multiplication were evident. (3) Orographic layer clouds over Yosemite National Park, also measured in CALWATER. The clouds had extensive drizzle at -21°C, which intensified with little freezing lower in the cloud, and (4) Supercooled drizzle drops in layer clouds near Juneau, Alaska, as measured by the Wyoming King Air as part of a FAA project to study aircraft icing in this region. Low concentrations of CCN was a common observation in all these clouds, allowing for the formation of clouds with small concentration of large drops that coalesced into supercooled drizzle and raindrops. Another common observation was the absence of ice nuclei and/or ice crystals in measurable concentrations was associated with the persistent supercooled drizzle and rain. Average ice crystal concentrations were 0.007 l-1 at the top of convective clouds at -12°C and 0.03 l-1 in the case of layer clouds at -21°C. In combination these

  15. Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations

    Directory of Open Access Journals (Sweden)

    Y. Qian

    2012-02-01

    Full Text Available Cloud Fraction (CF is the dominant modulator of radiative fluxes. In this study, we evaluate CF simulated in the IPCC AR4 GCMs against ARM long-term ground-based measurements, with a focus on the vertical structure, total amount of cloud and its effect on cloud shortwave transmissivity. Comparisons are performed for three climate regimes as represented by the Department of Energy Atmospheric Radiation Measurement (ARM sites: Southern Great Plains (SGP, Manus, Papua New Guinea and North Slope of Alaska (NSA. Our intercomparisons of three independent measurements of CF or sky-cover reveal that the relative differences are usually less than 10% (5% for multi-year monthly (annual mean values, while daily differences are quite significant. The total sky imager (TSI produces smaller total cloud fraction (TCF compared to a radar/lidar dataset for highly cloudy days (CF > 0.8, but produces a larger TCF value than the radar/lidar for less cloudy conditions (CF < 0.3. The compensating errors in lower and higher CF days result in small biases of TCF between the vertically pointing radar/lidar dataset and the hemispheric TSI measurements as multi-year data is averaged. The unique radar/lidar CF measurements enable us to evaluate seasonal variation of cloud vertical structures in the GCMs.

    Both inter-model deviation and model bias against observation are investigated in this study. Another unique aspect of this study is that we use simultaneous measurements of CF and surface radiative fluxes to diagnose potential discrepancies among the GCMs in representing other cloud optical properties than TCF. The results show that the model-observation and inter-model deviations have similar magnitudes for the TCF and the normalized cloud effect, and these deviations are larger than those in surface downward solar radiation and cloud transmissivity. This implies that other dimensions of cloud in addition to cloud amount, such as cloud optical thickness and

  16. Lattice Boltzmann Simulation of Water Isotope Fractionation During Growth of Ice Crystals in Clouds

    Science.gov (United States)

    Lu, G.; Depaolo, D.; Kang, Q.; Zhang, D.

    2006-12-01

    The isotopic composition of precipitation, especially that of snow, plays a special role in the global hydrological cycle and in reconstruction of past climates using polar ice cores. The fractionation of the major water isotope species (HHO, HDO, HHO-18) during ice crystal formation is critical to understanding the global distribution of isotopes in precipitation. Ice crystal growth in clouds is traditionally treated with a spherically- symmetric steady state diffusion model, with semi-empirical modifications added to account for ventilation and for complex crystal morphology. Although it is known that crystal growth rate, which depends largely on the degree of vapor over-saturation, determines crystal morphology, there are no existing quantitative models that directly relate morphology to the vapor saturation factor. Since kinetic (vapor phase diffusion-controlled) isotopic fractionation also depends on growth rate, there should be a direct relationship between vapor saturation, crystal morphology, and crystal isotopic composition. We use a 2D Lattice-Boltzmann model to simulate diffusion-controlled ice crystal growth from vapor- oversaturated air. In the model, crystals grow solely according to the diffusive fluxes just above the crystal surfaces, and hence crystal morphology arises from the initial and boundary conditions in the model and does not need to be specified a priori. The input parameters needed are the isotope-dependent vapor deposition rate constant (k) and the water vapor diffusivity in air (D). The values of both k and D can be computed from kinetic theory, and there are also experimentally determined values of D. The deduced values of k are uncertain to the extent that the sticking coefficient (or accommodation coefficient) for ice is uncertain. The ratio D/k is a length that determines the minimum scale of dendritic growth features and allows us to scale the numerical calculations to atmospheric conditions using a dimensionless Damkohler number

  17. The large-scale disk fraction of brown dwarfs in the Taurus cloud as measured with Spitzer

    CERN Document Server

    Monin, J -L; Pinte, C; Rebull, L; Goldsmith, P; Fukagawa, M; Ménard, F; Padgett, D; Stappelfeld, K; McCabe, C; Carey, S; Noriega-Crespo, A; Brooke, T; Huard, T; Terebey, S; Hillenbrand, L; Guedel, M

    2010-01-01

    Aims. The brown dwarf (BD) formation process has not yet been completely understood. To shed more light on the differences and similarities between star and BD formation processes, we study and compare the disk fraction among both kinds of objects over a large angular region in the Taurus cloud. In addition, we examine the spatial distribution of stars and BD relative to the underlying molecular gas Methods. In this paper, we present new and updated photometry data from the Infrared Array Camera (IRAC) aboard the Spitzer Space Telescope on 43 BDs in the Taurus cloud, and recalculate of the BD disk fraction in this region. We also useed recently available CO mm data to study the spatial distribution of stars and BDs relative to the cloud's molecular gas. Results. We find that the disk fraction among BDs in the Taurus cloud is 41 \\pm 12%, a value statistically consistent with the one among TTS (58 \\pm 9%). We find that BDs in transition from a state where they have a disk to a diskless state are rare, and we st...

  18. Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations: IMPACT OF ENSO ON CLOUD RADIATIVE EFFECT

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Now at Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Russell, Lynn M. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Xu, Li [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Lou, Sijia [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Lamjiri, Maryam A. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Somerville, Richard C. J. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Miller, Arthur J. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Cayan, Daniel R. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; DeFlorio, Michael J. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Ghan, Steven J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Liu, Ying [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Singh, Balwinder [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Wang, Hailong [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Yoon, Jin-Ho [Gwangju Institute of Science and Technology, Gwangju South Korea; Rasch, Philip J. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA

    2016-06-02

    The impacts of the El Niño–Southern Oscillation (ENSO) events on shortwave and longwave cloud radiative effects (CRESW and CRELW) and the underlying changes in cloud fraction as well as aerosol emissions, wet scavenging and transport are quantified using three 150-year simulations in preindustrial conditions by the CESM model. Compared to recent observations from Clouds and the Earth’s Radiant Energy System (CERES), the model simulation successfully reproduced larger variations of CRESW over the tropical western and central Pacific, Indonesian regions, and the eastern Pacific Ocean, as well as large variations of CRELW located mainly within the tropics. The ENSO cycle is found to dominate interannual variations of cloud radiative effects, especially over the tropics. Relative to those during La Niña events, simulated cooling (warming) effects from CRESW (CRELW) during El Niño events are stronger over the tropical western and central Pacific Ocean, with the largest difference exceeding 40 Wm–2 (30 Wm–2), with weaker effects of 10–30 Wm–2 over Indonesian regions and the subtropical Pacific Ocean. Sensitivity tests show that variations of cloud radiative effects are mainly driven by ENSO-related changes in cloud fraction. The variations in medium and high cloud fractions each account for about 20–50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60°S and 60°N. The variation of low cloud fraction contributes most interannual variations of CRESW over the mid-latitude oceans. Variations in natural aerosol concentrations considering emissions, wet scavenging and transport explained 10–30% of the interannual variations of both CRESW and CRELW over the tropical Pacific, Indonesian regions and the tropical Indian Ocean. Changes in wet scavenging of natural aerosol modulate the variations of cloud radiative effects. Because of increased (decreased) precipitation over the tropical western Pacific

  19. Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part I: Cloud Fraction and Properties

    Science.gov (United States)

    Stanfield, Ryan E.; Dong, Xiquan; Xi, Baike; Kennedy, Aaron; Del Genio, Anthony D.; Minnia, Patrick; Jiang, Jonathan H.

    2014-01-01

    Although many improvements have been made in phase 5 of the Coupled Model Intercomparison Project (CMIP5), clouds remain a significant source of uncertainty in general circulation models (GCMs) because their structural and optical properties are strongly dependent upon interactions between aerosol/cloud microphysics and dynamics that are unresolved in such models. Recent changes to the planetary boundary layer (PBL) turbulence and moist convection parameterizations in the NASA GISS Model E2 atmospheric GCM(post-CMIP5, hereafter P5) have improved cloud simulations significantly compared to its CMIP5 (hereafter C5) predecessor. A study has been performed to evaluate these changes between the P5 and C5 versions of the GCM, both of which used prescribed sea surface temperatures. P5 and C5 simulated cloud fraction (CF), liquid water path (LWP), ice water path (IWP), cloud water path (CWP), precipitable water vapor (PWV), and relative humidity (RH) have been compared to multiple satellite observations including the Clouds and the Earth's Radiant Energy System-Moderate Resolution Imaging Spectroradiometer (CERES-MODIS, hereafter CM), CloudSat- Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO; hereafter CC), Atmospheric Infrared Sounder (AIRS), and Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). Although some improvements are observed in the P5 simulation on a global scale, large improvements have been found over the southern midlatitudes (SMLs), where correlations increased and both bias and root-mean-square error (RMSE) significantly decreased, in relation to the previous C5 simulation, when compared to observations. Changes to the PBL scheme have resulted in improved total column CFs, particularly over the SMLs where marine boundary layer (MBL) CFs have increased by nearly 20% relative to the previous C5 simulation. Globally, the P5 simulated CWPs are 25 gm22 lower than the previous C5 results. The P5 version of the

  20. Evaluation of cloud fraction and its radiative effect simulated by IPCC AR4 global models against ARM surface observations

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yun; Long, Charles N.; Wang, Hailong; Comstock, Jennifer M.; McFarlane, Sally A.; Xie, Shaocheng

    2012-02-17

    Cloud Fraction (CF) is the dominant modulator of radiative fluxes. In this study, we evaluate CF simulations in the IPCC AR4 GCMs against ARM ground measurements, with a focus on the vertical structure, total amount of cloud and its effect on cloud shortwave transmissivity, for both inter-model deviation and model-measurement discrepancy. Our intercomparisons of three CF or sky-cover related dataset reveal that the relative differences are usually less than 10% (5%) for multi-year monthly (annual) mean values, while daily differences are quite significant. The results also show that the model-observation and the inter-model deviations have a similar magnitude for the total CF (TCF) and the normalized cloud effect, and they are twice as large as the surface downward solar radiation and cloud transmissivity. This implies that the other cloud properties, such as cloud optical depth and height, have a similar magnitude of disparity to TCF among the GCMs, and suggests that a better agreement among the GCMs in solar radiative fluxes could be the result of compensating errors in either cloud vertical structure, cloud optical depth or cloud fraction. Similar deviation pattern between inter-model and model-measurement suggests that the climate models tend to generate larger bias against observations for those variables with larger inter-model deviation. The simulated TCF from IPCC AR4 GCMs are very scattered through all seasons over three ARM sites: Southern Great Plains (SGP), Manus, Papua New Guinea and North Slope of Alaska (NSA). The GCMs perform better at SGP than at Manus and NSA in simulating the seasonal variation and probability distribution of TCF; however, the TCF in these models is remarkably underpredicted and cloud transmissivity is less susceptible to the change of TCF than the observed at SGP. Much larger inter-model deviation and model bias are found over NSA than the other sites in estimating the TCF, cloud transmissivity and cloud-radiation interaction

  1. Radiometric Observations of Supercooled Liquid Water within a Split Front over the Sierra Nevada.

    Science.gov (United States)

    Heggli, Mark F.; Reynolds, David W.

    1985-11-01

    A storm bearing close structural resemblance to a katafront was observed from the ground with microwave radiometry and a vertically pointing Ka-band radar over the Sierra Nevada of California. The onset and duration of supercooled liquid water was determined and matched to a split front model used to describe the synoptic features of a katafront. Results indicate that prior to the passage of the upper front no supercooled liquid water was observed. This portion of the storm provided the deepest cloud and coldest cloud tops. Supercooled liquid water was most prevalent after the upper front passage, and persisted until the suspected surface front passage. The duration of measured supercooled water was 16 hours.This information broadens the knowledge regarding the presence of supercooled liquid water, and thus possible seeding potential, within winter storms so that treatment can be confined to the period of storms amenable to cloud seeding. Future studies may well confirm the ease with which these periods can be predicted on an operational basis in the Sierra Nevada.

  2. Thermal conductivity of supercooled water.

    Science.gov (United States)

    Biddle, John W; Holten, Vincent; Sengers, Jan V; Anisimov, Mikhail A

    2013-04-01

    The heat capacity of supercooled water, measured down to -37°C, shows an anomalous increase as temperature decreases. The thermal diffusivity, i.e., the ratio of the thermal conductivity and the heat capacity per unit volume, shows a decrease. These anomalies may be associated with a hypothesized liquid-liquid critical point in supercooled water below the line of homogeneous nucleation. However, while the thermal conductivity is known to diverge at the vapor-liquid critical point due to critical density fluctuations, the thermal conductivity of supercooled water, calculated as the product of thermal diffusivity and heat capacity, does not show any sign of such an anomaly. We have used mode-coupling theory to investigate the possible effect of critical fluctuations on the thermal conductivity of supercooled water and found that indeed any critical thermal-conductivity enhancement would be too small to be measurable at experimentally accessible temperatures. Moreover, the behavior of thermal conductivity can be explained by the observed anomalies of the thermodynamic properties. In particular, we show that thermal conductivity should go through a minimum when temperature is decreased, as Kumar and Stanley observed in the TIP5P model of water. We discuss physical reasons for the striking difference between the behavior of thermal conductivity in water near the vapor-liquid and liquid-liquid critical points.

  3. The impact of horizontal heterogeneities, cloud fraction, and liquid water path on warm cloud effective radii from CERES-like Aqua MODIS retrievals

    Directory of Open Access Journals (Sweden)

    D. Painemal

    2013-10-01

    Full Text Available The impact of horizontal heterogeneities, liquid water path (LWP from AMSR-E, and cloud fraction (CF on MODIS cloud effective radius (re, retrieved from the 2.1 μm (re2.1 and 3.8 μm (re3.8 channels, is investigated for warm clouds over the southeast Pacific. Values of re retrieved using the CERES algorithms are averaged at the CERES footprint resolution (∼20 km, while heterogeneities (Hσ are calculated as the ratio between the standard deviation and mean 0.64 μm reflectance. The value of re2.1 strongly depends on CF, with magnitudes up to 5 μm larger than those for overcast scenes, whereas re3.8 remains insensitive to CF. For cloudy scenes, both re2.1 and re3.8 increase with Hσ for any given AMSR-E LWP, but re2.1 changes more than for re3.8. Additionally, re3.8–re2.1 differences are positive (Hσ 45 gm−2, and negative (up to −4 μm for larger Hσ. While re3.8–re2.1 differences in homogeneous scenes are qualitatively consistent with in situ microphysical observations over the region of study, negative differences – particularly evinced in mean regional maps – are more likely to reflect the dominant bias associated with cloud heterogeneities rather than information about the cloud vertical structure. The consequences for MODIS LWP are also discussed.

  4. Intercomparison between CMIP5 model and MODIS satellite-retrieved data of aerosol optical depth, cloud fraction, and cloud-aerosol interactions

    Science.gov (United States)

    Sockol, Alyssa; Small Griswold, Jennifer D.

    2017-08-01

    Aerosols are a critical component of the Earth's atmosphere and can affect the climate of the Earth through their interactions with solar radiation and clouds. Cloud fraction (CF) and aerosol optical depth (AOD) at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used with analogous cloud and aerosol properties from Historical Phase 5 of the Coupled Model Intercomparison Project (CMIP5) model runs that explicitly include anthropogenic aerosols and parameterized cloud-aerosol interactions. The models underestimate AOD by approximately 15% and underestimate CF by approximately 10% overall on a global scale. A regional analysis is then used to evaluate model performance in two regions with known biomass burning activity and absorbing aerosol (South America (SAM) and South Africa (SAF)). In SAM, the models overestimate AOD by 4.8% and underestimate CF by 14%. In SAF, the models underestimate AOD by 35% and overestimate CF by 13.4%. Average annual cycles show that the monthly timing of AOD peaks closely match satellite data in both SAM and SAF for all except the Community Atmosphere Model 5 and Geophysical Fluid Dynamics Laboratory (GFDL) models. Monthly timing of CF peaks closely match for all models (except GFDL) for SAM and SAF. Sorting monthly averaged 2° × 2.5° model or MODIS CF as a function of AOD does not result in the previously observed "boomerang"-shaped CF versus AOD relationship characteristic of regions with absorbing aerosols from biomass burning. Cloud-aerosol interactions, as observed using daily (or higher) temporal resolution data, are not reproducible at the spatial or temporal resolution provided by the CMIP5 models.

  5. Small fraction of marine cloud condensation nuclei made up of sea spray aerosol

    Science.gov (United States)

    Quinn, P. K.; Coffman, D. J.; Johnson, J. E.; Upchurch, L. M.; Bates, T. S.

    2017-09-01

    Sea spray aerosols impact Earth's radiation balance by directly scattering solar radiation. They also act as cloud condensation nuclei, thereby altering cloud properties including reflectivity, lifetime and extent. The influence of sea spray aerosol on cloud properties is thought to be particularly strong over remote ocean regions devoid of continental particles. Yet the contribution of sea spray aerosol to the population of cloud condensation nuclei in the marine boundary layer remains poorly understood. Here, using a lognormal-mode-fitting procedure, we isolate sea spray aerosols from measurements of particle size and abundance over the Pacific, Southern, Arctic and Atlantic oceans to determine the contribution of sea spray aerosol to the population of cloud condensation nuclei in the marine boundary layer. On a global basis, with the exception of the high southern latitudes, sea spray aerosol makes a contribution of less than 30% to the cloud condensation nuclei population for air that is supersaturated at 0.1 to 1.0%--the supersaturation range typical of marine boundary layer clouds. Instead, the cloud condensation nuclei population between 70° S and 80° N is composed primarily of non-sea-salt sulfate aerosols, due to large-scale meteorological features that result in entrainment of particles from the free troposphere.

  6. Thermodynamic geometry of supercooled water

    Science.gov (United States)

    May, Helge-Otmar; Mausbach, Peter; Ruppeiner, George

    2015-03-01

    The thermodynamic curvature scalar R is evaluated for supercooled water with a two-state equation of state correlated with the most recent available experimental data. This model assumes a liquid-liquid critical point. Our investigation extends the understanding of the thermodynamic behavior of R considerably. We show that R diverges to -∞ when approaching the assumed liquid-liquid critical point. This limit is consistent with all of the fluid critical point models known so far. In addition, we demonstrate a sign change of R along the liquid-liquid line from negative near the critical point to positive on moving away from the critical point in the low density "ice-like" liquid phase. We also trace out the Widom line in phase space. In addition, we investigate increasing correlation length in supercooled water and compare our results with recent published small angle x-ray scattering measurements.

  7. Hydrogen in diffuse molecular clouds in the Milky Way. Atomic column densities and molecular fraction along prominent lines of sight

    Science.gov (United States)

    Winkel, B.; Wiesemeyer, H.; Menten, K. M.; Sato, M.; Brunthaler, A.; Wyrowski, F.; Neufeld, D.; Gerin, M.; Indriolo, N.

    2017-03-01

    Context. Recent submillimeter and far-infrared wavelength observations of absorption in the rotational ground-state lines of various simple molecules against distant Galactic continuum sources have opened the possibility of studying the chemistry of diffuse molecular clouds throughout the Milky Way. In order to calculate abundances, the column densities of molecular and atomic hydrogen, H i, must be known. Aims: We aim at determining the atomic hydrogen column densities for diffuse clouds located on the sight lines toward a sample of prominent high-mass star-forming regions that were intensely studied with the HIFI instrument onboard Herschel. Methods: Based on Jansky Very Large Array data, we employ the 21 cm H i absorption-line technique to construct profiles of the H i opacity versus radial velocity toward our target sources. These profiles are combined with lower resolution archival data of extended H i emission to calculate the H i column densities of the individual clouds along the sight lines. We employ Bayesian inference to estimate the uncertainties of the derived quantities. Results: Our study delivers reliable estimates of the atomic hydrogen column density for a large number of diffuse molecular clouds at various Galactocentric distances. Together with column densities of molecular hydrogen derived from its surrogates observed with HIFI, the measurements can be used to characterize the clouds and investigate the dependence of their chemistry on the molecular fraction, for example. The data sets are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A2

  8. Investigating relationships between aerosol optical depth and cloud fraction using satellite, aerosol reanalysis and general circulation model data

    Directory of Open Access Journals (Sweden)

    B. S. Grandey

    2013-03-01

    Full Text Available Strong positive relationships between cloud fraction (fc and aerosol optical depth (τ have been reported. Data retrieved from the MODerate resolution Imaging Spectroradiometer (MODIS instrument show positive fc–τ relationships across most of the globe. A global mean fc increase of approximately 0.2 between low and high τ conditions is found for both ocean and land. However, these relationships are not necessarily due to cloud–aerosol interactions. Using state-of-the-art Monitoring Atmospheric Composition and Climate (MACC reanalysis-forecast τ data, which should be less affected by retrieval artefacts, it is demonstrated that a large part of the observed fc–τ signal may be due to cloud contamination of satellite-retrieved τ. For longer MACC forecast time steps of 24 h, which likely contain less cloud contamination, some negative fc–τ relationships are found. The global mean fc increase between low and high τ conditions is reduced to 0.1, suggesting that cloud contamination may account for approximately one half of the satellite-retrieved increase in fc. ECHAM5-HAM general circulation model (GCM simulations further demonstrate that positive fc–τ relationships may arise due to covariation with relative humidity. Widespread negative simulated fc–τ relationships in the tropics are shown to arise due to scavenging of aerosol by convective precipitation. Wet scavenging events are likely poorly sampled in satellite-retrieved data, because the properties of aerosol below clouds cannot be retrieved. Quantifying the role of wet scavenging, and assessing GCM representations of this important process, remains a challenge for future observational studies of aerosol–cloud–precipitation interactions.

  9. The binary fractions in the massive young Large Magellanic Cloud star clusters NGC 1805 and NGC 1818

    CERN Document Server

    Li, Chengyuan; Deng, Licai

    2013-01-01

    Using high-resolution data sets obtained with the Hubble Space Telescope, we investigate the radial distributions of the F-type main-sequence binary fractions in the massive young Large Magellanic Cloud star clusters NGC 1805 and NGC 1818. We apply both an isochrone-fitting approach and chi^2 minimization using Monte Carlo simulations, for different mass-ratio cut-offs, q, and present a detailed comparison of the methods' performance. Both methods yield the same radial binary fraction profile for the same cluster, which therefore supports the robustness and applicability of either method to young star clusters which are as yet unaffected by the presence of multiple stellar populations. The binary fractions in these two clusters are characterized by opposite trends in their radial profiles. NGC 1805 exhibits a decreasing trend with increasing radius in the central region, followed by a slow increase to the field's binary-fraction level, while NGC 1818 shows a monotonically increasing trend. This may indicate d...

  10. An assessment of cloud top thermodynamic phase products obtained from A-Train passive and active sensors

    Directory of Open Access Journals (Sweden)

    S. Zeng

    2013-09-01

    Full Text Available The A-Train observations provide an unprecedented opportunity for the production of high quality dataset describing cloud properties. We illustrate in this study the use of one year of coincident POLDER (Polarization and Directionality of the Earth Reflectance, MODIS (MODerate Resolution Imaging Spectroradiometer and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization observations to establish a reference dataset for the description of cloud top thermodynamic phase at global scale. We present the results of an extensive comparison between POLDER and MODIS cloud top phase products and discuss those in view of cloud vertical structure and optical properties derived simultaneously from collocated CALIOP active measurements. These results allow to identify and quantify potential biases present in the 3 considered dataset. Among those, we discuss the impacts of observation geometry, thin cirrus in multilayered and single layered cloud systems, supercooled liquid droplets, aerosols, fractional cloud cover and snow/ice or bright surfaces on global statistics of cloud phase derived from POLDER and MODIS passive measurements. Based on these analysis we define criteria for the selection of high confidence cloud phase retrievals which in turn can serve for the establishment of a reference cloud phase product. This high confidence joint product derived from POLDER/PARASOL and MODIS/Aqua can be used in the future as a benchmark for the evaluation of other cloud climatologies, for the assessment of cloud phase representation in models and the development of better cloud phase parametrization in the general circulation models (GCMs.

  11. Deuterium fractionation and H2D+ evolution in turbulent and magnetized cloud cores

    Science.gov (United States)

    Körtgen, Bastian; Bovino, Stefano; Schleicher, Dominik R. G.; Giannetti, Andrea; Banerjee, Robi

    2017-08-01

    High-mass stars are expected to form from dense prestellar cores. Their precise formation conditions are widely discussed, including their virial condition, which results in slow collapse for supervirial cores with strong support by turbulence or magnetic fields, or fast collapse for subvirial sources. To disentangle their formation processes, measurements of the deuterium fractions are frequently employed to approximately estimate the ages of these cores and to obtain constraints on their dynamical evolution. We here present 3D magnetohydrodynamical simulations including for the first time an accurate non-equilibrium chemical network with 21 gas-phase species plus dust grains and 213 reactions. With this network we model the deuteration process in fully depleted prestellar cores in great detail and determine its response to variations in the initial conditions. We explore the dependence on the initial gas column density, the turbulent Mach number, the mass-to-magnetic flux ratio and the distribution of the magnetic field, as well as the initial ortho-to-para ratio (OPR) of H2. We find qualitatively good agreement with recent observations of deuterium fractions in quiescent sources. Our results show that deuteration is rather efficient, even when assuming a conservative OPR of 3 and highly subvirial initial conditions, leading to large deuterium fractions already within roughly a free-fall time. We discuss the implications of our results and give an outlook to relevant future investigations.

  12. Strain Pattern in Supercooled Liquids

    Science.gov (United States)

    Illing, Bernd; Fritschi, Sebastian; Hajnal, David; Klix, Christian; Keim, Peter; Fuchs, Matthias

    2016-11-01

    Investigations of strain correlations at the glass transition reveal unexpected phenomena. The shear strain fluctuations show an Eshelby-strain pattern [˜cos (4 θ ) /r2 ], characteristic of elastic response, even in liquids, at long times. We address this using a mode-coupling theory for the strain fluctuations in supercooled liquids and data from both video microscopy of a two-dimensional colloidal glass former and simulations of Brownian hard disks. We show that the long-ranged and long-lived strain signatures follow a scaling law valid close to the glass transition. For large enough viscosities, the Eshelby-strain pattern is visible even on time scales longer than the structural relaxation time τ and after the shear modulus has relaxed to zero.

  13. Survey of Techniques for Clearing Military Smoke Clouds

    Science.gov (United States)

    1979-05-01

    substances with a high ice nucleating capability (AgI, PbT 2 , CuS, metaldehyde ). Supercooled fog seeding by dry ice was successfully per- formed by...seeding with metaldehyde (Fukuta, 1969). In general, the seeding of supercooled fogs is one of the few fields in which cloud physicists gained an

  14. Liquid and Ice Cloud Microphysics in the CSU General Circulation Model. Part III: Sensitivity to Modeling Assumptions.

    Science.gov (United States)

    Fowler, Laura D.; Randall, David A.

    1996-03-01

    between the sensitivity experiments and control run. The authors find that three-dimensional advection of the water species has little influence on their geographical distributions and globally averaged amounts. The simulated climate remains unchanged when detrained condensed water at the tops of cumulus towers is used as a source of rain and snow rather than as a source of cloud water and cloud ice. In contrast, instantaneously removing cloud water and cloud ice detrained at the tops of cumulus towers in the form of precipitation yields a strong drying of the atmosphere and a significant reduction in the size of the anvils. Altering the partitioning between cloud ice and supercooled cloud water produces significant changes in the vertical distributions of the cloud optical depth and effective cloud fraction, hence producing significant variations in the top-of-the-atmosphere longwave and shortwave cloud radiative forcings. Increasing the fall speeds of rain and snow leads to a decrease in cloudiness and an increase in stratiform rainfall. Increasing the thresholds for autoconversion of cloud water to rain and cloud ice to snow yields a significant increase in middle- and high-level clouds and a reduction of the cumulus precipitation rate. The collection of supercooled cloud water by snow appeared to be an important microphysical process for mixed-phase clouds. Finally, the optical effects of snow have little impact upon the top-of-the-atmosphere radiation budget.This study illustrates the need for in-depth analysis of the spatial and temporal scale dependence of the different microphysical parameters of the cloud parameterizations used in general circulation models.

  15. Deuterium fractionation of a distant cold dark cloud along the line of sight of W51

    Science.gov (United States)

    Vastel, C.; Mookerjea, B.; Pety, J.; Gerin, M.

    2017-01-01

    Herschel/HIFI observations toward the compact HII region W51 has revealed the presence of a cold dense core along its line of sight in a high-velocity stream located just in front of W51. This detection has been made possible through absorption measurements of low-energy transitions of HDO, NH3, and C3 against the bright background emitted by the star-forming region. We present a follow-up study of this core using the high sensitivity and high spectral resolution provided by the IRAM 30m telescope. We report new detections of this core in absorption for DCO+ (2-1, 3-2), H13CO+ (1-0), DNC (3-2), HN13C (1-0), p-H2CO (20,2-10,1, 30,3-20,2), and in emission for o-NH2D. We also report interferometric observation of this last species using the IRAM/NOEMA telescope, revealing the fragmented nature of the source through the detection of two cores, separated by 0.19-0.24 pc, with average sizes of less than 0.16-0.19 pc. From a non-LTE analysis, we are able to estimate the density ( 2.5 × 104 cm-3) and temperature ( 10 K) of this component, typical of what is found in dark clouds. This component (called W51-core) has the same DCO+/HCO+ ratio (0.02) as TMC-1 and a high DNC/HNC ratio (0.14). Detection of these deuterated species indicates that W51-core is similar to an early-phase low-mass star-forming region, formed from the interaction between the W51 giant molecular cloud and the high-velocity stream in front of it. The W51 complex being at about 5 kpc, these findings lead to what is the first detection of the earliest phase of low-mass star-forming region at such a large distance. IRAM 30m data are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/597/A45

  16. ISOTOPIC ANOMALIES IN PRIMITIVE SOLAR SYSTEM MATTER: SPIN-STATE-DEPENDENT FRACTIONATION OF NITROGEN AND DEUTERIUM IN INTERSTELLAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Wirstroem, Eva S.; Cordiner, Martin A.; Charnley, Steven B.; Milam, Stefanie N., E-mail: ewirstrom@gmail.com [Astrochemistry Laboratory and Goddard Center for Astrobiology, NASA Goddard Space Flight Center, Greenbelt, MD 20770 (United States)

    2012-09-20

    Organic material found in meteorites and interplanetary dust particles is enriched in D and {sup 15}N. This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar nebula. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and {sup 15}N and can account for the largest isotopic enrichments measured in carbonaceous meteorites. However, more recent measurements have shown that, in some primitive samples, a large {sup 15}N enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, {sup 15}N enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H{sub 2}, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both {sup 15}N and D in dense cloud cores. We also show that while the nitriles, HCN and HNC, contain the greatest {sup 15}N enrichment, this is not expected to correlate with extreme D enrichment. These calculations therefore support the view that solar system {sup 15}N and D isotopic anomalies have an interstellar heritage. We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  17. Isotopic Anomalies in Primitive Solar System Matter: Spin-State Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    Science.gov (United States)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milan, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15, This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar core. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotop c enrichments measured in carbonaceous meteorites, However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores, We also show that while the nitriles, HCN and HNC, contain the greatest N-15 enrichment, this is not expected to correlate with extreme D emichment. These calculations therefore support the view that Solar System N-15 and D isotopic anomalies have an interstellar heritage, We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  18. Long term thermal energy storage with stable supercooled sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Schultz, Jørgen M.; Johansen, Jakob Berg

    2015-01-01

    Utilizing stable supercooling of sodium acetate trihydrate makes it possible to store thermal energy partly loss free. This principle makes seasonal heat storage in compact systems possible. To keep high and stable energy content and cycling stability phase separation of the storage material must...... to 230 kJ/kg. TRNSYS simulations of a solar combi system including a storage with four heat storage modules of each 200 kg of sodium acetate trihydrate utilizing stable supercooling achieved a solar fraction of 80% for a low energy house in Danish climatic conditions....

  19. Horizontal Variability of Water and Its Relationship to Cloud Fraction near the Tropical Tropopause: Using Aircraft Observations of Water Vapor to Improve the Representation of Grid-scale Cloud Formation in GEOS-5

    Science.gov (United States)

    Selkirk, Henry B.; Molod, Andrea M.

    2014-01-01

    Large-scale models such as GEOS-5 typically calculate grid-scale fractional cloudiness through a PDF parameterization of the sub-gridscale distribution of specific humidity. The GEOS-5 moisture routine uses a simple rectangular PDF varying in height that follows a tanh profile. While below 10 km this profile is informed by moisture information from the AIRS instrument, there is relatively little empirical basis for the profile above that level. ATTREX provides an opportunity to refine the profile using estimates of the horizontal variability of measurements of water vapor, total water and ice particles from the Global Hawk aircraft at or near the tropopause. These measurements will be compared with estimates of large-scale cloud fraction from CALIPSO and lidar retrievals from the CPL on the aircraft. We will use the variability measurements to perform studies of the sensitivity of the GEOS-5 cloud-fraction to various modifications to the PDF shape and to its vertical profile.

  20. Formation and Fractionation of CO (Carbon Monoxide) in Diffuse Clouds Observed at Optical and Radio Wavelengths

    Science.gov (United States)

    Liszt, H. S.

    2017-02-01

    We modeled {{{H}}}2 and CO formation incorporating the fractionation and selective photodissociation affecting CO when {A}{{V}} ≲ 2 mag. UV absorption measurements typically have N({}12{CO})/N({}13{CO}) ≈ 65 that are reproduced with the standard UV radiation and little density dependence at n(H) ≈ 32–1024 {{cm}}-3: densities n(H) ≲ 256 {{cm}}-3 avoid overproducing CO. Sightlines observed in millimeter wave absorption and a few in UV show enhanced {}13{CO} by factors of two to four and are explained by higher n(H) ≳ 256 {{cm}}-3 and/or weaker radiation. The most difficult observations to understand are UV absorptions having N({}12{CO})/N({}13{CO}) > 100 and N(CO) ≳ 1015 {{cm}}-2. Plots of {W}{CO} versus N(CO) show that {W}{CO} remains linearly proportional to N(CO) even at high opacity owing to sub-thermal excitation. {}12{CO} and {}13{CO} have nearly the same curve of growth so their ratios of column density/integrated intensity are comparable even when different from the isotopic abundance ratio. For n(H) ≳ 128 {{cm}}-3, plots of {W}{CO} versus N(CO) are insensitive to n(H), and {W}{CO}/N(CO) ≈ 1 {{K}} {km} {{{s}}}-1/(1015 CO {{cm}}-2); this compensates for small CO/{{{H}}}2 to make {W}{CO} more readily detectable. Rapid increases of N(CO) with n(H), N(H), and N({{{H}}}2) often render the CO bright, i.e., a small CO-{{{H}}}2 conversion factor. For n(H) ≲ 64 {{cm}}-3, CO enters the regime of truly weak excitation, where {W}{CO} ∝ n(H)N(CO). {W}{CO} is a strong function of the average {{{H}}}2 fraction and models with {W}{CO} = 1 {{K}} {km} {{{s}}}-1 fall in the narrow range of 0.65–0.8 or 0.4–0.5 at {W}{CO} 0.1 {{K}} {km} {{{s}}}-1. The insensitivity of easily detected CO emission to gas with small implies that even deep CO surveys using broad beams may not discover substantially more emission.

  1. The dense gas mass fraction in the W51 cloud and its protoclusters

    CERN Document Server

    Ginsburg, Adam; Battersby, Cara; Youngblood, Allison; Darling, Jeremy; Rosolowsky, Erik; Arce, Hector; Santos, Mayra E Lebrón

    2014-01-01

    We present new 2 cm and 6 cm maps of H2CO, radio recombination lines, and the radio continuum in the W51 star forming complex acquired with Arecibo and the Green Bank Telescope at ~50" resolution. We use H2CO absorption to determine the relative line-of-sight positions of molecular and ionized gas. We measure gas densities using the H2CO densitometer, including continuous measurements of the dense gas mass fraction (DGMF) over the range 10^4 cm^-3 ~70% above n>10^4 cm^-3, while it is low, f 10^4 cm-3 is weakly correlated with low and moderate mass star formation, but does not strongly correlate with high-mass star formation. (3) The nondetection of H2CO emission implies that the emission detected in other galaxies, e.g. Arp 220, comes from high-density gas that is not directly affiliated with already-formed massive stars. Either the non-star-forming ISM of these galaxies is very dense, implying the star formation density threshold is higher, or H ii regions have their emission suppressed.

  2. Formation and Fractionation of CO (carbon monoxide) in diffuse clouds observed at optical and radio wavelengths

    CERN Document Server

    Liszt, Harvey S

    2016-01-01

    We modelled \\HH\\ and CO formation incorporating the fractionation and selective photodissociation affecting CO when \\AV\\ $\\la2$mag. UV absorption measurements typically have N(\\cotw)/N(\\coth) $\\approx 65$ that are reproduced with the standard UV radiation and little density dependence at n(H) $\\approx32-1024\\pccc$: Densities n(H) $\\la256\\pccc$ avoid overproducing CO. Sightlines observed in mm-wave absorption and a few in UV show enhanced \\coth\\ by factors of 2-4 and are explained by higher n(H) $\\ga256\\pccc$ and/or weaker radiation. The most difficult observations to understand are UV absorptions having N(\\cotw)/N(\\coth) $>$100 and N(CO)$\\ga10^{15}\\pcc$. Plots of \\WCO\\ vs. N(CO) show that \\WCO\\ remains linearly proportional to N(CO) even at high opacity owing to sub-thermal excitation. \\cotw\\ and \\coth\\ have nearly the same curve of growth so their ratios of column density/integrated intensity are comparable even when different from the isotopic abundance ratio. For n(H)$\\ga128\\pccc$, plots of \\WCO\\ vs N(CH) ...

  3. Singular Value Decomposition Analysis of Cloud Fraction Cover and Sea Ice Concentration over the Arctic Region, 1982-2009

    Science.gov (United States)

    Boccolari, Mauro; Parmiggiani, Flavio

    2016-08-01

    In this study, the coupled spatial and temporal variability between seasonal data of Cloud Fraction Cover (CFC) and Sea Ice Concentration (SIC) in the Arctic Ocean for the 1982-2009 period were investigated by using the Singular Value Decomposition (SVD) method.The spatial patterns of CFCs related to the first mode of co-variability, identify the maximum covariance, for all seasons, in the Barents Sea and in the Arctic Ocean Canada, while the SIC and 'found in the Chukchi Sea in autumn (in according to the maximum sea ice melting) and the Barents sea during both the winter and spring.CFC spatial patterns related to the first mode of co- variability, locate maximum covariance, for all seasons, in the Barents Sea and in the Canadian side of the Arctic Ocean, while for SIC is found in the Chukchi Sea during autumn (corresponding to the maximum sea ice melting) and in the Barents Sea during both the winter and spring.Finally, the correlation between the seasonal time series of expansion coefficients derived from the SVD analysis, for both CFC and SIC fields, with the seasonal time series of some relevant climate indices for the Arctic (NAO, AO, PDO and PNA). Statistically significant values for both fields were found during summer with the AO, and during autumn with the PNA.

  4. Evolution of OH and CO-dark Molecular Gas Fraction Across a Molecular Cloud Boundary In Taurus

    CERN Document Server

    Xu, Duo; Yue, Nannan; Goldsmith, Paul F

    2016-01-01

    We present observations of 12CO J=1-0, 13CO J=1-0, HI, and all four ground-state transitions of the hydroxyl (OH) radical toward a sharp boundary region of the Taurus molecular cloud. Based on a PDR model that reproduces CO and [CI] emission from the same region, we modeled the three OH transitions, 1612, 1665, 1667 MHz successfully through escape probability non-LTE radiative transfer model calculations. We could not reproduce the 1720 MHz observations, due to un-modeled pumping mechanisms, of which the most likely candidate is a C-shock. The abundance of OH and CO-dark molecular gas (DMG) are well constrained. The OH abundance [OH]/[H2] decreases from 8*10-7 to 1*10-7 as Av increases from 0.4 to 2.7 mag, following an empirical law [OH]/[H2]= 1.5 * 10^{-7} + 9.0 * 10^{-7} * exp(-Av/0.81), which is higher than PDR model predictions for low extinction regions by a factor of 80. The overabundance of OH at extinctions at or below 1 mag is likely the result of a C-shock. The dark gas fraction (DGF, defined as fra...

  5. Cloud radiative properties and aerosol - cloud interaction

    Science.gov (United States)

    Viviana Vladutescu, Daniela; Gross, Barry; Li, Clement; Han, Zaw

    2015-04-01

    The presented research discusses different techniques for improvement of cloud properties measurements and analysis. The need for these measurements and analysis arises from the high errors noticed in existing methods that are currently used in retrieving cloud properties and implicitly cloud radiative forcing. The properties investigated are cloud fraction (cf) and cloud optical thickness (COT) measured with a suite of collocated remote sensing instruments. The novel approach makes use of a ground based "poor man's camera" to detect cloud and sky radiation in red, green, and blue with a high spatial resolution of 30 mm at 1km. The surface-based high resolution photography provides a new and interesting view of clouds. As the cloud fraction cannot be uniquely defined or measured, it depends on threshold and resolution. However as resolution decreases, cloud fraction tends to increase if the threshold is below the mean, and vice versa. Additionally cloud fractal dimension also depends on threshold. Therefore these findings raise concerns over the ability to characterize clouds by cloud fraction or fractal dimension. Our analysis indicate that Principal Component analysis may lead to a robust means of quantifying cloud contribution to radiance. The cloud images are analyzed in conjunction with a collocated CIMEL sky radiometer, Microwave Radiometer and LIDAR to determine homogeneity and heterogeneity. Additionally, MFRSR measurements are used to determine the cloud radiative properties as a validation tool to the results obtained from the other instruments and methods. The cloud properties to be further studied are aerosol- cloud interaction, cloud particle radii, and vertical homogeneity.

  6. Entropy-driven liquid-liquid separation in supercooled water

    CERN Document Server

    Holten, V

    2012-01-01

    Twenty years ago Poole et al. (Nature 360, 324, 1992) suggested that the anomalous properties of supercooled water may be caused by a critical point that terminates a line of liquid-liquid separation of lower-density and higher-density water. Here we present an explicit thermodynamic model based on this hypothesis, which describes all available experimental data for supercooled water with better quality and with fewer adjustable parameters than any other model suggested so far. Liquid water at low temperatures is viewed as an 'athermal solution' of two molecular structures with different entropies and densities. Alternatively to popular models for water, in which the liquid-liquid separation is driven by energy, the phase separation in the athermal two-state water is driven by entropy upon increasing the pressure, while the critical temperature is defined by the 'reaction' equilibrium constant. In particular, the model predicts the location of density maxima at the locus of a near-constant fraction (about 0.1...

  7. Evaluating Arctic cloud radiative effects simulated by NICAM with A-train

    Science.gov (United States)

    Hashino, Tempei; Satoh, Masaki; Hagihara, Yuichiro; Kato, Seiji; Kubota, Takuji; Matsui, Toshihisa; Nasuno, Tomoe; Okamoto, Hajime; Sekiguchi, Miho

    2016-06-01

    Evaluation of cloud radiative effects (CREs) in global atmospheric models is of vital importance to reduce uncertainties in weather forecasting and future climate projection. In this paper, we describe an effective way to evaluate CREs from a 3.5 km mesh global nonhydrostatic model by comparing it against A-train satellite data. The model is the Nonhydrostatic Icosahedral Atmospheric Model (NICAM), and its output is run through a satellite-sensor simulator (Joint Simulator for satellite sensors) to produce the equivalent CloudSat radar, CALIPSO lidar, and Aqua Clouds and the Earth's Radiant Energy System (CERES) data. These simulated observations are then compared to real observations from the satellites. We focus on the Arctic, which is a region experiencing rapid climate change over various surface types. The NICAM simulation significantly overestimates the shortwave CREs at top of atmosphere and surface as large as 24 W m-2 for the month of June. The CREs were decomposed into cloud fractions and footprint CREs of cloud types that are defined based on the CloudSat-CALIPSO cloud top temperature and maximum radar reflectivity. It turned out that the simulation underestimates the cloud fraction and optical thickness of mixed-phase clouds due to predicting too little supercooled liquid and predicting overly large snow particles with too little mass content. This bias was partially offset by predicting too many optically thin high clouds. Offline sensitivity experiments, where cloud microphysical parameters, surface albedo, and single scattering parameters are varied, support the diagnosis. Aerosol radiative effects and nonspherical single scattering of ice particles should be introduced into the NICAM broadband calculation for further improvement.

  8. Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus

    Directory of Open Access Journals (Sweden)

    J. Crosier

    2010-08-01

    Full Text Available Simultaneous observations of cloud microphysical properties were obtained by in-situ aircraft measurements and ground based Radar/Lidar. Widespread mid-level stratus cloud was present below a temperature inversion (~5 °C magnitude at 3.6 km altitude. Localised convection (peak updraft 1.5 m s−1 was observed 20 km west of the Radar station. This was associated with convergence at 2.5 km altitude. The convection was unable to penetrate the inversion capping the mid-level stratus.

    The mid-level stratus cloud was vertically thin (~400 m, horizontally extensive (covering 100 s of km and persisted for more than 24 h. The cloud consisted of supercooled water droplets and small concentrations of large (~1 mm stellar/plate like ice which slowly precipitated out. This ice was nucleated at temperatures greater than −12.2 °C and less than −10.0 °C, (cloud top and cloud base temperatures, respectively. No ice seeding from above the cloud layer was observed. This ice was formed by primary nucleation, either through the entrainment of efficient ice nuclei from above/below cloud, or by the slow stochastic activation of immersion freezing ice nuclei contained within the supercooled drops. Above cloud top significant concentrations of sub-micron aerosol were observed and consisted of a mixture of sulphate and carbonaceous material, a potential source of ice nuclei.

    Precipitation from the mid-level stratus evaporated before reaching the surface, whereas rates of up to 1 mm h−1 were observed below the convective feature. There is strong evidence for the Hallett-Mossop (HM process of secondary ice particle production leading to the formation of the precipitation observed. This includes (1 Ice concentrations in the convective feature were more than an order of magnitude greater than the concentration of primary ice in the overlaying stratus, (2 Large concentrations of small pristine columns were observed at the ~−5

  9. What am I? Supercooled droplet or ice?

    CERN Document Server

    Antonini, Carlo; Maitra, Tanmoy; Tiwari, Manish K; Poulikakos, Dimos

    2013-01-01

    In this fluid dynamics video we show the trick played by a supercooled liquid water drop against a superhydrophobic surface. The water drop shows a double personality, impacting onto the surface the first time while still in the liquid state, and then re-impacting as a frozen ice crystal.

  10. An airborne microwave radiometer and measurements of cloud liquid water

    Institute of Scientific and Technical Information of China (English)

    LEI Hengchi; JIN Dezhen; WEI Chong; SHEN Zhilai

    2003-01-01

    A single-channel (9.5 mm) airborne microwave radiometer with one antenna is developed. The retrieval methods and primary observation results of cloud liquid water and super-cooled cloud liquid water are discussed. The aircraft experiments show that the cloud liquid water and super-cooled liquid water can be sensitively monitored at some level of accuracy by the radiometer. The results of cloud liquid water content are reasonable and correspond well with the surface radar echo intensity. The design of the airborne radiometer and its retrieval methods are feasible, giving it application value.

  11. Dynamics of deeply supercooled interfacial water.

    Science.gov (United States)

    Swenson, Jan; Cerveny, Silvina

    2015-01-28

    In this review we discuss the relaxation dynamics of glassy and deeply supercooled water in different types of systems. We compare the dynamics of such interfacial water in ordinary aqueous solutions, hard confinements and biological soft materials. In all these types of systems the dielectric relaxation time of the main water process exhibits a dynamic crossover from a high-temperature non-Arrhenius temperature dependence to a low-temperature Arrhenius behavior. Moreover, at large enough water content the low-temperature process is universal and exhibits the same temperature behavior in all types of systems. However, the physical nature of the dynamic crossover is somewhat different for the different types of systems. In ordinary aqueous solutions it is not even a proper dynamic crossover, since the water relaxation decouples from the cooperative α-relaxation of the solution slightly above the glass transition in the same way as all secondary (β) relaxations of glass-forming materials. In hard confinements, the physical origin of the dynamic crossover is not fully clear, but it seems to occur when the cooperative main relaxation of water at high temperatures reaches a temperature where the volume required for its cooperative motion exceeds the size of the geometrically-confined water cluster. Due to this confinement effect the α-like main relaxation of the confined water seems to transform to a more local β-relaxation with decreasing temperature. Since this low-temperature β-relaxation is universal for all systems at high water content it is possible that it can be considered as an intrinsic β-relaxation of supercooled water, including supercooled bulk water. This possibility, together with other findings for deeply supercooled interfacial water, suggests that the most accepted relaxation scenarios for supercooled bulk water have to be altered.

  12. Supercooling Suppression of Microencapsulated n-Alkanes by Introducing an Organic Gelator

    Institute of Scientific and Technical Information of China (English)

    ZHU Kong-ying; WANG Shuang; QI Heng-zhi; LI Hui; ZHAO Yun-hui; YUAN Xiao-yan

    2012-01-01

    Supercooling of the microencapsulated phase change materials(PCMs) during cooling usually happens.This phenomenon can interfere with heat transfer and is necessary to further overcome.In this study,melamine-formaldehyde microcapsules containing two n-alkane PCMs,namely,n-dodecane(C12) or n-tetradecane(C14)were prepared by in situ polymerization.A small amount of n-hexatriacontane(C36) was introduced as an organic gelator into the core of microcapsules to cope with the supercooling problem.Analyses demonstrate that supcrcooling of the microencapsulated C12 or C14 was significantly suppressed by adding 3%(mass fraction) C36,without changing the spherical morphology and dispersibility.It could be also found that the enthalpy of microencapsulated C12 or C14 containing C36 was similar to that of microencapsulated n-alkanes without C36,whereas the difference between onsets of crystallization and melting(degree of supercooling) is similar to that of those of pure n-alkanes,suggesting the remarkable suppression ability of the organic gelator on supercooling.

  13. Supercooling transition in phase separated manganite thin films: An electrical transport study

    Science.gov (United States)

    Singh, Sandeep; Kumar, Pawan; Siwach, P. K.; Tyagi, Pawan Kumar; Singh, H. K.

    2014-05-01

    The impact of variation in the relative fractions of the ferromagnetic metallic and antiferromagnetic/charge ordered insulator phases on the supercooling/superheating transition in strongly phase separated system, La5/8-yPryCa3/8MnO3 (y ≈ 0.4), has been studied employing magnetotransport measurements. Our study clearly shows that the supercooling transition temperature is non-unique and strongly depends on the magneto-thermodynamic path through which the low temperature state is accessed. In contrast, the superheating transition temperature remains constant. The thermo-magnetic hysteresis, the separation of the two transitions and the associated resistivity, all are functions of the relative fraction of the coexisting phases.

  14. Mechanism of supercooled droplet freezing on surfaces

    Science.gov (United States)

    Jung, Stefan; Tiwari, Manish K.; Doan, N. Vuong; Poulikakos, Dimos

    2012-01-01

    Understanding ice formation from supercooled water on surfaces is a problem of fundamental importance and general utility. Superhydrophobic surfaces promise to have remarkable 'icephobicity' and low ice adhesion. Here we show that their icephobicity can be rendered ineffective by simple changes in environmental conditions. Through experiments, nucleation theory and heat transfer physics, we establish that humidity and/or the flow of a surrounding gas can fundamentally switch the ice crystallization mechanism, drastically affecting surface icephobicity. Evaporative cooling of the supercooled liquid can engender ice crystallization by homogeneous nucleation at the droplet-free surface as opposed to the expected heterogeneous nucleation at the substrate. The related interplay between droplet roll-off and rapid crystallization is also studied. Overall, we bring a novel perspective to icing and icephobicity, unveiling the strong influence of environmental conditions in addition to the accepted effects of the surface conditions and hydrophobicity.

  15. Gelation on heating of supercooled gelatin solutions.

    Science.gov (United States)

    Guigo, Nathanaël; Sbirrazzuoli, Nicolas; Vyazovkin, Sergey

    2012-04-23

    Diluted (1.0-1.5 wt%) aqueous gelatin solutions have been cooled to -10 °C at a cooling rate 20 °C min(-1) without freezing and detectable gelation. When heated at a constant heating rate (0.5 -2 °C min(-1)), the obtained supercooled solutions demonstrate an atypical process of gelation that has been characterized by regular and stochastically modulated differential scanning calorimetry (DSC) as well as by isoconversional kinetic analysis. The process is detectable as an exothermic peak in the total heat flow of regular DSC and in the nonreversing heat flow of stochastically modulated DSC. Isoconversional kinetic analysis applied to DSC data reveals that the effective activation energy of the process increases from approximately 75 to 200 kJ mol(-1) as a supercooled solution transforms to gel on continuous heating.

  16. Persistence of orographic mixed-phase clouds

    Science.gov (United States)

    Lohmann, U.; Henneberger, J.; Henneberg, O.; Fugal, J. P.; Bühl, J.; Kanji, Z. A.

    2016-10-01

    Mixed-phase clouds (MPCs) consist of ice crystals and supercooled water droplets at temperatures between 0 and approximately -38°C. They are thermodynamically unstable because the saturation vapor pressure over ice is lower than that over supercooled liquid water. Nevertheless, long-lived MPCs are ubiquitous in the Arctic. Here we show that persistent MPCs are also frequently found in orographic terrain, especially in the Swiss Alps, when the updraft velocities are high enough to exceed saturation with respect to liquid water allowing simultaneous growth of supercooled liquid droplets and ice crystals. Their existence is characterized by holographic measurements of cloud particles obtained at the high-altitude research station Jungfraujoch during spring 2012 and winter 2013 and simulations with the regional climate model COSMO (Consortium of Small-Scale Modeling).

  17. Cloud glaciation temperature estimation from passive remote sensing data with evolutionary computing

    Science.gov (United States)

    Carro-Calvo, L.; Hoose, C.; Stengel, M.; Salcedo-Sanz, S.

    2016-11-01

    The phase partitioning between supercooled liquid water and ice in clouds in the temperature range between 0 and -37°C influences their optical properties and the efficiency of precipitation formation. Passive remote sensing observations provide long-term records of the cloud top phase at a high spatial resolution. Based on the assumption of a cumulative Gaussian distribution of the ice cloud fraction as a function of temperature, we quantify the cloud glaciation temperature (CGT) as the 50th percentile of the fitted distribution function and its variance for different cloud top pressure intervals, obtained by applying an evolutionary algorithm (EA). EAs are metaheuristics approaches for optimization, used in difficult problems where standard approaches are either not applicable or show poor performance. In this case, the proposed EA is applied to 4 years of Pathfinder Atmospheres-Extended (PATMOS-x) data, aggregated into boxes of 1° × 1° and vertical layers of 5.5 hPa. The resulting vertical profile of CGT shows a characteristic sickle shape, indicating low CGTs close to homogeneous freezing in the upper troposphere and significantly higher values in the midtroposphere. In winter, a pronounced land-sea contrast is found at midlatitudes, with lower CGTs over land. Among this and previous studies, there is disagreement on the sign of the land-sea difference in CGT, suggesting that it is strongly sensitive to the detected and analyzed cloud types, the time of the day, and the phase retrieval method.

  18. Observations of ice multiplication in a weakly convective cell embedded in supercooled mid-level stratus

    Directory of Open Access Journals (Sweden)

    J. Crosier

    2011-01-01

    Full Text Available Simultaneous observations of cloud microphysical properties were obtained by in-situ aircraft measurements and ground based Radar/Lidar. Widespread mid-level stratus cloud was present below a temperature inversion (~5 °C magnitude at 3.6 km altitude. Localised convection (peak updraft 1.5 m s−1 was observed 20 km west of the Radar station. This was associated with convergence at 2.5 km altitude. The convection was unable to penetrate the inversion capping the mid-level stratus.

    The mid-level stratus cloud was vertically thin (~400 m, horizontally extensive (covering 100 s of km and persisted for more than 24 h. The cloud consisted of supercooled water droplets and small concentrations of large (~1 mm stellar/plate like ice which slowly precipitated out. This ice was nucleated at temperatures greater than −12.2 °C and less than −10.0 °C, (cloud top and cloud base temperatures, respectively. No ice seeding from above the cloud layer was observed. This ice was formed by primary nucleation, either through the entrainment of efficient ice nuclei from above/below cloud, or by the slow stochastic activation of immersion freezing ice nuclei contained within the supercooled drops. Above cloud top significant concentrations of sub-micron aerosol were observed and consisted of a mixture of sulphate and carbonaceous material, a potential source of ice nuclei. Particle number concentrations (in the size range 0.1<D<3.0 μm were measured above and below cloud in concentrations of ~25 cm−3. Ice crystal concentrations in the cloud were constant at around 0.2 L−1. It is estimated that entrainment of aerosol particles into cloud cannot replenish the loss of ice nuclei from the cloud layer via precipitation.

    Precipitation from the mid-level stratus evaporated before reaching the surface, whereas rates of up to 1 mm h−1 were observed below the convective feature. There is strong

  19. Real-time observation of the isothermal crystallization kinetics in a deeply supercooled liquid

    Science.gov (United States)

    Zanatta, M.; Cormier, L.; Hennet, L.; Petrillo, C.; Sacchetti, F.

    2017-01-01

    Below the melting temperature Tm, crystals are the stable phase of typical elemental or molecular systems. However, cooling down a liquid below Tm, crystallization is anything but inevitable. The liquid can be supercooled, eventually forming a glass below the glass transition temperature Tg. Despite their long lifetimes and the presence of strong barriers that produces an apparent stability, supercooled liquids and glasses remain intrinsically a metastable state and thermodynamically unstable towards the crystal. Here we investigated the isothermal crystallization kinetics of the prototypical strong glassformer GeO2 in the deep supercooled liquid at 1100 K, about half-way between Tm and Tg. The crystallization process has been observed through time-resolved neutron diffraction for about three days. Data show a continuous reorganization of the amorphous structure towards the alpha-quartz phase with the final material composed by crystalline domains plunged into a low-density, residual amorphous matrix. A quantitative analysis of the diffraction patterns allows determining the time evolution of the relative fractions of crystal and amorphous, that was interpreted through an empirical model for the crystallization kinetics. This approach provides a very good description of the experimental data and identifies a predator-prey-like mechanism between crystal and amorphous, where the density variation acts as a blocking barrier. PMID:28255173

  20. Weather at Sierra Negra: 7.3-year statistics and a new method to estimate the temporal fraction of cloud cover

    CERN Document Server

    Carrasco, E; Avila, R; Gutiérrez, C; Avilés, J L; Reyes, J; Meza, J; Yam, O

    2009-01-01

    Sierra Negra, one of the highest peaks in central Mexico, is the site of the Large Millimeter Telescope. We describe the first results of a comprehensive analysis of the weather data measured in situ from October 2000 to February 2008 to be used as a reference for future activity in the site. We compare the data from two different stations at the summit considering the accuracy of both instruments. We analysed the diurnal, seasonal and annual cycles for all the parameters. The thermal stability is remarkably good, crucial for a good performance of the telescopes. From the solar radiation data we developed a new method to estimate the fraction of time when the sky is clear of clouds. We show that our measurements are consistent with a warm standard atmosphere model. The conditions at the site are benign and stable given its altitude, showing that Sierra Negra is a extremely good site for millimeter and high energy observations.

  1. Balloon-Borne Submillimeter Polarimetry of the Vela C Molecular Cloud: Systematic Dependence of Polarization Fraction on Column Density and Local Polarization-Angle Dispersion

    CERN Document Server

    Fissel, Laura M; Angilè, Francesco E; Ashton, Peter; Benton, Steven; Devlin, Mark J; Dober, Bradley; Fukui, Yasuo; Galitzki, Nicholas; Gandilo, Natalie N; Klein, J R; Li, Zhi-Yun; Korotkov, Andrei L; Martin, Peter G; Matthews, Tristan G; Moncelsi, Lorenzo; Nakamura, Fumitaka; Netterfield, C Barth; Novak, Giles; Pascale, Enzo; Poidevin, Frédérick; Santos, Fabio P; Savini, Giorgio; Scott, Douglas; Shariff, Jamil A; Soler, Juan D; Thomas, Nicholas E; Tucker, Carole E; Tucker, Gregory S; Ward-Thompson, Derek

    2015-01-01

    We present results for Vela C obtained during the 2012 flight of the Balloon-borne Large Aperture Submillimeter Telescope for Polarimetry (BLASTPol). We mapped polarized intensity across almost the entire extent of this giant molecular cloud, in bands centered at 250, 350, and 500 {\\mu}m. In this initial paper, we show our 500 {\\mu}m data smoothed to a resolution of 2.5 arcminutes (approximately 0.5 pc). We show that the mean level of the fractional polarization p and most of its spatial variations can be accounted for using an empirical three-parameter power-law fit, p = p_0 N^(-0.4) S^(-0.6), where N is the hydrogen column density and S is the polarization-angle dispersion on 0.5 pc scales. The decrease of p with increasing S is expected because changes in the magnetic field direction within the cloud volume sampled by each measurement will lead to cancellation of polarization signals. The decrease of p with increasing N might be caused by the same effect, if magnetic field disorder increases for high colum...

  2. New Mexico cloud super cooled liquid water survey final report 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Beavis, Nick; Roskovensky, John K.; Ivey, Mark D.

    2010-02-01

    Los Alamos and Sandia National Laboratories are partners in an effort to survey the super-cooled liquid water in clouds over the state of New Mexico in a project sponsored by the New Mexico Small Business Assistance Program. This report summarizes the scientific work performed at Sandia National Laboratories during the 2009. In this second year of the project a practical methodology for estimating cloud super-cooled liquid water was created. This was accomplished through the analysis of certain MODIS sensor satellite derived cloud products and vetted parameterizations techniques. A software code was developed to analyze multiple cases automatically. The eighty-one storm events identified in the previous year effort from 2006-2007 were again the focus. Six derived MODIS products were obtained first through careful MODIS image evaluation. Both cloud and clear-sky properties from this dataset were determined over New Mexico. Sensitivity studies were performed that identified the parameters which most influenced the estimation of cloud super-cooled liquid water. Limited validation was undertaken to ensure the soundness of the cloud super-cooled estimates. Finally, a path forward was formulized to insure the successful completion of the initial scientific goals which include analyzing different of annual datasets, validation of the developed algorithm, and the creation of a user-friendly and interactive tool for estimating cloud super-cooled liquid water.

  3. Longwave indirect effect of mineral dusts on ice clouds

    Directory of Open Access Journals (Sweden)

    Q. Min

    2010-08-01

    Full Text Available In addition to microphysical changes in clouds, changes in nucleation processes of ice cloud due to aerosols would result in substantial changes in cloud top temperature as mildly supercooled clouds are glaciated through heterogenous nucleation processes. Measurements from multiple sensors on multiple observing platforms over the Atlantic Ocean show that the cloud effective temperature increases with mineral dust loading with a slope of +3.06 °C per unit aerosol optical depth. The macrophysical changes in ice cloud top distributions as a consequence of mineral dust-cloud interaction exert a strong cooling effect (up to 16 Wm−2 of thermal infrared radiation on cloud systems. Induced changes of ice particle size by mineral dusts influence cloud emissivity and play a minor role in modulating the outgoing longwave radiation for optically thin ice clouds. Such a strong cooling forcing of thermal infrared radiation would have significant impacts on cloud systems and subsequently on climate.

  4. Transport properties of supercooled confined water

    Science.gov (United States)

    Mallamace, F.; Branca, C.; Broccio, M.; Corsaro, C.; Gonzalez-Segredo, N.; Spooren, J.; Stanley, H. E.; Chen, S.-H.

    2008-07-01

    This article presents an overview of recent experiments performed on transport properties of water in the deeply supercooled region, a temperature region of fundamental importance in the science of water. We report data of nuclear magnetic resonance, quasi-elastic neutron scattering, Fourier-transform infrared spectroscopy, and Raman spectroscopy, studying water confined in nanometer-scale environments. When contained within small pores, water does not crystallise, and can be supercooled well below its homogeneous nucleation temperature Th. On this basis it is possible to carry out a careful analysis of the well known thermodynamical anomalies of water. Studying the temperature and pressure dependencies of water dynamics, we show that the liquid-liquid phase transition (LLPT) hypothesis represents a reliable model for describing liquid water. In this model, water in the liquid state is a mixture of two different local structures, characterised by different densities, namely the low density liquid (LDL) and the high-density liquid (HDL). The LLPT line should terminate at a special transition point: a low-T liquid-liquid critical point. We discuss the following experimental findings on liquid water: (i) a crossover from non-Arrhenius behaviour at high T to Arrhenius behaviour at low T in transport parameters; (ii) a breakdown of the Stokes-Einstein relation; (iii) the existence of a Widom line, which is the locus of points corresponding to maximum correlation length in the p-T phase diagram and which ends in the liquid-liquid critical point; (iv) the direct observation of the LDL phase; (v) a minimum in the density at approximately 70 K below the temperature of the density maximum. In our opinion these results represent the experimental proofs of the validity of the LLPT hypothesis.

  5. Analysis of solar radiation on the surface estimated from GWNU solar radiation model with temporal resolution of satellite cloud fraction

    Science.gov (United States)

    Zo, Il-Sung; Jee, Joon-Bum; Lee, Kyu-Tae; Kim, Bu-Yo

    2016-08-01

    Preliminary analysis with a solar radiation model is generally performed for photovoltaic power generation projects. Therefore, model accuracy is extremely important. The temporal and spatial resolutions used in previous studies of the Korean Peninsula were 1 km × 1 km and 1-h, respectively. However, calculating surface solar radiation at 1-h intervals does not ensure the accuracy of the geographical effects, and this parameter changes owing to atmospheric elements (clouds, aerosol, ozone, etc.). Thus, a change in temporal resolution is required. In this study, one-year (2013) analysis was conducted using Chollian geostationary meteorological satellite data from observations recorded at 15-min intervals. Observation data from the intensive solar site at Gangneung-Wonju National University (GWNU) showed that the coefficient of determination (R²), which was estimated for each month and season, increased, whereas the standard error (SE) decreased when estimated in 15-min intervals over those obtained in 1-h intervals in 2013. When compared with observational data from 22 solar sites of the Korean Meteorological Administration (KMA), R2 was 0.9 or higher on average, and over- or under-simulated sites did not exceed 3 sites. The model and 22 solar sites showed similar values of annual accumulated solar irradiation, and their annual mean was similar at 4,998 MJ m-2 (3.87 kWh m-2). These results show a difference of approximately ± 70 MJ m-2 (± 0.05 kWh m-2) from the distribution of the Korean Peninsula estimated in 1-h intervals and a higher correlation at higher temporal resolution.

  6. Laboratory measurements of HDO/H$_{2}$O isotopic fractionation during ice deposition in simulated cirrus clouds

    CERN Document Server

    Lamb, Kara; Bolot, Maximilien; Sarkozy, Laszlo; Saathoff, Harald; Möhler, Ottmar; Moyer, Elisabeth

    2015-01-01

    The stable isotopologues of water have been used in atmospheric and climatic studies for over fifty years, because the temperature-dependent preferential condensation of heavy isotopologues during phase changes makes them useful diagnostics of the hydrological cycle. However, the degree of preferential condensation has never been directly measured at temperatures below 233 K (-40$^{\\circ}$C), conditions of cirrus formation in the atmosphere and routinely observed at surface elevation in polar regions. (Models generally assume an extrapolation from the warmer experiments of Merlivat and Nief, 1967.) Non-equilibrium effects that should alter preferential partitioning have also not been well-characterized experimentally (Jouzel and Merlivat 1984). We present here the first direct experimental measurements of the HDO/H$_2$O equilibrium fractionation factor between vapour and ice ($\\alpha_{\\mathrm {eq}}$) at cirrus-relevant temperatures, and the first quantitative validation of the kinetic modification to equilibr...

  7. Entropy-driven liquid-liquid separation in supercooled water

    OpenAIRE

    Holten, V.; Anisimov, M.A.

    2012-01-01

    Twenty years ago Poole et al. (Nature 360, 324, 1992) suggested that the anomalous properties of supercooled water may be caused by a critical point that terminates a line of liquid-liquid separation of lower-density and higher-density water. Here we present an explicit thermodynamic model based on this hypothesis, which describes all available experimental data for supercooled water with better quality and with fewer adjustable parameters than any other model suggested so far. Liquid water a...

  8. Local order in a supercooled colloidal fluid observed by confocal microscopy

    CERN Document Server

    Gasser, U; Weitz, D A

    2003-01-01

    The local order in a supercooled monodisperse colloidal fluid is studied by direct imaging of the particles with a laser scanning confocal microscope. The local structure is analysed with a bond order parameter method, which allows one to discern simple structures that are relevant in this system. As expected for samples that crystallize eventually, a large fraction of the particles are found to sit in surroundings with dominant face-centred cubic or hexagonally close-packed character. Evidence for local structures that contain fragments of icosahedra is found, and, moreover, the icosahedral character increases with volume fraction phi, which indicates that it might play an important role at volume fractions near the glass transition.

  9. Local order in a supercooled colloidal fluid observed by confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Gasser, U [Department of Physics and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA (United States); Schofield, Andrew [Department of Physics and Astronomy, University of Edinburgh, Edinburgh (United Kingdom); Weitz, D A [Department of Physics and Division of Engineering and Applied Sciences, Harvard University, Cambridge, MA (United States)

    2003-01-15

    The local order in a supercooled monodisperse colloidal fluid is studied by direct imaging of the particles with a laser scanning confocal microscope. The local structure is analysed with a bond order parameter method, which allows one to discern simple structures that are relevant in this system. As expected for samples that crystallize eventually, a large fraction of the particles are found to sit in surroundings with dominant face-centred cubic or hexagonally close-packed character. Evidence for local structures that contain fragments of icosahedra is found, and, moreover, the icosahedral character increases with volume fraction {phi}, which indicates that it might play an important role at volume fractions near the glass transition.

  10. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    Directory of Open Access Journals (Sweden)

    L. Nichman

    2017-09-01

    Full Text Available Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD chamber at European Organisation for Nuclear Research (CERN. The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of −30, −40 and −50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI. Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot

  11. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    Science.gov (United States)

    Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin

    2017-09-01

    Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly

  12. Herschel/HIFI observations of interstellar OH+ and H2O+ towards W49N: a probe of diffuse clouds with a small molecular fraction

    CERN Document Server

    Neufeld, D A; Sonnentrucker, P; Black, J H; Pearson, J; Yu, S; Phillips, T G; Lis, D C; De Luca, M; Herbst, E; Rimmer, P; Gerin, M; Bell, T A; Boulanger, F; Cernicharo, J; Coutens, A; Dartois, E; Kazmierczak, M; Encrenaz, P; Falgarone, E; Geballe, T R; Giesen, T; Godard, B; Goldsmith, P F; Gry, C; Gupta, H; Hennebelle, P; Hily-Blant, P; Joblin, C; Ko\\los, R; Kre\\lowski, J; Mart\\in-Pintado, J; Menten, K M; Monje, R; Mookerjea, B; Perault, M; Persson, C; Plume, R; Salez, M; Schlemmer, S; Schmidt, M; Stutzki, J; Teyssier, D; Vastel, C; Cros, A; Klein, K; Lorenzani, A; Philipp, S; Samoska, L A; Shipman, R; Tielens, A G G M; Szczerba, R; Zmuidzinas, J

    2010-01-01

    We report the detection of absorption by interstellar hydroxyl cations and water cations, along the sight-line to the bright continuum source W49N. We have used Herschel's HIFI instrument, in dual beam switch mode, to observe the 972 GHz N = 1 - 0 transition of OH+ and the 1115 GHz 1(11) - 0(00) transition of ortho-H2O+. The resultant spectra show absorption by ortho-H2O+, and strong absorption by OH+, in foreground material at velocities in the range 0 to 70 km/s with respect to the local standard of rest. The inferred OH+/H2O+ abundance ratio ranges from ~ 3 to ~ 15, implying that the observed OH+ arises in clouds of small molecular fraction, in the 2 - 8% range. This conclusion is confirmed by the distribution of OH+ and H2O+ in Doppler velocity space, which is similar to that of atomic hydrogen, as observed by means of 21 cm absorption measurements, and dissimilar from that typical of other molecular tracers. The observed OH+/H abundance ratio of a few E-8 suggests a cosmic ray ionization rate for atomic ...

  13. Supercooled water in austral summer in Prydz Bay,Antarctica

    Institute of Scientific and Technical Information of China (English)

    SHI Jiuxin; CHENG Yaoyao; JIAO Yutian; HOU Jiaqiang

    2011-01-01

    Supercooled water with temperatures below freezing point, was identified from hydrographic data obtained by Chinese and Australian expeditions to Prydz Bay, Antarctica, during the austral summer. The study shows that most supercooled waters occurred at depths of 63-271 m in the region north of the Amery Ice Shelf (AIS) front. The maximum supercooling was 0.16℃ below the in-situ freezing point. In temperature and salinity ranges of-2.14 - -1.96℃ and 34.39--34.46, respectively,the water was colder and fresher than peripheral shelf water. The supercooled water had less variability in the vertical profiles compared to shelf water. Based on analysis of their thermohaline features and spatial distribution, as well as the circulation pattern in Prydz Bay, we conclude that these supercooled waters originated from a cavity beneath the AIS and resulted from upwelling just outside of the AIS front. Water emerging from the ice shelf cools to an extremely low temperature (about -2.0℃) by additional cooling from the ice shelf, and becomes buoyant with the addition of melt water from the ice shelf base. When this water flows out of the ice shelf front, its upper boundary is removed, and thus it rises abruptly. Once the temperature of this water reaches below the freezing point, supercooling takes place. In summer, the seasonal pycnocline at ~100 m water depth acts as a barrier to upwelling and supercooling. The upwelling of ice shelf outflow water illuminates a unique mid-depth convection of the polar ocean.

  14. The transient behavior of Peltier junctions pulsed with supercooling

    Science.gov (United States)

    Mao, J. N.; Chen, H. X.; Jia, H.; Qian, X. L.

    2012-07-01

    There exists the transient thermoelectric supercooling effect that can be enhanced by keeping on increasing the Peltier cooling effect to compensate for the Joule heating effect and Fourier heat conduction effect arriving at the cold junction, in which a transient cold spike can be produced by superimposing an additional shaped current pulse of a large magnitude on the original steady-state optimum value. Most previous work on the transient supercooling mainly focused on the minimum supercooling temperature achievable and separately analyzed the beneficial or detrimental effects on the transient supercooling performance, which was not clarified quantitatively to what extent the interactional effects were on the enhancement of the transient supercooling performance. In this work, we systematically investigate a numerical solution involving time-dependent imposed voltage pulse and time-dependent thermal boundary conditions on the transient supercooling behavior as well as the response of characteristic time and cold-junction temperature distribution to the pulse operation parameters during the periods of pulse start-up, pulse-on time, and pulse-off time, which is served as a theoretical basis for exploiting the coupling interaction of the thermoelectric effects on the heat diffusion from or to the cold junction interrelated with the amount of the availably electrical conversion in the short time scale. Additionally, the advantage of certain pulse forms over others is described. The results indicate that Peltier supercooling capacity shows a decreasing monotonic trend in proportion to the total amount of electrical conversion, and the maximum coefficient of performance for cooling state is about 0.5 to be achieved at steady state. Taking advantage of the temporary Peltier effect focused electrical conversion as the additional cooling for a period long enough against the earlier arrival of the excessively Joule heating dominated heat accumulation is the key parameter

  15. Evidence of the existence of the low-density liquid phase in supercooled, confined water.

    Science.gov (United States)

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Majolino, Domenico; Venuti, Valentina; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2007-01-09

    By confining water in a nanoporous structure so narrow that the liquid could not freeze, it is possible to study properties of this previously undescribed system well below its homogeneous nucleation temperature TH = 231 K. Using this trick, we were able to study, by means of a Fourier transform infrared spectroscopy, vibrational spectra (HOH bending and OH-stretching modes) of deeply supercooled water in the temperature range 183 < T < 273 K. We observed, upon decreasing temperature, the building up of a new population of hydrogen-bonded oscillators centered around 3,120 cm(-1), the contribution of which progressively dominates the spectra as one enters into the deeply supercooled regime. We determined that the fractional weight of this spectral component reaches 50% just at the temperature, TL approximately 225 K, where the confined water shows a fragile-to-strong dynamic cross-over phenomenon [Ito, K., Moynihan, C. T., Angell, C. A. (1999) Nature 398:492-494]. Furthermore, the fact that the corresponding OH stretching spectral peak position of the low-density-amorphous solid water occurs exactly at 3,120 cm(-1) [Sivakumar, T. C., Rice, S. A., Sceats, M. G. (1978) J. Chem. Phys. 69:3468-3476.] strongly suggests that these oscillators originate from existence of the low-density-liquid phase derived from the occurrence of the first-order liquid-liquid (LL) phase transition and the associated LL critical point in supercooled water proposed earlier by a computer molecular dynamics simulation [Poole, P. H., Sciortino, F., Essmann, U., Stanley, H. E. (1992) Nature 360:324-328].

  16. Effects of PVA(Polyvinyl Alcohol) on Supercooling Phenomena of Water

    Science.gov (United States)

    Kumano, Hiroyuki; Saito, Akio; Okawa, Seiji; Takizawa, Hiroshi

    In this paper, effects of polymer additive on supercooling of water were investigated experimentally. Poly-vinyl alcohol (PVA) were used as the polymer, and the samples were prepared by dissolving PVA in ultra pure water. Concentration, degree of polymerization and saponification of PVA were varied as the experimental parameters. The sample was cooled, and the temperature at the instant when ice appears was measured. Since freezing of supercooled water is statistical phenomenon, many experiments were carried out and average degrees of supercooling were obtained for each experimental condition. As the result, it was found that PVA affects nucleation of supercooling and the degree of supercooling increases by adding the PVA. Especially, it is found that the average degree of supercooling increases and the standard deviation of average degree of supercooling decreases with increase of degree of saponification of PVA. However, the average degree of supercooling are independent of the degree of polymerization of PVA in the range of this study.

  17. Supercooling across first-order phase transitions in vortex matter

    Indian Academy of Sciences (India)

    P Chaddah; S B Roy

    2000-06-01

    Hysteresis in cycling through first-order phase transitions in vortex matter, akin to the well-studied phenomenon of supercooling of water, has been discussed in literature. Hysteresis can be seen while varying either temperature or magnetic field (and thus the density of vortices). Our recent work on phase transitions with two control variables shows that the observable region of metastability of the supercooled phase would depend on the path followed in - space, and will be larger when is lowered at constant compared to the case when is lowered at constant . We discuss the effect of isothermal field variations on metastable supercooled states produced by field-cooling. This path dependence is not a priori applicable to metastability caused by reduced diffusivity or hindered kinetics.

  18. On the potential energy landscape of supercooled liquids and glasses

    DEFF Research Database (Denmark)

    Rodney, D.; Schrøder, Thomas

    2011-01-01

    The activation-relaxation technique (ART), a saddle-point search method, is applied to determine the potential energy landscape around supercooled and glassy configurations of a three-dimensional binary Lennard-Jones system. We show a strong relation between the distribution of activation energies...... around a given glassy configuration and its history, in particular, the cooling rate used to produce the glass and whether or not the glass was plastically deformed prior to sampling. We also compare the thermally activated transitions found by ART around a supercooled configuration with the succession...... of transitions undergone by the same supercooled liquid during a time trajectory simulated by molecular dynamics. We find that ART is biased towards more heterogeneous transitions with higher activation energies and more broken bonds than the MD simulation....

  19. A method to determine true air temperature fluctuations in clouds with liquid water fraction and estimate water droplet effect on the calculations of the spectral structure of turbulent heat fluxes in cumulus clouds based on aircraft data

    Science.gov (United States)

    Strunin, Alexander M.; Zhivoglotov, Dmitriy N.

    2014-03-01

    Liquid water droplets could distort aircraft temperature measurements in clouds, leading to errors in calculated heat fluxes and incorrect flux distribution pattern. The estimation of cloud droplet effect on the readings of the high-frequency aircraft thermometer employed at the Central Aerological Observatory (CAO) was based on an experimental study of the sensor in a wind tunnel, using an air flow containing liquid water droplets. Simultaneously, calculations of the distribution of speed and temperature in a flow through the sensitive element of the sensor were fulfilled. This permitted estimating the coefficient of water content effect on temperature readings. Another way of estimating cloud droplet effect was based on the analysis of data obtained during aircraft observations of cumulus clouds in a tropical zone (Cuba Island). As a result, a method of correcting air temperature and recovering true air temperature fluctuations inside clouds was developed. This method has provided consistent patterns of heat flux distribution in a cumulus area. Analysis of the results of aircraft observations of cumulus clouds with temperature correction fulfilled has permitted investigation of the spectral structure of the fields of air temperature and heat fluxes to be performed in cumulus zones based on wavelet transformation. It is shown that mesoscale eddies (over 500 m in length) were the main factor of heat exchange between a cloud and the ambient space. The role of turbulence only consisted in mixing inside the cloud.

  20. Directional irradiances and fractional clouds

    Science.gov (United States)

    Pagh Nielsen, Kristian; Andersen, Elsa; Dragsted, Janne; Furbo, Simon

    2017-04-01

    For large scale implementation of solar energy, better understanding of the directional and temporal variations in the solar resource is needed. This includes understanding the shading within a multiple row field of solar panels and how this affects the electricity or heat production. We have studied directional irradiances measured simultaneously from 16 downward directions at 1 minute temporal resolution. Also, we have performed measurements of the variations in the field of view across individual solar heating panels in the operational solar district heating plant in Hedehusene in Denmark. By combining a model of directional diffuse irradiances with the field of view variation across a solar panel in a solar panel field we can quantify the effect of shading of diffuse irradiances on the heat flow from the panel.

  1. Modeling of Polar Precipitation with CloudSat, AIRS and High Frequency Microwave Radiometers

    Science.gov (United States)

    Turk, F. J.; Park, K.; Wang, N.; Haddad, Z. S.

    2009-12-01

    While measuring and monitoring precipitation in polar regions is difficult, recent studies have shown that microwave radiances measured by operational high-frequency sounders, such as the Advanced Microwave Sounding Unit (AMSU) and the Microwave Humidity Sounder (MHS), are sensitive to falling snow, though the frozen surface makes it very difficult to retrieve snowfall rates from these radiometric measurements. Since the microwave sounding channels are sensitive to the variable surface emissivity, the crucial step was to classify these data according to fractional ice coverage (derived from AMSR-E) and use principal component analyses to further separate the variations due to the radiometric signatures of the precipitation from that of the surface. These results quantify the correlation between the higher principal components of the microwave radiances and the CloudSat radar reflectivity profile. Further radiative transfer modeling of the polar atmosphere is done using the AIRS temperature and moisture profiles to specify the background atmosphere. We relate the simulated microwave radiances to the near-surface precipitation itself, by considering several hydrometeor habit and size distributions and super-cooled cloud liquid fractions, performing reflectivity-to-snow-content retrievals from the CloudSat radar profiles of ice and liquid water content.. With this methodology, one can simulate polar precipitation observations systematically utilizing these time/space matched measurements from the CloudSat radar and polar-orbiting high-frequency radiometers such as MHS or the SSMIS. In turn, this will help evaluate the realism of numerical models and their microphysical assumptions, particularly as the latter appear to have significant difficulties representing Arctic clouds accurately.

  2. Thermodynamics and dynamics of supercooled water

    Science.gov (United States)

    Mazza, Marco G.

    This thesis employs methods of statistical mechanics and numerical simulations to study some aspects of the thermodynamic and dynamic behavior of liquid water. As liquid water is cooled down into the supercooled state, some regions of the sample show correlated molecular motion. Previously, only the translational motion has been the object of investigation. Given the importance of orientational dynamics for water, a question that naturally arises is whether the rotational molecular motion also shows heterogeneous dynamics. We show that the most rotationally mobile molecules tend to form clusters, "rotational heterogeneities", and we study their dependence upon observation time and temperature. Further, we show evidence that molecules belonging to dynamic heterogeneities are involved in bifurcated bonds. Since the presence of dynamic heterogeneities is increasingly important as the temperature is lowered, one would expect a signature of this phenomenon in dynamical quantities. We study the effect of dynamic heterogeneities on the origin of the breakdown of the Stokes--- Einstein and Stokes---Einstein---Debye relations for water. These relations link the diffusivity to temperature and viscosity. We study the separation of time scales of dynamic heterogeneities and the diffusive regime. We also consider different sets of mobility, slowest and fastest, for both translational and rotational heterogeneities. A long-standing problem in biology is the seemingly universal loss of biological activity of all biomolecules, a phenomenon termed the "protein glass transition". We explore the connection between the hypothesized liquid-liquid phase transition of water, and the protein glass transition. We find that the protein glass transition coincides with the crossing of the Widom line of hydration water. Many different scenarios have been proposed to rationalize water's thermodynamic anomalies. We study a tell model for water using the Wolff' cluster algorithm, which permits

  3. A systematic experimental study on the evaporation rate of supercooled water droplets at subzero temperatures and varying relative humidity

    Science.gov (United States)

    Ruberto, S.; Reutzsch, J.; Roth, N.; Weigand, B.

    2017-05-01

    Supercooled water droplets (SWD) are present in clouds at high altitude and subjected to very low temperatures and high relative humidity. These droplets exist in a metastable state. The understanding of the evaporation of SWD at these extreme conditions is of high interest to understand rain, snow, and hail generating mechanisms in clouds. This paper focuses on the experimental results of the measurements of the evaporation rates β of supercooled water droplets. For this purpose, single SWDs are trapped by means of optical levitation. During the evaporation process, the elastically scattered light in the forward regime is recorded and evaluated. Experiments have been performed for different relative humidities φ at three constant ambient temperatures, namely, {T_∞}=268.15; 263.15; 253.15 {{K}} ({t_∞} = -5; -10; -20°C). The experimental data agrees well with direct numerical simulations (DNS) carried out with the in-house code Free Surface 3D (FS3D) and shows that the use of a simplified model is permissible for these ambient conditions.

  4. Peculiar thermodynamics of the second critical point in supercooled water.

    Science.gov (United States)

    Bertrand, C E; Anisimov, M A

    2011-12-08

    On the basis of the principle of critical-point universality, we examine the peculiar thermodynamics of the liquid-liquid critical point in supercooled water. We show that the liquid-liquid criticality in water represents a special kind of critical behavior in fluids, intermediate between two limiting cases: the lattice gas, commonly used to model liquid-vapor transitions, and the lattice liquid, a weakly compressible liquid with an entropy-driven phase separation. While the ordering field in the lattice gas is associated with the chemical potential and the order parameter with the density, in the lattice liquid the ordering field is the temperature and the order parameter is the entropy. The behavior of supercooled water is much closer to lattice-liquid behavior than to lattice-gas behavior. Using new experimental data recently obtained by Mishima [J. Chem. Phys. 2010, 133, 144503], we have revised the parametric scaled equation of state, previously suggested by Fuentevilla and Anisimov [Phys. Rev. Lett. 2006, 97, 195702], and obtain a consistent description of the thermodynamic anomalies of supercooled water by adjusting linear backgrounds, one critical amplitude, and the critical pressure. We also show how the lattice-liquid description affects the finite-size scaling description of supercooled water in confined media.

  5. Hopping in a supercooled binary Lennard-Jones liquid

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Dyre, Jeppe

    1998-01-01

    A binary Lennard–Jones liquid has been investigated by molecular dynamics at equilibrium supercooled conditions. At the lowest temperature investigated, hopping is present in the system as indicated by a secondary peak in 4r2Gs(r,t), where Gs(r,t) is the van Hove self correlation function...

  6. Entropy calculations for a supercooled liquid crystalline blue phase

    Energy Technology Data Exchange (ETDEWEB)

    Singh, U [Physics Department, University of the West Indies, PO Box 64, Bridgetown (Barbados)

    2007-01-15

    We observed, using polarized light microscopy, the supercooling of the blue phase (BPI) of cholesteryl proprionate and measured the corresponding liquid crystalline phase transition temperatures. From these temperatures and additional published data we have provided, for the benefit of undergraduate physics students, a nontraditional example involving entropy calculations for an irreversible transition.

  7. Arctic clouds in the ECMWF forecast model: an evaluation of cloud parameterization schemes

    Science.gov (United States)

    Sotiropoulou, Georgia; Sedlar, Joseph; Forbes, Richard; Tjernström, Michael

    2016-04-01

    The Arctic is experiencing significant changes and is an important part of the global climate, which needs to be understood and accurately represented in both climate and weather prediction models. Mixed-phase clouds are an integral part of the Arctic system, for precipitation and for their interactions with radiation and the local thermodynamics. Mixed-phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice phase that is dependent solely on temperature. However, increasingly more complex microphysical parameterizations are being implemented allowing a more physical representation of mixed-phase clouds. This study uses in situ observations from ASCOS campaign in the central Arctic to evaluate the impact of a change from a diagnostic to a prognostic parameterization of mixed-phase cloud and increased vertical resolution in the ECMWF Integrated Forecast System (IFS). The newer cloud scheme improves the representation of the vertical structure of mixed-phase clouds, with supercooled liquid water at cloud top and ice precipitating below, improved further with higher vertical resolution. Increased supercooled liquid water and decreased ice content are both in closer agreement with observations. However, these changes do not result in any substantial improvement in surface radiation and there remains a warm and moist bias in the lowest part of the atmosphere. Both schemes also fail to capture the transitions from overcast to cloud-free conditions. Moreover, whereas the observed cloud layer is frequently decoupled from the surface, in the model the cloud remains coupled to the surface most of the time. The changes to the cloud scheme are an important step forward in improving the representation of Arctic clouds, but improvements in other aspects such as boundary layer turbulence, cloud radiative properties, sensitivity to low aerosol concentrations and representation of the sea

  8. Summer Arctic Clouds in the ECMWF Forecast Model: an Evaluation of Cloud Parameterization Schemes

    Science.gov (United States)

    Sotiropoulou, G.; Sedlar, J.; Forbes, R.; Tjernstrom, M. K. H.

    2015-12-01

    The Arctic is experiencing significant changes and is an important part of the global climate, which needs to be understood and accurately represented in both climate and weather prediction models. Mixed-phase clouds are an integral part of the Arctic system, for precipitation and for their interactions with radiation and the local thermodynamics. Mixed-phase processes are often poorly represented in global models and many use an empirically based diagnostic partition between the liquid and ice phase that is dependent solely on temperature. However, increasingly more complex microphysical parameterizations are being implemented allowing a more physical representation of mixed-phase clouds. This study uses in situ observations from the ASCOS campaign in the central Arctic to evaluate the impact of a change from a diagnostic to a prognostic parameterization of mixed-phase clouds and increased vertical resolution in the European Centre for Medium-Range Weather Forecasts (ECMWF) Integrated Forecast System (IFS). The newer cloud scheme improves the representation of the vertical structure of mixed-phase clouds, with supercooled liquid water at cloud top and ice precipitating below, improved further with higher vertical resolution. Increased supercooled liquid water and decreased ice content are both in closer agreement with observations. However, these changes do not result in any substantial improvement in surface radiation and there remains a warm and moist bias in the lowest part of the atmosphere. Both schemes also fail to capture the transitions from overcast to cloud-free conditions. Moreover, whereas the observed cloud layer is frequently decoupled from the surface, in the model the cloud remains coupled to the surface most of the time. The changes implemented to the cloud scheme are an important step forward in improving the representation of Arctic clouds, but improvements in other aspects such as boundary layer turbulence, cloud radiative properties

  9. OMI/Aura Cloud Pressure and Fraction (Raman Scattering) 1-Orbit L2 Swath 13x24 km V003 NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — The reprocessed Aura OMI Version 003 Level 2 Cloud Data Product OMCLDRR is made available (in April 2012) to the public from the NASA Goddard Earth Sciences Data and...

  10. Numerical Simulation of Effects of Cloud Top Temperatures and Generating Cells on Secondary Ice Production in Stratiform Clouds with a Detailed Microphysical Model

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    This paper outlines a one-dimensional,heightdependent bin model with detailed microphysical processes in which ice splinters are produced by a riming process.The model is then applied to simulate the shift of particle size distribution effected by the secondary ice production process within clouds with different generating cells and cloud top temperatures.The result of model simulations reveals the general effects of cloud updrafts on increasing ice particle concentration by extending the residence time of ice particles in clouds and providing sufficiently large supercooled water droplets.The rimesplintering mechanism is more effective in clouds with lower ice seeding rates than those with higher rates.Evolutions of hydrometeor size distribution triggered by the rime-splintering mechanism indicate that the interaction between large ice particles and supercooled water drops adds a "second maximum" to the primary ice spectra.

  11. A maximum-entropy approach to the adiabatic freezing of a supercooled liquid.

    Science.gov (United States)

    Prestipino, Santi

    2013-04-28

    I employ the van der Waals theory of Baus and co-workers to analyze the fast, adiabatic decay of a supercooled liquid in a closed vessel with which the solidification process usually starts. By imposing a further constraint on either the system volume or pressure, I use the maximum-entropy method to quantify the fraction of liquid that is transformed into solid as a function of undercooling and of the amount of a foreign gas that could possibly be also present in the test tube. Upon looking at the implications of thermal and mechanical insulation for the energy cost of forming a solid droplet within the liquid, I identify one situation where the onset of solidification inevitably occurs near the wall in contact with the bath.

  12. Crystallization behavior of supercooled smectic cholesteryl myristate nanoparticles containing phospholipids as stabilizers

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Koch, Michel; Drechsler, M;

    2005-01-01

    Supercooled smectic nanoparticles based on physiological cholesterol esters are under investigation as a potential novel carrier system for lipophilic drugs. The present study investigates the very complex crystallization behavior of such nanoparticles stabilized with the aid of phospholipids....... Phospholipid and phospholipid/bile salt stabilized cholesteryl myristate dispersions were prepared by high-pressure melt homogenization and characterized by particle size measurements, differential scanning calorimetry, X-ray diffraction and electron microscopy. To obtain fractions with very small smectic...... nanoparticles, selected dispersions were ultracentrifuged. A mixture of cholesteryl myristate and the phospholipid used for the stabilization of the dispersions was also investigated by light microscopy. The nanoparticles usually display a bimodal crystallization event which depends on the thermal treatment...

  13. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    Science.gov (United States)

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  14. Static and dynamic length scales in supercooled liquids: insights from molecular dynamics simulations of water and tri-propylene oxide.

    Science.gov (United States)

    Klameth, F; Henritzi, P; Vogel, M

    2014-04-14

    We perform molecular dynamics simulations to study static and dynamic length scales in molecular supercooled liquids, in particular, water. For a determination of these scales, we use equilibrium configurations and pin appropriate subsets of molecules so as to obtain random matrices, cylindrical pores, and slit confinements. Static length scales ξ(s) are determined by analyzing overlap correlation functions for various fractions of pinned molecules or distances to the confining walls. For water in all confinements and for propylene oxide trimers in random geometry, a linear increase of ξ(s) with inverse temperature is found. Dynamic length scales ξ(d) are determined by analogous analysis of fraction-dependent or position-resolved correlation times of structural relaxation. While ξ(d) continuously grows upon cooling in the cylindrical and slit confinements, we find no evidence for a temperature dependence in random matrices, implying that molecular dynamics in parsed volumes is qualitatively different from that in bulk liquids. Finally, we study possible connections between the growth of the static and dynamic length scales and the slowdown of the structural relaxation of the supercooled bulk liquids. For water, we observe a linear relation between ln τ(α) and ξ(s)²/T in the whole accessible range down to the critical temperature of mode-coupling theory, T(c). In the weakly supercooled regime, the same relation holds also for ξ(d), as obtained from cylindrical and slit confinements, but deviations from this behavior are observed near T(c). The results are discussed in connection with random first-order theory and experimental studies of liquid dynamics in nanoscopic confinements and binary mixtures.

  15. Detection and Analysis of High Ice Concentration Events and Supercooled Drizzle from IAGOS Commercial Aircraft

    Science.gov (United States)

    Gallagher, Martin; Baumgardner, Darrel; Lloyd, Gary; Beswick, Karl; Freer, Matt; Durant, Adam

    2016-04-01

    Hazardous encounters with high ice concentrations that lead to temperature and airspeed sensor measurement errors, as well as engine rollback and flameout, continue to pose serious problems for flight operations of commercial air carriers. Supercooled liquid droplets (SLD) are an additional hazard, especially for smaller commuter aircraft that do not have sufficient power to fly out of heavy icing conditions or heat to remove the ice. New regulations issued by the United States and European regulatory agencies are being implemented that will require aircraft below a certain weight class to carry sensors that will detect and warn of these types of icing conditions. Commercial aircraft do not currently carry standard sensors to detect the presence of ice crystals in high concentrations because they are typical found in sizes that are below the detection range of aircraft weather radar. Likewise, the sensors that are currently used to detect supercooled water do not respond well to drizzle-sized drops. Hence, there is a need for a sensor that can fill this measurement void. In addition, the forecast models that are used to predict regions of icing rely on pilot observations as the only means to validate the model products and currently there are no forecasts for the prevalence of high altitude ice crystals. Backscatter Cloud Probes (BCP) have been flying since 2011 under the IAGOS project on six Airbus commercial airliners operated by Lufthansa, Air France, China Air, Iberia and Cathay Pacific, and measure cloud droplets, ice crystals and aerosol particles larger than 5 μm. The BCP can detect these particles and measures an optical equivalent diameter (OED) but is not able to distinguish the type of particle, i.e. whether they are droplets, ice crystals, dust or ash. However, some qualification can be done based on measured temperature to discriminate between liquid water and ice. The next generation BCP (BCPD, Backscatter Cloud Probe with polarization detection) is

  16. Shear-accelerated crystallization in a supercooled atomic liquid.

    Science.gov (United States)

    Shao, Zhen; Singer, Jonathan P; Liu, Yanhui; Liu, Ze; Li, Huiping; Gopinadhan, Manesh; O'Hern, Corey S; Schroers, Jan; Osuji, Chinedum O

    2015-02-01

    A bulk metallic glass forming alloy is subjected to shear flow in its supercooled state by compression of a short rod to produce a flat disk. The resulting material exhibits enhanced crystallization kinetics during isothermal annealing as reflected in the decrease of the crystallization time relative to the nondeformed case. The transition from quiescent to shear-accelerated crystallization is linked to strain accumulated during shear flow above a critical shear rate γ̇(c)≈0.3 s(-1) which corresponds to Péclet number, Pe∼O(1). The observation of shear-accelerated crystallization in an atomic system at modest shear rates is uncommon. It is made possible here by the substantial viscosity of the supercooled liquid which increases strongly with temperature in the approach to the glass transition. We may therefore anticipate the encounter of nontrivial shear-related effects during thermoplastic deformation of similar systems.

  17. Slow dynamics of supercooled water confined in nanoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Liu, L [Department of Nuclear Engineering, 24-209 MIT, Cambridge, MA 02139 (United States); Faraone, A [Department of Nuclear Engineering, 24-209 MIT, Cambridge, MA 02139 (United States); Mou, C-Y [Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan (China); Yen, C-W [Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan (China); Chen, S-H [Department of Nuclear Engineering, 24-209 MIT, Cambridge, MA 02139 (United States)

    2004-11-17

    We review our incoherent quasielastic neutron scattering (QENS) studies of the dynamics of supercooled water confined in nanoporous silica materials. QENS data were analysed by using the relaxing cage model (RCM) previously developed by us. We first use molecular dynamics (MD) simulation of the extended simple point charge model (SPC/E) for bulk supercooled water to establish the validity of the RCM, which applies to both the translational and rotational motion of water molecules. We then assume that the dynamics of water molecules in the vicinity of a hydrophilic surface is similar to a bulk water at an equivalent lower supercooled temperature. This analogy was experimentally demonstrated in previous investigations of water in Vycor glasses and near hydrophilic protein surfaces. Studies were made of supercooled water in MCM-41-S (pore sizes 25, 18, and 14 A) and MCM-48-S (pore size 22 A) using three QENS spectrometers of respective energy resolutions 1, 30, and 60 {mu}eV, covering the temperature range from 325 to 200 K. Five quantities are extracted from the analysis: they are {beta}, the stretch exponent characterizing the {alpha}-relaxation; {beta}{gamma}, the exponent determining the power-law dependence of the relaxation time on Q; <{tau}{sub 0}>, the Q-independent pre-factor for the average translational relaxation time; <{tau}{sub R{sub 1}}>, the relaxation time for the first-order rotational correlation function; and <{tau}{sub R{sub 3}}>, the relaxation time for the second-order rotational correlation function. We discuss the temperature dependence of these parameters and note that, in particular, the dynamics is rapidly slowing down at temperature around 220 K, signalling the onset of a structural arrest transition of liquid water into an amorphous solid water.

  18. Volume analysis of supercooled water under high pressure

    OpenAIRE

    Duki, Solomon F.; Tsige, Mesfin

    2016-01-01

    Motivated by recent experimental findings on the volume of supercooled water at high pressure [O. Mishima, J. Chem. Phys. 133, 144503 (2010)] we performed atomistic molecular dynamics simulations study of bulk water in the isothermal-isobaric ensemble. Cooling and heating cycles at different isobars and isothermal compression at different temperatures are performed on the water sample with pressures that range from 0 to 1.0 GPa. The cooling simulations are done at temperatures that range from...

  19. Effects of poly-vinyl alcohol on supercooling phenomena of water

    Energy Technology Data Exchange (ETDEWEB)

    Kumano, Hiroyuki; Hirata, Tetsuo; Kudoh, Tomoya [Department of Mechanical Systems Engineering, Shinshu University, 4-17-1, Wakasato, Nagano City, 380-8553 (Japan)

    2009-05-15

    The effects of a polymer additive on the supercooling of water were investigated experimentally. Poly-vinyl alcohols (PVAs) were used as the additives, and samples were prepared by dissolving the PVA in water. Since the characteristics of PVA are decided by its degrees of polymerization and saponification, these were varied along with the concentration as the experimental parameters. Moreover, the effect of purity of the water was also considered. Each sample was cooled and the temperature at the instant when ice appeared was measured. Since the freezing of supercooled water is a statistical phenomenon, many experiments were carried out and the average degree of supercooling was obtained. It was found that PVA affects the nucleation of ice in supercooled water and the degree of supercooling increases with the addition of PVA even for water with low purity. The average degree of supercooling increases with an increase in the degree of saponification of PVA. (author)

  20. Mixing effects in the crystallization of supercooled quantum binary liquids

    Energy Technology Data Exchange (ETDEWEB)

    Kühnel, M.; Kalinin, A. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S. [Laboratory of Molecular Fluid Dynamics, Instituto de Estructura de la Materia, CSIC, Serrano 121, 28006 Madrid (Spain); Tramonto, F.; Galli, D. E. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Nava, M. [Laboratorio di Calcolo Parallelo e di Simulazioni di Materia Condensata, Dipartimento di Fisica, Università degli Studi di Milano, Via Celoria 16, 20133 Milano (Italy); Computational Science, Department of Chemistry and Applied Biosciences, ETH Zurich, USI Campus, Via Giuseppe Buffi 13, CH-6900 Lugano (Switzerland); Grisenti, R. E. [Institut für Kernphysik, J. W. Goethe-Universität, Max-von-Laue-Str. 1, 60438 Frankfurt am Main (Germany); GSI - Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany)

    2015-08-14

    By means of Raman spectroscopy of liquid microjets, we have investigated the crystallization process of supercooled quantum liquid mixtures composed of parahydrogen (pH{sub 2}) or orthodeuterium (oD{sub 2}) diluted with small amounts of neon. We show that the introduction of the Ne impurities affects the crystallization kinetics in terms of a significant reduction of the measured pH{sub 2} and oD{sub 2} crystal growth rates, similarly to what found in our previous work on supercooled pH{sub 2}-oD{sub 2} liquid mixtures [Kühnel et al., Phys. Rev. B 89, 180201(R) (2014)]. Our experimental results, in combination with path-integral simulations of the supercooled liquid mixtures, suggest in particular a correlation between the measured growth rates and the ratio of the effective particle sizes originating from quantum delocalization effects. We further show that the crystalline structure of the mixtures is also affected to a large extent by the presence of the Ne impurities, which likely initiate the freezing process through the formation of Ne-rich crystallites.

  1. Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny

    2015-01-01

    To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.

  2. Macquarie Island Cloud and Radiation Experiment (MICRE) Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Marchand, RT [University of Washington; Protat, A [Australian Bureau of Meterology; Alexander, SP [Australian Antarctic Division

    2015-12-01

    Clouds over the Southern Ocean are poorly represented in present day reanalysis products and global climate model simulations. Errors in top-of-atmosphere (TOA) broadband radiative fluxes in this region are among the largest globally, with large implications for modeling both regional and global scale climate responses (e.g., Trenberth and Fasullo 2010, Ceppi et al. 2012). Recent analyses of model simulations suggest that model radiative errors in the Southern Ocean are due to a lack of low-level postfrontal clouds (including clouds well behind the front) and perhaps a lack of supercooled liquid water that contribute most to the model biases (Bodas-Salcedo et al. 2013, Huang et al. 2014). These assessments of model performance, as well as our knowledge of cloud and aerosol properties over the Southern Ocean, rely heavily on satellite data sets. Satellite data sets are incomplete in that the observations are not continuous (i.e., they are acquired only when the satellite passes nearby), generally do not sample the diurnal cycle, and view primarily the tops of cloud systems (especially for the passive instruments). This is especially problematic for retrievals of aerosol, low-cloud properties, and layers of supercooled water embedded within (rather than at the top of) clouds, as well as estimates of surface shortwave and longwave fluxes based on these properties.

  3. Measurements of electric charge separated during the formation of rime by the accretion of supercooled droplets

    Directory of Open Access Journals (Sweden)

    E. E. Avila

    2009-11-01

    Full Text Available In these experiments, the electric charge carried by single particles ejected from the surface of a graupel particle growing by riming was measured. Simulated graupel pellets were grown by accretion of supercooled water drops, at temperatures ranging from −2 to −10°C in a wind tunnel at air velocities between 5 and 10 m s−1, with the goal of studying the charging of graupel pellets under conditions of secondary ice crystal production (Hallett-Mossop mechanism. The graupel, and induction rings upstream and downstream of the graupel, were connected to electrometers and analyzing circuits of sufficient sensitivity and speed to measure, correlate and display individual charging events. The results suggest that fewer than 1% of the ejected particles carry a measurable electric charge (>2 fC. Further, it was observed that the graupel pellets acquire a positive charge and the average charge of a single splinter ejected is −14 fC. This mechanism of ejection of charged particles seems adequate to account for a positive charge of around 1 pC that individual precipitation particles of mm-size could acquire in the lower part of the cloud, which in turn could contribute to the lower positive charge region of thunderstorms.

  4. Investigation of the aerosol-cloud-rainfall association over the Indian summer monsoon region

    Science.gov (United States)

    Sarangi, Chandan; Nand Tripathi, Sachchida; Kanawade, Vijay P.; Koren, Ilan; Sivanand Pai, D.

    2017-04-01

    Monsoonal rainfall is the primary source of surface water in India. Using 12 years of in situ and satellite observations, we examined the association of aerosol loading with cloud fraction, cloud top pressure, cloud top temperature, and daily surface rainfall over the Indian summer monsoon region (ISMR). Our results showed positive correlations between aerosol loading and cloud properties as well as rainfall. A decrease in outgoing longwave radiation and an increase in reflected shortwave radiation at the top of the atmosphere with an increase in aerosol loading further indicates a possible seminal role of aerosols in the deepening of cloud systems. Significant perturbation in liquid- and ice-phase microphysics was also evident over the ISMR. For the polluted cases, delay in the onset of collision-coalescence processes and an enhancement in the condensation efficiency allows for more condensate mass to be lifted up to the mixed colder phases. This results in the higher mass concentration of larger-sized ice-phase hydrometeors and, therefore, implies that the delayed rain processes eventually lead to more surface rainfall. A numerical simulation of a typical rainfall event case over the ISMR using a spectral bin microphysical scheme coupled with the Weather Research Forecasting (WRF-SBM) model was also performed. Simulated microphysics also illustrated that the initial suppression of warm rain coupled with an increase in updraft velocity under high aerosol loading leads to enhanced super-cooled liquid droplets above freezing level and ice-phase hydrometeors, resulting in increased accumulated surface rainfall. Thus, both observational and numerical analysis suggest that high aerosol loading may induce cloud invigoration, thereby increasing surface rainfall over the ISMR. While the meteorological variability influences the strength of the observed positive association, our results suggest that the persistent aerosol-associated deepening of cloud systems and an

  5. Hydrodynamic states in water below the temperature of the density maximum: the limit to supercooling

    NARCIS (Netherlands)

    van der Elsken, J.; van Boom, L.; Bot, A.

    1988-01-01

    Spectra of fluctuations in the total intensity of laser light deflected by supercooled water show that even under carefully controlled conditions large samples give convection when cooled below -0%. This is in agreement with the Rayleigh versus Prandtlnumber relation for supercooled water.

  6. Long term thermal energy storage with stable supercooled sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Schultz, Jørgen M.; Johansen, Jakob Berg

    2015-01-01

    it expands and will cause a pressure built up in a closed chamber which might compromise stability of the supercooling. This can be avoided by having an air volume above the phase change material connected to an external pressure less expansion tank. Supercooled sodium acetate trihydrate at 20 °C stores up...

  7. Supercooling of rapidly expanding quark-gluon plasma

    CERN Document Server

    Zabrodin, E E; Csernai, László P; Stöcker, H; Greiner, W

    1998-01-01

    We reexamine the scenario of homogeneous nucleation of the quark-gluon plasma produced in ultra-relativistic heavy ion collisions. A generalization of the standard nucleation theory to rapidly expanding system is proposed. The nucleation rate is derived via the new scaling parameter $\\lambda_Z$. It is shown that the size distribution of hadronic clusters plays an important role in the dynamics of the phase transition. The longitudinally expanding system is supercooled to about 3-6%, then it is reheated, and the hadronization is completed within 6-10 fm/c, i.e. 5-10 times faster than it was estimated earlier, in a strongly nonequilibrium way.

  8. Hopping in a supercooled binary Lennard-Jones liquid

    DEFF Research Database (Denmark)

    Schrøder, Thomas; Dyre, Jeppe

    1998-01-01

    A binary Lennard–Jones liquid has been investigated by molecular dynamics at equilibrium supercooled conditions. At the lowest temperature investigated, hopping is present in the system as indicated by a secondary peak in 4r2Gs(r,t), where Gs(r,t) is the van Hove self correlation function....... To examine the dynamics of the system, we consider transitions between the inherent structures (local minima in the potential energy) along the trajectory. We conclude that the plateau in the mean square displacement found at lower temperatures is indeed a result of particles being trapped in local "cages...

  9. The freezing and supercooling of garlic (Allium sativum L.)

    Energy Technology Data Exchange (ETDEWEB)

    James, Christian; Seignemartin, Violaine; James, Stephen J. [Food Refrigeration and Process Engineering Research Centre (FRPERC), University of Bristol, Churchill Building, Langford, Bristol BS40 5DU (United Kingdom)

    2009-03-15

    This work shows that peeled garlic cloves demonstrate significant supercooling during freezing under standard conditions and can be stored at temperatures well below their freezing point (-2.7 C) without freezing. The nucleation point or 'metastable limit temperature' (the point at which ice crystal nucleation is initiated) of peeled garlic cloves was found to be between -7.7 and -14.6 C. Peeled garlic cloves were stored under static air conditions at temperatures between -6 and -9 C for up to 69 h without freezing, and unpeeled whole garlic bulbs and cloves were stored for 1 week at -6 C without freezing. (author)

  10. Observational evidence of high ice concentration in a shallow convective cloud embedded in stratiform cloud over North China

    Science.gov (United States)

    Yang, Jiefan; Lei, Hengchi; Hou, Tuanjie

    2017-04-01

    In this study we observed the microphysical properties, including the vertical and horizontal distributions of ice particles, liquid water content and ice habit, in different regions of a slightly supercooled stratiform cloud. Using aircraft instrument and radar data, the cloud top temperature was recorded as higher than -15°C, behind a cold front, on 9 September 2015 in North China. During the flight sampling, the high ice number concentration area was located in the supercooled part of a shallow convective cloud embedded in a stratiform cloud, where the ambient temperature was around -3°C. In this area, the maximum number concentrations of particles with diameter greater than 100 μm and 500 μm ( N 100 and N 500) exceeded 300 L-1 and 30 L-1, respectively, and were related to large supercooled water droplets with diameter greater than 24 μm derived from cloud-aerosol spectrometer probe measurements. The ice particles types in this region were predominantly columnar, needle, graupel, and some freezing drops, suggesting that the occurrence of high ice number concentrations was likely related to the Hallett-Mossop mechanism, although many other ice multiplication processes cannot be totally ruled out. The maximum ice number concentration obtained during the first penetration was around two to three orders of magnitude larger than that predicted by the Demott and Fletcher schemes when assuming the cloud top temperature was around -15°C. During the second penetration conducted within the stratiform cloud, N 100 and N 500 decreased by a factor of five to ten, and the presence of columnar and needle-like crystals became very rare.

  11. Successful vitrification of mouse ovaries using less-concentrated cryoprotectants with Supercool X-1000 supplementation.

    Science.gov (United States)

    Tan, Xiuwen; Song, Enliang; Liu, Xiaomu; Liu, Guifen; Cheng, Haijian; Wan, Fachun

    2012-02-01

    The purpose of our study was to investigate the feasibility of using less-concentrated cryoprotectants supplemented with ice blocker Supercool X-1000 to vitrify ovarian tissues. Mouse ovaries were cryopreserved in different concentrations of vitrification solution alone or with Supercool X-1000, and fresh non-frozen ovaries were used as control. The proportions of morphological normality of follicles, normal GCs in follicular fluids and developing to blastocysts were higher in 12.5% ethylene glycol (EG) + 12.5% dimethylsulfoxide (DMSO) with Supercool X-1000 than those of treated in 10% EG + 10% DMSO or 15% EG + 15% DMSO alone or with Supercool X-1000. In conclusion, the inclusion of Supercool X-1000 in less-concentrated vitrification solution was effective to improve the efficiency and efficacy of cryopreservation of ovarian tissues.

  12. Impacts of Aerosol, Surface and Meteorological Conditions on Polar Cloud Properties: Use of In-Situ Cloud Probe Data

    Science.gov (United States)

    McFarquhar, Greg; Wu, Wei; Maahn, Maximilian

    2017-04-01

    Over the Southern Oceans, models from the Coupled Model Intercomparison Project 5 (CMIP5) almost universally underestimate sunlight reflected by near surface cloud in the Austral summer compared to Clouds and the Earth's Radiant Energy System (CERES) data. These and other biases in radiative fluxes over the Arctic are believed to be associated with the poorly modeled properties of low-level clouds that are frequently composed of supercooled water. Because changes in cloud macrophysical (heights, coverage) and microphysical (sizes, shapes and phases of particles) can alter the radiative impact of clouds, it is important to understand the processes that control cloud properties. In this presentation, in-situ microphysical observations obtained in prior arctic field campaigns (e.g., the Indirect and Semi-Direct Aerosol Campaign ISDAC, the Mixed-Phase Arctic Cloud Experiment M-PACE, and the Atmospheric Radiation Measurement Carbon Measurements Program-V ACME-V) are discussed. Strategies for comparing data collected in campaigns with different probes and processed with varying algorithms are introduced, along with procedures for using cloud probe data to refine assumptions about cloud properties in model schemes (e.g., size distributions, mass-dimension, and velocity-dimension relations) that affect rates at which mass and number are transferred between hydrometeor categories and hence estimates of latent and radiative heating, which feeds back on dynamics and hence cloud properties. Such observations from past arctic field experiments have enhanced our understanding of aerosol-cloud interactions acting in single-layer mixed phase clouds that are ubiquitous in the Arctic. But, it is still unknown what controls the amount of supercooled water in polar clouds (especially in frequently occurring complex multi-layer clouds), how probability distributions of cloud properties vary with aerosol loading and composition in different surface and meteorological conditions, and how

  13. Search Cloud

    Science.gov (United States)

    ... of this page: https://medlineplus.gov/cloud.html Search Cloud To use the sharing features on this ... of Top 110 zoster vaccine Share the MedlinePlus search cloud with your users by embedding our search ...

  14. Nature of the anomalies in the supercooled liquid state of the mW model of water

    CERN Document Server

    Holten, Vincent; Molinero, Valeria; Anisimov, Mikhail A

    2013-01-01

    The thermodynamic properties of the supercooled liquid state of the mW model of water show anomalous behavior. Like in real water, the heat capacity and compressibility sharply increase upon supercooling. One of the possible explanations of these anomalies, the existence of a second (liquid-liquid) critical point, is not supported by simulations for this particular model. In this work, we reproduce the anomalies of the mW model with two thermodynamic scenarios: one based on a non-ideal "mixture" with two different types of local order of the water molecules, and one based on weak crystallization theory. We show that both descriptions accurately reproduce the model's basic thermodynamic properties. However, the coupling constant required for fitting the power laws implied by weak crystallization theory is found not to be physically meaningful. For the two-state approach, the direct computation of the low-density fraction of molecules in the mW model is in agreement with the prediction of the phenomenological e...

  15. Dynamical properties of confined supercooled water: an NMR study

    Science.gov (United States)

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2006-09-01

    We report a set of dynamical data of confined water measured in a very deeply supercooled regime (290-190 K). Water is contained in silica matrices (MCM-41-S) which consist of 1D cylindrical pores with diameters d = 14,18 and 24 Å. When confined in these tubular pores, water does not crystallize, and can be supercooled well below 200 K. We use the NMR technique to obtain the characteristic proton relaxation time-constants (the spin-lattice relaxation time-constant T1 and the spin-spin relaxation time-constant T2) and a direct measurement of the self-diffusion coefficient in the whole temperature range. We give evidence of the existence of a fragile-to-strong dynamic crossover (FSC) at TL = 225 K from the temperature dependence of the self-diffusion coefficient. A combination of the NMR self-diffusion coefficient with the average translational relaxation time, as measured by quasi-elastic neutron scattering, shows a well defined decoupling of transport coefficients, i.e. the breakdown of the Stokes-Einstein relation, on approaching the crossover temperature TL.

  16. Dynamical properties of confined supercooled water: an NMR study

    Energy Technology Data Exchange (ETDEWEB)

    Mallamace, Francesco [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Broccio, Matteo [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Corsaro, Carmelo [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Faraone, Antonio [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Liu Li [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Mou, C-Y [Department of Chemistry, National Taiwan University, Taipei, Taiwan (China); Chen, S-H [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2006-09-13

    We report a set of dynamical data of confined water measured in a very deeply supercooled regime (290-190 K). Water is contained in silica matrices (MCM-41-S) which consist of 1D cylindrical pores with diameters d = 14,18 and 24 A. When confined in these tubular pores, water does not crystallize, and can be supercooled well below 200 K. We use the NMR technique to obtain the characteristic proton relaxation time-constants (the spin-lattice relaxation time-constant T1 and the spin-spin relaxation time-constant T2) and a direct measurement of the self-diffusion coefficient in the whole temperature range. We give evidence of the existence of a fragile-to-strong dynamic crossover (FSC) at T{sub L} = 225 K from the temperature dependence of the self-diffusion coefficient. A combination of the NMR self-diffusion coefficient with the average translational relaxation time, as measured by quasi-elastic neutron scattering, shows a well defined decoupling of transport coefficients, i.e. the breakdown of the Stokes-Einstein relation, on approaching the crossover temperature T{sub L}.

  17. Electrostatic levitation studies of supercooled liquids and metastable solid phases

    Science.gov (United States)

    Rustan, Gustav Errol

    A new laboratory has been developed at Iowa State University (ISU) to be used for the study of high temperature liquids and solids, with particular focus on the supercooling of liquids and their metastable solidification products. This new laboratory employs the electrostatic levitation (ESL) technique, in which a charged sample is suspended between a set of electrodes to achieve non-contact handling. Owing to the elimination of a crucible, high temperature processing of samples can be achieved with reduced levels of contamination and heterogeneous nucleation. Because of the reduction in heterogeneous nucleation, samples can be supercooled well below their equilibrium melting temperature, opening the door to a wide range of measurements on supercooled liquids. Measurements methods have been implemented for the characterization of thermophysical properties such as: volume/density, ratio of specific heat to total hemispherical emissivity, surface tension, viscosity, electrical resistivity, and magnetic susceptibility. For measurements of electrical resistivity and magnetic susceptibility, a new method has been developed at ISU based on the tunnel diode oscillator (TDO) technique. The TDO technique uses the negative differential resistance of a tunnel diode to drive an LC tank circuit into self-sustained oscillation at the resonant LC frequency. The LC tank is inductively coupled to the samples under study, and changes in the electrical resistivity or magnetic susceptibility of the sample are manifested as changes in the resonant frequency. By measuring the frequency shifts of the TDO, insights can be made into changes in the material's electrical and magnetic properties. This method has been validated by performing resistivity measurements on a sample of high purity Zr, and by performing measurements on the ferromagnetic transition in a low-carbon steel ball bearing. In addition to the development of the laboratory and its supporting instrumentation, an effort has

  18. Factors contributing to deep supercooling capability and cold survival in dwarf bamboo (Sasa senanensis leaf blades.

    Directory of Open Access Journals (Sweden)

    Masaya eIshikawa

    2015-01-01

    Full Text Available Wintering Sasa senanensis, dwarf bamboo, has been known to employ deep supercooling as the mechanism of cold hardiness in its most of the tissues from leaves to rhizomes. The unique cold hardiness mechanism of this plant was further characterized using current year leaf blades. Cold hardiness levels increased from August (LT20: –11 °C to December (LT20: –20 °C, which coincided with the initiation temperature of low temperature exotherms (LTE detected in differential thermal analyses. When leaf blades were stored at –5 °C for 1-14 days, there was no nucleation of the supercooled tissue units compartmentalized by the longitudinal and transverse veins either in summer or winter. However, only summer leaves suffered significant injury after prolonged supercooling of the tissue units. This may be a novel type of low temperature-induced injury in supercooled state at subfreezing temperatures. When winter leaf blades were maintained at the threshold temperature (-20 °C, a longer storage period (1-7 days increased lethal freezing of the supercooled tissue units. Within a wintering shoot, the second or third leaf blade from the top was most cold hardy and leaf blades at lower positions tended to suffer more injury due to lethal freezing of the supercooled units, which was not correlated with the leaf water content. LTE were shifted to higher temperatures (2-5 °C after a lethal freeze-thaw cycle. The results demonstrate that the tissue unit compartmentalized with longitudinal and transverse veins serves as the unit of supercooling and temperature- and time-dependent freezing of the units is lethal both in laboratory freeze tests and in the field. To establish such supercooling in the unit, structural ice barriers such as development of sclerenchyma and biochemical mechanisms to increase the stability of supercooling are considered important. We discussed these mechanisms in regard to ecological and physiological significance in winter survival.

  19. Laboratory test of a prototype heat storage module based on stable supercooling of sodium acetate trihydrate

    DEFF Research Database (Denmark)

    Dannemand, Mark; Kong, Weiqiang; Fan, Jianhua;

    2015-01-01

    Laboratory test of a long term heat storage module utilizing the principle of stable supercooling of 199.5 kg of sodium acetate water mixture has been carried out. Avoiding phase separation of the incongruently melting salt hydrate by using the extra water principle increased the heat storage...... the supercooled sodium acetate water mixture was 194 kJ/kg of sodium acetate water mixture in the first test cycles dropping to 179 kJ/kg in the later test cycles. Instability of the supercooling occurred when the charging periods were short and in the last test cycles where the tube connecting the module...

  20. Effects of Artificial Supercooling Followed by Slow Freezing on the Microstructure and Qualities of Pork Loin

    OpenAIRE

    Kim, Yiseul; Hong, Geun-Pyo

    2016-01-01

    This study investigated the effects of artificial supercooling followed by still air freezing (SSF) on the qualities of pork loin. The qualities of pork frozen by SSF were compared with the fresh control (CT, stored at 4℃ for 24 h), slow freezing (SAF, still air freezing) and rapid freezing (EIF, ethanol immersion freezing) treatments. Compared with no supercooling phenomena of SAF and EIF, the extent of supercooling obtained by SSF treatment was 1.4℃. Despite that SSF was conducted with the ...

  1. 2H NMR studies of supercooled and glassy aspirin

    Science.gov (United States)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  2. Mechanism of supercooling in flower bud of Camellia oleifea

    Institute of Scientific and Technical Information of China (English)

    苏维埃; 潘良文

    1995-01-01

    It is the first time for MRI to be used in the research of flower buds supercooling. Directobservation on freezing course of living flower buds of Camellia yuhsienensis by MRI and tissue browning test showed that freezing order of the flower organs is bud axis, scale, petal, pistil and stamen. It is coincident with the direction of ice development from bud axes to flower organs upwards. The corresponding results from MRI and freezing-fixation showed that the water translocation from flower organs to axes and scales is carried on in the course of bud freezing. ’H spectral measurement of NMR was used to follow the decrease of unfrozen water in the buds during the cooling.

  3. A molecular dynamics study on surface properties of supercooled water

    Institute of Scientific and Technical Information of China (English)

    L(U) Yongjun; WEI Bingbo

    2006-01-01

    Molecular dynamics simulations were performed to study the surface properties of water in a temperature range from 228 to 293 K by using the extended simple point charge (SPC/E) and four-site TIP4P potentials. The calculated surface tension increases with the decrease of temperature, and moreover the slopes of the surface tension-temperature curves show a weak rise below 273 K, whereas no obvious anomalies appear near 228 K, which accords with the previous experiments. Compared with the measured values, the SPC/E potential shows a good agreement, and the TIP4P potential scription of the surface structure of supercooled water for the SPC/E. When simulating the orientational distributions of water molecules near the surface, the SPC/E potential produces higher ordering and larger surface potentials than the TIP4P potential.

  4. Dynamical Instability Causes the Demise of a Supercooled Tetrahedral Liquid

    Science.gov (United States)

    Gautam, Arvind Kumar; Pingua, Nandlal; Goyal, Aashish; Apte, Pankaj A.

    2017-09-01

    We investigate the relaxation mechanism of a supercooled tetrahedral liquid at its limit of stability using isothermal isobaric ( NPT) Monte Carlo simulations. In similarity with systems which are far from equilibrium but near the onset of jamming (O'Hern et al. in Phys Rev Lett 93:165702, 2004), we find that the relaxation is characterized by two time-scales: the decay of long-wavelength (slow) fluctuations of potential energy is controlled by the slope [partial (G/N)/partial φ ] of the Gibbs free energy ( G) at a unique value of per particle potential energy φ = φ _{{\\tiny mid}}. The short-wavelength (fast) fluctuations are controlled by the bath temperature T. The relaxation of the supercooled liquid is initiated with a dynamical crossover after which the potential energy fluctuations are biased towards values progressively lesser than φ _{{\\tiny mid}}. The dynamical crossover leads to the change of time-scale, i.e., the decay of long-wavelength potential energy fluctuations (intermediate stage of relaxation). Because of the condition [partial ^2 (G/N)/partial φ ^2 = 0] at φ = φ _{{\\tiny mid}}, the slope [partial (G/N)/partial φ ] has a unique value and governs the intermediate stage of relaxation, which ends just after the crossover. In the subsequent stage, there is a relatively rapid crystallization due to lack of long-wavelength fluctuations and the instability at φ _{{\\tiny mid}}, i.e., the condition that G decreases as configurations with potential energies lower than φ _{{\\tiny mid}} are accessed. The dynamical crossover point and the associated change in the time-scale of fluctuations is found to be consistent with the previous studies.

  5. Variability of Marine Aerosol Fine-Mode Fraction and Estimates of Anthropogenic Aerosol Component Over Cloud-Free Oceans from the Moderate Resolution Imaging Spectroradiometer (MODIS)

    Science.gov (United States)

    Yu, Hongbin; Chin, Mian; Remer, Lorraine A.; Kleidman, Richard G.; Bellouin, Nicolas; Bian, Huisheng; Diehl, Thomas

    2009-01-01

    In this study, we examine seasonal and geographical variability of marine aerosol fine-mode fraction (f(sub m)) and its impacts on deriving the anthropogenic component of aerosol optical depth (tau(sub a)) and direct radiative forcing from multispectral satellite measurements. A proxy of f(sub m), empirically derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 data, shows large seasonal and geographical variations that are consistent with the Goddard Chemistry Aerosol Radiation Transport (GOCART) and Global Modeling Initiative (GMI) model simulations. The so-derived seasonally and spatially varying f(sub m) is then implemented into a method of estimating tau(sub a) and direct radiative forcing from the MODIS measurements. It is found that the use of a constant value for fm as in previous studies would have overestimated Ta by about 20% over global ocean, with the overestimation up to 45% in some regions and seasons. The 7-year (2001-2007) global ocean average tau(sub a) is 0.035, with yearly average ranging from 0.031 to 0.039. Future improvement in measurements is needed to better separate anthropogenic aerosol from natural ones and to narrow down the wide range of aerosol direct radiative forcing.

  6. Temperature measurement of supercooled droplet in icing phenomenon by means of dual-luminescent imaging

    Science.gov (United States)

    Tanaka, M.; Morita, K.; Mamori, H.; Fukushima, N.; Yamamoto, M.

    2017-08-01

    The collision of a supercooled water droplet with a surface result an object creates ice accretion on the surface. The icing problem in any cold environments leads to severe damages on aircrafts, and a lot of studies on prevention and prediction techniques for icing have been conducted so far. Therefore, it is very important to know the detail of freezing mechanism of supercooled water droplets to improve the anti-and de-icing devices and icing simulation codes. The icing mechanism of a single supercooled water droplet impacting on an object surface would give us great insights for the purpose. In the present study, we develop a dual-luminescent imaging technique to measure the time-resolved temperature of a supercooled water droplet impacting on the surface under different temperature conditions. We apply this technique to measure the exact temperature of a water droplet, and to discuss the detail of the freezing process.

  7. A phase space approach to supercooled liquids and a universal collapse of their viscosity

    CERN Document Server

    Weingartner, Nicholas B; Nogueira, Flavio S; Kelton, K F; Nussinov, Zohar

    2016-01-01

    A broad fundamental understanding of the mechanisms underlying the phenomenology of supercooled liquids has remained elusive, despite decades of intense exploration. When supercooled beneath its characteristic melting temperature, a liquid sees a sharp rise in its viscosity over a narrow temperature range, eventually becoming frozen on laboratory timescales. Explaining this immense increase in viscosity is one of the principle goals of condensed matter physicists. To that end, numerous theoretical frameworks have been proposed which explain and reproduce the temperature dependence of the viscosity of supercooled liquids. Each of these frameworks appears only applicable to specific classes of glassformers and each possess a number of variable parameters. Here we describe a classical framework for explaining the dynamical behavior of supercooled liquids based on statistical mechanical considerations, and possessing only a single variable parameter. This parameter varies weakly from liquid to liquid. Furthermore...

  8. Horizontal distribution of mixed cloud type scene

    Science.gov (United States)

    Guillaume, A.; Kahn, B. H.; Yue, Q.; Wong, S.; Manipon, G.; Hua, H.; Wilson, B. D.; Wang, T.; Fetzer, E. J.

    2016-12-01

    We describe a novel method to uniquely characterize and quantify the scale dependence of mixed cloud scene geometry using cloud type classification reported with the 94GHz CloudSat radar. Only a fraction of all possible combinations of cloud types are observed at any along-track length scale considered. Cloud scenes most frequently contain only one or two cloud types. We show how cloud occurrence depends on the grid cell spatial resolution used to define cloud scenes. A maximum number of observed cloud scenes occur near 100 km with fewer cloud type combinations at smaller and larger scales. We then quantify the cloud lengths along the CloudSat track using both the cloud top classification and the vertical structure of cloud classification separately for each of the nine cloud types defined by CloudSat and for all clouds considered independent of cloud type. While the individual cloud types do not follow a clear power law behavior as a function of horizontal or vertical scale, a robust power law scaling of cloud geometry is observed when cloud type is not considered. The power law scaling exponent of horizontal length is approximated by β ≈ -5/3 over two to three orders of magnitude. The power law scaling exponent of vertical length is approximated by β ≈ -7/3 over two orders of magnitude. These exponents are in agreement with previous studies using numerical models, satellite, and in situ aircraft observations. In particular, the anisotropy in the horizontal and vertical scaling are nearly identical to recent aircraft observations of wind kinetic energy spectra, suggesting the underlying three-dimensional cloud geometry is strongly related to kinetic energy spectra.

  9. A multi-wavelength classification method for polar stratospheric cloud types using infrared limb spectra

    Science.gov (United States)

    Spang, Reinhold; Hoffmann, Lars; Höpfner, Michael; Griessbach, Sabine; Müller, Rolf; Pitts, Michael C.; Orr, Andrew M. W.; Riese, Martin

    2016-08-01

    The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument on board the ESA Envisat satellite operated from July 2002 until April 2012. The infrared limb emission measurements represent a unique dataset of daytime and night-time observations of polar stratospheric clouds (PSCs) up to both poles. Cloud detection sensitivity is comparable to space-borne lidars, and it is possible to classify different cloud types from the spectral measurements in different atmospheric windows regions. Here we present a new infrared PSC classification scheme based on the combination of a well-established two-colour ratio method and multiple 2-D brightness temperature difference probability density functions. The method is a simple probabilistic classifier based on Bayes' theorem with a strong independence assumption. The method has been tested in conjunction with a database of radiative transfer model calculations of realistic PSC particle size distributions, geometries, and composition. The Bayesian classifier distinguishes between solid particles of ice and nitric acid trihydrate (NAT), as well as liquid droplets of super-cooled ternary solution (STS). The classification results are compared to coincident measurements from the space-borne lidar Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument over the temporal overlap of both satellite missions (June 2006-March 2012). Both datasets show a good agreement for the specific PSC classes, although the viewing geometries and the vertical and horizontal resolution are quite different. Discrepancies are observed between the CALIOP and the MIPAS ice class. The Bayesian classifier for MIPAS identifies substantially more ice clouds in the Southern Hemisphere polar vortex than CALIOP. This disagreement is attributed in part to the difference in the sensitivity on mixed-type clouds. Ice seems to dominate the spectral behaviour in the limb infrared spectra and may cause an overestimation in ice occurrence

  10. Correlations among the Optical Properties of Cirrus-Cloud Particles: Microphysical Interpretation

    Science.gov (United States)

    Reichardt, J.; Reichardt, S.; Hess, M.; McGee, T. J.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Cirrus measurements obtained with a ground-based polarization Raman lidar at 67.9 deg N in January 1997 reveal a strong positive correlation between the particle optical properties, specifically depolarization ratio delta(sub par) and extinction- to-backscatter (lidar) ratio S, for delta(sub par) less than approximately 40%, and an anti-correlation for delta(sub par) greater than approximately 40%. Over the length of the measurements the particle properties vary systematically. Initially, delta (sub par) approximately equals 60% and S approximately equals 10sr are observed. Then, with decreasing delta(sub par), S first increases to approximately 27sr (delta(sub par) approximately equals 40%) before decreasing to values around 10sr again (delta(sub par) approximately equals 20%). The analysis of lidar humidity and radiosonde temperature data shows that the measured optical properties stem from scattering by dry solid ice particles, while scattering by supercooled droplets, or by wetted or subliming ice particles can be excluded. For the microphysical interpretation of the lidar measurements, ray-tracing computations of particle scattering properties have been used. The comparison with the theoretical data suggests that the observed cirrus data can be interpreted in terms of size, shape, and, under the assumption that the lidar measurements of consecutive cloud segments can be mapped on the temporal development of a single cloud parcel moving along its trajectory, growth of the cirrus particles: Near the cloud top in the early stage of cirrus development, light scattering by nearly isometric particles that have the optical characteristics of hexagonal columns (short, column-like particles) is dominant. Over time the ice particles grow, and as the cloud base height extends to lower altitudes characterized by warmer temperatures they become morphologically diverse. For large S and depolarization values of approximately 40%, the scattering contributions of column- and

  11. NASA Glenn Icing Research Tunnel: 2014 Cloud Calibration

    Science.gov (United States)

    VanZante, Judith Foss; Ide, Robert F.; Steen, Laura; Acosta, Waldo J.

    2014-01-01

    The results of the December 2013 to February 2014 Icing Research Tunnel full icing cloud calibration are being presented to the SAE AC-9C committee, as represented in the 2014 cloud calibration report. The calibration steps included establishing a uniform cloud and conducting drop size and liquid water content calibrations. The goal of the calibration was to develop a uniform cloud, and to generate a transfer function from the inputs of air speed, spray bar atomizing air pressure and water pressure to the outputs of median volumetric drop diameter and liquid water content. This was done for both 14 CFR Parts 25 and 29, Appendix C (typical icing) and soon-to-be released Appendix O (supercooled large drop) conditions.

  12. Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, P. [Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy and INFN, Sezione di Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy); Corradini, D.; Rovere, M., E-mail: rovere@fis.uniroma3.it [Dipartimento di Matematica e Fisica, Università Roma Tre, Via della Vasca Navale 84, I-00146 Rome (Italy)

    2013-11-28

    We study by molecular dynamics simulations the dynamical properties of an aqueous solution of NaCl at a concentration of 0.67 mol/kg upon supercooling. In a previous study of the same ionic solution, we have located the liquid-liquid critical point (LLCP) and determined the Widom line connected to the liquid-liquid transition. We present here the results obtained from the study of the self-intermediate scattering function in a large range of temperatures and densities approaching the LLCP. The structural relaxation is in agreement with the mode coupling theory (MCT) in the region of mild supercooling. In the deeper supercooled region the α-relaxation time as function of temperature deviates from the MCT power law prediction showing a crossover from a fragile to a strong behavior. This crossover is found upon crossing the Widom line. The same trend was found in bulk water upon supercooling and it appears almost unchanged by the interaction with ions apart from a shift in the thermodynamic plane toward lower pressures and higher temperatures. These results show that the phenomenology of supercooled water transfers from bulk to solution where the study of the supercooled region is experimentally less difficult.

  13. Fragile to strong crossover at the Widom line in supercooled aqueous solutions of NaCl.

    Science.gov (United States)

    Gallo, P; Corradini, D; Rovere, M

    2013-11-28

    We study by molecular dynamics simulations the dynamical properties of an aqueous solution of NaCl at a concentration of 0.67 mol/kg upon supercooling. In a previous study of the same ionic solution, we have located the liquid-liquid critical point (LLCP) and determined the Widom line connected to the liquid-liquid transition. We present here the results obtained from the study of the self-intermediate scattering function in a large range of temperatures and densities approaching the LLCP. The structural relaxation is in agreement with the mode coupling theory (MCT) in the region of mild supercooling. In the deeper supercooled region the α-relaxation time as function of temperature deviates from the MCT power law prediction showing a crossover from a fragile to a strong behavior. This crossover is found upon crossing the Widom line. The same trend was found in bulk water upon supercooling and it appears almost unchanged by the interaction with ions apart from a shift in the thermodynamic plane toward lower pressures and higher temperatures. These results show that the phenomenology of supercooled water transfers from bulk to solution where the study of the supercooled region is experimentally less difficult.

  14. Contrasting cloud composition between coupled and decoupled marine boundary layer clouds

    Science.gov (United States)

    Wang, Zhen; Mora Ramirez, Marco; Dadashazar, Hossein; MacDonald, Alex B.; Crosbie, Ewan; Bates, Kelvin H.; Coggon, Matthew M.; Craven, Jill S.; Lynch, Peng; Campbell, James R.; Azadi Aghdam, Mojtaba; Woods, Roy K.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin

    2016-10-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds for dissolved nonwater substances. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (Eastern Pacific Emitted Aerosol Cloud Experiment 2011, Nucleation in California Experiment 2013, and Biological and Oceanic Atmospheric Study 2015). Decoupled clouds exhibited significantly lower air-equivalent mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and subcloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Nonrefractory submicrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Sodium and chloride dominated in terms of air-equivalent concentration in cloud water for coupled clouds, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea-salt constituents (e.g., Cl, Na, Mg, and K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. Satellite and Navy Aerosol Analysis and Prediction System-based reanalysis data are compared with each other, and the airborne data to conclude that limitations in resolving boundary layer processes in a global model prevent it from accurately quantifying observed differences between coupled and decoupled cloud composition.

  15. Warming effect of dust aerosols modulated by overlapping clouds below

    Science.gov (United States)

    Xu, Hui; Guo, Jianping; Wang, Yuan; Zhao, Chuanfeng; Zhang, Zhibo; Min, Min; Miao, Yucong; Liu, Huan; He, Jing; Zhou, Shunwu; Zhai, Panmao

    2017-10-01

    Due to the substantial warming effect of dust aerosols overlying clouds and its poor representation in climate models, it is imperative to accurately quantify the direct radiative forcing (DRF) of above-cloud dust aerosols. When absorbing aerosol layers are located above clouds, the warming effect of aerosols strongly depends on the cloud macro- and micro-physical properties underneath, such as cloud optical depth and cloud fraction at visible wavelength. A larger aerosol-cloud overlap is believed to cause a larger warming effect of absorbing aerosols, but the influence of overlapping cloud fraction and cloud optical depth remains to be explored. In this study, the impact of overlapping cloud properties on the shortwave all-sky DRF due to springtime above-cloud dust aerosols is quantified over northern Pacific Ocean based on 10-year satellite measurements. On average, the DRF is roughly 0.62 Wm-2. Furthermore, the warming effect of dust aerosols linearly increases with both overlapping cloud fraction and cloud optical depth. An increase of 1% in overlapping cloud fraction will amplify this warming effect by 1.11 Wm-2τ-1. For the springtime northern Pacific Ocean, top-of-atmosphere cooling by dust aerosols turns into warming when overlapping cloud fraction is beyond 0.20. The variation of critical cloud optical depth beyond which dust aerosols switch from exerting a net cooling to a net warming effect depends on the concurrent overlapping cloud fraction. When the overlapping cloud coverage range increases from 0.2 to -0.4 to 0.6-0.8, the corresponding critical cloud optical depth reduces from 6.92 to 1.16. Our results demonstrate the importance of overlapping cloud properties for determining the springtime warming effect of dust aerosols.

  16. NASA Glenn Icing Research Tunnel: 2014 Cloud Calibration Procedure and Results

    Science.gov (United States)

    Van Zante, Judith F.; Ide, Robert F.; Steen, Laura E.; Acosta, Waldo J.

    2014-01-01

    The results of the December 2013 to February 2014 Icing Research Tunnel full icing cloud calibration are presented. The calibration steps included establishing a uniform cloud and conducting drop size and liquid water content calibrations. The goal of the calibration was to develop a uniform cloud, and to generate a transfer function from the inputs of air speed, spray bar atomizing air pressure and water pressure to the outputs of median volumetric drop diameter and liquid water content. This was done for both 14 CFR Parts 25 and 29, Appendix C ('typical' icing) and soon-to-be released Appendix O (supercooled large drop) conditions.

  17. Cloud Governance

    DEFF Research Database (Denmark)

    Berthing, Hans Henrik

    Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing.......Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing....

  18. Raman Spectra and Nucleation Rates of Sulfuric Acid and Ammonium Sulfate Aerosols Supercooled with Respect to Ice

    Science.gov (United States)

    Knopf, D. A.; Koop, T.; Weers, U. G.; Krieger, U. K.; Peter, T.

    2001-12-01

    Sulfuric acid and ammonium sulfate aerosol particles can serve as ice condensation nuclei for the formation of upper tropospheric cirrus clouds. These clouds influence the global radiation budget by scattering of short wavelength (solar) radiation as well as by absorbing long wavelength (terrestrial) radiation. Knowledge of the thermodynamics and the nucleation rates of aerosols is fundamental for the understanding of formation processes of cirrus clouds. Here, we present a new investigation tool to observe phase transitions of aerosols supercooled with respect to ice. Confocal Raman microscopy is used to determine the phase changes and the morphology of the particles. Raman spectroscopy is employed to distinguish and to characterize the different phases inside the frozen particles. Single droplets with a diameter of typically 20-120 μ m are deposited on a hydrophobically coated Herasil-plate that is covered by a spacer and another plate. Since the gas phase volume of the cell is small compared to the liquid droplet volume the composition of the droplets remains fixed during temperature changes. The temperature of the droplets can be varied between 150-350~K. We present the first Raman spectra of aqueous H2SO4/H2O and (NH4)2SO4/H2O droplets for several concentrations and temperatures to the homogeneous ice nucleation limits. The analysis of the speciation of the components inside the droplets (e.g. sulfate vs. bisulfate ions) is compared to results from thermodynamic models. Evaluation of the freezing data gives upper limits for ice nucleation rates of droplets as a function of sulfuric acid or ammonium sulfate concentration.

  19. Experimental evidence for supercooled brines, viscous liquids, and low temperature perchlorate glasses on Mars

    Science.gov (United States)

    Toner, J.; Catling, D. C.; Light, B.

    2013-12-01

    The presence of liquid water on the cold and dry surface of Mars is possible where concentrated salt solutions lower the freezing point of water. The eutectic temperature is the maximum equilibrium freezing point depression possible for a given salt solution, which ranges from near 0°C for carbonates and sulfates, to as low as -75°C for perchlorates. Although eutectic temperatures suggest a lower temperature limit for liquid water on Mars, salt solutions will typically supercool below their eutectic before crystallization occurs. We report on results investigating the magnitude of supercooling and its variation with salt composition and concentration for pure salt solutions and saturated soil solutions of MgSO4, MgCl2, NaCl, NaClO4, Mg(ClO4)2, and Ca(ClO4)2. We measured supercooling by monitoring solution temperatures during slow cooling and warming experiments. Our results indicate that supercooling is pervasive. Slowly cooled MgSO4, MgCl2, NaCl, and NaClO4 solutions typically supercool 5-15°C below their eutectic temperature before crystallizing. The addition of soil to these salt solutions has a variable effect on supercooling. Relative to the pure salt solutions, supercooling decreases in MgSO4 soil solutions, increases in MgCl2 soil solutions, and is similar in NaCl and NaClO4 soil solutions. Supercooling in MgSO4, MgCl2, NaCl, and NaClO4 solutions could marginally extend the duration of liquid water during relatively warm daytime temperatures in the Martian summer. Remarkably, we found that Mg(ClO4)2 and Ca(ClO4)2 solutions never crystallize during slow cooling, but remain in a supercooled, liquid state until forming an amorphous glass near -120°C. Even if soil is added to the solutions, which will induce crystallization in most salt solutions, a glass still forms during cooling. The large supercooling effect in Mg(ClO4)2 and Ca(ClO4)2 solutions has the potential to prevent water from freezing over diurnal and possibly annual cycles on Mars. Glasses are

  20. Fast Simulators for Satellite Cloud Optical Centroid Pressure Retrievals, 1. Evaluation of OMI Cloud Retrievals

    Science.gov (United States)

    Joiner, J.; Vasilkov, A.; Gupta, P.; Bhartia, P. K.; Veefkind, P.; Sneep, M.; de Haan, J.; Polonsky, I.; Spurr, R.

    2012-01-01

    The cloud Optical Centroid Pressure (OCP), also known as the effective cloud pressure, is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosol. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals from the Ozone Monitoring Instrument (OMI) with estimates based on collocated cloud extinction profiles from a combination of CloudS at radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, low altitude clouds missed by CloudSat, and the fact that CloudSat only observes a relatively small fraction of an OMI field-of-view.

  1. Cloud optics

    CERN Document Server

    Kokhanovsky, A

    2006-01-01

    Clouds affect the climate of the Earth, and they are an important factor in the weather. Therefore, their radiative properties must be understood in great detail. This book summarizes current knowledge on cloud optical properties, for example their ability to absorb, transmit, and reflect light, which depends on the clouds' geometrical and microphysical characteristics such as sizes of droplets and crystals, their shapes, and structures. In addition, problems related to the image transfer through clouds and cloud remote sensing are addressed in this book in great detail. This book can be an im

  2. Cloud liquid water path and radiative feedbacks over the Southern Ocean

    Science.gov (United States)

    Bodas-Salcedo, A.; Andrews, T.; Karmalkar, A. V.; Ringer, M. A.

    2016-10-01

    Climate models show a robust shortwave negative feedback in the midlatitude oceans in climate change simulations. This feedback is commonly attributed to an increase in cloud optical depth due to ice to liquid phase change as the climate warms. Here we use a cyclone compositing technique to show that the models' cloud liquid water path (LWP) response is strongly dependent on cloud regime. The radiative and LWP responses are not as tightly coupled as a zonal-mean analysis would suggest, implying that the physical mechanisms that control the overall LWP response are not necessarily responsible for the radiative response. The area of the cyclone dominated by low-level stratiform and shallow convective clouds plays a dominant role in the radiative response. Since these are mostly supercooled liquid clouds, the strength of a negative cloud phase feedback in the real world should be smaller than the one predicted by current models.

  3. Spatiotemporal heterogeneity of local free volumes in highly supercooled liquid

    Science.gov (United States)

    Shiba, Hayato; Kawasaki, Takeshi

    2013-11-01

    We discuss the spatiotemporal behavior of local density and its relation to dynamical heterogeneity in a highly supercooled liquid by using molecular dynamics simulations of a binary mixture with different particle sizes in two dimensions. To trace voids heterogeneously existing with lower local densities, which move along with the structural relaxation, we employ the minimum local density for each particle in a time window whose width is set along with the structural relaxation time. Particles subject to free volumes correspond well to the configuration rearranging region of dynamical heterogeneity. While the correlation length for dynamical heterogeneity grows with temperature decrease, no growth in the correlation length of heterogeneity in the minimum local density distribution takes place. A comparison of these results with those of normal mode analysis reveals that superpositions of lower-frequency soft modes extending over the free volumes exhibit spatial correlation with the broken bonds. This observation suggests a possibility that long-ranged vibration modes facilitate the interactions between fragile regions represented by free volumes, to induce dynamical correlations at a large scale.

  4. Simulation study of water and sugar dynamics in supercooled mixtures

    Science.gov (United States)

    Molinero, Valeria; Cagin, Tahir; Goddard, William A.

    2003-03-01

    Water dynamics in concentrated carbohydrate solutions is of utmost importance in food and pharmaceutical technology, where low water mobility is desirable to slow down chemical degradation and preserve biomolecules. We have studied the microscopic mechanism of water diffusion in binary and polydisperse malto-oligosaccharides and water mixtures by means of molecular dynamics simulations. The computations were performed with a coarse grain model (M3B), derived from atomistic simulations of water and malto-oligosaccharides. The use of the M3B model permits simulations of the order of 0.1 microsecond, thus allowing us to explore water dynamics from the liquid to the deep supercooled regime. The dynamics of water confined in the sugar matrix is slowed down with respect to bulk water. We found that at low moisture content and low temperature, ranslational diffusion of water and glucose rotation proceed through a hopping-diffusion mechanism. Moreover, we found water mobility to be heterogeneous: there is a broad distribution of time scales for different water molecules in the mixtures. We discuss whether there is a relationship between the heterogeneous structure of these mixtures in the sub-nanometer scale and the heterogeneous dynamics of water molecules.

  5. The Transient Supercooling Enhancement For A Pulsed Thermoelectric Cooler (TEC)

    OpenAIRE

    Mao, Jia-ni; Du, Jun-yan; Wang, Shi-fei; Zhou, Jing-wei; Wang, Yu-Gang

    2016-01-01

    Once TEC excitated by a high-voltage pulse, there exists a transient thermoelectric supercooling effect, which can be enhanced by keeping on increasing the Peltier cooling effect to compensate for the negative self-heating from the Joule heating effect and Fourier heat conduction effect. After superimposing an additional voltage pulse over a steady-state reference value in a short time scale, abrupt temperature drop will be produc...

  6. Thermodynamic scaling of molecular dynamics in supercooled ibuprofen.

    Science.gov (United States)

    Adrjanowicz, K; Wojnarowska, Z; Paluch, M; Pionteck, J

    2011-04-28

    It was shown recently that ibuprofen revealed a strong tendency to form hydrogen bonded aggregates such as dimers and trimers of either cyclic or linear geometry, which somehow seems to control molecular mobility of that drug [Brás et al. J. Phys. Chem. B2008, 112 (35), 11 087-11 099]. For such hydrogen-bonded liquids, superpositioning of dynamics under various temperature T, pressure P, and volume V conditions, when plotted versus the scaling function of T(-1)V(-γ) (where γ is a material constant), may not always be satisfying. In the present work, we have tested the validity of this scaling for supercooled ibuprofen. In order to do that, pressure-volume-temperature (PVT) measurements combined with isobaric and isothermal dielectric relaxation studies (pressure up to 310 MPa) were carried out. The scaling properties of the examined drug were derived from the fitting of the τ(α)(T,V) dependences to the modified Avramov equation and by analyzing in double logarithmic scale the T(g)(V(g)) dependences, where the glass transition temperature T(g) and volume V(g) were defined for various relaxation times. In view of the obtained results, we conjecture that for ibuprofen the thermodynamic scaling idea works but not perfectly. The slight departure from the scaling behavior is discussed in the context of the hydrogen bonding abilities of the examined system and compared with the results reported for other strongly associated liquids.

  7. The Transient Supercooling Enhancement For A Pulsed Thermoelectric Cooler (TEC)

    OpenAIRE

    Mao, Jia-ni; Du, Jun-yan; Wang, Shi-fei; Zhou, Jing-wei; Wang, Yu-Gang

    2016-01-01

    Once TEC excitated by a high-voltage pulse, there exists a transient thermoelectric supercooling effect, which can be enhanced by keeping on increasing the Peltier cooling effect to compensate for the negative self-heating from the Joule heating effect and Fourier heat conduction effect. After superimposing an additional voltage pulse over a steady-state reference value in a short time scale, abrupt temperature drop will be produc...

  8. Supercooling and cold energy storage characteristics of nano-media in ball-packed porous structures

    Directory of Open Access Journals (Sweden)

    Zhao Qunzhi

    2015-04-01

    Full Text Available The presented experiments aimed to study the supercooling and cold-energy storage characteristics of nanofluids and water-based nano-media in ball-packed porous structures (BPS. Titanium dioxide nanoparticles (TiO2 NPs measuring 20nm and 80nm were used as additives and sodium dodecyl benzene sulphonate (SDBS was used as anionic surfactant. The experiments used different concentrations of nanofluid, distilled with BPS of different spherical diameter and different concentrations of nano-media, and were conducted 20 times. Experimental results of supercooling were analysed by statistical methods. Results show that the average and peak supercooling degrees of nanofluids and nano-media in BPS are lower than those of distilled water. For the distilled water in BPS, the supercooling degree decreases on the whole with the decrease of the ball diameter. With the same spherical diameter (8mm of BPS, the supercooling degree of TiO2 NPs measuring 20nm is lower than the supercooling degree of distilled water in BPS. Step-cooling experiments of different concentrations of nanofluids and nano-media in BPS were also conducted. Results showed that phase transition time is reduced because of the presence of TiO2 NPs. The BPS substrate and the NPs enhance the heat transfer. Distilled water with a porous solid base and nanoparticles means the amount of cold-energy storage increases and the supercooling degree and the total time are greatly reduced. The phase transition time of distilled water is about 3.5 times that of nano-media in BPS.

  9. Fast simulators for satellite cloud optical centroid pressure retrievals; evaluation of OMI cloud retrievals

    Directory of Open Access Journals (Sweden)

    J. Joiner

    2012-03-01

    Full Text Available The cloud Optical Centroid Pressure (OCP is a satellite-derived parameter that is commonly used in trace-gas retrievals to account for the effects of clouds on near-infrared through ultraviolet radiance measurements. Fast simulators are desirable to further expand the use of cloud OCP retrievals into the operational and climate communities for applications such as data assimilation and evaluation of cloud vertical structure in general circulation models. In this paper, we develop and validate fast simulators that provide estimates of the cloud OCP given a vertical profile of optical extinction. We use a pressure-weighting scheme where the weights depend upon optical parameters of clouds and/or aerosols. A cloud weighting function is easily extracted using this formulation. We then use fast simulators to compare two different satellite cloud OCP retrievals, from the Ozone Monitoring Instrument (OMI, with estimates based on collocated cloud extinction profiles from a combination of CloudSat radar and MODIS visible radiance data. These comparisons are made over a wide range of conditions to provide a comprehensive validation of the OMI cloud OCP retrievals. We find generally good agreement between OMI cloud OCPs and those predicted by CloudSat. However, the OMI cloud OCPs from the two independent algorithms agree better with each other than either does with the estimates from CloudSat/MODIS. Differences between OMI cloud OCPs and those based on CloudSat/MODIS may result from undetected snow/ice at the surface, cloud 3-D effects, cases of low clouds obscurred by ground-clutter in CloudSat observations and by opaque high clouds in CALIPSO lidar observations, and the fact that CloudSat/CALIPSO only observes a relatively small fraction of an OMI field-of-view.

  10. Mechanism of Supercooled Water Droplet Breakup near the Leading Edge of an Airfoil

    Science.gov (United States)

    Veras-Alba, Belen; Palacios, Jose; Vargas, Mario; Ruggeri, Charles; Bartkus, Tadas P.

    2017-01-01

    This work presents the results of an experimental study on supercooled droplet deformation and breakup near the leading edge of an airfoil. The results are compared to prior room temperature droplet deformation results to explore the effects of droplet supercooling. The experiments were conducted in the Adverse Environment Rotor Test Stand (AERTS) at The Pennsylvania State University. An airfoil model placed at the end of the rotor blades mounted onto the hub in the AERTS chamber was moved at speeds ranging between 50 and 80 m/sec. The temperature of the chamber was set at -20°C. A monotonic droplet generator was used to produce droplets that fell from above, perpendicular to the path of the airfoil. The supercooled state of the droplets was determined by measurement of the temperature of the drops at various locations below the droplet generator exit. A temperature prediction code was also used to estimate the temperature of the droplets based on vertical velocity and the distance traveled by droplets from the droplet generator to the airfoil stagnation line. High speed imaging was employed to observe the interaction between the droplets and the airfoil. The high speed imaging provided droplet deformation information as the droplet approached the airfoil near the stagnation line. A tracking software program was used to measure the horizontal and vertical displacement of the droplet against time. It was demonstrated that to compare the effects of water supercooling on droplet deformation, the ratio of the slip velocity and the initial droplet velocity must be equal. A case with equal slip velocity to initial velocity ratios was selected for room temperature and supercooled droplet conditions. The airfoil velocity was 60 m/s and the slip velocity for both sets of data was 40 m/s. In these cases, the deformation of the weakly supercooled and warm droplets did not present different trends. The similar behavior for both environmental conditions indicates that water

  11. Comprehensive Radar Observations of Clouds and Precipitation over the Tibetan Plateau and Preliminary Analysis of Cloud Properties

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    ), and updrafts and downdrafts coexisted in the convective system. Supercooled water might exist in such kinds of deep convective system. The above measurements and preliminary analysis provide a basis for further study of cloud physics and precipitation process over the Tibetan Plateau. These observations are also valuable for modeling studies of cloud and precipitation physics as well as in the development of parameterization schemes in numerical prediction models.

  12. A phase space approach to supercooled liquids and a universal collapse of their viscosity

    Directory of Open Access Journals (Sweden)

    Nicholas Bryan Weingartner

    2016-11-01

    Full Text Available A broad fundamental understanding of the mechanisms underlying the phenomenology of supercooled liquids has remained elusive, despite decades of intense exploration. When supercooled beneath its characteristic melting temperature, a liquid sees a sharp rise in its viscosity over a narrow temperature range, eventually becoming frozen on laboratory timescales. Explaining this immense increase in viscosity is one of the principle goals of condensed matter physicists. To that end, numerous theoretical frameworks have been proposed which explain and reproduce the temperature dependence of the viscosity of supercooled liquids. Each of these frameworks appears only applicable to specific classes of glassformers and each possess a number of variable parameters. Here we describe a classical framework for explaining the dynamical behavior of supercooled liquids based on statistical mechanical considerations, and possessing only a single variable parameter. This parameter varies weakly from liquid to liquid. Furthermore, as predicted by this new classical theory and its earlier quantum counterpart, we find with the aid of a small dimensionless constant that varies in size from sim 0.05-0.12 , a universal (16 decade collapse of the viscosity data as a function of temperature. The collapse appears in all known types of glass forming supercooled liquids (silicates, metallic alloys, organic systems, chalcogenide, sugars, and water.

  13. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing

    Science.gov (United States)

    Zhang, Chen; Liu, Hong

    2016-06-01

    Supercooled large droplet (SLD), which can cause abnormal icing, is a well-known issue in aerospace engineering. Although efforts have been exerted to understand large droplet impact dynamics and the supercooled feature in the film/substrate interface, respectively, the thermodynamic effect during the SLD impact process has not received sufficient attention. This work conducts experimental studies to determine the effects of drop size on the thermodynamics for supercooled large droplet impingement. Through phenomenological reproduction, the rapid-freezing characteristics are observed in diameters of 400, 800, and 1300 μm. The experimental analysis provides information on the maximum spreading rate and the shrinkage rate of the drop, the supercooled diffusive rate, and the freezing time. A physical explanation of this unsteady heat transfer process is proposed theoretically, which indicates that the drop size is a critical factor influencing the supercooled heat exchange and effective heat transfer duration between the film/substrate interface. On the basis of the present experimental data and theoretical analysis, an impinging heating model is developed and applied to typical SLD cases. The model behaves as anticipated, which underlines the wide applicability to SLD icing problems in related fields.

  14. Liquid Supercoolability and Synthesis Kinetics of Quinary Refractory High-entropy Alloy

    Science.gov (United States)

    Wang, W. L.; Hu, L.; Yang, S. J.; Wang, A.; Wang, L.; Wei, B.

    2016-11-01

    The high-entropy configuration of equiatomic multicomponent alloys opens an effective access to the development of advanced materials. Here we report the synthesis of a new quinary refractory WMoTaNbZr high-entropy alloy under electrostatic levitation condition. It showed a high liquidus temperature of 2686 K and achieved a maximum supercooling of 640 K (0.24 TL) at molten state. The containerless measurements revealed a linear increasing tendency for both its liquid state density and the specific heat to emissivity ratio versus alloy supercooling. A high-entropy body-centered cubic (HEB) phase dominated its phase constitution despite the formation of a negligible amount of solid solution (Zr) phase. The dendritic growth of HEB phase always governed the crystallization process, attained a fastest growth velocity of 13.5 m/s and displayed a power function relation to alloy supercooling. The high speed videographic research of recalescence phenomenon indicated Johnson-Mehl-Avrami type transition kinetics for its rapid solidification process. As supercooling increases, the microstructures of primary HEB phase were refined conspicuously and exhibited an obvious solute trapping effect of the segregative Zr component. Meanwhile, the Vickers hardness of HEB phase displayed the rising tendency with supercooling.

  15. A phase space approach to supercooled liquids and a universal collapse of their viscosity

    Science.gov (United States)

    Weingartner, Nicholas; Nogueira, Flavio; Pueblo, Chris; Kelton, Kenneth; Nussinov, Zohar

    2016-11-01

    A broad fundamental understanding of the mechanisms underlying the phenomenology of supercooled liquids has remained elusive, despite decades of intense exploration. When supercooled beneath its characteristic melting temperature, a liquid sees a sharp rise in its viscosity over a narrow temperature range, eventually becoming frozen on laboratory timescales. Explaining this immense increase in viscosity is one of the principle goals of condensed matter physicists. To that end, numerous theoretical frameworks have been proposed which explain and reproduce the temperature dependence of the viscosity of supercooled liquids. Each of these frameworks appears only applicable to specific classes of glassformers and each possess a number of variable parameters. Here we describe a classical framework for explaining the dynamical behavior of supercooled liquids based on statistical mechanical considerations, and possessing only a single variable parameter. This parameter varies weakly from liquid to liquid. Furthermore, as predicted by this new classical theory and its earlier quantum counterpart, we find with the aid of a small dimensionless constant that varies in size from ˜ 0.05-0.12, a universal (16 decade) collapse of the viscosity data as a function of temperature. The collapse appears in all known types of glass forming supercooled liquids (silicates, metallic alloys, organic systems, chalcogenide, sugars, and water).

  16. Antarctic clouds

    OpenAIRE

    Lachlan-Cope, Tom

    2010-01-01

    Sensitivity studies with global climate models show that, by their influence on the radiation balance, Antarctic clouds play a major role in the climate system, both directly at high southern latitudes and indirectly globally, as the local circulation changes lead to global teleconnections. Unfortunately, observations of cloud distribution in the Antarctic are limited and often of low quality because of the practical difficulty in observing clouds in the harsh Antarctic environment. The best ...

  17. Potential New Lidar Observations for Cloud Studies

    Science.gov (United States)

    Winker, Dave; Hu, Yong; Narir, Amin; Cai, Xia

    2015-01-01

    The response of clouds to global warming represents a major uncertainty in estimating climate sensitivity. These uncertainties have been tracked to shallow marine clouds in the tropics and subtropics. CALIOP observations have already been used extensively to evaluate model predictions of shallow cloud fraction and top height (Leahy et al. 2013; Nam et al 2012). Tools are needed to probe the lowest levels of the troposphere. The large footprint of satellite lidars gives large multiple scattering from clouds which presents new possibilities for cloud retrievals to constrain model predictions.

  18. Cloud Computing

    CERN Document Server

    Antonopoulos, Nick

    2010-01-01

    Cloud computing has recently emerged as a subject of substantial industrial and academic interest, though its meaning and scope is hotly debated. For some researchers, clouds are a natural evolution towards the full commercialisation of grid systems, while others dismiss the term as a mere re-branding of existing pay-per-use technologies. From either perspective, 'cloud' is now the label of choice for accountable pay-per-use access to third party applications and computational resources on a massive scale. Clouds support patterns of less predictable resource use for applications and services a

  19. The Serpens Molecular Cloud

    CERN Document Server

    Eiroa, C; Casali, M M

    2008-01-01

    The Serpens cloud has received considerable attention in the last years, in particular the small region known as the Serpens cloud core where a plethora of star formation related phenomena are found. This review summarizes our current observational knowledge of the cloud, with emphasis on the core. Recent results are converging to a distance for the cloud of ~ 230 +- 20 pc, an issue which has been controversial over the years. We present the gas and dust properties of the cloud core and describe its structure and appearance at different wavelengths. The core contains a dense, very young, low mass stellar cluster with more than 300 objects in all evolutionary phases, from collapsing gaseous condensations to pre-main sequence stars. We describe the behaviour and spatial distribution of the different stellar populations (mm cores, Classes 0, I and II sources). The spatial concentration and the fraction number of Class 0/Class I/Class II sources is considerably larger in the Serpens core than in any other low mas...

  20. Horizontally oriented plates in clouds

    CERN Document Server

    Bréon, François-Marie

    2011-01-01

    Horizontally oriented plates in clouds generate a sharp specular reflectance signal in the glint direction, often referred to as "subsun". This signal (amplitude and width) may be used to analyze the relative area fraction of oriented plates in the cloud top layer and their characteristic tilt angle to the horizontal. We make use of spaceborne measurements from the POLDER instrument to provide a statistical analysis of these parameters. More than half of the clouds show a detectable maximum reflectance in the glint direction, although this maximum may be rather faint. The typical effective fraction (area weighted) of oriented plates in clouds lies between 10-3 and 10-2. For those oriented plates, the characteristic tilt angle is less than 1 degree in most cases. These low fractions imply that the impact of oriented plates on the cloud albedo is insignificant. The largest proportion of clouds with horizontally oriented plates is found in the range 500-700 hPa, in agreement with typical in situ observation of p...

  1. Global simulations of aerosol processing in clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2008-12-01

    Full Text Available An explicit and detailed representation of in-droplet and in-crystal aerosol particles in stratiform clouds has been introduced in the global aerosol-climate model ECHAM5-HAM. The new scheme allows an evaluation of the cloud cycling of aerosols and an estimation of the relative contributions of nucleation and collision scavenging, as opposed to evaporation of hydrometeors in the global aerosol processing by clouds. On average an aerosol particle is cycled through stratiform clouds 0.5 times. The new scheme leads to important changes in the simulated fraction of aerosol scavenged in clouds, and consequently in the aerosol wet deposition. In general, less aerosol is scavenged into clouds with the new prognostic treatment than what is prescribed in standard ECHAM5-HAM. Aerosol concentrations, size distributions, scavenged fractions and cloud droplet concentrations are evaluated and compared to different observations. While the scavenged fraction and the aerosol number concentrations in the marine boundary layer are well represented in the new model, aerosol optical thickness, cloud droplet number concentrations in the marine boundary layer and the aerosol volume in the accumulation and coarse modes over the oceans are overestimated. Sensitivity studies suggest that a better representation of below-cloud scavenging, higher in-cloud collision coefficients, or a reduced water uptake by seasalt aerosols could reduce these biases.

  2. Global simulations of aerosol processing in clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2008-07-01

    Full Text Available An explicit and detailed representation of in-droplet and in-crystal aerosol particles in stratiform clouds has been introduced in the global aerosol-climate model ECHAM5-HAM. The new scheme allows an evaluation of the cloud cycling of aerosols and an estimation of the relative contributions of nucleation and collision scavenging, as opposed to evaporation of hydrometeors in the global aerosol processing by clouds. On average an aerosol particle is cycled through stratiform clouds 0.5 times. The new scheme leads to important changes in the simulated fraction of aerosol scavenged in clouds, and consequently in the aerosol wet deposition. In general, less aerosol is scavenged into clouds with the new prognostic treatment than what is prescribed in standard ECHAM5-HAM. Aerosol concentrations, size distributions, scavenged fractions and cloud droplet concentrations are evaluated and compared to different observations. While the scavenged fraction and the aerosol number concentrations in the marine boundary layer are well represented in the new model, aerosol optical thickness, cloud droplet number concentrations in the marine boundary layer and the aerosol volume in the accumulation and coarse modes over the oceans are overestimated. Sensitivity studies suggest that a better representation of below-cloud scavenging, higher in-cloud collision coefficients, or a reduced water uptake by seasalt aerosols could reduce these biases.

  3. Thermal conductivity enhancement of sodium acetate trihydrate by adding graphite powder and the effect on stability of supercooling

    DEFF Research Database (Denmark)

    Johansen, Jakob Berg; Dannemand, Mark; Kong, Weiqiang

    2015-01-01

    Sodium acetate trihydrate and graphite powder mixtures have been evaluated to investigate the influence of the graphite powder on the stability of supercooling. A sodium acetate and water mixture mixed with graphite powder was successfully supercooled at ambient indoor temperatures for five month...

  4. An investigation on supercooling directional solidification process of Cu-Ni single phase alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Supercooling directional solidification (SDS) is put forward by combination of melt supercooling and conventional solidification by application of supercooling inheritance. On the self-designed SDS equipment, SDS of Cu-Ni alloy was achieved successfully. The results are as follows: (ⅰ) The primary arm spacing is about 30 m m, the growth of secondary arms are strongly suppressed. The primary arm spacing is nearly the same as LMC method (GL=25 K/mm, V=500 m m/s), the primary stems are straight, fine and completed, with an inclination angle of about 5.8o. (ⅱ) A semi-quantitative T-T model is brought forward to describe the dendrite growth rate V vs. undercooling D T. The prediction of T-T model agrees well with experimental results. The formation of fine equiaxed dendrites, transition region and dendrite region can be explained successfully by D T-V-x relation of T-T model.

  5. Development of seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Fan, Jianhua; Andersen, Elsa

    2012-01-01

    A number of heat storage modules for seasonal heat storages based on stable supercooling of a sodium acetate water mixture have been tested by means of experiments in a heat storage test facility. The modules had different volumes and designs. Further, different methods were used to transfer heat....... • The reliability of the supercooling was elucidated for the heat storage modules for different operation conditions. • The reliability of a cooling method used to start solidification of the supercooled sodium acetate water mixture was elucidated. The method is making use of boiling CO2 in a small tank in good...... to and from the sodium acetate water mixture in the modules. By means of the experiments: • The heat exchange capacity rates to and from the sodium acetate water mixture in the heat storage modules were determined for different volume flow rates. • The heat content of the heat storage modules were determined...

  6. Experimental investigations on cylindrical latent heat storage units with sodium acetate trihydrate composites utilizing supercooling

    DEFF Research Database (Denmark)

    Dannemand, Mark; Johansen, Jakob Berg; Kong, Weiqiang;

    2016-01-01

    unit was tested with 116.3 kg SAT with 0.5% Xanthan rubber as a thickening agent and 4.4% graphite powder. The heat exchange capacity rate during charge was significantly lower for the unit with SAT and Xanthan rubber compared to the unit with SAT and extra water. This was due to less convection......Latent heat storage units utilizing stable supercooling of sodium acetate trihydrate (SAT) composites were tested in a laboratory. The stainless steel units were 1.5 m high cylinders with internal heat exchangers of tubes with fins. One unit was tested with 116 kg SAT with 6% extra water. Another...... in the thickened phase change material after melting. The heat content in the fully charged state and the heat released after solidification of the supercooled SAT mixtures at ambient temperature was higher for the unit with the thickened SAT mixture. The heat discharged after solidification of the supercooled SAT...

  7. Experimental investigations on heat content of supercooled sodium acetate trihydrate by a simple heat loss method

    DEFF Research Database (Denmark)

    Kong, Weiqiang; Dannemand, Mark; Johansen, Jakob Berg

    2016-01-01

    Sodium acetate trihydrate is a phase change material that can be used for long term heat storage in solar heating systems because of its relatively high heat of fusion, a melting temperature of 58 °C and its ability to supercool stable. In practical applications sodium acetate trihydrate tend...... to suffer from phase separation which is the phenomenon where anhydrous salt settles to the bottom over time. This happens especially in supercooled state. The heat released from the crystallization of supercooled sodium acetate trihydrate with phase separation will be lower than the heat released from...... sodium acetate trihydrate without phase separation. Possible ways of avoiding or reducing the problem of phase separation were investigated. A wide variety of composites of sodium acetate trihydrate with additives including extra water, thickening agents, solid and liquid polymers have been...

  8. Managing Clouds in Cloud Platforms

    CERN Document Server

    Ahmat, Kamal A

    2010-01-01

    Managing cloud services is a fundamental challenge in todays virtualized environments. These challenges equally face both providers and consumers of cloud services. The issue becomes even more challenging in virtualized environments that support mobile clouds. Cloud computing platforms such as Amazon EC2 provide customers with flexible, on demand resources at low cost. However, they fail to provide seamless infrastructure management and monitoring capabilities that many customers may need. For instance, Amazon EC2 doesn't fully support cloud services automated discovery and it requires a private set of authentication credentials. Salesforce.com, on the other hand, do not provide monitoring access to their underlying systems. Moreover, these systems fail to provide infrastructure monitoring of heterogenous and legacy systems that don't support agents. In this work, we explore how to build a cloud management system that combines heterogeneous management of virtual resources with comprehensive management of phys...

  9. The frequency and nature of `cloud-cloud collisions' in galaxies

    Science.gov (United States)

    Dobbs, C. L.; Pringle, J. E.; Duarte-Cabral, A.

    2015-02-01

    We investigate cloud-cloud collisions and giant molecular cloud evolution in hydrodynamic simulations of isolated galaxies. The simulations include heating and cooling of the interstellar medium (ISM), self-gravity and stellar feedback. Over time-scales scales is more complex and involves a greater fraction of intercloud material. We find that mergers or collisions occur every 8-10 Myr (1/15th of an orbit) in a simulation with spiral arms, and once every 28 Myr (1/5th of an orbit) with no imposed spiral arms. Both figures are higher than expected from analytic estimates, as clouds are not uniformly distributed in the galaxy. Thus, clouds can be expected to undergo between zero and a few collisions over their lifetime. We present specific examples of cloud-cloud interactions in our results, including synthetic CO maps. We would expect cloud-cloud interactions to be observable, but find they appear to have little or no impact on the ISM. Due to a combination of the clouds' typical geometries, and moderate velocity dispersions, cloud-cloud interactions often better resemble a smaller cloud nudging a larger cloud. Our findings are consistent with the view that spiral arms make little difference to overall star formation rates in galaxies, and we see no evidence that collisions likely produce massive clusters. However, to confirm the outcome of such massive cloud collisions we ideally need higher resolution simulations.

  10. How small is a small cloud?

    Directory of Open Access Journals (Sweden)

    I. Koren

    2008-07-01

    Full Text Available The interplay between clouds and aerosols and their contribution to the radiation budget is one of the largest uncertainties of climate change. Most work to date has separated cloudy and cloud-free areas in order to evaluate the individual radiative forcing of aerosols, clouds, and aerosol effects on clouds.

    Here we examine the size distribution and the optical properties of small, sparse cumulus clouds and the associated optical properties of what is considered a cloud-free atmosphere within the cloud field. We show that any separation between clouds and cloud free atmosphere will incur errors in the calculated radiative forcing.

    The nature of small cumulus cloud size distributions suggests that at any resolution, a significant fraction of the clouds are missed, and their optical properties are relegated to the apparent cloud-free optical properties. At the same time, the cloudy portion incorporates significant contribution from non-cloudy pixels.

    We show that the largest contribution to the total cloud reflectance comes from the smallest clouds and that the spatial resolution changes the apparent energy flux of a broken cloudy scene. When changing the resolution from 30 m to 1 km (Landsat to MODIS the average "cloud-free" reflectance at 1.65 μm increases from 0.0095 to 0.0115 (>20%, the cloud reflectance decreases from 0.13 to 0.066 (~50%, and the cloud coverage doubles, resulting in an important impact on climate forcing estimations. The apparent aerosol forcing is on the order of 0.5 to 1 Wm−2 per cloud field.

  11. Cloud Control

    Science.gov (United States)

    Ramaswami, Rama; Raths, David; Schaffhauser, Dian; Skelly, Jennifer

    2011-01-01

    For many IT shops, the cloud offers an opportunity not only to improve operations but also to align themselves more closely with their schools' strategic goals. The cloud is not a plug-and-play proposition, however--it is a complex, evolving landscape that demands one's full attention. Security, privacy, contracts, and contingency planning are all…

  12. Cloud Cover

    Science.gov (United States)

    Schaffhauser, Dian

    2012-01-01

    This article features a major statewide initiative in North Carolina that is showing how a consortium model can minimize risks for districts and help them exploit the advantages of cloud computing. Edgecombe County Public Schools in Tarboro, North Carolina, intends to exploit a major cloud initiative being refined in the state and involving every…

  13. Cloud Computing

    CERN Document Server

    Mirashe, Shivaji P

    2010-01-01

    Computing as you know it is about to change, your applications and documents are going to move from the desktop into the cloud. I'm talking about cloud computing, where applications and files are hosted on a "cloud" consisting of thousands of computers and servers, all linked together and accessible via the Internet. With cloud computing, everything you do is now web based instead of being desktop based. You can access all your programs and documents from any computer that's connected to the Internet. How will cloud computing change the way you work? For one thing, you're no longer tied to a single computer. You can take your work anywhere because it's always accessible via the web. In addition, cloud computing facilitates group collaboration, as all group members can access the same programs and documents from wherever they happen to be located. Cloud computing might sound far-fetched, but chances are you're already using some cloud applications. If you're using a web-based email program, such as Gmail or Ho...

  14. Chemical composition of ambient aerosol, ice residues and cloud droplet residues in mixed-phase clouds: single particle analysis during the Cloud and Aerosol Characterization Experiment (CLACE 6

    Directory of Open Access Journals (Sweden)

    M. Kamphus

    2009-07-01

    Full Text Available Two different single particle mass spectrometers were operated in parallel at the Swiss High Alpine Research Station Jungfraujoch (JFJ, 3580 m a.s.l. during the Cloud and Aerosol Characterization Experiment (CLACE 6 in February and March 2007. During mixed phase cloud events ice crystals from 5 μm up to 20 μm were separated from large ice aggregates, non-activated, interstitial aerosol particles and supercooled droplets using an Ice-Counterflow Virtual Impactor (Ice-CVI. During one cloud period supercooled droplets were additionally sampled and analyzed by changing the Ice-CVI setup. The small ice particles and droplets were evaporated by injection into dry air inside the Ice-CVI. The resulting ice and droplet residues (IR and DR were analyzed for size and composition by two single particle mass spectrometers: a custom-built Single Particle Laser-Ablation Time-of-Flight Mass Spectrometer (SPLAT and a commercial Aerosol Time of Flight Mass Spectrometer (ATOFMS, TSI Model 3800. During CLACE 6 the SPLAT instrument characterized 355 individual ice residues that produced a mass spectrum for at least one polarity and the ATOFMS measured 152 particles. The mass spectra were binned in classes, based on the combination of dominating substances, such as mineral dust, sulfate, potassium and elemental carbon or organic material. The derived chemical information from the ice residues is compared to the JFJ ambient aerosol that was sampled while the measurement station was out of clouds (several thousand particles analyzed by SPLAT and ATOFMS and to the composition of the residues of supercooled cloud droplets (SPLAT: 162 cloud droplet residues analyzed, ATOFMS: 1094. The measurements showed that mineral dust particles were strongly enhanced in the ice particle residues. 57% of the SPLAT spectra from ice residues were dominated by signatures from mineral compounds, and 78% of the ATOFMS spectra. Sulfate and nitrate containing particles were strongly

  15. CSIR NLC mobile lidar observation of cirrus cloud

    CSIR Research Space (South Africa)

    Sivakumar, V

    2011-09-01

    Full Text Available and with less frequent content of super-cooled water. Apart from the cirrus cloud observations, the figure clearly illustrates the temporal evolution of the planetary boundary layer (PBL). At the beginning of the observation, the PBL is observed... at the height range just above 2 km and later it gradually decreased to 1.2 ? 1.5 km during the middle of the observation. Thereafter, a slow increase in the PBL is noted indicating the decrease in atmosphere stability. It is important to note here...

  16. NCEP全球预报系统在ARM SGP站点预报大气温度、湿度和云量的检验%Temperature, Relative Humidity, and Cloud Fraction Predicted by the NCEP Global Forecast System at the ARM SGP Site during 2001-2008:Comparison with ARM Observations

    Institute of Scientific and Technical Information of China (English)

    张寅; 罗亚丽; 管兆勇

    2012-01-01

    This study evaluates the performance of the Global Forecast System (GFS) of the U. S. National Centersfor Environmental Prediction (NCEP) against the Climate Modeling Best Estimate (CMBE) observational dataset made by the U. S. Department of Energy Atmospheric Radiation Measurement (ARM) Program at the southern Great Plains (SGP) site for the years of 2001 - 2008. The investigation focuses on the vertical distributions of air temperature (T) , relative humidity (RH), and cloud fraction. The major findings are as follows;(1) NCEP GFS was able to largely capture the seasonal variations of T and RH. However, on seasonal average, the model overestimated T at the heights of 1. 5 - 12 km, while underestimated T at 13 - 16 km in spring and winter and at 0 - 1. 5 km in autumn and winter, by less than l℃. Both the predicted and observed RH had double peaks located near the surface and around 12 km, respectively. However, the model overestimated RH in the upper and middle troposphere (4 - 12 km). Increase of model resolution from T170L42 to T254L64 significantly improved the prediction of RH at 14 - 18 km. (2) NCEP GFS generally underestimated cloud fraction at heights below 10 km and slightly overestimated cloud fraction at 11 - 13 km. Moreover, the prediction missed the daytime nonprecipitat-ing low-level clouds and underestimated precipitating cloud amounts below 8 km, indicating that activities of shallow convection and deep convection in the model were not active enough. (3) Using the observed RH and the predicted cloud water/ice mixing ratio (qe) to calculate cloud fraction with the diagnostic method in the NCEP GFS model, the result shows that cloud fraction from this calculation is more significantly underestimated compared to the NCEP GFS predicted cloud fraction, suggesting that the underestimation of cloud cover at heights below 11 km by the NCEP GFS is probably contributed by an underestimate of qe at these altitudes. (4) Improvements in the prediction of T, RH

  17. Screaming Clouds

    Science.gov (United States)

    Fikke, Svein; Egill Kristjánsson, Jón; Nordli, Øyvind

    2017-04-01

    "Mother-of-pearl clouds" appear irregularly in the winter stratosphere at high northern latitudes, about 20-30 km above the surface of the Earth. The size range of the cloud particles is near that of visible light, which explains their extraordinary beautiful colours. We argue that the Norwegian painter Edvard Munch could well have been terrified when the sky all of a sudden turned "bloodish red" after sunset, when darkness was expected. Hence, there is a high probability that it was an event of mother-of-pearl clouds which was the background for Munch's experience in nature, and for his iconic Scream. Currently, the leading hypothesis for explaining the dramatic colours of the sky in Munch's famous painting is that the artist was captivated by colourful sunsets following the enormous Krakatoa eruption in 1883. After carefully considering the historical accounts of some of Munch's contemporaries, especially the physicist Carl Störmer, we suggest an alternative hypothesis, namely that Munch was inspired by spectacular occurrences of mother-of-pearl clouds. Such clouds, which have a wave-like structure akin to that seen in the Scream were first observed and described only a few years before the first version of this motive was released in 1892. Unlike clouds related to conventional weather systems in the troposphere, mother-of-pearl clouds appear in the stratosphere, where significantly different physical conditions prevail. This result in droplet sizes within the range of visible light, creating the spectacular colour patterns these clouds are famous for. Carl Störmer observed such clouds, and described them in minute details at the age of 16, but already with a profound interest in science. He later noted that "..these mother-of-pearl clouds was a vision of indescribable beauty!" The authors find it logical that the same vision could appear scaring in the sensible mind of a young artist unknown to such phenomena.

  18. Kinetic chemistry of dense interstellar clouds

    Energy Technology Data Exchange (ETDEWEB)

    Graedel, T.E.; Langer, W.D.; Frerking, M.A.

    1982-03-01

    A detailed model of the time-dependent chemistry of dense interstellar clouds has been developed to study the dominant chemical processes in carbon and oxygen isotope fractionation, formation of nitrogen-containing molecules, evolution of product molecules as a function of cloud density and temperature, and other topics of interest. The full computation involves 328 individual reactions (expanded to 1067 to study carbon and oxygen isotope chemistry); photodegradation processes are unimportant in these dense clouds and are excluded.

  19. Towards improved understanding of cloud influence on polar surface energy budgets using CloudSat and CALIPSO observations

    Science.gov (United States)

    Kay, J. E.; L'Ecuyer, T. S.; McIlhattan, E.; Chepfer, H.; Morrison, A.

    2015-12-01

    The spaceborne radar CloudSat and the spaceborne lidar platform Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) have provided nearly a decade of groundbreaking observations of polar cloud and precipitation processes. Specifically relevant to this AGU session, the CloudSat 2B-FLXHR-LIDAR product (hereafter, 2BFLX) is an observationally constrained radiative flux and heating rate calculation that leverages constraints from A-train observations, including CloudSat+CALIPSO. The surface radiative fluxes calculated within 2BFLX represent an important advance because unlike top-of-atmosphere (TOA) fluxes, surface radiative fluxes cannot be directly measured by satellite, yet directly impact surface heating, sea ice melt, and ice sheet mass balance. In this presentation, we will highlight the influence of supercooled liquid on polar surface radiation budgets constrained within 2BFLX data. We will also use 2BFLX data in concert with the fully attenuated signal and cloud phase information from CALIPSO as an observational constraint on polar cloud-climate feedbacks in the Community Earth System Model (CESM).

  20. Fractional Echoes

    CERN Document Server

    Karras, G; Billard, F; Lavorel, B; Siour, G; Hartmann, J -M; Faucher, O; Gershnabel, Erez; Prior, Yehiam; Averbukh, Ilya Sh

    2016-01-01

    We report the observation of fractional echoes in a double-pulse excited nonlinear system. Unlike standard echoes which appear periodically at delays which are integer multiple of the delay between the two exciting pulses, the fractional echoes appear at rational fractions of this delay. We discuss the mechanism leading to this phenomenon, and provide the first experimental demonstration of fractional echoes by measuring third harmonic generation in a thermal gas of CO2 molecules excited by a pair of femtosecond laser pulses.

  1. Surface Crystallization of Cloud Droplets: Implications for Climate Change and Ozone Depletion

    Science.gov (United States)

    Tabazadeh, A.; Djikaev, Y. S.; Reiss, H.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    The process of supercooled liquid water crystallization into ice is still not well understood. Current experimental data on homogeneous freezing rates of ice nucleation in supercooled water droplets show considerable scatter. For example, at -33 C, the reported freezing nucleation rates vary by as much as 5 orders of magnitude, which is well outside the range of measurement uncertainties. Until now, experimental data on the freezing of supercooled water has been analyzed under the assumption that nucleation of ice took place in the interior volume of a water droplet. Here, the same data is reanalyzed assuming that the nucleation occurred "pseudoheterogeneously" at the air (or oil)-liquid water interface of the droplet. Our analysis suggest that the scatter in the nucleation data can be explained by two main factors. First, the current assumption that nucleation occurs solely inside the volume of a water droplet is incorrect. Second, because the nucleation process most likely occurs on the surface, the rates of nuclei formation could differ vastly when oil or air interfaces are involved. Our results suggest that ice freezing in clouds may initiate on droplet surfaces and such a process can allow for low amounts of liquid water (approx. 0.002 g per cubic meters) to remain supercooled down to -40 C as observed in the atmosphere.

  2. Securing Cloud from Cloud Drain

    Directory of Open Access Journals (Sweden)

    Niva Das

    2014-09-01

    Full Text Available Today, in the world of communication, connected systems is growing at a rapid pace. To accommodate this growth the need for computational power and storage is also increasing at a similar rate. Companies are investing a large amount of resources in buying, maintaining and ensuring availability of the system to their customers. To mitigate these issues, cloud computing is playing a major role [1]. The underlying concept of cloud computing dates back to the ‘50s but the term entering into widespread usage can be traced to 2006 when Amazon.com announced the Elastic Compute Cloud. In this paper, we will discuss about cloud security approaches. We have used the term “CloudDrain” to define data leakage in case of security compromise.

  3. FRACTIONAL BANKING

    OpenAIRE

    Maria Klimikova

    2010-01-01

    Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.

  4. FRACTIONAL BANKING

    OpenAIRE

    Maria Klimikova

    2010-01-01

    Understanding the reasons of the present financial problems lies In understanding the substance of fractional reserve banking. The substance of fractional banking is in lending more money than the bankers have. Banking of partial reserves is an alternative form which links deposit banking and credit banking. Fractional banking is causing many unfavorable economic impacts in the worldwide system, specifically an inflation.

  5. Fractional randomness

    Science.gov (United States)

    Tapiero, Charles S.; Vallois, Pierre

    2016-11-01

    The premise of this paper is that a fractional probability distribution is based on fractional operators and the fractional (Hurst) index used that alters the classical setting of random variables. For example, a random variable defined by its density function might not have a fractional density function defined in its conventional sense. Practically, it implies that a distribution's granularity defined by a fractional kernel may have properties that differ due to the fractional index used and the fractional calculus applied to define it. The purpose of this paper is to consider an application of fractional calculus to define the fractional density function of a random variable. In addition, we provide and prove a number of results, defining the functional forms of these distributions as well as their existence. In particular, we define fractional probability distributions for increasing and decreasing functions that are right continuous. Examples are used to motivate the usefulness of a statistical approach to fractional calculus and its application to economic and financial problems. In conclusion, this paper is a preliminary attempt to construct statistical fractional models. Due to the breadth and the extent of such problems, this paper may be considered as an initial attempt to do so.

  6. Cloud migration

    CERN Document Server

    Höllwarth, Tobias

    2012-01-01

    This book is designed for managers and entrepreneurs, who are considering improving the economics and flexibility of their IT solutions and infrastructures. The book is also for readers who wish to learn more about the Cloud, but do not want to become specialists.This book discusses the technical, legal, fiscal, economic, organisational and environmental aspects of Cloud services. If you are looking for practical advice on vendor selection and certification, as well as real world Cloud project case studies, this is the book to consult.It is the result of a highly cooper

  7. Cloud Computing

    CERN Document Server

    Baun, Christian; Nimis, Jens; Tai, Stefan

    2011-01-01

    Cloud computing is a buzz-word in today's information technology (IT) that nobody can escape. But what is really behind it? There are many interpretations of this term, but no standardized or even uniform definition. Instead, as a result of the multi-faceted viewpoints and the diverse interests expressed by the various stakeholders, cloud computing is perceived as a rather fuzzy concept. With this book, the authors deliver an overview of cloud computing architecture, services, and applications. Their aim is to bring readers up to date on this technology and thus to provide a common basis for d

  8. Dynamics of hydrogen bonds in water and consequences for the unusual behaviour of supercooled water

    Indian Academy of Sciences (India)

    José Teixeira

    2008-10-01

    The dynamics of liquid water is evaluated by the coherent quasi-elastic scattering at two different momentum transfers, in order to discriminate hydrogen bond life-time from molecular dynamics. The results indicate a possible issue for the puzzle of the behaviour of supercooled water.

  9. Crystallization in diblock copolymer thin films at different degrees of supercooling

    DEFF Research Database (Denmark)

    Darko, C.; Botiz, I.; Reiter, G.

    2009-01-01

    The crystalline structures in thin films of polystyrene-b-poly(ethylene oxide) (PS-b-PEO) diblock copolymers were studied in dependence on the degree of supercooling. Atomic force microscopy showed that the crystalline domains (lamellae) consist of grains, which are macroscopic at low...

  10. Solidification of supercooled water in the vicinity of a solid wall

    Science.gov (United States)

    Schremb, Markus; Tropea, Cameron

    2016-11-01

    An experimental approach utilizing a Hele-Shaw cell for the investigation of the solidification of a supercooled liquid in contact with a solid wall is presented. The setup is based on an idea presented by Marín et al. [A. G. Marín et al., Phys. Rev. Lett. 113, 054301 (2014), 10.1103/PhysRevLett.113.054301], who investigated the planar freezing of a sessile drop without supercooling. This apparatus overcomes optical distortions present when observing the freezing of sessile drops, arising due to reflections and refraction of light on the drop surface. The facility is used to investigate the freezing process of water drops, supercooled down to -20∘C , and to qualitatively demonstrate that the growth behavior is uninfluenced by the use of the Hele-Shaw cell. Different features during freezing, which are known for sessile water drops, are also observed with the Hele-Shaw cell. The growth morphology within the first phase of solidification is categorized according to the initial drop supercooling. Furthermore, freezing velocities within this phase are related to data available in the literature for the growth of single ice dendrites.

  11. Hydrophobic Surfaces: Topography Effects on Wetting by Supercooled Water and Freezing Delay

    DEFF Research Database (Denmark)

    Heydari, Golrokh; Thormann, Esben; Järn, Mikael

    2013-01-01

    Hydrophobicity, and in particular superhydrophobicity, has been extensively considered to promote ice-phobicity. Dynamic contact angle measurements above 0 °C have been widely used to evaluate the water repellency. However, it is the wetting properties of supercooled water at subzero temperatures...

  12. Anomalous dependence of the heat capacity of supercooled water on pressure and temperature

    Directory of Open Access Journals (Sweden)

    I.A. Stepanov

    2014-01-01

    Full Text Available In some papers, dependences of the isobaric heat capacity of water versus pressure and temperature were obtained. It is shown that these dependences contradict both the dependence of heat capacity on temperature for supercooled water, and an important thermodynamic equation for the dependence of heat capacity on pressure. A possible explanation for this contradiction is proposed.

  13. Compressive Deformation Induced Nanocrystallization of a Supercooled Zr-Based Bulk Metallic Glass

    Institute of Scientific and Technical Information of China (English)

    GUO Xiao-Lin; SHAN De-Bin; MA Ming-Zhen; GUO Bin

    2008-01-01

    The nanocrystallization behaviour of a bulk Zr-based metallic glass subjected to compressive stress is investigated in the supercooled liquid region. Compared with annealing treatments without compressive stress, compressive deformation promotes the development of nucleation and suppresses the coarsening of nanocrystallites at high ternperatures.

  14. Predicting How Nanoconfinement Changes the Relaxation Time of a Supercooled Liquid

    DEFF Research Database (Denmark)

    Ingebrigtsen, Trond; Errington, Jeff; Truskett, Tom;

    2013-01-01

    asymmetric dumbbell-shaped molecules, which can be deeply supercooled without crystallizing. We find that the dimensionless structural relaxation times—spanning six decades as a function of temperature, density, and degree of confinement—collapse when plotted versus excess entropy. The data also collapse...

  15. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Sanz, Alejandro; Niss, Kristine;

    2016-01-01

    We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat...

  16. Temperature-dependent bouncing of super-cooled water on teflon-coated superhydrophobic tungsten nanorods

    Energy Technology Data Exchange (ETDEWEB)

    Khedir, Khedir R.; Kannarpady, Ganesh K.; Ishihara, Hidetaka; Woo, Justin; Asar, Madhu P. [Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR, 72204 (United States); Ryerson, Charles [Terrestrial and Cryospheric Sciences Branch Cold Regions, Research and Engineering Laboratory, U.S. Army Corps of Engineers, Hanover, NH 03755-1290 (United States); Biris, Alexandru S., E-mail: asbiris@ualr.edu [Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR, 72204 (United States)

    2013-08-15

    The bouncing mechanism of warm and supercooled water droplets with temperatures ranging from 20 °C to −10 °C on the surface of superhydrophobic (SHP) tungsten nanorods (WNRs), held at a constant temperature of −10 °C, was investigated. The measurements were carried out inside a chamber kept at a low relative humidity of 20%. A considerable energy loss was observed mainly due to the increase in the viscous forces of the supercooled water droplet. The increase in the values of the capillary number, as a result of the variation in both viscosity and surface energy of the supercooled water droplet, has confirmed the significant role of viscous forces in the dissipation of bouncing energy. However, the contact time and contact line evolution of the supercooled water droplet on the surface remained unaffected by the decrease in its temperature at constant humidity. The calculations of the bouncing restitution and dissipated energy at various water droplet temperatures, using classical mechanics, were also carried out.

  17. Fractional thermoelasticity

    CERN Document Server

    Povstenko, Yuriy

    2015-01-01

    This book is devoted to fractional thermoelasticity, i.e. thermoelasticity based on the heat conduction equation with differential operators of fractional order. Readers will discover how time-fractional differential operators describe memory effects and space-fractional differential operators deal with the long-range interaction. Fractional calculus, generalized Fourier law, axisymmetric and central symmetric problems and many relevant equations are featured in the book. The latest developments in the field are included and the reader is brought up to date with current research.  The book contains a large number of figures, to show the characteristic features of temperature and stress distributions and to represent the whole spectrum of order of fractional operators.  This work presents a picture of the state-of-the-art of fractional thermoelasticity and is suitable for specialists in applied mathematics, physics, geophysics, elasticity, thermoelasticity and engineering sciences. Corresponding sections of ...

  18. The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds

    Directory of Open Access Journals (Sweden)

    A. Wiacek

    2010-09-01

    Full Text Available This modelling study explores the availability of mineral dust particles as ice nuclei for interactions with ice, mixed-phase and liquid water clouds, also tracking the particles' history of cloud-processing. We performed 61 320 one-week forward trajectory calculations originating near the surface of major dust emitting regions in Africa and Asia using high-resolution meteorological analysis fields for the year 2007. Dust-bearing trajectories were assumed to be those coinciding with known dust emission seasons, without explicitly modelling dust emission and deposition processes. We found that dust emissions from Asian deserts lead to a higher potential for interactions with high ice clouds, despite being the climatologically much smaller dust emission source. This is due to Asian regions experiencing significantly more ascent than African regions, with strongest ascent in the Asian Taklimakan desert at ~25%, ~40% and 10% of trajectories ascending to 300 hPa in spring, summer and fall, respectively. The specific humidity at each trajectory's starting point was transported in a Lagrangian manner and relative humidities with respect to water and ice were calculated in 6-h steps downstream, allowing us to estimate the formation of liquid, mixed-phase and ice clouds. Downstream of the investigated dust sources, practically none of the simulated air parcels reached conditions of homogeneous ice nucleation (T≲−40 °C along trajectories that have not experienced water saturation first. By far the largest fraction of cloud forming trajectories entered conditions of mixed-phase clouds, where mineral dust will potentially exert the biggest influence. The majority of trajectories also passed through atmospheric regions supersaturated with respect to ice but subsaturated with respect to water, where so-called "warm ice clouds" (T≳−40 °C theoretically may form prior to supercooled water or mixed-phase clouds. The importance of "warm ice

  19. Cloud Formation

    Science.gov (United States)

    Graham, Mark Talmage

    2004-05-01

    Cloud formation is crucial to the heritage of modern physics, and there is a rich literature on this important topic. In 1927, Charles T.R. Wilson was awarded the Nobel Prize in physics for applications of the cloud chamber.2 Wilson was inspired to study cloud formation after working at a meteorological observatory on top of the highest mountain in Scotland, Ben Nevis, and testified near the end of his life, "The whole of my scientific work undoubtedly developed from the experiments I was led to make by what I saw during my fortnight on Ben Nevis in September 1894."3 To form clouds, Wilson used the sudden expansion of humid air.4 Any structure the cloud may have is spoiled by turbulence in the sudden expansion, but in 1912 Wilson got ion tracks to show up by using strobe photography of the chamber immediately upon expansion.5 In the interim, Millikan's study in 1909 of the formation of cloud droplets around individual ions was the first in which the electron charge was isolated. This study led to his famous oil drop experiment.6 To Millikan, as to Wilson, meteorology and physics were professionally indistinct. With his meteorological physics expertise, in WWI Millikan commanded perhaps the first meteorological observation and forecasting team essential to military operation in history.7 But even during peacetime meteorology is so much of a concern to everyone that a regular news segment is dedicated to it. Weather is the universal conversation topic, and life on land could not exist as we know it without clouds. One wonders then, why cloud formation is never covered in physics texts.

  20. Influence of Nanoparticles and Graphite Foam on the Supercooling of Acetamide

    Directory of Open Access Journals (Sweden)

    Jia Yu

    2014-01-01

    Full Text Available Acetamide is a promising phase change materials (PCMs for thermal storage,but the large supercooling during the freezing process has limited its application. In this study, we prepared acetamide-SiO2 composites by adding nano-SiO2 into acetamide. This modified PCM was then impregnated into the porous graphite foam forming acetamide-SiO2-graphite foam form-stable composites. These composites were subjected to melting-solidification cycles 50 times; the time-temperature curves were tracked and recorded during these cycles. The time-temperature curves showed that, for the acetamide containing 2 wt. % SiO2, the supercooling phenomenon was eliminated and the material’s performance was stable for 50 cycles. The solidification temperature of the acetamide-SiO2-graphite foam samples was 65°C and the melting temperature was lowered to 65°C. The samples exhibited almost no supercooling and the presence of SiO2 had no significant effect on the melting-solidification temperature. The microscopic supercooling of the acetamide-SiO2 composite was measured using differential scanning calorimetry (DSC. The results indicated that when the content of SiO2 was 1 wt. to 2 wt. %, the supercooling could be reduced to less than 10°C and heat was sufficiently released during solidification. Finally, a set of algorithms was derived using MATLAB software for simulating the crystallization of samples based on the classical nucleation theory. The results of the simulation agreed with the experiment results.

  1. Mechanical responses and stress fluctuations of a supercooled liquid in a sheared non-equilibrium state.

    Science.gov (United States)

    Mizuno, H; Yamamoto, R

    2012-04-01

    A steady shear flow can drive supercooled liquids into a non-equilibrium state. Using molecular dynamics simulations under steady shear flow superimposed with oscillatory shear strain for a probe, non-equilibrium mechanical responses are studied for a model supercooled liquid composed of binary soft spheres. We found that even in the strongly sheared situation, the supercooled liquid exhibits surprisingly isotropic responses to oscillating shear strains applied in three different components of the strain tensor. Based on this isotropic feature, we successfully constructed a simple two-mode Maxwell model that can capture the key features of the storage and loss moduli, even for highly non-equilibrium state. Furthermore, we examined the correlation functions of the shear stress fluctuations, which also exhibit isotropic relaxation behaviors in the sheared non-equilibrium situation. In contrast to the isotropic features, the supercooled liquid additionally demonstrates anisotropies in both its responses and its correlations to the shear stress fluctuations. Using the constitutive equation (a two-mode Maxwell model), we demonstrated that the anisotropic responses are caused by the coupling between the oscillating strain and the driving shear flow. Due to these anisotropic responses and fluctuations, the violation of the fluctuation-dissipation theorem (FDT) is distinct for different components. We measured the magnitude of this violation in terms of the effective temperature. It was demonstrated that the effective temperature is notably different between different components, which indicates that a simple scalar mapping, such as the concept of an effective temperature, oversimplifies the true nature of supercooled liquids under shear flow. An understanding of the mechanism of isotropies and anisotropies in the responses and fluctuations will lead to a better appreciation of these violations of the FDT, as well as certain consequent modifications to the concept of an

  2. Decadal Variability of Clouds and Comparison with Climate Model Simulations

    Science.gov (United States)

    Su, H.; Shen, T. J.; Jiang, J. H.; Yung, Y. L.

    2014-12-01

    An apparent climate regime shift occurred around 1998/1999, when the steady increase of global-mean surface temperature appeared to hit a hiatus. Coherent decadal variations are found in atmospheric circulation and hydrological cycles. Using 30-year cloud observations from the International Satellite Cloud Climatology Project, we examine the decadal variability of clouds and associated cloud radiative effects on surface warming. Empirical Orthogonal Function analysis is performed. After removing the seasonal cycle and ENSO signal in the 30-year data, we find that the leading EOF modes clearly represent a decadal variability in cloud fraction, well correlated with the indices of Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation (AMO). The cloud radiative effects associated with decadal variations of clouds suggest a positive cloud feedback, which would reinforce the global warming hiatus by a net cloud cooling after 1998/1999. Climate model simulations driven by observed sea surface temperature are compared with satellite observed cloud decadal variability. Copyright:

  3. Breaking Through the Glass Ceiling: Recent Experimental Approaches to Probe the Properties of Supercooled Liquids near the Glass Transition.

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. Scott; Kay, Bruce D.

    2012-03-15

    Experimental measurements of the properties supercooled liquids at temperatures near their respective glass transition temperatures, Tg, are requisite for understanding the behavior of glasses and amorphous solids. Unfortunately, many supercooled molecular liquids rapidly crystallize at temperatures far above their Tg making such measurements difficult to nearly impossible. In this perspective we discuss some recent alternative approaches to obtain experimental data in the temperature regime near Tg. These new approaches may yield the additional experimental data necessary to test current theoretical models of the dynamical slowdown that occurs in supercooled liquids approaching the glass transition.

  4. Breaking Through the Glass Ceiling: Recent Experimental Approaches to Probe the Properties of Supercooled Liquids near the Glass Transition.

    Science.gov (United States)

    Smith, R Scott; Kay, Bruce D

    2012-03-15

    Experimental measurements of the properties of supercooled liquids at temperatures near their glass transition temperatures, Tg, are requisite for understanding the behavior of glasses and amorphous solids. Unfortunately, many supercooled molecular liquids rapidly crystallize at temperatures far above their Tg, making such measurements difficult to nearly impossible. In this Perspective, we discuss some recent alternative approaches to obtain experimental data in the temperature regime near Tg. These new approaches may yield the additional experimental data necessary to test current theoretical models of the dynamical slowdown that occurs in supercooled liquids approaching the glass transition.

  5. A cloud-resolving model study of aerosol-cloud correlation in a pristine maritime environment

    Science.gov (United States)

    Nishant, Nidhi; Sherwood, Steven C.

    2017-06-01

    In convective clouds, satellite-observed deepening or increased amount of clouds with increasing aerosol concentration has been reported and is sometimes interpreted as aerosol-induced invigoration of the clouds. However, such correlations can be affected by meteorological factors that affect both aerosol and clouds, as well as observational issues. In this study, we examine the behavior in a 660 × 660 km2 region of the South Pacific during June 2007, previously found by Koren et al. (2014) to show strong correlation between cloud fraction, cloud top pressure, and aerosols, using a cloud-resolving model with meteorological boundary conditions specified from a reanalysis. The model assumes constant aerosol loading, yet reproduces vigorous clouds at times of high real-world aerosol concentrations. Days with high- and low-aerosol loading exhibit deep-convective and shallow clouds, respectively, in both observations and the simulation. Synoptic analysis shows that vigorous clouds occur at times of strong surface troughs, which are associated with high winds and advection of boundary layer air from the Southern Ocean where sea-salt aerosol is abundant, thus accounting for the high correlation. Our model results show that aerosol-cloud relationships can be explained by coexisting but independent wind-aerosol and wind-cloud relationships and that no cloud condensation nuclei effect is required.

  6. The Atmospheric Infrared Sounder Version 6 cloud products

    Directory of Open Access Journals (Sweden)

    B. H. Kahn

    2013-06-01

    Full Text Available The Version 6 cloud products of the Atmospheric Infrared Sounder (AIRS and Advanced Microwave Sounding Unit (AMSU instrument suite are described. The cloud top temperature, pressure, and height and effective cloud fraction are now reported at the AIRS field of view (FOV resolution. Significant improvements in cloud height assignment over Version 5 are shown with pixel-scale comparisons to cloud vertical structure observed by the CloudSat 94 GHz radar and the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP. Cloud thermodynamic phase (ice, liquid, and unknown phase, ice cloud effective diameter (De, and ice cloud optical thickness (τ are derived using an optimal estimation methodology for AIRS FOVs, and global distributions for January 2007 are presented. The largest values of τ are found in the storm tracks and near convection in the Tropics, while De is largest on the equatorial side of the midlatitude storm tracks in both hemispheres, and lowest in tropical thin cirrus and the winter polar atmosphere. Over the Maritime Continent the diurnal cycle of τ is significantly larger than for the total cloud fraction, ice cloud frequency, and De, and is anchored to the island archipelago morphology. Important differences are described between northern and southern hemispheric midlatitude cyclones using storm center composites. The infrared-based cloud retrievals of AIRS provide unique, decadal-scale and global observations of clouds over the diurnal and annual cycles, and captures variability within the mesoscale and synoptic scales at all latitudes.

  7. Toward the Characterization of Mixed-Phase Clouds Using Remote Sensing

    Science.gov (United States)

    Andronache, C.

    2015-12-01

    Mixed-phase clouds consist of a mixture of ice particles and liquid droplets at temperatures below 0 deg C. They are present in all seasons in many regions of the world, account for about 30% of the global cloud coverage, and are linked to cloud electrification and aircraft icing. The mix of ice particles, liquid droplets, and water vapor is unstable, and such clouds are thought to have a short lifetime. A characteristic parameter is the phase composition of mixed-phase clouds. It affects the cloud life cycle and the rate of precipitation. This parameter is important for cloud parameters retrievals by radar, lidar, and satellite and is relevant for climate modeling. The phase transformation includes the remarkable Wegener-Bergeron-Findeisen (WBF) process. The direction and the rate of the phase transformations depend on the local thermodynamic and microphysical properties. Cloud condensation nuclei (CCN) and ice nuclei (IN) particles determine to a large extent cloud microstructure and the dynamic response of clouds to aerosols. The complexity of dynamics and microphysics involved in mixed-phase clouds requires a set of observational and modeling tools that continue to be refined. Among these techniques, the remote sensing methods provide an increasing number of parameters, covering large regions of the world. Thus, a series of studies were dedicated to stratiform mixed-phase clouds revealing longer lifetime than previously thought. Satellite data and aircraft in situ measurements in deep convective clouds suggest that highly supercooled water often occurs in vigorous continental convective storms. In this study, we use cases of convective clouds to discuss the feasibility of mixed-phase clouds characterization and potential advantages of remote sensing.

  8. Effects of cosmic ray decreases on cloud microphysics

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after the...... ionization. These results support the suggestion that ions play a significant role in the life-cycle of clouds....

  9. CloudSat observations of multi layered clouds across the globe

    Science.gov (United States)

    Subrahmanyam, K. Venkata; Kumar, Karanam Kishore

    2017-07-01

    Vertically resolved multi-layer cloud distributions over the globe using 4 years of CloudSat/CALIPSO observations during 2007-2010 are discussed. The quantitative information on the frequency of occurrence of one- to five-layered clouds across the globe is established, which are of immense importance from the global climate standpoint. After segregating the CloudSat observations into different seasons, the 4 years of mean global maps of frequency of occurrence of one to five-layered clouds are discussed in details. These global maps provide much needed quantification of vertically resolved multi-layer clouds by revealing when and where the frequency of occurrence of multi-layer clouds are maximum including the number of layers. On an average, it is observed that over the globe one-, two-, three-, four- and five-layer clouds occur 53, 20, 3.5, 0.4 and 0.04 % of the time respectively. High fraction of single layer clouds is observed over the descending limbs of Hadley cell where relatively large lower tropospheric stability is found. The regions where multi-layer clouds are more frequent are identified and discussed along with large scale circulation. Apart from quantifying the frequency of occurrence of multi-layer clouds, the latitudinal distribution of zonal mean occurrence of cloud base and top altitudes of each cloud layer is constructed for boreal winter and summer. These analyses provide the cloud base and top altitudes of one to five-layered clouds, which are important to understand the vertical structure of the multi-layered clouds. The significance of the present study lies in establishing the global distribution of vertically resolved multi-layer clouds and the role of large-scale dynamics in controlling their distribution for the first time.

  10. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    users in very different ways and for various purposes. The book provides many stimulating examples of resource-sharing applications. Enabling technologies for mobile clouds are also discussed, highlighting the key role of network coding. Mobile clouds have the potential to enhance communications...... of resource sharing takes a wider and deeper meaning, creating the foundations for a global real-time multidimensional resource pool, the underlying infrastructure for shareconomy. Above all, this is an inspiring book for anyone who is concerned about the future of wireless and mobile communications networks...... and their relationship with Social networks. Key Features: Provides fundamental ideas and promising concepts for exploiting opportunistic cooperation and cognition in wireless and mobile networks Gives clear definitions of mobile clouds from different perspectives Associates mobile and wireless networks with social...

  11. Effect of solvents on the fractionation of high oleic-high stearic sunflower oil.

    Science.gov (United States)

    Bootello, Miguel A; Garcés, Rafael; Martínez-Force, Enrique; Salas, Joaquín J

    2015-04-01

    Solvent fractionation of high oleic-high stearic (HOHS) sunflower oil was studied to determine the best solvent to use (hexane or acetone) in terms of the operational parameters and properties of the final stearins. Acetone fractionation on two types of HOHS sunflower oils (N17 and N20) was carried out at temperatures from 5 to 10 °C using micelles with different oil/solvent ratios. Acetone was more suitable than hexane as a solvent for HSHO sunflower oil fractionation because it allowed the oil to be fractionated at higher temperatures and at lower supercooling degrees. Likewise, a sunflower soft stearin obtained by dry fractionation of HOHS sunflower oil was also used to produce high-melting point stearins by acetone or hexane fractionation. The fractionation of these stearins could be performed at higher temperatures and gave higher yields. The combination of dry and solvent fractionation to obtain tailor-made stearins is discussed.

  12. The kinetic chemistry of dense interstellar clouds

    Science.gov (United States)

    Graedel, T. E.; Langer, W. D.; Frerking, M. A.

    1982-01-01

    A model of the time-dependent chemistry of dense interstellar clouds is formulated to study the dominant chemical processes in carbon and oxygen isotope fractionation, the formation of nitrogen-containing molecules, and the evolution of product molecules as a function of cloud density and temperature. The abundances of the dominant isotopes of the carbon- and oxygen-bearing molecules are calculated. The chemical abundances are found to be quite sensitive to electron concentration since the electron concentration determines the ratio of H3(+) to He(+), and the electron density is strongly influenced by the metals abundance. For typical metal abundances and for H2 cloud density not less than 10,000 molecules/cu cm, nearly all carbon exists as CO at late cloud ages. At high cloud density, many aspects of the chemistry are strongly time dependent. Finally, model calculations agree well with abundances deduced from observations of molecular line emission in cold dense clouds.

  13. Clouds and relative humidity in climate models; or what really regulates cloud cover?

    Energy Technology Data Exchange (ETDEWEB)

    Walcek, C. [State Univ. of New York, Albany, NY (United States)

    1995-09-01

    The response and impact of clouds remains one of the largest outstanding questions in GCMs. Clouds are not homogeneous, though they are treated as such in the models. When averaged over areas typically used as numerical grid elements by GCMs, observations suggest that there are some clouds at all relative humidities. Fractional cloud cover at 100% relative humidity is rarely 100%, and totally clear skies rarely occur, even for low relative humidities. Relative humidity is the best single indicator of cloud coverage. However, if there is a relationship between cloud coverage and relative humidity, our current models and observations are inadequate to reveal exactly what that relationship is. It does appear that cloud coverage decreases exponentially as humidity falls below 100%. 2 refs., 2 figs.

  14. Cloud a particle beam facility to investigate the influence of cosmic rays on clouds

    CERN Document Server

    Kirkby, Jasper

    2001-01-01

    Palaeoclimatic data provide extensive evidence for solar forcing of the climate during the Holocene and the last ice age, but the underlying mechanism remains a mystery. However recent observations suggest that cosmic rays may play a key role. Satellite data have revealed a surprising correlation between cosmic ray intensity and the fraction of the Earth covered by low clouds \\cite{svensmark97,marsh}. Since the cosmic ray intensity is modulated by the solar wind, this may be an important clue to the long-sought mechanism for solar-climate variability. In order to test whether cosmic rays and clouds are causally linked and, if so, to understand the microphysical mechanisms, a novel experiment known as CLOUD\\footnotemark\\ has been proposed \\cite{cloud_proposal}--\\cite{cloud_addendum_2}. CLOUD proposes to investigate ion-aerosol-cloud microphysics under controlled laboratory conditions using a beam from a particle accelerator, which provides a precisely adjustable and measurable artificial source of cosmic rays....

  15. Fractional motions

    Energy Technology Data Exchange (ETDEWEB)

    Eliazar, Iddo I., E-mail: eliazar@post.tau.ac.il [Holon Institute of Technology, P.O. Box 305, Holon 58102 (Israel); Shlesinger, Michael F., E-mail: mike.shlesinger@navy.mil [Office of Naval Research, Code 30, 875 N. Randolph St., Arlington, VA 22203 (United States)

    2013-06-10

    Brownian motion is the archetypal model for random transport processes in science and engineering. Brownian motion displays neither wild fluctuations (the “Noah effect”), nor long-range correlations (the “Joseph effect”). The quintessential model for processes displaying the Noah effect is Lévy motion, the quintessential model for processes displaying the Joseph effect is fractional Brownian motion, and the prototypical model for processes displaying both the Noah and Joseph effects is fractional Lévy motion. In this paper we review these four random-motion models–henceforth termed “fractional motions” –via a unified physical setting that is based on Langevin’s equation, the Einstein–Smoluchowski paradigm, and stochastic scaling limits. The unified setting explains the universal macroscopic emergence of fractional motions, and predicts–according to microscopic-level details–which of the four fractional motions will emerge on the macroscopic level. The statistical properties of fractional motions are classified and parametrized by two exponents—a “Noah exponent” governing their fluctuations, and a “Joseph exponent” governing their dispersions and correlations. This self-contained review provides a concise and cohesive introduction to fractional motions.

  16. Simultaneous radar and aircraft observations of mixed-phase cloud at the 100-m-scale

    Science.gov (United States)

    Field, P.; Hogan, R.; Brown, P.; Illingworth, A.; Choularton, T.; Kaye, P.; Hirst, E.; Greenaway, R.

    2003-04-01

    Determination of cloud phase is important for predicting the radiative impact of clouds. Previous work by some of the authors has shown that even the presence of thin (~100 m) supercooled liquid layers above and below ice cloud significantly increase the reflection of solar radiation to space. We present 100-m-scale in situ and simultaneous radar observations of mixed-phase clouds over the UK. Particle sphericity, as determined by the aircraft mounted Small Ice Detector, appears to be a good indication of phase in these types of cloud where any newly produced ice will quickly grow in highly ice supersaturated conditions into non-spherical particles. During 1-d aircraft transects the dominant phase of the cloud was determined in contiguous 100 m horizontal segments. The resulting structure reveals that mixed-phase clouds can exhibit alternating regions of ice and liquid of varying horizontal scale that may be the result of the 1-d transect of the aircraft intercepting undulating liquid layers or turbulent activity. High differential reflectivity signals measured by the radar can be indicative of the nearby presence of liquid water giving rise to highly ice saturated conditions conducive to the growth of pristine crystals with high axial ratios. Although this is the case for discrete cloud layers it is not always true within a deep frontal cloud.

  17. Distributions and radiative forcings of various cloud types based on active and passive satellite datasets – Part 1: Geographical distributions and overlap of cloud types

    Directory of Open Access Journals (Sweden)

    J. Li

    2014-04-01

    Full Text Available Based on four year' 2B-CLDCLASS-Lidar (Radar-Lidar cloud classification product from CloudSat, we analyze the geographical distributions of different cloud types and their co-occurrence frequency across different seasons, moreover, utilize the vertical distributions of cloud type to further evaluate the cloud overlap assumptions. The statistical results show that more high clouds, altocumulus, stratocumulus or stratus and cumulus are identified in the Radar-Lidar cloud classification product compared to previous results from Radar-only cloud classification (2B-CLDCLASS product from CloudSat. In particularly, high clouds and cumulus cloud fractions increased by factors 2.5 and 4–7, respectively. The new results are in more reasonable agreement with other datasets (typically the International Satellite Cloud Climatology Project (ISCCP and surface observer reports. Among the cloud types, altostratus and altocumulus are more popular over the arid/semi-arid land areas of the Northern and Southern Hemispheres, respectively. These features weren't observed by using the ISCCP D1 dataset. For co-occurrence of cloud types, high cloud, altostratus, altocumulus and cumulus are much more likely to co-exist with other cloud types. However, stratus/stratocumulus, nimbostratus and convective clouds are much more likely to exhibit individual features. After considering the co-occurrence of cloud types, the cloud fraction based on the random overlap assumption is underestimated over the vast ocean except in the west-central Pacific Ocean warm pool. Obvious overestimations are mainly occurring over land areas in the tropics and subtropics. The investigation therefore indicates that incorporate co-occurrence information of cloud types based on Radar-Lidar cloud classification into the overlap assumption schemes used in the current GCMs possible be able to provide an better predictions for vertically projected total cloud fraction.

  18. Possible Evidence for a New Form of Liquid Buried in the Surface Tension of Supercooled Water

    Science.gov (United States)

    Rogers, T. Ryan; Leong, Kai-Yang; Wang, Feng

    2016-09-01

    Contrary to the historical data, several recent experiments indicate that the surface tension of supercooled water follows a smooth extrapolation of the IAPWS equation in the supercooled regime. It can be seen, however, that a small deviation from the IAPWS equation is present in the recent experimental measurements. It is shown with simulations using the WAIL water potential that the small deviation in the experimental data is consistent with the tail of an exponential growth in surface tension as temperature decreases. The emergence temperature, Te, of a substantial deviation from the IAPWS equation is shown to be 227 K for the WAIL water and 235 K for real water. Since the 227 K Te is close to the Widom line in WAIL water, we argue that real water at 235 K approaches a similar crossover line at one atmospheric pressure.

  19. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    Directory of Open Access Journals (Sweden)

    Bo Jakobsen

    2016-05-01

    Full Text Available We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat conduction through an insulating material, i.e., is proportional to the temperature difference between sample and surroundings. The monitored signal reflects the sample’s specific heat and is sensitive to exo- and endothermic processes. The technique is useful for studying supercooled liquids and their crystallization, e.g., for locating the glass transition and melting point(s, as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition.

  20. Metastable Demixing of Supercooled Cu-Co and Cu-Fe Alloys in an Oxide Flux

    Science.gov (United States)

    Li, D.; Robinson, M. B.; Rathz, T. J.; Williams, G.

    1998-01-01

    A systematic study on the liquid separation in supercooled Cu-Co and Cu-Fe alloys was performed using a melt fluxing which permits high supercooling to be achieved. Moreover, this method renders it possible to directly measure binodal temperatures and establish metastable liquid miscibility gap (LMG). All phase-separated samples at compositions ranging from 10 to 80 wt pct Co or to 83 wt pct Fe were found to exhibit droplet-shaped morphologies, in spite of various droplet distributions. Uniformly dispersed microstructures were obtained as the minority component was less than 20 vol.%; while beyond this percentage, serious coarsening was brought about. Calculations of the miscibility gap in the Cu-Co system and Stokes movement velocity of Co and Fe droplets in Cu matrix were made to analyze the experimental results.

  1. Study on Supercooling Point and Freezing Point in Floral Organs of Apricot

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Under the environment of an artificial climate chamber, supercooling point (SCP) and freezing point (FP) in flower and young fruit at different development stages and freezing injuries of floral organs were studied. The apricot cultivars tested were Kety, Golden Sun and Honghebao. With the development of flower buds, SCP and FP increased, which indicated that their cold resistance decreased. SCP and FP varied with different floral organs. For different apricot cultivars, it was found that, the lower SCP or FP in floral organs was, the more resistant capacity the cultivar had, and the larger the temperature interval from SCP to FP was. SCP was not a constant value, but a range. Frequency distribution of SCP in petals was more dispersing than that in stamens and pistils. Floral organs could maintain a supercooling state to avoid ice formation, but they were sensitive to freezing. Once floral organs froze, they turned brown after thawing.

  2. The water supercooled regime as described by four common water models

    CERN Document Server

    Malaspina, David C; Pereyra, Rodolfo G; Szleifer, Igal; Carignano, Marcelo A

    2013-01-01

    The temperature scale of simple water models in general does not coincide with the natural one. Therefore, in order to make a meaningful evaluation of different water models a temperature rescaling is necessary. In this paper we introduce a rescaling using the melting temperature and the temperature corresponding to the maximum of the heat capacity to evaluate four common water models (TIP4P-Ew, TIP4P-2005, TIP5P-Ew and Six-Sites) in the supercooled regime. Although all the models show the same general qualitative behavior, the TIP5P-Ew appears as the best representation of the supercooled regime when the rescaled temperature is used. We also analyze, using thermodynamic arguments, the critical nucleus size for ice growth. Finally, we speculate on the possible reasons why atomistic models do not usually crystalize while the coarse grained mW model do crystallize.

  3. Mobile Clouds

    DEFF Research Database (Denmark)

    Fitzek, Frank; Katz, Marcos

    examples of mobile clouds applications, based on both existing commercial initiatives as well as proof-of-concept test-beds. Visions and prospects are also discussed, paving the way for further development. As mobile networks and social networks become more and more reliant on each other, the concept...

  4. Soft Clouding

    DEFF Research Database (Denmark)

    Søndergaard, Morten; Markussen, Thomas; Wetton, Barnabas;

    2012-01-01

    Soft Clouding is a blended concept, which describes the aim of a collaborative and transdisciplinary project. The concept is a metaphor implying a blend of cognitive, embodied interaction and semantic web. Furthermore, it is a metaphor describing our attempt of curating a new semantics of sound...

  5. Two-Dimensional Nucleation of Ice from Supercooled Water

    Science.gov (United States)

    Seeley, L. H.; Seidler, G. T.

    2001-03-01

    Heterogeneous nucleation is the initial formation of a stable phase from a metastable phase in the presence of a catalyzing surface. This ubiquitous process has consequences ranging from metallurgy to the formation of kidney stones. Heterogeneous nucleation of ice plays a central role in cloud formation, suggesting one possible connection between anthropogenic pollutants and global climate. A key topic in the theory of nucleation is the geometry of the critical nucleus. Standard nucleation theories generally predict a compact critical nucleus with a surface of roughly constant curvature. We report measurements of the temperature dependent nucleation rate of ice from water samples supporting aliphatic alcohol Langmuir films. We use classical nucleation theory to extract thermodynamic parameters from the measured nucleation rates. From these parameters we conclude that both the effective free energy barrier and the molecular kinetics of nucleation are dominated by the physics at the interface. Our results give self-consistent evidence that the geometry of the critical nucleus in this system is essentially two-dimensional.

  6. Evidence of the existence of the low-density liquid phase in supercooled, confined water

    OpenAIRE

    Mallamace, Francesco; Broccio, Matteo; Corsaro, Carmelo; Faraone, Antonio; Majolino, Domenico; Venuti, Valentina; Liu, Li; Mou, Chung-Yuan; Chen, Sow-Hsin

    2006-01-01

    By confining water in a nanoporous structure so narrow that the liquid could not freeze, it is possible to study properties of this previously undescribed system well below its homogeneous nucleation temperature TH = 231 K. Using this trick, we were able to study, by means of a Fourier transform infrared spectroscopy, vibrational spectra (HOH bending and OH-stretching modes) of deeply supercooled water in the temperature range 183 < T < 273 K. We observed, upon decreasing temperature, the bui...

  7. Quark-gluon plasma freeze-out from a supercooled state?

    CERN Document Server

    Csörgö, T

    1994-01-01

    The quark-gluon plasma, formed in the first 3 fm/c of the heavy ion collisions at RHIC and LHC, supercooles due to nucleation and develops soon a negative pressure in the bag model. The negative pressure yields mechanical instability which may lead to a sudden timelike deflagration to a (super)heated hadron gas. The resulting freeze-out times are shorter than those of the standard nucleation scenario.

  8. Behavior of Supercooled Aqueous Solutions Stemming from Hidden Liquid-Liquid Transition in Water

    OpenAIRE

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A.

    2014-01-01

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two...

  9. Direct measurement of the surface dynamics of supercooled liquid-glycerol by optical scanning a film

    Institute of Scientific and Technical Information of China (English)

    Zhang Fang; Zhang Guo-Feng; Dong Shuang-Li; Sun Jian-Hu; Chen Rui-Yun; Xiao Lian-Tuan; Jia Suo-Tang

    2009-01-01

    The surface dynamics of supercooled liquid-glycerol is studied by scanning the thickness of the glycerol film with single photon detection. Measurements are performed at room temperature well above the glycerol's glass transition temperature. It is shown that the surface dynamics of the glycerol film is very sensitive to the temperature. The linear relationship between the thickness of the film and the viscosity predicted by the Vogel-Fulcher-Tammann-Hesse (VFTH) law is also presented experimentally.

  10. Liquid–liquid transition in supercooled water suggested by microsecond simulations

    OpenAIRE

    Li, Yaping; Li, Jicun; Wang, Feng

    2013-01-01

    The putative liquid–liquid phase transition in supercooled water has been used to explain many anomalous behaviors of water. However, no direct experimental verification of such a phase transition has been accomplished, and theoretical studies from different simulations contradict each other. We investigated the putative liquid–liquid phase transition using the Water potential from Adaptive Force Matching for Ice and Liquid (WAIL). The simulation reveals a first-order phase transition in the ...

  11. Polymer fractionation

    Energy Technology Data Exchange (ETDEWEB)

    Hadermann, A. F.

    1985-04-09

    Soluble polymers are fractionated according to molecular weight by cryogenically comminuting the polymer and introducing the polymer particles, while still in the active state induced by cryogenic grinding, into a liquid having a solvent power selected to produce a coacervate fraction containing high molecular weight polymer species and a dilute polymer solution containing lower molecular weight polymer species. The coacervate may be physically separated from the solution and finds use in the production of antimisting jet fuels and the like.

  12. Effect of cloud microphysics on particle growth under mixed phase conditions

    Science.gov (United States)

    Pfitzenmaier, Lukas; Dufournet, Yann; Unal, Christine; Russchenberg, Herman; Myagkov, Alexander; Seifert, Patric

    2015-04-01

    Mixed phase clouds contain both ice particles and super-cooled cloud water droplets in the same volume of air. Currently, one of the main challenges is to observe and understand how ice particles grow by interacting with liquid water within the mixed-phase clouds. In the mid latitudes this process is one of the most efficient processes for precipitation formation. It is particularly important to understand under which conditions growth processes are most efficient within such clouds. The observation of microphysical cloud properties from the ground is one possible approach to study the liquid-ice interaction that play a role on the ice crystal growth processes. The study presented here is based on a ground-based multi-sensor technique. Dataset of this study was taken during the ACCEPT campaign (Analysis of the Composition of mixed-phase Clouds with Extended Polarization Techniques) at Cabauw The Netherlands, autumn 2014. Measurements with the Transportable Atmospheric RAdar (TARA), S-band precipitation radar profiler, from the Delft Technical University, and Ka-band cloud radar systems were performed in cooperation with the Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, Germany. All the radar systems had full Doppler capabilities. In addition , TARA and one of the Ka-band radar systems had full polarimetric capabilities as well, in order to get information of the ice phase within mixed-phase cloud systems. Lidar, microwave radiometer and radiosonde measurements were combined to describe the liquid phase within such clouds. So a whole characterisation of microphysical processes within mixed-phase cloud systems could be done. This study shows how such a combination of instruments is used to: - Detect the liquid layer within the ice clouds - Describe the microphysical conditions for ice particle growth within mixed phase clouds based on cloud hydrometeor shape, size, number concentration obtained from measurements The project aims to observe

  13. The formation of supercooled brines, viscous liquids, and low-temperature perchlorate glasses in aqueous solutions relevant to Mars

    Science.gov (United States)

    Toner, J. D.; Catling, D. C.; Light, B.

    2014-05-01

    Salt solutions on Mars can stabilize liquid water at low temperatures by lowering the freezing point of water. The maximum equilibrium freezing-point depression possible, known as the eutectic temperature, suggests a lower temperature limit for liquid water on Mars; however, salt solutions can supercool below their eutectic before crystallization occurs. To investigate the magnitude of supercooling and its variation with salt composition and concentration, we performed slow cooling and warming experiments on pure salt solutions and saturated soil-solutions of MgSO4, MgCl2, NaCl, NaClO4, Mg(ClO4)2, and Ca(ClO4)2. By monitoring solution temperatures, we identified exothermic crystallization events and determined the composition of precipitated phases from the eutectic melting temperature. Our results indicate that supercooling is pervasive. In general, supercooling is greater in more concentrated solutions and with salts of Ca and Mg. Slowly cooled MgSO4, MgCl2, NaCl, and NaClO4 solutions investigated in this study typically supercool 5-15 °C below their eutectic temperature before crystallizing. The addition of soil to these salt solutions has a variable effect on supercooling. Relative to the pure salt solutions, supercooling decreases in MgSO4 soil-solutions, increases in MgCl2 soil-solutions, and is similar in NaCl and NaClO4 soil-solutions. Supercooling in MgSO4, MgCl2, NaCl, and NaClO4 solutions could marginally extend the duration of liquid water during relatively warm daytime temperatures in the martian summer. In contrast, we find that Mg(ClO4)2 and Ca(ClO4)2 solutions do not crystallize during slow cooling, but remain in a supercooled, liquid state until forming an amorphous glass near -120 °C. Even if soil is added to the solutions, a glass still forms during cooling. The large supercooling effect in Mg(ClO4)2 and Ca(ClO4)2 solutions has the potential to prevent water from freezing over diurnal and possibly annual cycles on Mars. Glasses are also

  14. Understanding Multiplication of Fractions.

    Science.gov (United States)

    Sweetland, Robert D.

    1984-01-01

    Discussed the use of Cuisenaire rods in teaching the multiplication of fractions. Considers whole number times proper fraction, proper fraction multiplied by proper fraction, mixed number times proper fraction, and mixed fraction multiplied by mixed fractions. (JN)

  15. Investigation of cosmic ray-cloud connections using MISR

    CERN Document Server

    Krissansen-Totton, Joshua

    2013-01-01

    Numerous empirical studies have analyzed International Satellite Cloud Climatology Project data and reached contradictory conclusions regarding the influence of solar-modulated galactic cosmic rays on cloud fraction and cloud properties. The Multiangle Imaging Spectroradiometer (MISR) instrument on the Terra satellite has been in continuous operation for 13 years and thus provides an independent (and previously unutilized) cloud data set to investigate purported solar-cloud links. Furthermore, unlike many previous solar-climate studies that report cloud fraction MISR measures albedo, which has clearer climatological relevance. Our long-term analysis of MISR data finds no statistically significant correlations between cosmic rays and global albedo or globally averaged cloud height, and no evidence for any regional or lagged correlations. Moreover, epoch superposition analysis of Forbush decreases reveals no detectable albedo response to cosmic ray decreases, thereby placing an upper limit on the possible influ...

  16. Cloud management and security

    CERN Document Server

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  17. Glass-forming ability of TeO{sub 2} and temperature induced changes on the structure of the glassy, supercooled, and molten states

    Energy Technology Data Exchange (ETDEWEB)

    Kalampounias, A. G., E-mail: angelos@chemeng.upatras.gr [Department of Chemistry, University of Ioannina, GR-45110 Ioannina (Greece); Institute of Chemical Engineering Sciences (FORTH-ICE/HT), Foundation for Research and Technology Hellas, P.O. Box 1414, GR-26504 Patras (Greece); Tsilomelekis, G.; Boghosian, S. [Department of Chemical Engineering, University of Patras, P.O. Box 1414, GR-26504 Patras (Greece); Institute of Chemical Engineering Sciences (FORTH-ICE/HT), Foundation for Research and Technology Hellas, P.O. Box 1414, GR-26504 Patras (Greece)

    2015-04-21

    Polarized (VV) and depolarized (VH) Raman spectra are obtained for glassy, supercooled, and molten TeO{sub 2} at temperatures up to 1000 K in order to elucidate the temperature evolution of the pertinent structural and vibrational properties. The intrinsic tendency of the system for crystallization is avoided by means of a newly applied protocol, thereby enabling the recording of Raman spectra of pure TeO{sub 2} on going from the molten to the supercooled liquid and to the room temperature glass states. Following an appropriate fitting procedure, the revealed bands are assigned to specific modes of structural polymorphs. A weak polarised band at ∼880 cm{sup −1} is assigned to Te=O terminal stretching in agreement with the literature ab initio molecular orbital calculations. Subtle changes to the relative band intensities within the 550-900 cm{sup −1} stretching region are caused by temperature increase. The network-like structure of the glass/melt is composed by TeO{sub 4} trigonal bipyramid and TeO{sub 3} trigonal pyramid units. With increasing temperature, TeO{sub 4} units convert to TeO{sub 3} units with a concurrent increase in the number of Te=O sites resulting from cleavages within the network structure. The fraction of such terminal oxygen atoms has been directly estimated from the spectroscopic data. The relative populations of the basic building blocks and the average number of O atoms around Te have been estimated for a wide temperature range directly from the Raman spectra, implying a gradual transformation of TeO{sub 4/2} to TeO{sub 2/2}(= O) trigonal pyramid units. The results are discussed in the context of the current phenomenological and theoretical status of the field.

  18. Spectral Dependence of MODIS Cloud Droplet Effective Radius Retrievals for Marine Boundary Layer Clouds

    Science.gov (United States)

    Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung

    2014-01-01

    Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.

  19. Cloud Computing

    DEFF Research Database (Denmark)

    Krogh, Simon

    2013-01-01

    The second half of the 20th century has been characterized by an explosive development in information technology (Maney, Hamm, & O'Brien, 2011). Processing power, storage capacity and network bandwidth have increased exponentially, resulting in new possibilities and shifting IT paradigms. In step...... with technological changes, the paradigmatic pendulum has swung between increased centralization on one side and a focus on distributed computing that pushes IT power out to end users on the other. With the introduction of outsourcing and cloud computing, centralization in large data centers is again dominating...... the IT scene. In line with the views presented by Nicolas Carr in 2003 (Carr, 2003), it is a popular assumption that cloud computing will be the next utility (like water, electricity and gas) (Buyya, Yeo, Venugopal, Broberg, & Brandic, 2009). However, this assumption disregards the fact that most IT production...

  20. Rain initiation in warm clouds

    CERN Document Server

    Dallas, Vassilios

    2010-01-01

    Assuming perfect collision efficiency, we demonstrate that turbulence can initiate and sustain rapid growth of very small water droplets in air even when these droplets are too small to cluster, and even without having to take gravity and small-scale intermittency into account. This is because the range of local Stokes numbers of identical droplets in the turbulent flow field is broad enough even when small-scale intermittency is neglected. This demonstration is given for turbulence which is one order of magnitude less intense than typically in warm clouds but with a volume fraction which, even though small, is nevertheless large enough for an estimated a priori frequency of collisions to be ten times larger than in warm clouds. However, the time of growth in these conditions turns out to be one order of magnitude smaller than in warm clouds.

  1. Diagnosing Aircraft Icing Potential from Satellite Cloud Retrievals

    Science.gov (United States)

    Smith, William L., Jr.; Minnis, Patrick; Fleeger, Cecilia; Spangenberg, Douglas

    2013-01-01

    The threat for aircraft icing in clouds is a significant hazard that routinely impacts aviation operations. Accurate diagnoses and forecasts of aircraft icing conditions requires identifying the location and vertical distribution of clouds with super-cooled liquid water (SLW) droplets, as well as the characteristics of the droplet size distribution. Traditional forecasting methods rely on guidance from numerical models and conventional observations, neither of which currently resolve cloud properties adequately on the optimal scales needed for aviation. Satellite imagers provide measurements over large areas with high spatial resolution that can be interpreted to identify the locations and characteristics of clouds, including features associated with adverse weather and storms. This paper describes new techniques for interpreting cloud products derived from satellite data to infer the flight icing threat to aircraft. For unobscured low clouds, the icing threat is determined using empirical relationships developed from correlations between satellite imager retrievals of liquid water path and droplet size with icing conditions reported by pilots (PIREPS). For deep ice over water cloud systems, ice and liquid water content (IWC and LWC) profiles are derived by using the imager cloud properties to constrain climatological information on cloud vertical structure and water phase obtained apriori from radar and lidar observations, and from cloud model analyses. Retrievals of the SLW content embedded within overlapping clouds are mapped to the icing threat using guidance from an airfoil modeling study. Compared to PIREPS and ground-based icing remote sensing datasets, the satellite icing detection and intensity accuracies are approximately 90% and 70%, respectively, and found to be similar for both low level and deep ice over water cloud systems. The satellite-derived icing boundaries capture the reported altitudes over 90% of the time. Satellite analyses corresponding to

  2. The microphysics of clouds over the Antarctic Peninsula - Part 2: modelling aspects within Polar WRF

    Science.gov (United States)

    Listowski, Constantino; Lachlan-Cope, Tom

    2017-08-01

    The first intercomparisons of cloud microphysics schemes implemented in the Weather Research and Forecasting (WRF) mesoscale atmospheric model (version 3.5.1) are performed on the Antarctic Peninsula using the polar version of WRF (Polar WRF) at 5 km resolution, along with comparisons to the British Antarctic Survey's aircraft measurements (presented in part 1 of this work; Lachlan-Cope et al., 2016). This study follows previous works suggesting the misrepresentation of the cloud thermodynamic phase in order to explain large radiative biases derived at the surface in Polar WRF continent-wide (at 15 km or coarser horizontal resolution) and in the Polar WRF-based operational forecast model Antarctic Mesoscale Prediction System (AMPS) over the Larsen C Ice Shelf at 5 km horizontal resolution. Five cloud microphysics schemes are investigated: the WRF single-moment five-class scheme (WSM5), the WRF double-moment six-class scheme (WDM6), the Morrison double-moment scheme, the Thompson scheme, and the Milbrandt-Yau double-moment seven-class scheme. WSM5 (used in AMPS) and WDM6 (an upgrade version of WSM5) lead to the largest biases in observed supercooled liquid phase and surface radiative biases. The schemes simulating clouds in closest agreement to the observations are the Morrison, Thompson, and Milbrandt schemes for their better average prediction of occurrences of clouds and cloud phase. Interestingly, those three schemes are also the ones allowing for significant reduction of the longwave surface radiative bias over the Larsen C Ice Shelf (eastern side of the peninsula). This is important for surface energy budget consideration with Polar WRF since the cloud radiative effect is more pronounced in the infrared over icy surfaces. Overall, the Morrison scheme compares better to the cloud observation and radiation measurements. The fact that WSM5 and WDM6 are single-moment parameterizations for the ice crystals is responsible for their lesser ability to model the

  3. Cloud Interactions

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 1 July 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during mid-spring near the North Pole. The linear water-ice clouds are now regional in extent and often interact with neighboring cloud system, as seen in this image. The bottom of the image shows how the interaction can destroy the linear nature. While the surface is still visible through most of the clouds, there is evidence that dust is also starting to enter the atmosphere. Image information: VIS instrument. Latitude 68.4, Longitude 258.8 East (101.2 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara

  4. OH+ in Diffuse Molecular Clouds

    CERN Document Server

    Porras, A J; Welty, D E; Ritchey, A M

    2013-01-01

    Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH+ detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH+ as well, confirming OH+ and H2O+ observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for high enough density and molecular fraction before detectable amounts are seen. Thus, while OH+ leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with differen...

  5. Mystery Fractions

    Science.gov (United States)

    Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max

    2016-01-01

    Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…

  6. Mystery Fractions

    Science.gov (United States)

    Bhattacharyya, Sonalee; Namakshi, Nama; Zunker, Christina; Warshauer, Hiroko K.; Warshauer, Max

    2016-01-01

    Making math more engaging for students is a challenge that every teacher faces on a daily basis. These authors write that they are constantly searching for rich problem-solving tasks that cover the necessary content, develop critical-thinking skills, and engage student interest. The Mystery Fraction activity provided here focuses on a key number…

  7. Molecular dynamics investigation of dynamical heterogeneity and local structure in the supercooled liquid and glass states of Al

    Energy Technology Data Exchange (ETDEWEB)

    Li, M.; Wang, C. Z.; Mandelev, M.; Ho, K. M.

    2008-05-13

    Molecular dynamics simulations are performed to study the structure and dynamical heterogeneity in the liquid and glass states of Al using a frequently employed embedded atom potential. While the pair correlation function of the glass and liquid states displays only minor differences, the icosahedral short-range order (ISRO) and the dynamics of the two states are very different. The ISRO is much stronger in the glass than in the liquid. It is also found that both the most mobile and the most immobile atoms in the glass state tend to form clusters, and the clusters formed by the immobile atoms are more compact. In order to investigate the local environment of each atom in the liquid and glass states, a local density is defined to characterize the local atomic packing. There is a strong correlation between the local packing density and the mobility of the atoms. These results indicate that dynamical heterogeneity in glasses is directly correlated to the local structure. We also analyze the diffusion mechanisms of atoms in the liquid and glass states. It is found that for the mobile atoms in the glass state, initially they are confined in the cages formed by their nearest neighbors and vibrating. On the time scale of {beta} relaxation, the mobile atoms try to break up the cage confinement and hop into new cages. In the supercooled liquid states, however, atoms continuously diffuse. Furthermore, it is found that on the time scale of {beta} relaxation, some of the mobile atoms in the glass state cooperatively hop, which is facilitated by the stringlike cluster structures. On the longer time scale, it is found that a certain fraction of atoms can simultaneously hop, although they are not nearest neighbors. Further analysis shows that these hopping atoms form big and more compact clusters than the characterized most mobile atoms. The cooperative rearrangement of these big compact clusters might facilitate the simultaneous hopping of atoms in the glass states on the long

  8. Operational generation of AVHRR-based cloud products for Europe and the Arctic at EUMETSAT's Satellite Application Facility on Climate Monitoring (CM-SAF

    Directory of Open Access Journals (Sweden)

    F. Kaspar

    2009-04-01

    Full Text Available The Satelite Application Facility on Climate Monitoring has implemented a new processing environment for AVHRR-based climate monitoring products. AVHRR measurements from NOAA-17, NOAA-18 and MetOp-A are utilized to generate daily and monthly means of several cloud parameters for Europe and the Inner Arctic: Cloud fraction, cloud types, cloud phase, cloud top height, cloud optical thickness and cloud liquid water path.

  9. Satellite observations of cloud regime development: the role of aerosol processes

    OpenAIRE

    E. Gryspeerdt; Stier, P.; D. G. Partridge

    2013-01-01

    Many different interactions between aerosols and clouds have been postulated based on correlations between satellite retrieved aerosol and cloud properties. Previous studies highlighted the importance of meteorological covariability to the observed correlations. In this work, we make use of multiple temporally-spaced satellite retrievals to observe the development of cloud regimes. The observation of cloud regime development allows us to account for the influences of cloud fraction (C...

  10. Multiple Satellite Observations of Cloud Cover in Extratropical Cyclones

    Science.gov (United States)

    Naud, Catherine M.; Booth, James F.; Posselt, Derek J.; van den Heever, Susan C.

    2013-01-01

    Using cloud observations from NASA Moderate Resolution Imaging Spectroradiometer, Multiangle Imaging Spectroradiometer, and CloudSat-CALIPSO, composites of cloud fraction in southern and northern hemisphere extratropical cyclones are obtained for cold and warm seasons between 2006 and 2010, to assess differences between these three data sets, and between summer and winter cyclones. In both hemispheres and seasons, over the open ocean, the cyclone-centered cloud fraction composites agree within 5% across the three data sets, but behind the cold fronts, or over sea ice and land, the differences are much larger. To supplement the data set comparison and learn more about the cyclones, we also examine the differences in cloud fraction between cold and warm season for each data set. The difference in cloud fraction between cold and warm season southern hemisphere cyclones is small for all three data sets, but of the same order of magnitude as the differences between the data sets. The cold-warm season contrast in northern hemisphere cyclone cloud fractions is similar for all three data sets: in the warm sector, the cold season cloud fractions are lower close to the low, but larger on the equator edge than their warm season counterparts. This seasonal contrast in cloud fraction within the cyclones warm sector seems to be related to the seasonal differences in moisture flux within the cyclones. Our analysis suggests that the three different data sets can all be used confidently when studying the warm sector and warm frontal zone of extratropical cyclones but caution should be exerted when studying clouds in the cold sector.

  11. Cloud and circulation feedbacks in a near-global aquaplanet cloud-resolving model

    Science.gov (United States)

    Narenpitak, Pornampai; Bretherton, Christopher S.; Khairoutdinov, Marat F.

    2017-06-01

    A near-global aquaplanet cloud-resolving model (NGAqua) with fixed meridionally varying sea-surface temperature (SST) is used to investigate cloud feedbacks due to three climate perturbations: a uniform 4 K SST increase, a quadrupled-CO2 concentration, and both combined. NGAqua has a horizontal resolution of 4 km with no cumulus parameterization. Its domain is a zonally periodic 20,480 km-long tropical channel, spanning 46°S-N. It produces plausible mean distributions of clouds, rainfall, and winds. After spin-up, 80 days are analyzed for the control and increased-SST simulations, and 40 days for those with quadrupled CO2. The Intertropical Convergence Zone width and tropical cloud cover are not strongly affected by SST warming or CO2 increase, except for the expected upward shift in high clouds with warming, but both perturbations weaken the Hadley circulation. Increased SST induces a statistically significant increase in subtropical low cloud fraction and in-cloud liquid water content but decreases midlatitude cloud, yielding slightly positive domain-mean shortwave cloud feedbacks. CO2 quadrupling causes a slight shallowing and a statistically insignificant reduction of subtropical low cloud fraction. Warming-induced low cloud changes are strongly correlated with changes in estimated inversion strength, which increases modestly in the subtropics but decreases in the midlatitudes. Enhanced clear-sky boundary layer radiative cooling in the warmer climate accompanies the robust subtropical low cloud increase. The probability distribution of column relative humidity across the tropics and subtropics is compared between the control and increased-SST simulations. It shows no evidence of bimodality or increased convective aggregation in a warmer climate.

  12. Polluting of Winter Convective Clouds upon Transition from Ocean Inland Over Central California: Contrasting Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Daniel; Chemke, Rei; Prather, Kimberly; Suski, Kaitlyn; Comstock, Jennifer M.; Schmid, Beat; Tomlinson, Jason M.; Jonsson, Haf

    2014-01-01

    In-situ aircraft measurements of aerosol chemical and cloud microphysical properties were conducted during the CalWater campaign in February and March 2011 over the Sierra Nevada Mountains and the coastal waters of central California. The main objective was to elucidate the impacts of aerosol properties on clouds and precipitation forming processes. In order to accomplish this, we compared contrasting cases of clouds that ingested aerosols from different sources. The results showed that clouds containing pristine oceanic air had low cloud drop concentrations and started to develop rain 500 m above their base. This occurred both over the ocean and over the Sierra Nevada, mainly in the early morning when the radiatively cooled stable continental boundary layer was decoupled from the cloud base. Supercooled rain dominated the precipitation that formed in growing convective clouds in the pristine air, up to the -21°C isotherm level. A contrasting situation was documented in the afternoon over the foothills of the Sierra Nevada, when the clouds ingested high pollution aerosol concentrations produced in the Central Valley. This led to slow growth of the cloud drop effective radius with height and suppressed and even prevented the initiation of warm rain while contributing to the development of ice hydrometeors in the form of graupel. Our results show that cloud condensation and ice nuclei were the limiting factors that controlled warm rain and ice processes, respectively, while the unpolluted clouds in the same air mass produced precipitation quite efficiently. These findings provide the motivation for deeper investigations into the nature of the aerosols seeding clouds.

  13. Fraction Reduction through Continued Fractions

    Science.gov (United States)

    Carley, Holly

    2011-01-01

    This article presents a method of reducing fractions without factoring. The ideas presented may be useful as a project for motivated students in an undergraduate number theory course. The discussion is related to the Euclidean Algorithm and its variations may lead to projects or early examples involving efficiency of an algorithm.

  14. Martian Clouds

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 28 June 2004 The atmosphere of Mars is a dynamic system. Water-ice clouds, fog, and hazes can make imaging the surface from space difficult. Dust storms can grow from local disturbances to global sizes, through which imaging is impossible. Seasonal temperature changes are the usual drivers in cloud and dust storm development and growth. Eons of atmospheric dust storm activity has left its mark on the surface of Mars. Dust carried aloft by the wind has settled out on every available surface; sand dunes have been created and moved by centuries of wind; and the effect of continual sand-blasting has modified many regions of Mars, creating yardangs and other unusual surface forms. This image was acquired during early spring near the North Pole. The linear 'ripples' are transparent water-ice clouds. This linear form is typical for polar clouds. The black regions on the margins of this image are areas of saturation caused by the build up of scattered light from the bright polar material during the long image exposure. Image information: VIS instrument. Latitude 68.1, Longitude 147.9 East (212.1 West). 38 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip

  15. Properties of subvisible cirrus clouds formed by homogeneous freezing

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2002-04-01

    Full Text Available Number concentrations and mean sizes of ice crystals and derived microphysical and optical properties of subvisible cirrus clouds (SVCs formed by homogeneous freezing of supercooled aerosols are investigated as a function of temperature and updraft speed of adiabatically ascending air parcels. The properties of such clouds are insensitive to variations of the aerosol number and size distribution. Based on criteria constraining the optical extinction, sedimentation time, and existence time of SVCs, longer-lived (>10 min clouds, capable of exerting a measurable radiative or chemical impact, are generated within a narrow range of updraft speeds below 1 - 2 cm s -1 at temperatures below about 215K, with concentrations of ice crystals not exceeding 0.1 cm-3. The clouds do not reach an equilibrium state because the ice crystals sediment out of the formation layer typically before the supersaturation is removed. Given these results, it seems likely that a limited number (<0.1 cm-3 of effective heterogeneous freezing nuclei that nucleate ice below the homogeneous freezing threshold can control the formation and properties of SVCs, although homogeneous freezing nuclei are far more abundant.

  16. Cloud Computing (4)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ 8 Case Study Cloud computing is still a new phenomenon. Although many IT giants are developing their own cloud computing infrastructures,platforms, software, and services, few have really succeeded in becoming cloud computing providers.

  17. Blue skies for CLOUD

    CERN Multimedia

    2006-01-01

    Through the recently approved CLOUD experiment, CERN will soon be contributing to climate research. Tests are being performed on the first prototype of CLOUD, an experiment designed to assess cosmic radiation influence on cloud formation.

  18. Enhanced small-angle scattering connected to the Widom line in simulations of supercooled water.

    Science.gov (United States)

    Wikfeldt, K T; Huang, C; Nilsson, A; Pettersson, L G M

    2011-06-07

    We present extensive simulations on the TIP4P∕2005 water model showing significantly enhanced small-angle scattering (SAS) in the supercooled regime. The SAS is related to the presence of a Widom line (T(W)) characterized by maxima in thermodynamic response functions and Ornstein-Zernike correlation length. Recent experimental small-angle x-ray scattering data [Huang et al., J. Chem. Phys. 133, 134504 (2010)] are excellently reproduced, albeit with an increasing temperature offset at lower temperatures. Assuming the same origin of the SAS in experiment and model this suggests the existence of a Widom line also in real supercooled water. Simulations performed at 1000 bar show an increased abruptness of a crossover from dominating high-density (HDL) to dominating low-density (LDL) liquid and strongly enhanced SAS associated with crossing T(W), consistent with a recent determination of the critical pressure of TIP4P∕2005 at 1350 bar. Furthermore, good agreement with experimental isothermal compressibilities at 1000, 1500, and 2000 bar shows that the high pressure supercooled thermodynamic behavior of water is well described by TIP4P∕2005. Analysis of the tetrahedrality parameter Q reveals that the HDL-LDL structural transition is very sharp at 1000 bar, and that structural fluctuations become strongly coupled to density fluctuations upon approaching T(W). Furthermore, the tetrahedrality distribution becomes bimodal at ambient temperatures, an observation that possibly provides a link between HDL-LDL fluctuations and the structural bimodality in liquid water indicated by x-ray spectroscopic techniques. Computed x-ray absorption spectra are indeed found to show sensitivity to the tetrahedrality parameter.

  19. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces.

    Science.gov (United States)

    Heydari, Golrokh; Sedighi Moghaddam, Maziar; Tuominen, Mikko; Fielden, Matthew; Haapanen, Janne; Mäkelä, Jyrki M; Claesson, Per M

    2016-04-15

    The state and stability of supercooled water on (super)hydrophobic surfaces is crucial for low temperature applications and it will affect anti-icing and de-icing properties. Surface characteristics such as topography and chemistry are expected to affect wetting hysteresis during temperature cycling experiments, and also the freezing delay of supercooled water. We utilized stochastically rough wood surfaces that were further modified to render them hydrophobic or superhydrophobic. Liquid flame spraying (LFS) was utilized to create a multi-scale roughness by depositing titanium dioxide nanoparticles. The coating was subsequently made non-polar by applying a thin plasma polymer layer. As flat reference samples modified silica surfaces with similar chemistries were utilized. With these substrates we test the hypothesis that superhydrophobic surfaces also should retard ice formation. Wetting hysteresis was evaluated using contact angle measurements during a freeze-thaw cycle from room temperature to freezing occurrence at -7°C, and then back to room temperature. Further, the delay in freezing of supercooled water droplets was studied at temperatures of -4°C and -7°C. The hysteresis in contact angle observed during a cooling-heating cycle is found to be small on flat hydrophobic surfaces. However, significant changes in contact angles during a cooling-heating cycle are observed on the rough surfaces, with a higher contact angle observed on cooling compared to during the subsequent heating. Condensation and subsequent frost formation at sub-zero temperatures induce the hysteresis. The freezing delay data show that the flat surface is more efficient in enhancing the freezing delay than the rougher surfaces, which can be rationalized considering heterogeneous nucleation theory. Thus, our data suggests that molecular flat surfaces, rather than rough superhydrophobic surfaces, are beneficial for retarding ice formation under conditions that allow condensation and frost

  20. Crystallization Behavior and Relaxation Dynamics of Supercooled S‑Ketoprofen and the Racemic Mixture along an Isochrone

    DEFF Research Database (Denmark)

    Adrjanowicz, Karolina; Kaminski, Kamil; Paluch, Marian

    2015-01-01

    In this paper, we study crystallization behavior and molecular dynamics in the supercooled liquid state of the pharmaceutically important compound ketoprofen at various thermodynamic conditions. Dielectric relaxation for a racemic mixture was investigated in a wide range of temperatures and press......In this paper, we study crystallization behavior and molecular dynamics in the supercooled liquid state of the pharmaceutically important compound ketoprofen at various thermodynamic conditions. Dielectric relaxation for a racemic mixture was investigated in a wide range of temperatures...... of pure enantiomers and their 50–50 equimolar mixture in the metastable supercooled liquid state. Crystallization kinetic studies revealed that at the same isochronal conditions the behavior of the S-enantiomer and R,S-racemic mixture of ketoprofen is entirely different. This was examined in the context...

  1. In-situ High-energy X-ray Diffraction Study of the Local Structure of Supercooled Liquid Si

    Science.gov (United States)

    Lee, G. W.; Kim, T. H.; Sieve, B.; Gangopadhyay, A. K.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.; Robinson, D. S.; Kelton, K. F.; Goldman, A. I.

    2005-01-01

    While changes in the coordination number for liquid silicon upon supercooling, signaling an underlying liquid-liquid phase transition, have been predicted, x-ray and neutron measurements have produced conflicting reports. In particular some studies have found an increase in the first shell coordination as temperature decreases in the supercooled regime, while others have reported increases in the coordination number with decreasing temperature. Employing the technique of electrostatic levitation coupled with high energy x-ray diffraction (125 keV), and rapid data acquisition (100ms collection times) using an area detector, we have obtained high quality structural data more deeply into the supercooled regime than has been possible before. No change in coordination number is observed in this temperature region, calling into question previous experimental claims of structural evidence for the existence of a liquid-liquid phase transition.

  2. Studies of a dynamic type ice storage system using supercooled water; Kareikyakusui riyo dainamikku gata shochikunetsu shisutemu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Ito, S.; Hashimoto, A.; Miura, N. [Kanagawa Inst. of Tech., Kanagawa (Japan); Ikemoto, Y.

    1999-11-25

    An ice storage system using supercooled water was constructed and the performance was tested. The system was consisted of a storage tank with the volume of 1.2 m{sup 3} in which slurry-ice was stared, a spiral double-tube heat exchanger 22 m long for making supercooled water by brine, a refrigerating machine of the rated capacity of 2.2 kW, reservoirs for cold and hot brine, heaters, and pumps. The system was able to be operated for more than 5 hours without freezing mostly if the degree of supercooling was less than about 2 degree C. The COPs based on the power of the refrigerating machine and system were about 1.3 and 0.7, respectively. (author)

  3. Aerosol removal and cloud collapse accelerated by supersaturation fluctuations in turbulence

    Science.gov (United States)

    Chandrakar, K. K.; Cantrell, W.; Ciochetto, D.; Karki, S.; Kinney, G.; Shaw, R. A.

    2017-05-01

    Prior observations have documented the process of cloud cleansing, through which cloudy, polluted air from a continent is slowly transformed into cloudy, clean air typical of a maritime environment. During that process, cloud albedo changes gradually, followed by a sudden reduction in cloud fraction and albedo as drizzle forms and convection changes from closed to open cellular. Experiments in a cloud chamber that generates a turbulent environment show a similar cloud cleansing process followed by rapid cloud collapse. Observations of (1) cloud droplet size distribution, (2) interstitial aerosol size distribution, (3) cloud droplet residual size distribution, and (4) water vapor supersaturation are all consistent with the hypothesis that turbulent fluctuations of supersaturation accelerate the cloud cleansing process and eventual cloud collapse. Decay of the interstitial aerosol concentration occurs slowly at first then more rapidly. The accelerated cleansing occurs when the cloud phase relaxation time exceeds the turbulence correlation time.

  4. Meteorological and aerosol effects on marine cloud microphysical properties

    Science.gov (United States)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Corrigan, C. E.; Roberts, G. C.; Hawkins, L. N.; Schroder, J. C.; Bertram, A. K.; Zhao, R.; Lee, A. K. Y.; Lin, J. J.; Nenes, A.; Wang, Z.; Wonaschütz, A.; Sorooshian, A.; Noone, K. J.; Jonsson, H.; Toom, D.; Macdonald, A. M.; Leaitch, W. R.; Seinfeld, J. H.

    2016-04-01

    Meteorology and microphysics affect cloud formation, cloud droplet distributions, and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets studies provided measurements in six case studies of cloud thermodynamic properties, initial particle number distribution and composition, and cloud drop distribution. In this study, we use simulations from a chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce observed cloud droplet distributions of the case studies. Four cases had subadiabatic lapse rates, resulting in fewer activated droplets, lower liquid water content, and higher cloud base height than an adiabatic lapse rate. A weighted ensemble of simulations that reflect measured variation in updraft velocity and cloud base height was used to reproduce observed droplet distributions. Simulations show that organic hygroscopicity in internally mixed cases causes small effects on cloud reflectivity (CR) (modal peak near 0.1 µm). Differences in simulated droplet spectral widths (k) caused larger differences in CR than organic hygroscopicity in cases with organic mass fractions of 60% or less for the cases shown. Finally, simulations from a numerical parameterization of cloud droplet activation suitable for general circulation models compared well with the ACP model, except under high organic mass fraction.

  5. Chosen thermodynamic experiments: depression of the freezing point of water with salt and supercooled water

    OpenAIRE

    Krnc, Katja

    2014-01-01

    The diploma thesis presents two interesting thermodynamic experiments which were executed and described by Joseph Black in 18th Century. These are: depression of the freezing point of water with salt and supercooled water. We meet water in three states of matter in nature: in the state of ice, liquid water, and water steam. Phase crossing from water to ice (and vice versa from ice to water) is done with normal air pressure with the state temperature of 0°C. If we add certain matters to wat...

  6. Slow dynamics and local quasi-equilibrium-relaxation in supercooled colloidal systems

    Energy Technology Data Exchange (ETDEWEB)

    RubI, J M; SantamarIa-Holek, I; Perez-Madrid, A [Department de Fisica Fonamental, Facultat de Fisica, Universitat de Barcelona, Diagonal 647, 08028 Barcelona (Spain)

    2004-06-09

    We present a Fokker-Planck description of supercooled colloidal systems exhibiting slow relaxation dynamics. Assuming the existence of a local quasi-equilibrium state during the relaxation of the system, we derive a non-Markovian Fokker-Planck equation for the non-stationary conditional probability. A generalized Stokes-Einstein relation containing the temperature of the system at local quasi-equilibrium instead of the temperature of the bath is obtained. Our results explain experiments showing that the diffusion coefficient is not proportional to the inverse of the effective viscosity at frequencies related to the diffusion timescale.

  7. Experimental investigations on prototype heat storage units utilizing stable supercooling of sodium acetate trihydrate mixtures

    DEFF Research Database (Denmark)

    Dannemand, Mark; Dragsted, Janne; Fan, Jianhua;

    2016-01-01

    was filled with 220 kg SAT mixture thickened with 1% carboxymethyl cellulose. The heat exchange capacity rate during the charging of the unit with the extra water was significantly higher than for the unit with the thickening agent due to the different levels of convection. The SAT mixtures in the units were......Laboratory tests of two heat storage units based on the principle of stable supercooling of sodium acetate trihydrate (SAT) mixtures were carried out. One unit was filled with 199.5 kg of SAT with 9% extra water to avoid phase separation of the incongruently melting salt hydrate. The other unit...

  8. Cloud-Top Entrainment in Stratocumulus Clouds

    Science.gov (United States)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  9. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. II: Multi layered cloud

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H.; McCoy, Renata; Klein, Stephen A.; Xie, Shaocheng; Luo, Yali; Avramov, Alexander; Chen, Mingxuan; Cole, Jason N.; Falk, Michael; Foster, Mike; Del Genio, Anthony D.; Harrington, Jerry Y.; Hoose, Corinna; Khrairoutdinov, Marat; Larson, Vince; Liu, Xiaohong; McFarquhar, Greg; Poellot, M. R.; Von Salzen, Knut; Shipway, Ben; Shupe, Matthew D.; Sud, Yogesh C.; Turner, David D.; Veron, Dana; Walker, Gregory K.; Wang, Zhien; Wolf, Audrey; Xu, Kuan-Man; Yang, Fanglin; Zhang, G.

    2009-05-21

    Results are presented from an intercomparison of single-column and cloud resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, the cloud-resolving models and models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models also tend to produce a larger cloud fraction than the single column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  10. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.;

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  11. Fragile-to-strong crossover in supercooled water: A comparison between TIP4P and TIP4P/2005 models

    Science.gov (United States)

    De Marzio, M.; Camisasca, G.; Rovere, M.; Gallo, P.

    2016-05-01

    We present recent simulation results on the dynamics of supercooled water with the TIP4P/2005 potential. We find that the dynamical behaviour of the translational motion of the molecules is well interpreted in terms of the Mode Coupling Theory, as it was found for supercooled TIP4P water. We compare the results of the two models and in particular we find also in TIP4P/2005 a crossover from a fragile to a strong regime. We connect this crossover to the crossing of the Widom line emanating from the liquid-liquid critical point.

  12. FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals

    Directory of Open Access Journals (Sweden)

    M. van Roozendael

    2008-11-01

    Full Text Available The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A-band algorithm has been used to retrieve cloud information from measurements of the O2 A-band around 760 nm by GOME, SCIAMACHY and GOME-2. The cloud parameters retrieved by FRESCO are the effective cloud fraction and cloud pressure, which are used for cloud correction in the retrieval of trace gases like O3 and NO2. To improve the cloud pressure retrieval for partly cloudy scenes, single Rayleigh scattering has been included in an improved version of the algorithm, called FRESCO+. We compared FRESCO+ and FRESCO effective cloud fractions and cloud pressures using simulated spectra and one month of GOME measured spectra. As expected, FRESCO+ gives more reliable cloud pressures over partly cloudy pixels. Simulations and comparisons with ground-based radar/lidar measurements of clouds show that the FRESCO+ cloud pressure is about the optical midlevel of the cloud. Globally averaged, the FRESCO+ cloud pressure is about 50 hPa higher than the FRESCO cloud pressure, while the FRESCO+ effective cloud fraction is about 0.01 larger. The effect of FRESCO+ cloud parameters on O3 and NO2 vertical column density (VCD retrievals is studied using SCIAMACHY data and ground-based DOAS measurements. We find that the FRESCO+ algorithm has a significant effect on tropospheric NO2 retrievals but a minor effect on total O3 retrievals. The retrieved SCIAMACHY tropospheric NO2 VCDs using FRESCO+ cloud parameters (v1.1 are lower than the tropospheric NO2VCDs which used FRESCO cloud parameters (v1.04, in particular over heavily polluted areas with low clouds. The difference between SCIAMACHY tropospheric NO2 VCDs v1.1 and ground-based MAXDOAS measurements performed in Cabauw, The Netherlands, during the DANDELIONS campaign is about −2.12×1014molec cm−2.

  13. Automatic Cloud Bursting under FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [Fermilab; Shangping, Ren [IIT; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin [KISTI, Daejeon; Noh, Seo-Young [KISTI, Daejeon

    1900-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  14. Automatic Cloud Bursting under FermiCloud

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hao [Fermilab; Shangping, Ren [IIT; Garzoglio, Gabriele [Fermilab; Timm, Steven [Fermilab; Bernabeu, Gerard [Fermilab; Kim, Hyun Woo; Chadwick, Keith; Jang, Haengjin [KISTI, Daejeon; Noh, Seo-Young [KISTI, Daejeon

    2013-01-01

    Cloud computing is changing the infrastructure upon which scientific computing depends from supercomputers and distributed computing clusters to a more elastic cloud-based structure. The service-oriented focus and elasticity of clouds can not only facilitate technology needs of emerging business but also shorten response time and reduce operational costs of traditional scientific applications. Fermi National Accelerator Laboratory (Fermilab) is currently in the process of building its own private cloud, FermiCloud, which allows the existing grid infrastructure to use dynamically provisioned resources on FermiCloud to accommodate increased but dynamic computation demand from scientists in the domains of High Energy Physics (HEP) and other research areas. Cloud infrastructure also allows to increase a private cloud’s resource capacity through “bursting” by borrowing or renting resources from other community or commercial clouds when needed. This paper introduces a joint project on building a cloud federation to support HEP applications between Fermi National Accelerator Laboratory and Korea Institution of Science and Technology Information, with technical contributions from the Illinois Institute of Technology. In particular, this paper presents two recent accomplishments of the joint project: (a) cloud bursting automation and (b) load balancer. Automatic cloud bursting allows computer resources to be dynamically reconfigured to meet users’ demands. The load balance algorithm which the cloud bursting depends on decides when and where new resources need to be allocated. Our preliminary prototyping and experiments have shown promising success, yet, they also have opened new challenges to be studied

  15. How Can AERONET Help with Monitoring Clouds?

    Science.gov (United States)

    Marshak, A.

    2004-01-01

    When conditions are inappropriate to make AErosol RObotic NETwork (AERONET) measurements for aerosol studies, new measurements related to cloud physics can be made instead. As such, several AERONET CIMEL sunphotometers have been equipped with a new "cloud mode." This mode allows the CIMELs to make measurements of zenith radiance when the Sun in blocked by clouds. When in cloud mode, a CIMEL points straight up every 10-15 minutes and takes 10 measurements over a 9 second time interval at four wavelengths: 440,670,870, and 1020 nm. For cloudy conditions above green vegetation, the spectral contrast in surface albedo dominates over Rayleigh and aerosol effects. We have developed a new method for retrieving cloud optical depth, even for broken clouds, that uses data from the 670 (and/or 440) and 870 nm channels. In addition to cloud optical depth, the method also infers a "radiatively effective" cloud fraction. The results of the retrievals at the ARM Central Facility in Oklahoma are compared with the ones from Microwave Radiometer (MWR) and Multi-Filter Rotating Shadowband Radiometers (MFRSR).

  16. Could cirrus clouds have warmed early Mars?

    Science.gov (United States)

    Ramirez, Ramses M.; Kasting, James F.

    2017-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

  17. Automatic cloud classification of whole sky images

    Directory of Open Access Journals (Sweden)

    A. Heinle

    2010-05-01

    Full Text Available The recently increasing development of whole sky imagers enables temporal and spatial high-resolution sky observations. One application already performed in most cases is the estimation of fractional sky cover. A distinction between different cloud types, however, is still in progress. Here, an automatic cloud classification algorithm is presented, based on a set of mainly statistical features describing the color as well as the texture of an image. The k-nearest-neighbour classifier is used due to its high performance in solving complex issues, simplicity of implementation and low computational complexity. Seven different sky conditions are distinguished: high thin clouds (cirrus and cirrostratus, high patched cumuliform clouds (cirrocumulus and altocumulus, stratocumulus clouds, low cumuliform clouds, thick clouds (cumulonimbus and nimbostratus, stratiform clouds and clear sky. Based on the Leave-One-Out Cross-Validation the algorithm achieves an accuracy of about 97%. In addition, a test run of random images is presented, still outperforming previous algorithms by yielding a success rate of about 75%, or up to 88% if only "serious" errors with respect to radiation impact are considered. Reasons for the decrement in accuracy are discussed, and ideas to further improve the classification results, especially in problematic cases, are investigated.

  18. The influence of extratropical cloud phase and amount feedbacks on climate sensitivity

    Science.gov (United States)

    Frey, William R.; Kay, Jennifer E.

    2017-07-01

    Global coupled climate models have large long-standing cloud and radiation biases, calling into question their ability to simulate climate and climate change. This study assesses the impact of reducing shortwave radiation biases on climate sensitivity within the Community Earth System Model (CESM). The model is modified by increasing supercooled cloud liquid to better match absorbed shortwave radiation observations over the Southern Ocean while tuning to reduce a compensating tropical shortwave bias. With a thermodynamic mixed-layer ocean, equilibrium warming in response to doubled CO2 increases from 4.1 K in the control to 5.6 K in the modified model. This 1.5 K increase in equilibrium climate sensitivity is caused by changes in two extratropical shortwave cloud feedbacks. First, reduced conversion of cloud ice to liquid at high southern latitudes decreases the magnitude of a negative cloud phase feedback. Second, warming is amplified in the mid-latitudes by a larger positive shortwave cloud feedback. The positive cloud feedback, usually associated with the subtropics, arises when sea surface warming increases the moisture gradient between the boundary layer and free troposphere. The increased moisture gradient enhances the effectiveness of mixing to dry the boundary layer, which decreases cloud amount and optical depth. When a full-depth ocean with dynamics and thermodynamics is included, ocean heat uptake preferentially cools the mid-latitude Southern Ocean, partially inhibiting the positive cloud feedback and slowing warming. Overall, the results highlight strong connections between Southern Ocean mixed-phase cloud partitioning, cloud feedbacks, and ocean heat uptake in a climate forced by greenhouse gas changes.

  19. The Gibbs-Thomson effect and intergranular melting in ice emulsions: Interpreting the anomalous heat capacity and volume of supercooled water

    Science.gov (United States)

    Johari, G. P.

    1997-12-01

    Calculations for the Gibbs-Thomson effect and the intergranular melting of the ice droplets in (water) emulsions at temperatures below 273.16 K show that water and ice coexist at thermodynamic equilibrium in an apparently frozen emulsion. The fraction of water at this equilibrium increases on heating, which alters further the thermodynamic properties of the emulsion. As some of the ice in the emulsion has already melted, the increase in the enthalpy, H, and heat capacity, Cp, and the decrease in the volume measured on the normal melting at 273.16 K, are less than the values anticipated. The ratio of this increase in H, or Cp, on melting of the emulsion to the corresponding value for pure ice, underestimates the emulsion's water content which, when used for scaling the difference between the Cp of the unfrozen and frozen emulsion at lower temperatures, as in earlier studies, leads to a larger Cp of supercooled water than the actual value. Similar scaling of the corresponding difference between the volume leads to higher volume, or lower density, than the actual value. A formalism for this premelting effect is given for both the adiabatic and differential scanning calorimetry (DSC), and its magnitude is calculated. New experiments show that the rise in the DSC signal, or equivalently in the apparent Cp observed on heating the frozen emulsion, occurs over a temperature range much wider than the Gibbs-Thomson effect and intergranular melting predict, for which reasons are given. It is shown that Cp of the dispersant phase is also affected by the melting of ice droplets. There are four consequences of the premelting effects for all finely dispersed materials, for frozen water emulsions below 273.16 K: (i) water and ice coexist in the emulsion, (ii) its apparent Cp will increase with increase in the heat input used to measure it, (iii) the apparent Cp will increase with decrease in the average size of the droplets, and (iv) the apparent Cp will decrease on annealing the

  20. Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin

    Science.gov (United States)

    Zhang, Yang; Tyagi, Madhusudan; Mamontov, Eugene; Chen, Sow-Hsin

    2012-02-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent β(Q) is independent of the wavevector transfer Q in the measured Q range and (ii) the structural relaxation time τ(Q) follows a power-law dependence on Q. Consequently, the Q-independent structural relaxation time τ0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of τ0 can be fitted with the mode-coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by Tokuyama in the measured temperature range. The calculated dynamic response function χT(Q, t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement langx2rang and the non-Gaussian parameter α2 extracted from the elastic scattering.

  1. Orientational dynamics and energy landscape features of thermotropic liquid crystals: An analogy with supercooled liquids

    Indian Academy of Sciences (India)

    Biman Jana; Biman Bagchi

    2007-09-01

    Recent optical kerr effect (OKE) studies have revealed that orientational relaxation of rodlike nematogens near the isotropic-nematic (I-N) phase boundary and also in the nematic phase exhibit temporal power law decay at intermediate times. Such behaviour has drawn an intriguing analogy with supercooled liquids. Here, we have investigated the single-particle and collective orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I-N phase boundary, the system behaves like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system.

  2. Numerical investigation on super-cooled large droplet icing of fan rotor blade in jet engine

    Science.gov (United States)

    Isobe, Keisuke; Suzuki, Masaya; Yamamoto, Makoto

    2014-10-01

    Icing (or ice accretion) is a phenomenon in which super-cooled water droplets impinge and accrete on a body. It is well known that ice accretion on blades and vanes leads to performance degradation and has caused severe accidents. Although various anti-icing and deicing systems have been developed, such accidents still occur. Therefore, it is important to clarify the phenomenon of ice accretion on an aircraft and in a jet engine. However, flight tests for ice accretion are very expensive, and in the wind tunnel it is difficult to reproduce all climate conditions where ice accretion can occur. Therefore, it is expected that computational fluid dynamics (CFD), which can estimate ice accretion in various climate conditions, will be a useful way to predict and understand the ice accretion phenomenon. On the other hand, although the icing caused by super-cooled large droplets (SLD) is very dangerous, the numerical method has not been established yet. This is why SLD icing is characterized by splash and bounce phenomena of droplets and they are very complex in nature. In the present study, we develop an ice accretion code considering the splash and bounce phenomena to predict SLD icing, and the code is applied to a fan rotor blade. The numerical results with and without the SLD icing model are compared. Through this study, the influence of the SLD icing model is numerically clarified.

  3. Nature of large aggregates in supercooled aqueous solutions of sodium dodecyl sulfate

    Energy Technology Data Exchange (ETDEWEB)

    Franses, E.I. (Purdue Univ., West Lafayette, IN); Davis, H.T.; Miller, W.G.; Scriven, L.E.

    1980-09-18

    Preparations of 2.0 and 5.5 wt % sodium dodecyl sulfate (SDS) in 3.5 wt % (0.6 M) aqueous NaCl are equilibrium micellar solutions above 28/sup 0/C, the Krafft point of the surfactant at this salinity. These systems can be supercooled and remain transparent for hours and days. At 25/sup 0/C at equilibrium they are biphasic, a hydrated crystal phase and an aqueous salt solution phase containing only 0.01/sub 2/ wt % SDS. Conductimetry and /sup 13/C NMR show that these transparent supercooled systems are indeed supersaturated solutions and not microdispersions of the hydrated crystal. The time lag for the onset of nucleation of the crystals depends strongly on stirring details and probably on presence of gas-liquid interface. The big nonequilibrium aggregates present in the supersaturated systems resemble micelles in conductivity and molecular motion, and are likely to be metastable micelles as is presumed by Mazer, Benedek, and Carey. 21 references, 6 figures, 1 table.

  4. Behavior of supercooled aqueous solutions stemming from hidden liquid-liquid transition in water

    Science.gov (United States)

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A.

    2014-08-01

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid-liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid-liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H2O-NaCl and H2O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid-liquid transition. We elucidate the non-conserved nature of the order parameter (extent of "reaction" between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  5. Behavior of supercooled aqueous solutions stemming from hidden liquid–liquid transition in water

    Energy Technology Data Exchange (ETDEWEB)

    Biddle, John W.; Holten, Vincent; Anisimov, Mikhail A., E-mail: anisimov@umd.edu [Institute for Physical Science and Technology and Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20742 (United States)

    2014-08-21

    A popular hypothesis that explains the anomalies of supercooled water is the existence of a metastable liquid–liquid transition hidden below the line of homogeneous nucleation. If this transition exists and if it is terminated by a critical point, the addition of a solute should generate a line of liquid–liquid critical points emanating from the critical point of pure metastable water. We have analyzed thermodynamic consequences of this scenario. In particular, we consider the behavior of two systems, H{sub 2}O-NaCl and H{sub 2}O-glycerol. We find the behavior of the heat capacity in supercooled aqueous solutions of NaCl, as reported by Archer and Carter [J. Phys. Chem. B 104, 8563 (2000)], to be consistent with the presence of the metastable liquid–liquid transition. We elucidate the non-conserved nature of the order parameter (extent of “reaction” between two alternative structures of water) and the consequences of its coupling with conserved properties (density and concentration). We also show how the shape of the critical line in a solution controls the difference in concentration of the coexisting liquid phases.

  6. Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    CERN Document Server

    Style, Robert W; Cocks, Alan C F; Wettlaufer, John S

    2011-01-01

    We present a new, physically-intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil, and the geometrical supercooling of the water in the soil; a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good ...

  7. Liquid-liquid transition in supercooled water suggested by microsecond simulations.

    Science.gov (United States)

    Li, Yaping; Li, Jicun; Wang, Feng

    2013-07-23

    The putative liquid-liquid phase transition in supercooled water has been used to explain many anomalous behaviors of water. However, no direct experimental verification of such a phase transition has been accomplished, and theoretical studies from different simulations contradict each other. We investigated the putative liquid-liquid phase transition using the Water potential from Adaptive Force Matching for Ice and Liquid (WAIL). The simulation reveals a first-order phase transition in the supercooled regime with the critical point at ~207 K and 50 MPa. Normal water is high-density liquid (HDL). Low-density liquid (LDL) emerges at lower temperatures. The LDL phase has a density only slightly larger than that of the ice-Ih and shows more long-range order than HDL. However, the transformation from LDL to HDL is spontaneous across the first-order phase transition line, suggesting the LDL configuration is not poorly formed nanocrystalline ice. It has been demonstrated in the past that the WAIL potential provides reliable predictions of water properties such as melting temperature and temperature of maximum density. Compared with other simple water potentials, WAIL is not biased by fitting to experimental properties, and simulation with this potential reflects the prediction of a high-quality first-principle potential energy surface.

  8. Optical Kerr effect of liquid and supercooled water: The experimental and data analysis perspective

    Science.gov (United States)

    Taschin, A.; Bartolini, P.; Eramo, R.; Righini, R.; Torre, R.

    2014-08-01

    The time-resolved optical Kerr effect spectroscopy (OKE) is a powerful experimental tool enabling accurate investigations of the dynamic phenomena in molecular liquids. We introduced innovative experimental and fitting procedures, that enable a safe deconvolution of sample response function from the instrumental function. This is a critical issue in order to measure the dynamics of liquid water. We report OKE data on water measuring intermolecular vibrations and the structural relaxation processes in an extended temperature range, inclusive of the supercooled states. The unpreceded data quality makes possible a solid comparison with few theoretical models: the multi-mode Brownian oscillator model, the Kubo's discrete random jump model, and the schematic mode-coupling model. All these models produce reasonable good fits of the OKE data of stable liquid water, i.e., over the freezing point. The features of water dynamics in the OKE data becomes unambiguous only at lower temperatures, i.e., for water in the metastable supercooled phase. We found that the schematic mode-coupling model provides the more rigorous and complete model for water dynamics, even if its intrinsic hydrodynamic approach does not give a direct access to the molecular information.

  9. Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuntao; Petrik, Nikolay G.; Smith, R. Scott; Kay, Bruce D.; Kimmel, Greg A.

    2016-12-12

    Understanding deeply supercooled water is key to unraveling many of water’s anomalous properties. However, this has proven difficult due to rapid and uncontrolled crystallization. Using a pulsed laser heating technique, we measure the growth rate of crystalline ice, G(T), for 180 K < T < 262 K, i.e. deep within water’s “no man’s land.” The self-diffusion of supercooled liquid water, D(T), is obtained from G(T) using the Wilson-Frenkel model of crystal growth. For T > 237 K, G(T) and D(T) have super-Arrhenius (“fragile”) temperature dependences, but both crossover to Arrhenius (“strong”) behavior with a large activation energy in “no man’s land.” The fact that G(T) and D(T) are smoothly varying rules out the hypothesis that liquid water’s properties have a singularity at or near 228 K. However the results are consistent with a previous prediction for D(T) that assumed no thermodynamic transitions occur in “no man’s land.

  10. Quasi-Elastic Neutron Scattering Studies of the Slow Dynamics of Supercooled and Glassy Aspirin

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yang [ORNL; Tyagi, M. [NCNR and University of Maryland; Mamontov, Eugene [ORNL; Chen, Sow-hsin H [ORNL

    2011-01-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 K down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent (Q) is independent of the wave vector transfer Q in the measured Q-range, and (ii) the structural relaxation time (Q) follows a power law dependence on Q. Consequently, the Q-independent structural relaxation time 0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of 0 can be fitted with the mode coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by M. Tokuyama in the measured temperature range. The calculated dynamic response function T(Q,t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows a direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement x2 and non-Gaussian parameter 2 extracted from the elastic scattering.

  11. A process oriented characterization of tropical oceanic clouds for climate model evaluation, based on a statistical analysis of daytime A-train observations

    Energy Technology Data Exchange (ETDEWEB)

    Konsta, Dimitra [Ecole Polytechnique, LMD, Palaiseau (France); Academy of Athens, Research Center of Atmospheric Physics and Climatology, Athens (Greece); Chepfer, Helene [Universite Pierre et Marie Curie, LMD/IPSL, Paris (France); Dufresne, Jean-Louis [CNRS, Universite Pierre et Marie Curie, LMD/IPSL, Paris (France)

    2012-11-15

    This paper aims at characterizing how different key cloud properties (cloud fraction, cloud vertical distribution, cloud reflectance, a surrogate of the cloud optical depth) vary as a function of the others over the tropical oceans. The correlations between the different cloud properties are built from 2 years of collocated A-train observations (CALIPSO-GOCCP and MODIS) at a scale close to cloud processes; it results in a characterization of the physical processes in tropical clouds, that can be used to better understand cloud behaviors, and constitute a powerful tool to develop and evaluate cloud parameterizations in climate models. First, we examine a case study of shallow cumulus cloud observed simultaneously by the two sensors (CALIPSO, MODIS), and develop a methodology that allows to build global scale statistics by keeping the separation between clear and cloudy areas at the pixel level (250, 330 m). Then we build statistical instantaneous relationships between the cloud cover, the cloud vertical distribution and the cloud reflectance. The vertical cloud distribution indicates that the optically thin clouds (optical thickness <1.5) dominate the boundary layer over the trade wind regions. Optically thick clouds (optical thickness >3.4) are composed of high and mid-level clouds associated with deep convection along the ITCZ and SPCZ and over the warm pool, and by stratocumulus low level clouds located along the East coast of tropical oceans. The cloud properties are analyzed as a function of the large scale circulation regime. Optically thick high clouds are dominant in convective regions (CF > 80 %), while low level clouds with low optical thickness (<3.5) are present in regimes of subsidence but in convective regimes as well, associated principally to low cloud fractions (CF < 50 %). A focus on low-level clouds allows us to quantify how the cloud optical depth increases with cloud top altitude and with cloud fraction. (orig.)

  12. Comparison of Cloud Resolving Model Simulations to Remote Sensing Data

    Science.gov (United States)

    Randall, David A.; Eitzen, Zachary

    2005-01-01

    The purpose of this research was to evaluate the ability of a cloud-resolving model (CRM) to simulate the dynamical, radiative, and microphysical properties of deep convective cloud objects identified using CERES (Clouds and the Earth s Radiant Energy System) on board the Tropical Rainfall Measuring Mission (TRMM) satellite platform, for many cases. A deep convective cloud object is a contiguous region that is composed of satellite footprints that fulfill the following selection criteria: 100% cloud fraction, cloud optical depth > 10, and a cloud top height of at least 10 km. Selection criteria have also been formed for different types of boundary-layer clouds, as described in Xu et al. (2005). The purpose of the cloud object approach is to identify specific areas of where the cloud properties simulated by the CRM systematically differ from the observed cloud properties. Where these systematic differences exist, concrete steps can be made to improve the CRM s simulation of an entire class of clouds, rather than by tuning the model to correctly simulate a single case study, as is often done. Additional information regarding detailed approaches and findings are presented.

  13. Intercomparison of model simulations of mixed-phase clouds observed during the ARM Mixed-Phase Arctic Cloud Experiment. Part II: Multi-layered cloud

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, H; McCoy, R B; Klein, S A; Xie, S; Luo, Y; Avramov, A; Chen, M; Cole, J; Falk, M; Foster, M; Genio, A D; Harrington, J; Hoose, C; Khairoutdinov, M; Larson, V; Liu, X; McFarquhar, G; Poellot, M; Shipway, B; Shupe, M; Sud, Y; Turner, D; Veron, D; Walker, G; Wang, Z; Wolf, A; Xu, K; Yang, F; Zhang, G

    2008-02-27

    Results are presented from an intercomparison of single-column and cloud-resolving model simulations of a deep, multi-layered, mixed-phase cloud system observed during the ARM Mixed-Phase Arctic Cloud Experiment. This cloud system was associated with strong surface turbulent sensible and latent heat fluxes as cold air flowed over the open Arctic Ocean, combined with a low pressure system that supplied moisture at mid-level. The simulations, performed by 13 single-column and 4 cloud-resolving models, generally overestimate the liquid water path and strongly underestimate the ice water path, although there is a large spread among the models. This finding is in contrast with results for the single-layer, low-level mixed-phase stratocumulus case in Part I of this study, as well as previous studies of shallow mixed-phase Arctic clouds, that showed an underprediction of liquid water path. The overestimate of liquid water path and underestimate of ice water path occur primarily when deeper mixed-phase clouds extending into the mid-troposphere were observed. These results suggest important differences in the ability of models to simulate Arctic mixed-phase clouds that are deep and multi-layered versus shallow and single-layered. In general, models with a more sophisticated, two-moment treatment of the cloud microphysics produce a somewhat smaller liquid water path that is closer to observations. The cloud-resolving models tend to produce a larger cloud fraction than the single-column models. The liquid water path and especially the cloud fraction have a large impact on the cloud radiative forcing at the surface, which is dominated by the longwave flux for this case.

  14. Cloud Computing (1)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ Editor's Desk: Cloud computing is a topic of intense interest in the Internet field. Major IT giants have launched their own cloud computing products. This four-part lecture series will discuss cloud computing technology in the following aspects: The first part provides a brief description of the origin and characteristics of cloud computing from the users view of point; the other parts introduce typical applications of cloud computing, technically analyze the specific content within the cloud, its components, architecture and computational paradigm, compare cloud computing to other distributed computing technologies, and discuss its successful cases, commercial models, related technical and economic issues, and development trends.

  15. Cloud Computing (2)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ Editor's Desk: Cloud computing is a topic of intense interest in the Internet field. Major IT giants have launched their own cloud computing products. This four-part lecture series discusses cloud computing technology in the following aspects: The first part provided a brief description of the origin and characteristics of cloud computing from the users view of point; the other parts introduce typical applications of cloud computing, technically analyze the specific content within the cloud, its components, architecture and computational paradigm, compare cloud computing to other distributed computing technologies, and discuss its successful cases, commercial models, related technical and economic issues, and development trends.

  16. Cloud storage for dummies

    CERN Document Server

    Xu, Linda; Loughlin, Tanya

    2010-01-01

    Understand cloud computing and save your organization time and money! Cloud computing is taking IT by storm, but what is it and what are the benefits to your organization? Hitachi Data Systems' Cloud Storage For Dummies provides all the answers, With this book, you discover a clear explanation of cloud storage, and tips for how to choose the right type of cloud storage for your organization's needs. You also find out how cloud storage can free up valuable IT resources, saving time and money. Cloud Storage For Dummies presents useful information on setting up a

  17. Robots and sensor clouds

    CERN Document Server

    Shakshuki, Elhadi

    2016-01-01

    This book comprises four chapters that address some of the latest research in clouds robotics and sensor clouds. The first part of the book includes two chapters on cloud robotics. The first chapter introduces a novel resource allocation framework for cloud robotics and proposes a Stackelberg game model and the corresponding task oriented pricing mechanism for resource allocation. In the second chapter, the authors apply Cloud Computing for building a Cloud-Based 3D Point Cloud extractor for stereo images. Their objective is to have a dynamically scalable and applicable to near real-time scenarios.  .

  18. OH+ in Diffuse Molecular Clouds

    Science.gov (United States)

    Porras, A. J.; Federman, S. R.; Welty, D. E.; Ritchey, A. M.

    2014-01-01

    Near ultraviolet observations of OH+ and OH in diffuse molecular clouds reveal a preference for different environments. The dominant absorption feature in OH+ arises from a main component seen in CH+ (that with the highest CH+/CH column density ratio), while OH follows CN absorption. This distinction provides new constraints on OH chemistry in these clouds. Since CH+ detections favor low-density gas with small fractions of molecular hydrogen, this must be true for OH+ as well, confirming OH+ and H2O+ observations with the Herschel Space Telescope. Our observed correspondence indicates that the cosmic ray ionization rate derived from these measurements pertains to mainly atomic gas. The association of OH absorption with gas rich in CN is attributed to the need for a high enough density and molecular fraction before detectable amounts are seen. Thus, while OH+ leads to OH production, chemical arguments suggest that their abundances are controlled by different sets of conditions and that they coexist with different sets of observed species. Of particular note is that non-thermal chemistry appears to play a limited role in the synthesis of OH in diffuse molecular clouds.

  19. The Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES): An Observational Campaign for Determining Role of Clouds, Aerosols and Radiation in Climate System

    Science.gov (United States)

    McFarquhar, G. M.; Wood, R.; Bretherton, C. S.; Alexander, S.; Jakob, C.; Marchand, R.; Protat, A.; Quinn, P.; Siems, S. T.; Weller, R. A.

    2014-12-01

    The Southern Ocean (SO) region is one of the cloudiest on Earth, and as such clouds determine its albedo and play a major role in climate. Evidence shows Earth's climate sensitivity and the Intertropical Convergence Zone location depend upon SO clouds. But, climate models are challenged by uncertainties and biases in the simulation of clouds, aerosols, and air-sea exchanges in this region which trace back to a poor process-level understanding. Due to the SO's remote location, there have been sparse observations of clouds, aerosols, precipitation, radiation and the air-sea interface apart from those from satellites. Plans for an upcoming observational program, SOCRATES, are outlined. Based on feedback on observational and modeling requirements from a 2014 workshop conducted at the University of Washington, a plan is described for obtaining a comprehensive dataset on the boundary-layer structure and associated vertical distributions of liquid and mixed-phase cloud and aerosol properties across a range of synoptic settings, especially in the cold sector of cyclonic storms. Four science themes are developed: improved climate model simulation of SO cloud and boundary layer structure in a rapidly varying synoptic setting; understanding seasonal and synoptic variability in SO cloud condensation and ice nucleus concentration and the role of local biogenic sources; understanding supercooled liquid and mixed-phase clouds and their impacts; and advancing retrievals of clouds, precipitation, aerosols, radiation and surface fluxes. Testable hypotheses for each theme are identified. The observational strategy consists of long-term ground-based observations from Macquarie Island and Davis, continuous data collection onboard Antarctic supply ships, satellite retrievals, and a dedicated field campaign covering 2 distinct seasons using in-situ and remote sensors on low- and high-altitude aircraft, UAVs, and a ship-borne platform. A timeline for these activities is proposed.

  20. The CLOUD experiment

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The Cosmics Leaving Outdoor Droplets (CLOUD) experiment as shown by Jasper Kirkby (spokesperson). Kirkby shows a sketch to illustrate the possible link between galactic cosmic rays and cloud formations. The CLOUD experiment uses beams from the PS accelerator at CERN to simulate the effect of cosmic rays on cloud formations in the Earth's atmosphere. It is thought that cosmic ray intensity is linked to the amount of low cloud cover due to the formation of aerosols, which induce condensation.

  1. Cloud Computing (3)

    Institute of Scientific and Technical Information of China (English)

    Wang Bai; Xu Liutong

    2010-01-01

    @@ Editor's Desk: In the preceding two parts of this series, several aspects of cloud computing-including definition, classification, characteristics, typical applications, and service levels-were discussed. This part continues with a discussion of Cloud Computing Oopen Architecture and Market-Oriented Cloud. A comparison is made between cloud computing and other distributed computing technologies, and Google's cloud platform is analyzed to determine how distributed computing is implemented in its particular model.

  2. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  3. Fractional complex transforms for fractional differential equations

    National Research Council Canada - National Science Library

    Ibrahim, Rabha W

    2012-01-01

    The fractional complex transform is employed to convert fractional differential equations analytically in the sense of the Srivastava-Owa fractional operator and its generalization in the unit disk...

  4. Freezing avoidance by supercooling in Olea europaea cultivars: the role of apoplastic water, solute content and cell wall rigidity.

    Science.gov (United States)

    Arias, Nadia S; Bucci, Sandra J; Scholz, Fabian G; Goldstein, Guillermo

    2015-10-01

    Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.

  5. Transcriptomic and proteomic analyses on the supercooling ability and mining of antifreeze proteins of the Chinese white wax scale insect.

    Science.gov (United States)

    Yu, Shu-Hui; Yang, Pu; Sun, Tao; Qi, Qian; Wang, Xue-Qing; Chen, Xiao-Ming; Feng, Ying; Liu, Bo-Wen

    2016-06-01

    The Chinese white wax scale insect, Ericerus pela, can survive at extremely low temperatures, and some overwintering individuals exhibit supercooling at temperatures below -30°C. To investigate the deep supercooling ability of E. pela, transcriptomic and proteomic analyses were performed to delineate the major gene and protein families responsible for the deep supercooling ability of overwintering females. Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated that genes involved in the mitogen-activated protein kinase, calcium, and PI3K-Akt signaling pathways and pathways associated with the biosynthesis of soluble sugars, sugar alcohols and free amino acids were dominant. Proteins responsible for low-temperature stress, such as cold acclimation proteins, glycerol biosynthesis-related enzymes and heat shock proteins (HSPs) were identified. However, no antifreeze proteins (AFPs) were identified through sequence similarity search methods. A random forest approach identified 388 putative AFPs in the proteome. The AFP gene ep-afp was expressed in Escherichia coli, and the expressed protein exhibited a thermal hysteresis activity of 0.97°C, suggesting its potential role in the deep supercooling ability of E. pela.

  6. Realisation of dynamic ice-making by supercooled water%过冷水动态制冰的研究

    Institute of Scientific and Technical Information of China (English)

    曲凯阳; 江亿

    2001-01-01

    Further studies based on the authors' earlier researches the conditions under which no fpeezing occur in the supercooler while sufficient supercooling of water is guaranteed.Establishes a stably opepeting experimental assembly. Water temperature at the entrance of the supercooler reaches as low as 0.45 ℃, and the water temperature drop in supercooler isabout 1℃.%在作者前期研究的基础上,进一步研究了保证过冷水动态制冰系统中过冷却器不发生结冰的条件,建立了能够稳定运行的过冷水动态制冰实验装置。水在过冷却器入口的最低温度为0.45℃,在过冷却器中的温降约为1.0℃。

  7. Elastic properties of Pd40Cu30Ni10P20 bulk glass in supercooled liquid region

    DEFF Research Database (Denmark)

    Nishiyama, N.; Inoue, A.; Jiang, Jianzhong

    2001-01-01

    In situ ultrasonic measurements for the Pd40Cu30Ni10P20 bulk glass in three states: Glassy solid, supercooled liquid, and crystalline, have been performed. It is found that velocities of both longitudinal and transverse waves and elastic moduli (shear modulus, bulk modulus, Young's modulus, and L...

  8. Sky cover from MFRSR observations: cumulus clouds

    Directory of Open Access Journals (Sweden)

    E. Kassianov

    2011-01-01

    Full Text Available The diffuse all-sky surface irradiances measured at two nearby wavelengths in the visible spectral range and their model clear-sky counterparts are two main components of a new method for estimating the fractional sky cover of different cloud types, including cumulus clouds. The performance of this method is illustrated using 1-min resolution data from ground-based Multi-Filter Rotating Shadowband Radiometer (MFRSR. The MFRSR data are collected at the US Department of Energy Atmospheric Radiation Measurement (ARM Climate Research Facility (ACRF Southern Great Plains (SGP site during the summer of 2007 and represent 13 days with cumulus clouds. Good agreement is obtained between estimated values of the fractional sky cover and those provided by a well-established independent method based on broadband observations.

  9. A new cloud algorithm for gome data

    Science.gov (United States)

    Grzegorski, M.; Beierle, S.; Friedeburg, C.; Hollwedel, J.; Khokhar, F.; Kühl, S.; Platt, U.; Wenig, M.; Wilms-Grabe, W.; Wagner, T.

    2003-04-01

    The Global Ozone Monitoring Experiment (GOME) on the ERS-2 satellite allows the measurement of many tropospheric trace gases (e.g. NO_2, SO_2, BrO, HCHO, H_2O) using the DOAS technique. Cloud algorithms are essential for the accurate retrieval of the tropospheric vertical column density of these trace gases. A new algorithm using PMD-data is presented. The results are validated through comparison with other algorithms (e.g. FRESCO, CRUSA). Problems found in existing algorithms such as overestimated cloud fractions over desert regions and negative values over oceans are significantly improved with the new algorithm. Also other possible errorsources like the systematic intensity decrease across the subpixels influences the calculation of the cloud fractions. The new algorithm tries to correct this effect.

  10. Radiative Effect of Clouds on Tropospheric Chemistry: Sensitivity to Cloud Vertical Distributions and Optical Properties

    Science.gov (United States)

    Liu, H.; Crawford, J. H.; Pierce, R. B.; Considine, D. B.; Logan, J. A.; Duncan, B. N.; Norris, P.; Platnick, S. E.; Chen, G.; Yantosca, R. M.; Evans, M. J.

    2005-12-01

    Representation of clouds in global models poses a significant challenge since most cloud processes occur on sub-grid scales and must be parameterized. Uncertainties in cloud distributions and optical properties are therefore a limiting factor in model assessments of the radiative effect of clouds on global tropospheric chemistry. We present an analysis of the sensitivity of the radiative effect of clouds to cloud vertical distributions and optical properties with the use of the GEOS-CHEM global 3-D chemistry transport model coupled with the Fast-J radiative transfer algorithm. GEOS-CHEM was driven with a series of meteorological archives (GEOS1-STRAT, GEOS-3, and GEOS-4) generated by the Goddard Earth Observing System data assimilation system (GEOS DAS) at the NASA global Modeling and Assimilation Office (GMAO), which have significantly different cloud optical depths and vertical distributions. The column cloud optical depths in GEOS-3 generally agree with the satellite retrieval products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the International Satellite Cloud Climatology Project (ISCCP) within ±10%, while those in GEOS1-STRAT and GEOS-4 are too low by factors of about 5 and 2, respectively. With respect to vertical distribution, clouds in GEOS-4 are optically much thinner in the tropical upper troposphere compared to those in GEOS1-STRAT and GEOS-3. Assuming linear scaling of cloud optical depth with cloud fraction in a grid-box, our model calculations indicate that the changes in global mean hydroxyl radical (OH) due to the radiative effect of clouds in June are about -1% (GEOS1-STRAT), 1% (GEOS-3), and 14% (GEOS-4), respectively. The effects on global mean OH are similar for GEOS1-STRAT and GEOS-3 due to similar vertical distributions of clouds, even though the column cloud optical depths in the two archives differ by a factor of about 5. Clouds in GEOS-4 have a much larger impact on global mean OH because more solar radiation is

  11. Interactions Between Microphysics and Dynamics in Persistent Arctic Mixed Phase Clouds

    Science.gov (United States)

    Komurcu, M.; Harrington, J. Y.

    2011-12-01

    Mixed-phase clouds are commonly observed in the Arctic atmosphere, particularly during the transition and winter seasons. Inter-comparison of the results of the model simulations of cold season mixed-phase clouds show that the biggest spreads in model results occur in the simulated water contents which lead to negative radiation errors. Partitioning of the liquid water and ice is crucial in understanding the radiative influences of these clouds, and in turn their influences on the Arctic surface energy budget. Because ice growth occurs at the expense of liquid water droplets at cold temperatures of the Arctic during the cold season, the phase partitioning of water is partly controlled by the ice formation and growth processes. Therefore, in this study, we investigate and intercompare different ice formation mechanisms, ice crystal shapes and the number of available ice nuclei to understand the microphysical and dynamical interactions that allow for the formation and persistence of both liquid water and ice in long-lived mixed-phase clouds. We present results that attempt to separate the influences of microphysics and dynamics, with a view to understanding how dynamic processes affect the production and maintenance of supercooled liquid within Arctic cloud systems. We investigate how certain conditions that influence cloud circulations, such as changing the magnitudes of surface fluxes, or radiative forcing, can lead to the decoupling of the cloud and subcloud layers, and in turn possibly to the cessation of the cloud. To identify the conditions of decoupling, we develop a new ratio based on cloud circulations that is different from previous assessments of decoupling in the literature, which did not seem to work for Arctic clouds.

  12. The microphysics of clouds over the Antarctic Peninsula – Part 2: modelling aspects within Polar WRF

    Directory of Open Access Journals (Sweden)

    C. Listowski

    2017-08-01

    Full Text Available The first intercomparisons of cloud microphysics schemes implemented in the Weather Research and Forecasting (WRF mesoscale atmospheric model (version 3.5.1 are performed on the Antarctic Peninsula using the polar version of WRF (Polar WRF at 5 km resolution, along with comparisons to the British Antarctic Survey's aircraft measurements (presented in part 1 of this work; Lachlan-Cope et al., 2016. This study follows previous works suggesting the misrepresentation of the cloud thermodynamic phase in order to explain large radiative biases derived at the surface in Polar WRF continent-wide (at 15 km or coarser horizontal resolution and in the Polar WRF-based operational forecast model Antarctic Mesoscale Prediction System (AMPS over the Larsen C Ice Shelf at 5 km horizontal resolution. Five cloud microphysics schemes are investigated: the WRF single-moment five-class scheme (WSM5, the WRF double-moment six-class scheme (WDM6, the Morrison double-moment scheme, the Thompson scheme, and the Milbrandt–Yau double-moment seven-class scheme. WSM5 (used in AMPS and WDM6 (an upgrade version of WSM5 lead to the largest biases in observed supercooled liquid phase and surface radiative biases. The schemes simulating clouds in closest agreement to the observations are the Morrison, Thompson, and Milbrandt schemes for their better average prediction of occurrences of clouds and cloud phase. Interestingly, those three schemes are also the ones allowing for significant reduction of the longwave surface radiative bias over the Larsen C Ice Shelf (eastern side of the peninsula. This is important for surface energy budget consideration with Polar WRF since the cloud radiative effect is more pronounced in the infrared over icy surfaces. Overall, the Morrison scheme compares better to the cloud observation and radiation measurements. The fact that WSM5 and WDM6 are single-moment parameterizations for the ice crystals is responsible for their lesser

  13. Supercooled Water.

    Science.gov (United States)

    1983-03-01

    53) study by Egelstaff et al Emulsion samples have also been briefly studied but background difficulties have made resolution of the results...Angell, L., Angell, C. A. ., Phys. Chem. (to be published) 52. Bosio, L., Chen, S.-H., Teixeira, 3. Phys. Rev. A (in press) 53. Egelstaff , P. A., Polo, 3

  14. Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    Science.gov (United States)

    King, Michael D.; Platnick, Steven; Menzel, W. Paul; Ackerman, Steven A.; Hubanks, Paul A.

    2012-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) was developed by NASA and launched aboard the Terra spacecraft on December 18, 1999 and Aqua spacecraft on May 4, 2002. A comprehensive set of remote sensing algorithms for the retrieval of cloud physical and optical properties have enabled over twelve years of continuous observations of cloud properties from Terra and over nine years from Aqua. The archived products from these algorithms include 1 km pixel-level (Level-2) and global gridded Level-3 products. In addition to an extensive cloud mask, products include cloud-top properties (temperature, pressure, effective emissivity), cloud thermodynamic phase, cloud optical and microphysical parameters (optical thickness, effective particle radius, water path), as well as derived statistics. Results include the latitudinal distribution of cloud optical and radiative properties for both liquid water and ice clouds, as well as latitudinal distributions of cloud top pressure and cloud top temperature. MODIS finds the cloud fraction, as derived by the cloud mask, is nearly identical during the day and night, with only modest diurnal variation. Globally, the cloud fraction derived by the MODIS cloud mask is approx.67%, with somewhat more clouds over land during the afternoon and less clouds over ocean in the afternoon, with very little difference in global cloud cover between Terra and Aqua. Overall, cloud fraction over land is approx.55%, with a distinctive seasonal cycle, whereas the ocean cloudiness is much higher, around 72%, with much reduced seasonal variation. Cloud top pressure and temperature have distinct spatial and temporal patterns, and clearly reflect our understanding of the global cloud distribution. High clouds are especially prevalent over the northern hemisphere continents between 30 and 50 . Aqua and Terra have comparable zonal cloud top pressures, with Aqua having somewhat higher clouds (cloud top pressures lower by 100 hPa) over land due to

  15. Fractional complex transform for fractional differential equations

    National Research Council Canada - National Science Library

    Lİ, Zheng Biao; HE, Ji Huan

    2010-01-01

    Fractional complex transform is proposed to convert fractional differential equations into ordinary differential equations, so that all analytical methods devoted to advanced calculus can be easily...

  16. Clouds and the Faint Young Sun Paradox

    CERN Document Server

    Goldblatt, Colin

    2011-01-01

    We investigate the role which clouds could play in resolving the Faint Young Sun Paradox (FYSP). Lower solar luminosity in the past means that less energy was absorbed on Earth (a forcing of -50 Wm-2 during the late Archean), but geological evidence points to the Earth being at least as warm as it is today, with only very occasional glaciations. We perform radiative calculations on a single global mean atmospheric column. We select a nominal set of three layered, randomly overlapping clouds, which are both consistent with observed cloud climatologies and reproduce the observed global mean energy budget of Earth. By varying the fraction, thickness, height and particle size of these clouds we conduct a wide exploration of how changed clouds could affect climate, thus constraining how clouds could contribute to resolving the FYSP. Low clouds reflect sunlight but have little greenhouse effect. Removing them entirely gives a~forcing of +25 Wm-2 whilst more modest reduction in their efficacy gives a forcing of +10 ...

  17. The interpretation of remotely sensed cloud properties from a model parameterization perspective

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The goals of ISCCP and FIRE are, broadly speaking, to provide methods for the retrieval of cloud properties from satellites, and to improve cloud radiation models and the parameterization of clouds in GCMs. This study suggests a direction for GCM cloud parameterizations based on analysis of Landsat and ISCCP satellite data. For low level single layer clouds it is found that the mean retrieved liquid water pathe in cloudy pixels is essentially invariant to the cloud fraction, at least in the range 0.2 - 0.8. This result is very important since it allows the cloud fraction to be estimated if the mean liquid water path of cloud in a general circulation model gridcell is known. 3 figs.

  18. Evaporative supercooling characteristics of single water droplet in ice-slurry production system with evaporative supercooled water%蒸发式过冷水制冰中单个水滴的蒸发过冷特性

    Institute of Scientific and Technical Information of China (English)

    闫俊海; 张小松

    2012-01-01

    To analyze the evaporation characteristics of single water droplet in low temperature and low humidity ratio air in ice production system with evaporative supercooled water, a mathematical model of evaporative supercooling process of single water droplet was proposed. The evaporation process of droplet in supercooling stage was simulated with theoretical model and the results are basically consistent with the experiment on suspended single water droplet, so it is feasible to predict the evaporative supercooling characteristics of small water droplet by the mathematical model. The influence of initial diameter and temperature of water droplet, air temperature, humidity ratio of air, and air velocity on the temperature of water droplet during its evaporative supercooling process was analyzed. The numerical results show that smaller diameter and lower temperature of water droplet and larger air velocity can increase the cooling rate of water droplet and shorten the supercooling time reaching steady state evaporation stage. Additionally, lowering the temperature or humidity ratio of air can not only improve the cooling rate of water droplet, but also increase the supercooling degree of water droplet reaching steady state evaporation stage. The investigation of evaporative supercooling process of water droplet can provide a foundation for improving the efficiency of ice production and optimal design for ice-making system with evaporative supercooled water.%为分析蒸发式过冷水制冰中单个水滴在此低温低湿空气环境中的蒸发特性,建立了水滴蒸发过冷过程的数理模型.通过悬挂水滴实验与模拟结果的对比,验证了模型的有效性.因此利用该数学模型预测微小直径水滴的蒸发特性是可行的.通过模拟计算获得了水滴初始直径、初始水温、空气温度、空气含湿量和空气流速对水滴蒸发过冷过程的影响.结果表明,水滴初始直径越小、温度越低或空气流速越大,

  19. Radio observations of D I and fractionation

    Science.gov (United States)

    Heiles, Carl; Mccullough, Peter R.; Glassgold, Alfred E.

    1993-01-01

    We report observations to detect the 327 MHz line of atomic deuterium in the primarily molecular clouds towards Cas A and Sgr A, making appropriate choices of spectral and spatial resolution. Our best results for Cas A, based on 1253 hr of observing with the 85 foot (26 m) Hat Creek telescope and 45 hr with the very large array (VLA), yield an upper limit for the fraction of deuterium in atomic form, D I, of 0.14. We present an approximate analytical analysis of deuterium fractionation in translucent clouds, which shows that gas-phase ion-molecule reactions, assisted by dust and HD line self-shielding, are efficient in converting deuterium to HD. We conclude that little atomic deuterium is present in the molecular clumps in the Cas A clouds and that much higher sensitivity observations would be required to detect 327 MHz line in molecular clouds. We have also attempted to detect the 72 GHz line of DCO(+) toward Cas A. The observed upper limit to the DCO(+)/HCO(+) ratio of approximately 0.03 is not much larger than our theoretical estimate, and the DCO(+) line should be detectable with existing instrumentation, unless the temperature of these clouds is much larger than usually assumed.

  20. Asymmetric Flow-Field Flow Fractionation Hyphenated ICP-MS as an Alternative to Cloud Point Extraction for Quantification of Silver Nanoparticles and Silver Speciation: Application for Nanoparticles with a Protein Corona.

    Science.gov (United States)

    Mudalige, Thilak K; Qu, Haiou; Linder, Sean W

    2015-07-21

    Production and application of nanoparticles in consumer products is at an all-time high due to the emerging field of nanotechnology. Direct detection and quantification of trace levels of nanoparticles within consumer products is very challenging and problematic. Although multiple methodologies are available for this purpose, each method has its own set of limitations. Herein, we developed an analytical platform consisting of asymmetric flow-field flow fractionation (AF4) coupled with inductively coupled plasma mass spectroscopy (ICP-MS) for the speciation and quantification of silver ions and silver nanoparticles at the ng/kg level (ppt). AF4 is utilized to concentrate the nanoparticles, and ICP-MS acts as the detector. The protein corona that forms upon exposure of nanoparticles to bovine serum albumin was utilized as a nanoparticle stabilization and AF4 recovery enhancement mechanism. Speciation of silver ions and nanoparticles was achieved with the assistance of penicillamine as a complexation ligand. The effect of nanoparticle size, surface coating, and ionization state toward the detection and quantification of the developed methodology was evaluated. The detection limit was found to be 4 ng/kg with the application of a 5 mL sample loop. Further application of this developed methodology on environmentally relevant samples was demonstrated by the analysis of Arkansas River water spiked with silver nanoparticles and nanoparticle spiked into humic acid solution (50 mg/L) at an environmentally relevant level.

  1. Using Peltier cells to study solid-liquid-vapour transitions and supercooling

    Energy Technology Data Exchange (ETDEWEB)

    Torzo, Giacomo [ICIS-CNR and Physics Department of Padova University, Padova (Italy); Soletta, Isabella [Liceo Scientifico Fermi, Alghero (Italy); Branca, Mario [Chemical Department of Sassari University, Sassari (Italy)

    2007-05-15

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid-solid and liquid-vapour phase transitions and of metastable states (supercooling). The thermoelectric module (a technological evolution of the thermocouple) is by itself an interesting subject that offers a clear example of both thermo-electric (Seebeck effect) and electro-thermal (Peltier effect) energy transformation. We report here some cooling/heating measurements for several liquids and mixtures, including water, salt/water, ethanol/water and sodium acetate, showing how to evaluate the phenomena of freezing point depression and elevation, and how to evaluate the water latent heat.

  2. Using Peltier cells to study solid liquid vapour transitions and supercooling

    Science.gov (United States)

    Torzo, Giacomo; Soletta, Isabella; Branca, Mario

    2007-05-01

    We propose an apparatus for teaching experimental thermodynamics in undergraduate introductory courses, using thermoelectric modules and a real-time data acquisition system. The device may be made at low cost, still providing an easy approach to the investigation of liquid solid and liquid vapour phase transitions and of metastable states (supercooling). The thermoelectric module (a technological evolution of the thermocouple) is by itself an interesting subject that offers a clear example of both thermo-electric (Seebeck effect) and electro-thermal (Peltier effect) energy transformation. We report here some cooling/heating measurements for several liquids and mixtures, including water, salt/water, ethanol/water and sodium acetate, showing how to evaluate the phenomena of freezing point depression and elevation, and how to evaluate the water latent heat.

  3. The glass crossover from mean-field Spin-Glasses to supercooled liquids

    Science.gov (United States)

    Rizzo, Tommaso

    2016-03-01

    Stochastic-Beta-Relaxation provides a characterisation of the glass crossover in discontinuous Spin-Glasses and supercoooled liquid. Notably it can be derived through a rigorous computation from a dynamical Landau theory. In this paper, I will discuss the precise meaning of this connection in a language that does not require familiarity with statistical field theory. I will discuss finite-size corrections in mean-field Spin-Glass models and loop corrections in finite-dimensional models that are both described by the dynamical Landau theory considered. Then I will argue that the same Landau theory can be associated to supercooled liquid described by Mode-Coupling Theory invoking a physical principle of time-scale invariance.

  4. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

    Directory of Open Access Journals (Sweden)

    T. Kuhn

    2009-10-01

    Full Text Available We investigated the relative roles of volume and surface nucleation in the freezing of water droplets. Nucleation experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled liquid water aerosols with radii between about 1 and 3 μ m. Temperature- and size-dependent values of volume- and surface-based homogeneous nucleation rate between 234.8 and 236.2 K are derived with help of a microphysical model from aerosol compositions and size distributions based on infrared extinction measurements in the aerosol flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 μm. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process and has implications for the parameterization of homogeneous ice nucleation in numerical models.

  5. Volume and structural analysis of super-cooled water under high pressure

    Science.gov (United States)

    Duki, Solomon F.; Tsige, Mesfin

    2012-02-01

    Motivated by recent experimental study of super-cooled water at high pressure [1], we performed atomistic molecular dynamic simulations study on bulk water molecules at isothermal-isobaric ensemble. These simulations are performed at temperatures that range from 40 K to 380 K using two different cooling rates, 10K/ns and 10K/5ns, and pressure that ranges from 1atm to 10000 atm. Our analysis for the variation of the volume of the bulk sample against temperature indicates a downward concave shape for pressures above certain values, as reported in [1]. The same downward concave behavior is observed at high pressure on the mean-squared-displacements (MSD) of the water molecules when the MSD is plotted against time. To get further insight on the effect of the pressure on the sample we have also performed a structural analysis of the sample.[4pt] [1] O. Mishima, J. Chem. Phys. 133, 144503 (2010);

  6. Water and its relatives: the stable, supercooled and particularly the stretched, regimes

    CERN Document Server

    Meadley, Stacey L

    2014-01-01

    While the water molecule is simple, its condensed phase liquid behavior is so complex that no consensus description has emerged despite three centuries of effort. Here we identify features of its behavior that are the most peculiar, hence suggest ways forward. We examine the properties of water at the boundaries of common experience, including stable states at high pressure, the supercooled state at normal and elevated pressure, and the stretched ("negative pressure") state, out to the limits of mechanical stability. The familiar anomalies at moderate pressures (viscosity and density (TMD) behavior, etc.), are not explained by H-bond breaking, according to common bond-breaking criteria. A comparison of data on the TMD, at both positive and negative pressures, with the predictions of popular pair potential models, shows dramatic discrepancies appearing in the stretched liquid domain. This prompts questions on the second critical point (TC2) hypothesis that has been guiding much current thinking. We turn to rel...

  7. Local structure of equilibrium and supercooled Ti-Zr-Ni liquids

    Energy Technology Data Exchange (ETDEWEB)

    Lee, G. W.; Gangopadhyay, A.; Hyers, R.; Rathz, T.; Rogers, J.; Robinson, D.; Goldman, A.; Kelton, K.

    2008-05-01

    Recently, we reported the results of experimental in situ high-energy x-ray diffraction studies of electrostatically levitated equilibrium and supercooled metallic elements and alloy liquids, showing evidence for icosahedral short-range ordering (ISRO). In this paper, these studies are extended to binary Ti-Zr and ternary Ti-Zr-Ni alloys. From a cluster-based analysis of the x-ray structure factors, it is concluded that ISRO in the binary alloys becomes progressively more dominant, and the coherence length of the order becomes longer, with the addition of Ni, especially near the concentration of 21 at. % Ni. The effect of chemical interactions among Ti/Zr-Ni and the atomic size on the stabilization of the ISRO is discussed.

  8. Stable glass transformation to supercooled liquid via surface-initiated growth front.

    Science.gov (United States)

    Swallen, Stephen F; Traynor, Katherine; McMahon, Robert J; Ediger, M D; Mates, Thomas E

    2009-02-13

    Highly stable glasses of tris-naphthylbenzene transform into a liquid when annealed above the glass transition temperature T_{g}. In contrast to the predictions of standard models, the observed transformation is spatially inhomogeneous. Secondary ion mass spectrometry experiments on isotopically labeled multilayer films show that the liquid grows into the stable glass with sharp growth fronts initiated at the free surface and at the interface with the substrate. For the free surface, the growth velocity is constant in time and has the same temperature dependence as self-diffusion in the equilibrium supercooled liquid. These stable glasses are packed so efficiently that surfaces and interfaces are required to initiate the transformation to the liquid even well above T_{g}.

  9. Electron Correlation Microscopy: A New Technique for Studying Local Atom Dynamics Applied to a Supercooled Liquid.

    Science.gov (United States)

    He, Li; Zhang, Pei; Besser, Matthew F; Kramer, Matthew Joseph; Voyles, Paul M

    2015-08-01

    Electron correlation microscopy (ECM) is a new technique that utilizes time-resolved coherent electron nanodiffraction to study dynamic atomic rearrangements in materials. It is the electron scattering equivalent of photon correlation spectroscopy with the added advantage of nanometer-scale spatial resolution. We have applied ECM to a Pd40Ni40P20 metallic glass, heated inside a scanning transmission electron microscope into a supercooled liquid to measure the structural relaxation time τ between the glass transition temperature T g and the crystallization temperature, T x . τ determined from the mean diffraction intensity autocorrelation function g 2(t) decreases with temperature following an Arrhenius relationship between T g and T g +25 K, and then increases as temperature approaches T x . The distribution of τ determined from the g 2(t) of single speckles is broad and changes significantly with temperature.

  10. Vibrating-Wire, Supercooled Liquid Water Content Sensor Calibration and Characterization Progress

    Science.gov (United States)

    King, Michael C.; Bognar, John A.; Guest, Daniel; Bunt, Fred

    2016-01-01

    NASA conducted a winter 2015 field campaign using weather balloons at the NASA Glenn Research Center to generate a validation database for the NASA Icing Remote Sensing System. The weather balloons carried a specialized, disposable, vibrating-wire sensor to determine supercooled liquid water content aloft. Significant progress has been made to calibrate and characterize these sensors. Calibration testing of the vibrating-wire sensors was carried out in a specially developed, low-speed, icing wind tunnel, and the results were analyzed. The sensor ice accretion behavior was also documented and analyzed. Finally, post-campaign evaluation of the balloon soundings revealed a gradual drift in the sensor data with increasing altitude. This behavior was analyzed and a method to correct for the drift in the data was developed.

  11. Deformation behavior of Zr-based bulk metallic glass and composite in the supercooled liquid region

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    A Zr-based bulk metallic glass (BMG) with a composition of (Zr75Cu25)78.5Ta4Ni10Al7.5 and a bulk metallic glass matrix composite (BMGC) with a composition of (Zr75Cu25)74.5Ta8Ni10Al7.5 have been prepared by copper-mold casting. The compres-sive deformation behavior of the BMG and BMGC was investigated in the super-cooled region at different temperatures and various strain rates ranging from 8×10-4s-1 to 8×10-2s-1. It was found that both the strain rate and test temperature signifi-cantly affect the deformation behavior of the two alloys. The deformation follows Newtonian flow at low strain rates but non-Newtonian flow at high strain rates. The deformation mechanism for the two kinds of alloys was discussed in terms of the transition state theory.

  12. Correlation between supercooled liquid relaxation and glass poisson’s ratio

    DEFF Research Database (Denmark)

    Sun, Q.J.; Hu, L.N.; Zhou, C.

    2015-01-01

    We report on a correlation between the supercooled liquid (SL) relaxation and glass Poisson’s ratio (v) by comparing the activation energy ratio (r) of the α and the slow β relaxations and the v values for both metallic and nonmetallic glasses. Poisson’s ratio v generally increases with an increase...... in the ratio r and this relation can be described by the empirical function v = 0.5 − A ∗ exp(−B ∗ r), where A and B are constants. This correlation might imply that glass plasticity is associated with the competition between the α and the slow β relaxations in SLs. The underlying physics of this correlation...

  13. Hybrid cloud for dummies

    CERN Document Server

    Hurwitz, Judith; Halper, Fern; Kirsch, Dan

    2012-01-01

    Understand the cloud and implement a cloud strategy for your business Cloud computing enables companies to save money by leasing storage space and accessing technology services through the Internet instead of buying and maintaining equipment and support services. Because it has its own unique set of challenges, cloud computing requires careful explanation. This easy-to-follow guide shows IT managers and support staff just what cloud computing is, how to deliver and manage cloud computing services, how to choose a service provider, and how to go about implementation. It also covers security and

  14. Secure cloud computing

    CERN Document Server

    Jajodia, Sushil; Samarati, Pierangela; Singhal, Anoop; Swarup, Vipin; Wang, Cliff

    2014-01-01

    This book presents a range of cloud computing security challenges and promising solution paths. The first two chapters focus on practical considerations of cloud computing. In Chapter 1, Chandramouli, Iorga, and Chokani describe the evolution of cloud computing and the current state of practice, followed by the challenges of cryptographic key management in the cloud. In Chapter 2, Chen and Sion present a dollar cost model of cloud computing and explore the economic viability of cloud computing with and without security mechanisms involving cryptographic mechanisms. The next two chapters addres

  15. Empirical modeling of plasma clouds produced by the Metal Oxide Space Clouds experiment

    Science.gov (United States)

    Pedersen, Todd R.; Caton, Ronald G.; Miller, Daniel; Holmes, Jeffrey M.; Groves, Keith M.; Sutton, Eric

    2017-05-01

    The Advanced Research Project Agency (ARPA) Long-Range Tracking And Instrumentation Radar (ALTAIR) radar at Kwajalein Atoll was used in incoherent scatter mode to measure plasma densities within two artificial clouds created by the Air Force Research Laboratory (AFRL) Metal Oxide Space Clouds (MOSC) experiment in May 2013. Optical imager, ionosonde, and ALTAIR measurements were combined to create 3-D empirical descriptions of the plasma clouds as a function of time, which match the radar measurements to within 15%. The plasma clouds closely track the location of the optical clouds, and the best fit plasma cloud widths are generally consistent with isotropic neutral diffusion. Cloud plasma densities decreased as a power of time, with exponents between -0.5 and -1.0, or much more slowly than the -1.5 predicted by diffusion. These exponents and estimates of total ion number from integration through the model volume are consistent with a scenario of slow ionization and a gradually increasing total number of ions with time, reaching a net ionization fraction of 20% after approximately half an hour. These robust representations of the plasma density are being used to study impacts of the artificial clouds on the dynamics of the background ionosphere and on RF propagation.

  16. Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    KAUST Repository

    Style, Robert W.

    2011-10-14

    We present a physically intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil and the geometrical supercooling of the water in the soil, a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that are currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios and should therefore be useful in the prediction of macroscopic frost-heave rates. © 2011 American Physical Society.

  17. A Laboratory Study on the Phase Transition for Polar Stratospheric Cloud Particles

    Science.gov (United States)

    Teets, Edward H., Jr.

    1997-01-01

    The nucleation and growth of different phases of simulated polar stratospheric cloud (PSC) particles were investigated in the laboratory. Solutions and mixtures of solutions at concentrations 1 to 5 m (molality) of ammonium sulfate, ammonium bisulfate, sodium chloride, sulfuric acid, and nitric acid were supercooled to prescribed temperatures below their equilibrium melting point. These solutions were contained in small diameter glass tubing of volumes ranging from 2.6 to 0.04 ml. Samples were nucleated by insertion of an ice crystal, or in some cases by a liquid nitrogen cooled wire. Crystallization velocities were determined by timing the crystal growth front passages along the glass tubing. Solution mixtures containing aircraft exhaust (soot) were also examined. Crystallization rates increased as deltaT2, where deltaT is the supercooling for weak solutions (2 m or less). The higher concentrated solutions (greater than 3 m) showed rates significantly less than deltaT2. This reduced rate suggested an onset of a glass phase. Results were applied to the nucleation of highly concentrated solutions at various stages of polar stratospheric cloud development within the polar stratosphere.

  18. Cloud Processed CCN Affect Cloud Microphysics

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.; Tabor, S. S.

    2015-12-01

    Variations in the bimodality/monomodality of CCN spectra (Hudson et al. 2015) exert opposite effects on cloud microphysics in two aircraft field projects. The figure shows two examples, droplet concentration, Nc, and drizzle liquid water content, Ld, against classification of CCN spectral modality. Low ratings go to balanced separated bimodal spectra, high ratings go to single mode spectra, strictly monomodal 8. Intermediate ratings go merged modes, e.g., one mode a shoulder of another. Bimodality is caused by mass or hygroscopicity increases that go only to CCN that made activated cloud droplets. In the Ice in Clouds Experiment-Tropical (ICE-T) small cumuli with lower Nc, greater droplet mean diameters, MD, effective radii, re, spectral widths, σ, cloud liquid water contents, Lc, and Ld were closer to more bimodal (lower modal ratings) below cloud CCN spectra whereas clouds with higher Nc, smaller MD, re, σ, and Ld were closer to more monomodal CCN (higher modal ratings). In polluted stratus clouds of the MArine Stratus/Stratocumulus Experiment (MASE) clouds that had greater Nc, and smaller MD, re, σ, Lc, and Ld were closer to more bimodal CCN spectra whereas clouds with lower Nc, and greater MD, re, σ, Lc, and Ld were closer to more monomodal CCN. These relationships are opposite because the dominant ICE-T cloud processing was coalescence whereas chemical transformations (e.g., SO2 to SO4) were dominant in MASE. Coalescence reduces Nc and thus also CCN concentrations (NCCN) when droplets evaporate. In subsequent clouds the reduced competition increases MD and σ, which further enhance coalescence and drizzle. Chemical transformations do not change Nc but added sulfate enhances droplet and CCN solubility. Thus, lower critical supersaturation (S) CCN can produce more cloud droplets in subsequent cloud cycles, especially for the low W and effective S of stratus. The increased competition reduces MD, re, and σ, which inhibit coalescence and thus reduce drizzle

  19. Using in situ airborne measurements to evaluate three cloud phase products derived from CALIPSO

    Science.gov (United States)

    Cesana, G.; Chepfer, H.; Winker, D.; Getzewich, B.; Cai, X.; Jourdan, O.; Mioche, G.; Okamoto, H.; Hagihara, Y.; Noel, V.; Reverdy, M.

    2016-05-01

    We compare the cloud detection and cloud phase determination of three independent climatologies based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) to airborne in situ measurements. Our analysis of the cloud detection shows that the differences between the satellite and in situ measurements mainly arise from three factors. First, averaging CALIPSO Level l data along track before cloud detection increases the estimate of high- and low-level cloud fractions. Second, the vertical averaging of Level 1 data before cloud detection tends to artificially increase the cloud vertical extent. Third, the differences in classification of fully attenuated pixels among the CALIPSO climatologies lead to differences in the low-level Arctic cloud fractions. In another section, we compare the cloudy pixels detected by colocated in situ and satellite observations to study the cloud phase determination. At midlatitudes, retrievals of homogeneous high ice clouds by CALIPSO data sets are very robust (more than 94.6% of agreement with in situ). In the Arctic, where the cloud phase vertical variability is larger within a 480 m pixel, all climatologies show disagreements with the in situ measurements and CALIPSO-General Circulation Models-Oriented Cloud Product (GOCCP) report significant undefined-phase clouds, which likely correspond to mixed-phase clouds. In all CALIPSO products, the phase determination is dominated by the cloud top phase. Finally, we use global statistics to demonstrate that main differences between the CALIPSO cloud phase products stem from the cloud detection (horizontal averaging, fully attenuated pixels) rather than the cloud phase determination procedures.

  20. A fast SEVIRI simulator for quantifying retrieval uncertainties in the CM SAF cloud physical property algorithm

    Directory of Open Access Journals (Sweden)

    B. J. Jonkheid

    2012-11-01

    Full Text Available The uncertainties in the cloud physical properties derived from satellite observations make it difficult to interpret model evaluation studies. In this paper, the uncertainties in the cloud water path (CWP retrievals derived with the cloud physical properties retrieval algorithm (CPP of the climate monitoring satellite application facility (CM SAF are investigated. To this end, a numerical simulator of MSG-SEVIRI observations has been developed that calculates the reflectances at 0.64 and 1.63 μm for a wide range of cloud parameter values, satellite viewing geometries and surface albedos using a plane-parallel radiative transfer model. The reflectances thus obtained are used as input to CPP, and the retrieved values of CWP are compared to the original input of the simulator. Cloud parameters considered in this paper refer to e.g. sub-pixel broken clouds and the simultaneous occurrence of ice and liquid water clouds within one pixel. These configurations are not represented in the CPP algorithm and as such the associated retrieval uncertainties are potentially substantial.

    It is shown that the CWP retrievals are very sensitive to the assumptions made in the CPP code. The CWP retrieval errors are generally small for unbroken single-layer clouds with COT > 10, with retrieval errors of ~3% for liquid water clouds to ~10% for ice clouds. In a multi-layer cloud, when both liquid water and ice clouds are present in a pixel, the CWP retrieval errors increase dramatically; depending on the cloud, this can lead to uncertainties of 40–80%. CWP retrievals also become more uncertain when the cloud does not cover the entire pixel, leading to errors of ~50% for cloud fractions of 0.75 and even larger errors for smaller cloud fractions. Thus, the satellite retrieval of cloud physical properties of broken clouds as well as multi-layer clouds is complicated by inherent difficulties, and the proper interpretation of such retrievals requires extra care.

  1. Meadow based Fraction Theory

    OpenAIRE

    Bergstra, Jan A.

    2015-01-01

    In the context of an involutive meadow a precise definition of fractions is formulated and on that basis formal definitions of various classes of fractions are given. The definitions follow the fractions as terms paradigm. That paradigm is compared with two competing paradigms for storytelling on fractions: fractions as values and fractions as pairs.

  2. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    Science.gov (United States)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case

  3. Moving towards Cloud Security

    Directory of Open Access Journals (Sweden)

    Edit Szilvia Rubóczki

    2015-01-01

    Full Text Available Cloud computing hosts and delivers many different services via Internet. There are a lot of reasons why people opt for using cloud resources. Cloud development is increasing fast while a lot of related services drop behind, for example the mass awareness of cloud security. However the new generation upload videos and pictures without reason to a cloud storage, but only few know about data privacy, data management and the proprietary of stored data in the cloud. In an enterprise environment the users have to know the rule of cloud usage, however they have little knowledge about traditional IT security. It is important to measure the level of their knowledge, and evolve the training system to develop the security awareness. The article proves the importance of suggesting new metrics and algorithms for measuring security awareness of corporate users and employees to include the requirements of emerging cloud security.

  4. In the clouds

    NARCIS (Netherlands)

    Wassink, J.

    2012-01-01

    Clouds always used to be the least understood element of the weather system, but that is rapidly changing . Computer clouds increasingly correspond with those in the sky, which promises weather forecasts at street level and more accurate climate scenarios.

  5. Cloud Computing for radiologists.

    Science.gov (United States)

    Kharat, Amit T; Safvi, Amjad; Thind, Ss; Singh, Amarjit

    2012-07-01

    Cloud computing is a concept wherein a computer grid is created using the Internet with the sole purpose of utilizing shared resources such as computer software, hardware, on a pay-per-use model. Using Cloud computing, radiology users can efficiently manage multimodality imaging units by using the latest software and hardware without paying huge upfront costs. Cloud computing systems usually work on public, private, hybrid, or community models. Using the various components of a Cloud, such as applications, client, infrastructure, storage, services, and processing power, Cloud computing can help imaging units rapidly scale and descale operations and avoid huge spending on maintenance of costly applications and storage. Cloud computing allows flexibility in imaging. It sets free radiology from the confines of a hospital and creates a virtual mobile office. The downsides to Cloud computing involve security and privacy issues which need to be addressed to ensure the success of Cloud computing in the future.

  6. Smoke Invigoration Versus Inhibition of Clouds over the Amazon

    Science.gov (United States)

    Koren, Ilan; Martins, J. Vanderlei; Lorraine, A. Remer; Afargan, Hila

    2008-01-01

    The effect of anthropogenic aerosols on clouds is one of the most important and least understood aspects of human-induced climate change. Small changes in the amount of cloud coverage can produce a climate forcing equivalent in magnitude and opposite in sign to that caused by anthropogenic greenhouse gases, and changes in cloud height can shift the effect of clouds from cooling to warming. Focusing on the Amazon, we show a smooth transition between two opposing effects of aerosols on clouds: the microphysical and the radiative. We show how a feedback between the optical properties of aerosols and the cloud fraction can modify the aerosol forcing, changing the total radiative energy and redistributing it over the atmospheric column.

  7. Breaking through the Glass Ceiling: The Correlation Between the Self-Diffusivity in and Krypton Permeation through Deeply Supercooled Liquid Nanoscale Methanol Films

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-28

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures near (100-115 K) the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited ontop of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  8. Breaking through the glass ceiling: The correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films

    Science.gov (United States)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-01

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  9. Computer animation of clouds

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.

    1994-01-28

    Computer animation of outdoor scenes is enhanced by realistic clouds. I will discuss several different modeling and rendering schemes for clouds, and show how they evolved in my animation work. These include transparency-textured clouds on a 2-D plane, smooth shaded or textured 3-D clouds surfaces, and 3-D volume rendering. For the volume rendering, I will present various illumination schemes, including the density emitter, single scattering, and multiple scattering models.

  10. Computer animation of clouds

    Energy Technology Data Exchange (ETDEWEB)

    Max, N.

    1994-01-28

    Computer animation of outdoor scenes is enhanced by realistic clouds. I will discuss several different modeling and rendering schemes for clouds, and show how they evolved in my animation work. These include transparency-textured clouds on a 2-D plane, smooth shaded or textured 3-D clouds surfaces, and 3-D volume rendering. For the volume rendering, I will present various illumination schemes, including the density emitter, single scattering, and multiple scattering models.

  11. Comparing Point Clouds

    Science.gov (United States)

    2004-04-01

    Point clouds are one of the most primitive and fundamental surface representations. A popular source of point clouds are three dimensional shape...acquisition devices such as laser range scanners. Another important field where point clouds are found is in the representation of high-dimensional...framework for comparing manifolds given by point clouds is presented in this paper. The underlying theory is based on Gromov-Hausdorff distances, leading

  12. Cloud computing strategies

    CERN Document Server

    Chorafas, Dimitris N

    2011-01-01

    A guide to managing cloud projects, Cloud Computing Strategies provides the understanding required to evaluate the technology and determine how it can be best applied to improve business and enhance your overall corporate strategy. Based on extensive research, it examines the opportunities and challenges that loom in the cloud. It explains exactly what cloud computing is, what it has to offer, and calls attention to the important issues management needs to consider before passing the point of no return regarding financial commitments.

  13. Governmental Cloud - Part of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Cristian IVANUS

    2014-01-01

    Full Text Available Large IT (Information Technology companies propose cloud government's (G-Cloud development model through investment from the private sector, which will facilitate the access of users from public sector to the new generation IT services. Through the G-Cloud private operators that operate governmental cloud infrastructure by adding specific SaaS (Software as a Service functionalities, proposed model by big companies, supports public institutions in optimizing costs and increased operational efficiency, bringing tangible benefits in relation with citizens and thus with the whole society. These optimizations are achieved by moving the initial investment to the private sector, through type subscription model cost by eliminating dependency on human factors (technical and by providing a low cost [1]. This paper aims to bring to the attention of specialists, some aspects of Governmental Cloud from the European Union (EU countries to be understood and implemented in Romania.

  14. Evaluation of GISS SCM Simulated Cloud and Radiative Properties Using Both Surface and Satellite Observations

    Science.gov (United States)

    Kennedy, A. D.; Dong, X.; Xi, B.; Del Genio, A.; Wolf, A.; Minnis, P.; Khaiyer, M.; Doelling, D.; Nordeen, M.; Keyes, D.

    2009-05-01

    To evaluate the GISS SCM simulated cloud fractions, three years of surface and GOES satellite data have been collected at DOE ARM Southern Great Plains (SGP) site during 1999-2001. The GOES derived total and high cloud fractions from both 0.5° and 2.5° grid boxes are in excellent agreement with surface observations, suggesting that the ARM point observations can represent large areal observations. Compared to the ARM radar-lidar observed cloud fractions, the SCM simulated most mid-level clouds, overestimated low clouds, and underestimated total and high clouds with additional missed during the summer season. Further studies have revealed that the model simulated cloud fractions are strongly dependent on the large-scale synoptic pattern and its associated variables such as vertical motion and relative humidity. Because a significant amount of clouds over ARM SGP occur during synoptically quiescent conditions, the model has issues producing enough high cloud cover. This work suggests that alterations need to be made to the stratiform cloud scheme to better represent the sub-grid scale cloud variability in this case. The model simulated radiation budget is also evaluated with two years of collocated ARM surface radiation and CERES and GOES TOA radiation over the SGP site during March 2000-Dec. 2001. For this comparison, the model simulated surface and TOA radiation budgets agree well with surface and satellite observations (˜10 W m-2). Model simulated cloud optical depth, however, is about an order of magnitude higher than CERES/GOES retrievals, which may explain why the radiation budget is reasonable and yet total cloud fraction has a negative bias compared to observations. Further study is warranted to better understand how this impacts cloud radiative forcing.

  15. Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5*

    Energy Technology Data Exchange (ETDEWEB)

    Zelinka, Mark D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Klein, Stephen A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Taylor, Karl E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Program for Climate Model Diagnosis and Intercomparison; Andrews, Timothy [Met Office Hadley Center, Exeter (United Kingdom); Webb, Mark J. [Met Office Hadley Center, Exeter (United Kingdom); Gregory, Jonathan M. [Univ. of Reading, Exeter (United Kingdom). National Center for Atmospheric Science; Forster, Piers M. [Univ. of Leeds (United Kingdom)

    2013-07-01

    When using five climate model simulations of the response to an abrupt quadrupling of CO2, the authors perform the first simultaneous model intercomparison of cloud feedbacks and rapid radiative adjustments with cloud masking effects removed, partitioned among changes in cloud types and gross cloud properties. After CO2 quadrupling, clouds exhibit a rapid reduction in fractional coverage, cloud-top pressure, and optical depth, with each contributing equally to a 1.1 W m-2 net cloud radiative adjustment, primarily from shortwave radiation. Rapid reductions in midlevel clouds and optically thick clouds are important in reducing planetary albedo in every model. As the planet warms, clouds become fewer, higher, and thicker, and global mean net cloud feedback is positive in all but one model and results primarily from increased trapping of longwave radiation. As was true for earlier models, high cloud changes are the largest contributor to intermodel spread in longwave and shortwave cloud feedbacks, but low cloud changes are the largest contributor to the mean and spread in net cloud feedback. The importance of the negative optical depth feedback relative to the amount feedback at high latitudes is even more marked than in earlier models. Furthermore, the authors show that the negative longwave cloud adjustment inferred in previous studies is primarily caused by a 1.3 W m-2 cloud masking of CO2 forcing. Properly accounting for cloud masking increases net cloud feedback by 0.3 W m-2 K-1, whereas accounting for rapid adjustments reduces by 0.14 W m-2 K-1 the ensemble mean net cloud feedback through a combination of smaller positive cloud amount and altitude feedbacks and larger negative optical depth feedbacks.

  16. Satellite-based 3D structure of cloud and aerosols over the Indian Monsoon region: implications for aerosol-cloud interaction

    Science.gov (United States)

    Dey, Sagnik; Sengupta, Kamalaika; Basil, George; Das, Sushant; Nidhi, Nidhi; Dash, S. K.; Sarkar, Arjya; Srivastava, Parul; Singh, Ajit; Agarwal, P.

    2012-11-01

    Accurate knowledge of vertical distributions of aerosol and cloud fields and their space-time variations are required to reduce the uncertainty in estimated climate forcing. Here, multi-sensor (both passive and active) data were used to construct the climatology of 3-D cloud and aerosol fields over the Indian monsoon region. Multilayer clouds are found to persist throughout the year, among which cumulus and stratocumulus dominate the low clouds and cirrus dominates the high clouds. A combination of passive stereo-technique (MISR) and radiometric technique (ISCPP) captures the multilayer cloud structure as revealed by active sensor CALIOP. Coexistence of low clouds throughout the year with high aerosol concentration beneath and above leads to a transition from increasing to decreasing cloud fraction with an increase in aerosol optical depth. Such transition is rapid in the monsoon season due to convergence of low clouds to form high clouds facilitated by high aerosol loading. Further, the regional climate model RegCM 4.1 has been used to examine aerosol-cloud interaction. The aerosol-induced changes of low cloud amount are under-estimated by the model. The observation-based seasonal climatology of aerosol and cloud fields presented here may help in improving the model simulations of cloud variability and associated rainfall.

  17. Security in the cloud.

    Science.gov (United States)

    Degaspari, John

    2011-08-01

    As more provider organizations look to the cloud computing model, they face a host of security-related questions. What are the appropriate applications for the cloud, what is the best cloud model, and what do they need to know to choose the best vendor? Hospital CIOs and security experts weigh in.

  18. On clocks and clouds

    Directory of Open Access Journals (Sweden)

    M. K. Witte

    2013-09-01

    Full Text Available Cumulus clouds exhibit a life cycle that consists of: (a the growth phase (increasing size, most notably in the vertical direction; (b the mature phase (growth ceases; any precipitation that develops is strongest during this period; and (c the dissipation phase (cloud dissipates because of precipitation and/or entrainment; no more dynamical support. Although radar can track clouds over time and give some sense of the age of a cloud, most aircraft in situ measurements lack temporal context. We use large eddy simulations of trade wind cumulus cloud fields from cases during the Barbados Oceanographic and Meteorological Experiment (BOMEX and Rain In Cumulus over the Ocean (RICO campaigns to demonstrate a potential cumulus cloud "clock". We find that the volume-averaged total water mixing ratio rt is a useful cloud clock for the 12 clouds studied. A cloud's initial rt is set by the subcloud mixed-layer mean rt and decreases monotonically from the initial value due primarily to entrainment. The clock is insensitive to aerosol loading, environmental sounding and extrinsic cloud properties such as lifetime and volume. In some cases (more commonly for larger clouds, multiple pulses of buoyancy occur, which complicate the cumulus clock by replenishing rt. The clock is most effectively used to classify clouds by life phase.

  19. Cloud Computing Explained

    Science.gov (United States)

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  20. Cloud Computing Explained

    Science.gov (United States)

    Metz, Rosalyn

    2010-01-01

    While many talk about the cloud, few actually understand it. Three organizations' definitions come to the forefront when defining the cloud: Gartner, Forrester, and the National Institutes of Standards and Technology (NIST). Although both Gartner and Forrester provide definitions of cloud computing, the NIST definition is concise and uses…

  1. On CLOUD nine

    CERN Multimedia

    2009-01-01

    The team from the CLOUD experiment - the world’s first experiment using a high-energy particle accelerator to study the climate - were on cloud nine after the arrival of their new three-metre diameter cloud chamber. This marks the end of three years’ R&D and design, and the start of preparations for data taking later this year.

  2. Validation of the Two-Layer Model for Correcting Clear Sky Reflectance Near Clouds

    Science.gov (United States)

    Wen, Guoyong; Marshak, Alexander; Evans, K. Frank; Vamal, Tamas

    2014-01-01

    A two-layer model was developed in our earlier studies to estimate the clear sky reflectance enhancement near clouds. This simple model accounts for the radiative interaction between boundary layer clouds and molecular layer above, the major contribution to the reflectance enhancement near clouds for short wavelengths. We use LES/SHDOM simulated 3D radiation fields to valid the two-layer model for reflectance enhancement at 0.47 micrometer. We find: (a) The simple model captures the viewing angle dependence of the reflectance enhancement near cloud, suggesting the physics of this model is correct; and (b) The magnitude of the 2-layer modeled enhancement agree reasonably well with the "truth" with some expected underestimation. We further extend our model to include cloud-surface interaction using the Poisson model for broken clouds. We found that including cloud-surface interaction improves the correction, though it can introduced some over corrections for large cloud albedo, large cloud optical depth, large cloud fraction, large cloud aspect ratio. This over correction can be reduced by excluding scenes (10 km x 10km) with large cloud fraction for which the Poisson model is not designed for. Further research is underway to account for the contribution of cloud-aerosol radiative interaction to the enhancement.

  3. A method for retrieving clouds with satellite infrared radiances using the particle filter

    Science.gov (United States)

    Xu, Dongmei; Auligné, Thomas; Descombes, Gaël; Snyder, Chris

    2016-11-01

    Ensemble-based techniques have been widely utilized in estimating uncertainties in various problems of interest in geophysical applications. A new cloud retrieval method is proposed based on the particle filter (PF) by using ensembles of cloud information in the framework of Gridpoint Statistical Interpolation (GSI) system. The PF cloud retrieval method is compared with the Multivariate Minimum Residual (MMR) method that was previously established and verified. Cloud retrieval experiments involving a variety of cloudy types are conducted with the PF and MMR methods with measurements of infrared radiances on multi-sensors onboard both geostationary and polar satellites, respectively. It is found that the retrieved cloud masks with both methods are consistent with other independent cloud products. MMR is prone to producing ambiguous small-fraction clouds, while PF detects clearer cloud signals, yielding closer heights of cloud top and cloud base to other references. More collections of small-fraction particles are able to effectively estimate the semi-transparent high clouds. It is found that radiances with high spectral resolutions contribute to quantitative cloud top and cloud base retrievals. In addition, a different way of resolving the filtering problem over each model grid is tested to better aggregate the weights with all available sensors considered, which is proven to be less constrained by the ordering of sensors. Compared to the MMR method, the PF method is overall more computationally efficient, and the cost of the model grid-based PF method scales more directly with the number of computing nodes.

  4. Response of the Nevzorov hot wire probe in Arctic clouds dominated by very large droplet sizes

    Directory of Open Access Journals (Sweden)

    A. Schwarzenboeck

    2009-05-01

    Full Text Available During the airborne research mission ASTAR 2004 (Arctic Study of Tropospheric Aerosols, Clouds and Radiation performed over the island of Svalbard in the Arctic a constant-temperature hot-wire Nevzorov Probe designed for aircraft measurements, has been used onboard the aircraft POLAR 2. The Nevzorov probe measured liquid water (LWC and total condensed water content (TWC in supercooled liquid and partly mixed phase clouds, respectively. As for other hotwire probes the calculation of LWC and/or TWC (and thus the ice water content IWC has to take into account the collection efficiencies of the two separate sensors for LWC and TWC which both react differently with respect to cloud phase and what is even more difficult to quantify with respect to the size of ice and liquid cloud particles. The study demonstrates that during pure liquid cloud sequences the ASTAR data set of the Nevzorov probe allowed to improve the quantification of the collection efficiency, particularly of the LWC probe part with respect to water. The improved quantification of liquid water content should lead to improved retrievals of IWC content. Simultaneous retrievals of LWC and IWC are correlated with the asymmetry factor derived from the Polar Nephelometer instrument.

  5. THE MAGELLANIC MOPRA ASSESSMENT (MAGMA). I. THE MOLECULAR CLOUD POPULATION OF THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Wong, Tony; Chu, You-Hua; Gruendl, Robert A.; Looney, Leslie W.; Seale, Jonathan; Welty, Daniel E. [Astronomy Department, University of Illinois, Urbana, IL 61801 (United States); Hughes, Annie; Maddison, Sarah [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, VIC 3122 (Australia); Ott, Juergen [National Radio Astronomy Observatory, P.O. Box O, 1003 Lopezville Road, Socorro, NM 87801 (United States); Muller, Erik; Fukui, Yasuo; Kawamura, Akiko; Mizuno, Yoji [Department of Astrophysics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan); Pineda, Jorge L. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109-8099 (United States); Bernard, Jean-Philippe; Paradis, Deborah [CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse cedex 4 (France); Henkel, Christian [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, D-53121 Bonn (Germany); Klein, Ulrich, E-mail: wongt@astro.illinois.edu [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53121 Bonn (Germany)

    2011-12-01

    We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11 pc resolution in the CO(1-0) line. Targets were chosen based on a limiting CO flux and peak brightness as measured by the NANTEN survey. The observations were conducted with the ATNF Mopra Telescope as part of the Magellanic Mopra Assessment. We identify clouds as regions of connected CO emission and find that the distributions of cloud sizes, fluxes, and masses are sensitive to the choice of decomposition parameters. In all cases, however, the luminosity function of CO clouds is steeper than dN/dL{proportional_to}L{sup -2}, suggesting that a substantial fraction of mass is in low-mass clouds. A correlation between size and linewidth, while apparent for the largest emission structures, breaks down when those structures are decomposed into smaller structures. We argue that the correlation between virial mass and CO luminosity is the result of comparing two covariant quantities, with the correlation appearing tighter on larger scales where a size-linewidth relation holds. The virial parameter (the ratio of a cloud's kinetic to self-gravitational energy) shows a wide range of values and exhibits no clear trends with the CO luminosity or the likelihood of hosting young stellar object (YSO) candidates, casting further doubt on the assumption of virialization for molecular clouds in the LMC. Higher CO luminosity increases the likelihood of a cloud harboring a YSO candidate, and more luminous YSOs are more likely to be coincident with detectable CO emission, confirming the close link between giant molecular clouds and massive star formation.

  6. Intergalactic HI Clouds

    CERN Document Server

    Briggs, F H

    2005-01-01

    Neutral intergalactic clouds are so greatly out numbered by galaxies that their integral HI content is negligible in comparison to that contained in optically luminous galaxies. In fact, no HI cloud that is not associated with a galaxy or grouping of galaxies has yet been identified. This points to a causal relationship that relies on gravitational potentials that bind galaxies also being responsible for confining HI clouds to sufficient density that they can become self-shielding to the ionizing background radiation. Unconfined clouds of low density become ionized, but confined clouds find themselves vulnerable to instability and collapse, leading to star formation.

  7. Cloud Computing Bible

    CERN Document Server

    Sosinsky, Barrie

    2010-01-01

    The complete reference guide to the hot technology of cloud computingIts potential for lowering IT costs makes cloud computing a major force for both IT vendors and users; it is expected to gain momentum rapidly with the launch of Office Web Apps later this year. Because cloud computing involves various technologies, protocols, platforms, and infrastructure elements, this comprehensive reference is just what you need if you'll be using or implementing cloud computing.Cloud computing offers significant cost savings by eliminating upfront expenses for hardware and software; its growing popularit

  8. Cloud Computing Quality

    Directory of Open Access Journals (Sweden)

    Anamaria Şiclovan

    2013-02-01

    Full Text Available Cloud computing was and it will be a new way of providing Internet services and computers. This calculation approach is based on many existing services, such as the Internet, grid computing, Web services. Cloud computing as a system aims to provide on demand services more acceptable as price and infrastructure. It is exactly the transition from computer to a service offered to the consumers as a product delivered online. This paper is meant to describe the quality of cloud computing services, analyzing the advantages and characteristics offered by it. It is a theoretical paper.Keywords: Cloud computing, QoS, quality of cloud computing

  9. Cloud Computing Technologies

    Directory of Open Access Journals (Sweden)

    Sean Carlin

    2012-06-01

    Full Text Available This paper outlines the key characteristics that cloud computing technologies possess and illustrates the cloud computing stack containing the three essential services (SaaS, PaaS and IaaS that have come to define the technology and its delivery model. The underlying virtualization technologies that make cloud computing possible are also identified and explained. The various challenges that face cloud computing technologies today are investigated and discussed. The future of cloud computing technologies along with its various applications and trends are also explored, giving a brief outlook of where and how the technology will progress into the future.

  10. Free energy of formation of small ice nuclei near the Widom line in simulations of supercooled water.

    Science.gov (United States)

    Buhariwalla, Connor R C; Bowles, Richard K; Saika-Voivod, Ivan; Sciortino, Francesco; Poole, Peter H

    2015-05-01

    The ST2 interaction potential has been used in a large number of simulation studies to explore the possibility of a liquid-liquid phase transition (LLPT) in supercooled water. Using umbrella sampling Monte Carlo simulations of ST2 water, we evaluate the free energy of formation of small ice nuclei in the supercooled liquid in the vicinity of the Widom line, the region above the critical temperature of the LLPT where a number of thermodynamic anomalies occur. Our results show that in this region there is a substantial free-energy cost for the formation of small ice nuclei, demonstrating that the thermodynamic anomalies associated with the Widom line in ST2 water occur in a well-defined metastable liquid phase. On passing through the Widom line, we identify changes in the free energy to form small ice nuclei that illustrate how the thermodynamic anomalies associated with the LLPT may influence the ice nucleation process.

  11. Turbulent heat transfer as a control of platelet ice growth in supercooled under-ice ocean boundary layers

    Science.gov (United States)

    McPhee, Miles G.; Stevens, Craig L.; Smith, Inga J.; Robinson, Natalie J.

    2016-04-01

    Late winter measurements of turbulent quantities in tidally modulated flow under land-fast sea ice near the Erebus Glacier Tongue, McMurdo Sound, Antarctica, identified processes that influence growth at the interface of an ice surface in contact with supercooled seawater. The data show that turbulent heat exchange at the ocean-ice boundary is characterized by the product of friction velocity and (negative) water temperature departure from freezing, analogous to similar results for moderate melting rates in seawater above freezing. Platelet ice growth appears to increase the hydraulic roughness (drag) of fast ice compared with undeformed fast ice without platelets. Platelet growth in supercooled water under thick ice appears to be rate-limited by turbulent heat transfer and that this is a significant factor to be considered in mass transfer at the underside of ice shelves and sea ice in the vicinity of ice shelves.

  12. Pressure Induced Liquid-to-Liquid Transition in Zr-based Supercooled Melts and Pressure Quenched Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Dmowski, W.; Gierlotka, S.; Wang, Z.; Yokoyama, Y.; Palosz, B.; Egami, T.

    2017-07-26

    Through high-energy x-ray diffraction and atomic pair density function analysis we find that Zr-based metallic alloy, heated to the supercooled liquid state under hydrostatic pressure and then quenched to room temperature, exhibits a distinct glassy structure. The PDF indicates that the Zr-Zr distances in this glass are significantly reduced compared to those quenched without pressure. Annealing at the glass transition temperature at ambient pressure reverses structural changes and the initial glassy state is recovered. This result suggests that pressure causes a liquid-to-liquid phase transition in this metallic alloy supercooled melt. Such a pressure induced transition is known for covalent liquids, but has not been observed for metallic liquids. The High Pressure Quenched glasses are stable in ambient conditions after decompression.

  13. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    Ştefan IOVAN

    2016-05-01

    Full Text Available Cloud computing reprentes the software applications offered as a service online, but also the software and hardware components from the data center.In the case of wide offerd services for any type of client, we are dealing with a public cloud. In the other case, in wich a cloud is exclusively available for an organization and is not available to the open public, this is consider a private cloud [1]. There is also a third type, called hibrid in which case an user or an organization might use both services available in the public and private cloud. One of the main challenges of cloud computing are to build the trust and ofer information privacy in every aspect of service offerd by cloud computingle. The variety of existing standards, just like the lack of clarity in sustenability certificationis not a real help in building trust. Also appear some questions marks regarding the efficiency of traditionsecurity means that are applied in the cloud domain. Beside the economic and technology advantages offered by cloud, also are some advantages in security area if the information is migrated to cloud. Shared resources available in cloud includes the survey, use of the "best practices" and technology for advance security level, above all the solutions offered by the majority of medium and small businesses, big companies and even some guvermental organizations [2].

  14. Two-structure thermodynamics for the TIP4P/2005 model of water covering supercooled and deeply stretched regions

    Science.gov (United States)

    Biddle, John W.; Singh, Rakesh S.; Sparano, Evan M.; Ricci, Francesco; González, Miguel A.; Valeriani, Chantal; Abascal, José L. F.; Debenedetti, Pablo G.; Anisimov, Mikhail A.; Caupin, Frédéric

    2017-01-01

    One of the most promising frameworks for understanding the anomalies of cold and supercooled water postulates the existence of two competing, interconvertible local structures. If the non-ideality in the Gibbs energy of mixing overcomes the ideal entropy of mixing of these two structures, a liquid-liquid phase transition, terminated at a liquid-liquid critical point, is predicted. Various versions of the "two-structure equation of state" (TSEOS) based on this concept have shown remarkable agreement with both experimental data for metastable, deeply supercooled water and simulations of molecular water models. However, existing TSEOSs were not designed to describe the negative pressure region and do not account for the stability limit of the liquid state with respect to the vapor. While experimental data on supercooled water at negative pressures may shed additional light on the source of the anomalies of water, such data are very limited. To fill this gap, we have analyzed simulation results for TIP4P/2005, one of the most accurate classical water models available. We have used recently published simulation data, and performed additional simulations, over a broad range of positive and negative pressures, from ambient temperature to deeply supercooled conditions. We show that, by explicitly incorporating the liquid-vapor spinodal into a TSEOS, we are able to match the simulation data for TIP4P/2005 with remarkable accuracy. In particular, this equation of state quantitatively reproduces the lines of extrema in density, isothermal compressibility, and isobaric heat capacity. Contrary to an explanation of the thermodynamic anomalies of water based on a "retracing spinodal," the liquid-vapor spinodal in the present TSEOS continues monotonically to lower pressures upon cooling, influencing but not giving rise to density extrema and other thermodynamic anomalies.

  15. Non-contact property measurements of liquid and supercooled ceramics with a hybrid electrostatic-aerodynamic levitation furnace

    OpenAIRE

    Ishikawa, Takehiko; Yoda, Shinichi; Paradis, Paul-Francois; 石川 毅彦; 依田 真一

    2005-01-01

    The use of an hybrid pressurized electrostatic-aerodynamic levitation furnace and procedures developed by the Japan Aerospace Exploration Agency overcame the contamination problems associated with the processing of ceramics under extreme temperature conditions. This made possible property measurements over wide temperature ranges that cover the superheated as well as the supercooled states. In this study, samples of various ceramics were levitated and their densities were found as a function ...

  16. Community Cloud Computing

    CERN Document Server

    Marinos, Alexandros

    2009-01-01

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenge...

  17. The Magellanic Mopra Assessment (MAGMA). I. The Molecular Cloud Population of the Large Magellanic Cloud

    CERN Document Server

    Wong, Tony; Ott, Jürgen; Muller, Erik; Pineda, Jorge L; Bernard, Jean-Philippe; Chu, You-Hua; Fukui, Yasuo; Gruendl, Robert A; Henkel, Christian; Kawamura, Akiko; Klein, Ulrich; Looney, Leslie W; Maddison, Sarah; Mizuno, Yoji; Paradis, Deborah; Seale, Jonathan; Welty, Daniel E

    2011-01-01

    We present the properties of an extensive sample of molecular clouds in the Large Magellanic Cloud (LMC) mapped at 11 pc resolution in the CO(1-0) line. We identify clouds as regions of connected CO emission, and find that the distributions of cloud sizes, fluxes and masses are sensitive to the choice of decomposition parameters. In all cases, however, the luminosity function of CO clouds is steeper than dN/dL \\propto L^{-2}, suggesting that a substantial fraction of mass is in low-mass clouds. A correlation between size and linewidth, while apparent for the largest emission structures, breaks down when those structures are decomposed into smaller structures. We argue that the correlation between virial mass and CO luminosity is the result of comparing two covariant quantities, with the correlation appearing tighter on larger scales where a size-linewidth relation holds. The virial parameter (the ratio of a cloud's kinetic to self-gravitational energy) shows a wide range of values and exhibits no clear trends...

  18. CloudMC: a cloud computing application for Monte Carlo simulation.

    Science.gov (United States)

    Miras, H; Jiménez, R; Miras, C; Gomà, C

    2013-04-21

    This work presents CloudMC, a cloud computing application-developed in Windows Azure®, the platform of the Microsoft® cloud-for the parallelization of Monte Carlo simulations in a dynamic virtual cluster. CloudMC is a web application designed to be independent of the Monte Carlo code in which the simulations are based-the simulations just need to be of the form: input files → executable → output files. To study the performance of CloudMC in Windows Azure®, Monte Carlo simulations with penelope were performed on different instance (virtual machine) sizes, and for different number of instances. The instance size was found to have no effect on the simulation runtime. It was also found that the decrease in time with the number of instances followed Amdahl's law, with a slight deviation due to the increase in the fraction of non-parallelizable time with increasing number of instances. A simulation that would have required 30 h of CPU on a single instance was completed in 48.6 min when executed on 64 instances in parallel (speedup of 37 ×). Furthermore, the use of cloud computing for parallel computing offers some advantages over conventional clusters: high accessibility, scalability and pay per usage. Therefore, it is strongly believed that cloud computing will play an important role in making Monte Carlo dose calculation a reality in future clinical practice.

  19. Molecular dynamics of the supercooled pharmaceutical agent posaconazole studied via differential scanning calorimetry and dielectric and mechanical spectroscopies.

    Science.gov (United States)

    Adrjanowicz, K; Kaminski, K; Wlodarczyk, P; Grzybowska, K; Tarnacka, M; Zakowiecki, D; Garbacz, G; Paluch, M; Jurga, S

    2013-10-07

    This paper presents comprehensive studies on the molecular dynamics of a pharmaceutically important substance, posaconazole. In order to characterize relaxation dynamics in the supercooled liquid and glassy states, dielectric and mechanical spectroscopies were applied. Dielectric data have indicated multiple relaxation processes that appear above and below the glass transition temperature Tg (τα=100 s) of posaconazole. From the curvature of the dielectric log10(τα) versus inverse of temperature dependence, we determine so-called "fragility", being a very popular parameter for classifying the structural dynamics of supercooled liquids and polymers. From the calculations, we get m=150, which means that is one of the most fragile glass-forming liquids. In this paper, the relaxation dynamics of supercooled posaconazole extracted from the dielectric response function was also confronted with shear-mechanical relaxation. Finally, we have also presented a direct comparison of the fragility and the number of dynamically correlated molecules Nc determined from dynamic calorimetry curves and dielectric and mechanical spectroscopies, showing a clear deviation in the picture of glass-transition dynamics generated by calorimetric and spectroscopic techniques.

  20. Improvements of the experimental apparatus for measurement of the surface tension of supercooled liquids using horizontal capillary tube

    Directory of Open Access Journals (Sweden)

    Vinš Václav

    2016-01-01

    Full Text Available An experimental apparatus with a horizontal capillary tube for measurement of the surface tension of supercooled liquids, i.e. liquids in a metastable state below the equilibrium freezing point, was designed and tested in the previous study [V. Vinš et al., EPJ Web Conf. 92, 02108 (2015]. In this work, recent modifications of both the experimental setup and the measurement analysis are described. The main aim is to improve the accuracy and the reproducibility of measured surface tension and to achieve higher degrees of supercooling. Temperature probes measuring the temperature of cooling medium near the horizontal capillary tube were calibrated in the relevant temperature range from – 31 °C to + 45 °C. An additional pressure transducer was installed in the helium distribution setup at the position close to the capillary tube. The optical setup observing the liquid meniscus at the open end of the horizontal capillary tube together with the video analysis were thoroughly revised. The red laser illuminating the liquid meniscus, used at the original apparatus, was replaced by a fiber optic light source, which significantly improved the quality of the meniscus image. The modified apparatus was used for the measurement of surface tension of supercooled water at temperatures down to – 11 °C. The new data have a lower scatter compared to the previous horizontal measurements and show a good agreement with the other data obtained with a different measurement technique based on the modified capillary rise method.

  1. Star Formation in Disk Galaxies. I. Formation and Evolution of Giant Molecular Clouds via Gravitational Instability and Cloud Collisions

    CERN Document Server

    Tasker, Elizabeth J

    2008-01-01

    We investigate the formation and evolution of giant molecular clouds (GMCs) in a Milky-Way-like disk galaxy with a flat rotation curve. We perform a series of 3D adaptive mesh refinement (AMR) numerical simulations that follow both the global evolution on scales of ~20kpc and resolve down to scales ~=100cm^-3 and track the evolution of individual clouds as they orbit through the galaxy from their birth to their eventual destruction via merger or via destructive collision with another cloud. After ~140Myr a large fraction of the gas in the disk has fragmented in clouds, with typical masses ~10^6Msun, similar to Galactic GMCs. The disk settles into a quasi steady state in which gravitational scattering of clouds keeps the disk near the threshold of global gravitational instability. The cloud collision time is found to be a small fraction, ~1/5, of the orbital time, and this is an efficient mechanism to inject turbulence into the clouds. This keeps the clouds only moderately gravitationally bound, with virial pa...

  2. A Statistically-Based Low-Level Cloud Scheme and Its Tentative Application in a General Circulation Model

    Institute of Scientific and Technical Information of China (English)

    DAI Fushan; YU Rucong; ZHANG Xuehong; YU Yongqiang

    2005-01-01

    In this study, a statistical cloud scheme is first introduced and coupled with a first-order turbulence scheme with second-order turbulence moments parameterized by the timescale of the turbulence dissipation and the vertical turbulent diffusion coefficient. Then the ability of the scheme to simulate cloud fraction at different relative humidity, vertical temperature profile, and the timescale of the turbulent dissipation is examined by numerical simulation. It is found that the simulated cloud fraction is sensitive to the parameter used in the statistical cloud scheme and the timescale of the turbulent dissipation. Based on the analyses, the introduced statistical cloud scheme is modified. By combining the modified statistical cloud scheme with a boundary layer cumulus scheme, a new statistically-based low-level cloud scheme is proposed and tentatively applied in NCAR (National Center for Atmospheric Research) CCM3 (Community Climate Model version3). It is found that the simulation of low-level cloud fraction is markedly improved and the centers with maximum low-level cloud fractions are well simulated in the cold oceans off the western coasts with the statistically-based low-level cloud scheme applied in CCM3. It suggests that the new statistically-based low-level cloud scheme has a great potential in the general circulation model for improving the low-level cloud parameterization.

  3. 中纬度地区混合云中稳定同位素分馏的数学模拟-以乌鲁木齐降水为例%Simulations of Stable Isotopic Fractionation in Mixed Cloud in Middle Latitudes—Taking the Precipitation at Urǖmqi as an Example

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    介绍的数学模型考虑了混合云中液、固态共存时以及冰面过饱和环境下稳定同位素的动力分馏效应.利用该数学模型,模拟了不同冷却条件下稳定同位素的温度效应.在相同的湿度条件下,湿绝热冷却过程中δ18O随温度的变化率小于等压冷却过程.冰面过饱和比Si的增大意味着动力分馏效应的增大.与平衡态相比,它的作用使得稳定同位素的综合分馏系数减小,从而使得降水中δ18O随温度的变化趋缓.模拟显示,湿绝热冷却过程中大气水线(MWL:=bδ18O+d)的斜率b和常数d均大于等压冷却过程.全球大气水线位于湿绝热冷却过程和等压冷却过程条件下分别模拟的两条大气水线之间.b和d的大小与Si呈正比.Si愈大,动力分馏效应愈强,b和d也愈大.反之亦然.然而,b和d的大小对云中含水量的变化具有低的敏感性.利用动力分馏模式模拟了乌鲁木齐降水中稳定同位素的变化.模拟的稳定同位素比率-温度以及δD-δ18O曲线分别与乌鲁木齐实测的稳定同位素比率-温度回归线以及大气水线有非常好的一致性.%The introduced mathematical model takes into account the role of the kinetic fractionation effect in a supersaturation environment at the ice surface as liquid and solid phases coexist in mixed cloud. Using the model, the temperature effect of stable isotopes in precipitation is simulated under different cooling conditions. The rate of change of δ18O against temperature in the process of wet adiabatic cooling is smaller than in the process of isobaric cooling under the same humidity. The increasing supersaturation ratio at the ice surface, Si, leads to the strengthening of the kinetic fractionation effect. The kinetic fractionation function makes the synthesis fractionation factor decreased and the change of δ18O with temperature flatted, compared with that in the equilibrium state. The simulated results show that the slope parameter b

  4. Security Problems in Cloud Computing

    OpenAIRE

    Rola Motawie; Mahmoud M. El-Khouly; Samir Abou El-Seoud

    2016-01-01

    Cloud is a pool of computing resources which are distributed among cloud users. Cloud computing has many benefits like scalability, flexibility, cost savings, reliability, maintenance and mobile accessibility. Since cloud-computing technology is growing day by day, it comes with many security problems. Securing the data in the cloud environment is most critical challenges which act as a barrier when implementing the cloud. There are many new concepts that cloud introduces, such as resource sh...

  5. OMMYDCLD: a New A-train Cloud Product that Co-locates OMI and MODIS Cloud and Radiance Parameters onto the OMI Footprint

    Science.gov (United States)

    Fisher, Brad; Joiner, Joanna; Vasilkov, Alexander; Veefkind, Pepijn; Platnick, Steven; Wind, Galina

    2014-01-01

    Clouds cover approximately 60% of the earth's surface. When obscuring the satellite's field of view (FOV), clouds complicate the retrieval of ozone, trace gases and aerosols from data collected by earth observing satellites. Cloud properties associated with optical thickness, cloud pressure, water phase, drop size distribution (DSD), cloud fraction, vertical and areal extent can also change significantly over short spatio-temporal scales. The radiative transfer models used to retrieve column estimates of atmospheric constituents typically do not account for all these properties and their variations. The OMI science team is preparing to release a new data product, OMMYDCLD, which combines the cloud information from sensors on board two earth observing satellites in the NASA A-Train: Aura/OMI and Aqua/MODIS. OMMYDCLD co-locates high resolution cloud and radiance information from MODIS onto the much larger OMI pixel and combines it with parameters derived from the two other OMI cloud products: OMCLDRR and OMCLDO2. The product includes histograms for MODIS scientific data sets (SDS) provided at 1 km resolution. The statistics of key data fields - such as effective particle radius, cloud optical thickness and cloud water path - are further separated into liquid and ice categories using the optical and IR phase information. OMMYDCLD offers users of OMI data cloud information that will be useful for carrying out OMI calibration work, multi-year studies of cloud vertical structure and in the identification and classification of multi-layer clouds.

  6. Cross-Cloud Testing Strategies Over Cloud Computing

    Directory of Open Access Journals (Sweden)

    Mr. Nageswararao,

    2014-06-01

    Full Text Available Cloud computing is the new paradigm to deliver all the hosted services over internet on demand. The ultimate goal of cloud computing paradigm is to realize computing as a utility. The cloud is rapidly maturing towards its goal to support a wide variety of enterprise and consumer services and real-world applications. Recently a movement towards cross cloud also called as multi-clouds or inters clouds or cloud-of-clouds has emerged which take advantage of multiple independent cloud provider offers for cloud resilience and dependability. This cross cloud represents the next logical wave in computing, enabling complex hybrid applications, cost and performance optimization, enhanced reliability, customer flexibility and lock-in avoidance. Providing testing as a service (TaaS in cross clouds become hot topics in industry. Testing heterogeneous e-commerce sites, Software as a Service solutions, and Cloud based applications is extremely challenging.

  7. On the Nature and Extent of Optically Thin Marine low Clouds

    Science.gov (United States)

    Leahy, L. V.; Wood, R.; Charlson, R. J.; Hostetler, C. A.; Rogers, R. R.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    Macrophysical properties of optically thin marine low clouds over the nonpolar oceans (60 deg S-60 deg N) are measured using 2 years of full-resolution nighttime data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Optically thin clouds, defined as the subset of marine low clouds that do not fully attenuate the lidar signal, comprise almost half of the low clouds over the marine domain. Regionally, the fraction of low clouds that are optically thin (f(sub thin,cld)) exhibits a strong inverse relationship with the low-cloud cover, with maxima in the tropical trades (f(sub thin,cld) greater than 0.8) and minima in regions of persistent marine stratocumulus and in midlatitudes (f(sub thin,cld) less than 0.3). Domain-wide, a power law fit describes the cloud length distribution, with exponent beta = 2.03 +/- 0.06 (+/-95% confidence interval). On average, the fraction of a cloud that is optically thin decreases from approximately 1 for clouds smaller than 2 km to less than 0.3 for clouds larger than 30 km. This relationship is found to be independent of region, so that geographical variations in the cloud length distribution explain three quarters of the variance in f(sub thin,cld). Comparing collocated trade cumulus observations from CALIOP and the airborne High Spectral Resolution Lidar reveals that clouds with lengths smaller than are resolvable with CALIOP contribute approximately half of the low clouds in the region sampled. A bounded cascade model is constructed to match the observations from the trades. The model shows that the observed optically thin cloud behavior is consistent with a power law scaling of cloud optical depth and suggests that most optically thin clouds only partially fill the CALIOP footprint.

  8. On the Nature and Extent of Optically Thin Marine low Clouds

    Science.gov (United States)

    Leahy, L. V.; Wood, R.; Charlson, R. J.; Hostetler, C. A.; Rogers, R. R.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    Macrophysical properties of optically thin marine low clouds over the nonpolar oceans (60 deg S-60 deg N) are measured using 2 years of full-resolution nighttime data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Optically thin clouds, defined as the subset of marine low clouds that do not fully attenuate the lidar signal, comprise almost half of the low clouds over the marine domain. Regionally, the fraction of low clouds that are optically thin (f(sub thin,cld)) exhibits a strong inverse relationship with the low-cloud cover, with maxima in the tropical trades (f(sub thin,cld) greater than 0.8) and minima in regions of persistent marine stratocumulus and in midlatitudes (f(sub thin,cld) less than 0.3). Domain-wide, a power law fit describes the cloud length distribution, with exponent beta = 2.03 +/- 0.06 (+/-95% confidence interval). On average, the fraction of a cloud that is optically thin decreases from approximately 1 for clouds smaller than 2 km to less than 0.3 for clouds larger than 30 km. This relationship is found to be independent of region, so that geographical variations in the cloud length distribution explain three quarters of the variance in f(sub thin,cld). Comparing collocated trade cumulus observations from CALIOP and the airborne High Spectral Resolution Lidar reveals that clouds with lengths smaller than are resolvable with CALIOP contribute approximately half of the low clouds in the region sampled. A bounded cascade model is constructed to match the observations from the trades. The model shows that the observed optically thin cloud behavior is consistent with a power law scaling of cloud optical depth and suggests that most optically thin clouds only partially fill the CALIOP footprint.

  9. Large molecules in diffuse interstellar clouds

    Science.gov (United States)

    Lepp, S.; Dalgarno, A.; Van Dishoeck, E. F.; Black, J. H.

    1988-01-01

    The effects of the presence of a substantial component of large molecules on the chemistry of diffuse molecular clouds are explored, and detailed models of the zeta Persei and zeta Ophiuchi clouds are constructed. The major consequence is a reduction in the abundances of singly charged atomic species. The long-standing discrepancy between cloud densities inferred from rotational and fine-structure level populations and from the ionization balance can be resolved by postulating a fractional abundance of large molecules of 1 x 10 to the -7th for zeta Persei and 6 x 10 to the -7th for zeta Ophiuchi. If the large molecules are polycyclic aromatic hydrocarbons (PAH) containing about 50 carbon atoms, they contain 1 percent of the carbon in zeta Persei and 7 percent in zeta Ophiuchi. Other consequences of the possible presence of PAH molecules are discussed.

  10. Secure Cloud Architecture

    Directory of Open Access Journals (Sweden)

    Kashif Munir

    2013-02-01

    Full Text Available Cloud computing is set of resources and services offered through the Internet. Cloud services are delivered from data centers located throughout the world. Cloud computing facilitates its consumers by providing virtual resources via internet. The biggest challenge in cloud computing is the security and privacy problems caused by its multi-tenancy nature and the outsourcing of infrastructure, sensitive data and critical applications. Enterprises are rapidly adopting cloud services for their businesses, measures need to be developed so that organizations can be assured of security in their businesses and can choose a suitable vendor for their computing needs. Cloud computing depends on the internet as a medium for users to access the required services at any time on pay-per-use pattern. However this technology is still in its initial stages of development, as it suffers from threats and vulnerabilities that prevent the users from trusting it. Various malicious activitiesfrom illegal users have threatened this technology such as data misuse, inflexible access control and limited monitoring. The occurrence of these threats may result into damaging or illegal access of critical and confidential data of users. In this paper we identify the most vulnerable security threats/attacks in cloud computing, which will enable both end users and vendors to know a bout the k ey security threats associated with cloud computing and propose relevant solution directives to strengthen security in the Cloud environment. We also propose secure cloud architecture for organizations to strengthen the security.

  11. The Cloud Radar System

    Science.gov (United States)

    Racette, Paul; Heymsfield, Gerald; Li, Lihua; Tian, Lin; Zenker, Ed

    2003-01-01

    Improvement in our understanding of the radiative impact of clouds on the climate system requires a comprehensive view of clouds including their physical dimensions, dynamical generation processes, and detailed microphysical properties. To this end, millimeter vave radar is a powerful tool by which clouds can be remotely sensed. The NASA Goddard Space Flight Center has developed the Cloud Radar System (CRS). CRS is a highly sensitive 94 GHz (W-band) pulsed-Doppler polarimetric radar that is designed to fly on board the NASA high-altitude ER-2 aircraft. The instrument is currently the only millimeter wave radar capable of cloud and precipitation measurements from above most all clouds. Because it operates from high-altitude, the CRS provides a unique measurement perspective for cirrus cloud studies. The CRS emulates a satellite view of clouds and precipitation systems thus providing valuable measurements for the implementation and algorithm validation for the upcoming NASA CloudSat mission that is designed to measure ice cloud distributions on the global scale using a spaceborne 94 GHz radar. This paper describes the CRS instrument and preliminary data from the recent Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE). The radar design is discussed. Characteristics of the radar are given. A block diagram illustrating functional components of the radar is shown. The performance of the CRS during the CRYSTAL-FACE campaign is discussed.

  12. The dependence of Arctic cloud on the synoptic conditions in the Beaufort and Chukchi seasonal ice zone

    Science.gov (United States)

    Liu, Z.; Schweiger, A. J. B.

    2016-12-01

    How atmosphere and sea ice interact depends on the prevailing weather. Synoptic activities transport energy and moisture into the Arctic and modify the structure of the atmosphere, cloud conditions, and the surface energy budget over sea ice. The structure of the atmosphere, such as temperature inversions and specific humidity inversions are critical for the life cycle of Arctic clouds. Cloud radiative heating is an important component of the Arctic surface energy budget. The differences in the structure of the atmosphere, clouds, and the radiation balance at the surface under different synoptic conditions will determine which processes will govern the interaction between the atmosphere and clouds. In this study, dominant synoptic states over the Beaufort and Chukchi seasonal ice zone (BCSIZ) are identified using the ERA-Interim reanalysis data sets and a k-mean clustering synoptic classification algorithm. The synoptic classification algorithm categorizes individual weather events in the atmospheric reanalysis into four synoptic states with distinct signatures in baroclinicity and temperature advection. Using the CloudSat/Calipso joint cloud mask, the cloud conditions of the four synoptic states in the BCSIZ are examined. The cloud fraction of the four states are significantly different at different levels, which are associated with differences in the lower tropospheric static stability and the abundance of moisture, especially in the middle and lower atmosphere. These differences are also captured by the ERA-Interim although the ERA-Interim greatly overestimates the low-level cloud fraction and underestimates cloud fraction higher up, which is partly due to the limitation of the joint CloudSat/Calipso cloud mask below 1 km. In addition, the seasonal cycle and horizontal distribution of cloud fraction and cloud radiative heating at surface are examined for the four synoptic states using the joint CloudSat/Calipso retrievals. Two versions of joint Cloud

  13. Matrix fractional systems

    Science.gov (United States)

    Tenreiro Machado, J. A.

    2015-08-01

    This paper addresses the matrix representation of dynamical systems in the perspective of fractional calculus. Fractional elements and fractional systems are interpreted under the light of the classical Cole-Cole, Davidson-Cole, and Havriliak-Negami heuristic models. Numerical simulations for an electrical circuit enlighten the results for matrix based models and high fractional orders. The conclusions clarify the distinction between fractional elements and fractional systems.

  14. Quantitative comparisons of satellite observations and cloud models

    Science.gov (United States)

    Wang, Fang

    -by-cluster comparison between the observations and the simulations discloses biases in the model including overproduction of supercooled water and large hail particles. The detected biases shed light on how the model should be adjusted to generate more realistic microphysical relationships for each cluster. Guided by the model/observation discrepancies in the 'convective' cloud cluster, a new simulation is performed to provide dynamic adjustments by generating more but smaller hail particles.

  15. Parameterizing Size Distribution in Ice Clouds

    Energy Technology Data Exchange (ETDEWEB)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    cloud optical properties formulated in terms of PSD parameters in combination with remote measurements of thermal radiances to characterize the small mode. This is possible since the absorption efficiency (Qabs) of small mode crystals is larger at 12 µm wavelength relative to 11 µm wavelength due to the process of wave resonance or photon tunneling more active at 12 µm. This makes the 12/11 µm absorption optical depth ratio (or equivalently the 12/11 µm Qabs ratio) a means for detecting the relative concentration of small ice particles in cirrus. Using this principle, this project tested and developed PSD schemes that can help characterize cirrus clouds at each of the three ARM sites: SGP, NSA and TWP. This was the main effort of this project. These PSD schemes and ice sedimentation velocities predicted from them have been used to test the new cirrus microphysics parameterization in the GCM known as the Community Climate Systems Model (CCSM) as part of an ongoing collaboration with NCAR. Regarding the second problem, we developed and did preliminary testing on a passive thermal method for retrieving the total water path (TWP) of Arctic mixed phase clouds where TWPs are often in the range of 20 to 130 g m-2 (difficult for microwave radiometers to accurately measure). We also developed a new radar method for retrieving the cloud ice water content (IWC), which can be vertically integrated to yield the ice water path (IWP). These techniques were combined to determine the IWP and liquid water path (LWP) in Arctic clouds, and hence the fraction of ice and liquid water. We have tested this approach using a case study from the ARM field campaign called M-PACE (Mixed-Phase Arctic Cloud Experiment). This research led to a new satellite remote sensing method that appears promising for detecting low levels of liquid water in high clouds typically between -20 and -36 oC. We hope to develop this method in future research.

  16. Detection of multi-layer and vertically-extended clouds using A-train sensors

    Directory of Open Access Journals (Sweden)

    J. Joiner

    2010-02-01

    Full Text Available The detection of multiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI. For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (12 km×24 km at nadir and at the 5 km×5 km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (~20% for OMI and slightly less for MODIS globally, suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as

  17. Detection of Multi-Layer and Vertically-Extended Clouds Using A-Train Sensors

    Science.gov (United States)

    Joiner, J.; Vasilkov, A. P.; Bhartia, P. K.; Wind, G.; Platnick, S.; Menzel, W. P.

    2010-01-01

    The detection of mUltiple cloud layers using satellite observations is important for retrieval algorithms as well as climate applications. In this paper, we describe a relatively simple algorithm to detect multiple cloud layers and distinguish them from vertically-extended clouds. The algorithm can be applied to coincident passive sensors that derive both cloud-top pressure from the thermal infrared observations and an estimate of solar photon pathlength from UV, visible, or near-IR measurements. Here, we use data from the A-train afternoon constellation of satellites: cloud-top pressure, cloud optical thickness, the multi-layer flag from the Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) and the optical centroid cloud pressure from the Aura Ozone Monitoring Instrument (OMI). For the first time, we use data from the CloudSat radar to evaluate the results of a multi-layer cloud detection scheme. The cloud classification algorithms applied with different passive sensor configurations compare well with each other as well as with data from CloudSat. We compute monthly mean fractions of pixels containing multi-layer and vertically-extended clouds for January and July 2007 at the OMI spatial resolution (l2kmx24km at nadir) and at the 5kmx5km MODIS resolution used for infrared cloud retrievals. There are seasonal variations in the spatial distribution of the different cloud types. The fraction of cloudy pixels containing distinct multi-layer cloud is a strong function of the pixel size. Globally averaged, these fractions are approximately 20% and 10% for OMI and MODIS, respectively. These fractions may be significantly higher or lower depending upon location. There is a much smaller resolution dependence for fractions of pixels containing vertically-extended clouds (approx.20% for OMI and slightly less for MODIS globally), suggesting larger spatial scales for these clouds. We also find higher fractions of vertically-extended clouds over land as compared with

  18. Estimating seasonal variations in cloud droplet number concentration over the boreal forest from satellite observations

    Directory of Open Access Journals (Sweden)

    R. H. H. Janssen

    2011-08-01

    Full Text Available Seasonal variations in cloud droplet number concentration (NCD in low-level stratiform clouds over the boreal forest are estimated from MODIS observations of cloud optical and microphysical properties, using a sub-adiabatic cloud model to interpret vertical profiles of cloud properties. An uncertainty analysis of the cloud model is included to reveal the main sensitivities of the cloud model. We compared the seasonal cycle in NCD, obtained using 9 yr of satellite data, to surface concentrations of potential cloud activating aerosols, measured at the SMEAR II station at Hyytiälä in Finland. The results show that NCD and cloud condensation nuclei (CCN concentrations have no clear correlation at seasonal time scale. The fraction of aerosols that actually activate as cloud droplet decreases sharply with increasing aerosol concentrations. Furthermore, information on the stability of the atmosphere shows that low NCD is linked to stable atmospheric conditions. Combining these findings leads to the conclusion that cloud droplet activation for the studied clouds over the boreal forest is limited by convection. Our results suggest that it is important to take the strength of convection into account when studying the influence of aerosols from the boreal forest on cloud formation, although they do not rule out the possibility that aerosols from the boreal forest affect other types of clouds with a closer coupling to the surface.

  19. Aerosol Effect on the Phase of Low-Level Clouds in the Arctic

    Science.gov (United States)

    Filioglou, M.; Mielonen, T.; Giannakaki, E.; Arola, A. T.; Komppula, M.; Romakkaniemi, S.

    2016-12-01

    Cloud phase (liquid or ice) affects the cloud's persistence and optical properties, and thus the atmospheric radiation balance. In the warming Arctic, the transition from ice to liquid clouds has a potential to enhance the warming rate, however, changes in aerosol properties can affect the cloud phase even more substantially. Here, a characterization of low level clouds and their dependence on dust aerosols, which are assumed to be the most important ice nuclei (IN) over the Arctic area, is presented based on measurements from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO). The level 2 aerosol and cloud layer products with 5 km horizontal resolution from the CALIOP lidar (Cloud-Aerosol Lidar with Orthogonal Polarization) were employed for the period June 2006 to December 2015. The three available cloud phases (ice, water, unknown) were linked with the coinciding aerosol type characterization (dust, polluted dust, smoke and background aerosols). Based on the ice cloud fraction calculations done in this study, clouds freeze in warmer temperatures in the presence of dust particles than with other aerosol types. A difference in the cloud freezing temperature as high as 7o C was observed. Thus, dust aerosols have a high potential to affect the properties of Arctic clouds. Furthermore, possible increments in efficient IN due to long-range transported aerosols or new local aerosol sources due to anthropogenic activities may lead to optically thinner clouds modifying the radiation balance over Arctic.

  20. Experimental studies on seasonal heat storage based on stable supercooling of a sodium acetate water mixture

    DEFF Research Database (Denmark)

    Furbo, Simon; Dragsted, Janne; Fan, Jianhua

    2011-01-01

    to transfer heat to and from the module have been tested. Further, a solidification start method, based on a strong cooling of a small part of the salt water mixture in the module by boiling CO2 in a small brass tank in good thermal contact to the outer side of the module wall, has been tested. Tests......Laboratory tests of a 230 l seasonal heat storage module with a sodium acetate water mixture have been carried out. The aim of the tests is to elucidate how best to design a seasonal heat storage based on the salt water mixture, which supercools in a stable way. The module can be a part...... of a seasonal heat storage, that will be suitable for solar heating systems which can fully cover the yearly heat demand of Danish low energy buildings. The tested module has approximately the dimensions 2020 mm x 1285 mm x 80 mm. The module material is steel and the wall thickness is 2 mm. Different methods...

  1. Supercooling Self-Assembly of Magnetic Shelled Core/Shell Supraparticles.

    Science.gov (United States)

    Zheng, Xiaotong; Yan, Bingyun; Wu, Fengluan; Zhang, Jinlong; Qu, Shuxin; Zhou, Shaobing; Weng, Jie

    2016-09-14

    Molecular self-assembly has emerged as a powerful technique for controlling the structure and properties of core/shell structured supraparticles. However, drug-loading capacities and therapeutic effects of self-assembled magnetic core/shell nanocarriers with magnetic nanoparticles in the core are limited by the intervention of the outer organic or inorganic shell, the aggregation of superparamagnetic nanoparticles, the narrowed inner cavity, etc. Here, we present a self-assembly approach based on rebalancing hydrogen bonds between components under a supercooling process to form a new core/shell nanoscale supraparticle with magnetic nanoparticles as the shell and a polysaccharide as a core. Compared with conventional iron oxide nanoparticles, this magnetic shelled core/shell nanoparticle possesses an optimized inner cavity and a loss-free outer magnetic property. Furthermore, we find that the drug-loaded magnetic shelled nanocarriers showed interesting in vitro release behaviors at different pH conditions, including "swelling-broken", "dissociating-broken", and "bursting-broken" modes. Our experiments demonstrate the novel design of the multifunctional hybrid nanostructure and provide a considerable potential for the biomedical applications.

  2. A quantitative test of infrared optical constants for supercooled sulphuric and nitric acid droplet aerosols

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2003-05-01

    Full Text Available In situ Fourier transform infrared (FTIR extinction spectra of supercooled H2SO4/H2O and HNO3/H2O solution droplets were recorded in the large coolable aerosol chamber AIDA (Aerosol Interactions and Dynamics in the Atmosphere of Forschungszentrum Karlsruhe for a range of aerosol compositions and at temperatures extending down to 192 K. The measured spectra were quantitatively analysed in terms of aerosol composition and mass concentration by using Mie theory in combination with published refractive index data as input parameters. Simultaneously, total sulphuric acid and nitric acid mass concentrations from filter analysis and total water concentrations measured with the Lyman-a hygrometer of Forschungszentrum Jülich were used to calculate the aerosol composition at thermodynamic equilibrium inside the aerosol chamber. By comparing these measured aerosol parameters with those retrieved from the analysis of the FTIR spectra, the accuracy of the literature data sets of refractive indices could be assessed. In summary, four data sets were tested in the H2SO4/H2O system as well as two data sets in the HNO3/H2O system, partly revealing significant discrepancies in the retrieved aerosol properties. Potential explanations for these differences are discussed in this paper.

  3. A nanosecond pulsed laser heating system for studying liquid and supercooled liquid films in ultrahigh vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yuntao [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Dibble, Collin J. [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Petrik, Nikolay G. [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Smith, R. Scott [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Joly, Alan G. [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Tonkyn, Russell G. [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Kay, Bruce D. [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA; Kimmel, Greg A. [Physical Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA

    2016-04-26

    A pulsed laser heating system has been developed that enables investigations of the dynamics and kinetics of nanoscale liquid films and liquid/solid interfaces on the nanosecond timescale in ultrahigh vacuum (UHV). Details of the design, implementation and characterization of a nanosecond pulsed laser system for transiently heating nanoscale films are described. Nanosecond pulses from a Nd:YAG laser are used to rapidly heat thin films of adsorbed water or other volatile materials on a clean, well-characterized Pt(111) crystal in UHV. Heating rates of ~1010 K/s for temperature increases of ~100 – 200 K are obtained. Subsequent rapid cooling (~5 × 109 K/s) quenches the film, permitting in-situ, post-mortem analysis using a variety of surface science techniques. Lateral variations in the laser pulse energy are ~ ± 3% leading to a temperature uncertainty of ~ ± 5 K for a temperature jump of 200 K. Initial experiments with the apparatus demonstrate that crystalline ice films initially held at 90 K can be rapidly transformed into liquid water films with T > 273 K. No discernable recrystallization occurs during the rapid cooling back to cryogenic temperatures. In contrast, amorphous solid water films heated below the melting point rapidly crystallize. The nanosecond pulsed laser heating system can prepare nanoscale liquid and supercooled liquid films that persist for nanoseconds per heat pulse in an UHV environment, enabling experimental studies of a wide range of phenomena in liquids and at liquid/solid interfaces.

  4. Boson peak, Ioffe-Regel Crossover, and Liquid-Liquid phase transition in Supercooled Water

    Science.gov (United States)

    Kumar, Pradeep

    We have investigated the onset of Boson peak in a model of liquid water which exhibits a clear first-order phase transition between a low-density liquid phase and a high-density liquid phase of water at low temperature and high pressure. We find that the at low pressures, the onset of Boson peak coincides with the Widom-line of the system. At high pressures, the onset occurs at the transition temperature between the two liquids. Furthermore, we show that at both low and high pressure, the frequency of the Boson peak coincides with the Ioffe-Regel crossover of the transverse phonons, suggesting that the breakdown of Debye behavior is a general feature of Ioffe-Regel limit crossover in supercooled water. The frequency of the Boson peak is weakly pressure dependent and decreases with increasing pressure. Our work bridges gap between the experimental results on the Boson peak nanoconfined water and the behavior that one would expect from a bulk system.

  5. Size dependence of volume and surface nucleation rates for homogeneous freezing of supercooled water droplets

    Directory of Open Access Journals (Sweden)

    T. Kuhn

    2011-03-01

    Full Text Available The relative roles of volume and surface nucleation were investigated for the homogeneous freezing of pure water droplets. Experiments were carried out in a cryogenic laminar aerosol flow tube using supercooled water aerosols with maximum volume densities at radii between 1 and 3 μm. Temperature- and size-dependent values of volume- and surface-based homogeneous nucleation rates between 234.8 and 236.2 K were derived using a microphysical model and aerosol phase compositions and size distributions determined from infrared extinction measurements in the flow tube. The results show that the contribution from nucleation at the droplet surface increases with decreasing droplet radius and dominates over nucleation in the bulk droplet volume for droplets with radii smaller than approximately 5 μm. This is interpreted in terms of a lowered free energy of ice germ formation in the surface-based process. The implications of surface nucleation for the parameterization of homogeneous ice nucleation in numerical models are considered.

  6. Understanding the nonlinear dynamics of driven particles in supercooled liquids in terms of an effective temperature

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Carsten F. E., E-mail: c.schroer@uni-muenster.de [Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster (Germany); NRW Graduate School of Chemistry, Wilhelm-Klemm-Straße 10, 48149 Münster (Germany); Heuer, Andreas, E-mail: andheuer@uni-muenster.de [Institut für Physikalische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster (Germany); Center of Nonlinear Science, Corresstraße 2, 48149 Münster (Germany); Center for Multiscale Theory and Computation, Corrensstraße 40, 48149 Münster (Germany)

    2015-12-14

    In active microrheology, the mechanical properties of a material are tested by adding probe particles which are pulled by an external force. In case of supercooled liquids, strong forcing leads to a thinning of the host material which becomes more pronounced as the system approaches the glass transition. In this work, we provide a quantitative theoretical description of this thinning behavior based on the properties of the Potential Energy Landscape (PEL) of a model glass-former. A key role plays the trap-like nature of the PEL. We find that the mechanical properties in the strongly driven system behave the same as in a quiescent system at an enhanced temperature, giving rise to a well-characterized effective temperature. Furthermore, this effective temperature turns out to be independent of the chosen observable and individually shows up in the thermodynamic and dynamic properties of the system. Based on this underlying theoretical understanding, we can estimate its dependence on temperature and force by the PEL-properties of the quiescent system. We furthermore critically discuss the relevance of effective temperatures obtained by scaling relations for the description of out-of-equilibrium situations.

  7. Hard rhenium–boron–cobalt amorphous alloys with a wide supercooled liquid region

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jianfeng, E-mail: jfwang316@zzu.edu.cn [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Zhu, Shijie; Wang, Liguo; Guan, Shaokang [School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001 (China); Li, Ran; Zhang, Tao [School of Materials Science and Engineering, Beihang University, Beijing 100191 (China)

    2015-10-01

    Novel Re–B–Co amorphous alloys with compositions of Re{sub 65−x}B{sub 35}Co{sub x} (at%, x=25, 30, 35, 40, 45, and 50) were fabricated by single-roller melt spinning. These alloys were found to exhibit a clear glass transition phenomenon. The width of supercooled liquid region (ΔT{sub x}) is in the range of 52–71 K. Such a large ΔT{sub x} allows us to produce amorphous alloy bulks by thermoplastic forming. The Vickers hardness is up to 19.10 GPa for the Re{sub 40}B{sub 35}Co{sub 25} alloy, which is close to that reported for some hard covalent crystals. Thus, the present alloys with a combination of large ΔT{sub x} and high hardness are expected to be used as a new type of structural materials. Furthermore, the relationships of hardness with glass transition temperature and Young's modulus were also discussed.

  8. Understanding the nonlinear dynamics of driven particles in supercooled liquids in terms of an effective temperature

    Science.gov (United States)

    Schroer, Carsten F. E.; Heuer, Andreas

    2015-12-01

    In active microrheology, the mechanical properties of a material are tested by adding probe particles which are pulled by an external force. In case of supercooled liquids, strong forcing leads to a thinning of the host material which becomes more pronounced as the system approaches the glass transition. In this work, we provide a quantitative theoretical description of this thinning behavior based on the properties of the Potential Energy Landscape (PEL) of a model glass-former. A key role plays the trap-like nature of the PEL. We find that the mechanical properties in the strongly driven system behave the same as in a quiescent system at an enhanced temperature, giving rise to a well-characterized effective temperature. Furthermore, this effective temperature turns out to be independent of the chosen observable and individually shows up in the thermodynamic and dynamic properties of the system. Based on this underlying theoretical understanding, we can estimate its dependence on temperature and force by the PEL-properties of the quiescent system. We furthermore critically discuss the relevance of effective temperatures obtained by scaling relations for the description of out-of-equilibrium situations.

  9. Molecular dynamics of supercooled ionic liquids studied by light scattering and dielectric spectroscopy

    Science.gov (United States)

    Pabst, Florian; Gabriel, Jan; Weigl, Peter; Blochowicz, Thomas

    2017-09-01

    We investigate molecular dynamics of two supercooled room temperature ionic liquids (RTILs) above of their glass transition temperature by means of dynamic light scattering and broadband dielectric spectroscopy from nanoseconds up to ≈105s . We show that a direct comparison of the raw data of these two techniques allows us to identify the reorientation of ions in the dielectric data, giving experimental evidence to a very recently proposed model of Gainaru et al. [1], stating that the conductivity process in ionic liquids takes place through a reorientational step of ions escaping their cage formed by surrounding counterions. Within this approach we can also understand the apparent decoupling of time constants from dielectric spectroscopy and light scattering, often found in ionic liquids, in a very natural way. Furthermore, as a consequence of knowing the reorientational part of the dielectric spectrum, we are able to show that two more processes contribute to these spectra, which are due to electrode polarization effects. The relative position of all three contributions vary among the systems and may overshadow each other, thus complicating the data analysis and favor misinterpretations.

  10. Liquid-liquid coexistence and crystallization in supercooled ST2 water

    Science.gov (United States)

    Martelli, Fausto; Palmer, Jeremy; Debenedetti, Pablo; Car, Roberto

    2014-03-01

    We have computed the free energy landscape of ST2 water in the supercooled regime (228.6 K and 2.4 kbar) using several state-of-the-art computational techniques, including umbrella sampling and metadynamics. Such results conclusively demonstrate coexistence between two liquid phases, a high-density liquid (HDL) and a low-density liquid (HDL), which are metastable with respect to cubic ice. We show that the three phases have distinct structural features characterized by the local structure index and ring statistics. We also find that ice nucleation, should it occur, does so from the low-density liquid. Interestingly, we find that the number of 6-member rings increases monotonically along the path from HDL to LDL, while non-monotonic behavior is observed near the saddle point along the LDL-ice Ic path. This behavior indicates a complex re-arrangement of the H-bond network, followed by progressive crystallization. DOE: DE-SC0008626 (F. M. and R.C.)

  11. Unraveling the microscopic pathway of homogeneous water crystallization at supercooled conditions from direct simulations

    Science.gov (United States)

    Martelli, Fausto; Palmer, Jeremy; Singh, Rakesh; Debenedetti, Pablo; Car, Roberto

    By means of unbiased classical molecular dynamics simulations, we identify the microscopic pathways of spontaneous homogeneous crystallization in supercooled ST2 water. By introducing a new order parameter, we are able to monitor formation/disruption of locally ordered regions characterized by small ice clusters with intermediate range order. When two of these regions are close each other, they percolate and form a larger ordered region. The process is slow enough to allow for polymorphic selection in favor of cubic ice (Ic). The formation of an ice nucleus requires percolation of many small clusters so that the transformations at the interface of the nucleus do not involve its core, thus guaranteeing the stability of the nucleus. The growth of the crystalline nucleus is fast and involves direct transformation of interfacial liquid molecules as well as percolation of small Ic/Ih clusters. The growth is too fast to allow conversion of Ih into Ic sites, originating the formation of a stacking fault in the final crystal. We recognize Euclidean structures in the oxygen configuration of the second shell in Ic and Ih clusters. This new point of view allows us to explain the source of the ordered stacking fault geometry.

  12. Surface temperature sensitivities from cloud cover variations in the Hummel-Kuhn radiative—convective model with three different cloud approximations

    OpenAIRE

    HUMMEL, JOHN R.

    2011-01-01

    In modeling the thermal structure of the atmosphere, the role of clouds is critically important. Clouds modify the solar flux distribution throughout the atmosphere, radiate significantly in the infrared, and provide large thermal reservoirs because of the large latent heat of water. In the best current radiative convective one-dimensional models the global atmosphere is modeled as the sum of clear and cloudy sky parts weighted by a fractional cloud cover. In considering the cloudy sky part,...

  13. Observational evidence against strongly stabilizing tropical cloud feedbacks

    Science.gov (United States)

    Williams, Ian N.; Pierrehumbert, Raymond T.

    2017-02-01

    We present a method to attribute cloud radiative feedbacks to convective processes, using subcloud layer buoyancy as a diagnostic of stable and deep convective regimes. Applying this approach to tropical remote sensing measurements over years 2000-2016 shows that an inferred negative short-term cloud feedback from deep convection was nearly offset by a positive cloud feedback from stable regimes. The net cloud feedback was within statistical uncertainty of the National Center for Atmospheric Research Community Atmosphere Model (CAM5) with historical forcings, with discrepancies in the partitioning of the cloud feedback into convective regimes. Compensation between high-cloud responses to tropics-wide warming in stable and unstable regimes resulted in smaller net changes in high-cloud fraction with warming. In addition, deep convection and associated high clouds set in at warmer temperatures in response to warming, as a consequence of nearly invariant subcloud buoyancy. This invariance further constrained the magnitude of cloud radiative feedbacks and is consistent with climate model projections.

  14. Entangled Cloud Storage

    DEFF Research Database (Denmark)

    Ateniese, Giuseppe; Dagdelen, Özgür; Damgård, Ivan Bjerre

    2012-01-01

    Entangled cloud storage enables a set of clients {P_i} to “entangle” their files {f_i} into a single clew c to be stored by a (potentially malicious) cloud provider S. The entanglement makes it impossible to modify or delete significant part of the clew without affecting all files in c. A clew...... recover their files. We provide theoretical foundations for entangled cloud storage, introducing the notion of an entangled encoding scheme that guarantees strong security requirements capturing the properties above. We also give a concrete construction based on privacy-preserving polynomial interpolation......, along with protocols for using the encoding scheme in practice. Protocols for cloud storage find application in the cloud setting, where clients store their files on a remote server and need to be ensured that the cloud provider will not delete their data illegitimately. Current solutions, e.g., based...

  15. Encyclopedia of cloud computing

    CERN Document Server

    Bojanova, Irena

    2016-01-01

    The Encyclopedia of Cloud Computing provides IT professionals, educators, researchers and students with a compendium of cloud computing knowledge. Authored by a spectrum of subject matter experts in industry and academia, this unique publication, in a single volume, covers a wide range of cloud computing topics, including technological trends and developments, research opportunities, best practices, standards, and cloud adoption. Providing multiple perspectives, it also addresses questions that stakeholders might have in the context of development, operation, management, and use of clouds. Furthermore, it examines cloud computing's impact now and in the future. The encyclopedia presents 56 chapters logically organized into 10 sections. Each chapter covers a major topic/area with cross-references to other chapters and contains tables, illustrations, side-bars as appropriate. Furthermore, each chapter presents its summary at the beginning and backend material, references and additional resources for further i...

  16. Cloud Robotics Model

    Directory of Open Access Journals (Sweden)

    Gyula Mester

    2015-01-01

    Full Text Available Cloud Robotics was born from the merger of service robotics and cloud technologies. It allows robots to benefit from the powerful computational, storage, and communications resources of modern data centres. Cloud robotics allows robots to take advantage of the rapid increase in data transfer rates to offload tasks without hard real time requirements. Cloud Robotics has rapidly gained momentum with initiatives by companies such as Google, Willow Garage and Gostai as well as more than a dozen active research projects around the world. The presentation summarizes the main idea, the definition, the cloud model composed of essential characteristics, service models and deployment models, planning task execution and beyond. Finally some cloud robotics projects are discussed.

  17. CLOUD Experiment - How it works -

    CERN Multimedia

    Jasper Kirkby

    2016-01-01

    A brief tour of the CLOUD experiment at CERN, and its scientific aims. CLOUD uses a special cloud chamber to study the possible link between galactic cosmic rays and cloud formation. The results should contribute much to our fundamental understanding of aerosols and clouds, and their affect on climate.

  18. Considerations for Cloud Security Operations

    OpenAIRE

    Cusick, James

    2016-01-01

    Information Security in Cloud Computing environments is explored. Cloud Computing is presented, security needs are discussed, and mitigation approaches are listed. Topics covered include Information Security, Cloud Computing, Private Cloud, Public Cloud, SaaS, PaaS, IaaS, ISO 27001, OWASP, Secure SDLC.

  19. Outflows vs. Clouds in AGN Intrinsic Absorbers

    OpenAIRE

    Arav, Nahum

    2003-01-01

    We discuss the crucial role of a dynamical picture in the analysis of AGN intrinsic absorbers data. High quality FUSE data of Mrk 279 are used to demonstrate that the line of sight covering fraction is a strong function of velocity. In Mrk 279, as well as in most cases where the data is of high enough quality, the shape of the absorption troughs is mainly determined by the velocity-dependent covering fraction. We argue that the traditional ``cloud'' picture of AGN outflows is hard pressed to ...

  20. Cryptographic Cloud Storage

    Science.gov (United States)

    Kamara, Seny; Lauter, Kristin

    We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and non-standard cryptographic primitives in order to achieve our goal. We survey the benefits such an architecture would provide to both customers and service providers and give an overview of recent advances in cryptography motivated specifically by cloud storage.

  1. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    DANISH JAMIL,

    2011-04-01

    Full Text Available It is no secret that cloud computing is becoming more and more popular today and is ever increasing inpopularity with large companies as they share valuable resources in a cost effective way. Due to this increasingdemand for more clouds there is an ever growing threat of security becoming a major issue. This paper shalllook at ways in which security threats can be a danger to cloud computing and how they can be avoided.

  2. Geodesics on Point Clouds

    OpenAIRE

    Hongchuan Yu; Zhang, Jian J.; Zheng Jiao

    2014-01-01

    We present a novel framework to compute geodesics on implicit surfaces and point clouds. Our framework consists of three parts, particle based approximate geodesics on implicit surfaces, Cartesian grid based approximate geodesics on point clouds, and geodesic correction. The first two parts can effectively generate approximate geodesics on implicit surfaces and point clouds, respectively. By introducing the geodesic curvature flow, the third part produces smooth and accurate geodesic solution...

  3. Cloud Detection with MATLAB

    OpenAIRE

    P. Shrivastava

    2013-01-01

    The accurate detection of clouds in satellite imagery is important in research and operational applications. Cloud cover influences the distribution of solar radiation reaching the ground where it is absorbed. Resulting fluxes of sensible and latent heat are critical to the accurate characterization of boundary layer behavior and mesoscale circulations that often lead to convective development. Therefore the spatial and temporal variation in cloud cover can greatly affect regional an...

  4. Robust relations between CCN and the vertical evolution of cloud drop size distribution in deep convective clouds

    Science.gov (United States)

    Freud, E.; Rosenfeld, D.; Andreae, M. O.; Costa, A. A.; Artaxo, P.

    2008-03-01

    In-situ measurements in convective clouds (up to the freezing level) over the Amazon basin show that smoke from deforestation fires prevents clouds from precipitating until they acquire a vertical development of at least 4 km, compared to only 1-2 km in clean clouds. The average cloud depth required for the onset of warm rain increased by ~350 m for each additional 100 cloud condensation nuclei per cm3 at a super-saturation of 0.5% (CCN0.5%). In polluted clouds, the diameter of modal liquid water content grows much slower with cloud depth (at least by a factor of ~2), due to the large number of droplets that compete for available water and to the suppressed coalescence processes. Contrary to what other studies have suggested, we did not observe this effect to reach saturation at 3000 or more accumulation mode particles per cm3. The CCN0.5% concentration was found to be a very good predictor for the cloud depth required for the onset of warm precipitation and other microphysical factors, leaving only a secondary role for the updraft velocities in determining the cloud drop size distributions. The effective radius of the cloud droplets (re) was found to be a quite robust parameter for a given environment and cloud depth, showing only a small effect of partial droplet evaporation from the cloud's mixing with its drier environment. This supports one of the basic assumptions of satellite analysis of cloud microphysical processes: the ability to look at different cloud top heights in the same region and regard their re as if they had been measured inside one well developed cloud. The dependence of re on the adiabatic fraction decreased higher in the clouds, especially for cleaner conditions, and disappeared at re≥~10 μm. We propose that droplet coalescence, which is at its peak when warm rain is formed in the cloud at re=~10 μm, continues to be significant during the cloud's mixing with the entrained air, cancelling out the decrease in re due to evaporation.

  5. Core of Cloud Computing

    Directory of Open Access Journals (Sweden)

    Prof. C.P.Chandgude

    2017-04-01

    Full Text Available Advancement in computing facilities marks back from 1960’s with introduction of mainframes. Each of the computing has one or the other issues, so keeping this in mind cloud computing was introduced. Cloud computing has its roots in older technologies such as hardware virtualization, distributed computing, internet technologies, and autonomic computing. Cloud computing can be described with two models, one is service model and second is deployment model. While providing several services, cloud management’s primary role is resource provisioning. While there are several such benefits of cloud computing, there are challenges in adopting public clouds because of dependency on infrastructure that is shared by many enterprises. In this paper, we present core knowledge of cloud computing, highlighting its key concepts, deployment models, service models, benefits as well as security issues related to cloud data. The aim of this paper is to provide a better understanding of the cloud computing and to identify important research directions in this field

  6. CLOUD TECHNOLOGY IN EDUCATION

    Directory of Open Access Journals (Sweden)

    Alexander N. Dukkardt

    2014-01-01

    Full Text Available This article is devoted to the review of main features of cloud computing that can be used in education. Particular attention is paid to those learning and supportive tasks, that can be greatly improved in the case of the using of cloud services. Several ways to implement this approach are proposed, based on widely accepted models of providing cloud services. Nevertheless, the authors have not ignored currently existing problems of cloud technologies , identifying the most dangerous risks and their impact on the core business processes of the university. 

  7. Cloud Computing: An Overview

    Science.gov (United States)

    Qian, Ling; Luo, Zhiguo; Du, Yujian; Guo, Leitao

    In order to support the maximum number of user and elastic service with the minimum resource, the Internet service provider invented the cloud computing. within a few years, emerging cloud computing has became the hottest technology. From the publication of core papers by Google since 2003 to the commercialization of Amazon EC2 in 2006, and to the service offering of AT&T Synaptic Hosting, the cloud computing has been evolved from internal IT system to public service, from cost-saving tools to revenue generator, and from ISP to telecom. This paper introduces the concept, history, pros and cons of cloud computing as well as the value chain and standardization effort.

  8. JINR cloud infrastructure evolution

    Science.gov (United States)

    Baranov, A. V.; Balashov, N. A.; Kutovskiy, N. A.; Semenov, R. N.

    2016-09-01

    To fulfil JINR commitments in different national and international projects related to the use of modern information technologies such as cloud and grid computing as well as to provide a modern tool for JINR users for their scientific research a cloud infrastructure was deployed at Laboratory of Information Technologies of Joint Institute for Nuclear Research. OpenNebula software was chosen as a cloud platform. Initially it was set up in simple configuration with single front-end host and a few cloud nodes. Some custom development was done to tune JINR cloud installation to fit local needs: web form in the cloud web-interface for resources request, a menu item with cloud utilization statistics, user authentication via Kerberos, custom driver for OpenVZ containers. Because of high demand in that cloud service and its resources over-utilization it was re-designed to cover increasing users' needs in capacity, availability and reliability. Recently a new cloud instance has been deployed in high-availability configuration with distributed network file system and additional computing power.

  9. Cloud and Star Formation in Disk Galaxy Models with Feedback

    CERN Document Server

    Shetty, Rahul

    2008-01-01

    We include feedback in global hydrodynamic simulations in order to study the star formation properties, and gas structure and dynamics, in models of galactic disks. We extend previous models by implementing feedback in gravitationally bound clouds: momentum is injected at a rate proportional to the star formation rate. This mechanical energy disperses cloud gas back into the surrounding ISM, truncating star formation in a given cloud, and raising the overall level of ambient turbulence. Propagating star formation can however occur as expanding shells collide, enhancing the density and triggering new cloud and star formation. By controlling the momentum injection per massive star and the specific star formation rate in dense gas, we find that the negative effects of high turbulence outweigh the positive ones, and in net feedback reduces the fraction of dense gas and thus the overall star formation rate. The properties of the large clouds that form are not, however, very sensitive to feedback, with cutoff masse...

  10. The response of clouds and aerosols to cosmic ray decreases

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, Martin Andreas Bødker; Shaviv, N. J.

    2016-01-01

    A method is developed to rank Forbush Decreases (FDs) in the galactic cosmic ray radiation according to their expected impact on the ionization of the lower atmosphere. Then a Monte Carlo bootstrap based statistical test is formulated to estimate the significance of the apparent response in physi......A method is developed to rank Forbush Decreases (FDs) in the galactic cosmic ray radiation according to their expected impact on the ionization of the lower atmosphere. Then a Monte Carlo bootstrap based statistical test is formulated to estimate the significance of the apparent response....../I: liquid water content, ISCCP: total, high and middle, IR detected clouds over the oceans, MODIS: cloud effective emissivity, cloud optical thickness, liquid water, cloud fraction, liquid water path, liquid cloud effective radius. Moreover, the responses in MODIS are found to correlate positively...

  11. Effects of cosmic ray decreases on cloud microphysics

    DEFF Research Database (Denmark)

    Svensmark, J.; Enghoff, M. B.; Svensmark, H.

    2012-01-01

    Using cloud data from MODIS we investigate the response of cloud microphysics to sudden decreases in galactic cosmic radiation – Forbush decreases – and find responses in effective emissivity, cloud fraction, liquid water content, and optical thickness above the 2–3 sigma level 6–9 days after...... the minimum in atmospheric ionization and less significant responses for effective radius and cloud condensation nuclei (... of the signal of 3.1 sigma. We also see a correlation between total solar irradiance and strong Forbush decreases but a clear mechanism connecting this to cloud properties is lacking. There is no signal in the UV radiation. The responses of the parameters correlate linearly with the reduction in the cosmic ray...

  12. An Observational Study of the Relationship between Cloud, Aerosol and Meteorology in Broken Low-Level Cloud Conditions

    Science.gov (United States)

    Loeb, Norman G.; Schuster, Gregory L.

    2008-01-01

    Global satellite analyses showing strong correlations between aerosol optical depth and 3 cloud cover have stirred much debate recently. While it is tempting to interpret the results as evidence of aerosol enhancement of cloud cover, other factors such as the influence of meteorology on both the aerosol and cloud distributions can also play a role, as both aerosols and clouds depend upon local meteorology. This study uses satellite observations to examine aerosol-cloud relationships for broken low-level cloud regions off the coast of Africa. The analysis approach minimizes the influence of large-scale meteorology by restricting the spatial and temporal domains in which the aerosol and cloud properties are compared. While distributions of several meteorological variables within 5deg 5deg latitude-longitude regions are nearly identical under low and high aerosol optical depth, the corresponding distributions of single-layer low cloud properties and top-of-atmosphere radiative fluxes differ markedly, consistent with earlier studies showing increased cloud cover with aerosol optical depth. Furthermore, fine-mode fraction and Angstrom Exponent are also larger in conditions of higher aerosol optical depth, even though no evidence of systematic latitudinal or longitudinal gradients between the low and high aerosol optical depth populations are observed. When the analysis is repeated for all 5deg 5deg latitude-longitude regions over the global oceans (after removing cases in which significant meteorological differences are found between the low and high aerosol populations), results are qualitatively similar to those off the coast of Africa.

  13. THE INFLUENCE OF NONUNIFORM CLOUD COVER ON TRANSIT TRANSMISSION SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Line, Michael R. [NASA Ames Research Center, Moffet Field, CA 94035 (United States); Parmentier, Vivien, E-mail: mrline@ucsc.edu [Department of Astronomy and Astrophysics, University of California–Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States)

    2016-03-20

    We model the impact of nonuniform cloud cover on transit transmission spectra. Patchy clouds exist in nearly every solar system atmosphere, brown dwarfs, and transiting exoplanets. Our major findings suggest that fractional cloud coverage can exactly mimic high mean molecular weight atmospheres and vice versa over certain wavelength regions, in particular, over the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) bandpass (1.1–1.7 μm). We also find that patchy cloud coverage exhibits a signature that is different from uniform global clouds. Furthermore, we explain analytically why the “patchy cloud-high mean molecular weight” degeneracy exists. We also explore the degeneracy of nonuniform cloud coverage in atmospheric retrievals on both synthetic and real planets. We find from retrievals on a synthetic solar composition hot Jupiter with patchy clouds and a cloud-free high mean molecular weight warm Neptune that both cloud-free high mean molecular weight atmospheres and partially cloudy atmospheres can explain the data equally well. Another key finding is that the HST WFC3 transit transmission spectra of two well-observed objects, the hot Jupiter HD 189733b and the warm Neptune HAT-P-11b, can be explained well by solar composition atmospheres with patchy clouds without the need to invoke high mean molecular weight or global clouds. The degeneracy between high molecular weight and solar composition partially cloudy atmospheres can be broken by observing the molecular Rayleigh scattering differences between the two. Furthermore, the signature of partially cloudy limbs also appears as a ∼100 ppm residual in the ingress and egress of the transit light curves, provided that the transit timing is known to seconds.

  14. Initialized Fractional Calculus

    Science.gov (United States)

    Lorenzo, Carl F.; Hartley, Tom T.

    2000-01-01

    This paper demonstrates the need for a nonconstant initialization for the fractional calculus and establishes a basic definition set for the initialized fractional differintegral. This definition set allows the formalization of an initialized fractional calculus. Two basis calculi are considered; the Riemann-Liouville and the Grunwald fractional calculi. Two forms of initialization, terminal and side are developed.

  15. A cloud storage overlay to aggregate heterogeneous cloud services

    OpenAIRE

    Machado, Guilherme Sperb; Bocek, Thomas; Ammann, Michael; Stiller, Burkhard

    2013-01-01

    Many Cloud services provide generic (e.g., Amazon S3 or Dropbox) or data-specific Cloud storage (e.g., Google Picasa or SoundCloud). Although both Cloud storage service types have the data storage in common, they present heterogeneous characteristics: different interfaces, accounting and charging schemes, privacy and security levels, functionality and, among the data-specific Cloud storage services, different data type restrictions. This paper proposes PiCsMu (Platform-independent Cloud Stora...

  16. Minimalist model of ice microphysics in mixed-phase stratiform clouds

    Science.gov (United States)

    Yang, F.; Ovchinnikov, M.; Shaw, R. A.

    2013-12-01

    The question of whether persistent ice crystal precipitation from supercooled layer clouds can be explained by time-dependent, stochastic ice nucleation is explored using an approximate, analytical model and a large-eddy simulation (LES) cloud model. The updraft velocity in the cloud defines an accumulation zone, where small ice particles cannot fall out until they are large enough, which will increase the residence time of ice particles in the cloud. Ice particles reach a quasi-steady state between growth by vapor deposition and fall speed at cloud base. The analytical model predicts that ice water content (wi) has a 2.5 power-law relationship with ice number concentration (ni). wi and ni from a LES cloud model with stochastic ice nucleation confirm the 2.5 power-law relationship, and initial indications of the scaling law are observed in data from the Indirect and Semi-Direct Aerosol Campaign. The prefactor of the power law is proportional to the ice nucleation rate and therefore provides a quantitative link to observations of ice microphysical properties. Ice water content (wi) and ice number concentration (ni) relationship from LES. a and c: Accumulation zone region; b and d: Selective accumulation zone region. Black lines in c and d are best fitted 2.5 slope lines. Colors in Figures a and b represent updraft velocity, while colors in c and d represent altitude. The cloud base and top are at about 600 m and 800 m, respectively. Ice water content (wi) and ice number concentration (ni) relationship for two ice nucleation rates. Blue points are from LES with low ice nucleation rate and red points with high ice nucleation rate. Solid and dashed lines are best fitted 2.5 slope lines.

  17. Cosmic ray decreases affect atmospheric aerosols and clouds

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Bondo, Torsten; Svensmark, J.

    2009-01-01

    Close passages of coronal mass ejections from the sun are signaled at the Earth's surface by Forbush decreases in cosmic ray counts. We find that low clouds contain less liquid water following Forbush decreases, and for the most influential events the liquid water in the oceanic atmosphere can...... diminish by as much as 7%. Cloud water content as gauged by the Special Sensor Microwave/Imager (SSM/I) reaches a minimum ≈7 days after the Forbush minimum in cosmic rays, and so does the fraction of low clouds seen by the Moderate Resolution Imaging Spectroradiometer (MODIS) and in the International...

  18. Preparation and Supercooling Modification of Salt Hydrate Phase Change Materials Based on CaCl₂·2H₂O/CaCl₂.

    Science.gov (United States)

    Xu, Xiaoxiao; Dong, Zhijun; Memon, Shazim Ali; Bao, Xiaohua; Cui, Hongzhi

    2017-06-23

    Salt hydrates have issues of supercooling when they are utilized as phase change materials (PCMs). In this research, a new method was adopted to prepare a salt hydrate PCM (based on a mixture of calcium chloride dihydrate and calcium chloride anhydrous) as a novel PCM system to reduce the supercooling phenomenon existing in CaCl₂·6H₂O. Six samples with different compositions of CaCl₂ were prepared. The relationship between the performance and the proportion of calcium chloride dihydrate (CaCl₂·2H₂O) and calcium chloride anhydrous (CaCl₂) was also investigated. The supercooling degree of the final PCM reduced with the increase in volume of CaCl₂·2H₂O during its preparation. The PCM obtained with 66.21 wt % CaCl₂·2H₂O reduced the supercooling degree by about 96.8%. All six samples, whose ratio of CaCl₂·2H₂O to (CaCl₂ plus CaCl₂·2H₂O) was 0%, 34.03%, 53.82%, 76.56%, 90.74%, and 100% respectively, showed relatively higher enthalpy (greater than 155.29 J/g), and have the possibility to be applied in buildings for thermal energy storage purposes. Hence, CaCl₂·2H₂O plays an important role in reducing supercooling and it can be helpful in adjusting the solidification enthalpy. Thereafter, the influence of adding different percentages of Nano-SiO₂ (0.1 wt %, 0.3 wt %, 0.5 wt %) in reducing the supercooling degree of some PCM samples was investigated. The test results showed that the supercooling of the salt hydrate PCM in Samples 6 and 5 reduced to 0.2 °C and 0.4 °C respectively. Finally, the effect of the different cooling conditions, including frozen storage (-20 °C) and cold storage (5 °C), that were used to prepare the salt hydrate PCM was considered. It was found that both cooling conditions are effective in reducing the supercooling degree of the salt hydrate PCM. With the synergistic action of the two materials, the performance and properties of the newly developed PCM systems were better especially in terms of reducing

  19. Vertical profiles of droplet effective radius in shallow convective clouds

    Directory of Open Access Journals (Sweden)

    S. Zhang

    2011-05-01

    Full Text Available Conventional satellite retrievals can only provide information on cloud-top droplet effective radius (re. Given the fact that cloud ensembles in a satellite snapshot have different cloud-top heights, Rosenfeld and Lensky (1998 used the cloud-top height and the corresponding cloud-top re from the cloud ensembles in the snapshot to construct a profile of re representative of that in the individual clouds. This study investigates the robustness of this approach in shallow convective clouds based on results from large-eddy simulations (LES for clean (aerosol mixing ratio Na = 25 mg−1, intermediate (Na = 100 mg−1, and polluted (Na = 2000 mg−1 conditions. The cloud-top height and the cloud-top re from the modeled cloud ensembles are used to form a constructed re profile, which is then compared to the in-cloud re profiles. For the polluted and intermediate cases where precipitation is negligible, the constructed re profiles represent the in-cloud re profiles fairly well with a low bias (about 10 %. The method used in Rosenfeld and Lensky (1998 is therefore validated for nonprecipitating shallow cumulus clouds. For the clean, drizzling case, the in-cloud re can be very large and highly variable, and quantitative profiling based on cloud-top re is less useful. The differences in re profiles between clean and polluted conditions derived in this manner are however, distinct. This study also investigates the subadiabatic characteristics of the simulated cumulus clouds to reveal the effect of mixing on re and its evolution. Results indicate that as polluted and moderately polluted clouds develop into their decaying stage, the subadiabatic fraction

  20. A Study of the Link between Cosmic Rays and Clouds with a Cloud Chamber at the CERN PS

    CERN Multimedia

    Laakso, L K; Lehtipalo, K; Miettinen, P K; Duarte branco da silva santos, F; Stojkov, Y; Jud, W; Wurm, F; Pinterich, T; Dommen, J; Curtius, J; Kreissl, F C; Minginette, P; Azeredo lima, J M; Kulmala, M T; Petaja, T T; Schafer, M; Rodrigues tome, A; Viisanen, Y A; Onnela, A T O; Kristic, R; Ehrhart, S K; Amorim, A J; Maksumov, O; Kupc, A; Sitals, R P; Dunne, E M; Riipinen, I A; Downard, A J; Virtanen, A; Tsagkogeorgas, G; Schuchmann, S; Kvashnin, A; Hansel, A; Vrtala, A; Schallhart, S; Yan, C; Stratmann, F; Pinto mogo, S I; Makhmutov, V; Riccobono, F; Weingartner, E P; Kurten, C A; Rondo, L; Ruuskanen, T M; Laaksonen, A J; De menezes, L; Hauser, D; Kajos, M K; Schmitt, T M; Mathot, S; Wasem, A; Guida, R; Metzger, A E; Baltensperger, U; Kirkby, J; Duplissy, J; Franchin, A; Flagan, R C; Wex, H D

    2002-01-01

    Three recent independent observations suggest that galactic cosmic rays may exert a significant influence on the climate. Firstly, satellite data suggest a positive correlation between variations of cosmic ray intensity and the fraction of Earth covered by low clouds. Secondly, palaeoclimatic data provide extensive evidence for an association between cosmic ray intensity and climate over the last 10 kyr and at earlier times. Finally, the presence of ion-induced nucleation of new aerosol in the atmosphere is supported by recent observations. If cosmic rays do indeed enhance aerosol production and low cloud formation, this could exert a strong cooling influence on the radiative energy balance of Earth. Physical mechanisms by which cosmic rays may affect aerosol and clouds have been proposed and modelled, but definitive experiments are lacking. The aim of CLOUD is to investigate the nature and significance of cosmic ray-aerosol-cloud mechanisms under controlled laboratory conditions using the T11 beam at the CER...

  1. Meteorological and Aerosol effects on Marine Cloud Microphysical Properties

    Science.gov (United States)

    Sanchez, K. J.; Russell, L. M.; Modini, R. L.; Frossard, A. A.; Ahlm, L.; Roberts, G.; Hawkins, L. N.; Schroder, J. C.; Wang, Z.; Lee, A.; Abbatt, J.; Lin, J.; Nenes, A.; Wonaschuetz, A.; Sorooshian, A.; Noone, K.; Jonsson, H.; Albrecht, B. A.; Desiree, T. S.; Macdonald, A. M.; Seinfeld, J.; Zhao, R.

    2015-12-01

    Both meteorology and microphysics affect cloud formation and consequently their droplet distributions and shortwave reflectance. The Eastern Pacific Emitted Aerosol Cloud Experiment (EPEACE) and the Stratocumulus Observations of Los-Angeles Emissions Derived Aerosol-Droplets (SOLEDAD) studies provide detailed measurements in 6 case studies of both cloud thermodynamic properties and initial particle number distribution and composition, as well as the resulting cloud drop distribution and composition. This study uses simulations of a detailed chemical and microphysical aerosol-cloud parcel (ACP) model with explicit kinetic drop activation to reproduce the observed cloud droplet distribution and composition. Four of the cases examined had a sub-adiabatic lapse rate, which was shown to have fewer droplets due to decreased maximum supersaturation, lower LWC and higher cloud base height, consistent with previous findings. These detailed case studies provided measured thermodynamics and microphysics that constrained the simulated droplet size distribution sufficiently to match the droplet number within 6% and the size within 19% for 4 of the 6 cases, demonstrating "closure" or consistency of the measured composition with the measured CCN spectra and the inferred and modeled supersaturation. The contribution of organic components to droplet formation shows small effects on the droplet number and size in the 4 marine cases that had background aerosol conditions with varying amounts of coastal, ship or other non-biogenic sources. In contrast, the organic fraction and hygroscopicity increased the droplet number and size in the cases with generated smoke and cargo ship plumes that were freshly emitted and not yet internally mixed with the background particles. The simulation results show organic hygroscopicity causes small effects on cloud reflectivity (smoke plume which increased absolute cloud reflectivity fraction by 0.02 and 0.20 respectively. In addition, the ACP model

  2. THOR: Cloud Thickness from Off beam Lidar Returns

    Science.gov (United States)

    Cahalan, Robert F.; McGill, Matthew; Kolasinski, John; Varnai, Tamas; Yetzer, Ken

    2004-01-01

    Conventional wisdom is that lidar pulses do not significantly penetrate clouds having optical thickness exceeding about tau = 2, and that no returns are detectable from more than a shallow skin depth. Yet optically thicker clouds of tau much greater than 2 reflect a larger fraction of visible photons, and account for much of Earth s global average albedo. As cloud layer thickness grows, an increasing fraction of reflected photons are scattered multiple times within the cloud, and return from a diffuse concentric halo that grows around the incident pulse, increasing in horizontal area with layer physical thickness. The reflected halo is largely undetected by narrow field-of-view (FoV) receivers commonly used in lidar applications. THOR - Thickness from Off-beam Returns - is an airborne wide-angle detection system with multiple FoVs, capable of observing the diffuse halo, detecting wide-angle signal from which physical thickness of optically thick clouds can be retrieved. In this paper we describe the THOR system, demonstrate that the halo signal is stronger for thicker clouds, and validate physical thickness retrievals for clouds having z > 20, from NASA P-3B flights over the Department of Energy/Atmospheric Radiation Measurement/Southern Great Plains site, using the lidar, radar and other ancillary ground-based data.

  3. Cloud Statistics and Discrimination in the Polar Regions

    Science.gov (United States)

    Chan, M.; Comiso, J. C.

    2012-12-01

    -sheet). The immediate impact of the new algorithm is that it can minimize large biases of MODIS-derived cloud amount over the Polar Regions and thus a more realistic and high quality global cloud statistics. In particular, our results show that cloud fraction in the Arctic is typically 81.2 % during daytime and 84.0% during nighttime. This is significantly higher than the 71.8% and 58.5%, respectively, derived from standard MODIS cloud product.

  4. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  5. Supercool纤维牛仔面料的开发与生产实践%DEVELOPMENT AND PRODUCTION PRACTICE OF SUPERCOOL DENIM

    Institute of Scientific and Technical Information of China (English)

    成海量; 张增强

    2015-01-01

    以48.6 tex赛络纺棉纱、48.6 tex赛络纺竹节纱为经纱,33.3 tex Supercool 吸湿排汗纤维为纬纱开发吸湿排汗牛仔面料。介绍了Supercool纤维的特性, Supercool纤维牛仔面料的规格设计、生产工艺流程,及各工序重要参数的选择和关键生产技术,指出了Supercool纤维牛仔面料开发的基本思路和产品的应用前景。%Taking 48. 6 tex Siro spun yarn plus 48. 6 tex Siro spun slub yarn as warp yarn and 33. 3 tex Supercool, moisture absorption and sweat discharge fiber as weft yarn to develop and porduce the moisture absorption and sweat discharge denim fabric. The article introduced the characteristics of the Supercool fiber, the specification designing of the Supercool Denim, production process, the selection of important parameters in each process and the key to production technology , and pointed out the basic idea of developing the Supercool Denim and the application prospect of the product.

  6. Aqueous phase oxidation of sulphur dioxide by ozone in cloud droplets

    Science.gov (United States)

    Hoyle, C. R.; Fuchs, C.; Järvinen, E.; Saathoff, H.; Dias, A.; El Haddad, I.; Gysel, M.; Coburn, S. C.; Tröstl, J.; Bernhammer, A.-K.; Bianchi, F.; Breitenlechner, M.; Corbin, J. C.; Craven, J.; Donahue, N. M.; Duplissy, J.; Ehrhart, S.; Frege, C.; Gordon, H.; Höppel, N.; Heinritzi, M.; Kristensen, T. B.; Molteni, U.; Nichman, L.; Pinterich, T.; Prévôt, A. S. H.; Simon, M.; Slowik, J. G.; Steiner, G.; Tomé, A.; Vogel, A. L.; Volkamer, R.; Wagner, A. C.; Wagner, R.; Wexler, A. S.; Williamson, C.; Winkler, P. M.; Yan, C.; Amorim, A.; Dommen, J.; Curtius, J.; Gallagher, M. W.; Flagan, R. C.; Hansel, A.; Kirkby, J.; Kulmala, M.; Möhler, O.; Stratmann, F.; Worsnop, D. R.; Baltensperger, U.

    2016-02-01

    The growth of aerosol due to the aqueous phase oxidation of sulfur dioxide by ozone was measured in laboratory-generated clouds created in the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN). Experiments were performed at 10 and -10 °C, on acidic (sulfuric acid) and on partially to fully neutralised (ammonium sulfate) seed aerosol. Clouds were generated by performing an adiabatic expansion - pressurising the chamber to 220 hPa above atmospheric pressure, and then rapidly releasing the excess pressure, resulting in a cooling, condensation of water on the aerosol and a cloud lifetime of approximately 6 min. A model was developed to compare the observed aerosol growth with that predicted using oxidation rate constants previously measured in bulk solutions. The model captured the measured aerosol growth very well for experiments performed at 10 and -10 °C, indicating that, in contrast to some previous studies, the oxidation rates of SO2 in a dispersed aqueous system can be well represented by using accepted rate constants, based on bulk measurements. To the best of our knowledge, these are the first laboratory-based measurements of aqueous phase oxidation in a dispersed, super-cooled population of droplets. The measurements are therefore important in confirming that the extrapolation of currently accepted reaction rate constants to temperatures below 0 °C is correct.

  7. An Example of Canal Formation in a Thick Cloud Induced by Massive Seeding Using Liquid Carbon Dioxide

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The purpose of this experiment is to show that massive cloud seeding is eff ective in mitigating the damage caused by heavy snowfall. In order to show its eff ect, we attempted to form a canal in a thick convective cloud by massive seeding, and left the parts that were not infl uenced by the seeding as a reference to show that the canal was formed by the massive seeding only. The seeding was carried out by using an aircraft. The seeding rate and air speed of the aircraft were 35 g s−1 and 115 m s−1, respectively. The fl ight course for seeding was selected to be parallel to the wind direction to ensure that the dispersed liquid carbon dioxide did not infl uence both sides of the course. The results show that a part of the radar echo observed from onboard beneath the seeding track was weakened and divided the radar echo into two parts 20 minutes after the cloud top and the bottom were seeded, and distribution of rainfall rate on the ground from the target cloud was confi rmed to be divided into two parts 24 minutes after the seeding. The target cloud was torn along the seeding track, and we could see the sea surface through the break in the cloud. Canal formation occurred in the cloud along the seeding track. Clouds and snowfall were left on both sides of the canal. The results show that supercooled liquid cloud particles along the seeding track evaporated to form larger precipitable particles which grew and fell rapidly.

  8. VMware vCloud security

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    VMware vCloud Security provides the reader with in depth knowledge and practical exercises sufficient to implement a secured private cloud using VMware vCloud Director and vCloud Networking and Security.This book is primarily for technical professionals with system administration and security administration skills with significant VMware vCloud experience who want to learn about advanced concepts of vCloud security and compliance.

  9. Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: Evidence of cloud deepening

    Science.gov (United States)

    Christensen, Matthew W.; Stephens, Graeme L.

    2011-02-01

    Ship tracks observed by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) were analyzed to determine the extent to which aerosol plumes from ships passing below marine stratocumulus alter the microphysical and macrophysical properties of the clouds. Moderate Resolution Imaging Spectroradiometer (MODIS) imagery was used to distinguish ship tracks embedded in closed, open, and undefined mesoscale cellular cloud structures. The impact of aerosol on the microphysical cloud properties in both the closed and open cell regimes were consistent with the changes predicted by the Twomey hypothesis. For the macrophysical changes, differences were observed between regimes. In the open cell regime, polluted clouds had significantly higher cloud tops (16%) and more liquid water (39%) than nearby unpolluted clouds. However, in the closed cell regime, polluted clouds exhibited no change in cloud top height and had less liquid water (-6%). Both microphysical (effective radius) and macrophysical (liquid water path) cloud properties contribute to a fractional change in cloud optical depth; in the closed cell regime the microphysical contribution was 3 times larger than the macrophysical contribution. However, the opposite was true in the open cell regime where the macrophysical contribution was nearly 2 times larger than the microphysical contribution because the aerosol probably increased cloud coverage. The results presented here demonstrate key differences aerosols have on the microphysical and macrophysical responses of boundary layer clouds between mesoscale stratocumulus convective regimes.

  10. Shallowness of tropical low clouds as a predictor of climate models' response to warming

    Science.gov (United States)

    Brient, Florent; Schneider, Tapio; Tan, Zhihong; Bony, Sandrine; Qu, Xin; Hall, Alex

    2016-07-01

    How tropical low clouds change with climate remains the dominant source of uncertainty in global warming projections. An analysis of an ensemble of CMIP5 climate models reveals that a significant part of the spread in the models' climate sensitivity can be accounted by differences in the climatological shallowness of tropical low clouds in weak-subsidence regimes: models with shallower low clouds in weak-subsidence regimes tend to have a higher climate sensitivity than models with deeper low clouds. The dynamical mechanisms responsible for the model differences are analyzed. Competing effects of parameterized boundary-layer turbulence and shallow convection are found to be essential. Boundary-layer turbulence and shallow convection are typically represented by distinct parameterization schemes in current models—parameterization schemes that often produce opposing effects on low clouds. Convective drying of the boundary layer tends to deepen low clouds and reduce the cloud fraction at the lowest levels; turbulent moistening tends to make low clouds more shallow but affects the low-cloud fraction less. The relative importance different models assign to these opposing mechanisms contributes to the spread of the climatological shallowness of low clouds and thus to the spread of low-cloud changes under global warming.

  11. An effective approach to evaluate GCM simulated diurnal variation of clouds

    Science.gov (United States)

    Chen, Guoxing; Wang, Wei-Chyung

    2016-10-01

    Cloud radiative effects strongly depend on diurnal variations of insolation and cloud radiative properties. In general circulation models (GCMs), even when the daily-mean cloud properties agree with observations, errors in cloud diurnal cycle can still significantly impact the shortwave radiation and induce model biases. However, this aspect is overlooked in GCM evaluation and intercomparison programs (e.g., Coupled Model Intercomparison Project Phase 5 (CMIP5)), which mainly consider the daily-mean cloud fraction. This study presents a simple approach of using a diagnostic parameter, the "effective-daytime cloud fraction" which accounts for the concurrent variation of clouds and insolation, to reveal GCM biases in cloud diurnal variations. The usefulness of the approach is illustrated by the significant biases of cloud diurnal cycle in the Modern-Era Retrospective analysis for Research and Applications (MERRA) reanalysis when compared with that in the International Satellite Cloud Climatology Project (ISCCP) data. It is thus suggested that the parameter be included as one of the GCM diagnostics for evaluating cloud diurnal cycle in model intercomparisons.

  12. The California Molecular Cloud

    CERN Document Server

    Lada, Charles J; Alves, Joao F

    2009-01-01

    We present an analysis of wide-field infrared extinction maps of a region in Perseus just north of the Taurus-Auriga dark cloud complex. From this analysis we have identified a massive, nearby, but previously unrecognized, giant molecular cloud (GMC). From comparison of foreground star counts with Galactic models we derive a distance of 450 +/- 23 parsecs to the cloud. At this distance the cloud extends over roughly 80 pc and has a mass of approximately 10^5 solar masses, rivaling the Orion (A) Molecular Cloud as the largest and most massive GMC in the solar neighborhood. Although surprisingly similar in mass and size to the more famous Orion Molecular Cloud (OMC) the newly recognized cloud displays significantly less star formation activity with more than an order of magnitude fewer young stellar objects than found in the OMC, suggesting that both the level of star formation and perhaps the star formation rate in this cloud are an order of magnitude or more lower than in the OMC. Analysis of extinction maps ...

  13. On Cloud Nine

    Science.gov (United States)

    McCrea, Bridget; Weil, Marty

    2011-01-01

    Across the U.S., innovative collaboration practices are happening in the cloud: Sixth-graders participate in literary salons. Fourth-graders mentor kindergarteners. And teachers use virtual Post-it notes to advise students as they create their own television shows. In other words, cloud computing is no longer just used to manage administrative…

  14. Cloud speed sensor

    Directory of Open Access Journals (Sweden)

    V. Fung

    2013-10-01

    Full Text Available Changing cloud cover is a major source of solar radiation variability and poses challenges for the integration of solar energy. A compact and economical system that measures cloud motion vectors to estimate power plant ramp rates and provide short term solar irradiance forecasts is presented. The Cloud Speed Sensor (CSS is constructed using an array of luminance sensors and high-speed data acquisition to resolve the progression of cloud passages across the sensor footprint. An embedded microcontroller acquires the sensor data and uses a cross-correlation algorithm to determine cloud motion vectors. The CSS was validated against an artificial shading test apparatus, an alternative method of cloud motion detection from ground measured irradiance (Linear Cloud Edge, LCE, and a UC San Diego Sky Imager (USI. The CSS detected artificial shadow directions and speeds to within 15 and 6% accuracy, respectively. The CSS detected (real cloud directions and speeds without average bias and with average weighted root mean square difference of 22° and 1.9 m s−1 when compared to USI and 33° and 1.5 m s−1 when compared to LCE results.

  15. Clouds in Planetary Atmospheres

    Science.gov (United States)

    West, R.; Murdin, P.

    2000-11-01

    What are clouds? The answer to that question is both obvious and subtle. In the terrestrial atmosphere clouds are familiar as vast collections of small water drops or ice crystals suspended in the air. In the atmospheres of Venus, Mars, Jupiter, Saturn, Saturn's moon Titan, Uranus, Neptune, and possibly Pluto, they are composed of several other substances including sulfuric acid, ammonia, hydroge...

  16. Can cirrus clouds warm early Mars?

    Science.gov (United States)

    Ramirez, R. M.

    2015-12-01

    The presence of the ancient valley networks on Mars indicates a climate 3.8 Ga that was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the origin of these enigmatic features is hotly debated and discussion of their formation has been focused on how warm such a climate may have been and for how long. Recent warm and wet solutions using single-column radiative convective models involve supplementing CO2-H2O atmospheres with other greenhouse gases, such as H2 (i.e. Ramirez et al., 2014; Batalha et al., 2015). An interesting recent proposal, using the CAM 3-D General Circulation model, argues that global cirrus cloud decks in CO2-H2O atmospheres with at least 0.25 bar of CO2 , consisting of 10-micron (and larger) sized particles, could have generated the above-freezing temperatures required to explain the early martian surface geology (Urata and Toon, 2013). Here, we use our single-column radiative convective climate model to check these 3-D results and analyze the likelihood that such warm atmospheres, with mean surface pressures of up to 3 bar, could have supported cirrus cloud decks at full and fractional cloud cover for sufficiently long durations to form the ancient valleys. Our results indicate that cirrus cloud decks could have provided the mean surface temperatures required, but only if cloud cover approaches 100%, in agreement with Urata and Toon (2013). However, even should cirrus cloud coverage approach 100%, we show that such atmospheres are likely to have been too short-lived to produce the volumes of water required to carve the ancient valleys. At more realistic early Mars cloud fractions (~50%, Forget et al., 2013), cirrus clouds do not provide the required warming. Batalha, N., Domagal-Goldman, S. D., Ramirez, R.M., & Kasting, J. F., 2015. Icarus, 258, 337-349. Forget, F., Wordsworth, R., Millour, E., Madeleine, J. B., Kerber, L., Leconte, J., ... & Haberle, R. M., 2013. Icarus, 222

  17. Fast methods of computing bulk radiative properties of inhomogeneous clouds illuminated by solar radiation