WorldWideScience

Sample records for supercontinuum light pulse

  1. Long-pulse Supercontinuum Light Sources

    Moselund, Peter M.

    A Supercontinuum (SC) is a broad spectrum generated from a narrow light source through non-linear effects. This thesis describes SC generation based on 1064 nm ps pulses in PCF fibres. We investigate how the SC spectrum can be modified and intensity noise reduced by feeding back part of the SC...

  2. Supercontinuum light sources for food analysis

    Møller, Uffe Visbech; Petersen, Christian Rosenberg; Kubat, Irnis

    2014-01-01

    . One track of Light & Food will target the mid-infrared spectral region. To date, the limitations of mid-infraredlight sources, such as thermal emitters, low-power laser diodes, quantum cascade lasers and synchrotron radiation, have precluded mid-IR applications where the spatial coherence, broad...... bandwidth,high brightness and portability of a supercontinuum laser are all required. DTU Fotonik has now demonstrated the first optical fiber based broadband supercontinuum light souce, which covers 1.4-13.3μm and thereby most of the molecular fingerprint region....

  3. GPC light shaping a supercontinuum source

    Kopylov, Oleksii; Bañas, Andrew Rafael; Villangca, Mark Jayson

    2015-01-01

    Generalized Phase Contrast (GPC) is a versatile tool for efficiently rerouting and managing photon energy into speckle-free contiguous spatial light distributions. We have previously shown theoretically and numerically that a GPC Light Shaper shows robustness to shift in wavelength and can maintain...... both projection length scale and high efficiency over a range [0.75λ0; 1.5λ0] with λ0 as the characteristic design wavelength. With this performance across multiple wavelengths and the recent availability of tabletop supercontinuum lasers, GPC light shaping opens the possibility for creatively...... incorporating various multi-wavelength approaches into spatially shaped excitations that can enable new broadband light applications. We verify this new approach using a supercontinuum light source, interfaced with a compact GPC light shaper. Our experiments give ~70% efficiency, ~3x intensity gain, and ~85...

  4. Multispectral photoacoustic microscopy of lipids using a pulsed supercontinuum laser.

    Buma, Takashi; Conley, Nicole C; Choi, Sang Won

    2018-01-01

    We demonstrate optical resolution photoacoustic microscopy (OR-PAM) of lipid-rich tissue between 1050-1714 nm using a pulsed supercontinuum laser based on a large-mode-area photonic crystal fiber. OR-PAM experiments of lipid-rich samples show the expected optical absorption peaks near 1210 and 1720 nm. These results show that pulsed supercontinuum lasers are promising for OR-PAM applications such as label-free histology of lipid-rich tissue and imaging small animal models of disease.

  5. Compression of fiber supercontinuum pulses to the Fourier-limit in a high-numerical-aperture focus

    Tu, Haohua; Liu, Yuan; Turchinovich, Dmitry

    2011-01-01

    A multiphoton intrapulse interference phase scan (MIIPS) adaptively and automatically compensates the combined phase distortion from a fiber supercontinuum source, a spatial light modulator pulse shaper, and a high-NA microscope objective, allowing Fourier-transform-limited compression of the sup......A multiphoton intrapulse interference phase scan (MIIPS) adaptively and automatically compensates the combined phase distortion from a fiber supercontinuum source, a spatial light modulator pulse shaper, and a high-NA microscope objective, allowing Fourier-transform-limited compression...... power of 18–70mW, and a repetition rate of 76MHz, permitting the application of this source to nonlinear optical microscopy and coherently controlled microspectroscopy....

  6. Supercontinuum optimization for dual-soliton based light sources using genetic algorithms in a grid platform.

    Arteaga-Sierra, F R; Milián, C; Torres-Gómez, I; Torres-Cisneros, M; Moltó, G; Ferrando, A

    2014-09-22

    We present a numerical strategy to design fiber based dual pulse light sources exhibiting two predefined spectral peaks in the anomalous group velocity dispersion regime. The frequency conversion is based on the soliton fission and soliton self-frequency shift occurring during supercontinuum generation. The optimization process is carried out by a genetic algorithm that provides the optimum input pulse parameters: wavelength, temporal width and peak power. This algorithm is implemented in a Grid platform in order to take advantage of distributed computing. These results are useful for optical coherence tomography applications where bell-shaped pulses located in the second near-infrared window are needed.

  7. Influence of wave-front curvature on supercontinuum energy during filamentation of femtosecond laser pulses in water

    Potemkin, F. V.; Mareev, E. I.; Smetanina, E. O.

    2018-03-01

    We demonstrate that using spatially divergent incident femtosecond 1240-nm laser pulses in water leads to an efficient supercontinuum generation in filaments. Optimal conditions were found when the focal plane is placed 100 -400 μ m before the water surface. Under sufficiently weak focusing conditions [numerical aperture (NA )laser pulses, the supercontinuum energy generated in divergent beams is higher than the supercontinuum energy generated in convergent beams. Analysis by means of the unidirectional pulse propagation equation shows a dramatic difference between filamentation scenarios of divergent and convergent beams, that explains corresponding features of the supercontinuum generation. Under strong focusing conditions (NA ⩾0.2 ) and high-energy laser pulses, the supercontinuum generation is suppressed for convergent beams in contrast to divergent beams that nevertheless are shown experimentally to allow supercontinuum generation. The presented technique of the supercontinuum generation in divergent beams in water is highly demanded in a development of femtosecond optical parametric amplifiers.

  8. Soliton filtering from a supercontinuum: a tunable femtosecond pulse source

    Licea-Rodriguez, Jacob; Rangel-Rojo, Raul [Centro de Investigacion CientIfica y de Educacion Superior de Ensenada, Apartado Postal 2732, Ensenada B.C., 22860 (Mexico); Garay-Palmett, Karina, E-mail: rrangel@cicese.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-543, Mexico DF. 04510 (Mexico)

    2011-01-01

    In this article we report experimental results related with the generation of a supercontinuum in a microstructured fiber, from which the soliton with the longest wavelength is filtered out of the continuum and is used to construct a tunable ultrashort pulses source by varying the pump power. Pulses of an 80 fs duration (FWHM) from a Ti:sapphire oscillator were input into a 2 m long fiber to generate the continuum. The duration of the solitons at the fiber output was preserved by using a zero dispersion filtering system, which selected the longest wavelength soliton, while avoiding temporal spreading of the solitons. We present a complete characterization of the filtered pulses that are continuously tunable in the 850-1100 nm range. We also show that the experimental results have a qualitative agreement with theory. An important property of the proposed near-infrared pulsed source is that the soliton pulse energies obtained after filtering are large enough for applications in nonlinear microscopy.

  9. Diffraction of white-light supercontinuum by femtosecond laser-induced transient grating in carbon bisulfide

    Li, Huang; Yan-Qiang, Yang; Ying-Hui, Wang; Zhi-Ren, Zheng; Wen-Hui, Su

    2010-01-01

    Experiments on fs laser-induced transient grating (LITG) in carbon bisulfide (CS 2 ) are carried out to explore the chirp characteristics of a white-light supercontinuum (SC) generated by a 800-nm, 160-fs laser pulse in a 4-mm thick Al 2 O 3 crystal. Two orders of diffraction signals of SC by fs LITG in CS 2 are observed, demonstrating that both the third-order process and the fifth-order process are present simultaneously. The experimental results also imply that the formation of an fs transient refractive-index grating in CS 2 is mainly due to the electronic polarization process. (classical areas of phenomenology)

  10. Nearly penalty-free, less than 4 ps supercontinuum Gbit/s pulse generation over 1535-1560 nm

    Morioka, T.; Kawanishi, S.; Mori, K.; Saruwatari, M.

    1994-05-01

    Nearly penalty-free less than 4ps supercontinuum WDM pulses are generated at 6.3 Gbit/s over 1535-1560 nm for the first time using a 200 nm superbroadened supercontinuum in an optical fibre pumped by 1.7 W, 3.3 ps, 1542 nm short pulses from an Er(3+)-doped fibre ring laser.

  11. Noise analysis of a white-light supercontinuum light source for multiple wavelength confocal laser scanning fluorescence microscopy

    McConnell, Gail [Centre for Biophotonics, Strathclyde Institute for Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow, G4 0NR (United Kingdom)

    2005-08-07

    Intensity correlations of a Ti : sapphire, Kr/Ar and a white-light supercontinuum were performed to quantify the typical signal amplitude fluctuations and hence ascertain the comparative output stability of the white-light supercontinuum source for confocal laser scanning microscopy (CLSM). Intensity correlations across a two-pixel sample (n = 1000) of up to 98%, 95% and 94% were measured for the Ti : sapphire, Kr/Ar and white-light supercontinuum source, respectively. The white-light supercontinuum noise level is therefore acceptable for CLSM, with the added advantage of wider wavelength flexibility over traditional CLSM excitation sources. The relatively low-noise white-light supercontinuum was then used to perform multiple wavelength sequential CLSM of guinea pig detrusor to confirm the reliability of the system and to demonstrate system flexibility.

  12. Extension of supercontinuum spectrum generated in photonic crystal fiber by using chirped femtosecond pulses

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2017-08-01

    We present results of experimental and numerical investigation of supercontinuum generation in polarization maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52 nJ energy 110 fs duration pulses at 1030 nm with 76 MHz repetition rate. The nonlinear medium was a 32 cm long polarization maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of supercontinuum. We showed that by chirping pump pulses positively or negatively one can obtain broader supercontinuum spectrum than in case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. In our case the supercontinuum spectrum width was extended by up to 115 nm (at maximum chirp value of +10500 fs2 that we could achieve in our setup) compared to the case of unchirped pump at the same peak power.

  13. Deep-blue supercontinuum light sources based on tapered photonic crystal bres

    Sørensen, Simon Toft

    applications in areas such as spectroscopy and microscopy. In this work, we exploit the tremendous design freedom in air hole structured photonic crystal fibres to shape the supercontinuum spectrum. Specifically, the supercontinuum dynamics can be controlled by clever engineering of fibres with longitudinally...... varying air hole structures. Here we demonstrate supercontinuum generation into the commercially attractive deep-blue spectral region below 400 nm from an Yb laser in such fibres. In particular, we introduce the concept of a group acceleration mismatch that allows us to enhance the amount of light...... in the deep-blue by optimising the fibre structure. To this end, we fabricate the first single-mode high air-fill fraction photonic crystal fibre for blue-extended supercontinuum sources. The mechanisms of supercontinuum broadening are highly sensitive to noise, and the inherent shot-to-shot variations...

  14. Picosecond pulse generated supercontinuum as a stable seed for OPCPA

    Indra, Lukáš; Batysta, František; Hříbek, Petr; Novák, Jakub; Hubka, Zbyněk; Green, Jonathan T.; Antipenkov, Roman; Boge, Robert; Naylon, Jack A.; Bakule, Pavel; Rus, Bedřich

    2017-01-01

    Roč. 42, č. 4 (2017), s. 843-846 ISSN 0146-9592 R&D Projects: GA MŠk LQ1606; GA MŠk EF15_008/0000162 Grant - others:ELI Beamlines(XE) CZ.02.1.01/0.0/0.0/15_008/0000162 Institutional support: RVO:68378271 Keywords : supercontinuum generation * ultrafast lasers * ultrafast nonlinear optics * thin-disk amplifier * repetition-rate Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 3.416, year: 2016

  15. A comparative study of noise in supercontinuum light sources for ultra-high resolution optical coherence tomography

    Maria J., Sanjuan-Ferrer,; Bravo Gonzalo, Ivan; Bondu, Magalie

    2017-01-01

    Supercontinuum (SC) light is a well-established technology, which finds applications in several domains ranging from chemistry to material science and imaging systems [1-2]. More specifically, its ultra-wide optical bandwidth and high average power make it an ideal tool for Optical Coherence...... Tomography (OCT). Over the last 5 years, numerous examples have demonstrated its high potential [3-4] in this context. However, SC light sources present pulse-to-pulse intensity variation that can limit the performance of any OCT system [5] by degrading their signal to noise ratio (SNR). To this goal, we...... have studied and compared the noise of several SC light sources and evaluated how their noise properties affect the performance of Ultra-High Resolution OCT (UHR-OCT) at 1300 nm. We have measured several SC light sources with different parameters (pulse length, energy, seed repetition rate, etc.). We...

  16. Extension of supercontinuum spectrum, generated in polarization-maintaining photonic crystal fiber, using chirped femtosecond pulses

    Vengelis, Julius; Jarutis, Vygandas; Sirutkaitis, Valdas

    2018-01-01

    We present results of experimental and numerical investigation of supercontinuum (SC) generation in polarization-maintaining photonic crystal fiber (PCF) using chirped femtosecond pulses. The initial unchirped pump pulse source was a mode-locked Yb:KGW laser generating 52-nJ energy, 110-fs duration pulses at 1030 nm with a 76-MHz repetition rate. The nonlinear medium was a 32-cm-long polarization-maintaining PCF manufactured by NKT Photonics A/S. We demonstrated the influence of pump pulse chirp on spectral characteristics of a SC. We showed that by chirping pump pulses positively or negatively one can obtain a broader SC spectrum than in the case of unchirped pump pulses at the same peak power. Moreover, the extension can be controlled by changing the amount of pump pulse chirp. Numerical simulation results also indicated that pump pulse chirp yields an extension of SC spectrum.

  17. Effect of initial chirp on near-infrared supercontinuum generation by a nanosecond pulse in a nonlinear fiber amplifier

    Song Rui; Hou Jing; Wang Ze-Feng; Lu Qi-Sheng; Xiao Rui

    2013-01-01

    Theoretical and experimental research on the effect of initial chirp on near-infrared supercontinuum generation by a nanosecond pulse in a nonlinear fiber amplifier is carried out. The complex Ginzburg—Landau equation is used to simulate the propagation of the pulse in the fiber amplifier and the results show that pulses with negative initial chirp produce the widest supercontinuum and pulses with positive initial chirp produce the narrowest supercontinuum when the central wavelength of the pump lies in the normal dispersion region of the gain fiber. A self-made line width narrowing system is utilized to control the initial chirp of the nanosecond pump pulse and a four-stage master oscillator power amplifier configuration is adopted to produce a high power near-infrared suppercontinuum. The experimental results are in good agreement with simulations which can provide some guidance on further optimization of the system in future work. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  18. Effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier

    Song, Rui; Lei, Cheng-Min; Chen, Sheng-Ping; Wang, Ze-Feng; Hou, Jing

    2015-08-01

    The effect of pulse width on near-infrared supercontinuum generation in nonlinear fiber amplifier is investigated theoretically and experimentally. The complex Ginzburg-Landau equation and adaptive split-step Fourier method are used to simulate the propagation of pulses with different pulse widths in the fiber amplifier, and the results show that a longer pulse is more profitable in near-infrared supercontinuum generation if the central wavelength of the input laser lies in the normal dispersion region of the gain fiber. A four-stage master oscillator power amplifier configuration is adopted and the output spectra under picosecond and nanosecond input pulses are compared with each other. The experimental results are in good accordance with the simulations which can provide some guidance for further optimization of the system. Project supported by the National Natural Science Foundation of China (Grant Nos. 11404404 and 11274385) and the Outstanding Youth Fund Project of Hunan Province and the Fund of Innovation of National University of Defense Technology, China (Grant No. B120701).

  19. Power scaling of supercontinuum seeded megahertz-repetition rate optical parametric chirped pulse amplifiers.

    Riedel, R; Stephanides, A; Prandolini, M J; Gronloh, B; Jungbluth, B; Mans, T; Tavella, F

    2014-03-15

    Optical parametric chirped-pulse amplifiers with high average power are possible with novel high-power Yb:YAG amplifiers with kW-level output powers. We demonstrate a compact wavelength-tunable sub-30-fs amplifier with 11.4 W average power with 20.7% pump-to-signal conversion efficiency. For parametric amplification, a beta-barium borate crystal is pumped by a 140 W, 1 ps Yb:YAG InnoSlab amplifier at 3.25 MHz repetition rate. The broadband seed is generated via supercontinuum generation in a YAG crystal.

  20. Supercontinuum noise in tapered photonic crystal fibers

    Møller, Uffe; Sørensen, Simon Toft; Moselund, Peter Morten

    Supercontinuum generation (SCG) in highly nonlinear photonic crystal fibers (PCF) has drawn a lot of attention for the last decade. Pumping such PCFs with high-power picosecond laser pulses enables the creation of broadband and intense light. Picosecond SCG is initiated by modulation instability ...

  1. 2-10 μm Mid-infrared Supercontinuum Light Sources

    Petersen, Christian Rosenberg; Møller, Uffe Visbech

    through a process known as supercontinuum generation. Supercontinuum generation is a spectacular process in which an intense single color laser line can generate new colors by propagation in a nonlinear medium, such as a glass optical fiber. The theory of supercontinuum generation is therefore presented...

  2. Infrared Supercontinuum Generation in Optical Fibres

    Dupont, Sune Vestergaard Lund

    During my PhD studies I have worked with intense lasers and optical fibres. In our conceptual universe the colour of light (wavelength) does not depend on the material in which it propagates. At high intensities however, nonlinear effects change the behaviour of light and rise of new wavelength...... with laser-like intensity is obtained, which otherwise is impossible without the use of more complicated equipment. Until recently, supercontinuum covering the mid-infrared was not possible due to absorption in the silica glass optical fibres are made of. In our project infrared transparent materials...... such as ZBLAN and chalcogenide have been investigated. Using ZBLAN it has been possible to generated a supercontinuum stretching beyond 4200 nm. Supercontinuum generation requires knowledge about the physical properties of the optical fibre in which the pulse-broadening takes place. Consequently thorough...

  3. Near infrared spectroscopy of food systems using a supercontinuum laser

    Ringsted, Tine

    )) can be obtained, (c) that the supercontinuum light is fiber compatible i.e. it can couple directly to fibers, and (d) that the fast repetition rate of the supercontinuum pulses makes it possible to do very fast measurements. For these reasons, the supercontinuum light stands out from the commonly...... wavelength separation method called dispersive Fourier transformation. Different wavelengths travel at different speed through a dispersive element, which in this case is a 10.6 km long silica fiber, and the polychromatic light pulses will therefore be separated by wavelength. The signal...... will then be transformed from the time-domain to a frequency domain. The spectrometer has no moving parts, which makes it insensitive to mechanical vibrations. A spectrometer with a wavelength separating fiber is therefore an obvious candidate for industrial process measurements. This thesis presents preliminary results...

  4. Generation of an XUV supercontinuum by optimization of the angle between polarization planes of two linearly polarized pulses in a multicycle two-color laser field

    Yao Jinping; Zeng Bin; Fu Yuxi; Chu Wei; Ni Jielei; Li Yao; Xiong Hui; Xu Han; Cheng Ya; Xu Zhizhan; Liu Xiaojun; Chen, J.

    2010-01-01

    We theoretically investigate the high-order harmonic generation (HHG) in helium using a two-color laser field synthesized by an intense 25-fs laser pulse at 800 nm and a relatively weak ∼43-fs laser pulse at 1400 nm. When the polarization between the two pulses is arranged at an angle of ∼73 deg., supercontinuum spectra are dramatically broadened to 180 eV, which is sufficient to support an isolated ∼73-as pulse without any phase compensation. The physical mechanisms behind the phenomenon are well explained in terms of quantum and classical analyses. Furthermore, in the long-pulse regime, this method of extending the supercontinuum spectrum shows the significant advantage over previous two-color HHG schemes.

  5. Novel coherent supercontinuum light sources based on all-normal dispersion fibers

    Heidt, Alexander

    2011-07-05

    The concept of broadband coherent supercontinuum (SC) generation in all-normal dispersion (ANDi) fibers in the near-infrared, visible and ultraviolet (UV) spectral regions is introduced and investigated in detail. In numerical studies, explicit design criteria are established for ANDi photonic crystal fiber (PCF) designs that allow the generation of flat and smooth ultrabroad spectral profiles without significant fine structure and with excellent stability and coherence properties. The key benefit of SC generation in ANDi fibers is the conservation of a single ultrashort pulse in the time domain with smooth and recompressible phase distribution. In the numerical investigation of the SC generation dynamics self-phase modulation and optical wave breaking are identified as the dominant nonlinear effects responsible for the nonlinear spectral broadening. It is further demonstrated that coherence properties, spectral bandwidth and temporal compressibility are independent of input pulse duration for constant peak power. The numerical predictions are in excellent agreement with experimental results obtained in two realizations of ANDi PCF optimized for the near-infrared and visible spectral region. In these experiments, the broadest SC spectrum generated in the normal dispersion regime of an optical fiber to date is achieved. The exceptional temporal properties of the generated SC pulses are verified experimentally and their applicability for the time-resolved study of molecular dynamics in ultrafast transient absorption spectroscopy is demonstrated. In an additional nonlinear pulse compression experiment, the SC pulses obtained in a short piece of ANDi PCF could be temporally recompressed to sub-two cycle durations by linear chirp compensation. Numerical simulations show that even shorter pulse durations with excellent quality can be achieved by full phase compensation. The concept is further extended into the UV spectral regime by considering tapered optical fibers with

  6. New horizons for Supercontinuum light sources: from UV to mid-IR

    Thomsen, Carsten L.; Nielsen, Frederik Donbæk; Johansen, Jeppe

    2013-01-01

    Commercially available supercontinuum sources continue to experience a strong growth in a wide range of industrial and scientific applications. In addition, there is a significant research effort focused on extending the wavelength coverage both towards UV and Mid-IR. Broadband sources covering...... and novel pumping schemes, whereas shifting the spectrum further towards the UV has been based on sophisticated microstructure fiber designs. Here we present our latest developments in tailoring the power and spectral coverage of spatially coherent broadband supercontinuum sources....

  7. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters

    Wang, Wenbo [Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada); Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8 (Canada); Department of Biomedical Engineering, University of British Columbia, KAIS 5500, 2332 Main Mall, Vancouver, British Columbia V6T 1Z4 (Canada); Wu, Zhenguo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan, E-mail: hzeng@bccrc.ca [Imaging Unit, Integrative Oncology Department, BC Cancer Agency Research Center, 675 West 10th Avenue, Vancouver, British Columbia V5Z 1L3 (Canada); Department of Dermatology and Skin Science, University of British Columbia, 835 West 10th Avenue, Vancouver, British Columbia V5Z 4E8 (Canada)

    2016-06-15

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra. Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to −0.70 nm within the spectral range of 500–850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.

  8. A rapid excitation-emission matrix fluorometer utilizing supercontinuum white light and acousto-optic tunable filters

    Wang, Wenbo; Wu, Zhenguo; Zhao, Jianhua; Lui, Harvey; Zeng, Haishan

    2016-01-01

    Scanning speed and coupling efficiency of excitation light to optic fibres are two major technical challenges that limit the potential of fluorescence excitation-emission matrix (EEM) spectrometer for on-line applications and in vivo studies. In this paper, a novel EEM system, utilizing a supercontinuum white light source and acousto-optic tunable filters (AOTFs), was introduced and evaluated. The supercontinuum white light, generated by pumping a nonlinear photonic crystal fiber with an 800 nm femtosecond laser, was efficiently coupled into a bifurcated optic fiber bundle. High speed EEM spectral scanning was achieved using AOTFs both for selecting excitation wavelength and scanning emission spectra. Using calibration lamps (neon and mercury argon), wavelength deviations were determined to vary from 0.18 nm to −0.70 nm within the spectral range of 500–850 nm. Spectral bandwidth for filtered excitation light broadened by twofold compared to that measured with monochromatic light between 650 nm and 750 nm. The EEM spectra for methanol solutions of laser dyes were successfully acquired with this rapid fluorometer using an integration time of 5 s.

  9. Multimode supercontinuum generation in chalcogenide glass fibres

    Kubat, Irnis; Bang, Ole

    2016-01-01

    Mid-infrared supercontinuum generation is considered in chalcogenide fibres when taking into account both polarisations and the necessary higher order modes. In particular we focus on high pulse energy supercontinuum generation with long pump pulses. The modeling indicates that when only a single...

  10. Theoretical analysis of supercontinuum and coloured conical emission produced during ultrashort laser pulse interaction with gases

    Semak, V V; Shneider, M N

    2014-01-01

    We use a conceptually new approach to theoretical modelling of self-focusing in which we integrated diffractive and geometrical optics in order to explain and predict emission of white light and coloured rings observed in ultrashort laser pulse interaction. In our approach, laser beam propagation is described by blending the solution of the linear Maxwell's equation and a correction term that represents nonlinear field perturbation expressed in terms of paraxial ray-optics (eikonal) equation. No attempt is made to create an appearance of exhaustive treatment via use of complex mathematical models. Rather, emphasis is placed on elegance of the formulations leading to fundamental understanding of the underlying physics and, eventually, to an accurate practical numerical model capable of simulating white light generation and conical emission of coloured rings produced around the filament. (paper)

  11. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region

    Dasa, Manoj Kumar; Markos, Christos; Maria, Michael

    2018-01-01

    We propose a cost-effective high-pulse energy supercontinuum (SC) source based on a telecom range diode laser-based amplifier and a few meters of standard single-mode optical fiber, with a pulse energy density as high as ∼25 nJ/nm in the 1650-1850 nm regime (factor >3 times higher than any SC...... discrimination of two different lipids (cholesterol and lipid in adipose tissue) and the photoacoustic cross-sectional scan of lipid-rich adipose tissue at three different locations. The proposed high-pulse energy SC laser paves a new direction towards compact, broadband and cost-effective source...

  12. Supercontinuum Fourier transform spectrometry with balanced detection on a single photodiode

    Goncharov, Vasily V.; Hall, Gregory E.

    2016-01-01

    We demonstrate a method of combining a supercontinuum light source with a commercial Fourier transform spectrometer, using a novel approach to dual-beam balanced detection, implemented with phase-sensitive detection on a single light detector. A 40 dB reduction in the relative intensity noise is achieved for broadband light, analogous to conventional balanced detection methods using two matched photodetectors. Unlike conventional balanced detection, however, this method exploits the time structure of the broadband source to interleave signal and reference pulse trains in the time domain, recording the broadband differential signal at the fundamental pulse repetition frequency of the supercontinuum. The method is capable of real-time correction for instability in the supercontinuum spectral structure over a broad range of wavelengths and is compatible with commercially designed spectrometers. A proof-of-principle experimental setup is demonstrated for weak absorption in the 1500-1600 nm region.

  13. Solitonic supercontinuum of femtosecond mid-IR pulses in W-type index tellurite fibers with two zero dispersion wavelengths

    S. Kedenburg

    2016-11-01

    Full Text Available We present a detailed experimental parameter study on mid-IR supercontinuum generation in W-type index tellurite fibers, which reveals how the core diameter, pump wavelength, fiber length, and pump power dramatically influence the spectral broadening. As pump source, we use femtosecond mid-IR pulses from a post-amplified optical parametric oscillator tunable between 1.7 μm and 4.1 μm at 43 MHz repetition rate. We are able to generate red-shifted dispersive waves up to a wavelength of 5.1 μm by pumping a tellurite fiber in the anomalous dispersion regime between its two zero dispersion wavelengths. Distinctive soliton dynamics can be identified as the main broadening mechanism resulting in a maximum spectral width of over 2000 nm with output powers of up to 160 mW. We experimentally demonstrated that efficient spectral broadening with considerably improved power proportion in the important first atmospheric transmission window between 3 and 5 μm can be achieved in robust W-type tellurite fibers pumped at long wavelengths by ultra-fast lasers.

  14. Polarization extinction ratio and polarization dependent intensity noise in long-pulse supercontinuum generation (Conference Presentation)

    Chin, Catherine; Engelsholm, Rasmus Dybbro; Moselund, Peter Morten

    2017-01-01

    to 2200 nm, and fast photo detectors, to record 800 consecutive pulses. Peaks from these pulses are first extracted, then distribution of their pulse height histogram (PHH) is constructed. Analysis using higher-order moments about the mean (variance, skewness and kurtosis) showed that: (1) around the pump...

  15. Use of a supercontinuum white light in evaluating the spectral sensitivity of the pupil light reflex

    Chin, Catherine; Leick, Lasse; Podoleanu, Adrian; Lall, Gurprit S.

    2018-03-01

    We assessed the spectral sensitivity of the pupillary light reflex in mice using a high power super continuum white light (SCWL) source in a dual wavelength configuration. This novel approach was compared to data collected from a more traditional setup using a Xenon arc lamp fitted with monochromatic interference filters. Irradiance response curves were constructed using both systems, with the added benefit of a two-wavelength, equivocal power, output using the SCWL. The variables applied to the light source were intensity, wavelength and stimulus duration through which the physiological output measured was the minimum pupil size attained under such conditions. We show that by implementing the SCWL as our novel stimulus we were able to dramatically increase the physiological usefulness of our pupillometry system.

  16. Supercontinuum Generation in a Photonic Crystal Fibre

    YAN Pei-Guang; RUAN Shuang-Chen; LIN Hao-Jia; DU Chen-Lin; YU Yong-Qin; LU Ke-Cheng; YAO Jian-Quan

    2004-01-01

    @@ Nearly 1000-nm broad continuum from 390nm to 1370nm is generated in a 2-m long photonic crystal fibre. The maximum total power of supercontinuum is measured to be 60mW with the pumping power of 800mW output from a 200-fs Ti:sapphire laser. The evolution of the pumping light into supercontinuum is experimentally studied in detail. It is found that the mechanism for supercontinuum generation has direct relations with Raman effect and soliton effect, and the four-wave mixing plays an important role in the last phase of the supercontinuum generation.

  17. High-pulse energy supercontinuum laser for high-resolution spectroscopic photoacoustic imaging of lipids in the 1650-1850 nm region.

    Dasa, Manoj Kumar; Markos, Christos; Maria, Michael; Petersen, Christian R; Moselund, Peter M; Bang, Ole

    2018-04-01

    We propose a cost-effective high-pulse energy supercontinuum (SC) source based on a telecom range diode laser-based amplifier and a few meters of standard single-mode optical fiber, with a pulse energy density as high as ~25 nJ/nm in the 1650-1850 nm regime (factor >3 times higher than any SC source ever used in this wavelength range). We demonstrate how such an SC source combined with a tunable filter allows high-resolution spectroscopic photoacoustic imaging and the spectroscopy of lipids in the first overtone transition band of C-H bonds (1650-1850 nm). We show the successful discrimination of two different lipids (cholesterol and lipid in adipose tissue) and the photoacoustic cross-sectional scan of lipid-rich adipose tissue at three different locations. The proposed high-pulse energy SC laser paves a new direction towards compact, broadband and cost-effective source for spectroscopic photoacoustic imaging.

  18. Pulse shaping using a spatial light modulator

    Botha, N

    2009-07-01

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  19. White Light Generation in Human Saliva

    Santhosh, C.; Dharmadhikari, A. K.; Dharmadhikari, J. A.; Alti, K.; Mathur, D.

    2011-07-01

    Interaction of intense, femto-second pulses of infrared light (800 nm) with water generates white light supercontinuum due to nonlinear optical effects. This supercontinuum was found to be suppressed by the addition of alpha amylase, a major protein in the human saliva. We have studied the suppression of supper continuum by human saliva, collected from healthy subjects with and without smoking habits. Suppression of the blue-sided components was observed significantly in non-smokers saliva than chain smokers.

  20. Slow-light pulses in moving media

    Fiurasek, J.; Leonhardt, U.; Parentani, R.

    2002-01-01

    Slow light in moving media reaches a counterintuitive regime when the flow speed of the medium approaches the group velocity of light. Pulses can penetrate a region where a counterpropagating flow exceeds the group velocity. When the counterflow slows down, pulses are reflected

  1. The Supercontinuum Laser Source Fundamentals with Updated References

    Alfano, Robert R

    2006-01-01

    Photonics and nonlinear optics are important areas of science, engineering and technology. One of the most important ultrafast nonlinear optical processes is the supercontinuum (SC) – the production of intense white light pulses covering: uv, visible, NIR, MIR, and IR. It is produced using ultrashort laser pulses (ps/fs) to produce the ultrabroad band of frequencies. This book covers the fundamental principles and surveys research of current thinkers and experts in the field with updated references of the key breakthroughs over the past decade and a half. The application of SC are time-resolved pump-SC probe absorption and excitation spectroscopy for chemistry, biology and physics fundamental processes; optical coherence tomography; ultrashort pulse generation in femtosecond and attosecond regions; frequency clocks; phase stabilization; optical communication; atmospheric science; lightning control; optical medical imaging; biological cell imaging; and metrology standards.

  2. Two-channel Hyperspectral LiDAR with a Supercontinuum Laser Source

    Ruizhi Chen

    2010-07-01

    Full Text Available Recent advances in nonlinear fiber optics and compact pulsed lasers have resulted in creation of broadband directional light sources. These supercontinuum laser sources produce directional broadband light using cascaded nonlinear optical interactions in an optical fibre framework. This system is used to simultaneously measure distance and reflectance to demonstrate a technique capable of distinguishing between a vegetation target and inorganic material using the Normalized Difference Vegetation Index (NDVI parameters, while the range can be obtained from the waveform of the echoes. A two-channel, spectral range-finding system based on a supercontinuum laser source was used to determine its potential application of distinguishing the NDVI for Norway spruce, a coniferous tree, and its three-dimensional parameters at 600 nm and 800 nm. A prototype system was built using commercial components.

  3. Broadband 2D electronic spectrometer using white light and pulse shaping: noise and signal evaluation at 1 and 100 kHz.

    Kearns, Nicholas M; Mehlenbacher, Randy D; Jones, Andrew C; Zanni, Martin T

    2017-04-03

    We have developed a broad bandwidth two-dimensional electronic spectrometer that operates shot-to-shot at repetition rates up to 100 kHz using an acousto-optic pulse shaper. It is called a two-dimensional white-light (2D-WL) spectrometer because the input is white-light supercontinuum. Methods for 100 kHz data collection are studied to understand how laser noise is incorporated into 2D spectra during measurement. At 100 kHz, shot-to-shot scanning of the delays and phases of the pulses in the pulse sequence produces a 2D spectrum 13-times faster and with the same signal-to-noise as using mechanical stages and a chopper. Comparing 100 to 1 kHz repetition rates, data acquisition time is decreased by a factor of 200, which is beyond the improvement expected by the repetition rates alone due to reduction in 1/f noise. These improvements arise because shot-to-shot readout and modulation of the pulse train at 100 kHz enables the electronic coherences to be measured faster than the decay in correlation between laser intensities. Using white light supercontinuum for the pump and probe pulses produces high signal-to-noise spectra on samples with optical densities 200 nm bandwidth.

  4. Interaction between two stopped light pulses

    Chen, Yi-Hsin, E-mail: yhchen920@gmail.com; Lee, Meng-Jung, E-mail: yhchen920@gmail.com; Hung, Weilun, E-mail: yhchen920@gmail.com; Yu, Ite A., E-mail: yu@phys.nthu.edu.tw [Department of Physics and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Ying-Cheng [Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan and Department of Physics and Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Yong-Fan [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2014-03-05

    The efficiency of a nonlinear optical process is proportional to the interaction time. We report a scheme of all-optical switching based on two motionless light pulses via the effect of electromagnetically induced transparency. One pulse was stopped as the stationary light pulse (SLP) and the other was stopped as stored light. The time of their interaction via the medium can be prolonged and, hence, the optical nonlinearity is greatly enhanced. Using a large optical density (OD) of 190, we achieved a very long interaction time of 6.9 μs. This can be analogous to the scheme of trapping light pulses by an optical cavity with a Q factor of 8×10{sup 9}. With the approach of using moving light pulses in the best situation, a switch can only be activated at 2 photons per atomic absorption cross section. With the approach of employing a SLP and a stored light pulse, a switch at only 0.56 photons was achieved and the efficiency is significantly improved. Moreover, the simulation results are in good agreement with the experimental data and show that the efficiency can be further improved by increasing the OD of the medium. Our work advances the technology in quantum information manipulation utilizing photons.

  5. Interaction between two stopped light pulses

    Chen, Yi-Hsin; Lee, Meng-Jung; Hung, Weilun; Yu, Ite A.; Chen, Ying-Cheng; Chen, Yong-Fan

    2014-01-01

    The efficiency of a nonlinear optical process is proportional to the interaction time. We report a scheme of all-optical switching based on two motionless light pulses via the effect of electromagnetically induced transparency. One pulse was stopped as the stationary light pulse (SLP) and the other was stopped as stored light. The time of their interaction via the medium can be prolonged and, hence, the optical nonlinearity is greatly enhanced. Using a large optical density (OD) of 190, we achieved a very long interaction time of 6.9 μs. This can be analogous to the scheme of trapping light pulses by an optical cavity with a Q factor of 8×10 9 . With the approach of using moving light pulses in the best situation, a switch can only be activated at 2 photons per atomic absorption cross section. With the approach of employing a SLP and a stored light pulse, a switch at only 0.56 photons was achieved and the efficiency is significantly improved. Moreover, the simulation results are in good agreement with the experimental data and show that the efficiency can be further improved by increasing the OD of the medium. Our work advances the technology in quantum information manipulation utilizing photons

  6. Multi-octave supercontinuum generation from mid-infrared filamentation in a bulk crystal

    Faccio D.

    2013-03-01

    Full Text Available We present supercontinuum generation pumped by femtosecond mid-infrared pulses in a bulk homogeneous material. The spectrum extends from 450 nm into the midinfrared, and carries high spectral energy density (3 pJ/nm–10 nJ/nm. The supercontinuum has high shot-to-shot reproducibility and preserves the carrier-to-envelope phase. Our result paves the way for compact supercontinuum sources with unprecedented bandwidth.

  7. Light pulse shapes from plastic scintillators

    Moszynski, M.; Bengtson, B.

    1977-01-01

    A detailed study of the light pulse shape from the binary NE 111 and the ternary Pilot U, Naton 136, KL 236, NE 102A, NE 104 and NE 110 plastic scintillators was performed by the single photon method using XP 1021 and C 31024 photomultipliers. The analysis of the shape of the light pulses determined experimentally for several samples of different dimensions gave the following conclusions. The original light pulse shape from the binary NE 111 scintillator, as measured with a 5 mm thick polished sample is described analytically by the convolution integral of a Gaussian and an exponential function. The Gaussian function may reflect a deexcitation of several higher levels of the solvent molecules excited by nuclear particles preceding an intermolecular energy transfer in the scintillator. It may introduce a rather important limitation of the speed of plastic scintillators as the standard deviation of the Gaussian function is equal to 0.2 ns. The light pulse shape from the ternary plastics is described by the convolution integral of a Gaussian and two exponential functions. The Gaussian function presents the rate of energy transfer from nuclear particles to the primary solute as in the binary plastics. The exponential functions describe the energy transfer from the primary solute to the wavelength shifter and the final emission of the light. (Auth.)

  8. Period and pulse duration with "strobe" lights

    Birriel, Jennifer

    2016-01-01

    Strobe lights have traditionally been discussed in The Physics Teacher in the context of stop action strobe photography. During the Halloween season most department and hardware stores sell inexpensive, compact "strobe" lights (although these can be found online year round). These lights generally sell for under 10 and usually employ LED lights. Most such devices have a rotary switch to adjust the rate at which the LED bulbs flash. This rotary switch is not calibrated—i.e., it has no markings to indicate the rate, but in general the greater the rotation of the switch from the off position, the faster the rate of flashing. We show how these simple devices can be used with a light sensor to study both the frequency of flashing and the duration of the light pulse. We briefly discuss if these devices are truly strobe lights.

  9. The role of phase coherence in seeded supercontinuum generation

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe

    2012-01-01

    The noise properties of a supercontinuum can be controlled by modulating the pump with a seed pulse. In this paper, we numerically investigate the influence of seeding with a partially phase coherent weak pulse or continuous wave. We demonstrate that the noise properties of the generated supercon...

  10. Unconventional Use of Intense Pulsed Light

    Piccolo, D.; Di Marcantonio, D.; Crisman, G.; Cannarozzo, G.; Sannino, M.; Chiricozzi, A.; Chimenti, S.

    2014-01-01

    According to the literature, intense pulsed light (IPL) represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne), due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases), port-wine stain (PWS) (10 cases), disseminated porokeratosis (10 cases), pilonidal cyst (3 cases), seborrheic keratosis (10 cases), hype...

  11. Seeded Supercontinuum Generation - Modulation Instability Gain, Coherent and Incoherent Rogue Waves

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe Visbech

    2012-01-01

    Deterministic supercontinuum can be generated by seeding the modulation instability-induced pulse break-up. We investigate the influence of the modulation instability gain on seeding and demonstrate the generation of coherent and incoherent rogue waves....

  12. Initial steps of supercontinuum generation in photonic crystal fibers

    Hilligsøe, Karen Marie; Paulsen, H.N.; Thøgersen, J.

    2003-01-01

    The onset of supercontinuum generation in a photonic crystal fiber is investigated experimentally and numerically as a function of pump wavelength and intensity with 100-fs pulses. Soliton formation is found to be the determining factor in the initial step. The formation and behavior of a blueshi...

  13. Soliton fission and supercontinuum generation in photonic crystal

    2015-10-17

    Oct 17, 2015 ... We present a practical design of novel photonic crystal fibre (PCF) to investigate the nonlinear propagation of femtosecond pulses for the application of optical coherence tomography (OCT) based on supercontinuum generation (SCG) process. In addition, this paper contains a brief introduction of the ...

  14. Towards an analytical framework for tailoring supercontinuum generation.

    Castelló-Lurbe, David; Vermeulen, Nathalie; Silvestre, Enrique

    2016-11-14

    A fully analytical toolbox for supercontinuum generation relying on scenarios without pulse splitting is presented. Furthermore, starting from the new insights provided by this formalism about the physical nature of direct and cascaded dispersive wave emission, a unified description of this radiation in both normal and anomalous dispersion regimes is derived. Previously unidentified physics of broadband spectra reported in earlier works is successfully explained on this basis. Finally, a foundry-compatible few-millimeters-long silicon waveguide allowing octave-spanning supercontinuum generation pumped at telecom wavelengths in the normal dispersion regime is designed, hence showcasing the potential of this new analytical approach.

  15. Supercontinuum generation in silicon waveguides relying on wave-breaking.

    Castelló-Lurbe, David; Silvestre, Enrique

    2015-10-05

    Four-wave-mixing processes enabled during optical wave-breaking (OWB) are exploited in this paper for supercontinuum generation. Unlike conventional approaches based on OWB, phase-matching is achieved here for these nonlinear interactions, and, consequently, new frequency production becomes more efficient. We take advantage of this kind of pulse propagation to obtain numerically a coherent octave-spanning mid-infrared supercontinuum generation in a silicon waveguide pumping at telecom wavelengths in the normal dispersion regime. This scheme shows a feasible path to overcome limits imposed by two-photon absorption on spectral broadening in silicon waveguides.

  16. Mid-infrared-to-mid-ultraviolet supercontinuum enhanced by third-to-fifteenth odd harmonics.

    Mitrofanov, A V; Voronin, A A; Mitryukovskiy, S I; Sidorov-Biryukov, D A; Pugžlys, A; Andriukaitis, G; Flöry, T; Stepanov, E A; Fedotov, A B; Baltuška, A; Zheltikov, A M

    2015-05-01

    A high-energy supercontinuum spanning 4.7 octaves, from 250 to 6500 nm, is generated using a 0.3-TW, 3.9-μm output of a mid-infrared optical parametric chirped-pulse amplifier as a driver inducing a laser filament in the air. The high-frequency wing of the supercontinuum spectrum is enhanced by odd-order optical harmonics of the mid-infrared driver. Optical harmonics up to the 15th order are observed in supercontinuum spectra as overlapping, yet well-resolved peaks broadened, as verified by numerical modeling, due to spatially nonuniform ionization-induced blue shift.

  17. Plasma devices for focusing extreme light pulses

    Fuchs, J.; Gonoskov, A.A.; Nakatsutsumi, M.; Nazarov, W.; Quere, F.; Sergeev, A.M.; Yan, X.Q.

    2014-01-01

    Since the inception of the laser, there has been a constant push toward increasing the laser peak intensity, as this has lead to opening the exploration of new territories, and the production of compact sources of particles and radiation with unprecedented characteristics. However, increasing the peak laser intensity is usually performed by enhancing the produced laser properties, either by lowering its duration or increasing its energy, which involves a great level of complexity for the laser chain, or comes at great cost. Focusing tightly is another possibility to increase the laser intensity, but this comes at the risk of damaging the optics with target debris, as it requires their placement in close proximity to the interaction region. Plasma devices are an attractive, compact alternative to tightly focus extreme light pulses and further increase the final laser intensity. (authors)

  18. Side effects from intense pulsed light

    Thaysen-Petersen, Daniel; Erlendsson, Andres M; Nash, J F

    2017-01-01

    BACKGROUND AND OBJECTIVE: Intense pulsed light (IPL) is a mainstream treatment for hair removal. Side effects after IPL are known, but risk factors remain to be investigated. The objective of this study was to assess the contribution of skin pigmentation, fluence level, and ultraviolet radiation...... stacking of 46 J/cm2. Areas were subsequently randomized to no UVR or single solar-simulated UVR exposure of 3 Standard Erythema Dose at 30 minutes or 24 hours after IPL. Each area had a corresponding control, resulting in 15 treatment sites. Follow-up visits were scheduled up to 4 weeks after IPL. Outcome...... measures were: (i) blinded clinical skin reactions; (ii) objectively measured erythema and pigmentation; (iii) pain measured by visual analog scale (VAS); (iv) histology (H&E, Fontana-Masson); and (v) mRNA-expression of p53. RESULTS: Fifteen subjects with FST II-IV completed the protocol. IPL induced...

  19. Tapered fluorotellurite microstructured fibers for broadband supercontinuum generation.

    Wang, Fang; Wang, Kangkang; Yao, Chuanfei; Jia, Zhixu; Wang, Shunbin; Wu, Changfeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2016-02-01

    Fluorotellurite microstructured fibers (MFs) based on TeO2-BaF2-Y2O3 glasses are fabricated by using a rod-in-tube method. Tapered fluorotellurite MFs with varied transition region lengths are prepared by employing an elongation machine. By using a tapered fluorotellurite MF with a transition region length of ∼3.3  cm as the nonlinear medium and a 1560 nm femtosecond fiber laser as the pump source, broadband supercontinuum generation covering from 470 to 2770 nm is obtained. The effects of the transition region length of the tapered fluorotellurite MF on supercontinuum generation are also investigated. Our results show that tapered fluorotellurite MFs are promising nonlinear media for generating broadband supercontinuum light expanding from visible to mid-infrared spectral region.

  20. Supercontinuum Generation in Uniform and Tapered Photonic Crystal Fibers

    Sørensen, Simon Toft; Møller, Uffe Visbech; Larsen, Casper

    Supercontinuum generation (SCG) is a striking phenomenon of extreme spectral broadening involving a wealth of beautiful nonlinear physics. The study of SCG and development of today’s commercial sources really took off with the invention of the photonic crystal fiber (PCF), in which light can be m...

  1. High power supercontinuum generation in tapered photonic crystal fibers

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    the concept of a group-acceleration mismatch, that for a given taper length, the downtapering section should be as long as possible to enhance the amount of blueshifted light. We also discuss the noise properties of supercontinuum in uniform and tapered fibers and we demonstrate that the amplitude noise...

  2. Slow light pulse propagation in dispersive media

    Nielsen, Torben Roland; Mørk, Jesper; Lavrinenko, Andrei

    2009-01-01

    broadening or break-up of the pulse may be observed. The transition from linear to nonlinear pulse propagation is quantified in terms of the spectral width of the pulse. To cite this article: T.R. Nielsen et al., C. R. Physique 10 (2009). (C) 2009 Academie des sciences. Published by Elsevier Masson SAS. All...... rights reserved....

  3. Unconventional Use of Intense Pulsed Light

    D. Piccolo

    2014-01-01

    Full Text Available According to the literature, intense pulsed light (IPL represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne, due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases, port-wine stain (PWS (10 cases, disseminated porokeratosis (10 cases, pilonidal cyst (3 cases, seborrheic keratosis (10 cases, hypertrophic scar (5 cases and keloid scar (5 cases, Becker’s nevus (2 cases, hidradenitis suppurativa (2 cases, and sarcoidosis (1 case. Our results should suggest that IPL could represent a valid therapeutic support and option by providing excellent outcomes and low side effects, even though it should be underlined that the use and the effectiveness of IPL are strongly related to the operator’s experience (acquired by attempting at least one specific course on the use of IPL and one-year experience in a specialized centre. Moreover, the daily use of these devices will surely increase clinical experience and provide new information, thus enhancing long-term results and improving IPL effectiveness.

  4. Unconventional use of intense pulsed light.

    Piccolo, D; Di Marcantonio, D; Crisman, G; Cannarozzo, G; Sannino, M; Chiricozzi, A; Chimenti, S

    2014-01-01

    According to the literature, intense pulsed light (IPL) represents a versatile tool in the treatment of some dermatological conditions (i.e., pigmentation disorders, hair removal, and acne), due to its wide range of wavelengths. The authors herein report on 58 unconventional but effective uses of IPL in several cutaneous diseases, such as rosacea (10 cases), port-wine stain (PWS) (10 cases), disseminated porokeratosis (10 cases), pilonidal cyst (3 cases), seborrheic keratosis (10 cases), hypertrophic scar (5 cases) and keloid scar (5 cases), Becker's nevus (2 cases), hidradenitis suppurativa (2 cases), and sarcoidosis (1 case). Our results should suggest that IPL could represent a valid therapeutic support and option by providing excellent outcomes and low side effects, even though it should be underlined that the use and the effectiveness of IPL are strongly related to the operator's experience (acquired by attempting at least one specific course on the use of IPL and one-year experience in a specialized centre). Moreover, the daily use of these devices will surely increase clinical experience and provide new information, thus enhancing long-term results and improving IPL effectiveness.

  5. Propagation of coherent light pulses with PHASE

    Bahrdt, J.; Flechsig, U.; Grizzoli, W.; Siewert, F.

    2014-09-01

    The current status of the software package PHASE for the propagation of coherent light pulses along a synchrotron radiation beamline is presented. PHASE is based on an asymptotic expansion of the Fresnel-Kirchhoff integral (stationary phase approximation) which is usually truncated at the 2nd order. The limits of this approximation as well as possible extensions to higher orders are discussed. The accuracy is benchmarked against a direct integration of the Fresnel-Kirchhoff integral. Long range slope errors of optical elements can be included by means of 8th order polynomials in the optical element coordinates w and l. Only recently, a method for the description of short range slope errors has been implemented. The accuracy of this method is evaluated and examples for realistic slope errors are given. PHASE can be run either from a built-in graphical user interface or from any script language. The latter method provides substantial flexibility. Optical elements including apertures can be combined. Complete wave packages can be propagated, as well. Fourier propagators are included in the package, thus, the user may choose between a variety of propagators. Several means to speed up the computation time were tested - among them are the parallelization in a multi core environment and the parallelization on a cluster.

  6. Finger blood content, light transmission, and pulse oximetry errors.

    Craft, T M; Lawson, R A; Young, J D

    1992-01-01

    The changes in light emitting diode current necessary to maintain a constant level of light incident upon a photodetector were measured in 20 volunteers at the two wavelengths employed by pulse oximeters. Three states of finger blood content were assessed; exsanguinated, hyperaemic, and normal. The changes in light emitting diode current with changes in finger blood content were small and are not thought to represent a significant source of error in saturation as measured by pulse oximetry.

  7. Manipulating the retrieved width of stored light pulses

    Chen Yongfan; Wang Shihhao; Wang Changyi; Yu, Ite A.

    2005-01-01

    We have systematically studied the method proposed by Patnaik et al. [Phys. Rev. A 69, 035803 (2004)] that manipulates the retrieval of stored light pulses. The measured probe pulse width of the retrieval is inversely proportional to the intensity of the reading field. We also show that the method does not introduce any phase shift or jump into the retrieved pulses. Our study demonstrates that the distortion at the output of the light storage can be corrected by manipulating the retrieval process and the phase information of the stored pulses can remain intact during the process

  8. Intense Pulsed Light (IPL) in Aesthetic Dermatology

    Pytras, B.; Drozdowski, P.; Zub, K.

    2011-08-01

    Introduction. Newer and newer technologies have been widely developed in recent years due to increasing need for aesthetic medicine procedures. Less invasive methods of skin imperfection and time-related lesions removal, IPL (Intense Pulse Light) being one of them, are gaining more and more interest. The shorter the "downtime" for the patient is and the more efficient the procedure results, the more popular the method becomes. Materials and methods_Authors analyse the results of treatment of a 571 patients-group (501 women and 70 men) aged 5-72 years in the period: October 2006-August 2010. IPL™ Quantum (Lumenis Ltd.) device with 560 nm. cut-off filter was used. Results. The results were regarded as: very good, good or satisfying (%):Skin photoaging symptomes 37/40/23, Isolated facial dyschromia 30/55/25, Isolated facial erythema 62/34/4, Lower limbs teleangiectasia 12/36/52, Keratosis solaris on hands 100/-/-. Approximately half of the patients developed transitory erythema and 25%- transitory, mild, circumscribed oedema. Following undesirable effects were noted: skin thermal irritation (6,1% of the patients) and skin hypopigmentation (2% of the patients). Discussion. Results and post-treatment management proposed by authors are similar to those reported by other authors. Conclusions. Treatment results of the 571-patients group prove IPL to be a very efficient method of non-ablative skin rejuvenation. It turned out effective also in lower limbs teleangiectasia treatment. It presents low risk of transitory and mild side effects. Futhermore, with short or no downtime, it is well-tolerated by the patients.

  9. Slow light and pulse propagation in semiconductor waveguides

    Hansen, Per Lunnemann

    This thesis concerns the propagation of optical pulses in semiconductor waveguide structures with particular focus on methods for achieving slow light or signal delays. Experimental pulse propagation measurements of pulses with a duration of 180 fs, transmitted through quantum well based waveguide...... structures, are presented. Simultaneous measurements of the pulse transmission and delay are measured as a function of input pulse energy for various applied electrical potentials. Electrically controlled pulse delay and advancement are demonstrated and compared with a theoretical model. The limits...... of the model as well as the underlying physical mechanisms are analysed and discussed. A method to achieve slow light by electromagnetically induced transparency (EIT) in an inhomogeneously broadened quantum dot medium is proposed. The basic principles of EIT are assessed and the main dissimilarities between...

  10. High average power supercontinuum sources

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  11. Flat Supercontinuum Generation within the Telecommunication Wave Bands in a Photonic Crystal Fiber with Central Holes

    Han Ying; Hou Lan-Tian; Zhou Gui-Yao; Xia Chang-Ming; Wang Wei; Wang Chao; Hou Zhi-Yun; Yuan Jin-Hui

    2012-01-01

    Flat supercontinuum in the telecommunication wave bands of E+S+C is generated by coupling a train of femtosecond pulses generated by a mode-locked Ti:sapphire laser into the fundamental mode of a photonic crystal fiber with central holes fabricated in our lab. The pulse experiences the anomalous dispersion regime, and the soliton dynamic effect plays an important role in supercontinuum generation. The output spectrum in the wavelength range of 1360–1565 nm does not include significant ripples due to higher pump peak power, and the normalized intensity shows less fluctuation. (fundamental areas of phenomenology(including applications))

  12. Observation of an octave-spanning supercontinuum in the mid-infrared using ultrafast cascaded nonlinearities

    Bache, Morten; Liu, Xing; Zhou, Binbin

    2014-01-01

    An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation. ©OSA 2014.......An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation. ©OSA 2014....

  13. Octave-Spanning Mid-IR Supercontinuum Generation with Ultrafast Cascaded Nonlinearities

    Zhou, Binbin; Guo, Hairun; Liu, Xing

    2014-01-01

    An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation.......An octave-spanning mid-IR supercontinuum is observed experimentally using ultrafast cascaded nonlinearities in an LiInS2 quadratic nonlinear crystal pumped with 70 fs energetic mid-IR pulses and cut for strongly phase-mismatched second-harmonic generation....

  14. Carcinogenesis related to intense pulsed light and UV exposure

    Hedelund, L; Lerche, C; Wulf, H C

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...

  15. Laser and intense pulsed light hair removal technologies

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...

  16. Nanoengineering of photonic crystal fibers for supercontinuum spectral shaping

    Frosz, Michael Henoch; Sørensen, Thorkild; Bang, Ole

    2006-01-01

    ) on the location of the Stokes and anti-Stokes bands and gain bandwidth. An analysis shows that the Raman effect is responsible for reducing the four-wave mixing gain and a slight reduction in the corresponding frequency shift from the pump, when the frequency shift is much larger than the Raman shift. Using......Supercontinuum generation using picosecond pulses pumped into cobweb photonic crystal fibers is investigated. Dispersion profiles are calculated for several fiber designs and used to analytically investigate the influence of the fiber structural parameters (core size and wall thickness...... numerical simulations we find that four-wave mixing is the dominant physical mechanism for the pumping scheme considered, and that there is a trade-off between the spectral width and the spectral flatness of the supercontinuum. The balance of this trade-off is determined by nanometer-scale design...

  17. Light-pulse atom interferometric device

    Biedermann, Grant; McGuinness, Hayden James Evans; Rakholia, Akash; Jau, Yuan-Yu; Schwindt, Peter; Wheeler, David R.

    2016-03-22

    An atomic interferometric device useful, e.g., for measuring acceleration or rotation is provided. The device comprises at least one vapor cell containing a Raman-active chemical species, an optical system, and at least one detector. The optical system is conformed to implement a Raman pulse interferometer in which Raman transitions are stimulated in a warm vapor of the Raman-active chemical species. The detector is conformed to detect changes in the populations of different internal states of atoms that have been irradiated by the optical system.

  18. Amplitude and phase control of attosecond light pulses

    Lopez-Martens, Rodrigo; Varju, Katalin; Johnsson, Per; Mauritsson, Johan; Persson, Anders; Svanberg, Sune; Wahlstroem, Claes-Goeran; L'Huillier, Anne; Mairesse, Yann; Salieres, Pascal; Gaarde, Mette B.; Schafer, Kenneth J.

    2005-01-01

    We report the generation, compression, and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. Broadband harmonic radiation is first generated by focusing an infrared laser with a carefully chosen intensity into a gas cell containing argon atoms. The emitted light then goes through a hard aperture and a thin aluminum filter that selects a 30-eV bandwidth around a 30-eV photon energy and synchronizes all of the components, thereby enabling the formation of a train of almost Fourier-transform-limited single-cycle 170 attosecond pulses. Our experiment demonstrates a practical method for synthesizing and controlling attosecond waveforms

  19. Generation of an incident focused light pulse in FDTD.

    Capoğlu, Ilker R; Taflove, Allen; Backman, Vadim

    2008-11-10

    A straightforward procedure is described for accurately creating an incident focused light pulse in the 3-D finite-difference time-domain (FDTD) electromagnetic simulation of the image space of an aplanatic converging lens. In this procedure, the focused light pulse is approximated by a finite sum of plane waves, and each plane wave is introduced into the FDTD simulation grid using the total-field/scattered-field (TF/SF) approach. The accuracy of our results is demonstrated by comparison with exact theoretical formulas.

  20. SiPM response to long and intense light pulses

    Vinogradov, S., E-mail: Sergey.Vinogradov@liverpool.ac.uk [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD (United Kingdom); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 119991 Leninskiy prospekt 53, Moscow (Russian Federation); Arodzero, A. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); RadiaBeam Technologies Inc., 1717 Stewart St., Santa Monica, CA 90404 (United States); Lanza, R.C. [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States); Welsch, C.P. [University of Liverpool and Cockcroft Institute, Sci-Tech Daresbury, Keckwick Lane, Warrington WA4 4AD (United Kingdom)

    2015-07-01

    Recently Silicon Photomultipliers (SiPMs) have become well recognized as the detector of choice for various applications which demand good photon number resolution and time resolution of short weak light pulses in the nanosecond time scale. In the case of longer and more intensive light pulses, SiPM performance gradually degrades due to dark noise, afterpulsing, and non-instant cell recovering. Nevertheless, SiPM benefits are expected to overbalance their drawbacks in applications such as X-ray cargo inspection using Scintillation-Cherenkov detectors and accelerator beam loss monitoring with Cherenkov fibres, where light pulses of a microsecond time scale have to be detected with good amplitude and timing resolution in a wide dynamic range of 10{sup 5}–10{sup 6}. This report is focused on transient characteristics of a SiPM response on a long rectangular light pulse with special attention to moderate and high light intensities above the linear dynamic range. An analytical model of the transient response and an initial consideration of experimental results in comparison with the model are presented.

  1. The pulsed light inactivation of veterinary relevant microbial biofilms ...

    Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-1000 oo/cysts) in as little as 72 hours. Pulsed light successfully inactivated all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase in inactivation for every increase in UV dose.

  2. Flat super-continuum generation based on normal dispersion nonlinear photonic crystal fibre

    Chow, K.K.; Takushima, Y.; Lin, C.

    2006-01-01

    Flat super-continuum generation spanning over the whole telecommunication band using a passively modelocked fibre laser source at 1550 nm together with a dispersion-flattened nonlinear photoinc crystal fibre is demonstrated. Since the pulses propagate in the normal dispersion regime of the fibre...

  3. Current indications and new applications of intense pulsed light.

    González-Rodríguez, A J; Lorente-Gual, R

    2015-06-01

    Intense pulsed light (IPL) systems have evolved since they were introduced into medical practice 20 years ago. Pulsed light is noncoherent, noncollimated, polychromatic light energy emitted at different wavelengths that target specific chromophores. This selective targeting capability makes IPL a versatile therapy with many applications, from the treatment of pigmented or vascular lesions to hair removal and skin rejuvenation. Its large spot size ensures a high skin coverage rate. The nonablative nature of IPL makes it an increasingly attractive alternative for patients unwilling to accept the adverse effects associated with other procedures, which additionally require prolonged absence from work and social activities. In many cases, IPL is similar to laser therapy in effectiveness, and its versatility, convenience, and safety will lead to an expanded range of applications and possibilities in coming years. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  4. Focusing of atoms with spatially localized light pulses

    Helseth, Lars Egil

    2002-01-01

    We theoretically study the focusing of atoms using strongly localized light pulses. It is shown that when inhomogenously polarized light is focused at high angular apertures, one may obtain useful potentials for atom focusing. Here we analyze the case of pulsed light potentials for red- and blue-detuned focusings of atoms. In particular, we show that the atomic beam aperture must be stopped considerably down in order to reduce the sidelobes of the atomic density, which is similar to the situation often encountered in conventional optics. It is suggested that an annular aperture in front of the atomic beam could be useful for increasing the resolution, at the cost of a lower atomic density

  5. Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network.

    Zhu, Huatao; Wang, Rong; Pu, Tao; Fang, Tao; Xiang, Peng; Zheng, Jilin; Chen, Dalei

    2015-06-01

    In this Letter, the optical stealth transmission carried by super-continuum spectrum optical pulses generated in highly nonlinear fiber is proposed and experimentally demonstrated. In the proposed transmission scheme, super-continuum signals are reshaped in the spectral domain through a wavelength-selective switch and are temporally spread by a chromatic dispersion device to achieve the same noise-like characteristic as the noise in optical networks, so that in both the time domain and the spectral domain, the stealth signals are hidden in public channel. Our experimental results show that compared with existing schemes where stealth channels are carried by amplified spontaneous emission noise, super-continuum signal can increase the transmission performance and robustness.

  6. The efficiency of photovoltaic cells exposed to pulsed laser light

    Lowe, R. A.; Landis, G. A.; Jenkins, P.

    1993-01-01

    Future space missions may use laser power beaming systems with a free electron laser (FEL) to transmit light to a photovoltaic array receiver. To investigate the efficiency of solar cells with pulsed laser light, several types of GaAs, Si, CuInSe2, and GaSb cells were tested with the simulated pulse format of the induction and radio frequency (RF) FEL. The induction pulse format was simulated with an 800-watt average power copper vapor laser and the RF format with a frequency-doubled mode-locked Nd:YAG laser. Averaged current vs bias voltage measurements for each cell were taken at various optical power levels and the efficiency measured at the maximum power point. Experimental results show that the conversion efficiency for the cells tested is highly dependent on cell minority carrier lifetime, the width and frequency of the pulses, load impedance, and the average incident power. Three main effects were found to decrease the efficiency of solar cells exposed to simulated FEL illumination: cell series resistance, LC 'ringing', and output inductance. Improvements in efficiency were achieved by modifying the frequency response of the cell to match the spectral energy content of the laser pulse with external passive components.

  7. Electrical pulse burnout testing of light-emitting diodes

    Kalma, A.H.; Fischer, C.J.

    1975-01-01

    Electrical pulse burnout thresholds were measured in GaAs, GaAsP, and GaP light-emitting diodes (LEDs) by studying the degradation in light output and the change in I-V characteristics both during the pulse and in the steady state. Pulse widths ranging from a few hundred nsec to 100 μsec were used. Light output degradation was the most sensitive parameter and was used to determine the thresholds. Just above threshold, damage is caused by an increase in generation-recombination current in the space-charge retion. This current is non-radiative and the light output drops, but the damage is not catastrophic. At higher power, the junction burns through and shunt resistance paths are formed which more drastically degrade the light output. The experimental data match reasonably with the theoretical Wunsch--Bell/Tasca model if a burnout area of 1 / 10 the junction area is assumed. Both the adiabatic term (At -1 ) and the heat flow term (Bt - /sup 1 / 2 /) contribute in all devices, and the equilibrium term (C) contributes in some GaAsP devices. The scatter in the data for GaAs devices is greater than that for GaAsP devices, apparently because the former types have a significant fraction of mavericks with lower-than-normal thresholds. The use of LEDs to examine electrical pulse burnout is advantageous because the light output is quite sensitive to damage and the combined measurement of optical and electrical properties provides additional information about the mechanisms involved

  8. PLZT light transmittance memory driven with an asymmetric voltage pulse

    Inoue, Kazuhiko; Morita, Takeshi

    2010-01-01

    PLZT is a ferroelectric electro-optic material, which has been operated with a constant voltage supply to keep a certain optical property. In this study, we propose an optical transmittance memory effect by controlling the domain conditions. The keypoint is to use an asymmetric voltage pulse. In the positive direction, a sufficiently-large voltage is applied to align the polarization directions. After this operation, a relatively small light transmittance is memorized even after removing the electric field. On the other hand, in the negative direction, the amplitude of the voltage is adjusted to the coercive electric field. In this condition, the domain structure is almost the same as the depolarization state. With this voltage supply, the maximum light transmittance can be kept after removing the electric field. Using these voltage operations, the PLZT can obtain two light transmittance states depending on the domain structure. This memory effect should be useful for innovative optical scanners or shutters in the future.

  9. Carcinogenesis related to intense pulsed light and UV exposure

    Hedelund, L; Lerche, C; Wulf, H C

    2006-01-01

    This study examines whether intense pulsed light (IPL) treatment has a carcinogenic potential itself or may influence ultraviolet (UV)-induced carcinogenesis. Secondly, it evaluates whether UV exposure may influence IPL-induced side effects. Hairless, lightly pigmented mice (n=144) received three...... observation period. Side effects were evaluated clinically. No tumors appeared in untreated control mice or in just IPL-treated mice. Skin tumors developed in UV-exposed mice independently of IPL treatments. The time it took for 50% of the mice to first develop skin tumor ranged from 47 to 49 weeks...... in preoperative UV-exposed mice (p=0.94) and from 22 to 23 weeks in pre- and postoperative UV-exposed mice (p=0.11). IPL rejuvenation of lightly pigmented skin did not induce pigmentary changes (p=1.00). IPL rejuvenation of UV-pigmented skin resulted in an immediate increased skin pigmentation and a subsequent...

  10. Odd harmonics-enhanced supercontinuum in bulk solid-state dielectric medium.

    Garejev, N; Jukna, V; Tamošauskas, G; Veličkė, M; Šuminas, R; Couairon, A; Dubietis, A

    2016-07-25

    We report on generation of ultrabroadband, more than 4 octave spanning supercontinuum in thin CaF2 crystal, as pumped by intense mid-infrared laser pulses with central wavelength of 2.4 μm. The supercontinuum spectrum covers wavelength range from the ultraviolet to the mid-infrared and its short wavelength side is strongly enhanced by cascaded generation of third, fifth and seventh harmonics. Our results capture the transition from Kerr-dominated to plasma-dominated filamentation regime and uncover that in the latter the spectral superbroadening originates from dramatic plasma-induced compression of the driving pulse, which in turn induces broadening of the harmonics spectra due to cross-phase modulation effects. The experimental measurements are backed up by the numerical simulations based on a nonparaxial unidirectional propagation equation for the electric field of the pulse, which accounts for the cubic nonlinearity-induced effects, and which reproduce the experimental data in great detail.

  11. Fast light pulse measurements and temporal fluctuations in photomultipliers

    Miehe, J.A.; Sipp, B.

    1975-01-01

    This paper reviews the results on time fluctuations in high gain first dynode photomultipliers used in single photon timing experiments; the theoretical analysis of the measurement of the shape of light pulses is recalled and the previously obtained results concerning time dispersion in the photocathode, first dynode space are discussed. In addition, the influence of the variations of the electron transit time in the multiplier on the time resolution curves of the detector is examined: the curves obtained by leading-edge triggering of the anodic pulse show a strong dependence on the threshold level of the discriminator. A single-photoelectron timing resolution of 270ps is measured using a low leading edge discrimination [fr

  12. Imaging Electron Dynamics with Ultrashort Light Pulses: A Theory Perspective

    Daria Popova-Gorelova

    2018-02-01

    Full Text Available A wide range of ultrafast phenomena in various atomic, molecular and condense matter systems is governed by electron dynamics. Therefore, the ability to image electronic motion in real space and real time would provide a deeper understanding of such processes and guide developments of tools to control them. Ultrashort light pulses, which can provide unprecedented time resolution approaching subfemtosecond time scale, are perspective to achieve real-time imaging of electron dynamics. This task is challenging not only from an experimental view, but also from a theory perspective, since standard theories describing light-matter interaction in a stationary regime can provide erroneous results in an ultrafast case as demonstrated by several theoretical studies. We review the theoretical framework based on quantum electrodynamics, which has been shown to be necessary for an accurate description of time-resolved imaging of electron dynamics with ultrashort light pulses. We compare the results of theoretical studies of time-resolved nonresonant and resonant X-ray scattering, and time- and angle-resolved photoelectron spectroscopy and show that the corresponding time-resolved signals encode analogous information about electron dynamics. Thereby, the information about an electronic system provided by these time-resolved techniques is different from the information provided by their time-independent analogues.

  13. Laser and intense pulsed light hair removal technologies

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    devices have been sold directly to consumers for treatment in the home. In this review, we outline the principles underlying laser and IPL technologies and undertake an evidence-based assessment of the short- and long-term efficacy of the different devices available to the practising dermatologist...... pulsed light (IPL, 590-1200 nm), are available and used widely for such procedures in dermatological/clinical settings under proper supervision. Patient selection and appropriate fluence settings are managed by professionals to maximize efficacy while minimizing adverse events. In the past 5 years, LHR...

  14. Dissipative light-bullets in the filamentation of femtosecond pulses

    Porras, M.A.; Gonzalo, I.

    2010-01-01

    Complete text of publication follows. With the growing interest in filamentation in solid and liquid media, the regime of filamentation with anomalous dispersion is receiving more attention. In this work we show that basics aspects of the filament dynamics in this regime can be explained in terms of a novel type of light-bullet, which is not of solitary or of conical types, but a wave-packet that maximizes the energy dissipation into the medium while remaining localized and stationary in propagation. We first show that a nonlinear optical medium at a given carrier wave length at which dispersion is anomalous, supports 'dissipative' light-bullets, i.e., waves localized in space and time and that propagate without change as a result of a balance between nonlinear compression and nonlinear absorption. Among them, the particular dissipative light-bullet with the highest possible dissipation is unique in a given medium, in the sense that all its properties are fixed by the properties of the medium at the carrier wave length. In this light-bullet, self-focusing continuously transports energy towards the pulse center by an amount that just compensates for the nonlinear losses. Figure 1(a) shows the radial profiles of the dissipative light-bullets that maximizes energy dissipation for several orders of multi-photon absorption responsible for the nonlinear losses. We have also found that this dissipative light-bullet tends to be spontaneously formed in the filamentary dynamics in media with anomalous dispersion. Figure 1(b) shows the peak intensity, the total energy and losses of a pulse that undergoes self-focusing and filamentation in an ideal medium with only Kerr nonlinearity and multi-photon absorption. This simple model reproduces the particularly long filament 'segments' and the 'burst' observed in experiments and in more accurate simulations. The peak intensity in the filament is identical to that of the dissipative light-bullet with maximum dissipation, and the

  15. Light Dependent Resistance as a Sensor in Spectroscopy Setups Using Pulsed Light and Compared with Electret Microphones

    Daniel Acosta-Avalos

    2006-05-01

    Full Text Available Light-dependent resistances (LDR are cheap light sensors. A less known lightdetector is the electret microphone, whose electret membrane functions as a perfectabsorber, but only detects pulsed light. The aim of this study was to analyze the use of aLDR and an electret microphone as a light sensor in an optical spectroscopy system usingpulsed light. A photoacoustic spectroscopy setup was used, substituting the photoacousticchamber by the light sensor proposed. The absorption spectra of two different liquids wereanalyzed. The results obtained allow the recommendation of the LDR as the first choice inthe construction of cheap homemade pulsed light spectroscopy systems.

  16. Pulse radiolysis based on a femtosecond electron beam and a femtosecond laser light with double-pulse injection technique

    Yang Jinfeng; Kondoh, Takafumi; Kozawa, Takahiro; Yoshida, Youichi; Tagawa, Seiichi

    2006-01-01

    A new pulse radiolysis system based on a femtosecond electron beam and a femtosecond laser light with oblique double-pulse injection was developed for studying ultrafast chemical kinetics and primary processes of radiation chemistry. The time resolution of 5.2 ps was obtained by measuring transient absorption kinetics of hydrated electrons in water. The optical density of hydrated electrons was measured as a function of the electron charge. The data indicate that the double-laser-pulse injection technique was a powerful tool for observing the transient absorptions with a good signal to noise ratio in pulse radiolysis

  17. Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset.

    Figueiro, Mariana G; Plitnick, Barbara; Rea, Mark S

    2014-01-01

    Circadian rhythm disturbances parallel the increased prevalence of sleep disorders in older adults. Light therapies that specifically target regulation of the circadian system in principle could be used to treat sleep disorders in this population. Current recommendations for light treatment require the patients to sit in front of a bright light box for at least 1 hour daily, perhaps limiting their willingness to comply. Light applied through closed eyelids during sleep might not only be efficacious for changing circadian phase but also lead to better compliance because patients would receive light treatment while sleeping. Reported here are the results of two studies investigating the impact of a train of 480 nm (blue) light pulses presented to the retina through closed eyelids on melatonin suppression (laboratory study) and on delaying circadian phase (field study). Both studies employed a sleep mask that provided narrowband blue light pulses of 2-second duration every 30 seconds from arrays of light-emitting diodes. The results of the laboratory study demonstrated that the blue light pulses significantly suppressed melatonin by an amount similar to that previously shown in the same protocol at half the frequency (ie, one 2-second pulse every minute for 1 hour). The results of the field study demonstrated that blue light pulses given early in the sleep episode significantly delayed circadian phase in older adults; these results are the first to demonstrate the efficacy and practicality of light treatment by a sleep mask aimed at adjusting circadian phase in a home setting.

  18. Pulsed Light Accelerated Crosslinking versus Continuous Light Accelerated Crosslinking: One-Year Results

    Cosimo Mazzotta

    2014-01-01

    Full Text Available Purpose. To compare functional results in two cohorts of patients undergoing epithelium-off pulsed (pl-ACXL and continuous light accelerated corneal collagen crosslinking (cl-ACXL with dextran-free riboflavin solution and high-fluence ultraviolet A irradiation. Design. It is a prospective, comparative, and interventional clinical study. Methods. 20 patients affected by progressive keratoconus were enrolled in the study. 10 eyes of 10 patients underwent an epithelium-off pl-ACXL by the KXL UV-A source (Avedro Inc., Waltham, MS, USA with 8 minutes (1 sec. on/1 sec. off of UV-A exposure at 30 mW/cm2 and energy dose of 7.2 J/cm2; 10 eyes of 10 patients underwent an epithelium-off cl-ACXL at 30 mW/cm2 for 4 minutes. Riboflavin 0.1% dextran-free solution was used for a 10-minutes corneal soaking. Patients underwent clinical examination of uncorrected distance visual acuity and corrected distance visual acuity (UDVA and CDVA, corneal topography and aberrometry (CSO EyeTop, Florence, Italy, corneal OCT optical pachymetry (Cirrus OCT, Zeiss Meditec, Jena, Germany, endothelial cells count (I-Conan Non Co Robot, and in vivo scanning laser confocal microscopy (Heidelberg, Germany at 1, 3, 6, and 12 months of follow-up. Results. Functional results one year after cl-ACXL and pl-ACXL demonstrated keratoconus stability in both groups. Functional outcomes were found to be better in epithelium-off pulsed light accelerated treatment together with showing a deeper stromal penetration. No endothelial damage was recorded during the follow-up in both groups. Conclusions. The study confirmed that oxygen represents the main driver of collagen crosslinking reaction. Pulsed light treatment optimized intraoperative oxygen availability improving postoperative functional outcomes compared with continuous light treatment.

  19. Comparative Study Between Intense Pulsed Light IPLAND Pulsed Dye Laser In The Treatment Of Striae Distensae

    El-Khalafawy, Gh.M.K.A.

    2013-01-01

    Pulsed dye laser (PDL) and Intense Pulsed Light (IPL) have been used to treat Striae Distensae (SD). Thirty patients with age ranging from 14 - 42 years were included in this study. Twenty patients were treated on one side of their bodies with PDL and on the other side with IPL while seven patients were treated on both sides by IPL and three patients were treated on both sides by PDL for five sessions with four weeks interval between sessions. Skin biopsies were stained with H and E, Masson Trichrome, Orcein, Alcian blue and anti-collagen I Α1. After both PDL and IPL treatments striae width was decreased and the texture was improved in a highly significant manners where P value was 0.001. Collagen expression was increased in a highly significant manner and P values were <0.001 and 0.004 after PDL and IPL treatments respectively. However, PDL induced expression of collagen I in a highly significant manner compared to the treatment with IPL where P values were <0.001 and 0.193 respectively. Striae rubra gave a superior response with either PDL or IPL compared to striae alba which was evaluated clinically by the width, color and texture, although the histological changes could not verify this consequence. Both PDL and IPL can enhance the clinical picture of striae through collagen stimulation therapeutic modalities

  20. Construction and temporal behaviour study of multi RLC intense light pulses for dermatological applications.

    Hamoudi, Walid K; Ismail, Raid A; Shakir, Hussein A

    2017-10-01

    Driving a flash lamp in an intense pulsed light system requires a high-voltage DC power supply, capacitive energy storage and a flash lamp triggering unit. Single, double, triple and quadruple-mesh discharge and triggering circuits were constructed to provide intense light pulses of variable energy and time durations. The system was treated as [Formula: see text] circuit in some cases and [Formula: see text] circuit in others with a light pulse profile following the temporal behaviour of the exciting current pulse. Distributing the energy delivered to one lamp onto a number of LC meshes permitted longer current pulses, and consequently increased the light pulse length. Positive results were obtained when using the system to treat skin wrinkles.

  1. Effects of dispersion and longitudinal chromatic aberration on the focusing of isodiffracting pulsed Gaussian light beam

    Deng Dongmei; Guo Hong; Han Dingan; Liu Mingwei; Li Changfu

    2005-01-01

    Taking into account the dispersion and the longitudinal chromatic aberration (LCA) of the material of the lens, focusing of isodiffracting pulsed Gaussian light beam through single lens is analyzed. The smaller the cycle number of the isodiffracting pulsed Gaussian light beam is, the higher the order of the material dispersion should be considered

  2. Gain-switched CW fiber laser for improved supercontinuum generation in a PCF

    Larsen, Casper; Noordegraaf, Danny; Skovgaard, P.M.W.

    2011-01-01

    We demonstrate supercontinuum generation in a PCF pumped by a gain-switched high-power continuous wave (CW) fiber laser. The pulses generated by gain-switching have a peak power of more than 700 W, a duration around 200 ns, and a repetition rate of 200 kHz giving a high average power of almost 30 W....... By coupling such a pulse train into a commercial nonlinear photonic crystal fiber, a supercontinuum is generated with a spectrum spanning from 500 to 2250 nm, a total output power of 12 W, and an infrared flatness of 6 dB over a bandwidth of more than 1000 nm with a power density above 5 dBm/nm (3 m......W/nm). This is considerably broader than when operating the same system under CW conditions. The presented approach is attractive due to the high power, power scalability, and reduced system complexity compared to picosecond-pumped supercontinuum sources. © 2011 Optical Society of America....

  3. Record power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber

    Jain, Deepak; Sidharthan, R.; Moselund, Peter M.

    2016-01-01

    the potential of germania based photonic crystal fiber or a step-index fiber supercontinuum source for high power ultra-broad band emission being by pumped a 1060 nm or a 1550 nm laser source. To the best of our knowledge, this is the record power, ultra-broadband, and all-fiberized supercontinuum light source...... based on silica and germania fiber ever demonstrated to the date. (C) 2016 Optical Society of America......We demonstrate highly germania doped fibers for mid-infrared supercontinuum generation. Experiments ensure a highest output power of 1.44 W for a broadest spectrum from 700 nm to 3200 nm and 6.4 W for 800 nm to 2700 nm from these fibers, while being pumped by a broadband Erbium-Ytterbium doped...

  4. Moving picture recording and observation of femtosecond light pulse propagation using a rewritable holographic material

    Yamamoto, Seiji; Takimoto, Tetsuya; Tosa, Kazuya; Kakue, Takashi [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Awatsuji, Yasuhiro, E-mail: awatsuji@kit.ac.jp [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Nishio, Kenzo [Advanced Technology Center, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Ura, Shogo [Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo, Kyoto 606-8585 (Japan); Kubota, Toshihiro [Kubota Holography Laboratory, Corporation, Nishihata 34-1-609, Ogura, Uji 611-0042 (Japan)

    2011-08-01

    We succeeded in recording and observing femtosecond light pulse propagation as a form of moving picture by means of light-in-flight recording by holography using a rewritable holographic material, for the first time. We used a femtosecond pulsed laser whose center wavelength and duration were 800 nm and {approx}120 fs, respectively. A photo-conductor plastic hologram was used as a rewritable holographic material. The femtosecond light pulse was collimated and obliquely incident to the diffuser plate. The behavior of the cross-section between the collimated femtosecond light pulse and the diffuser plate was recorded on the photo-conductor plastic hologram. We experimentally obtained a spatially and temporally continuous moving picture of the femtosecond light pulse propagation for 58.3 ps. Meanwhile, we also investigated the rewritable performance of the photo-conductor plastic hologram. As a result, we confirmed that ten-time rewriting was possible for a photo-conductor plastic hologram.

  5. Pulsing blue light through closed eyelids: effects on acute melatonin suppression and phase shifting of dim light melatonin onset

    Figueiro MG

    2014-12-01

    Full Text Available Mariana G Figueiro, Barbara Plitnick, Mark S Rea Lighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USA Abstract: Circadian rhythm disturbances parallel the increased prevalence of sleep disorders in older adults. Light therapies that specifically target regulation of the circadian system in principle could be used to treat sleep disorders in this population. Current recommendations for light treatment require the patients to sit in front of a bright light box for at least 1 hour daily, perhaps limiting their willingness to comply. Light applied through closed eyelids during sleep might not only be efficacious for changing circadian phase but also lead to better compliance because patients would receive light treatment while sleeping. Reported here are the results of two studies investigating the impact of a train of 480 nm (blue light pulses presented to the retina through closed eyelids on melatonin suppression (laboratory study and on delaying circadian phase (field study. Both studies employed a sleep mask that provided narrowband blue light pulses of 2-second duration every 30 seconds from arrays of light-emitting diodes. The results of the laboratory study demonstrated that the blue light pulses significantly suppressed melatonin by an amount similar to that previously shown in the same protocol at half the frequency (ie, one 2-second pulse every minute for 1 hour. The results of the field study demonstrated that blue light pulses given early in the sleep episode significantly delayed circadian phase in older adults; these results are the first to demonstrate the efficacy and practicality of light treatment by a sleep mask aimed at adjusting circadian phase in a home setting. Keywords: circadian phase, dim light melatonin onset, light through closed eyelids, blue light, sleep

  6. Pump-beam-instability limits to Raman-gain-doublet ''fast-light'' pulse propagation

    Stenner, Michael D.; Gauthier, Daniel J.

    2003-01-01

    We investigate the behavior of a system for generating ''fast-light'' pulses in which a bichromatic Raman pumping beam is used to generate optical gain at two frequencies and a region of anomalous dispersion between them. It is expected that increasing the gain will increase the pulse advancement. However, as the gain increases, the pumping field becomes increasingly distorted, effectively limiting the pulse advancement. We observe as much as 12% of the input pump power converted to orthogonal polarization, broadening of the initially bichromatic pump field (25 MHz initial frequency separation) to more than 2.5 GHz, and a temporal collapse of the pump beam into an erratic train of sub-500-ps pulses. The instability is attributed to the combined effects of the cross modulation instability and stimulated Raman scattering. Extreme distortion of an injected pulse that should (absent the instability) experience an advancement of 21% of its width is observed. We conclude that the fast-light pulse advancement is limited to just a few percent of the pulse width using this pulse advancement technique. The limitation imposed by the instability is important because careful study of the information velocity in fast-light pulses requires that pulse advancement be large enough to distinguish the velocities of different pulse features. Possible methods for achieving pulse advancement by avoiding the distortion caused by the instability are discussed

  7. Generating shaped femtosecond pulses in the far infrared using a spatial light modulator and difference frequency generation

    Botha, N

    2010-08-31

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  8. Effect of the light spectrum of various substrates for inkjet printed conductive structures sintered with intense pulsed light

    Weise, Dana; Mitra, Kalyan Yoti; Ueberfuhr, Peter; Baumann, Reinhard R.

    2015-01-01

    In this work, the novel method of intense pulsed light (IPL) sintering of a nanoparticle silver ink is presented. Various patterns are printed with the Inkjet technology on two flexible foils with different light spectra. One is a clear Polyethylenterephthalat [PET] foil and the second is a light brownish Polyimide [PI] foil. The samples are flashed with different parameters regarding to pulse intensity and pulse length. Microscopic images are indicating the impact of the flashing parameters and the different light spectra of the substrates on the sintered structures. Sheet and line resistance are measured and the conductivity is calculated. A high influence of the property of the substrate with respect to light absorption and thermal conductivity on the functionality of printed conductive structures could be presented. With this new method of IPL sintering, highly conductive inkjet printed silver patterns could be manufactured within milliseconds on flexible polymeric foils without damaging the substrate

  9. Wide-band fanned-out supercontinuum source covering O-, E-, S-, C-, L- and U-bands

    Ahmad, H.; Latif, A. A.; Awang, N. A.; Zulkifli, M. Z.; Thambiratnam, K.; Ghani, Z. A.; Harun, S. W.

    2012-10-01

    A wide-band supercontinuum source generated by mode-locked pulses injected into a Highly Non-Linear Fiber (HNLF) is proposed and demonstrated. A 49 cm long Bismuth-Erbium Doped Fiber (Bi-EDF) pumped by two 1480 nm laser diodes acts as the active gain medium for a ring fiber laser, from which mode-locked pulses are obtained using the Non-Polarization Rotation (NPR) technique. The mode-locked pulses are then injected into a 100 m long HLNF with a dispersion of 0.15 ps/nm km at 1550 nm to generate a supercontinuum spectrum spanning from 1340 nm to more than 1680 nm with a pulse width of 0.08 ps and an average power of -17 dBm. The supercontinuum spectrum is sliced using a 24 channel Arrayed Waveguide Grating (AWG) with a channel spacing of 100 GHz to obtain a fanned-out laser output covering the O-, E-, S-, C-, L- and U-bands. The lasing wavelengths obtained have an average pulse width of 9 ps with only minor fluctuations and a mode-locked repetition rate of 40 MHz, and is sufficiently stable to be used in a variety of sensing and communication applications, most notably as cost-effective sources for Fiber-to-the-Home (FTTH) networks.

  10. Light storage in a doped solid enhanced by feedback-controlled pulse shaping

    Beil, F.; Buschbeck, M.; Heinze, G.; Halfmann, T.

    2010-01-01

    We report on experiments dealing with feedback-controlled pulse shaping to optimize the efficiency of light storage by electromagnetically induced transparency (EIT) in a Pr 3+ :Y 2 SiO 5 crystal. A learning loop in combination with an evolutionary algorithm permits the automatic determination of optimal temporal profiles of intensities and frequencies in the driving laser pulses (i.e., the probe and coupling pulses). As a main advantage, the technique finds optimal solutions even in the complicated multilevel excitation scheme of a doped solid, involving large inhomogeneous broadening. The learning loop experimentally determines optimal temporal intensity profiles of the coupling pulses for a given probe pulse. The optimized intensity pulse shapes enhance the light-storage efficiency in the doped solid by a factor of 2. The learning loop also determines a fast and efficient preparation pulse sequence, which serves to optically prepare the crystal prior to light-storage experiments. The optimized preparation sequence is 5 times faster than standard preparation sequences. Moreover, the optimized preparation sequence enhances the optical depth in the medium by a factor of 5. As a consequence, the efficiency of light storage also increases by another factor of 3. Our experimental data clearly demonstrate the considerable potential of feedback-controlled pulse shaping, applied to EIT-driven light storage in solid media.

  11. Invited Article: Multiple-octave spanning high-energy mid-IR supercontinuum generation in bulk quadratic nonlinear crystals

    Binbin Zhou

    2016-08-01

    Full Text Available Bright and broadband coherent mid-IR radiation is important for exciting and probing molecular vibrations. Using cascaded nonlinearities in conventional quadratic nonlinear crystals like lithium niobate, self-defocusing near-IR solitons have been demonstrated that led to very broadband supercontinuum generation in the visible, near-IR, and short-wavelength mid-IR. Here we conduct an experiment where a mid-IR crystal is pumped in the mid-IR. The crystal is cut for noncritical interaction, so the three-wave mixing of a single mid-IR femtosecond pump source leads to highly phase-mismatched second-harmonic generation. This self-acting cascaded process leads to the formation of a self-defocusing soliton at the mid-IR pump wavelength and after the self-compression point multiple octave-spanning supercontinua are observed. The results were recorded in a commercially available crystal LiInS2 pumped in the 3-4 μm range with 85 fs 50 μJ pulse energy, with the broadest supercontinuum covering 1.6-7.0 μm. We measured up 30 μJ energy in the supercontinuum, and the energy promises to scale favorably with an increased pump energy. Other mid-IR crystals can readily be used as well to cover other pump wavelengths and target other supercontinuum wavelength ranges.

  12. Power dependence of supercontinuum noise in uniform and tapered PCFs

    Møller, Uffe; Sørensen, Simon Toft; Jakobsen, C.

    2012-01-01

    We experimentally investigate the noise properties of picosecond supercontinuum spectra generated at different power levels in uniform and tapered photonic crystal fibers. We show that the noise at the spectral edges of the generated supercontinuum is at a constant level independent on the pump...

  13. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    Buttram, M.T.

    1985-01-01

    This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  14. Repetitive pulse accelerator technology for light ion inertial confinement fusion

    Buttram, M.T.

    1985-01-01

    Successful ignition of an inertial confinement fusion (ICF) pellet is calculated to require that several megajoules of energy be deposited in the pellet's centimeter-sized shell within 10 ns. This implies a driver power of several hundreds of terawatts and power density around 100 TW/cm 2 . The Sandia ICF approach is to deposit the energy with beams of 30 MV lithium ions. The first accelerator capable of producing these beams (PBFA II, 100 TW) will be used to study beam formation and target physics on a single pulse basis. To utilize this technology for power production, repetitive pulsing at rates that may be as high as 10 Hz will be required. This paper will overview the technologies being studied for a repetitively pulsed ICF accelerator. As presently conceived, power is supplied by rotating machinery providing 16 MJ in 1 ms. The generator output is transformed to 3 MV, then switched into a pulse compression system using laser triggered spark gaps. These must be synchronized to about 1 ns. Pulse compression is performed with saturable inductor switches, the output being 40 ns, 1.5 MV pulses. These are transformed to 30 MV in a self-magnetically insulated cavity adder structure. Space charge limited ion beams are drawn from anode plasmas with electron counter streaming being magnetically inhibited. The ions are ballistically focused into the entrances of guiding discharge channels for transport to the pellet. The status of component development from the prime power to the ion source will be reviewed

  15. Photocathode fatigue of L-24 PM head due to high intensity light pulses

    Bailey, K.F.

    1980-01-01

    The sensitivity of radiation detectors which utilizes photomultipliers was determined after exposing the multiplier phototubes to high intensity light pulses. Test results found that generally less than a 5% change was found

  16. High-power pulsed light ion beams for applications in fusion- and matter research

    Bluhm, H.; Karow, H.U.; Rusch, D.; Zieher, K.W.

    1982-01-01

    The foundations of ultrahigh-power pulse techniques are described together with the two pulse generators KALIF (Karlsruhe Light lion Facility) and Pollux of the INR. The physical principles and diagnostics of ion beam production are discussed as well as possible applications in the field of fusion research. (orig./HT) [de

  17. Highly Stable, All-fiber, High Power ZBLAN Supercontinuum Source Reaching 4.75 µm used for Nanosecond mid-IR Spectroscopy

    Moselund, Peter M.; Petersen, Christian; Leick, Lasse

    2013-01-01

    We demonstrate compact all-fiber mid-IR supercontinuum generation up to 4.75 μm with 1.2 W output power during hundreds of hours. This source is applied to upconversion spectroscopy using the energy corresponding to a single pulse....

  18. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    Gonzalo, I. B.; Maria, M.; Engelsholm, R. D.; Feuchter, T.; Leick, L.; Moselund, P. M.; Podoleanu, A.; Bang, O.

    2018-02-01

    Supercontinuum (SC) sources are of great interest for many applications due to their ultra-broad optical bandwidth, good beam quality and high power spectral density [1]. In particular, the high average power over large bandwidths makes SC light sources excellent candidates for ultra-high resolution optical coherence tomography (UHR-OCT) [2-5]. However, conventional SC sources suffer from high pulse-to-pulse intensity fluctuations as a result of the noise-sensitive nonlinear effects involved in the SC generation process [6-9]. This intensity noise from the SC source can limit the performance of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize the ANDi SC. In this work, we characterize the noise performance of a femtosecond pumped ANDi based SC and a commercial SC source in an UHR-OCT system at 1300 nm. We show that the ANDi based SC presents exceptional noise properties compared to a commercial source. An improvement of 5 dB in SNR is measured in the UHR-OCT system, and the noise behavior resembles that of a superluminiscent diode. This preliminary study is a step forward towards development of an ultra-low noise SC source at 1300 nm for ultra-high resolution OCT.

  19. Can pulsed xenon ultraviolet light systems disinfect aerobic bacteria in the absence of manual disinfection?

    Jinadatha, Chetan; Villamaria, Frank C; Ganachari-Mallappa, Nagaraja; Brown, Donna S; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-04-01

    Whereas pulsed xenon-based ultraviolet light no-touch disinfection systems are being increasingly used for room disinfection after patient discharge with manual cleaning, their effectiveness in the absence of manual disinfection has not been previously evaluated. Our study indicates that pulsed xenon-based ultraviolet light systems effectively reduce aerobic bacteria in the absence of manual disinfection. These data are important for hospitals planning to adopt this technology as adjunct to routine manual disinfection. Published by Elsevier Inc.

  20. Mid-infrared supercontinuum generation spanning more than 11 μm in a chalcogenide step-index fiber

    Petersen, Christian Rosenberg; Møller, Uffe Visbech; Kubat, Irnis

    2015-01-01

    Supercontinuum generation covering an ultra-broad spectrum from 1.5-11.7μm and 1.4-13.3μm is experimentally demonstrated by pumping an 85mm chalcogenide step-index fiber with 100fs pulses at a wavelength of 4.5μm and 6.3μm, respectively.......Supercontinuum generation covering an ultra-broad spectrum from 1.5-11.7μm and 1.4-13.3μm is experimentally demonstrated by pumping an 85mm chalcogenide step-index fiber with 100fs pulses at a wavelength of 4.5μm and 6.3μm, respectively....

  1. Broadband mid-infrared supercontinuum generation in novel As2Se3-As2Se2 S step-index fibers

    Wang, Yingying; Dai, Shixun; Han, Xin; Zhang, Peiqing; Liu, Yongxing; Wang, Xunsi; Sun, Shaochao

    2018-03-01

    We experimentally demonstrate the mid-infrared supercontinuum generation in a chalcogenide step-index fiber consisting of an As2Se3 core and an As2Se2 S cladding. The fiber with the core diameter of 21 μm was fabricated through the rod-in-tube technique and fiber-drawing process. The effect of pump wavelength, fiber length, and pump power on the spectral bandwidth and output power of the supercontinuum spectra generated from the fiber pumped by the ultrashort pulses of ∼ 150 fs with a repetition rate of 1000 Hz was systematically investigated. When pumping a 12-cm-long fiber at a wavelength of 6 . 5 μm with 14 mW pump laser power, a broadband supercontinuum spanning from 2 . 0 μm to 12 . 7 μm with an output power of 300 μW was obtained.

  2. Effect of nonlinear crystal thickness on the parameters of the autocorrelator of femtosecond light pulses

    Masalov, Anatolii V; Chudnovsky, Aleksandr V

    2004-01-01

    It is shown that the finite thickness of the second-harmonic crystal distorts the results of measurements in nonlinear autocorrelators intended for measuring the durations and fields of femtosecond light pulses mainly due to dispersive broadening (or compression) of the pulses being measured, as well as due to the group velocity mismatch between the fundamental and sum-frequency pulses. The refractive index dispersion of the crystal, scaled by half its thickness, distorts the pulse duration to a certain extent depending on its initial chirp and thus determines the width of the energy distribution recorded in the autocorrelator. As the crystal thickness increases, the group velocity mismatch leads to a transformation of the recorded distribution from the correlation function of intensity to the squared modulus of the field correlation function. In the case of Gaussian pulses, such a transformation does not affect significantly the recorded distribution. Errors of pulse duration measurements are estimated. (nonlinear optical phenomena)

  3. Light electric transformer to transform the size of particles contained in a gas flow into electrical pulses

    Berber, V.A.; Zolotenko, V.A.; Naguev, E.N.; Pavlov, V.V.; Sokolov, V.E.; Syromyatnikov, A.N.; Eremenko, A.I.

    1979-08-09

    The equipment measures the air dust. The aerosol flow is hence irradiated with a convergent light bundle. Using mirrors and mechanically operable screens, it is possible to divert part of the light onto a photo receiver to produce electric pulses of the dispersly composed aerosols and another part onto a former for standardized light pulses. The accuracy of the measurement is increased by the stability of the standardized light pulses.

  4. Observation of sum-frequency-generation-induced cascaded four-wave mixing using two crossing femtosecond laser pulses in a 0.1 mm beta-barium-borate crystal.

    Liu, Weimin; Zhu, Liangdong; Fang, Chong

    2012-09-15

    We demonstrate the simultaneous generation of multicolor femtosecond laser pulses spanning the wavelength range from UV to near IR in a 0.1 mm Type I beta-barium borate crystal from 800 nm fundamental and weak IR super-continuum white light (SCWL) pulses. The multicolor broadband laser pulses observed are attributed to two concomitant cascaded four-wave mixing (CFWM) processes as corroborated by calculation: (1) directly from the two incident laser pulses; (2) by the sum-frequency generation (SFG) induced CFWM process (SFGFWM). The latter signal arises from the interaction between the frequency-doubled fundamental pulse (400 nm) and the SFG pulse generated in between the fundamental and IR-SCWL pulses. The versatility and simplicity of this spatially dispersed multicolor self-compressed laser pulse generation offer compact and attractive methods to conduct femtosecond stimulated Raman spectroscopy and time-resolved multicolor spectroscopy.

  5. Pulsed Light Stimulation Increases Boundary Preference and Periodicity of Episodic Motor Activity in Drosophila melanogaster.

    Shuang Qiu

    Full Text Available There is considerable interest in the therapeutic benefits of long-term sensory stimulation for improving cognitive abilities and motor performance of stroke patients. The rationale is that such stimulation would activate mechanisms of neural plasticity to promote enhanced coordination and associated circuit functions. Experimental approaches to characterize such mechanisms are needed. Drosophila melanogaster is one of the most attractive model organisms to investigate neural mechanisms responsible for stimulation-induced behaviors with its powerful accessibility to genetic analysis. In this study, the effect of chronic sensory stimulation (pulsed light stimulation on motor activity in w1118 flies was investigated. Flies were exposed to a chronic pulsed light stimulation protocol prior to testing their performance in a standard locomotion assay. Flies responded to pulsed light stimulation with increased boundary preference and travel distance in a circular arena. In addition, pulsed light stimulation increased the power of extracellular electrical activity, leading to the enhancement of periodic electrical activity which was associated with a centrally-generated motor pattern (struggling behavior. In contrast, such periodic events were largely missing in w1118 flies without pulsed light treatment. These data suggest that the sensory stimulation induced a response in motor activity associated with the modifications of electrical activity in the central nervous system (CNS. Finally, without pulsed light treatment, the wild-type genetic background was associated with the occurrence of the periodic activity in wild-type Canton S (CS flies, and w+ modulated the consistency of periodicity. We conclude that pulsed light stimulation modifies behavioral and electrophysiological activities in w1118 flies. These data provide a foundation for future research on the genetic mechanisms of neural plasticity underlying such behavioral modification.

  6. The role of lasers and intense pulsed light technology in dermatology

    Husain, Zain; Alster, Tina S

    2016-01-01

    The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. PMID:26893574

  7. The role of lasers and intense pulsed light technology in dermatology

    Husain Z

    2016-02-01

    Full Text Available Zain Husain,1 Tina S Alster1,2 1Department of Dermatology, Georgetown University Hospital, 2Washington Institute of Dermatologic Laser Surgery, Washington, DC, USA Abstract: The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. Keywords: laser, intense pulsed light, treatment, dermatology, technology

  8. Optimum PCF tapers for blue-enhanced supercontinuum sources

    Møller, Uffe Visbech; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    Tapering of photonic crystal fibers has proven to be an effective way of blueshifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. In this article we will review the state-of-the-art in fiber tapers, and discuss the underlying mechanisms of supercontinuum gen...... and tapered fibers, and we demonstrate that the intensity noise at the spectral edges of the generated supercontinuum is at a constant level independent on the pump power in both tapered and uniform fibers....

  9. Ultrafast supercontinuum fiber-laser based pump-probe scanning magneto-optical Kerr effect microscope for the investigation of electron spin dynamics in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution.

    Henn, T; Kiessling, T; Ossau, W; Molenkamp, L W; Biermann, K; Santos, P V

    2013-12-01

    We describe a two-color pump-probe scanning magneto-optical Kerr effect microscope which we have developed to investigate electron spin phenomena in semiconductors at cryogenic temperatures with picosecond time and micrometer spatial resolution. The key innovation of our microscope is the usage of an ultrafast "white light" supercontinuum fiber-laser source which provides access to the whole visible and near-infrared spectral range. Our Kerr microscope allows for the independent selection of the excitation and detection energy while avoiding the necessity to synchronize the pulse trains of two separate picosecond laser systems. The ability to independently tune the pump and probe wavelength enables the investigation of the influence of excitation energy on the optically induced electron spin dynamics in semiconductors. We demonstrate picosecond real-space imaging of the diffusive expansion of optically excited electron spin packets in a (110) GaAs quantum well sample to illustrate the capabilities of the instrument.

  10. Excitation of random intense single-cycle light-pulse chains in optical fiber

    Ding, Y C; Zhang, F L; Gao, J B; Chen, Z Y; Lin, C Y; Yu, M Y

    2014-01-01

    Excitation of intense periodic single-cycle light pulses in a stochastic background arising from continuous wave stimulated Brillouin scattering (SBS) in a long optical fiber with weak optical feedback is found experimentally and modeled theoretically. Such intense light-pulse chains occur randomly and the optical feedback is a requirement for their excitation. The probability of these forms, among the large number of experimental output signals with identifiable waveforms, appearing is only about 3%, with the remainder exhibiting regular SBS characteristics. It is also found that pulses with low period numbers appear more frequently and the probability distribution for their occurrence in terms of the pulse power is roughly L-shaped, like that for rogue waves. The results from a three-wave-coupling model for SBS including feedback phase control agree well qualitatively with the observed phenomena. (paper)

  11. Pulsed, all solid-state light source in the visible spectral region based on non-linear cavity dumping

    Tidemand-Lichtenberg, Peter; Andersen, Martin; Johansson, Sandra

    We propose a novel generic approach for generation of pulsed light in the visible spectrum, based on SFG between the high circulating intra-cavity power of a high finesse CW laser and a single-passed pulsed laser.......We propose a novel generic approach for generation of pulsed light in the visible spectrum, based on SFG between the high circulating intra-cavity power of a high finesse CW laser and a single-passed pulsed laser....

  12. Controlled light localisation and nonlinear-optical interactions of short laser pulses in holey fibres

    Fedotov, Andrei B; Zheltikov, Aleksei M; Golovan', Leonid A; Kashkarov, Pavel K; Tarasevitch, A P; Podshivalov, Alexey A; Alfimov, Mikhail V; Ivanov, Anatoliy A; Beloglazov, V I; Haus, J W; Linde, D von der

    2001-01-01

    The influence of the structure of holey-fibre cladding on the effective waveguide mode area and the spectral broadening of femtosecond pulses of titanium-sapphire and forsterite lasers is experimentally studied. These experiments demonstrate that the increase in the air-filling fraction of the holey-fibre cladding may substantially enhance the spectral broadening of laser pulses due to the increase in the degree of light localisation in the fibre core. (femtosecond technologies)

  13. Efficacy of intense pulse light therapy and tripple combination cream versus intense pulse light therapy and tripple combination cream alone in epidermal melasma treatment

    Shakeeb, N.; Noor, S.M.; Paracha, M.M.; Ullah, G.

    2018-01-01

    Objective:To compare the efficacy of intense pulse light therapy (IPL) and triple combination cream (TCC) versus intense pulse light therapy and triple combination cream alone in epidermal melasma treatment, downgrading MASI score to more than 10. Study Design:Randomized controlled trial. Place and Duration of Study:Dermatology Department, Lady Reading Hospital, Peshawar, from August 2014 to January 2015. Methodology:Patients of 18-45 years were included in the study with Fitzpatrick skin type II-V. Sample of 96 patients was divided in to three groups of 32 each, through consecutive (non-probability) sampling method. Detailed history was taken, Woods Lamp Examination done, and melasma area and severity index (MASI) score was calculated. TCC had to be applied daily at night for two months by group A patients while group B was consigned for IPL therapy fortnightly, and those in group C were given both for two months. Efficacy was compared by recalculating MASI score at treatment end as well as at follow-up after 4 weeks, using Chi-square test with significance at p < 0.05. Results:Male and female patients were 10 (31.2%) and 22 (68.8%) in group A, 7 (21.9%) and 25 (78.1%) in group B, while in group C were 12 (37.5%) and 20 (62.5%). The average age was 28.70 +8.70 years. MASI score reduction was achieved in 22 (68.8%) patients in group A; whereas, in 20 (62.5%) and 30(93.8%) patients in group B and C, respectively. Efficacy-wise distribution was significant (p=0.009). Conclusion:Intense pulse light therapy and triple combination cream are more efficacious in epidermal melasma treatment than intense pulse light therapy and triple combination cream alone. (author)

  14. A simple sub-nanosecond ultraviolet light pulse generator with high repetition rate and peak power.

    Binh, P H; Trong, V D; Renucci, P; Marie, X

    2013-08-01

    We present a simple ultraviolet sub-nanosecond pulse generator using commercial ultraviolet light-emitting diodes with peak emission wavelengths of 290 nm, 318 nm, 338 nm, and 405 nm. The generator is based on step recovery diode, short-circuited transmission line, and current-shaping circuit. The narrowest pulses achieved have 630 ps full width at half maximum at repetition rate of 80 MHz. Optical pulse power in the range of several hundreds of microwatts depends on the applied bias voltage. The bias voltage dependences of the output optical pulse width and peak power are analysed and discussed. Compared to commercial UV sub-nanosecond generators, the proposed generator can produce much higher pulse repetition rate and peak power.

  15. Nonlinearity-tailored fiber laser technology for low-noise, ultra-wideband tunable femtosecond light generation

    Liu, Xiaomin; Lægsgaard, Jesper; Iegorov, Roman

    2017-01-01

    supercontinuum, taking advantage of a simpler fiber technology: a fixed-wavelength pump laser pulse is converted into a spectrally very broadband output, from which the required resulting wavelength is then optically filtered. Unfortunately, this process is associated with an inherently poor noise figure, which...... often precludes many realistic applications of such supercontinuum sources. Here, we show that by adding only one passive optical element—a tapered photonic crystal fiber—to a fixed-wavelength femtosecond laser, one can in a very simple manner resonantly convert the laser emission wavelength......The emission wavelength of a laser is physically predetermined by the gain medium used.Consequently,arbitrary wavelength generation is a fundamental challenge in the science of light. Present solutions include optical parametric generation, requiring complex optical setups and spectrally sliced...

  16. Tapered photonic crystal fibers for blue-enhanced supercontinuum generation

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    Tapering of photonic crystal fibers is an effective way of shifting the blue edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for enhancing the power in the blue edge....

  17. A broadband Soleil-Babinet compensator for ultrashort light pulses

    Xu, Shixiang; Ma, Yingkun; Cai, Yi; Lu, Xiaowei; Zeng, Xuanke; Chen, Hongyi; Li, Jingzhen

    2013-12-01

    This letter reports a novel design for a broadband Soleil-Babinet compensator including two pairs of optical wedges plus one plate. According to our birefringent dispersion compensation model, we can eliminate the first-order birefringent phase retardation (BPR) dispersion by using three different birefringent crystals. Our results show a Soleil-Babinet compensator based on a MgF2/ADP/KDP combination can work from 0° to 360° phase compensation with the maximal residual BPR less than 6° within the spectral region from 0.65 to 0.95 μm. The residual BPR of the compensator increases monotonically with the spectral deviation from the designed central wavelength, so our compensator is very suitable to be used for broadband laser pulses with most of their energies around the central wavelengths.

  18. A broadband Soleil–Babinet compensator for ultrashort light pulses

    Xu, Shixiang; Ma, Yingkun; Cai, Yi; Lu, Xiaowei; Zeng, Xuanke; Chen, Hongyi; Li, Jingzhen

    2013-01-01

    This letter reports a novel design for a broadband Soleil–Babinet compensator including two pairs of optical wedges plus one plate. According to our birefringent dispersion compensation model, we can eliminate the first-order birefringent phase retardation (BPR) dispersion by using three different birefringent crystals. Our results show a Soleil–Babinet compensator based on a MgF 2 /ADP/KDP combination can work from 0° to 360° phase compensation with the maximal residual BPR less than 6° within the spectral region from 0.65 to 0.95 μm. The residual BPR of the compensator increases monotonically with the spectral deviation from the designed central wavelength, so our compensator is very suitable to be used for broadband laser pulses with most of their energies around the central wavelengths. (letter)

  19. Two Octaves Supercontinuum Generation in Lead-Bismuth Glass Based Photonic Crystal Fiber

    Ryszard Buczynski

    2014-06-01

    Full Text Available In this paper we report a two octave spanning supercontinuum generation in a bandwidth of 700–3000 nm in a single-mode photonic crystal fiber made of lead-bismuth-gallate glass. To our knowledge this is the broadest supercontinuum reported in heavy metal oxide glass based fibers. The fiber was fabricated using an in-house synthesized glass with optimized nonlinear, rheological and transmission properties in the range of 500–4800 nm. The photonic cladding consists of 8 rings of air holes. The fiber has a zero dispersion wavelength (ZDW at 1460 nm. Its dispersion is determined mainly by the first ring of holes in the cladding with a relative hole size of 0.73. Relative hole size of the remaining seven rings is 0.54, which allows single mode performance of the fiber in the infrared range and reduces attenuation of the fundamental mode. The fiber is pumped into anomalous dispersion with 150 fs pulses at 1540 nm. Observed spectrum of 700–3000 nm was generated in 2 cm of fiber with pulse energy below 4 nJ. A flatness of 5 dB was observed in 950–2500 nm range.

  20. The light ion pulsed power induction accelerator for ETF

    Mazarakis, M.G.; Olson, R.E.; Olson, C.L.; Smith, D.L.; Bennett, L.F.

    1994-01-01

    Our Engineering Test Facility (ETF) driver concept is based on HERMES III and RHEPP technologies. Actually, it is a scaled-down version of the LMF design incorporating repetition rate capabilities of up to 10 Hz CW. The preconceptual design presented here provides 200-TW peak power to the ETF target during 10 ns, equal to 2-MJ total ion beam energy. Linear inductive voltage addition driving a self-magnetically insulated transmission line (MITL) is utilized to generate the 36-MV peak voltage needed for lithium ion beams. The ∼ 3-MA ion current is achieved by utilizing many accelerating modules in parallel. Since the current per module is relatively modest (∼300 kA), two-stage or one-stage extraction diodes can be utilized for the generation of singly charged lithium ions. The accelerating modules are arranged symmetrically around the fusion chamber in order to provide uniform irradiation onto the ETF target. In addition, the modules are fired in a programmed sequence in order to generate the optimum power pulse shape onto the target. This design utilizes RHEPP accelerator modules as the principal power source

  1. Lasers and intense pulsed light (IPL) association with cancerous lesions.

    Ash, Caerwyn; Town, Godfrey; Whittall, Rebecca; Tooze, Louise; Phillips, Jaymie

    2017-11-01

    The development and use of light and lasers for medical and cosmetic procedures has increased exponentially over the past decade. This review article focuses on the incidence of reported cases of skin cancer post laser or IPL treatment. The existing evidence base of over 25 years of laser and IPL use to date has not raised any concerns regarding its long-term safety with only a few anecdotal cases of melanoma post treatment over two decades of use; therefore, there is no evidence to suggest that there is a credible cancer risk. Although laser and IPL technology has not been known to cause skin cancer, this does not mean that laser and IPL therapies are without long-term risks. Light therapies and lasers to treat existing lesions and CO 2 laser resurfacing can be a preventative measure against BCC and SCC tumour formation by removing photo-damaged keratinocytes and encouraged re-epithelisation from stem cells located deeper in the epidermis. A review of the relevant literature has been performed to address the issue of long-term IPL safety, focussing on DNA damage, oxidative stress induction and the impact of adverse events.

  2. Optimization of Tapered Photonic Crystal Fibers for Blue-Enhanced Supercontinuum Generation

    Møller, Uffe; Sørensen, Simon Toft; Larsen, Casper

    2012-01-01

    Tapering of photonic crystal fibers is an effective way of shifting the dispersive wavelength edge of a supercontinuum spectrum down in the deep-blue. We discuss the optimum taper profile for blue-enhanced supercontinuum generation....

  3. Quantum Noise Reduction with Pulsed Light in Optical Fibers.

    Bergman, Keren

    Optical fibers offer considerable advantages over bulk nonlinear media for the generation of squeezed states. This thesis reports on experimental investigations of reducing quantum noise by means of squeezing in nonlinear fiber optic interferometers. Fibers have low insertion loss which allows for long interaction lengths. High field intensities are easily achieved in the small cores of single mode fibers. Additionally, the nonlinear process employed is self phase modulation or the Kerr effect, whose broad band nature requires no phase matching and can be exploited with ultra-short pulses of high peak intensity. All these advantageous features of fibers result in easily obtained large nonlinear phase shifts and subsequently large squeezing parameters. By the self phase modulation process a correlation is produced between the phase and amplitude fluctuations of the optical field. The attenuated or squeezed quadrature has a lower noise level than the initial level associated with the coherent state field before propagation. The resulting reduced quantum noise quadrature can be utilized to improve the sensitivity of a phase measuring instrument such as an interferometer. Because the Kerr nonlinearity is a degenerate self pumping process, the squeezed noise is at the same frequency as the pump field. Classical pump noise can therefore interfere with the desired measurement of the quantum noise reduction. The most severe noise process is the phase noise caused by thermally induced index modulation of the fiber. This noise termed Guided Acoustic Wave Brillouin Scattering, or GAWBS, by previous researchers is studied and analyzed. Experiments performed to overcome GAWBS successfully with several schemes are described. An experimental demonstration of an interferometric measurement with better sensitivity than the standard quantum limit is described. The results lead to new understandings into the limitations of quantum noise reduction that can be achieved in the

  4. Passivation of organic light emitting diode anode grid lines by pulsed Joule heating

    Janka, M.; Gierth, R.; Rubingh, J.E.; Abendroth, M.; Eggert, M.; Moet, D.J.D.; Lupo, D.

    2015-01-01

    We report the self-aligned passivation of a current distribution grid for an organic light emitting diode (OLED) anode using a pulsed Joule heating method to align the passivation layer accurately on the metal grid. This method involves passing an electric current through the grid to cure a polymer

  5. The intense pulsed light systems : new treatment possibilities for vascular, pigmented lesions and hair removal

    C.A. Schroeter (Careen)

    2004-01-01

    textabstractGiven all of the differences in between laser and IPLS devices and the need for additional information in IPLS treatment applications, the aim of this study was to evaluate new treatment possibilities using Intense Pulsed Light Sources and to address the following questions: 1. What

  6. Effect of Pulsed Ultraviolet Light and High Hydrostatic Pressure on the Antigenicity of Almond Protein Extracts.

    The efficacy of pulsed ultraviolet light (PUV) and high hydrostatic pressure (HHP) on reducing the IgE binding to the almond extracts, was studied using SDS-PAGE, Western Blot, and ELISA probed with human plasma containing IgE antibodies to almond allergens, and a polyclonal antibody against almond ...

  7. Pulsed-ultrasound tagging of light in living tissues

    Lev, Aner; Rubanov, E.; Pomerantz, Ami; Sfez, Bruno G.

    2004-07-01

    Ultrasound can be used in order to locally modulate, or tag, light in a turbid medium. This tagging process is made possible due to the extreme sensitivity of laser speckle distribution to minute changes within the medium. This hybrid technique presents several advantages compared to all-optical tomographic techniques, in that the image resolution is fixed by the ultrasound focus diameter. To our best knowledge, only in vitro experiments have been performed, either on tissue-like phantoms or meat. However a strong difference exists between these sample and living tissues. In living tissues, different kind of liquids flow through the capillaries, strongly reducing the sspeckle autocorrelation time. We have performed experiments on both mice and humans, showing that the autocorrelation time is much shorter than what was previously thought. We show however that it is possible to obtain signal with acceptable signal to noise ratio down to a few cm depth. We will also discuss the origin and characteristics of the speckle noise.

  8. Near infrared and extreme ultraviolet light pulses induced modifications of ultrathin Co films

    Jan Kisielewski

    2017-05-01

    Full Text Available We report on comparative study of magnetic properties of Pt/Co/Pt trilayers after irradiation with different light sources. Ultrathin Pt/Co/Pt films were deposited by molecular beam epitaxy technique on sapphire (0001 substrates. Pt buffers were grown at room temperature (RT and at 750°C (high temperature, HT. The samples were irradiated with a broad range of light energy densities (up to film ablation using two different single pulse irradiation sources: (i 40 fs laser with 800 nm wavelength and (ii 3 ns laser-plasma source of extreme ultraviolet (EUV with the most intense emission centered at 11 nm. The light pulse-driven irreversible structural and as a consequence, magnetic modifications were investigated using polar magneto-optical Kerr effect-based microscopy and atomic and magnetic force microscopies. The light pulse-induced transitions from the out-of-plane to in-plane magnetization state, and from in-plane to out-of-plane, were observed for both types of samples and irradiation methods. Diagrams of the magnetic states as a function of the Co layer thickness and energy density of the absorbed femtosecond pulses were constructed for the samples with both the RT and HT buffers. The energy density range responsible for the creation of the out-of-plane magnetization was wider for the HT than for RT buffer. This is correlated with the higher (for HT crystalline quality and much smoother Pt/Co surface deduced from the X-ray diffraction studies. Submicrometer magnetic domains were observed in the irradiated region while approaching the out-of-plane magnetization state. Changes of Pt/Co/Pt structures are discussed for both types of light pulses.

  9. Attempts to use pulsed light as an emerging technology for inactivation of mould naturally present on rye

    NICOLETA ARON MAFTEI

    2011-12-01

    Full Text Available Pulsed light technology was used to inactivate moulds, naturally present on rye. The experiments were performed on samples containing 3.5·104 CFU/g and 4.3·103 CFU/g. Treatments of different duration (5, 10, 15, 20, 30, and 40 pulses at intensity of 0.4 J·cm-2 per pulse were applied and mould inactivation was evaluated. Besides confirming the utilisation of pulsed light as decontamination method for cereals, this work contributes with new information regarding the effects of the spectral range of pulsed light, proving that the whole UV range of the spectrum accounts for the lethal effect against moulds. This research supports pulsed light as emerging technology in food preservation.

  10. Supercontinuum generation in optimized photonic crystal fiber at 1.3 μm for optical coherence tomography

    Ferhat M. L.

    2016-01-01

    Full Text Available In this paper, we have designed a high nonlinear photonic crystal fiber (HN-PCF based on square-lattice geometry with the zero dispersion wavelength (ZDW around 1300 nm. The exploitation of different nonlinear mechanisms in the pulse propagation allows supercontinuum generation, which is used to enhance the axial resolution of the optical coherence tomography (OCT systems. First mechanism demonstrated is the soliton self-compression, we came up to realize pulse compression of 28.4 fs around 1300 nm by the generation of solitons of different orders to obtain ultrashort pulses of about 4 fs pulses in a PCF length of 66cm, then, we improved the pulse compression until 1.2 fs in a PCF length of 26 cm.The exploitation of the interplay between many nonlinear effects as self-phase modulation, intrapulse Raman scattering and self-steepening as second mechanism allows a generation of supercontinuum with a spectral bandwith of SBW=260 nm. The obtained spectral bandwidth could contribute to enhance the OCwith OCT imaging axial resolution which can be evaluated to 2.8 μm in air, working at 1.3 μm center wavelength which is widely used in several fields.

  11. Long-pulsed Nd: YAG laser and intense pulse light-755 nm for idiopathic facial hirsutism: A comparative study

    Arpit Shrimal

    2017-01-01

    Full Text Available Background: Hirsutism means excessive terminal hair growth in a female in male pattern distribution. Perception of hirsutism is subjective. Permanent laser hair reduction is a slow process taking many sessions and tracking of improvement parameters is tedious. Hence, a lot of confusion still exists regarding the type of laser most beneficial for treatment. Aim: The aim of this study was to compare the effectiveness and safety profile of long-pulsed Nd: YAG laser (1064 nm and intense pulse light (IPL-755 nm in management of idiopathic facial hirsutism. Settings and Design: Open-labelled, randomly allocated experimental study. Subjects and Methods: The study included 33 cases of idiopathic facial hirsutism. Patients were randomly divided into Group A, treated with long-pulsed Nd: YAG laser and Group B, treated with IPL-755 for a total of six sessions at 1 month interval. Statistical Analysis: Chi-square test was used in Medcalc® version 9.0 and the test of significance was taken to be P75% reduction in hair after six sessions in Group A was seen in fourteen (93.33% out of fifteen patients, whereas in Group B, it was seen only in three (16.66% out of eighteen patients. In Group A, erythema was seen in 26.67%, perifollicular edema and hyperpigmentation in 13.33% each. In Group B, erythema was seen in 50% patients, perifollicular edema in 16.67% and hyperpigmentation in 38.89% patients. Conclusions: Long-pulsed Nd: YAG Laser (1064 nm is better than IPL-755 nm in terms of safety and effectiveness in the management of idiopathic facial hirsutism.

  12. Influence of pump power and modulation instability gain spectrum on seeded supercontinuum and rogue wave generation

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe

    2012-01-01

    The noise properties of a supercontiuum can be significantly improved both in terms of coherence and intensity stability by modulating the input pulse with a seed. In this paper, we numerically investigate the influence of the seed wavelength, the pump power, and the modulation instability gain...... spectrum on the seeding process. The results can be clearly divided into a number of distinct dynamical regimes depending on the initial four-wave mixing process. We further demonstrate that seeding can be used to generate coherent and incoherent rogue waves, depending on the modulation instability gain...... spectrum. Finally, we show that the coherent pulse breakup afforded by seeding is washed out by turbulent solitonic dynamics when the pump power is increased to the kilowatt level. Thus our results show that seeding cannot improve the noise performance of a high power supercontinuum source....

  13. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Sun, Bing; Kunitomo, Shinta; Igarashi, Chiaki

    2006-09-01

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  14. Characteristics of ultraviolet light and radicals formed by pulsed discharge in water

    Sun Bing [Dalian Maritime University, College of Environment, 1st Linghai Road, Dalian (China); Kunitomo, Shinta [Ebara Corporation, 1-6-27, Konan, Minato-ku 108-8480 (Japan); Igarashi, Chiaki [Ebara Research Co. Ltd, 2-1, Honfujisawa 4-chome, Fujisawa 251-8502 (Japan)

    2006-09-07

    In this investigation, the ultraviolet light characteristics and OH radical properties produced by a pulsed discharge in water were studied. For the plate-rod reactor, it was found that the ultraviolet light energy has a 3.2% total energy injected into the reactor. The ultraviolet light changed with the peak voltage and electrode distance. UV characteristics in tap water and the distilled water are given. The intensity of the OH radicals was the highest for the 40 mm electrode distance reactor. In addition, the properties of hydrogen peroxide and ozone were also studied under arc discharge conditions. It was found that the OH radicals were in the ground state and the excited state when a pulsed arc discharge was used. The ozone was produced by the arc discharge even if the oxygen gas is not bubbled into the reactor. The ozone concentration produces a maximum value with treatment time.

  15. Pulsed operation of high-power light emitting diodes for imaging flow velocimetry

    Willert, C; Klinner, J; Moessner, S; Stasicki, B

    2010-01-01

    High-powered light emitting diodes (LED) are investigated for possible uses as light sources in flow diagnostics, in particular, as an alternative to laser-based illumination in particle imaging flow velocimetry in side-scatter imaging arrangements. Recent developments in solid state illumination resulted in mass-produced LEDs that provide average radiant power in excess of 10 W. By operating these LEDs with short duration, pulsed currents that are considerably beyond their continuous current damage threshold, light pulses can be generated that are sufficient to illuminate and image micron-sized particles in flow velocimetry. Time-resolved PIV measurements in water at a framing rate of 2kHz are presented. The feasibility of LED-based PIV measurements in air is also demonstrated

  16. Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

    Felix Pyatkov

    2017-01-01

    Full Text Available Carbon nanotubes (CNTs have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources.

  17. Generation of Attosecond Light Pulses from Gas and Solid State Media

    Stefanos Chatziathanasiou

    2017-03-01

    Full Text Available Real-time observation of ultrafast dynamics in the microcosm is a fundamental approach for understanding the internal evolution of physical, chemical and biological systems. Tools for tracing such dynamics are flashes of light with duration comparable to or shorter than the characteristic evolution times of the system under investigation. While femtosecond (fs pulses are successfully used to investigate vibrational dynamics in molecular systems, real time observation of electron motion in all states of matter requires temporal resolution in the attosecond (1 attosecond (asec = 10−18 s time scale. During the last decades, continuous efforts in ultra-short pulse engineering led to the development of table-top sources which can produce asec pulses. These pulses have been synthesized by using broadband coherent radiation in the extreme ultraviolet (XUV spectral region generated by the interaction of matter with intense fs pulses. Here, we will review asec pulses generated by the interaction of gas phase media and solid surfaces with intense fs IR laser fields. After a brief overview of the fundamental process underlying the XUV emission form these media, we will review the current technology, specifications and the ongoing developments of such asec sources.

  18. Generating picosecond x-ray pulses in synchrotron light sources using dipole kickers

    W. Guo

    2007-02-01

    Full Text Available The duration of the x-ray pulse generated at a synchrotron light source is typically tens of picoseconds. Shorter pulses are highly desired by the users. In electron storage rings, the vertical beam size is usually orders of magnitude less than the bunch length due to radiation damping; therefore, a shorter pulse can be obtained by slitting the vertically tilted bunch. Zholents proposed tilting the bunch using rf deflection. We found that tilted bunches can also be generated by a dipole magnet kick. A vertical tilt is developed after the kick in the presence of nonzero chromaticity. The tilt was successfully observed and a 4.2-ps pulse was obtained from a 27-ps electron bunch at the Advanced Photon Source. Based on this principle, we propose a short-pulse generation scheme that produces picosecond x-ray pulses at a repetition rate of 1–2 kHz, which can be used for pump-probe experiments.

  19. Modeling of dispersion engineered chalcogenide rib waveguide for ultraflat mid-infrared supercontinuum generation in all-normal dispersion regime

    Ahmad, H.; Karim, M. R.; Rahman, B. M. A.

    2018-03-01

    A rigorous numerical investigation has been carried out through dispersion engineering of chalcogenide rib waveguide for near-infrared to mid-infrared ultraflat broadband supercontinuum generation in all-normal group-velocity dispersion regime. We propose a novel design of a 1-cm-long air-clad rib waveguide which is made from {Ge}_{11.5} {As}_{24} {Se}_{64.5} chalcogenide glass as the core with either silica or {Ge}_{11.5} {As}_{24} {S}_{64.5} chalcogenide glass as a lower cladding separately. A broadband ultraflat supercontinuum spanning from 1300 to 1900 nm could be generated when pumped at 1.55 μ {m} with a low input peak power of 100 W. Shifting the pump to 2 μ {m}, the supercontinuum spectra extended in the mid-infrared region up to 3400 nm with a moderate-input peak power of 500 W. To achieve further extension in mid-infrared, we excite our optimized rib waveguide in both the anomalous and all-normal dispersion pumping regions at 3.1 μ {m} with a largest input peak power of 3 kW. In the case of anomalous dispersion region pumping, numerical analysis shows that supercontinuum spectrum can be extended in the mid-infrared up to 10 μ {m}, although this contains high spectral amplitude fluctuations over the entire bandwidth which limits the supercontinuum sources in the field of high precision measurement applications. On the other hand, by optimizing a rib waveguide geometry for pumping in all-normal dispersion region, we are able to generate a smooth and flat-top coherent supercontinuum spectrum with a moderate bandwidth spanning the wavelength range 2-5.5 μ {m} with less than 5 dB spectral fluctuation over the entire output bandwidth. Our proposed design is highly suitable for making on-chip SC light sources for a variety of applications such as biomedical imaging, and environmental and industrial sensing in the mid-infrared region.

  20. Mid-infrared supercontinuum generation in a suspended core chalcogenide fiber

    Møller, Uffe Visbech; Yu, Yi; Gai, Xin

    The mid-infrared spectral region is of great interest because virtually all organic compounds display distinctive spectral fingerprints herein that reveal chemical information about them [1], and the mid-infrared region is therefore of key importance to many applications, including food quality...... control [2], gas sensing [3] and medical diagnostics [4] . We have used a low-loss suspended core As 38 Se 62 fiber with core diameter of 4.5 μ m and a zero - dispersion wavelength of 3.5 μ m to generate mid-infrared supercontinuum by pumping with an optical parametric amplifier delivering 320 fs pulses...... with a peak power of ~5.5 kW at a repetition rate of 21 MHz at different wavelengths from 3.3 to 4.7 μ m . By pumping at 4.4 μ m with a peak power of 5.2 kW coupled to the fiber a supercontinuum spanning from 1.7 to 7.5 μ m with an average output power of 15.6 mW was obtained. Figure 1 shows the results...

  1. Supercontinuum generation in silicon nanowire embedded photonic crystal fibers with different core geometries

    Abdosllam, M. Abobaker; Gunasundari, E.; Senthilnathan, K.; Sivabalan, S.; Nakkeeran, K.; Ramesh Babu, P.

    2014-07-01

    We design various silicon nanowire embedded photonic crystal fibers (SN-PCFs) with different core geometries, namely, circular, rectangular and elliptical using finite element method. Further, we study the optical properties such as group velocity dispersion (GVD), third order dispersion (TOD) of x and y-polarized modes and effective nonlinearity for a wavelength range from 0.8 to 1.6 μm. The proposed structure exhibits almost flat GVD (0.8 to 1.2 μm wavelength), zero GVD (≍ 1.31 μm) and small TOD (0.00069 ps3/m) at 1.1 μm wavelength and high nonlinearity (2916 W-1m-1) at 0.8 μm wavelength for a 300 nm core diameter of circular core SN-PCF. Besides, we have been able to demonstrate the supercontinuum for the different core geometries at 1.3 μm wavelength with a less input power of 25 W for the input pulse of 20 fs. The numerical simulation results reveal that the proposed circular core SN-PCF could generate the supercontinuum of wider bandwidth (900 nm) compared to that from rest of the geometries. This enhanced bandwidth turns out to be a boon for optical coherence tomography (OCT) system.

  2. The effect of intense light pulses on the sensory quality and instrumental color of meat from different animal breeds

    Tomašević I.

    2015-01-01

    Intense light pulses (ILP) are an emerging processing technology, which has a potential to decontaminate food products. The light generated by ILP lamps consists of a continuum broadband spectrum from deep UV to the infrared, especially rich in UV range below 400 nm, which is germicidal. Evaluation of the effect of intense light pulses (ILP) on sensory quality of meat, game and poultry was performed using two kinds of red meat (beef and pork), two kinds of ...

  3. Highly-nonlinear polarization-maintaining As2Se3-based photonic quasi-crystal fiber for supercontinuum generation

    Zhao, Tongtong; Lian, Zhenggang; Benson, Trevor; Wang, Xin; Zhang, Wan; Lou, Shuqin

    2017-11-01

    We propose an As2Se3-based photonic quasi-crystal fiber (PQF) with high nonlinearity and birefringence. By optimizing the structure parameters, a nonlinear coefficient up to 2079 W-1km-1 can be achieved at the wavelength of 2 μm; the birefringence reaches up to the order of 10-2 due to the introduction of large circular air holes in the cladding. Using an optical pulse with a peak power of 6 kW, a pulse width of 150 fs, and a central wavelength of 2.94 μm as the pump pulse, a mid-infrared polarized supercontinuum is obtained by using a 15 mm long PQF. The spectral width for x- and y-polarizations covers 1 μm-10.2 μm and 1 μm-12.5 μm, respectively. The polarization state can be well maintained when the incident angle of the input pulse changes within ±2°. The proposed PQF, with high nonlinear coefficient and birefringence, has potential applications in mid-infrared polarization-maintaining supercontinuum generation.

  4. Gating circuit for single photon-counting fluorescence lifetime instruments using high repetition pulsed light sources

    Laws, W.R.; Potter, D.W.; Sutherland, J.C.

    1984-01-01

    We have constructed a circuit that permits conventional timing electronics to be used in single photon-counting fluorimeters with high repetition rate excitation sources (synchrotrons and mode-locked lasers). Most commercial time-to-amplitude and time-to-digital converters introduce errors when processing very short time intervals and when subjected to high-frequency signals. This circuit reduces the frequency of signals representing the pulsed light source (stops) to the rate of detected fluorescence events (starts). Precise timing between the start/stop pair is accomplished by using the second stop pulse after a start pulse. Important features of our design are that the circuit is insensitive to the simultaneous occurrence of start and stop signals and that the reduction in the stop frequency allows the start/stop time interval to be placed in linear regions of the response functions of commercial timing electronics

  5. Complete elimination of nonlinear light-matter interactions with broadband ultrafast laser pulses

    Shu, Chuan-Cun; Dong, Daoyi; Petersen, Ian R.

    2017-01-01

    optical effects, however, the probability of pure single-photon absorption is usually very low, which is particularly pertinent in the case of strong ultrafast laser pulses with broad bandwidth. Here we demonstrate theoretically a counterintuitive coherent single-photon absorption scheme by eliminating...... nonlinear interactions of ultrafast laser pulses with quantum systems. That is, a completely linear response of the system with respect to the spectral energy density of the incident light at the transition frequency can be obtained for all transition probabilities between 0 and 100% in multilevel quantum...... systems. To that end, a multiobjective optimization algorithm is developed to find an optimal spectral phase of an ultrafast laser pulse, which is capable of eliminating all possible nonlinear optical responses while maximizing the probability of single-photon absorption between quantum states. This work...

  6. Stain-free histopathology by programmable supercontinuum pulses

    Tu, Haohua; Liu, Yuan; Turchinovich, Dmitry

    2016-01-01

    The preparation, staining, visualization and interpretation of histological images of tissue is well accepted as the gold standard process for the diagnosis of disease. These methods have a long history of development, and are used ubiquitously in pathology, despite being highly time- and labour-...

  7. Studying Intense Pulsed Light Method Along With Corticosteroid Injection in Treating Keloid Scars

    Shamsi Meymandi, Simin; Rezazadeh, Azadeh; Ekhlasi, Ali

    2014-01-01

    Background: Results of various studies suggest that the hypertrophic and keloid scars are highly prevalent in the general population and are irritating both physically and mentally. Objective: Considering the variety of existing therapies, intense pulsed light (IPL) method along with corticosteroid injection was evaluated in treating these scars. Materials and Methods: 86 subjects were included in this clinical trial. Eight sessions of therapeutic intervention were done with IPL along with co...

  8. Photodynamic Therapy Activated by Intense Pulsed Light in the Treatment of Nonmelanoma Skin Cancer

    Domenico Piccolo

    2018-02-01

    Full Text Available Photodynamic therapy (PDT with topical 5-aminolevulinic acid (ALA or methyl aminolevulinate (MAL has proven to be a highly effective conservative method for the treatment of actinic keratosis (AK, Bowen’s disease (BD, and superficial basal cell carcinoma (sBCC. PDT is traditionally performed in association with broad-spectrum continuous-wave light sources, such as red or blue light. Recently, intense pulsed light (IPL devices have been investigated as an alternative light source for PDT in the treatment of nonmelanoma skin cancers (NMSC. We herein report our observational findings in a cohort of patients with a diagnosis of AK, sBCC, and BD that is treated with MAL-PDT using IPL, as well as we review published data on the use of IPL-PDT in NMSC.

  9. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced t...

  10. Effect of pulsed laser light in patients with dry eye syndrome.

    Guilloto Caballero, S; García Madrona, J L; Colmenero Reina, E

    2017-11-01

    The objective of this study was to determine the clinical benefits of pulsed light therapy for the treatment of Dry Eye Syndrome (DES) due to the decrease in aqueous tear production (aqueous deficient DES) and/or excessive tear evaporation (evaporative DES) due to Meibomian Gland Dysfunction (MGD). A study was conducted on 72 eyes corresponding to 36 patients with DES. Out of these 72 eyes, 60 underwent refractive surgery (48 with femtosecond laser, 6 were operated with a mechanical microkeratome, and 6 with refractive photo-keratectomy[RPK], 6 treated with phacoemulsification, and 6 with no previous surgical treatment. Pulsed laser light (Intense Pulsed Light Regulated [IRPL ® ]) was use to stimulate the secretion of the Meibomian glands during 4 sessions, one every 15 days. Patients with aqueous deficient DES did not show any improvement. Eyes with no previous surgery and those treated with phacoemulsification and PRK had a favourable outcome. On the other hand, less conclusive results were observed in the eyes treated with excimer laser. This treatment could be very helpful to treat evaporative DES produced by MGD. On the other hand, it is not helpful for those cases related to an isolated damage in the aqueous phase, or the mucin phase. Copyright © 2017 Sociedad Española de Oftalmología. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source

    2016-11-29

    AFRL-AFOSR-VA-TR-2016-0365 Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source Jerome Moloney...SUBTITLE "Long Wavelength Electromagnetic Light Bullets Generated by a 10.6 micron CO2 Ultrashort Pulsed Source 5a. CONTRACT NUMBER FA9550-15-1-0272 5b...Wavelength Electromagnetic Light Bullets Generated by a 10 µm CO2 Ultrashort Pulsed Source Grant/Contract Number AFOSR assigned control number. It must

  12. Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation.

    Driben, Rodislav; Mitschke, Fedor; Zhavoronkov, Nickolai

    2010-12-06

    The complex mechanism of multiple interactions between solitary and dispersive waves at the advanced stage of supercontinuum generation in photonic crystal fiber is studied in experiment and numerical simulations. Injection of high power negatively chirped pulses near zero dispersion frequency results in an effective soliton fission process with multiple interactions between red shifted Raman solitons and dispersive waves. These interactions may result in relative acceleration of solitons with further collisions between them of quasi-elastic or quasi-plastic kinds. In the spectral domain these processes result in enhancement of certain wavelength regions within the spectrum or development of a new significant band at the long wavelength side of the spectrum.

  13. Monitoring of transient cavitation induced by ultrasound and intense pulsed light in presence of gold nanoparticles.

    Sazgarnia, Ameneh; Shanei, Ahmad; Shanei, Mohammad Mahdi

    2014-01-01

    One of the most important challenges in medical treatment is invention of a minimally invasive approach in order to induce lethal damages to cancer cells. Application of high intensity focused ultrasound can be beneficial to achieve this goal via the cavitation process. Existence of the particles and vapor in a liquid decreases the ultrasonic intensity threshold required for cavitation onset. In this study, synergism of intense pulsed light (IPL) and gold nanoparticles (GNPs) has been investigated as a means of providing nucleation sites for acoustic cavitation. Several approaches have been reported with the aim of cavitation monitoring. We conducted the experiments on the basis of sonochemiluminescence (SCL) and chemical dosimetric methods. The acoustic cavitation activity was investigated by determining the integrated SCL signal acquired over polyacrylamide gel phantoms containing luminol in the presence and absence of GNPs in the wavelength range of 400-500 nm using a spectrometer equipped with cooled charged coupled devices (CCD) during irradiation by different intensities of 1 MHz ultrasound and IPL pulses. In order to confirm these results, the terephthalic acid chemical dosimeter was utilized as well. The SCL signal recorded in the gel phantoms containing GNPs at different intensities of ultrasound in the presence of intense pulsed light was higher than the gel phantoms without GNPs. These results have been confirmed by the obtained data from the chemical dosimetry method. Acoustic cavitation in the presence of GNPs and intense pulsed light has been suggested as a new approach designed for decreasing threshold intensity of acoustic cavitation and improving targeted therapeutic effects. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Parametric generation of high-energy 14.5-fs light pulses at 1.5 mum.

    Nisoli, M; Stagira, S; De Silvestri, S; Svelto, O; Valiulis, G; Varanavicius, A

    1998-04-15

    High-energy light pulses that are tunable from 1.1 to 2.6 mum, with a duration as short as 14.5 fs were generated in a type II phase-matching beta-BaB(2)O(4) traveling-wave parametric converter pumped by 18-fs pulses obtained from a Ti:sapphire laser with chirped-pulse amplification, followed by a hollow-fiber compressor.

  15. Gain-switched all-fiber lasers and quasi-continuous wave supercontinuum generation

    Larsen, Casper

    The extreme broadening phenomenon of supercontinuum (SC) generation in optical fibers is the basis of SC laser sources. These sources have numerous applications in areas, such as spectroscopy and microscopy due to the unique combination of extremely broad spectral bandwidths, high spectral power...... densities, and high spatial coherence. In this work the feasibility of applying gain-switched all-fiber lasers to SC generation is investigated. It is motivated by the simplicity of the architecture and the ability to scale the optical output power of such fiber lasers. The physics of fiber lasers......-switching of fiber lasers with a variety of different configurations are carried out. The peak power, pulse duration, bandwidth, and scaling with repetition rate are thoroughly described. General guidelines are submitted to enable designing of gainswitched fiber lasers with specifically tailored properties...

  16. Adhesion characteristics of VO2 ink film sintered by intense pulsed light for smart window

    Youn, Ji Won; Lee, Seok-Jae; Kim, Kwang-Seok; Kim, Dae Up

    2018-05-01

    Progress in the development of energy-efficient coatings on glass has led to the research of smart windows that can modulate solar energy in response to an external stimulus like light, heat, or electricity. Thermochromic smart windows have attracted great interest because they provide highly visible transparency and intelligently controllable solar heat. VO2 has been widely used as coating material for thermochromism owing to its reversible metal-to-insulator transition near room temperature. However, unstable crystalline phases and expensive fabrication processes of VO2 films limit their facile application in smart windows. To overcome these restrictions, we manufactured nanoinks based on VO2 nanoparticles and fabricated films using spin coating and intense pulsed light (IPL) sintering on a quartz substrate. We examined adhesion between the VO2 nanoink films and the quartz substrate by varying the applied voltages and the number of pulses. The average adhesion of thin films increased to 83 and 108 N/m as the applied voltage during IPL sintering increased from 1400 to 2000 V. By increasing the number of pulses from 5 to 20, the adhesive strength increased from 83 to 94 N/m at 1400 V, and decreased from 108 to 96 N/m at 2000 V voltage.

  17. Extremely short light pulses: generation; diagnostics, and application in attosecond spectroscopy

    Iakovlev, V.

    2003-06-01

    The scope of the thesis includes the design of chirped mirrors, as well as theoretical investigations in the fields of high-harmonic generation and laser-dressed Auger decay, the unifying aspect being the presence of extremely short light pulses and physical processes taking place on a femtosecond scale. The main results of the research are the following: 1) It was shown that efficient global optimization of chirped mirrors is possible with an adapted version of the memetic algorithm (also known as hybrid genetic algorithm). 2) The analysis of high-harmonic spectra generated by a few-cycle laser pulse can reveal the electric field of the pulse in the vicinity of its envelope peak. The method developed for this purpose can also be regarded as a method to measure the carrier-envelope phase of laser pulses, which is more robust and has a larger range of applicability compared to the simple analysis of the cut-off region of high-harmonic spectra. 3) A quantum theory of time-resolved Auger spectroscopy was developed. Based on the essential states method, closed-form expressions for probability amplitudes were derived. The theory lays the foundation for the interpretation of experiments that probe electronic motion during atomic excitation, deexcitation, and ionization. (author)

  18. Coherent multi-octave spanning supercontinuum in tapered sulphide fibres

    Kubat, Irnis; Mägi, Eric; Hu, Tomonori

    A novel frequency comb design is proposed based on a newly developed ultrafast 3µm mid-infrared laser in conjunction with micro-taper chalcogenide fibre. The novel design allows for an all-fibre laser source yielding up to three octave coherent supercontinuum. The design is the first step in real...

  19. Infrared Supercontinuum Generation in Soft-glass Fibers

    Agger, Christian

    This Ph.D.-project presents numerical simulations of supercontinuum (SC) generation in optical fiber laser systems based on various soft-glass materials. Extensive numerical modeling is performed in order to understand and characterize the generated SC. This includes a review of the generalized...

  20. Supercontinuum based mid-IR imaging spectroscopy for cancer detection

    Bang, Ole; Møller, Uffe Visbech; Kubat, Irnis

    2014-01-01

    -power laser diodes, quantum cascade lasers and synchrotron radiation, have precluded mid-IR applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. In an international collaboration in the EU project MINERVA [minerva...

  1. Towards a table-top synchrotron based on supercontinuum generation

    Petersen, Christian Rosenberg; Moselund, Peter M.; Huot, Laurent

    2018-01-01

    Recently, high brightness and broadband supercontinuum (SC) sources reaching far into the infrared (IR) have emerged with the potential to rival traditional broadband sources of IR radiation. Here, the brightness of these IR SC sources is compared with that of synchrotron IR beamlines and Si...

  2. Further investigations into pulsed optically stimulated luminescence from feldspars using blue and green light

    Ankjaergaard, C.; Jain, M.; Kalchgruber, R.; Lapp, T.; Klein, D.; McKeever, S.W.S.; Murray, A.S.; Morthekai, P.

    2009-01-01

    The purpose of this paper is to investigate characteristics of luminescence signals resulting from pulsed optical stimulation of feldspars and thereby to understand the underlying processes giving rise to the signal. Fourteen different feldspar specimens were investigated using time-resolved optically stimulated luminescence (TR-OSL), and these signals can be mathematically described as a sum of 4 exponential components (a, b, c, d). The slowest component, d, increases with the duration of the light pulse as expected from the exponential model. The stimulation temperature dependence experiment suggests that the TR-OSL signal decay is governed by the recombination process and not by the excited state lifetime. Furthermore data from the TR-OSL signal dependence on stimulation time and preheat temperature suggest that the recombination process may not be a sum of exponentials, although the model cannot be rejected definitively.

  3. Case histories of intense pulsed light phototherapy in dermatology - the HPPL™ and IFL™ technologies

    Alessandro Martella

    2017-06-01

    Full Text Available The intense pulsed light (IPL and laser technologies are widely used for skin rejuvenation and for treating several dermatological disorders such as skin dyschromia and acne, and for non-ablative dermal remodeling of rhytides and hypertrophic scars. Technological evolution is rapid. The High Power Pulsed Light™ [HPPL™] and Incoherent Fast Light™ technologies [IFL™, Novavision Group S.p.A., 20826 Misinto (MB, Italy] are recent innovations in the field of IPL technologies; IFL™ is a further evolution of the already advanced HPPL™ system. The paper presents a selection of case histories of dermatological lesions treated with the HPPL™ and IFL™ technologies. All study materials were appropriately peer-reviewed for ethical problems.

  4. Annealing characteristics of SiO2-Si structures after incoherent light pulse processing

    Sieber, N.; Klabes, R.; Voelskow, M.; Fenske, F.

    1982-01-01

    The behaviour of oxide charges and interface charges in boron implanted and non-implanted SiO 2 -Si structures as well as the electrical activation of the dopants by the action of incoherent light pulses was studied. Depth profiles of electrically active boron ions are presented for different annealing conditions as measured by the pulsed C-V method. It can be concluded that exposure of MOS structures to intense radiation of flash lamps does not increase the fixed charge and the fast state density at the SiO 2 -Si interface if optimal annealing conditions (energy densities) are employed. Low dose boron implanted silicon can be electrically activated without diffusion or segregation of dopants

  5. Adjustable supercontinuum laser source with low coherence length and low timing jitter

    Andreana, Marco; Bertrand, Anthony; Hernandez, Yves; Leproux, Philippe; Couderc, Vincent; Hilaire, Stéphane; Huss, Guillaume; Giannone, Domenico; Tonello, Alessandro; Labruyère, Alexis; Rongeat, Nelly; Nérin, Philippe

    2010-04-01

    This paper introduces a supercontinuum (SC) laser source emitting from 400 nm to beyond 1750 nm, with adjustable pulse repetition rate (from 250 kHz to 1 MHz) and duration (from ~200 ps to ~2 ns). This device makes use of an internally-modulated 1.06 μm semiconductor laser diode as pump source. The output radiation is then amplified through a preamplifier (based on single-mode Yb-doped fibres) followed by a booster (based on a double-clad Yb-doped fibre). The double-clad fibre output is then spliced to an air-silica microstructured optical fibre (MOF). The small core diameter of the double-clad fibre allows reducing the splice loss. The strongly nonlinear propagation regime in the MOF leads to the generation of a SC extending from the violet to the nearinfrared wavelengths. On the Stokes side of the 1.06 μm pump line, i.e., in the anomalous dispersion regime, the spectrum is composed of an incoherent distribution of quasi-solitonic components. Therefore, the SC source is characterised by a low coherence length, which can be tuned by simply modifying pulse duration, that is closely related to the number of quasi-solitonic components brought into play. Finally, the internal modulation of the laser diode permits to achieve excellent temporal stability, both in terms of average power and pulse-to-pulse period.

  6. INACTIVATION OF PATHOGENIC BACTERIA USING PULSED UV-LIGHT AND ITS APPLICATION IN WATER DISINFECTION AND QUALITY CONTROL

    M. K. Sharifi-Yazdi H. Darghahi

    2006-09-01

    Full Text Available The lethality of pulsed ultra-violet (UV rich light for the inactivation of pathogenic bacteria has been investigated. A low pressure xenon filled flash lamps that produced UV intensities have been used. The pulsed operation of the system enable the release of electrical energy stored in the capacitor into the flash lamp within a short time and produces the high current and high peak power required for emitting the intense UV flash. The flash frequency was adjusted to one pulse per second. Several types of bacteria were investigated for their susceptibility to pulsed UV illumination. The treated bacterial populations were reduced and determined by direct viable counts. Among the tested bacteria Pseudomonas aeruginosa was the most susceptible to the pulsed UV- light with a 8 log10 cfu/ml reduction after 11 pulses, while the spores of Bacillus megaterium was the most resistant and only 4 log10 cfu/ml reduction achieved after 50 pulses of illumination. The results of this study demonstrated that pulsed UV- light technology could be used as an effective method for the inactivation, of pathogenic bacteria in different environments such as drinking water.

  7. Self-compression of spatially limited laser pulses in a system of coupled light-guides

    Balakin, A. A.; Litvak, A. G.; Mironov, V. A.; Skobelev, S. A.

    2018-04-01

    The self-action features of wave packets propagating in a 2D system of equidistantly arranged fibers are studied analytically and numerically on the basis of the discrete nonlinear Schrödinger equation. Self-consistent equations for the characteristic scales of a Gaussian wave packet are derived on the basis of the variational approach, which are proved numerically for powers P beams become filamented, and their amplitude is limited due to the nonlinear breaking of the interaction between neighboring light-guides. This makes it impossible to collect a powerful wave beam in a single light-guide. Variational analysis shows the possibility of the adiabatic self-compression of soliton-like laser pulses in the process of 3D self-focusing on the central light-guide. However, further increase of the field amplitude during self-compression leads to the development of longitudinal modulation instability and the formation of a set of light bullets in the central fiber. In the regime of hollow wave beams, filamentation instability becomes predominant. As a result, it becomes possible to form a set of light bullets in optical fibers located on the ring.

  8. Carbon Nano-particle Synthesized by Pulsed Arc Discharge Method as a Light Emitting Device

    Ahmadi, Ramin; Ahmadi, Mohamad Taghi; Ismail, Razali

    2018-04-01

    Owing to the specific properties such as high mobility, ballistic carrier transport and light emission, carbon nano-particles (CNPs) have been employed in nanotechnology applications. In the presented work, the CNPs are synthesized by using the pulsed arc discharge method between two copper electrodes. The rectifying behaviour of produced CNPs is explored by assuming an Ohmic contact between the CNPs and the electrodes. The synthesized sample is characterized by electrical investigation and modelling. The current-voltage (I-V) relationship is investigated and bright visible light emission from the produced CNPs was measured. The electroluminescence (EL) intensity was explored by changing the distance between two electrodes. An incremental behaviour on EL by a resistance gradient and distance reduction is identified.

  9. Enhancement of mosquito trapping efficiency by using pulse width modulated light emitting diodes

    Liu, Yu-Nan; Liu, Yu-Jen; Chen, Yi-Chian; Ma, Hsin-Yi; Lee, Hsiao-Yi

    2017-01-01

    In this study, a light-driving bug zapper is presented for well controlling the diseases brought by insects, such as mosquitoes. In order to have the device efficient to trap the insect pests in off-grid areas, pulse width modulated light emitting diodes (PWM-LED) combined with a solar power module are proposed and implemented. With specific PWM electric signals to drive the LED, it is found that no matter what the ability of catching insects or the consumed power efficiency can be enhanced thus. It is demonstrated that 40% of the UV LED consumed power and 25.9% of the total load power consumption can be saved, and the trapped mosquitoes are about 250% increased when the PWM method is applied in the bug zapper experiments.

  10. Generation of a mid-infrared broadband polarized supercontinuum in As2Se3 photonic crystal fibers

    Wang Xiao-Yan; Li Shu-Guang; Liu Shuo; Yin Guo-Bing; Li Jian-She

    2012-01-01

    A simplified structure of birefringent chalcogenide As 2 Se 3 photonic crystal fiber (PCF) is designed. Properties of birefringence, polarization extinction ratio, chromatic dispersion, nonlinear coefficient, and transmission are studied by using the multipole method, the finite-difference beam propagation method, and the adaptive split-step Fourier method. Considering that the zero dispersion wavelength of our proposed fiber is about 4 μm, we have analysed the mechanism of spectral broadening in PCFs with different pitches in detail, with femtosecond pulses at a wavelength of 4 μm as the pump pulses. Especially, mid-infrared broadband polarized supercontinuums are obtained in a 3-cm PCF with an optimal pitch of 2 μm. Their spectral width at −20 dB reaches up to 12 μm. In the birefringent PCF, we find that the supercontinuum generation changes with the pump alignment angle. Research results show that no coupling between eigenpolarization modes are observed at the maximum average power (i.e., 37 mW), which indicates that the polarization state is well maintained. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Intense pulsed light, near infrared pulsed light, and fractional laser combination therapy for skin rejuvenation in Asian subjects: a prospective multi-center study in China.

    Tao, Li; Wu, Jiaqiang; Qian, Hui; Lu, Zhong; Li, Yuanhong; Wang, Weizhen; Zhao, Xiaozhong; Tu, Ping; Yin, Rui; Xiang, Leihong

    2015-09-01

    Ablative skin rejuvenation therapies have limitations for Asian people, including post-inflammatory hyperpigmentation and long down time. Non-ablative lasers are safer but have limited efficacy. This study is to investigate the safety and efficacy of a combination therapy consisting of intense pulsed light (IPL), near infrared (NIR) light, and fractional erbium YAG (Er:YAG) laser for skin rejuvenation in Asian people. This study recruited 113 subjects from six sites in China. Subjects were randomly assigned to a full-face group, who received combination therapy, and split-face groups, in which one half of the face received combination therapy and the other half received IPL monotherapy. Each subject received five treatment sessions during a period of 90 days. Subjects were followed up at 1 and 3 months post last treatment. Three months after last treatment, the full-face group (n = 57) had a global improvement rate of 29 % and 29 % for wrinkles, 32 % for skin texture, 33 % for pigment spots, 28 % for pore size, respectively. For patients in the split-face groups (n = 54), monotherapy side had a global improvement rate of 23 % and 20 % for wrinkles, 27 % for skin texture, 25 % for pigment spots, 25 % for pore size, respectively. Both combination therapy and monotherapy resulted in significant improvements at the follow-up visits compared to baseline (P < 0.001). Combination therapy showed significantly greater improvements compared to monotherapy at two follow-up visits (P < 0.05). Combination therapy is a safe and more effective strategy than IPL monotherapy for skin rejuvenation in Asian people.

  12. Representation-free description of light-pulse atom interferometry including non-inertial effects

    Kleinert, Stephan, E-mail: stephan.kleinert@uni-ulm.de [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Kajari, Endre; Roura, Albert [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Schleich, Wolfgang P. [Institut für Quantenphysik and Center for Integrated Quantum Science and Technology (IQST), Universität Ulm, Albert-Einstein-Allee 11, D-89081 Ulm (Germany); Texas A& M University Institute for Advanced Study (TIAS), Institute for Quantum Science and Engineering (IQSE) and Department of Physics and Astronomy, Texas A& M University College Station, TX 77843-4242 (United States)

    2015-12-30

    Light-pulse atom interferometers rely on the wave nature of matter and its manipulation with coherent laser pulses. They are used for precise gravimetry and inertial sensing as well as for accurate measurements of fundamental constants. Reaching higher precision requires longer interferometer times which are naturally encountered in microgravity environments such as drop-tower facilities, sounding rockets and dedicated satellite missions aiming at fundamental quantum physics in space. In all those cases, it is necessary to consider arbitrary trajectories and varying orientations of the interferometer set-up in non-inertial frames of reference. Here we provide a versatile representation-free description of atom interferometry entirely based on operator algebra to address this general situation. We show how to analytically determine the phase shift as well as the visibility of interferometers with an arbitrary number of pulses including the effects of local gravitational accelerations, gravity gradients, the rotation of the lasers and non-inertial frames of reference. Our method conveniently unifies previous results and facilitates the investigation of novel interferometer geometries.

  13. Effect of intense pulsed light on immature burn scars: A clinical study

    Arindam Sarkar

    2014-01-01

    Full Text Available Introduction: As intense pulsed light (IPL is widely used to treat cutaneous vascular malformations and also used as non-ablative skin rejunuvation to remodel the skin collagen. A study has been undertaken to gauze the effect of IPL on immature burn scars with regard to vascularity, pliability and height. Materials and Methods: This study was conducted between June 2013 and May 2014, among patients with immature burn scars that healed conservatively within 2 months. Photographic evidence of appearance of scars and grading and rating was done with Vancouver Scar Scale parameters. Ratings were done for both case and control scar after the completion of four IPL treatment sessions and were compared. Results: Out of the 19 cases, vascularity, pliability and height improved significantly (P < 0.05 in 13, 14 and 11 scars respectively following IPL treatment. Conclusions: Intense pulsed light was well-tolerated by patients, caused good improvement in terms of vascularity, pliability, and height of immature burn scar.

  14. Pulsed Ultraviolet Light Reduces Immunoglobulin E Binding to Atlantic White Shrimp (Litopenaeus setiferus Extract

    Si-Yin Chung

    2011-06-01

    Full Text Available Pulsed ultraviolet light (PUV, a novel food processing and preservation technology, has been shown to reduce allergen levels in peanut and soybean samples. In this study, the efficacy of using PUV to reduce the reactivity of the major shrimp allergen, tropomyosin (36-kDa, and to attenuate immunoglobulin E (IgE binding to shrimp extract was examined. Atlantic white shrimp (Litopenaeus setiferus extract was treated with PUV (3 pulses/s, 10 cm from light source for 4 min. Tropomyosin was compared in the untreated, boiled, PUV-treated and [boiled+PUV]-treated samples, and changes in the tropomyosin levels were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. IgE binding of the treated extract was analyzed via immunoblot and enzyme-linked immunosorbent assay (ELISA using pooled human plasma containing IgE antibodies against shrimp allergens. Results showed that levels of tropomyosin and IgE binding were reduced following PUV treatment. However, boiling increased IgE binding, while PUV treatment could offset the increased allergen reactivity caused by boiling. In conclusion, PUV treatment reduced the reactivity of the major shrimp allergen, tropomyosin, and decreased the IgE binding capacity of the shrimp extract.

  15. Electromagnetically induced transparency and nonlinear pulse propagation in a combined tripod and Λ atom-light coupling scheme

    Hamedi, H R; Ruseckas, J; Juzeliūnas, G

    2017-01-01

    We consider propagation of a probe pulse in an atomic medium characterized by a combined tripod and Lambda (Λ) atom-light coupling scheme. The scheme involves three atomic ground states coupled to two excited states by five light fields. It is demonstrated that dark states can be formed for such an atom-light coupling. This is essential for formation of the electromagnetically induced transparency (EIT) and slow light. In the limiting cases the scheme reduces to conventional Λ- or N -type atom-light couplings providing the EIT or absorption, respectively. Thus, the atomic system can experience a transition from the EIT to the absorption by changing the amplitudes or phases of control lasers. Subsequently the scheme is employed to analyze the nonlinear pulse propagation using the coupled Maxwell–Bloch equations. It is shown that a generation of stable slow light optical solitons is possible in such a five-level combined tripod and Λ atomic system. (paper)

  16. Supercontinuum generation from 437 to 2850 nm in a tapered fluorotellurite microstructured fiber

    Wang, F.; Jia, Z. X.; Yao, C. F.; Wang, S. B.; Hu, M. L.; Wu, C. F.; Ohishi, Y.; Qin, W. P.; Qin, G. S.

    2016-12-01

    We demonstrated supercontinuum (SC) generation in a tapered fluorotellurite microstructured fiber (MF) with a sub-micrometer core diameter. Fluorotellurite MFs based on TeO2-BaF2-Y2O3 glasses were fabricated by using a rod-in-tube method and a tapered fluorotellurite MF with a minimum core diameter of ~0.65 µm was prepared by employing a tapering system. A 1560 nm femtosecond fiber laser was used as the pumping source. With increasing the peak power of the launched pump laser to ~11 kW, SC light expanding from 437 to 2850 nm was generated in the tapered fluorotellurite MF. In addition, relatively strong blue-shifted dispersive wave at ~489 nm was also observed from the tapered fluorotellurite MF.

  17. Coherent fiber supercontinuum laser for nonlinear biomedical imaging

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin

    2012-01-01

    Nonlinear biomedical imaging has not benefited from the well-known techniques of fiber supercontinuum generation for reasons such as poor coherence (or high noise), insufficient controllability, low spectral power intensity, and inadequate portability. Fortunately, a few techniques involving...... nonlinear fiber optics and femtosecond fiber laser development have emerged to overcome these critical limitations. These techniques pave the way for conducting point-of-care nonlinear biomedical imaging by a low-maintenance cost-effective coherent fiber supercontinuum laser, which covers a broad emission...... wavelength of 350-1700 nm. A prototype of this laser has been demonstrated in label-free multimodal nonlinear imaging of cell and tissue samples.© (2012) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only....

  18. Intense pulsed light vs. long-pulsed dye laser treatment of telangiectasia after radiotherapy for breast cancer: a randomized split-lesion trial of two different treatments

    Nymann, P.; Hedelund, L.; Hædersdal, Merete

    2009-01-01

    Background Chronic radiodermatitis is a common sequela of treatment for breast cancer and potentially a psychologically distressing factor for the affected women. Objectives To evaluate the efficacy and adverse effects of treatments with a long-pulsed dye laser (LPDL) vs. intense pulsed light (IPL......); the interventions were randomly assigned to left/right or upper/lower halves. Primary end-points were reduction in telangiectasia, patient satisfaction and preferred treatment. Secondary end-points were pain and adverse effects. Efficacy was registered by blinded photographic evaluations 3 months after the final...

  19. Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers

    Ramsay, Jacob Søndergaard; Dupont, Sune Vestergaard Lund; Johansen, Mikkel Willum

    2013-01-01

    Using femtosecond upconversion we investigate the time and wavelength structure of infrared supercontinuum generation. It is shown that radiation is scattered into higher order spatial modes (HOMs) when generating a supercontinuum using fibers that are not single-moded, such as a step-index ZBLAN...... not include scattering into HOMs, and including this provides an extra degree of freedom for tailoring supercontinuum sources....

  20. Nocturnal Light Pulses Lower Carbon Dioxide Production Rate without Affecting Feed Intake in Geese

    De-Jia Huang

    2016-03-01

    Full Text Available This study was conducted to investigate the effect of nocturnal light pulses (NLPs on the feed intake and metabolic rate in geese. Fourteen adult Chinese geese were penned individually, and randomly assigned to either the C (control or NLP group. The C group was exposed to a 12L:12D photoperiod (12 h light and 12 h darkness per day, whereas the NLP group was exposed to a 12L:12D photoperiod inserted by 15-min lighting at 2-h intervals in the scotophase. The weight of the feed was automatically recorded at 1-min intervals for 1 wk. The fasting carbon dioxide production rate (CO2 PR was recorded at 1-min intervals for 1 d. The results revealed that neither the daily feed intake nor the feed intakes during both the daytime and nighttime were affected by photoperiodic regimen, and the feed intake during the daytime did not differ from that during the nighttime. The photoperiodic treatment did not affect the time distribution of feed intake. However, NLPs lowered (p<0.05 the mean and minimal CO2 PR during both the daytime and nighttime. Both the mean and minimal CO2 PR during the daytime were significantly higher (p<0.05 than those during the nighttime. We concluded that NLPs lowered metabolic rate of the geese, but did not affect the feed intake; both the mean and minimal CO2 PR were higher during the daytime than during the nighttime.

  1. A new method for multi-channel Fabry-Perot spectroscopy of light pulses in the nanosecond regime

    Behn, R.

    1975-01-01

    The demand for powerful multichannel spectrometers raised, e.g., in laser scattering plasma diagnostics, gave rise to the question if it would not be possible to avoid the light losses occuring in the use of multichannel Fabry-Perot spectrometers. These losses can be avoided with the technique presented here. The reflected light is collected and fed back to the interferometer at a different angle. It can thus be recovered for registration in another spectral channel. This method is particularly suitable for the investigation of short light pulses. A spectrum can thus be scanned step by step with full utilization of the transit time of the light pulse. In addition to light recovery, there is another advantage in that only one detector is used for multichannel analysis, thus eliminating calibration problems. In the annex to the report, emission spectres of different dye laser versions are presented and explained. (orig./GG) [de

  2. High Mobility Flexible Amorphous IGZO Thin-Film Transistors with a Low Thermal Budget Ultra-Violet Pulsed Light Process.

    Benwadih, M; Coppard, R; Bonrad, K; Klyszcz, A; Vuillaume, D

    2016-12-21

    Amorphous, sol-gel processed, indium gallium zinc oxide (IGZO) transistors on plastic substrate with a printable gate dielectric and an electron mobility of 4.5 cm 2 /(V s), as well as a mobility of 7 cm 2 /(V s) on solid substrate (Si/SiO 2 ) are reported. These performances are obtained using a low temperature pulsed light annealing technique. Ultraviolet (UV) pulsed light system is an innovative technique compared to conventional (furnace or hot-plate) annealing process that we successfully implemented on sol-gel IGZO thin film transistors (TFTs) made on plastic substrate. The photonic annealing treatment has been optimized to obtain IGZO TFTs with significant electrical properties. Organic gate dielectric layers deposited on this pulsed UV light annealed films have also been optimized. This technique is very promising for the development of amorphous IGZO TFTs on plastic substrates.

  3. Temporal reflectance from a light pulse irradiated medium embedded with highly scattering cores

    Hsu Peifeng; Lu Xiaodong

    2007-01-01

    This paper presents a new approach to utilize ultrashort pulsed laser for optical diagnostics with numerical simulations. The method is based on the use of ultrafast pulses with a pulsewidth selected according to the probed medium's radiative property and/or size. Our previous work in nonhomogeneous media has shown that the resulting time-resolved reflectance signal will have a unique characteristic: it will show a direct correlation of ballistic photon travel time and interface location, which is in between different layers or nonhomogeneous regions. The premise is based on utilizing the medium's structural information carried by the ballistic and snake photons without being masked by the diffuse photons. In this study, the space-time correlation is further explored in the case of minimally scattered photons from a large scattering coefficient core region embedded within a less-scattering medium. Time-resolved reflectance signals of the single scattering core and multiple scattering cores within a three-dimensional medium demonstrate the concept and illustrate the additional effect due to the scattered photons from the core region. A unique temporal signal profile's correlation at various detector positions with respect to the scattering core is explained in detail. The result has important implications. This approach will lead to a much simpler and more precise determination of the probed medium's composition or structure. Due to the large computational requirement to obtain the physical details of the light pulse propagation inside highly scattering multi-dimensional media, the reverse Monte-Carlo method is used. The potential applications of the method include non-destructive diagnostics, optical imaging, and remote sensing of underwater objects

  4. Porous silicon photonic devices using pulsed anodic etching of lightly doped silicon

    Escorcia-Garcia, J; Sarracino MartInez, O; Agarwal, V; Gracia-Jimenez, J M

    2009-01-01

    The fabrication of porous silicon photonic structures using lightly doped, p-type, silicon wafers (resistivity: 14-22 Ω cm) by pulsed anodic etching is reported. The optical properties have been found to be strongly dependent on the duty cycle and frequency of the applied current. All the interfaces of the single layered samples were digitally analysed by calculating the mean interface roughness (R m ). The interface roughness was found to be maximum for the sample with direct current. The use of a duty cycle above 50%, in a certain range of frequencies, is found to reduce the interface roughness. The optical properties of some microcavities and rugate filters are investigated from the optimized parameters of the duty cycle and frequency, using the current densities of 10, 90 and 150 mA cm -2 .

  5. The stability of vacuum phototriodes to varying light pulse loads and long term changes in response.

    Hobson, Peter

    2012-01-01

    Mesh anode Vacuum Phototriodes (VPTs) are radiation resistant, single gain-stage photomultipliers which are designed to operate in a strong quasi-axial magnetic field. These VPTs are used in the endcap electromagnetic calorimeter of the CMS experiment at the CERN LHC to detect scintillation light from lead tungstate crystals. Short term dynamic response changes occur because of pulse rate variations during normal LHC operation cycles. Over the longer term the effect of increasing integrated charge taken from the photocathode causes an overall degradation of response. We have investigated these effects over time periods exceeding two years of simulated operation and discuss the implications for the long term performance of the VPTs in CMS.

  6. Fabrication of Elemental Copper by Intense Pulsed Light Processing of a Copper Nitrate Hydroxide Ink.

    Draper, Gabriel L; Dharmadasa, Ruvini; Staats, Meghan E; Lavery, Brandon W; Druffel, Thad

    2015-08-05

    Printed electronics and renewable energy technologies have shown a growing demand for scalable copper and copper precursor inks. An alternative copper precursor ink of copper nitrate hydroxide, Cu2(OH)3NO3, was aqueously synthesized under ambient conditions with copper nitrate and potassium hydroxide reagents. Films were deposited by screen-printing and subsequently processed with intense pulsed light. The Cu2(OH)3NO3 quickly transformed in less than 100 s using 40 (2 ms, 12.8 J cm(-2)) pulses into CuO. At higher energy densities, the sintering improved the bulk film quality. The direct formation of Cu from the Cu2(OH)3NO3 requires a reducing agent; therefore, fructose and glucose were added to the inks. Rather than oxidizing, the thermal decomposition of the sugars led to a reducing environment and direct conversion of the films into elemental copper. The chemical and physical transformations were studied with XRD, SEM, FTIR and UV-vis.

  7. Studying intense pulsed light method along with corticosteroid injection in treating keloid scars.

    Shamsi Meymandi, Simin; Rezazadeh, Azadeh; Ekhlasi, Ali

    2014-02-01

    Results of various studies suggest that the hypertrophic and keloid scars are highly prevalent in the general population and are irritating both physically and mentally. Considering the variety of existing therapies, intense pulsed light (IPL) method along with corticosteroid injection was evaluated in treating these scars. 86 subjects were included in this clinical trial. Eight sessions of therapeutic intervention were done with IPL along with corticosteroid intralesional injection using 450 to 1200 NM filter, Fluence 30-40 J/cm2, pulse duration of 2.1-10 ms and palsed delay 10-40 ms with an interval of three weeks. To specify the recovery consequences and complication rate and to determine features of the lesion, the criteria specified in the study of Eroll and Vancouver scar scale were used. The level of clinical improvement, color improvement and scar height was 89.1%, 88.8% and 89.1% respectively. The incidence of complications (1 telangiectasia case, 7 hyperpigmentation cases and 2 atrophy cases) following treatment with IPL was 11.6%. Moreover, the participants' satisfaction with IPL method was 88.8%. This study revealed that a combined therapy (intralesional corticosteroid injection + IPL) increases the recovery level of hypertrophic and keloid scars. It was also demonstrated that this method had no significant side effect and patients were highly satisfied with this method.

  8. Zero-dispersion wavelength independent quasi-CW pumped supercontinuum generation

    Larsen, Casper; Sørensen, Simon Toft; Noordegraaf, Danny

    2013-01-01

    Continuous wave (CW) pumped supercontinuum generation depends strongly on the zero-dispersion wavelength (ZDW) of the fiber due to the low peak power. Here we study several photonic crystal fibers by use of a gain-switched CW pump laser and investigate for what power level the supercontinuum...

  9. A method for the coherence measurement of the supercontinuum source using Michelson interferometer

    Semenova, V A; Tsypkin, A V; Putilin, S E; Bespalov, V G

    2014-01-01

    Coherent properties of supercontinuum sources are highly significant for various applications, including low-coherence interferometry and optical frequency metrology. We propose a fast method for the spatial and temporal self-coherence of the SC measurement using Michelson interferometer without a mirror movement. Furthermore, we present self-coherence measurements of the supercontinuum, generated in microstructured fiber at 780 nm.

  10. Supercontinuum - broad as a lamp, bright as a laser, now in the mid-infrared

    Moselund, Peter M.; Petersen, Christian; Dupont, Sune

    2012-01-01

    Based on the experience gained developing our market leading visible spectrum supercontinuum sources NKT Photonics has built the first mid-infrared supercontinuum source based on modelocked picosecond fiber lasers. The source is pumped by a ≈ 2 um laser based on a combination of erbium and thuliu...

  11. Noise study of all-normal dispersion supercontinuum sources for potential application in optical coherence tomography

    Gonzalo, I. B.; Engelsholm, R. D.; Bang, O.

    2018-03-01

    Commercially available silica-fiber-based and ultra-broadband supercontinuum (SC) sources are typically generated by pumping close to the zero-dispersion wavelength (ZDW) of a photonic crystal fiber (PCF), using high-power picosecond or nanosecond laser pulses. Despite the extremely broad bandwidths, such sources are characterized by large intensity fluctuations, limiting their performance for applications in imaging such as optical coherence tomography (OCT). An approach to eliminate the influence of noise sensitive effects is to use a so-called all-normal dispersion (ANDi) fiber, in which the dispersion is normal for all the wavelengths of interest. Pumping these types of fibers with short enough femtosecond pulses allows to suppress stimulated Raman scattering (SRS), which is known to be as noisy process as modulation instability (MI), and coherent SC is generated through self-phase modulation (SPM) and optical wave breaking (OWB). In this study, we show the importance of the pump laser and fiber parameters in the design of low-noise ANDi based SC sources, for application in OCT. We numerically investigate the pulse-to-pulse fluctuations of the SC, calculating the relative intensity noise (RIN) as a function of the pump pulse duration and fiber length. Furthermore, we experimentally demonstrate the role of the fiber length on the RIN of the ANDi SC, validating the results calculated numerically. In the end, we compare the RIN of a commercial SC source based on MI and the ANDi SC source developed here, which shows better noise performance when it is carefully designed.

  12. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre

    Petersen, Christian Rosenberg; Møller, Uffe Visbech; Kubat, Irnis

    2014-01-01

    -power laser diodes, quantum cascade lasers and synchrotron radiation have precluded mid-infrared applications where the spatial coherence, broad bandwidth, high brightness and portability of a supercontinuum laser are all required. Here, we demonstrate experimentally that launching intense ultra-short pulses...... the potential of fibres to emit across the mid-infrared molecular ‘fingerprint region’, which is of key importance for applications such as early cancer diagnostics3, gas sensing and food quality control....

  13. Ultra-low power anti-crosstalk collision avoidance light detection and ranging using chaotic pulse position modulation approach

    Hao Jie; Gong Ma-li; Du Peng-fei; Lu Bao-jie; Zhang Fan; Zhang Hai-tao; Fu Xing

    2016-01-01

    A novel concept of collision avoidance single-photon light detection and ranging (LIDAR) for vehicles has been demonstrated, in which chaotic pulse position modulation is applied on the transmitted laser pulses for robust anti-crosstalk purposes. Besides, single-photon detectors (SPD) and time correlated single photon counting techniques are adapted, to sense the ultra-low power used for the consideration of compact structure and eye safety. Parameters including pulse rate, discrimination threshold, and number of accumulated pulses have been thoroughly analyzed based on the detection requirements, resulting in specified receiver operating characteristics curves. Both simulation and indoor experiments were performed to verify the excellent anti-crosstalk capability of the presented collision avoidance LIDAR despite ultra-low transmitting power. (paper)

  14. High-Wattage Pulsed Irradiation of Linearly Polarized Near-Infrared Light to Stellate Ganglion Area for Burning Mouth Syndrome

    Yukihiro Momota

    2014-01-01

    Full Text Available The purpose of this study was to apply high-wattage pulsed irradiation of linearly polarized near-infrared light to the stellate ganglion area for burning mouth syndrome (BMS and to assess the efficacy of the stellate ganglion area irradiation (SGR on BMS using differential time-/frequency-domain parameters (D parameters. Three patients with BMS received high-wattage pulsed SGR; the response to SGR was evaluated by visual analogue scale (VAS representing the intensity of glossalgia and D parameters used in heart rate variability analysis. High-wattage pulsed SGR significantly decreased the mean value of VAS in all cases without any adverse event such as thermal injury. D parameters mostly correlated with clinical condition of BMS. High-wattage pulsed SGR was safe and effective for the treatment of BMS; D parameters are useful for assessing efficacy of SGR on BMS.

  15. Mechanism of redox reactions induced by light and electron pulse in solutions of mixed ligand iron(II) complex cyanides

    Horvath, A.; Szoeke, J.; Wojnarovits, L.

    1991-01-01

    Redox reactions induced by light and electron pulse have been studied in aqueous solutions of mixed ligand iron(II) complex cyanides. The short lived intermediates have been identified by time resolved specroscopy, the results of detailed kinetic analysis have been discussed. (author) 6 refs.; 3 figs.; 2 tabs

  16. Degradation kinetics of aflatoxin B1 and B2 in filter paper and rough rice by using pulsed light irradiation

    Rough rice is susceptible to contamination by aflatoxins, which are highly toxic, mutagenic and carcinogenic compounds. To develop aflatoxin degradation technology for rice with the use of pulsed light (PL) treatment, the objective of this study was to investigate the degradation characters of aflat...

  17. Pulsed-light inactivation of pathogenic and spoilage bacteria on cheese surface.

    Proulx, J; Hsu, L C; Miller, B M; Sullivan, G; Paradis, K; Moraru, C I

    2015-09-01

    Cheese products are susceptible to postprocessing cross-contamination by bacterial surface contamination during slicing, handling, or packaging, which can lead to food safety issues and significant losses due to spoilage. This study examined the effectiveness of pulsed-light (PL) treatment on the inactivation of the spoilage microorganism Pseudomonas fluorescens, the nonenterohemorrhagic Escherichia coli ATCC 25922 (nonpathogenic surrogate of Escherichia coli O157:H7), and Listeria innocua (nonpathogenic surrogate of Listeria monocytogenes) on cheese surface. The effects of inoculum level and cheese surface topography and the presence of clear polyethylene packaging were evaluated in a full factorial experimental design. The challenge microorganisms were grown to early stationary phase and subsequently diluted to reach initial inoculum levels of either 5 or 7 log cfu/slice. White Cheddar and process cheeses were cut into 2.5×5 cm slices, which were spot-inoculated with 100 µL of bacterial suspension. Inoculated cheese samples were exposed to PL doses of 1.02 to 12.29 J/cm(2). Recovered survivors were enumerated by standard plate counting or the most probable number technique, as appropriate. The PL treatments were performed in triplicate and data were analyzed using a general linear model. Listeria innocua was the least sensitive to PL treatment, with a maximum inactivation level of 3.37±0.2 log, followed by P. fluorescens, with a maximum inactivation of 3.74±0.8 log. Escherichia coli was the most sensitive to PL, with a maximum reduction of 5.41±0.1 log. All PL inactivation curves were nonlinear, and inactivation reached a plateau after 3 pulses (3.07 J/cm(2)). The PL treatments through UV-transparent packaging and without packaging consistently resulted in similar inactivation levels. This study demonstrates that PL has strong potential for decontamination of the cheese surface. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc

  18. Generation of electromagnetic pulses from plasma channels induced by femtosecond light strings

    Cheng, Chung-Chieh; Wright, E. M.; Moloney, J. V.

    2000-01-01

    We present a model that elucidates the physics underlying the generation of an electromagnetic pulse from a femtosecond laser induced plasma channel. The radiation pressure force from the laser pulse spatially separates the ionized electrons from the heavier ions and the induced dipole moment subsequently oscillates at the plasma frequency and radiates an electromagnetic pulse.

  19. Pulse oximeter using a gain-modulated avalanche photodiode operated in a pseudo lock-in light detection mode

    Miyata, Tsuyoshi; Iwata, Tetsuo; Araki, Tsutomu

    2006-01-01

    We propose a reflection-type pulse oximeter, which employs two pairs of a light-emitting diode (LED) and a gated avalanche photodiode (APD). One LED is a red one with an emission wavelength λ = 635 nm and the other is a near-infrared one with that λ = 945 nm, which are both driven with a pulse mode at a frequency f (=10 kHz). Superposition of a transistor-transistor-logic (TTL) gate pulse on a direct-current (dc) bias, which is set so as not exceeding the breakdown voltage of each APD, makes the APD work in a gain-enhanced operation mode. Each APD is gated at a frequency 2f (=20 kHz) and its output signal is fed into a laboratory-made lock-in amplifier that works in synchronous with the pulse modulation signal of each LED at a frequency f (=10 kHz). A combination of the gated APD and the lock-in like signal detection scheme is useful for the reflection-type pulse oximeter thanks to the capability of detecting a weak signal against a large background (BG) light.

  20. Cu ion ink for a flexible substrate and highly conductive patterning by intensive pulsed light sintering.

    Wang, Byung-Yong; Yoo, Tae-Hee; Song, Yong-Won; Lim, Dae-Soon; Oh, Young-Jei

    2013-05-22

    Direct printing techniques that utilize nanoparticles to mitigate environmental pollution and reduce the processing time of the routing and formation of electrodes have received much attention lately. In particular, copper (Cu) nanoink using Cu nanoparticles offers high conductivity and can be prepared at low cost. However, it is difficult to produce homogeneous nanoparticles and ensure good dispersion within the ink. Moreover, Cu particles require a sintering process over an extended time at a high temperature due to high melting temperature of Cu. During this process, the nanoparticles oxidize quickly in air. To address these problems, the authors developed a Cu ion ink that is free of Cu particles or any other impurities. It consequently does not require separate dispersion stability. In addition, the developed ink is environmentally friendly and can be sintered even at low temperatures. The Cu ion ink was sintered on a flexible substrate using intense pulsed light (IPL), which facilitates large-area, high-speed calcination at room temperature and at atmospheric pressures. As the applied light energy increases, the Cu2O phase diminishes, leaving only the Cu phase. This is attributed to the influence of formic acid (HCOOH) on the Cu ion ink. Only the Cu phase was observed above 40 J cm(-2). The Cu-patterned film after sintering showed outstanding electrical resistivity in a range of 3.21-5.27 μΩ·cm at an IPL energy of 40-60 J cm(-2). A spiral-type micropattern with a line width of 160 μm on a PI substrate was formed without line bulges or coffee ring effects. The electrical resistivity was 5.27 μΩ·cm at an energy level of 40.6 J cm(-2).

  1. Long-pulsed dye laser versus intense pulsed light for photodamaged skin: A randomized split-face trial with blinded response evaluation

    Jorgensen, G.F.; Hedelund, L.; Haedersdal, M.

    2008-01-01

    Objective: In a randomized controlled split-face trial to evaluate efficacy and adverse effects from rejuvenation with long-pulsed dye laser (LPDL) versus intense pulsed light (IPL). Materials and Methods: Twenty female volunteers with Fitzpatrick skin types I-III, classes I-II rhytids......, and symmetrical split-face photodamage were included in the study. Subjects received a series of three treatments at 3-week intervals with half-face LPDL (V-beam Perfecta, 595 nm, Candela Laser Corporation) and half-face IPL (Ellipse Flex, Danish Dermatologic Development); the interventions being randomly...... assigned to left and right sides. Primary end-points were telangiectasias, irregular pigmentation and preferred treatment. Secondary end-points were skin texture, rhytids, pain, and adverse effects. Efficacy was evaluated by patient self-assessments and by blinded clinical on-site and photographic...

  2. Intense Pulsed Light: Friend or Foe? Molecular Evidence to Clarify Doubts.

    Ferreira, Liliana; Vitorino, Rui; Neuparth, Maria João; Rodrigues, David; Gama, Adelina; Faustino-Rocha, Ana I; Ferreira, Rita; Oliveira, Paula A

    2018-02-01

    Intense pulsed light (IPL) has been extensively applied in the field of dermatology and aesthetics; however, the long-term consequences of its use are poorly unknown, and to the best of our knowledge there is no study on the effect of IPL in neoplastic lesions. In order to better understand the molecular mechanisms underlying IPL application in the skin, we used an animal model of carcinogenesis obtained by chemical induction with 12-dimethylbenz(a)anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA). Institute of Cancer Research (ICR) mice were administered DMBA and/or TPA and treated with IPL. Skin was evaluated by histopathology and 2DE-blot-MS/MS analysis. Our data evidenced an inflammatory response and a metabolic remodeling of skin towards a glycolytic phenotype after chronic exposure to IPL, which was accomplished by increased oxidative stress and susceptibility to apoptosis. These alterations induced by IPL were more notorious in the DMBA sensitized skin. Keratins and metabolic proteins seem to be the more susceptible to oxidative modifications that might result in loss of function, contributing for the histological changes observed in treated skin. Data highlight the deleterious impact of IPL on skin phenotype, which justifies the need for more experimental studies in order to increase our understanding of the IPL long-term safety. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Light ion beam experiments with pinch reflex diodes on KfK's pulse generator KALIF

    Bluhm, H.; Buth, L.; Bohnel, K.; Harke, W.; Hoppe, P.; Karow, H.U.; Rusch, D.; Schulken, H.; Singer, J.

    1985-01-01

    The authors report on intense LI beam experiments currently performed with pinch reflex ion diodes on 2 ohms/1.4 TW-pulse generator KALIF (Karlsruhe Light Ion Facility). The goals of this work are the generation of highly focussed LI beams of well-defined ion composition, and the undertaking of beam-target experiments. The experimental studies with axial 6 cm phi-pinch reflex proton diodes have been aiming at the focussing characteristics of the diode, and at the ion species composition of the beam. Experiments have been performed using different diode geometries (anode/cathode/beam window foil shapes), and different anode return current paths, respectively. A variety of diagnostique techniques have been used in these studies: Electron pinch phenomena in the diode are observed by static and by gated X-ray cameras. Beam diagnostiques is based on measuring in the vacuum feed the electric parameters of the diode (electron and ion currents, diode voltage) on probing the ion composition and ion energy in the beam (by use of a Thomson Parabola spectrometer), and on the investigation of the beam focus (by use of different techniques: shadow box analysis, α-pin hole imaging, nuclear activation methods). Measurements of beam stopping power of ion beam-heated thin targets are underway using a streaked ion energy-spectrometer. The results obtained so far in these experimental efforts are presented

  4. Pulsed neutron intensity from rectangular shaped light water moderator with fast-neutron reflector

    Kiyanagi, Yoshiaki; Iwasa, Hirokatsu

    1982-01-01

    With a view to enhancing the thermal-neutron intensity obtained from a pulsed neutron source, an experimental study has been made to determine the optimum size of a rectangular shaped light water moderator provided with fast neutron reflector of beryllium oxide or graphite, and decoupled thermal-neutronically by means of Cd sheet. The optimum dimensions for the moderator are derived for the neutron emission surface and the thickn ess, for the cases in which the neutron-producing target is placed beneath the moderator (''wing geometry'') or immediately behind the moderator (''slab geometry''). The major conclusions drawn from the experimental results are as follows. The presence of the Cd decoupler inserted between the moderator and reflector prevent the enhancement of thermal-neutron emission time gained by the provision of reflector. With a graphite reflector about 14 cm thick, (a) the optimum area of emission surface would be 25 x 25 cm 2 for wing geometry and still larger for slab geometry, and (b) the optimum moderator thickness would be 5.5 cm for slab geometry and 8.5 cm for wing geometry. It is thus concluded that a higher neutron emission intensity can be obtained with slab than with wing geometry provided that a large emission surface can be adopted for the moderator. (author)

  5. Intense pulsed light therapy for the treatment of evaporative dry eye disease.

    Vora, Gargi K; Gupta, Preeya K

    2015-07-01

    Evaporative dry eye disease is one of the most common types of dry eye. It is often the result of chronic meibomian gland dysfunction (MGD) and associated ocular rosacea. Evaporative dry eye and MGD significantly reduce patient's quality of life. Traditional treatments, such as artificial tears, warm compresses, and medications, such as topical cyclosporine, azithromycin, and oral doxycycline, provide some relief; however, many patients still suffer from dry eye symptoms. Intense pulsed light (IPL) therapy, which has been used extensively in dermatology to treat chronic skin conditions, is a relatively new treatment in ophthalmology for patients with evaporative dry eye disease. There are very few studies published on the use of IPL in patients with dry eye disease. The present review describes the theoretical mechanisms of IPL treatment of MGD and ocular rosacea. Personal clinical experience and recently presented data are reported as well. IPL therapy has promising results for evaporative dry eye patients. There are statistically significant improvements in clinical exam findings of dry eye disease. More importantly, patients report subjective improvement in their symptoms. More research is needed in this area to help understand the mechanism of dry eye disease and how it can be effectively treated.

  6. Outcomes of intense pulsed light therapy for treatment of evaporative dry eye disease.

    Gupta, Preeya K; Vora, Gargi K; Matossian, Cynthia; Kim, Michelle; Stinnett, Sandra

    2016-08-01

    To determine the clinical outcomes of intense pulsed light (IPL) therapy for the treatment of evaporative dry eye disease (DED). Multicentre cohort study. Patients with a diagnosis of meibomian gland dysfunction (MGD) and dry eye presenting to the ophthalmology clinic at either the Duke Eye Center, Durham, NC, or Matossian Eye Associates' private practice in Pennington, NJ, and Doylestown, PA. Clinical data were reviewed from 100 patients with diagnosis of MGD and DED who underwent IPL therapy from September 2012 through December 2014 at 1 of 2 centres (Duke Eye Center or Matossian Eye Associates). Demographics, clinical history, examination findings (eyelid and facial vascularity, eyelid margin edema, meibomian gland oil flow, and quality score-all graded on a scale of 0 to 4), tear break up time (TBUT), and ocular surface disease index (OSDI) scoring data were collected from each visit. On average, patients underwent 4 IPL sessions. There was significant decrease in scoring of lid margin edema (mean = -0.3; range -1.5 to 0), facial telangiectasia (mean = -0.7; range -2.5 to 0), lid margin vascularity (mean = -1.2; range -2.5 to 0), meibum viscosity (mean = -1.1; range -3 to 0), and OSDI score (mean = -9.6), all with p treatment for patients with evaporative DED. Copyright © 2016 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.

  7. Light curve and pulse profile of the x-ray pulsar Vela X-1

    Nagase, Fumiaki; Hayakawa, Satio; Makino, Fumiyoshi; Sato, Naohisa; Makishima, Kazuo.

    1983-01-01

    The following properties of the X-ray binary pulsar Vela X-1 are presented by reference to its observations in March 1980. The light curve shows a high state and a low state in the first and second halves of an orbital period, respectively, but they may rather be defined as a soft state and hard state, respectively, since the intensity above 9 keV does not appreciably change between these two states. The energy spectra in these states indicate the presence of circumstellar absorption. The pulse profiles at high (9-22 keV) and low (1-9 keV) energies are different, indicating the absorption by cold matter which is probably in the accretion column. The absorber which is responsible for the soft and hard states is attributed to the stellar wind whose flow pattern is consistent with that obtained from optical absorption spectra. The orbital period is obtained by a combined analysis of X-ray data since 1972. No appreciable change of the period gives a constraint on the dynamical behavior of the binary system. (author)

  8. Treatment of hypertrophic scars and keloids using intense pulsed light (IPL).

    Erol, O Onur; Gurlek, Ali; Agaoglu, Galip; Topcuoglu, Ela; Oz, Hayat

    2008-11-01

    Keloids and hypertrophic scars are extremely disturbing to patients, both physically and psychologically. This study prospectively assessed the safety and efficacy of intense pulsed light (IPL) on scars originating from burns, trauma, surgery, and acne. Hypertrophic scars in 109 patients, originating from surgical incisions (n = 55), traumatic cuts (traffic accidents) (n = 24), acne scars (n = 6), keloids (n = 5), and burns (n = 19), were treated using an IPL Quantum device. Treatment was administered at 2-4-week intervals, and patients received an average of 8 treatments (range = 6-24). Using digital photographs, Changes in scar appearance were assessed by two physicians who were blinded to the study patients and treatments. The photographs were graded on a scale of 0 to 4 (none, minimal, moderate, good, excellent) for improvement in overall clinical appearance and reduction in height, erythema, and hardness. An overall clinical improvement in the appearance of scars and reductions in height, erythema, and hardness were seen in the majority of the patients (92.5%). Improvement was excellent in 31.2% of the patients, good in 25.7%, moderate in 34%, and minimal in 9.1%. Over half the patients had good or excellent improvement. In the preventive IPL treatment group, 65% had good to excellent improvement in clinical appearance. Patient satisfaction was very high. This study suggests that IPL is effective not only in improving the appearance of hypertrophic scars and keloids regardless of their origin, but also in reducing the height, redness, and hardness of scars.

  9. The Retrospective Evaluation of the Efficacy and Safety of IPL (Intense Pulse Light in Hair Removal

    İlgen Ertam

    2012-06-01

    Full Text Available Background and Design: There are numerous therapeutic methods for hair removal with various success rates. The aim of this study was to evaluate the efficacy of Intense Pulse Light (IPL method for hair removal.Materials and Methods: Ninety patients, who applied for their unwanted hair, were included in the study. IPL was applied to the face, neck, axillary areas, bikini line, sternal area, periareolar areas, and upper and lower extremities. An IPL device (L900 A&M, France was used for hair removal. The results were evaluated according to the clinical improvement (0-25%, 25-50%, 50-75%, 75% and more and patients? satisfaction (very satisfied, satisfied, less satisfied, not satisfied. All results were analyzed using Chi-square test and statistical analysis was performed by SPSS 15.0 for Windows. Results: There were eighty-eight female (97.8% and two male (2.2% patients. The mean age of the patients was 33.62±11.11 (15- 55 years. 13.3% of patients had polycystic ovary syndrome. The mean number of treatments was 6.5 (min-max= 2-11. 53.2% of patients had 50-75% clinical response and 53.2% of patients were satisfied. There were no side effects except mild erythema. Conclusion: We observed that IPL for hair removal was safe and moderately effective in our patients.

  10. Intense pulsed light for photo-rejuvenation and freckles of middle eastern skin

    El Bedewi, A.F.

    2003-01-01

    Facial ageing is a gradual process which could be due to intrinsic and extrinsic causes and it ultimately results in the appearance of activity induced tissue ptosis, wrinkles, epidermal and dermal artoply, dryness, senile lentigo, flushing, telangiectasia and enlarged pores. Moreover, freckles are frequently seen on the face and other sun exposed areas and it is characterized with incrreased melanin in the epidermis. Intense Pulsed Light (IPL)is the latest technology for selective photo-thermolysis as a non-ablative photo-rejuvenation. Thirty-four patients of age ranging between 35- 70 years with skin type ranging between III-V with or without freckles were treated with 3-5 sessions of IPL. Three weeks intervals were considered between every two succesive session. Irradiation wavelength was controlled using cutoff filters ranging from 535 to 580 nmwith a fluence of 25-35 j/cm-2. Significant improvement was demonstrated after 6 months by computerized image analysis compared with the baseline. IPL was found to be effective and saf treatment for fine wrinkles, facial freckles, telangiectasia, flushing as well as post-inflammatory hyper-pigmentation with a high satisfactory level and a relatively afew adverse effects

  11. Statistical Analysis of Coherent Ultrashort Light Pulse CDMA With Multiple Optical Amplifiers Using Additive Noise Model

    Jamshidi, Kambiz; Salehi, Jawad A.

    2005-05-01

    This paper describes a study of the performance of various configurations for placing multiple optical amplifiers in a typical coherent ultrashort light pulse code-division multiple access (CULP-CDMA) communication system using the additive noise model. For this study, a comprehensive performance analysis was developed that takes into account multiple-access noise, noise due to optical amplifiers, and thermal noise using the saddle-point approximation technique. Prior to obtaining the overall system performance, the input/output statistical models for different elements of the system such as encoders/decoders,star coupler, and optical amplifiers were obtained. Performance comparisons between an ideal and lossless quantum-limited case and a typical CULP-CDMA with various losses exhibit more than 30 dB more power requirement to obtain the same bit-error rate (BER). Considering the saturation effect of optical amplifiers, this paper discusses an algorithm for amplifiers' gain setting in various stages of the network in order to overcome the nonlinear effects on signal modulation in optical amplifiers. Finally, using this algorithm,various configurations of multiple optical amplifiers in CULP-CDMA are discussed and the rules for the required optimum number of amplifiers are shown with their corresponding optimum locations to be implemented along the CULP-CDMA system.

  12. Comparison of the effect of diode laser versus intense pulsed light in axillary hair removal.

    Ormiga, Patricia; Ishida, Cleide Eiko; Boechat, Alvaro; Ramos-E-Silva, Marcia

    2014-10-01

    Devices such as diode laser and intense pulsed light (IPL) are in constant development aiming at permanent hair removal, but there are few comparative studies between these technologies. The objective was to comparatively assess axillary hair removal performed by diode laser and IPL and to obtain parameters of referred pain and evolution response for each method. A comparative prospective, double-blind, and randomized study of axillary hair removal performed by the diode laser and IPL was conducted in 21 females. Six sessions were held with application of the diode laser in one axilla and the IPL in the other, with intervals of 30 days and follow-up of 6 months after the last session. Clinical photographs and digital dermoscopy for hair counts in predefined and fixed fields of the treated areas were performed before, 2 weeks after the sixth session, and 6 months after the end of treatment. A questionnaire to assess the pain was applied. The number of hair shafts was significantly reduced with the diode laser and IPL. The diode laser was more effective, although more painful than the IPL. No serious, adverse, or permanent effects were observed with both technologies. Both diode laser and the IPL are effective, safe, and able to produce lasting results in axillary hair removal.

  13. Reverse Monte Carlo simulations of light pulse propagation in nonhomogeneous media

    Lu Xiaodong; Hsu Peifeng

    2005-01-01

    This paper presents a follow-up study of our previous work on the reverse Monte Carlo solution of transient radiation transport in the homogeneous media. In this study, the method is extended to consider nonhomogeneous media, which exist in many practical problems. The transport process of ultra-short light pulse propagation inside the non-emitting, absorbing, and anisotropically scattering multi-layer media is studied. Although only one-dimensional geometry is treated here, the method is applicable and easy to extend to multi-dimensional geometries. In multi-layer media, the time-resolved reflectance exhibits a direct correlation between the signal magnitude and the travel time to the layer interface if the ballistic photons encounter a strongly scattering layer. Furthermore, it is found that even with a symmetric radiative property distribution in a three-layer medium, the reflectance and transmittance signals do not converge at long time when the mid-layer is optically thick. The long time slope of the temporal signal does not provide the specificity required for an inverse analysis parameter as stipulated by earlier studies

  14. Supercontinuum: broad as a lamp, bright as a laser, now in the mid-infrared

    Moselund, Peter M.; Petersen, Christian; Dupont, Sune; Agger, Christian; Bang, Ole; Keiding, Søren R.

    2012-06-01

    Based on the experience gained developing our market leading visible spectrum supercontinuum sources NKT Photonics has built the first mid-infrared supercontinuum source based on modelocked picosecond fiber lasers. The source is pumped by a ~ 2 um laser based on a combination of erbium and thulium and use ZBLAN fibers to generate a 1.75-4.4 μm spectrum. We will present results obtained by applying the source for mid-infrared microscopy where absorption spectra can be used to identify the chemical nature of different parts of a sample. Subsequently, we discuss the possible application of a mid-IR supercontinuum source in other areas including infrared countermeasures.

  15. Light propagation in gas-filled kagomé hollow core photonic crystal fibres

    Rodrigues, Sílvia M. G.; Facão, Margarida; Ferreira, Mário F. S.

    2018-04-01

    We study the propagation of light in kagomé hollow core photonic crystal fibres (HC-PCFs) filled with three different noble gases, namely, helium, xenon and argon. Various properties, including the guided modes, the group-velocity dispersion, and the nonlinear parameter were determined. The zero dispersion wavelength and the nonlinear parameter vary with the gas pressure which may be used to tune the generation of new frequencies using the same pump laser and the same fibre. In the case of the kagomé HC-PCF filled with xenon, the zero dispersion wavelength shifts from 693 to 1973 nm when the pressure is increased from 1 to 150bar, while the effective Kerr nonlinearity becomes comparable to that of silica. We have simulated the propagation of femtosecond pulses launched at 790 nm in order to study the generation of supercontinuum and UV light in kagomé HC-PCFs filled with the noble gases.

  16. Response of YBa2Cu3O7-δ grain-boundary junctions to short light pulses

    Kaplan, S.B.; Chi, C.C.; Chaudhari, P.; Dimos, D.; Gross, R.; Gupta, A.; Koren, G.

    1991-01-01

    The electrical response of a single YBa 2 Cu 3 O 7-δ grain-boundary junction to visible light pulses was measured. Using an autocorrelation technique with picosecond laser pulses, no fast voltage transients were observed with the junction biased just above its critical current. Apparently, there are no relaxation times in the range of 7 ps to 14 ns. Using direct time-domain measurement with nanosecond pulses, three types of junction response were recorded: a nonexponential decay of 11 μs (90 to 10 % time) at temperatures near T c ; an inverse-time dependence of the order of 0.3 μs (100 to 50 % time) in the temperature range of 4.2 to 15 K; and an exponential decay time of 0.15 μs with the sample immersed in superfluid helium

  17. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    Friedrich, S.; Li, L.; Ott, L.L.; Kolgani, Rajeswari M.; Yong, G.J.; Ali, Z.A.; Drury, O.B.; Ables, E.; Bionta, R.M.

    2006-01-01

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with ∼10 12 photons per ∼200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within (1- x ) Sr x MnO 3 sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response

  18. Pulsed lasers versus continuous light sources in capillary electrophoresis and fluorescence detection studies: Photodegradation pathways and models

    Boutonnet, Audrey; Morin, Arnaud; Petit, Pierre; Vicendo, Patricia; Poinsot, Véréna; Couderc, François

    2016-01-01

    Pulsed lasers are widely used in capillary electrophoresis (CE) studies to provide laser induced fluorescence (LIF) detection. Unfortunately pulsed lasers do not give linear calibration curves over a wide range of concentrations. While this does not prevent their use in CE/LIF studies, the non-linear behavior must be understood. Using 7-hydroxycoumarin (7-HC) (10–5000 nM), Tamra (10–5000 nM) and tryptophan (1–200 μM) as dyes, we observe that continuous lasers and LEDs result in linear calibration curves, while pulsed lasers give polynomial ones. The effect is seen with both visible light (530 nm) and with UV light (355 nm, 266 nm). In this work we point out the formation of byproducts induced by pulsed laser upon irradiation of 7-HC. Their separation by CE using two Zeta LIF detectors clearly shows that this process is related to the first laser detection. All of these photodegradation products can be identified by an ESI-/MS investigation and correspond to at least two 7HC dimers. By using the photodegradation model proposed by Heywood and Farnsworth (2010) and by taking into account the 7-HC results and the fact that in our system we do not have a constant concentration of fluorophore, it is possible to propose a new photochemical model of fluorescence in LIF detection. The model, like the experiment, shows that it is difficult to obtain linear quantitation curves with pulsed lasers while UV-LEDs used in continuous mode have this advantage. They are a good alternative to UV pulsed lasers. An application involving the separation and linear quantification of oligosaccharides labeled with 2-aminobezoic acid is presented using HILIC and LED (365 nm) induced fluorescence. - Highlights: • No linear calibration curves are obtained in CE/Pulsed-LIF detection. • Photodegradation and photodimerisation are responsible of this non linearity. • A mathematical model of this phenomenon is presented. • 7 hydroxycoumarin in CE/LIF is used to verify the

  19. Novel system for pulse radiolysis with multi-angle light scattering detection (PR-MALLS) - concept, construction and first tests

    Kadlubowski, S.; Sawicki, P.; Sowinski, S.; Rokita, B.; Bures, K. D.; Rosiak, J. M.; Ulanski, P.

    2018-01-01

    Time-resolved pulse radiolysis, utilizing short pulses of high-energy electrons from accelerators, is an effective method for rapidly generating free radicals and other transient species in solution. Combined with fast time-resolved spectroscopic detection (typically in the ultraviolet/visible/near-infrared), it is invaluable for monitoring the reactivity of species subjected to radiolysis on timescales ranging from picoseconds to seconds. When used for polymer solutions, pulse radiolysis can be coupled with light-scattering detection, creating a powerful tool for kinetic and mechanistic analysis of processes like degradation or cross-linking of macromolecules. Changes in the light scattering intensity (LSI) of polymer solutions are indicative of alterations in the molecular weight and/or in the radius of gyration, i.e., the dimensions and shape of the macromolecules. In addition to other detection methods, LSI technique provides a convenient tool to study radiation-induced alterations in macromolecules as a function of time after the pulse. Pulse radiolysis systems employing this detection mode have been so far constructed to follow light scattered at a single angle (typically the right angle) to the incident light beam. Here we present an advanced pulse radiolysis & multi-angle light-scattering-intensity system (PR-MALLS) that has been built at IARC and is currently in the phase of optimization and testing. Idea of its design and operation is described and preliminary results for radiation-induced degradation of pullulan as well as polymerization and crosslinking of poly(ethylene glycol) diacrylate are presented. Implementation of the proposed system provides a novel research tool, which is expected to contribute to the expansion of knowledge on free-radical reactions in monomer- and polymer solutions, by delivering precise kinetic data on changes in molecular weight and size, and thus allowing to formulate or verify reaction mechanisms. The proposed method is

  20. A novel water-assisted pulsed light processing for decontamination of blueberries.

    Huang, Yaoxin; Chen, Haiqiang

    2014-06-01

    Sample heating and shadowing effect have limited the application of pulsed light (PL) technology for decontamination of fresh produce. In this study, a novel setup using water-assisted PL processing was developed to overcome these limitations. Blueberries inoculated with Escherichia coli O157:H7 or Salmonella were either treated with PL directly (dry PL treatment) or immersed in agitated water during the PL treatment (wet PL treatment) for 5-60 s. Although both pathogens were effectively inactivated by the dry PL treatments, the appearance of the blueberries was adversely affected and a maximum temperature of 64.8 °C on the blueberry surface was recorded. On the other hand, the visual appearance of blueberries remained unchanged after wet PL treatments and sample heating was significantly reduced. The wet PL treatments were more effective than chlorine washing on inactivating both pathogens. After a 60-s wet PL treatment, the populations of E. coli O157:H7 inoculated on calyx and skin of blueberries were reduced by 3.0 and >5.8 log CFU/g, respectively. Salmonella on blueberry calyx and skin was reduced by 3.6 and >5.9 log CFU/g, respectively. No viable bacterial cells were recovered from the water used in the wet PL treatments, demonstrating that this setup could prevent the risk of cross-contamination during fresh produce washing. Our results suggest that this new water-assisted PL treatment could be a potential non-chemical alternative (residue free) to chlorine washing since it is both more effective and environmentally friendly than chlorine washing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Effectiveness of Intense Pulsed Light treatment in solar lentigo: a retrospective study

    İlgen Ertam

    2014-03-01

    Full Text Available Intense Pulsed Light (IPL; is a light system of 500-1200 nm wavelength which is used for the treatment of hair removal, hyperpigmentation, non-ablative skin resurfacing and superficial vascular lesions. The mechanism of action is thought to be the focal epidermal coagulation due to selective photothermolysis in the epidermal keratinocytes and melanocytes. A variety of laser systems can be used in the treatment of lsolar entigo. The aim of this study is to investigate the effectiveness of IPL in solar lentigo. Materials and Methods: The archives of Cosmetology Unit retrospectively reviewed for the patients with the diagnosis of solar lentigo from March 2007 to November 2010. There were 139 files of patients who were diagnosed as solar lentigo clinically and dermoscopically and treated by IPL (L900 a & m IPL. Informed consent was taken from all patients. Among them, 42 patients who had come to controls regularly and had photographed before and after treatment included into the study. Results: A total of 52 lesions of 42 female and 1 male patient included into the study. Patients’ mean age was 42±9.6 years, ranging between 33 to 88. Of the lesions, 27 lesions(51.9% were on cheek, 7 lesions (13.5% were on zygoma, 6 lesions (11.5% were on chin, 4 lesions (7.7% were on hands, 4 lesions (7.7% were on forehead, 2 lesions(3.8% were on nose, 2 lesions (3.8% were on forearm. The mean number of sessions was 3.28 ranging between 1 and 7. After treatment, improvement was over 75% in 57,7% lesions, 50-75% in 17.3% of the lesions, 25-50% in 17.3% of the lesions, under 25% in 7.7% of the lesions. Conclusion: According to the results of our work, IPL can be accepted as an effective, cheap and safety method in terms of its side effects in treatment of solar lentigo.

  2. The Sensory Quality of Meat, Game, Poultry, Seafood and Meat Products as Affected by Intense Light Pulses: A Systematic Review

    Tomasevic, Igor; Rajkovic, Andreja

    2015-01-01

    The effect of intense light pulses (ILP) on sensory quality of 16 different varieties of meat, meat products, game, poultry and seafood are reviewed. Changes induced by ILP are animal species, type of meat product and fluences applied dependent. ILP significantly deteriorates sensory quality of cooked meat products. It causes less change in the sensory properties of dry cured than cooked meat products while fermented sausage is least affected. The higher fluence applied significantly changes ...

  3. Localisation of light and spectral broadening of femtosecond laser pulses in a fibre with a minimal-microstructure cladding

    Zheltikov, Aleksei M; Zhou, Ping; Temnov, V V; Tarasevitch, A P; Linde, D von der; Kondrat'ev, Yu N; Shevandin, V S; Dukel'skii, K V; Khokhlov, A V; Bagayev, S N; Smirnov, Valerii B

    2002-01-01

    Microstructure optical fibres with a cladding consisting of a single cycle of air holes and the minimum core diameter of 1 μm have been fabricated and studied. Guided modes supported by this fibre are characterised by a high light localisation degree and display the C 6ν point-group spatial symmetry of the transverse field distribution. A high refractive index step between the core and the cladding in the created fibres strongly confines the light field in the fibre core. The spectral broadening of low-power femtosecond laser pulses in the fibre of this type is experimentally studied. (nonlinear optical phenomena)

  4. Thermographic analysis of photodynamic therapy with intense pulsed light and needle-free injection photosensitizer delivery: an animal study

    Requena, Michelle B.; Stringasci, Mirian D.; Pratavieira, Sebastião.; Vollet-Filho, José Dirceu; de Nardi, Andrigo B.; Escobar, Andre; da Rocha, Rozana W.; Bagnato, Vanderlei S.; de Menezes, Priscila F. C.

    2018-02-01

    The photodynamic therapy (PDT) is a therapeutic modality that depends mostly on photosensitizer (PS), light and molecular oxygen species. However, there are still technical limitations in clinical PDT that are under constant development, particularly concerning PS and light delivery. Intense Pulsed Light (IPL) sources are systems able to generate pulses of high energy with polychromatic light. IPL is a technique mainly used in the cosmetic area to perform various skin treatments for therapeutic and aesthetic applications. The goals of this study were to determine temperature variance during the application of IPL in porcine skin model, and the PDT effects using this light source with PS delivery by a commercial high pressure, needle-free injection system. The PSs tested were Indocyanine Green (ICG) and Photodithazine (PDZ), and the results showed an increase bellow 10 °C in the skin surface using a thermographic camera to measure. In conclusion, our preliminary study demonstrated that IPL associated with needle-free injection PS delivery could be a promising alternative to PDT.

  5. Long-pulsed Nd:YAG laser vs. intense pulsed light for hair removal in dark skin: a randomized controlled trial.

    Ismail, S A

    2012-02-01

    Although several lasers meet the wavelength criteria for selective follicular destruction, the treatment of darker skin phototypes is particularly challenging because absorption of laser energy by the targeted hairs is compromised by an increased concentration of epidermal melanin. To compare satisfaction level, safety and effectiveness of a long-pulsed Nd:YAG laser and intense pulsed light (IPL) in axillary hair reduction in subjects with dark skin. The study design was a within-patient, right-left, assessor-blinded, comparison of long-pulsed Nd:YAG laser and IPL. Fifty women (skin phototypes IV-VI) volunteered for removal of axillary hair. Five sessions at 4- to 6-week intervals were performed. Hair counts at both sides were compared at baseline and 6months after the last session. Final overall evaluations were performed by subjects and clinician at the end of the study. Satisfaction was scored for both devices. Thirty-nine women completed the study. At 6months, the decrease in hair counts on the laser side (79·4%, Pvs. pretreatment) was significantly (Pvs. pretreatment). Only temporary adverse effects were reported at both sides. Higher pain scores and more inflammation were reported with Nd:YAG laser; however, it was preferred by 29 volunteers (74%). Volunteers reported higher satisfaction score with Nd:YAG laser (PDark skin can be treated by both systems safely and effectively; however, long-pulsed (1064 nm) Nd:YAG laser is more effective as reported by both subjects and clinician. © 2011 The Authors. BJD © 2011 British Association of Dermatologists.

  6. Higher-Order Moment Characterisation of Rogue Wave Statistics in Supercontinuum Generation

    Sørensen, Simon Toft; Bang, Ole; Wetzel, Benjamin

    2012-01-01

    The noise characteristics of supercontinuum generation are characterized using higherorder statistical moments. Measures of skew and kurtosis, and the coefficient of variation allow quantitative identification of spectral regions dominated by rogue wave like behaviour.......The noise characteristics of supercontinuum generation are characterized using higherorder statistical moments. Measures of skew and kurtosis, and the coefficient of variation allow quantitative identification of spectral regions dominated by rogue wave like behaviour....

  7. Generation of infrared supercontinuum radiation: spatial mode dispersion and higher-order mode propagation in ZBLAN step-index fibers

    Ramsay, Jacob Søndergaard; Dupont, Sune Vestergaard Lund; Johansen, Mikkel Willum

    2013-01-01

    Using femtosecond upconversion we investigate the time and wavelength structure of infrared supercontinuum generation. It is shown that radiation is scattered into higher order spatial modes (HOMs) when generating a supercontinuum using fibers that are not single-moded, such as a step-index ZBLAN...... fiber. As a consequence of intermodal scattering and the difference in group velocity for the modes, the supercontinuum splits up spatially and temporally. Experimental results indicate that a significant part of the radiation propagates in HOMs. Conventional simulations of super-continuum generation do...

  8. Self-reflection of extremely short light pulses in nonlinear optical waveguides

    Kurasov, Alexander E.; Kozlov, Sergei A.

    2004-07-01

    An equation describing the generation of reflected radiation during the propagation of high-intensity extremely short pulses in a nonlinear optical waveguide is derived. The phenomena taking place during the strong self-inducted changes of the temporal structure of the forward wave are studied. It is shown that the duration of the backward pulse is much greater than the duration of the forward pulse and that the main part of the energy of the backward wave is carried by lower frequencies than the central frequency of the forward wave.

  9. Human phase response curve to a 1 h pulse of bright white light

    St Hilaire, Melissa A; Gooley, Joshua J; Khalsa, Sat Bir S; Kronauer, Richard E; Czeisler, Charles A; Lockley, Steven W

    2012-01-01

    The phase resetting response of the human circadian pacemaker to light depends on the timing of exposure and is described by a phase response curve (PRC). The current study aimed to construct a PRC for a 1 h exposure to bright white light (∼8000 lux) and to compare this PRC to a dim background light PRC. These data were also compared to a previously completed 6.7 h bright white light PRC and a dim background light PRC constructed under similar conditions. Participants were randomized for exposure to 1 h of either bright white light (n= 18) or dim background light (n= 18) scheduled at 1 of 18 circadian phases. Participants completed constant routine (CR) procedures in dim light (light exposure to assess circadian phase. Phase shifts were calculated as the difference in timing of dim light melatonin onset (DLMO) during pre- and post-stimulus CRs. Exposure to 1 h of bright white light induced a Type 1 PRC with a fitted peak-to-trough amplitude of 2.20 h. No discernible PRC was observed in the dim background light PRC. The fitted peak-to-trough amplitude of the 1 h bright light PRC was ∼40% of that for the 6.7 h PRC despite representing only 15% of the light exposure duration, consistent with previous studies showing a non-linear duration–response function for the effects of light on circadian resetting. PMID:22547633

  10. Comparison of UV-C and Pulsed UV Light Treatments for Reduction of Salmonella, Listeria monocytogenes, and Enterohemorrhagic Escherichia coli on Eggs.

    Holck, Askild L; Liland, Kristian H; Drømtorp, Signe M; Carlehög, Mats; McLEOD, Anette

    2018-01-01

    Ten percent of all strong-evidence foodborne outbreaks in the European Union are caused by Salmonella related to eggs and egg products. UV light may be used to decontaminate egg surfaces and reduce the risk of human salmonellosis infections. The efficiency of continuous UV-C (254 nm) and pulsed UV light for reducing the viability of Salmonella Enteritidis, Listeria monocytogenes, and enterohemorrhagic Escherichia coli on eggs was thoroughly compared. Bacterial cells were exposed to UV-C light at fluences from 0.05 to 3.0 J/cm 2 (10 mW/cm 2 , for 5 to 300 s) and pulsed UV light at fluences from 1.25 to 18.0 J/cm 2 , resulting in reductions ranging from 1.6 to 3.8 log, depending on conditions used. Using UV-C light, it was possible to achieve higher reductions at lower fluences compared with pulsed UV light. When Salmonella was stacked on a small area or shielded in feces, the pulsed UV light seemed to have a higher penetration capacity and gave higher bacterial reductions. Microscopy imaging and attempts to contaminate the interior of the eggs with Salmonella through the eggshell demonstrated that the integrity of the eggshell was maintained after UV light treatments. Only minor sensory changes were reported by panelists when the highest UV doses were used. UV-C and pulsed UV light treatments appear to be useful decontamination technologies that can be implemented in continuous processing.

  11. An informal teaching of light and lasers through the CSIR-NLC PULSE programme

    Shikwambana, L

    2012-07-01

    Full Text Available The PULSE programme of the CSIR relates to the public understanding of laser science and engineering and the awareness of laser science and engineering to schools and tertiary institutions....

  12. Intense pulsed light annealing of copper zinc tin sulfide nanocrystal coatings

    Williams, Bryce A.; Smeaton, Michelle A.; Holgate, Collin S.; Trejo, Nancy D.; Francis, Lorraine F., E-mail: francis@umn.edu; Aydil, Eray S., E-mail: aydil@umn.edu [Department of Chemical Engineering and Materials Science, University of Minnesota, 151 Amundson Hall, 421 Washington Avenue SE, Minneapolis, Minnesota 55455 (United States)

    2016-09-15

    A promising method for forming the absorber layer in copper zinc tin sulfide [Cu{sub 2}ZnSnS{sub 4} (CZTS)] thin film solar cells is thermal annealing of coatings cast from dispersions of CZTS nanocrystals. Intense pulsed light (IPL) annealing utilizing xenon flash lamps is a potential high-throughput, low-cost, roll-to-roll manufacturing compatible alternative to thermal annealing in conventional furnaces. The authors studied the effects of flash energy density (3.9–11.6 J/cm{sup 2}) and number of flashes (1–400) during IPL annealing on the microstructure of CZTS nanocrystal coatings cast on molybdenum-coated soda lime glass substrates (Mo-coated SLG). The annealed coatings exhibited cracks with two distinct linear crack densities, 0.01 and 0.2 μm{sup −1}, depending on the flash intensity and total number of flashes. Low density cracking (0.01 μm{sup −1}, ∼1 crack per 100 μm) is caused by decomposition of CZTS at the Mo-coating interface. Vapor decomposition products at the interface cause blisters as they escape the coating. Residual decomposition products within the blisters were imaged using confocal Raman spectroscopy. In support of this hypothesis, replacing the Mo-coated SLG substrate with quartz eliminated blistering and low-density cracking. High density cracking is caused by rapid thermal expansion and contraction of the coating constricted on the substrate as it is heated and cooled during IPL annealing. Finite element modeling showed that CZTS coatings on low thermal diffusivity materials (i.e., SLG) underwent significant differential heating with respect to the substrate with rapid rises and falls of the coating temperature as the flash is turned on and off, possibly causing a build-up of tensile stress within the coating prompting cracking. Use of a high thermal diffusivity substrate, such as a molybdenum foil (Mo foil), reduces this differential heating and eliminates the high-density cracking. IPL annealing in presence of sulfur

  13. The effect of pulse rate on VPT response and the use of an LED light to improve stability

    Dawn, Elizabeth Leslie

    2009-01-01

    The Endcap Electromagnetic Calorimeter of the CMS detector at the LHC uses vacuum phototriodes (VPTs), which operate in the full 3.8T magnetic field of the experiment, to detect the scintillation light from the lead tungstate crystals. Initial measurements of the variation in response of VPTs, induced by sudden changes in the illuminating light pulse rate, prompted the inclusion of a dedicated stability pulser based on light emitting diodes (LEDs). The response of production VPTs, under simulated LHC operating conditions, has been investigated in three independent studies: in-situ tests with the installed endcaps at CERN, and separate VPT studies by groups at the University of Virginia, USA and Brunel University, UK. In this work, results are presented which demonstrate the expected stability of the VPTs during normal LHC operation, with a proposed regime for operating the stability pulser to minimise variations in response.

  14. Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers.

    Driben, Rodislav; Babushkin, Ihar

    2012-12-15

    Soliton fusion is a fascinating and delicate phenomenon that manifests itself in optical fibers in case of interaction between copropagating solitons with small temporal and wavelength separation. We show that the mechanism of acceleration of a trailing soliton by dispersive waves radiated from the preceding one provides necessary conditions for soliton fusion at the advanced stage of supercontinuum generation in photonic-crystal fibers. As a result of fusion, large-intensity robust light structures arise and propagate over significant distances. In the presence of small random noise the delicate condition for the effective fusion between solitons can easily be broken, making the fusion-induced giant waves a rare statistical event. Thus oblong-shaped giant accelerated waves become excellent candidates for optical rogue waves.

  15. Effect of a novel low-energy pulsed-light device for home-use hair removal.

    Alster, Tina S; Tanzi, Elizabeth L

    2009-03-01

    Removal of unwanted hair is the most popular skin treatment worldwide. Over the past decade, various lasers and light sources for epilation have been advocated for use in an office setting, although most people continue to treat unwanted hair with a variety of temporary physical methods (e.g., waxing, shaving) in a home setting, presumably due to cost and convenience factors. To evaluate the safety and efficacy of a low-energy pulsed-light device intended for home-use hair removal. Twenty women (skin phototypes I-IV) with dark terminal hair in nonfacial sites (axilla, forearms, inguinal region, legs) self-administered three treatments at 2-week intervals using a handheld intense-pulsed-light device. Matched untreated skin sites were also studied. Hair counts and clinical photographs were obtained pretreatment and at 1, 3, and 6 months after the third treatment. Side effects and patient satisfaction scores were recorded. All patients showed a positive clinical response to treatment, with reduction of unwanted hair. No reduction of hair was noted in untreated matched areas. Hair counts were reduced 37.8% to 53.6% 6 months after the three treatments. Skin region influenced clinical response, with lower legs exhibiting greater hair reduction than arms and inguinal and axillary areas. Mild erythema was experienced in 25% of patients, but no other side effects or complications were encountered. Patient satisfaction scores were high, with all patients stating that they would purchase the device for future home use. CONCLUSIONS Low-energy pulsed light can be applied safely and effectively for at-home hair removal in a variety of nonfacial locations and skin phototypes I-IV.

  16. Spin-resolved photoelectron spectroscopy using femtosecond extreme ultraviolet light pulses from high-order harmonic generation

    Plötzing, M.; Adam, R., E-mail: r.adam@fz-juelich.de; Weier, C.; Plucinski, L.; Schneider, C. M. [Forschungszentrum Jülich GmbH, Peter Grünberg Institut (PGI-6), 52425 Jülich (Germany); Eich, S.; Emmerich, S.; Rollinger, M.; Aeschlimann, M. [University of Kaiserslautern and Research Center OPTIMAS, 67663 Kaiserslautern (Germany); Mathias, S. [Georg-August-Universität Göttingen, I. Physikalisches Institut, 37077 Göttingen (Germany)

    2016-04-15

    The fundamental mechanism responsible for optically induced magnetization dynamics in ferromagnetic thin films has been under intense debate since almost two decades. Currently, numerous competing theoretical models are in strong need for a decisive experimental confirmation such as monitoring the triggered changes in the spin-dependent band structure on ultrashort time scales. Our approach explores the possibility of observing femtosecond band structure dynamics by giving access to extended parts of the Brillouin zone in a simultaneously time-, energy- and spin-resolved photoemission experiment. For this purpose, our setup uses a state-of-the-art, highly efficient spin detector and ultrashort, extreme ultraviolet light pulses created by laser-based high-order harmonic generation. In this paper, we present the setup and first spin-resolved spectra obtained with our experiment within an acquisition time short enough to allow pump-probe studies. Further, we characterize the influence of the excitation with femtosecond extreme ultraviolet pulses by comparing the results with data acquired using a continuous wave light source with similar photon energy. In addition, changes in the spectra induced by vacuum space-charge effects due to both the extreme ultraviolet probe- and near-infrared pump-pulses are studied by analyzing the resulting spectral distortions. The combination of energy resolution and electron count rate achieved in our setup confirms its suitability for spin-resolved studies of the band structure on ultrashort time scales.

  17. Three-dimensional light distribution near the focus of a tightly focused beam of few-cycle optical pulses

    Romallosa, Kristine Marie; Bantang, Johnrob; Saloma, Caesar

    2003-01-01

    Via the Richards-Wolf vector diffraction theory, we analyze the three-dimensional intensity distribution of the focal volume that is produced by a strongly focused 750-nm beam of ultrafast, Gaussian-shaped optical pulses (10 -9 s≥ pulse width τ≥1 fs=10 -15 s). Knowledge of the three-dimensional distribution near focus is essential in determining the diffraction-limited resolution of an optical microscope. The optical spectrum of a short pulse is characterized by side frequencies about the carrier frequency. The effect of spectral broadening on the focused intensity distribution is evaluated via the Linfoot's criteria of fidelity, structural content, and correlation quality and with reference to a 750-nm cw focused beam. Different values are considered for τ and numerical aperture of the focusing lens (0.1≤X NA ≤1.2). At X NA =0.8, rapid deterioration of the focused intensity distribution is observed at τ=1.2 fs. This happens because a 750-nm optical pulse with τ=1.2 fs has an associated coherence length of 359.7 nm which is less than the Nyquist sampling interval of 375 nm that is required to sample 750 nm sinusoid without loss of information. The ill-effects of spectral broadening is weaker in two-photon excitation microscope than in its single-photon counterpart for the same focusing lens and light source

  18. Broadband supercontinuum generation in a telecommunication fibre pumped by a nanosecond Tm, Ho:YVO{sub 4} laser

    Zhou Ren-Lai; Ren Jian-Cun; Lou Shu-Li [Department of control engineering, Naval Aeronautical and Astronautical University, Yantai 264001 (China); Ju You-Lun; Wang Yue-Zhu [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2015-07-31

    Broadband supercontinuum (SC) generation in a telecommunication fibre [8/125-μm single mode fibre (SMF) and 50/125-μm multimode fibre (MMF)] directly pumped by a nanosecond Q-switched Tm, Ho:YVO{sub 4} laser is demonstrated. At a 7-kHz pulse repetition frequency (PRF), an output average power of 0.53 W in the 1.95 – 2.5-μm spectral band and 3.51 W in the 1.9 – 2.6-μm spectral band are achieved in SMF and MMF, respectively (the corresponding optic-to-optic conversion efficiencies are 34.6% and 73.7%). The output spectra have extremely high flat segments in the range 2070 – 2390 nm and 2070 – 2475 nm with negligible intensity variation (less than 2%). The SC average power is scalable from 2.1 to 4.2 W by increasing the PRF from 5 to 15 kHz, while maintaining pump power. Compared with the input pump pulse, the output SC pulse width is broadened, and no split is found. The stability of the output SC power has been monitored for a week and the fluctuations being less than 6%. (control of radiation parameters)

  19. Comparative evaluation of long pulse Alexandrite laser and intense pulsed light systems for pseudofolliculitis barbae treatment with one year of follow up.

    Leheta, Tahra M

    2009-01-01

    Existing remedies for controlling pseudofolliculitis barbae (PFB) are sometimes helpful; however the positive effects are often short lived. The only definitive cure for PFB is permanent removal of the hair follicle. Our aim was to compare the efficacy of the Alexandrite laser with the intense pulsed light system in the treatment of PFB and to follow up the recurrence. Twenty male patients seeking laser hair removal for the treatment of PFB were enrolled in this study. One half of the face was treated with the long-pulse Alexandrite laser and the other half was treated with the IPL system randomly. The treatment outcome and any complications were observed and followed up for one year. All patients exhibited a statistically significant decrease in the numbers of papules. Our results showed that the Alexandrite-treated side needed seven sessions to reach about 80% improvement, while the IPL-treated side needed 10-12 sessions to reach about 50% improvement. During the one year follow up period, the Alexandrite-treated side showed recurrence in very minimal areas, while the IPL-treated side showed recurrence in bigger areas. Our results showed that both systems might improve PFB but Alexandrite laser was more effective at reducing PFB than IPL.

  20. High-power LED light sources for optical measurement systems operated in continuous and overdriven pulsed modes

    Stasicki, Bolesław; Schröder, Andreas; Boden, Fritz; Ludwikowski, Krzysztof

    2017-06-01

    The rapid progress of light emitting diode (LED) technology has recently resulted in the availability of high power devices with unprecedented light emission intensities comparable to those of visible laser light sources. On this basis two versatile devices have been developed, constructed and tested. The first one is a high-power, single-LED illuminator equipped with exchangeable projection lenses providing a homogenous light spot of defined diameter. The second device is a multi-LED illuminator array consisting of a number of high-power LEDs, each integrated with a separate collimating lens. These devices can emit R, G, CG, B, UV or white light and can be operated in pulsed or continuous wave (CW) mode. Using an external trigger signal they can be easily synchronized with cameras or other devices. The mode of operation and all parameters can be controlled by software. Various experiments have shown that these devices have become a versatile and competitive alternative to laser and xenon lamp based light sources. The principle, design, achieved performances and application examples are given in this paper.

  1. Analysis of chromatic dispersion compensation by measuring time domain optical spectrum distribution of light pulse; Hikari pulse chu no hacho jikan bunpu sokutei ni yoru bunsan hosho gijutsu no hyokaho

    Saito, M.; Kurono, M. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1997-05-01

    A large number of single mode fibers (SMF) for 1.3 {mu}m light are installed in electric power communication facilities. On the other hand, light of 1.5 {mu}m band is being used more in the capacity increasing technology to minimize transmission loss. If this is applied to the current SMF, waveform distortion is generated due to wavelength dispersion, thus the transmission speed and distance are limited. In order to evaluate quantitatively the effects of a wavelength dispersion compensating technology, a method was developed to derive time change in each wavelength component in light pulse. No sufficient wavelength separation is possible if permeation bandwidth of a wavelength filter is wider than the wavelength width of the light pulse. Therefore, a method was developed to derive time change in the wavelength components in the light pulse from small difference in the measured light waveforms after transmission when the central wavelength of a wavelength variable filter is varied. It was possible from comparing the method to derive the wavelength dispersion amount and the dispersion compensation amount. Since the method reveals simultaneously the distribution of strength against wavelength and time contained in light pulse, the method is advantageous in elucidating compensation limit and causes for compensation errors. The effectiveness of the method was verified by a 1.5-{mu}m light transmission test. 14 refs., 26 figs., 2 tabs.

  2. Investigation of critical inter-related factors affecting the efficacy of pulsed light for inactivating clinically relevant bacterial pathogens.

    Farrell, H P; Garvey, M; Cormican, M; Laffey, J G; Rowan, N J

    2010-05-01

    To investigate critical electrical and biological factors governing the efficacy of pulsed light (PL) for the in vitro inactivation of bacteria isolated from the clinical environment. Development of this alternative PL decontamination approach is timely, as the incidence of health care-related infections remains unacceptably high. Predetermined cell numbers of clinically relevant Gram-positive and Gram-negative bacteria were inoculated separately on agar plates and were flashed with lamp discharge energy (range 3.2-20 J per pulse), the amount of pulsing applied (range 0-60 pulses) and the distance between light source and treatment surface (range 8-20 cm) used. Greater decontamination levels were achieved using a combination of higher lamp discharge energies, increased number of pulses and shorter distances between treatment surface and the xenon light source. Levels of microbial sensitivity also varied depending on the population type, size and age of cultures treated. Production of pigment pyocynanin and alginate slime in mucoid strains of Pseudomonas aeruginosa afforded some protection against lethal action of PL; however, this was evident only by using a combination of reduced amount of pulsing at the lower lamp discharge energies tested. A clear pattern was observed where Gram-positive bacterial pathogens were more resistant to cidal effects of PL compared to Gram negatives. While negligible photoreactivation of PL-treated bacterial strains occurred after full pulsing regimes at the different lamp discharge energies tested, some repair was evident when using a combination of reduced pulsing at the lower lamp discharge energies. Strains harbouring genes for multiple resistances to antibiotics were not significantly more resistant to PL treatments. Slight temperature rises (lamp discharge energies. Presence of organic matter on treatment surface did not significantly affect PL decontamination efficacy, nor did growth of PL-treated bacteria on selective agar

  3. Preparing isolated vibrational wave packets with light-induced molecular potentials by chirped laser pulses

    Vatasescu, Mihaela

    2012-05-01

    We consider a specific wave packet preparation arising from the control of tunneling in the 0g-(6s,6p3/2) double well potential of a Cs2 cold molecule with chirped laser pulses. Such a possibility to manipulate the population dynamics in the 0g-(6s,6p3/2) potential appears in a pump-dump scheme designed to form cold molecules by photoassociation of two cold cesium atoms. The initial population in the 0g-(6s,6p3/2) double well is a wave packet prepared in the outer well at large interatomic distances (94 a0) by a photoassociation step with a first chirped pulse, being a superposition of several vibrational states whose energies surround the energy of a tunneling resonance. Our present work is focused on a second delayed chirped pulse, coupling the 0g-(6s,6p3/2) surface with the a3Σu+(6s,6s) one in the zone of the double well barrier (15 a0) and creating deeply bound cold molecules in the a3Σu+(6s,6s) state. We explore the parameters choice (intensity, duration, chirp rate and sign) for this second pulse, showing that picoseconds pulses with a negative chirp can lead to trapping of population in the inner well in strongly bound vibrational states, out of the resonant tunneling able to transfer it back to the outer well.

  4. Octave-spanning supercontinuum generation at telecommunications wavelengths in a precisely dispersion- and length-controlled silicon-wire waveguide with a double taper structure

    Ishizawa, Atsushi; Goto, Takahiro; Kou, Rai; Tsuchizawa, Tai; Matsuda, Nobuyuki; Hitachi, Kenichi; Nishikawa, Tadashi; Yamada, Koji; Sogawa, Tetsuomi; Gotoh, Hideki

    2017-07-01

    We demonstrate on-chip octave-spanning supercontinuum (SC) generation with a Si-wire waveguide (SWG). We precisely controlled the SWG width so that the group velocity becomes flat over a wide wavelength range. By adjusting the SWG length, we could reduce the optical losses due to two-photon absorption and pulse propagation. In addition, for efficient coupling between the laser pulse and waveguide, we fabricated a two-step inverse taper at both ends of the SWG. Using a 600-nm-wide SWG, we were able to generate a broadband SC spectrum at wavelengths from 1060 to 2200 nm at a -40 dB level with only 50-pJ laser energy from an Er-doped fiber laser oscillator. We found that we can generate an on-chip broadband SC spectrum with an SWG with a length even as small as 1.7 mm.

  5. Complex {PT}-symmetric extensions of the nonlinear ultra-short light pulse model

    Yan, Zhenya

    2012-11-01

    The short pulse equation u_{xt}=u+\\frac{1}{2}(u^2u_x)_x is PT symmetric, which arises in nonlinear optics for the ultra-short pulse case. We present a family of new complex PT-symmetric extensions of the short pulse equation, i[(iu_x)^{\\sigma }]_t=au+bu^m+ic[u^n(iu_x)^{\\epsilon }]_x \\,\\, (\\sigma ,\\, \\epsilon ,\\,a,\\,b,\\,c,\\,m,\\,n \\in {R}), based on the complex PT-symmetric extension principle. Some properties of these equations with some chosen parameters are studied including the Hamiltonian structures and exact solutions such as solitary wave solutions, doubly periodic wave solutions and compacton solutions. Our results may be useful to understand complex PT-symmetric nonlinear physical models. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘Quantum physics with non-Hermitian operators’.

  6. Intense pulsed light treatment for dry eye disease due to meibomian gland dysfunction; a 3-year retrospective study.

    Toyos, Rolando; McGill, William; Briscoe, Dustin

    2015-01-01

    The purpose of this study was to determine the clinical benefits of intense-pulsed-light therapy for the treatment of dry-eye disease caused by meibomian gland dysfunction (MGD). MGD is the leading cause of evaporative dry eye disease. It is currently treated with a range of methods that have been shown to be only somewhat effective, leading to the need for advanced treatment options. A retrospective noncomparative interventional case series was conducted with 91 patients presenting with severe dry eye syndrome. Treatment included intense-pulsed-light therapy and gland expression at a single outpatient clinic over a 30-month study. Pre/post tear breakup time data were available for a subset of 78 patients. For all patients, a specially developed technique for the treatment of dry eye syndrome was applied as a series of monthly treatments until there was adequate improvement in dry eye syndrome symptoms by physician judgment, or until patient discontinuation. Primary outcomes included change in tear breakup time, self-reported patient satisfaction, and adverse events. Physician-judged improvement in dry eye tear breakup time was found for 68 of 78 patients (87%) with seven treatment visits and four maintenance visits on average (medians), and 93% of patients reported post-treatment satisfaction with degree of dry eye syndrome symptoms. Adverse events, most typically redness or swelling, were found for 13% of patients. No serious adverse events were found. Although preliminary, study results of intense-pulsed-light therapy treatment for dry eye syndrome caused by meibomian gland dysfunction are promising. A multisite clinical trial with a larger sample, treatment comparison groups, and randomized controlled trials is currently underway.

  7. Generation of shock fronts in the interaction of short pulses of intense laser light in supercritical plasma

    Lopez V, V.E.; Ondarza R, R.

    2004-01-01

    The investigation of the laser interaction with plasma has been carried out mainly in laboratories of Europe, Japan and United States during the last decades. This studies concern the propagation of intense light laser in a non homogeneous plasma, the radiation absorption and the generation of suprathermal electrons, among others. Numerical simulations made by Denavit, for radiation pulses for up of 10 20 W/cm 2 on solid targets, have allowed to observe the generation of ionic crash fronts with high propagation speeds. In this work it is expanded the study of this effect through algorithms of particles simulation. (Author)

  8. New theoretical approaches to atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Pabst, Stefan Ulf

    2013-04-01

    The concept of atoms as the building blocks of matter has existed for over 3000 years. A revolution in the understanding and the description of atoms and molecules has occurred in the last century with the birth of quantum mechanics. After the electronic structure was understood, interest in studying the dynamics of electrons, atoms, and molecules increased. However, time-resolved investigations of these ultrafast processes were not possible until recently. The typical time scale of atomic and molecular processes is in the picosecond to attosecond realm. Tremendous technological progress in recent years makes it possible to generate light pulses on these time scales. With such ultrashort pulses, atomic and molecular dynamics can be triggered, watched, and controlled. Simultaneously, the need rises for theoretical models describing the underlying mechanisms. This doctoral thesis focuses on the development of theoretical models which can be used to study the dynamical behavior of electrons, atoms, and molecules in the presence of ultrashort light pulses. Several examples are discussed illustrating how light pulses can trigger and control electronic, atomic, and molecular motions. In the first part of this work, I focus on the rotational motion of asymmetric molecules, which happens on picosecond and femtosecond time scales. Here, the aim is to align all three axes of the molecule as well as possible. To investigate theoretically alignment dynamics, I developed a program that can describe alignment motion ranging from the impulsive to the adiabatic regime. The asymmetric molecule SO 2 is taken as an example to discuss strategies of optimizing 3D alignment without the presence of an external field (i.e., field-free alignment). Field-free alignment is particularly advantageous because subsequent experiments on the aligned molecule are not perturbed by the aligning light pulse. Wellaligned molecules in the gas phase are suitable for diffraction experiments. From the

  9. New theoretical approaches to atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Pabst, Stefan Ulf

    2013-04-15

    The concept of atoms as the building blocks of matter has existed for over 3000 years. A revolution in the understanding and the description of atoms and molecules has occurred in the last century with the birth of quantum mechanics. After the electronic structure was understood, interest in studying the dynamics of electrons, atoms, and molecules increased. However, time-resolved investigations of these ultrafast processes were not possible until recently. The typical time scale of atomic and molecular processes is in the picosecond to attosecond realm. Tremendous technological progress in recent years makes it possible to generate light pulses on these time scales. With such ultrashort pulses, atomic and molecular dynamics can be triggered, watched, and controlled. Simultaneously, the need rises for theoretical models describing the underlying mechanisms. This doctoral thesis focuses on the development of theoretical models which can be used to study the dynamical behavior of electrons, atoms, and molecules in the presence of ultrashort light pulses. Several examples are discussed illustrating how light pulses can trigger and control electronic, atomic, and molecular motions. In the first part of this work, I focus on the rotational motion of asymmetric molecules, which happens on picosecond and femtosecond time scales. Here, the aim is to align all three axes of the molecule as well as possible. To investigate theoretically alignment dynamics, I developed a program that can describe alignment motion ranging from the impulsive to the adiabatic regime. The asymmetric molecule SO{sub 2} is taken as an example to discuss strategies of optimizing 3D alignment without the presence of an external field (i.e., field-free alignment). Field-free alignment is particularly advantageous because subsequent experiments on the aligned molecule are not perturbed by the aligning light pulse. Wellaligned molecules in the gas phase are suitable for diffraction experiments. From the

  10. Modification of solid surface by intense pulsed light-ion and metal-ion beams

    Nakagawa, Y.; Ariyoshi, T.; Hanjo, H.; Tsutsumi, S.; Fujii, Y.; Itami, M.; Okamoto, A.; Ogawa, S.; Hamada, T.; Fukumaru, F.

    1989-03-01

    Metal surfaces of Al, stainless-steel and Ti were bombarded with focused intense pulsed proton and carbon ion beams (energy ˜ 80 keV, current density ≲ 1000 A/cm 2, pulse width ˜ 300 ns). Thin titanium carbide layers were produced by carbon-ion irradiation on the titanium surface. The observed molten surface structures and recrystallized layer (20 μm depth) indicated that the surfaces reached high temperatures as a result of the irradiation. The implantation of intense pulsed metal ion beams (Al +, ˜ 20 A/cm 2) with simultaneous deposition of anode metal vapor on Ti and Fe made a mixed layer of AlTi and AlFe of about 0.5 μm depth. Ti and B multilayered films evaporated on glass substrates were irradiated by intense pulsed proton beams of relatively lower current density (10-200 A/cm 2). Ti films containing B atoms above 10 at.% were obtained. When the current density was about 200 A/cm 2 diffraction peaks of TiB 2 appeared.

  11. A computational model for heterogeneous heating during pulsed laser irradiation of polymers doped with light-absorbing microparticles

    Marla, Deepak; Zhang, Yang; Jabbaribehnam, Mirmasoud

    2016-01-01

    characteristics. This work presents a study based on a computational model of laser heating of polymer doped with light-absorbing microparticles accounting for the heterogeneous nature of heating. The work aims at gaining a fundamental insight into the nature of the heating process and to understand the role......Doping of polymers with light-absorbing microparticles to increase their optical properties is a commonly used pre-treatment technique in laser processing of polymers. The presence of these particles plays an important role during laser heating of the polymer that influences its surface...... of microparticles. The results suggest that apart from the laser intensity and pulse duration, the properties of the microparticles including their size and distribution also play an important role during the laser heating of polymers....

  12. Pulsed laser light forces cancer cells to absorb anticancer drugs--the role of water in nanomedicine.

    Sommer, Andrei P; Zhu, Dan; Mester, Adam R; Försterling, Horst-Dieter

    2011-06-01

    Anticancer drugs executing their function intracellularly enter cancer cells via diffusive processes. Complementary to these slow processes, cells can be forced to incorporate drugs by convection - a more efficient transport process. Transmembrane convection is induced by moderately intense pulsed laser light (or light emitting diodes) changing the structure of nanoscopic water layers in cells. This is a fundamental difference with the method of photodynamic therapy. In a model system we demonstrate that a total irradiation time of one minute is sufficient to completely inhibit proliferation of cancer cells. Transmembrane convection protects healthy cells from extended chemotherapy exposure, could be exploited to overcome multidrug resistance, and is a promising new tool in a variety of therapies as well as in skin rejuvenation.

  13. Pulsed vs. CW low level light therapy on osteoarticular signs and symptoms in limited scleroderma (CREST syndrome)

    Barolet, Daniel

    2012-03-01

    Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: Calcinosis, Raynaud's phenomenon, Esophageal dysfunction, Sclerodactyly, and Telangiectasias. The transforming growth factor beta (TGF-β) has been identified has a major player in the pathogenic process, while low level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940nm using microsecond domain pulsing and continuous wave mode (CW) on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks, using a sequential pulsing mode on one elbow, and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, and health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Significant functional and morphologic improvements were observed after LLLT, with best results seen with the pulsing mode. No significant adverse effects were noted. Two mechanisms of action may be at play. The 940nm wavelength provides inside-out heating possibly vasodilating capillaries which in turn increases catabolic processes leading to a reduction of in situ calcinosis. LLLT may also improve symptoms by triggering a cascade of cellular reactions, including the modulation of inflammatory mediators.

  14. Design of a bolometer for total-energy measurement of the linear coherent light source pulsed X-ray laser

    Friedrich, S. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)]. E-mail: Friedrich1@llnl.gov; Li, L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ott, L.L. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Kolgani, Rajeswari M. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Yong, G.J. [Department of Physics, Geosciences and Astronomy, Towson University, 8000 York Avenue, Towson MD 21252 (United States); Ali, Z.A. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Drury, O.B. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Ables, E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States); Bionta, R.M. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore CA 94550 (United States)

    2006-04-15

    We are developing a cryogenic bolometer to measure the total energy of the linear coherent light source (LCLS) free electron X-ray laser to be built at the Stanford Linear Accelerator Center. The laser will produce ultrabright X-ray pulses in the energy range between 0.8 and 8 keV with {approx}10{sup 12} photons per {approx}200 fs pulse at a repeat interval of 8 ms, and will be accompanied by a halo of spontaneous undulator radiation. The bolometer is designed to determine the total energy of each laser pulse to within <0.1%, taking into account thermal and mechanical stress to prevent melting in the LCLS beam due to its high energy density. We propose to use a magnetoresistive Nd{sub (1-} {sub x} {sub )}Sr {sub x} MnO{sub 3} sensor array at the metal-insulator transition, where the composition x is adjusted to produce the desired transition temperature. We discuss design considerations and material choices, and present numerical simulations of the thermal response.

  15. Further investigations into pulsed optically stimulated luminescence from feldspars using blue and green light

    Ankjærgaard, Christina; Jain, Mayank; Kalchgruber, R.

    2009-01-01

    The purpose of this paper is to investigate characteristics of luminescence signals resulting from pulsed optical stimulation of feldspars and thereby to understand the underlying processes giving rise to the signal. Fourteen different feldspar specimens were investigated using time-resolved opti......The purpose of this paper is to investigate characteristics of luminescence signals resulting from pulsed optical stimulation of feldspars and thereby to understand the underlying processes giving rise to the signal. Fourteen different feldspar specimens were investigated using time...... suggests that the TR-OSL signal decay is governed by the recombination process and not by the excited state lifetime. Furthermore data from the TR-OSL signal dependence on stimulation time and preheat temperature suggest that the recombination process may not be a sum of exponentials, although the model...... cannot be rejected definitively....

  16. Evaluation of the Safety and Effectiveness of Intense Pulsed Light in the Treatment of Meibomian Gland Dysfunction

    Xiaodan Jiang

    2016-01-01

    Full Text Available Purpose. This study aims to explore the safety and efficacy of a novel treatment-intense pulsed light (IPL in MGD eyes. Methods. This study is a prospective and open label study. Forty eyes of 40 MGD patients were recruited in the study and received 4 consecutive IPL treatments on day 1, day 15, day 45, and day 75. Ten ocular surface symptoms were evaluated with a subjective face score at every visit. Best spectacle corrected visual acuity, intraocular pressure (IOP, conjunctival injection, upper and lower tear meniscus height (TMH, tear break-up time (TBUT, corneal staining, lid margin and meibomian gland assessments, and meibography were also recorded at every visit, as well as the adverse effects on the eye and ocular surface. Results. Significant improvements were observed in single and total ocular surface symptom scores, TBUT, and conjunctival injection at all the visits after the initial IPL treatment (P<0.05. Compared to baseline, the signs of eyelid margin, meibomian gland secretion quality, and expressibility were significantly improved at every visit after treatments. There was no regional and systemic threat observed in any patient. Conclusion. Intense pulsed light (IPL therapy is a safe and efficient treatment in relieving symptoms and signs of MGD eyes.

  17. Temperature, Crystalline Phase and Influence of Substrate Properties in Intense Pulsed Light Sintering of Copper Sulfide Nanoparticle Thin Films.

    Dexter, Michael; Gao, Zhongwei; Bansal, Shalu; Chang, Chih-Hung; Malhotra, Rajiv

    2018-02-02

    Intense Pulsed Light sintering (IPL) uses pulsed, visible light to sinter nanoparticles (NPs) into films used in functional devices. While IPL of chalcogenide NPs is demonstrated, there is limited work on prediction of crystalline phase of the film and the impact of optical properties of the substrate. Here we characterize and model the evolution of film temperature and crystalline phase during IPL of chalcogenide copper sulfide NP films on glass. Recrystallization of the film to crystalline covellite and digenite phases occurs at 126 °C and 155 °C respectively within 2-7 seconds. Post-IPL films exhibit p-type behavior, lower resistivity (~10 -3 -10 -4  Ω-cm), similar visible transmission and lower near-infrared transmission as compared to the as-deposited film. A thermal model is experimentally validated, and extended by combining it with a thermodynamic approach for crystal phase prediction and via incorporating the influence of film transmittivity and optical properties of the substrate on heating during IPL. The model is used to show the need to a-priori control IPL parameters to concurrently account for both the thermal and optical properties of the film and substrate in order to obtain a desired crystalline phase during IPL of such thin films on paper and polycarbonate substrates.

  18. Impact of High-Power Pulsed Light on Microbial Contamination, Health Promoting Components and Shelf Life of Strawberries

    Irina Buchovec

    2013-01-01

    Full Text Available The aim of this work is to evaluate the impact of high-power pulsed light (HPPL on the microbial control and nutritional properties of strawberries. Berries were treated with HPPL and afterwards analyzed in terms of microbial contamination, shelf life extension, antioxidant capacity, firmness, total phenolic, total anthocyanin and ascorbic acid content, and colour. Results indicate that the decontamination of strawberries by HPPL was significant compared to control. Naturally distributed mesophilic bacteria on the surface of strawberries were inactivated by 2.2 log, and inoculated Bacillus cereus and Listeria monocytogenes were inactivated by 1.5 and 1.1 log, respectively. Yeasts/microfungi distributed on the surface of strawberries were inactivated by 1 log. The shelf life of treated strawberries was extended by 2 days. The increase of temperature on the surface of fruit never exceeded 42 °C. No significantly important differences were observed in total phenolic, total anthocyanin and ascorbic acid content, and antioxidant capacity of strawberry fruits before and after pulsed light treatment. Moreover, no impact on the strawberry colour or firmness was found after HPPL treatment. In conclusion, HPPL is fast, effective, non-thermal and environmentally friendly technique which can be applied for microbial control of strawberries.

  19. Intense, broadband, pulsed I-R source at the National Synchrotron Light Source

    Williams, G.P.

    1984-01-01

    We describe a broadband (1 μm to 1 mm) synchrotron radiation infrared source, pulsed each 20 to 180 nseconds and delivering about 10 15 photons/sec/1% bandpass into f10 optics. The source size is diffraction limited. This source is thus 100 to 1000 times brighter than a 2000 0 K black body, very stable and capable of being used for calibration

  20. May the variable magnetic field and pulse red light induce synergy effects in respiratory burst of neutrophils in vitro?

    Nawrocka - Bogusz, H; Jaroszyk, F

    2011-01-01

    We investigated the effect of the red light (R) (630 nm), magnetic field (MF) and magnetic field combined with the red light (MF+R) upon reactive oxygen species (ROS) production by neutrophils in vitro. The object of the research was hydrogen peroxide (H 2 O 2 ) formation during neutrophils respiratory burst or within steady-state. Blood from healthy volunteers was used for the purpose of the study. Flow cytometry method, using transformation of DCFH-DA (2'7'-dichlorofluorescin diacetate) to the fluorescent DCF (2'7'-dichlorofluorescin), was used for estimation of hydrogen peroxide production. The variable magnetic field of ELF range of the mean induction equals 26.7(μT), the red light at the energy density of 1.17(J/cm 2 ) and their combination were applied for 30 minutes each. The fundamental frequency of pulses was 180÷ 195 Hz. A statistically significant decrease of H 2 O 2 production by neutrophils was observed. The level of the decrease was in the range of 10-30% and was dependent on the kind of applied physical factors and whether neutrophils were stimulated or not. The observation showed that the variable magnetic field combined with red light do not induce the synergy effect.

  1. Photonic crystal fibers for supercontinuum generation pumped by a gain-switched CW fiber laser

    Larsen, Casper; Noordegraaf, Danny; Hansen, Kim P.

    2012-01-01

    Supercontinuum generation in photonics crystal fibers (PCFs) pumped by CW lasers yields high spectral power density and average power. However, such systems require very high pump power and long nonlinear fibers. By on/off modulating the pump diodes of the fiber laser, the relaxation oscillations...... of the laser can be exploited to enhance the broadening process. The physics behind the supercontinuum generation is investigated by sweeping the fiber length, the zero dispersion wavelength, and the fiber nonlinearity. We show that by applying gain-switching a high average output power of up to 30 W can...

  2. Efficient Mid-Infrared Supercontinuum Generation in Tapered Large Mode Area Chalcogenide Photonic Crystal Fibers

    Petersen, Christian Rosenberg; Engelsholm, Rasmus Dybbro; Markos, Christos

    2017-01-01

    Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source.......Mid-infrared supercontinuum spanning from 1.8-9  μm with an output power of 41.5 mW is demonstrated by pumping tapered large mode area chalcogenide photonic crystal fibers using a 4 μm optical parametric source....

  3. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian

    2016-01-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150  nJ/10  nm150  nJ/10  nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper...... with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source....

  4. Phase-resolved pulse propagation through metallic photonic crystal slabs: plasmonic slow light

    Schönhardt, Anja; Nau, Dietmar; Bauer, Christina; Christ, André; Gräbeldinger, Hedi; Giessen, Harald

    2017-03-01

    We characterized the electromagnetic field of ultra-short laser pulses after propagation through metallic photonic crystal structures featuring photonic and plasmonic resonances. The complete pulse information, i.e. the envelope and phase of the electromagnetic field, was measured using the technique of cross-correlation frequency resolved optical gating. In good agreement, measurements and scattering matrix simulations show a dispersive behaviour of the spectral phase at the position of the resonances. Asymmetric Fano-type resonances go along with asymmetric phase characteristics. Furthermore, the spectral phase is used to calculate the dispersion of the sample and possible applications in dispersion compensation are investigated. Group refractive indices of 700 and 70 and group delay dispersion values of 90 000 fs2 and 5000 fs2 are achieved in transverse electric and transverse magnetic polarization, respectively. The behaviour of extinction and spectral phase can be understood from an intuitive model using the complex transmission amplitude. An associated depiction in the complex plane is a useful approach in this context. This method promises to be valuable also in photonic crystal and filter design, for example, with regards to the symmetrization of the resonances. This article is part of the themed issue 'New horizons for nanophotonics'.

  5. Atomic and molecular dynamics triggered by ultrashort light pulses on the atto- to picosecond time scale

    Pabst, Stefan

    2013-04-01

    Time-resolved investigations of ultrafast electronic and molecular dynamics were not possible until recently. The typical time scale of these processes is in the picosecond to attosecond realm. The tremendous technological progress in recent years made it possible to generate ultrashort pulses, which can be used to trigger, to watch, and to control atomic and molecular motion. This tutorial focuses on experimental and theoretical advances which are used to study the dynamics of electrons and molecules in the presence of ultrashort pulses. In the first part, the rotational dynamics of molecules, which happens on picosecond and femtosecond time scales, is reviewed. Well-aligned molecules are particularly suitable for angle-dependent investigations like x-ray diffraction or strong-field ionization experiments. In the second part, the ionization dynamics of atoms is studied. The characteristic time scale lies, here, in the attosecond to few-femtosecond regime. Although a one-particle picture has been successfully applied to many processes, many-body effects do constantly occur. After a broad overview of the main mechanisms and the most common tools in attosecond physics, examples of many-body dynamics in the attosecond world (e.g., in high-harmonic generation and attosecond transient absorption spectroscopy) are discussed.

  6. Enhanced light scattering in Si nanostructures produced by pulsed laser irradiation

    Sberna, P. M.; Scapellato, G. G.; Boninelli, S.; Miritello, M.; Crupi, I.; Bruno, E.; Privitera, V.; Simone, F.; Mirabella, S. [MATIS IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Piluso, N. [IMM-CNR, VIII strada 5, 95121 Catania (Italy)

    2013-11-25

    An innovative method for Si nanostructures (NS) fabrication is proposed, through nanosecond laser irradiation (λ = 532 nm) of thin Si film (120 nm) on quartz. Varying the laser energy fluences (425–1130 mJ/cm{sup 2}) distinct morphologies of Si NS appear, going from interconnected structures to isolated clusters. Film breaking occurs through a laser-induced dewetting process. Raman scattering is enhanced in all the obtained Si NS, with the largest enhancement in interconnected Si structures, pointing out an increased trapping of light due to multiple scattering. The reported method is fast, scalable and cheap, and can be applied for light management in photovoltaics.

  7. Optical coherence tomography imaging of telangiectasias during intense pulsed light treatment

    Ring, Hans Christian; Mogensen, Mette; Banzhaf, Christina

    2013-01-01

    Vascular malformations commonly occur in the facial region, and can be associated with significant stigma and embarrassment. Studies have shown that even recommended light-based treatments do not always result in complete clearance. This indicates the need for more accurate pre-treatment assessment...... the vessels, which may indicate edema or insufficient coagulation. (2) Hyperreflective signals within the lumen of the vessels, compatible with the expected irreversible microthrombus formation in the vessels. OCT imaging is capable of real-time assessment of tissue damage during light and laser treatment...

  8. Effects of shock waves, ultraviolet light, and electric fields from pulsed discharges in water on inactivation of Escherichia coli.

    Sun, Bing; Xin, Yanbin; Zhu, Xiaomei; Gao, Zhiying; Yan, Zhiyu; Ohshima, Takayuki

    2018-04-01

    In this work, the bacterial inactivation effects of shock waves, ultraviolet (UV) light, and electric field produced by high-voltage pulsed discharge in liquid with needle-plate configurations were studied. The contributions of each effect on the bacterial killing ratio in the discharge process were obtained individually by modifying reactor type and usage of glass, quartz, and black balloons. The results showed that the location from the discharge center axis significantly influenced the effects of shock waves and electric fields, although the effect of UV light was not affected by the location in the reactor. The effects of shock waves and electric fields were improved by decreasing the distance from the discharge center axis. Under this experimental condition, the effects of shock waves, UV light, and electric fields produced by discharges on bacterial inactivation were approximately 36.1%, 30.8%, 12.7%, respectively. Other contributions seemed to be due to activated species. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Comment on ''Generation of Electromagnetic Pulses from Plasma Channels Induced by Femtosecond Light Strings''

    Shvets, Gennady; Kaganovich, Igor; Startsev, Edward

    2002-01-01

    In a recent Letter, Cheng et al. calculated/predicted several new effects: that (a) fraction of the short laser pulse momentum can be imparted to plasma electrons via collisional damping of the laser, thereby exciting a long-lived (longer than an oscillation period) plasma wave, which (b) gives rise to a spatially uniform dipole moment of a plasma, which (c) emits far-field narrow-band radiation at the plasma frequency omega subscript ''p'' over the recombination time of the plasma. We claim that the calculation of the effect (a) is in error and the predicted effects (b,c) do not occur as described. In fact, predicted narrow-band emission at omega subscript ''p'' would not occur even if the momentum transfer and the dipole excitation were calculated correctly

  10. Improving the efficiency of a fluorescent Xe dielectric barrier light source using short pulse excitation

    Beleznai, Sz; Mihajlik, G; Richter, P; Maros, I; Balazs, L

    2008-01-01

    Operation of a Xe dielectric barrier discharge lamp producing 147-172 nm VUV radiation is investigated both theoretically and experimentally. Xe gas pressure varies between 100 and 300 mbar, and the glass body of the lamp is coated with LAP (green) phosphor to convert radiation into the visible part of the spectrum. Simulation results predict improved discharge efficiencies reaching 67% when excited by a fast rise-time, short pulse (∼200 ns) driving waveform. In this case most power deposited into the plasma efficiently produces Xe 2 * excimers, while other energy dissipation processes (ion heating, e-Xe elastic collision) are kept at a low rate. Simulation and experimental results are compared in terms of discharge efficacy and show good agreement. A lamp efficacy value as high as 80 lm W -1 is demonstrated experimentally

  11. Characterization of FBK SiPMs under illumination with very fast light pulses

    Tarolli, A., E-mail: tarolli@fbk.e [Fondazione Bruno Kessler (FBK), Trento (Italy); Dalla Betta, G.-F. [University of Trento and INFN, Trento (Italy); Melchiorri, M.; Piazza, A.; Pancheri, L.; Piemonte, C.; Zorzi, N. [Fondazione Bruno Kessler (FBK), Trento (Italy)

    2010-05-21

    A characterization of the response of SiPMs and SPADs produced at FBK-IRST Trento stimulated with fast laser pulses is presented. The tests were aimed at studying both the intrinsic timing proprieties (of SiPMs and SPADs) using the time-correlated single-photon counting technique and the dynamic range (of SiPMs). Measurements were carried out on devices with different cell size, namely, from 40x40 to 100x100 {mu}m{sup 2}. Concerning the timing resolution, all the devices exhibit a value less than 150 psec FWHM. The dynamic range of SiPMs shows a response linearity which is in line with the theory describing these devices.

  12. Characterization of FBK SiPMs under illumination with very fast light pulses

    Tarolli, A.; Dalla Betta, G.-F.; Melchiorri, M.; Piazza, A.; Pancheri, L.; Piemonte, C.; Zorzi, N.

    2010-01-01

    A characterization of the response of SiPMs and SPADs produced at FBK-IRST Trento stimulated with fast laser pulses is presented. The tests were aimed at studying both the intrinsic timing proprieties (of SiPMs and SPADs) using the time-correlated single-photon counting technique and the dynamic range (of SiPMs). Measurements were carried out on devices with different cell size, namely, from 40x40 to 100x100 μm 2 . Concerning the timing resolution, all the devices exhibit a value less than 150 psec FWHM. The dynamic range of SiPMs shows a response linearity which is in line with the theory describing these devices.

  13. Roll-to-roll-compatible, flexible, transparent electrodes based on self-nanoembedded Cu nanowires using intense pulsed light irradiation

    Zhong, Zhaoyang; Woo, Kyoohee; Kim, Inhyuk; Hwang, Hyewon; Kwon, Sin; Choi, Young-Man; Lee, Youngu; Lee, Taik-Min; Kim, Kwangyoung; Moon, Jooho

    2016-04-01

    Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced oxidation stability. Moreover, Cu NW FTCEs with high uniformities are successfully fabricated on a large area (150 mm × 200 mm) via successive IPL irradiation that is synchronized with the motion of the sample stage. This study demonstrates the possibility of roll-to-roll-based, large-scale production of low-cost, high-performance Cu NW-based FTCEs.Copper nanowire (Cu NW)-based flexible transparent conductive electrodes (FTCEs) have been investigated in detail for use in various applications such as flexible touch screens, organic photovoltaics and organic light-emitting diodes. In this study, hexadecylamine (HDA) adsorbed onto the surface of NWs is changed into polyvinylpyrrolidone (PVP) via a ligand exchange process; the high-molecular-weight PVP enables high dispersion stability. Intense pulsed light (IPL) irradiation is used to remove organic species present on the surface of the NWs and to form direct connections between the NWs rapidly without any atmospheric control. NWs are self-nanoembedded into a plastic substrate after IPL irradiation, which results in a smooth surface, strong NW/substrate adhesion, excellent mechanical flexibility and enhanced

  14. The effect of pulsed IR-light on the rheological parameters of blood in vitro.

    Nawrocka-Bogusz, Honorata; Marcinkowska-Gapińska, Anna

    2014-01-01

    In this study we attempted to assess the effect of light of 855 nm wavelength (IR-light) on the rheological parameters of blood in vitro. As an anticoagulant, heparin was used. The source of IR-light was an applicator connected to the special generator--Viofor JPS®. The blood samples were irradiated for 30 min. During the irradiation the energy density was growing at twelve-second intervals starting from 1.06 J/cm2 to 8.46 J/cm2, then the energy density dropped to the initial value; the process was repeated cyclically. The study of blood viscosity was carried out with a Contraves LS40 oscillatory-rotational rheometer, with a decreasing shearing rate from 100 to 0.01 s⁻¹ over 5 min (flow curve) and applying constant frequency oscillations f=0.5 Hz with decreasing shear amplitude ˙γ0 (viscoelasticity measurements). The analysis of the results of rotational measurements was based on the assessment of hematocrit, plasma viscosity, whole blood viscosity at four selected shear rates and on the basis of the numerical values of parameters from Quemada's rheological model: k0 (indicating red cell aggregability), k∞ (indicating red cell rigidity) and ˙γc (the value of the shear rate for which the rouleaux formation begins). In oscillatory experiments we estimated viscous and elastic components of the complex blood viscosity in the same groups of patients. We observed a decrease of the viscous component of complex viscosity (η') at ˙γ0=0.2 s⁻¹, while other rheological parameters, k0, k∞, and relative blood viscosity at selected shear rates showed only a weak tendency towards smaller values after irradiation. The IR-light effect on the rheological properties of blood in vitro turned out to be rather neutral in the studied group of patients.

  15. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E.; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F.

    2017-01-01

    This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty...

  16. Dynamic generation and coherent control of beating stationary light pulses by a microwave coupling field in five-level cold atoms

    Bao, Qian-Qian; Zhang, Yan; Cui, Cui-Li; Meng, Shao-Ying; Fang, You-Wei; Tian, Xue-Dong

    2018-04-01

    We propose an efficient scheme for generating and controlling beating stationary light pulses in a five-level atomic sample driven into electromagnetically induced transparency condition. This scheme relies on an asymmetrical procedure of light storage and retrieval tuned by two counter-propagating control fields where an additional coupling field, such as the microwave field, is introduced in the retrieval stage. A quantum probe field, incident upon such an atomic sample, is first transformed into spin coherence excitation of the atoms and then retrieved as beating stationary light pulses exhibiting a series of maxima and minima in intensity due to the alternative constructive and destructive interference. It is convenient to control the beating stationary light pulses just by manipulating the intensity and detuning of the additional microwave field. This interesting phenomenon involves in fact the coherent manipulation of dark-state polaritons and could be explored to achieve the efficient temporal splitting of stationary light pulses and accurate measurement of the microwave intensity.

  17. Using the Transient Response of WO3 Nanoneedles under Pulsed UV Light in the Detection of NH3 and NO2

    Oriol Gonzalez

    2018-04-01

    Full Text Available Here we report on the use of pulsed UV light for activating the gas sensing response of metal oxides. Under pulsed UV light, the resistance of metal oxides presents a ripple due to light-induced transient adsorption and desorption phenomena. This methodology has been applied to tungsten oxide nanoneedle gas sensors operated either at room temperature or under mild heating (50 °C or 100 °C. It has been found that by analyzing the rate of resistance change caused by pulsed UV light, a fast determination of gas concentration is achieved (ten-fold improvement in response time. The technique is useful for detecting both oxidizing (NO2 and reducing (NH3 gases, even in the presence of different levels of ambient humidity. Room temperature operated sensors under pulsed UV light show good response towards ammonia and nitrogen dioxide at low power consumption levels. Increasing their operating temperature to 50 °C or 100 °C has the effect of further increasing sensitivity.

  18. Towards supercontinuum-driven hyperspectral microscopy in the mid-infrared

    Lindsay, I. D.; Valle, S.; Ward, J.

    2016-01-01

    The extension of supercontinuum (SC) sources into the mid-infrared, via the use of fluoride and chalcogenide optical fibers, potentially offers the high radiance of a laser combined with spectral coverage far exceeding that of typical tunable lasers and comparable to traditional black-body emitte...

  19. Two-octave mid-infrared supercontinuum generation in As-Se suspended core fibers

    Møller, Uffe Visbech; Petersen, Christian Rosenberg; Kubat, Irnis

    2015-01-01

    A more than two-octave mid-infrared supercontinuum with an average output power of 15.6 mW covering 1.7-7.5 μm (1,333-5,900 cm-1) is generated in a low-loss As38Se62 suspended core fiber with core diameter of 4.5 μm....

  20. Generation and Applications of High Average Power Mid-IR Supercontinuum in Chalcogenide Fibers

    Petersen, Christian Rosenberg

    2016-01-01

    Mid-infrared supercontinuum with up to 54.8 mW average power, and maximum bandwidth of 1.77-8.66 μm is demonstrated as a result of pumping tapered chalcogenide photonic crystal fibers with a MHz parametric source at 4 μm

  1. Broadband upconversion imaging around 4 µm using an all-fiber supercontinuum source

    Huot, Laurent; Moselund, Peter M.; Leick, Lasse

    2017-01-01

    . The infrared signal is passed through a sample and then focused into a bulk AgGaS2 crystal and subsequently mixed with a synchronous mixing signal at 1550 nm extracted from the pump laser of the supercontinuum. Through sum frequency generation, an upconverted signal ranging from 1030 nm to 1155 nm is generated...... and acquired using an InGaAs camera....

  2. Attosecond pulse generation in noble gases in the presence of extreme high intensity THz pulses

    Balogh, E.; Varju, K.

    2010-01-01

    Complete text of publication follows. The shortest - attosecond - light pulses available today are produced by high harmonic generation (HHG) of near-infrared (NIR) laser pulses in noble gas jets, providing a broad spectral plateau of XUV radiation ending in a cutoff. The minimum pulse duration is determined by the achievable bandwidth (i.e. the position of the cutoff), and the chirp of the produced pulses. The extension of the cutoff by increasing the laser intensity is limited by the depletion and phase matching problems of the medium. An alternative method demonstrated to produce higher harmonic orders is by using longer pump pulse wavelength, with the disadvantage of decreased efficiency. Recently it was shown that application of a quasi-DC high strength electric field results in an increase of more than a factor of two in the order of efficiently generated high harmonics. However, the possibility to implement the method proposed in [3] of using a CO 2 laser to create a quasi-DC field for assisting HHG of the NIR laser is questionable, because it's technically very challenging to synchronize pulses from different laser sources. Alternatively, synchronous production of THz pulses with the NIR laser pulse offers a more promising route. The first numerical test of this idea has been reported in [4]. In this contribution we further investigate the method for realistic THz field strengths and short driving pulses, exploring the effect of longer pump laser wavelength on the process. We assume the presence of high intensity THz pulses for supplying the high-strength quasi-DC electric field. The spectrum as well as the chirp of the produced radiation is calculated. We use the non-adiabatic saddle point method to determine the generated radiation described in [6]. We simulate harmonic generation in noble gas atoms, with few cycle NIR pulses of peak intensity at and above 2 x 10 14 W/cm 2 (388 MV/cm) and wavelengths 800 nm and 1560 nm. The THz field strength is varied

  3. Achieving minimum-error discrimination of an arbitrary set of laser-light pulses

    da Silva, Marcus P.; Guha, Saikat; Dutton, Zachary

    2013-05-01

    Laser light is widely used for communication and sensing applications, so the optimal discrimination of coherent states—the quantum states of light emitted by an ideal laser—has immense practical importance. Due to fundamental limits imposed by quantum mechanics, such discrimination has a finite minimum probability of error. While concrete optical circuits for the optimal discrimination between two coherent states are well known, the generalization to larger sets of coherent states has been challenging. In this paper, we show how to achieve optimal discrimination of any set of coherent states using a resource-efficient quantum computer. Our construction leverages a recent result on discriminating multicopy quantum hypotheses [Blume-Kohout, Croke, and Zwolak, arXiv:1201.6625]. As illustrative examples, we analyze the performance of discriminating a ternary alphabet and show how the quantum circuit of a receiver designed to discriminate a binary alphabet can be reused in discriminating multimode hypotheses. Finally, we show that our result can be used to achieve the quantum limit on the rate of classical information transmission on a lossy optical channel, which is known to exceed the Shannon rate of all conventional optical receivers.

  4. Sliding Mode Pulsed Averaging IC Drivers for High Brightness Light Emitting Diodes

    Dr. Anatoly Shteynberg, PhD

    2006-08-17

    This project developed new Light Emitting Diode (LED) driver ICs associated with specific (uniquely operated) switching power supplies that optimize performance for High Brightness LEDs (HB-LEDs). The drivers utilize a digital control core with a newly developed nonlinear, hysteretic/sliding mode controller with mixed-signal processing. The drivers are flexible enough to allow both traditional microprocessor interface as well as other options such as “on the fly” adjustment of color and brightness. Some other unique features of the newly developed drivers include • AC Power Factor Correction; • High power efficiency; • Substantially fewer external components should be required, leading to substantial reduction of Bill of Materials (BOM). Thus, the LED drivers developed in this research : optimize LED performance by increasing power efficiency and power factor. Perhaps more remarkably, the LED drivers provide this improved performance at substantially reduced costs compared to the present LED power electronic driver circuits. Since one of the barriers to market penetration for HB-LEDs (in particular “white” light LEDs) is cost/lumen, this research makes important contributions in helping the advancement of SSL consumer acceptance and usage.

  5. 1,213 Cases of Treatment of Facial Acne Using Indocyanine Green and Intense Pulsed Light in Asian Skin

    Kui Young Park

    2015-01-01

    Full Text Available Background. Photodynamic therapy (PDT has been used for acne, with various combinations of photosensitizers and light sources. Objective. We evaluated the effectiveness and safety of indocyanine green (ICG and intense pulsed light (IPL in the treatment of acne. Materials and Methods. A total of 1,213 patients with facial acne were retrospectively reviewed. Patients received three or five treatments of ICG and IPL at two-week intervals. Clinical response to treatment was assessed by comparing pre- and posttreatment clinical photographs and patient satisfaction scores. Results. Marked to excellent improvement was noted in 483 of 1,213 (39.8% patients, while minimal to moderate improvement was achieved in the remaining 730 (60.2% patients. Patient satisfaction scores revealed that 197 (16.3% of 1,213 patients were highly satisfied, 887 (73.1% were somewhat satisfied, and 129 (10.6% were unsatisfied. There were no significant side effects. Conclusion. These results suggest that PDT with ICG and IPL can be effectively and safely used in the treatment of acne.

  6. Gross and microscopic findings in patients submitted to nonablative full-face resurfacing using intense pulsed light: a preliminary study.

    Hernández-Pérez, Enrique; Ibiett, Erick Valencia

    2002-08-01

    Intense pulsed light (IPL) is a noncoherent, nonlaser, filtered flashlamp emitting a broadband visible light that has been shown to be effective in photoepilation, as well as in a number of vascular and pigmented lesions of the skin. Their efficacy has also been reported recently in the treatment of photodamaged facial skin. In the last condition, however, there are few studies showing the clinical and microscopic changes produced by IPL. To assess the gross and microscopic changes that occur in photodamaged skin submitted to nonablative full-face resurfacing (NAFFR) using IPL. Five women were submitted to five NAFFR sessions using IPL, one every 2 weeks. Skin biopsies and photographs were taken on all of the patients before the first procedure and after the last one, as well as weekly clinical assessment. Data concerning skin features (wrinkles, oiliness, thickness, dilated pores, and general appearance) were all assessed. Microscopic improvement of the aging features in the epidermis and dermis were all assessed. For the statistical analysis a t test for small samples was used. All the patients showed clinical and microscopic improvement in every one of the parameters assessed. The t test for small samples showed a statistically significant difference (P Facial photodamage was clinically and microscopically improved using IPL. Use of IPL as a rejuvenating method seems to be promising, with minimal side effects, a wide safety margin, and minimal downtime.

  7. The spectral analysis and threshold limits of quasi-supercontinuum self-assembled quantum dot interband lasers

    Tan, Cheeloon

    2009-09-01

    This paper presents a theoretical model to explain the quasi-supercontinuum interband emission from InGaAs/GaAs self-assembled semiconductor quantum dot lasers by accounting for both inhomogeneous and homogeneous optical gain broadening. The experimental and theoretical agreement of a room temperature (293 K) broadband laser emission confirms the presence of multiple-state lasing actions in highly inhomogeneous dot ensembles. The corresponding full-width half-maximum of the photoluminescence is 76 meV as opposed to those wideband lasing coverage at only low temperature (∼60 K) from typical quantum dot lasers. A newly proposed change of homogeneous broadening with injection that occurs only in highly inhomogeneous quantum dot system is critical to account for the continuous wideband lasing but not the conventional ideas of carrier dynamics in semiconductor lasers. In addition, the analysis of threshold conditions reveals that broadband lasing only occurs when the energy spacing between quantized energy states is comparable to the inhomogeneous broadening of quantum-dot nanostructures. The study is important in providing a picture of this novel device and realization of broad lasing coverage for diverse applications, especially in the research field of short-pulse generation and ultra-fast phenomena in semiconductor quantum-dot laser. © 2009 IEEE.

  8. Spectrally resolved, broadband frequency response characterization of photodetectors using continuous-wave supercontinuum sources

    Choudhury, Vishal; Prakash, Roopa; Nagarjun, K. P.; Supradeepa, V. R.

    2018-02-01

    A simple and powerful method using continuous wave supercontinuum lasers is demonstrated to perform spectrally resolved, broadband frequency response characterization of photodetectors in the NIR Band. In contrast to existing techniques, this method allows for a simple system to achieve the goal, requiring just a standard continuous wave(CW) high-power fiber laser source and an RF spectrum analyzer. From our recent work, we summarize methods to easily convert any high-power fiber laser into a CW supercontinuum. These sources in the time domain exhibit interesting properties all the way down to the femtosecond time scale. This enables measurement of broadband frequency response of photodetectors while the wide optical spectrum of the supercontinuum can be spectrally filtered to obtain this information in a spectrally resolved fashion. The method involves looking at the RF spectrum of the output of a photodetector under test when incident with the supercontinuum. By using prior knowledge of the RF spectrum of the source, the frequency response can be calculated. We utilize two techniques for calibration of the source spectrum, one using a prior measurement and the other relying on a fitted model. Here, we characterize multiple photodetectors from 150MHz bandwidth to >20GHz bandwidth at multiple bands in the NIR region. We utilize a supercontinuum source spanning over 700nm bandwidth from 1300nm to 2000nm. For spectrally resolved measurement, we utilize multiple wavelength bands such as around 1400nm and 1600nm. Interesting behavior was observed in the frequency response of the photodetectors when comparing broadband spectral excitation versus narrower band excitation.

  9. The effects of sodium in ITO by pulsed laser deposition on organic light-emitting diodes

    Yong, Thian Khok; Kee, Yeh Yee; Tan, Sek Sean; Siew, Wee Ong; Tou, Teck Yong; Yap, Seong Shan

    2010-01-01

    The depth profile of ITO on glass was measured by the time-of-flight secondary ion mass spectroscopy (TOFSIMS) which revealed high sodium (Na) ion concentration at the ITO surface as well as at the ITO-glass interface as a result of out diffusion with substrate heating. Effects of Na ions on the performance of organic light-emitting diode (OLED) were studied by etching away a few tens of nanometers off the ITO surface with a dilute aquaregia solution of HNO 3 :HCl:H 2 O. A single-layer, molecularly doped ITO/(PVK+TPD+Alq 3 )/Al OLEDs were fabricated on bare and etched ITO samples. Although the removal of a 10-nm layer of ITO surface increased the voltage range, brightness, and lifetime, it was insufficient to correlate these improvements with solely to the Na ion reduction without considering the surface roughness. (orig.)

  10. The effects of sodium in ITO by pulsed laser deposition on organic light-emitting diodes

    Yong, Thian Khok [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Universiti Tunku Abdul Rahman, Faculty of Engineering and Science, Kuala Lumpur (Malaysia); Kee, Yeh Yee; Tan, Sek Sean; Siew, Wee Ong; Tou, Teck Yong [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Yap, Seong Shan [Multimedia University, Faculty of Engineering, Cyberjaya, Selangor (Malaysia); Norwegian University of Science and Technology, Department of Physics, Trondheim (Norway)

    2010-12-15

    The depth profile of ITO on glass was measured by the time-of-flight secondary ion mass spectroscopy (TOFSIMS) which revealed high sodium (Na) ion concentration at the ITO surface as well as at the ITO-glass interface as a result of out diffusion with substrate heating. Effects of Na ions on the performance of organic light-emitting diode (OLED) were studied by etching away a few tens of nanometers off the ITO surface with a dilute aquaregia solution of HNO{sub 3}:HCl:H{sub 2}O. A single-layer, molecularly doped ITO/(PVK+TPD+Alq{sub 3})/Al OLEDs were fabricated on bare and etched ITO samples. Although the removal of a 10-nm layer of ITO surface increased the voltage range, brightness, and lifetime, it was insufficient to correlate these improvements with solely to the Na ion reduction without considering the surface roughness. (orig.)

  11. Advanced Oxidation of Tartrazine and Brilliant Blue with Pulsed Ultraviolet Light Emitting Diodes.

    Scott, Robert; Mudimbi, Patrick; Miller, Michael E; Magnuson, Matthew; Willison, Stuart; Phillips, Rebecca; Harper, Willie F

    2017-01-01

      This study investigated the effect of ultraviolet light-emitting diodes (UVLEDs) coupled with hydrogen peroxide as an advanced oxidation process (AOP) for the degradation of two test chemicals. Brilliant Blue FCF consistently exhibited greater degradation than tartrazine, with 83% degradation after 300 minutes at the 100% duty cycle compared with only 17% degradation of tartrazine under the same conditions. These differences are attributable to the structural properties of the compounds. Duty cycle was positively correlated with the first-order rate constants (k) for both chemicals but, interestingly, negatively correlated with the normalized first-order rate constants (k/duty cycle). Synergistic effects of both hydraulic mixing and LED duty cycle were manifested as novel oscillations in the effluent contaminant concentration. Further, LED output and efficiency were dependent upon duty cycle and less efficient over time perhaps due to heating effects on semiconductor performance.

  12. The spectral analysis and threshold limits of quasi-supercontinuum self-assembled quantum dot interband lasers

    Tan, Cheeloon; Wang, Yang; Djie, Hery Susanto; Ooi, Boon S.

    2009-01-01

    This paper presents a theoretical model to explain the quasi-supercontinuum interband emission from InGaAs/GaAs self-assembled semiconductor quantum dot lasers by accounting for both inhomogeneous and homogeneous optical gain broadening

  13. Volume holographic storage and multiplexing in blends of PMMA and a block methacrylic azopolymer, using 488 nm light pulses in the range of 100 ms to 1 s

    Forcen, Patricia; Oriol, Luis; Sanchez, Carlos

    2008-01-01

    Blends of polymethylmethacrylate (PMMA) and diblock methacrylic azopolymers have been investigated for holographic storage with short light pulses. Transmission electron microscopy measurements show that the dilution of the block copolymer in PMMA changes the microstructure from a lamellar to a s...

  14. 4.5 W supercontinuum generation from 1017 to 3438 nm in an all-solid fluorotellurite fiber

    Jia, Zhixu; Yao, Chuanfei; Jia, Shijie; Wang, Fang; Wang, Shunbin; Zhao, Zhipeng; Qin, Guanshi; Ohishi, Yasutake; Qin, Weiping

    2017-06-01

    All-solid fluorotellurite fibers are fabricated by using a rod-in-tube method. The core and cladding materials are TeO2-BaF2-Y2O3 (TBY) and AlF3-based glasses, respectively. Since the refractive index (˜1.46) of AlF3-based glass is much lower than that (˜1.84) of TBY glass, the zero-dispersion-wavelength of the fabricated fiber can be tuned from 2145 to 1507 nm by varying the fiber core diameter from 50 to 3 μm. By using a 0.6 m long all-solid fluorotellurite fiber with a core diameter of ˜7 μm as the nonlinear medium and a 2 μm femtosecond fiber laser as the pump source, 4.5 W supercontinuum (SC) generation from 1017 to 3438 nm is obtained for a launched pump power of ˜10.48 W. The corresponding optical-to-optical conversion efficiency is about 42.9%. In addition, no any damage of the fluorotellurite fiber is observed during the operation of the above SC light source. Our results show that all-solid fluorotellurite fibers are promising nonlinear media for constructing high power mid-infrared SC light sources.

  15. Theoretical study of relativistic corrections induced by an ultra-short and intense light pulse in matter

    Hinschberger Schreiber, Yannick

    2012-01-01

    This thesis focuses on the relativistic corrections induced by an ultra-short and intense light pulse in condensed matter. It is part of the new theme of the coherent ultra-fast demagnetization of ferromagnetic systems induced by a femtosecond laser pulse [Nature, 5, 515 (2009)] [1]. A relativistic coupling between spins and photons has been proposed to explain the experimental results obtained in [1]. The first part of this work focuses on the nonrelativistic limit of the Dirac's formalism. By means of the Foldy-Wouthuysen transformation the nonrelativistic approximation of the external-electromagnetic-field Dirac equation to fifth order in powers of 1/m is obtained. Generalizing this result we postulate a general expression of the direct spin-field electronic Hamiltonian valid at any order in 1/m. A similar work is performed on a two-interacting electrons system described with the Breit Hamiltonian, whose the diagonalization at third order in 1/m illustrates an original coupling between the spin, the coulomb interaction and the time-dependent external electromagnetic field. In a second part, a classical model is developed for modeling ultrafast nonlinear coherent magneto-optical experiments performed on ferromagnetic thin films. Theoretical predictions of the Faraday rotation angles are compared to available experimental values and give meaningful insights about the physical mechanisms underlying the observed coherent magneto-optical phenomena. The crucial role played by the spin-orbit mechanism resulting from the direct interaction between the external electric field of the laser and the electron spins of the sample is underlined. (author) [fr

  16. Asymmetric Draw-Tower Tapers for Supercontinuum Generation and Verification of the Novel Concept of Group-Acceleration Matching

    Sørensen, Simon Toft; Møller, Uffe; Moselund, P. M.

    2012-01-01

    We present the first short asymmetrical draw-tower photonic crystal fiber taper for maximizing the power in the blue edge of a supercontinuum. The results clearly emphasize the importance of the taper shape on the spectrum.......We present the first short asymmetrical draw-tower photonic crystal fiber taper for maximizing the power in the blue edge of a supercontinuum. The results clearly emphasize the importance of the taper shape on the spectrum....

  17. Nonlinear Pulse Shaping in Fibres for Pulse Generation and Optical Processing

    Sonia Boscolo

    2012-01-01

    Full Text Available The development of new all-optical technologies for data processing and signal manipulation is a field of growing importance with a strong potential for numerous applications in diverse areas of modern science. Nonlinear phenomena occurring in optical fibres have many attractive features and great, but not yet fully explored, potential in signal processing. Here, we review recent progress on the use of fibre nonlinearities for the generation and shaping of optical pulses and on the applications of advanced pulse shapes in all-optical signal processing. Amongst other topics, we will discuss ultrahigh repetition rate pulse sources, the generation of parabolic shaped pulses in active and passive fibres, the generation of pulses with triangular temporal profiles, and coherent supercontinuum sources. The signal processing applications will span optical regeneration, linear distortion compensation, optical decision at the receiver in optical communication systems, spectral and temporal signal doubling, and frequency conversion.

  18. Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color.

    Canton, Jillian L; Smith, Mark R; Choi, Ho-Sun; Eastman, Charmane I

    2009-07-17

    Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Subjects (blue-eyed n = 7; brown eyed n = 6) maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO). Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux). An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline). A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment.Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. The average phase delay of the DLMO was -1.3 +/- 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. A single 2-hour bright light pulse combined with a moderate delay of the sleep/dark episode

  19. Phase delaying the human circadian clock with a single light pulse and moderate delay of the sleep/dark episode: no influence of iris color

    Choi Ho-Sun

    2009-07-01

    Full Text Available Abstract Background Light exposure in the late evening and nighttime and a delay of the sleep/dark episode can phase delay the circadian clock. This study assessed the size of the phase delay produced by a single light pulse combined with a moderate delay of the sleep/dark episode for one day. Because iris color or race has been reported to influence light-induced melatonin suppression, and we have recently reported racial differences in free-running circadian period and circadian phase shifting in response to light pulses, we also tested for differences in the magnitude of the phase delay in subjects with blue and brown irises. Methods Subjects (blue-eyed n = 7; brown eyed n = 6 maintained a regular sleep schedule for 1 week before coming to the laboratory for a baseline phase assessment, during which saliva was collected every 30 minutes to determine the time of the dim light melatonin onset (DLMO. Immediately following the baseline phase assessment, which ended 2 hours after baseline bedtime, subjects received a 2-hour bright light pulse (~4,000 lux. An 8-hour sleep episode followed the light pulse (i.e. was delayed 4 hours from baseline. A final phase assessment was conducted the subsequent night to determine the phase shift of the DLMO from the baseline to final phase assessment. Phase delays of the DLMO were compared in subjects with blue and brown irises. Iris color was also quantified from photographs using the three dimensions of red-green-blue color axes, as well as a lightness scale. These variables were correlated with phase shift of the DLMO, with the hypothesis that subjects with lighter irises would have larger phase delays. Results The average phase delay of the DLMO was -1.3 ± 0.6 h, with a maximum delay of ~2 hours, and was similar for subjects with blue and brown irises. There were no significant correlations between any of the iris color variables and the magnitude of the phase delay. Conclusion A single 2-hour bright light

  20. Photonics at the frontiers. Generation of few-cycle light pulses via NOPCPA and real-time probing of charge transfer in hybrid photovoltaics

    Herrmann, Daniel

    2011-11-11

    In the first part of this thesis the methodics of the non-collinear, optically parametric amplification of chirped light pulses (NOPCPA) for the generation of few-cycle light pulses in the visible (Vis) and near infrared (NIR) with of 5-8 fs half-width are essential further developed. Fundamental parametric influences, like the existence of a parametrically induced phase and the generation of optically parametric fluorescence (OPF), are studied both by theoretical analyses and numerical simulations and by concrete experiments. Experimentally in the framework of this thesis fwe-cycle light pulses with a pulse width of 7.9 fs, 130 mJ energy, at 805 nm central wavelength and a very high seed-pulse-limited prepulse contrast of 11 and 8 orders of magnitude are reached at 30 ps and approximately 3 ps. One the one hand it has been succeeded to accelerate with the broad-band pulse amplifier quasi-monoenergetic electrons with energies of up to 50 MeV. For this the light pulse is focussed to relativistic intensities of several W/cm{sup 2} in a helium gas jet. On the other hand XUV light was produced up to the 20th harmonic of the generated light pulse from the broad-band pulse amplifier by its sub-cycle interaction with solid surfaces. In the framework of this thesis furthermore new, extended concepts for still broader-band NOPCPA over one octave were developed and characterized, which contain the application of two pump pulses in one NOPCPA stage and the application of two different pump wavelength in two subsequent NOPCPA stages. In the second part of this thesis broad-band white-light spectra and by means of NOPCPA spectrally tunable light pulses are applied in order to realize a transient absorption spectrometer with multichannel detection. This new excitation-query construction combines a very broad-band UV-Vis-NIR query with a high time resolution of 40 fs and high sensitivity for the transient change of the optical density of less than 10{sup -4}. By this it has in

  1. Coherent and Incoherent Rogue Waves in Seeded Supercontinuum Generation

    Sørensen, Simon Toft; Larsen, Casper; Møller, Uffe Visbech

    2013-01-01

    The shot-to-shot stability of a supercontiuum (SC) can be controlled both in terms of coherence and intensity stability by modulating the input pulse with a weak seed [1-3]. In the long-pulse regime, the SC generation is initiated by noise-seeded modulation instability (MI), which breaks the pump...

  2. Optofluidic technology for monitoring rotifer Brachionus calyciflorus responses to regular light pulses

    Cartlidge, Rhys; Campana, Olivia; Nugegoda, Dayanthi; Wlodkowic, Donald

    2016-12-01

    Behavioural alterations can occur as a result of a toxicant exposure at concentrations significantly lower than lethal effects that are commonly measured in acute toxicity testing. The use of alternating light and dark photoperiods to test phototactic responses of aquatic invertebrates in the presence of environmental contaminants provides an attractive analytical avenue. Quantification of phototactic responses represents a sublethal endpoint that can be employed as an early warning signal. Despite the benefits associated with the assessment of these endpoints, there is currently a lack of automated and miniaturized bioanalytical technologies to implement the development of toxicity testing with small aquatic species. In this study we present a proof-of-concept microfluidic Lab-on-a-Chip (LOC) platform for the assessment of rotifer swimming behavior in the presence of the toxicant copper sulfate. The device was designed to assess impact of toxicants at sub-lethal concentrations on freshwater crustacean Brachionus calyciflorus, testing behavioral endpoints such as animal swimming distance, speed and acceleration. The LOC device presented in this work enabled straightforward caging of microscopic crustaceans as well as non-invasive analysis of rapidly swimming animals in a focal plane of a video-microscopy system. The chip-based technology was fabricated using a new photolithography method that enabled formation of thick photoresist layers with minimal distortion. Photoresist molds were then employed for replica molding of LOC devices with poly(dimethylsiloxane) (PDMS) elastomer. The complete bioanalytical system consisted of: (i) microfluidic PDMS chip-based device; (ii) peristaltic microperfusion pumping manifold; (iii) miniaturized CMOS camera for video data acquisition; and (iv) video analysis software algorithms for quantification of changes in swimming behaviour of B. calyciflorus in response to reference toxicants.

  3. Relativistic motion of charged particles in the interaction of short pulses of intense laser light with plasma

    Gomez R, F.

    2004-01-01

    τ of the electron that per se is an invariant, it is proportional to a certain interval dη. In the chapter 3 it will see that the movement analysis of the charged particles in the electromagnetic field presents serious mathematical difficulties, where the integration of the movement equations results extraordinarily complex and it can only be integrated in most of the cases by numerical means. We will present the procedure used for the deduction of the equations of motion of a charged particle in the interaction of a laser light pulse and a homogeneous magnetic field in arbitrary direction, with the addition of an harmonic term of force. In this chapter it is not sought to make a meticulous discussion of the involved physics and only we will present the algebraic procedure. In the chapter 4 we will present the integration method of the Lorentz force, and we will obtain the exact solution for the case of a pulse of a plane wave elliptically polarized of arbitrary amplitude spreading along an external magnetic field. The solution method will allow to decrease the solutions to the case in which we have an infinite waves train reported by Ondarza (10) and so the corresponding solutions will be obtained reported in the literature by other authors. The main contribution in this part will be the one of obtaining an exact solution for the problem of the interaction of an electromagnetic pulse, modulated by a form of gaussian type, and a charged particle. The above-mentioned approaches in acceptable measure to real situations in well-known experiments. It will be found that when the form of the pulse is introduced to modulate the electromagnetic field, an amplification of the resonance zone in the solutions appears. Such resonance depends of the external magnetic field that fixes by turns the cyclotron frequency, and of the number of optical cycles that compose the encircling one that modulates the pulse form. In the chapter 5 it will see the case of small oscillations free of

  4. Lighting.

    United States. Bonneville Power Administration.

    1992-09-01

    Since lighting accounts for about one-third of the energy used in commercial buildings, there is opportunity to conserve. There are two ways to reduce lighting energy use: modify lighting systems so that they used less electricity and/or reduce the number of hours the lights are used. This booklet presents a number of ways to do both. Topics covered include: reassessing lighting levels, reducing lighting levels, increasing bulb & fixture efficiency, using controls to regulate lighting, and taking advantage of daylight.

  5. Efficacy of intense pulsed light therapy in the treatment of facial acne vulgaris: Comparison of two different fluences

    Monika V Patidar

    2016-01-01

    Full Text Available Background: Acne vulgaris is the most common disease of the skin affecting adolescents and young adults causing psychological distress. The combination of antibiotic resistance, adverse effects of topical and systemic anti acne medications and desire for high tech approaches have all led to new enthusiasm for light based acne treatment. Intense pulse light (IPL therapy has three modes of action in acne vulgaris i.e., photochemical, photo thermal and photo immunological. Aims: (1 to study efficacy of IPL therapy in facial acne vulgaris. (2 To compare two fluences - one normal and other subnormal on right and left side of face respectively. Methods: (Including settings and design and statistical analysis used. Total 45 patients in age group 16 to 28 years with inflammatory facial acne vulgaris were included in prospective study. Baseline data for each patient was recorded. All patients were given 4 sittings of IPL at 2 weeks interval and were followed for 2 months every 2 weeks. Fluence used was 35J/cm2 on right and 20J/cm2 on left side. Percentage reduction in lesion count was calculated at each sitting and follow up and graded as mild (0-25%, moderate (26-50%, good (51-75% and excellent (76-100%. Side effects were noted. The results were analysed using Mann-Whitney Test. Results: On right side, excellent results were achieved in 10(22%, good in 22(49% and moderate in 13(29% patients. On left side excellent were results achieved in 7(15%, good in 19(42% and moderate in 16(43% patients. There was no statically significant difference noted in efficacy of two fluences used in treatment of facial acne vulgaris. Conclusions: IPL is a effective and safe option for inflammatory acne vulgaris with minimal reversible side effects. Subnormal fluence is as effective as normal fluence in Indian skin.

  6. Nanoscale Imaging of Light-Matter Coupling Inside Metal-Coated Cavities with a Pulsed Electron Beam.

    Moerland, Robert J; Weppelman, I Gerward C; Scotuzzi, Marijke; Hoogenboom, Jacob P

    2018-05-02

    Many applications in (quantum) nanophotonics rely on controlling light-matter interaction through strong, nanoscale modification of the local density of states (LDOS). All-optical techniques probing emission dynamics in active media are commonly used to measure the LDOS and benchmark experimental performance against theoretical predictions. However, metal coatings needed to obtain strong LDOS modifications in, for instance, nanocavities, are incompatible with all-optical characterization. So far, no reliable method exists to validate theoretical predictions. Here, we use subnanosecond pulses of focused electrons to penetrate the metal and excite a buried active medium at precisely defined locations inside subwavelength resonant nanocavities. We reveal the spatial layout of the spontaneous-emission decay dynamics inside the cavities with deep-subwavelength detail, directly mapping the LDOS. We show that emission enhancement converts to inhibition despite an increased number of modes, emphasizing the critical role of optimal emitter location. Our approach yields fundamental insight in dynamics at deep-subwavelength scales for a wide range of nano-optical systems.

  7. The Role of NADPH Oxidase in the Inhibition of Trichophyton rubrum by 420-nm Intense Pulsed Light

    Hao Huang

    2018-01-01

    Full Text Available Objectives: To evaluate the effect of intense pulsed light (IPL on Trichophyton rubrum and investigate its mechanism of action.Methods: The viability of fungi treated with IPL alone and with IPL combined with an NADPH oxidase inhibitor (DPI pretreatment was determined by MTT assays. The reactive oxygen species (ROS were quantified with a DCFH-DA fluorescent probe. Malondialdehyde (MDA content and superoxide dismutase (SOD and glutathione peroxidase (GSH-Px activities were determined by commercial kits. The transcription of the Nox gene was quantified using quantitative real-time PCR (qRT-PCR analysis, and micromorphology was observed using scanning electron microscopy (SEM. In addition, fungal keratinase activity was detected by measuring dye release from keratin azure.Results: The growth declined with statistical significance after 6 h of treatment (P < 0.001. The ROS and MDA content increased after IPL treatment, whereas the SOD and GSH-Px activity decreased. Nox gene expression was upregulated, and the micromorphology was damaged. Keratinase activity decreased. Fungi that received DPI pretreatment exhibited contrasting outcomes.Conclusion: We found that 420-nm IPL significantly inhibited the growth and pathogenicity of T. rubrum in vitro. A suggested mechanism involves Nox as a factor that mediates 420-nm IPL-induced oxidative damage of T. rubrum.

  8. Deposition of Bacillus subtilis spores using an airbrush-spray or spots to study surface decontamination by pulsed light.

    Levy, Caroline; Bornard, Isabelle; Carlin, Frédéric

    2011-02-01

    Microbial contamination on surfaces of food processing equipment is a major concern in industries. A new method to inoculate a single-cell layer (monolayer) of microorganisms onto polystyrene was developed, using a deposition with an airbrush. A homogeneous dispersion of Bacillus subtilis DSM 402 spores sprayed on the surface was observed using both plate count and scanning electron microscopy. No clusters were found, even with high spore concentrations (10(7) spores/inoculated surface). A monolayer of microorganisms was also obtained after deposition of 10 μL droplets containing 3×10(4) spores/spot on polystyrene disks, but not with a higher spore concentration. Pulsed light (PL) applied to monolayers of B. subtilis spores allowed log reductions higher than 6. As a consequence of clusters formation in spots of 10 μL containing more than 3×10(5) spores, log reductions obtained by PL were significantly lower. The comparative advantages of spot and spray depositions were discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Improvement of Lambert-Beer law dynamic range by the use of temporal gates on transmitted light pulse through a scattering medium

    Yoshino, Hironori; Wada, Kenji; Horinaka, Hiromichi; Cho, Yoshio; Umeda, Tokuo; Osawa, Masahiko.

    1995-01-01

    The Lambert-Beer law holding for pulsed lights transmitted through a scattering medium was examined using a streak camera. The Lambert-Beer law dynamic range is found to be limited by floor levels that are caused by scattered photons and are controllable by the use of a temporal gate on the transmitted pulse. The dynamic range improvement obtained for a scattering medium of 2.8 cm -1 scattering coefficient of a thickness of 80 mm by a temporal gate of 60 ps was as much as 50 dB and the Lambert-Beer law dynamic rang reached to 140 dB. (author)

  10. Lighting

    Federal Laboratory Consortium — Lighting Systems Test Facilities aid research that improves the energy efficiency of lighting systems. • Gonio-Photometer: Measures illuminance from each portion of...

  11. Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms

    Bao Qianqian; Zhang Xiaohang; Gao Junyan; Zhang Yan; Cui Cuili; Wu Jinhui

    2011-01-01

    We study a five-level double-tripod system of cold atoms for efficiently manipulating the dynamic propagation and evolution of a quantum probe field by modulating four classical control fields. Our numerical results show that it is viable to transform the quantum probe field into a pair of two-color stationary light pulses mutually coupled through two wave packets of atomic spin coherence. The pair of stationary light pulses can be released either from the sample entrance and exit synchronously or just from the sample exit with a controlled time delay. In addition, the two-color stationary light pulses are immune to the fast decay originating from the higher-order Fourier components of atomic spin and optical coherence, and may exhibit the quantum limited beating signals with their characteristic frequency determined by detunings of the four classical control fields. These results could be explored to design novel photonic devices, such as optical routing, beam splitter, and beat generator, for manipulating a quantum light field.

  12. Coherent generation and dynamic manipulation of double stationary light pulses in a five-level double-tripod system of cold atoms

    Bao Qianqian; Zhang Xiaohang; Gao Junyan; Zhang Yan; Cui Cuili; Wu Jinhui [College of Physics, Jilin University, Changchun 130012 (China)

    2011-12-15

    We study a five-level double-tripod system of cold atoms for efficiently manipulating the dynamic propagation and evolution of a quantum probe field by modulating four classical control fields. Our numerical results show that it is viable to transform the quantum probe field into a pair of two-color stationary light pulses mutually coupled through two wave packets of atomic spin coherence. The pair of stationary light pulses can be released either from the sample entrance and exit synchronously or just from the sample exit with a controlled time delay. In addition, the two-color stationary light pulses are immune to the fast decay originating from the higher-order Fourier components of atomic spin and optical coherence, and may exhibit the quantum limited beating signals with their characteristic frequency determined by detunings of the four classical control fields. These results could be explored to design novel photonic devices, such as optical routing, beam splitter, and beat generator, for manipulating a quantum light field.

  13. Effect of incubation temperature and pH on the recovery of Bacillus weihenstephanensis spores after exposure to a peracetic acid-based disinfectant or to pulsed light.

    Trunet, C; Mtimet, N; Mathot, A-G; Postollec, F; Leguérinel, I; Couvert, O; Carlin, F; Coroller, L

    2018-04-12

    The recovery at a range of incubation temperatures and pH of spores of Bacillus weihenstephanensis KBAB4 exposed to a peracetic acid-based disinfectant (PABD) or to pulsed light was estimated. Spores of B. weihenstephanensis were produced at 30 °C and pH 7.00, at 30 °C and pH 5.50, or at 12 °C and pH 7.00. The spores were treated with a commercial peracetic acid-based disinfectant at 80 mg·mL -1 for 0 to 200 min at 18 °C or by pulsed light at fluences ranging between 0.4 and 2.3 J·cm -2 for pulsed light treatment. After each treatment, the spores were incubated on nutrient agar at 12 °C, 30 °C or 37 °C, or at pH 5.10, 6.00 or 7.40. Incubation temperature during recovery had a significant impact only near the recovery limits, beyond which surviving spores previously exposed to a PABD or to pulsed light were not able to form colonies. In contrast, a decrease in pH of the recovery nutrient agar had a progressive impact on the ability of spores to form colonies. The time to first log reduction after PABD treatment was 29.5 ± 0.7 min with recovery at pH 7.40, and was tremendously shortened 5.1 ± 0.2 min with recovery at pH 5.10. Concerning the fluence necessary for the first log reduction, it was 1.5 times higher when the spores were recovered at pH 6.00 compared to a recovery at pH 5.10. The impact of recovery temperature and pH can be described with a mathematical model using cardinal temperature and pH as parameters. These effects of temperature and pH on recovery of Bacillus weihenstephanensis spores exposed to a disinfectant combining peracetic acid and hydrogen peroxide, or pulsed light are similar, although these treatments are of different natures. Sporulation temperature or pH did not impact resistance to the peracetic acid-based disinfectant or pulsed light. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Broadband upconversion imaging around 4 μm using an all-fiber supercontinuum source

    Huot, Laurent; Moselund, Peter M.; Leick, Lasse; Tidemand-Lichtenberg, Peter; Pedersen, Christian

    2017-02-01

    We present a novel mid-infrared imaging system born from the combination of an all-fiber mid-IR supercontinuum source developed at NKT with ultra-sensitive upconversion detection technology from DTU Fotonik. The source delivers 100 mW of average power and its spectrum extends up to 4.5 μm. The infrared signal is passed through a sample and then focused into a bulk AgGaS2 crystal and subsequently mixed with a synchronous mixing signal at 1550 nm extracted from the pump laser of the supercontinuum. Through sum frequency generation, an upconverted signal ranging from 1030 nm to 1155 nm is generated and acquired using an InGaAs camera.

  15. Mid-infrared fiber-coupled supercontinuum spectroscopic imaging using a tapered chalcogenide photonic crystal fiber

    Rosenberg Petersen, Christian; Prtljaga, Nikola; Farries, Mark; Ward, Jon; Napier, Bruce; Lloyd, Gavin Rhys; Nallala, Jayakrupakar; Stone, Nick; Bang, Ole

    2018-02-01

    We present the first demonstration of mid-infrared spectroscopic imaging of human tissue using a fiber-coupled supercontinuum source spanning from 2-7.5 μm. The supercontinuum was generated in a tapered large mode area chalcogenide photonic crystal fiber in order to obtain broad bandwidth, high average power, and single-mode output for good imaging properties. Tissue imaging was demonstrated in transmission by raster scanning over a sub-mm region of paraffinized colon tissue on CaF2 substrate, and the signal was measured using a fiber-coupled grating spectrometer. This demonstration has shown that we can distinguish between epithelial and surrounding connective tissues within a paraffinized section of colon tissue by imaging at discrete wavelengths related to distinct chemical absorption features.

  16. Femtosecond few-cycle mid-infrared laser pulses

    Liu, Xing

    The few-cycle pulses of mid-infrared (mid-IR, wavelength 2-10 microns) have attracted increasing attention owing to their great potentials for high order harmonic generation, time-resolved spectroscopy, precision of cutting and biomedical science.In this thesis, mid-IR frequency conversion.......2 - 5.5 μm with only one fixed pump wavelength, a feature absent in Kerr media. Finally, we experimentally observe supercontinuum generation spanning 1.5 octaves, generated in a 10 mm long silicon-rich nitride waveguide pumped by 100 pJ femtosecond pulses from an erbium fiber laser. The waveguide has...

  17. Modulation of the electroluminescence emission from ZnO/Si NCs/p-Si light-emitting devices via pulsed excitation

    López-Vidrier, J.; Gutsch, S.; Blázquez, O.; Hiller, D.; Laube, J.; Kaur, R.; Hernández, S.; Garrido, B.; Zacharias, M.

    2017-05-01

    In this work, the electroluminescence (EL) emission of zinc oxide (ZnO)/Si nanocrystals (NCs)-based light-emitting devices was studied under pulsed electrical excitation. Both Si NCs and deep-level ZnO defects were found to contribute to the observed EL. Symmetric square voltage pulses (50-μs period) were found to notably enhance EL emission by about one order of magnitude. In addition, the control of the pulse parameters (accumulation and inversion times) was found to modify the emission lineshape, long inversion times (i.e., short accumulation times) suppressing ZnO defects contribution. The EL results were discussed in terms of the recombination dynamics taking place within the ZnO/Si NCs heterostructure, suggesting the excitation mechanism of the luminescent centers via a combination of electron impact, bipolar injection, and sequential carrier injection within their respective conduction regimes.

  18. Light

    Prescott, N.B.; Kristensen, Helle Halkjær; Wathes, C.M.

    2004-01-01

    This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality......This chapter presents the effect of artificial light environments (light levels, colour, photoperiod and flicker) on the welfare of broilers in terms of vision, behaviour, lameness and mortality...

  19. Analysis of Cytokine Levels in Tears and Clinical Correlations After Intense Pulsed Light Treating Meibomian Gland Dysfunction.

    Liu, Ruixing; Rong, Bei; Tu, Ping; Tang, Yun; Song, Wenjing; Toyos, Rolando; Toyos, Melissa; Yan, Xiaoming

    2017-11-01

    To investigate the change from baseline of inflammatory markers in tears of dry eye disease (DED) subjects owing to meibomian gland dysfunction (MGD) after intense pulsed light (IPL) treatment and meibomian gland expression (MGE) compared to sham treatment, and the correlations with ocular surface parameters. Randomized, double-masked, controlled study. Those randomized into the active treatment arm received 3 consecutive treatments (14∼16 J/cm 2 ) approximately 4 weeks apart in the periocular region. Control eyes received 3 treatments in the same intervals of 0 J/cm 2 . Tear samples in all eyes were collected and analyzed at baseline, week 12, and/or week 4 for interleukin (IL)-17A, IL-6, and prostaglandin E2 (PGE2). The correlations between cytokines and ocular surface parameters were analyzed before and after IPL treatment. All of the inflammatory markers declined in value compared to baselines. IL-17A and IL-6 showed statistically significant decreases compared to sham treatment at each measured time point. PGE2 showed statistically significant decreases compared to sham at week 12. Results showed that the expressions of IL-17A and IL-6 correlated well with ocular surface parameters of the lower eyelid before IPL. The changed values of IL-6 and PGE2 in tears correlated with the changed values of partial ocular surface parameters after IPL treatment in study eyes, respectively. The study results suggest that IPL can significantly reduce inflammatory markers in tears of patients suffering with DED owing to MGD after IPL treatment. These findings indicate that IL-17A and IL-6 play roles in the pathogenesis of DED owing to MGD, and the reduction of the inflammatory factors is consistent with the improvement of partial clinical symptoms and signs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Comparing Two Methods of Cryotherapy and Intense Pulsed Light with Triamcinolone Injection in the Treatment of Keloid and Hypertrophic Scars: A Clinical Trial

    Meymandi, Simin Shamsi; Moosazadeh, Mahmood; Rezazadeh, Azadeh

    2016-01-01

    Objectives Keloid and hypertrophic scars are abnormal manifestations of wounds that occur following skin injuries in the form of local proliferation of fibroblasts and increased production of collagen. There are several ways to cure these scars; treatment must be selected based on the nature of the scars. In this clinical trial, two methods?cryotherapy and intense pulsed light (IPL)?are compared in the treatment of scars, and the results are presented in terms of improvement level, complicati...

  1. Soliton fission and supercontinuum generation in photonic crystal ...

    with a wide range of potential applications in various fields such as frequency metrology, ... such a broad source at near visible wavelength even from the best available laser sources. Of late ... intend to design PCF for the OCT application of eye. 2. ... change of an optical pulse due to the self-induced change in the nonlinear ...

  2. Generation of an isolated sub-30 attosecond pulse in a two-color laser field and a static electric field

    Zhang Gang-Tai; Zhang Mei-Guang; Bai Ting-Ting

    2012-01-01

    We theoretically investigate high-order harmonic generation (HHG) from a helium ion model in a two-color laser field, which is synthesized by a fundamental pulse and its second harmonic pulse. It is shown that a supercontinuum spectrum can be generated in the two-color field. However, the spectral intensity is very low, limiting the application of the generated attosecond (as) pulse. By adding a static electric field to the synthesized two-color field, not only is the ionization yield of electrons contributing to the harmonic emission remarkably increased, but also the quantum paths of the HHG can be significantly modulated. As a result, the extension and enhancement of the supercontinuum spectrum are achieved, producing an intense isolated 26-as pulse with a bandwidth of about 170.5 eV. In particular, we also analyse the influence of the laser parameters on the ultrabroad supercontinuum spectrum and isolated sub-30-as pulse generation. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. High potential oxidation-reduction titration of absorbance changes induced by pulsed laser and continuous light in chromatophores of photosynthesizing bacteria Rhodospirillum rubrum and Ectothiorhodospira shaposhnikovii

    Remennikov, S.M.; Chamorovsky, S.K.; Kononenko, A.A.; Venediktov, P.S.; Rubin, A.B.

    1975-01-01

    The photoreactions, activated both by pulsed laser and continuous light were studied in the membranes of isolated bacterial chromatophores poised at different oxidation-reduction potentials over a range of +200 mV to +500 mV. In Rhodospirillum rubrum a midpoint potential of oxidation-reduction curves for the laser-induced positive absorbance changes centred around 430 nm and carotenoid red shifts coincides with that for continuous light-induced absorbance changes, bleaching at 865 nm and blue shift at 800 nm, of the photosynthetic reaction centre bacteriochlorophyll. In Ectothiorhodospira shaposhnikovii the photosynthetic reaction centre bacteriochlorophyll, its photooxidation can be seen as light-induced absorbance changes, bleaching at 890 nm, blue shift at 800 nm and broad band appearance near 440 nm, has a midpoint oxidation-reduction potential of +390 mV at pH 7.4. The analysis of the oxidation-reduction titration curves for the high-potential c-type cytochrome absorbance changes induced both by pulsed laser and continuous light allowed to show that at least two haems of this cytochrome with a midpoint potential of +290 mV (pH 7.4), associated with each reaction centre bacteriochlorophyll, can donate electrons to the oxidized pigment directly

  4. Relativistic dynamics of an electron in a pulse of laser light with propagation along of an external magnetic field

    Gomez, F.; Ondarza, R.

    2003-01-01

    The exact solution for the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized spreading along a static and homogeneous magnetic field is obtained starting from the equation of force. The solution method allows to solve, in terms of the phase, the trajectory of an accelerated particle by a pulse of arbitrary width and modulated by an encircling in Gaussian form. The reported solutions in this work have diverse applications in the laser-plasma interaction physics. (Author)

  5. Asymmetry of light absorption upon propagation of focused femtosecond laser pulses with spatiotemporal coupling through glass materials

    Zhukov, Vladimir P.; Bulgakova, Nadezhda M.

    2017-05-01

    Ultrashort laser pulses are usually described in terms of temporal and spatial dependences of their electric field, assuming that the spatial dependence is separable from time dependence. However, in most situations this assumption is incorrect as generation of ultrashort pulses and their manipulation lead to couplings between spatial and temporal coordinates resulting in various effects such as pulse front tilt and spatial chirp. One of the most intriguing spatiotemporal coupling effects is the so-called "lighthouse effect", the phase front rotation with the beam propagation distance [Akturk et al., Opt. Express 13, 8642 (2005)]. The interaction of spatiotemporally coupled laser pulses with transparent materials have interesting peculiarities, such as the effect of nonreciprocal writing, which can be used to facilitate microfabrication of photonic structures inside optical glasses. In this work, we make an attempt to numerically investigate the influence of the pulse front tilt and the lighthouse effect on the absorption of laser energy inside fused silica glass. The model, which is based on nonlinear Maxwell's equations supplemented by the hydrodynamic equations for free electron plasma, is applied. As three-dimensional solution of such a problem would require huge computational resources, a simplified two-dimensional model has been proposed. It has enabled to gain a qualitative insight into the features of propagation of ultrashort laser pulses with the tilted front in the regimes of volumetric laser modification of transparent materials, including directional asymmetry upon direct laser writing in glass materials.

  6. Mid-infrared supercontinuum generation in the fingerprint region

    Møller, Uffe Visbech; Petersen, Christian Rosenberg; Kubat, Irnis

    The mid-infrared spectral region is of great technical and scientific interest because most molecules display fundamental vibrational absorptions in this region, leaving distinctive spectral fingerprints. Here, we demonstrate experimentally that launching intense ultra-short pulses with a central...... the potential of fibres to emit across the mid-infrared molecular fingerprint region, which is of key importance for applications such as early cancer diagnostics, gas sensing and food quality control....

  7. Generation of shock fronts in the interaction of the short pulses of intense laser light in supercritical plasma

    Lopez V, V.E.

    2004-01-01

    The plasma is the state of the matter but diffused in the nature. The sun and the stars big heaps of hot plasma can be considered. The external surface of the terrestrial atmosphere this recovered by a layer of plasma. All gassy discharge (lightning spark arch etc.) this related with the formation of plasma. This way, 99 percent of our environment this formed almost of plasma. It is denominated plasma to the ionized gas in the one which all or most of the atoms have lost one or several of the electrons that belonged him, becoming positive ions and free electrons. In the plasma certain physical characteristics exist as for their behavior like they are the collective movements the quasi neutrality, the Debye length, the uncertainty etc. All these behaviors make that the study of the plasma is complex. For this they exist technical of numeric simulation joined to the technological advance of big computers of more capacity and prosecution speed. The simulation techniques of particles are those where a numeric code is built based on a model or theory of a system that it is wanted to investigate. This way through the simulation the results are compared with those theoretical predictions based on an analytic model. The applications of the physics of the plasma are multiple however we focus ourselves in the interaction laser-plasma. Both finish decades of investigation in the interaction of lasers with plasma they have been carried out in laboratories of Europe, Japan, United States. This studies concern the propagation of intense light laser in dense plasma homogeneous, the radiation absorption in cold plasma and problems related with the generation of suprathermal electrons among others. Other areas of the physics of the plasma-laser interaction that it has been considerable attention is the broadly well-known field as parametric uncertainties induced instabilities by the light and that they include the dispersions for example stimulated Raman and Brillouin being able to

  8. Pulsed versus continuous wave low-level light therapy on osteoarticular signs and symptoms in limited scleroderma (CREST syndrome): a case report

    Barolet, Daniel

    2014-11-01

    Limited cutaneous systemic sclerosis (lcSSc) was formerly known as CREST syndrome in reference to the associated clinical features: calcinosis, Raynaud's phenomenon, esophageal dysfunction, sclerodactyly, and telangiectasias. The transforming growth factor beta has been identified as a major player in the pathogenic process, where low-level light therapy (LLLT) has been shown to modulate this cytokine superfamily. This case study was conducted to assess the efficacy of 940 nm using millisecond pulsing and continuous wave (CW) modes on osteoarticular signs and symptoms associated with lcSSc. The patient was treated two to three times a week for 13 weeks using a sequential pulsing mode on one elbow and a CW mode on the other. Efficacy assessments included inflammation, symptoms, pain, health scales, patient satisfaction, clinical global impression, and adverse effects monitoring. Considerable functional and morphologic improvements were observed after LLLT, with the best results seen with the pulsing mode. No adverse effects were noted. Pulsed LLLT represents a treatment alternative for osteoarticular signs and symptoms in limited scleroderma (CREST syndrome).

  9. Switching waves dynamics in optical bistable cavity-free system at femtosecond laser pulse propagation in semiconductor under light diffraction

    Trofimov, Vyacheslav A.; Egorenkov, Vladimir A.; Loginova, Maria M.

    2018-02-01

    We consider a propagation of laser pulse in a semiconductor under the conditions of an occurrence of optical bistability, which appears due to a nonlinear absorption of the semiconductor. As a result, the domains of high concentration of free charged particles (electrons and ionized donors) occur if an intensity of the incident optical pulse is greater than certain intensity. As it is well-known, that an optical beam must undergo a diffraction on (or reflection from) the domains boundaries. Usually, the beam diffraction along a coordinate of the optical pulse propagation does not take into account by using the slowly varying envelope approximation for the laser pulse interaction with optical bistable element. Therefore, a reflection of the beam from the domains with abrupt boundary does not take into account under computer simulation of the laser pulse propagation. However, the optical beams, reflected from nonhomogeneities caused by the domains of high concentration of free-charged particles, can essentially influence on a formation of switching waves in a semiconductor. We illustrate this statement by computer simulation results provided on the base of nonlinear Schrödinger equation and a set of PDEs, which describe an evolution of the semiconductor characteristics (concentrations of free-charged particles and potential of an electric field strength), and taking into account the longitudinal and transverse diffraction effects.

  10. The effects of pulse cycloheximide treatments on the light-induced recovery of mitotic divisions in antheridial filaments of Chara vulgaris

    Maria Kwiatkowska

    2014-01-01

    Full Text Available Within the proliferative period of spermatogenesis in Chara vulgaris, the progression throughout successive cell divisions in antheridial filaments is greatly influenced by changes in photoperiodic conditions. The extended (4-day period of total darkness brings about cell cycle arrest in the early G2 phase. The recovery of mitosis requires about 20 hours of exposition to light. In the present study, a series of 8 pulse incubations of plants in cycloheximide (Cx; 2.5 mg/I, 2.5 h each pulse were performed within the period elapsing till the resumption of mitotic divisions. Depending on the time of treatment, the effects induced by Cx vary considerably. Within the first 10 hs of exposition to light, incubations with Cx result in the delays of mitoses; within the period between the 10th and the 17th h, mitotic divisions become blocked, and, following the 17.5 h of light-induced recovery, no influence of Cx is noticed on mitotic activity, as compared with the untreaed control plants. The obtained results provide a starting point for the characteristic of proteins synthesized during the G2 phase and a preliminary study on those mechanisms, which become engaged in the regulation of the G1-deficient cell cycle evidenced in antheridial filaments of Chara.

  11. Light

    Robertson, William C

    2003-01-01

    Why is left right and right left in the mirror? Baffled by the basics of reflection and refraction? Wondering just how the eye works? If you have trouble teaching concepts about light that you don t fully grasp yourself, get help from a book that s both scientifically accurate and entertaining with Light. By combining clear explanations, clever drawings, and activities that use easy-to-find materials, this book covers what science teachers and parents need to know to teach about light with confidence. It uses ray, wave, and particle models of light to explain the basics of reflection and refraction, optical instruments, polarization of light, and interference and diffraction. There s also an entire chapter on how the eye works. Each chapter ends with a Summary and Applications section that reinforces concepts with everyday examples. Whether you need a deeper understanding of how light bends or a good explanation of why the sky is blue, you ll find Light more illuminating and accessible than a college textbook...

  12. A train of blue light pulses delivered through closed eyelids suppresses melatonin and phase shifts the human circadian system

    Figueiro MG

    2013-10-01

    Full Text Available Mariana G Figueiro, Andrew Bierman, Mark S ReaLighting Research Center, Rensselaer Polytechnic Institute, Troy, NY, USAAbstract: A model of circadian phototransduction was published in 2005 to predict the spectral sensitivity of the human circadian system to narrow-band and polychromatic light sources by combining responses to light from the spectral-opponent “blue” versus “yellow” cone bipolar pathway with direct responses to light by the intrinsically photosensitive retinal ganglion cells. In the model, depolarizing “blue” responses, but not hyperpolarizing “yellow” responses, from the “blue” versus “yellow” pathway are combined with the intrinsically photosensitive retinal ganglion cell responses. Intrinsically photosensitive retinal ganglion cell neurons are known to be much slower to respond to light than the cone pathway, so an implication of the model is that periodic flashes of “blue” light, but not “yellow” light, would be effective for stimulating the circadian system. A within-subjects study was designed to test the implications of the model regarding retinal exposures to brief flashes of light. The study was also aimed at broadening the foundation for clinical treatment of circadian sleep disorders by delivering flashing light through closed eyelids while people were asleep. In addition to a dark control night, the eyelids of 16 subjects were exposed to three light-stimulus conditions in the phase delay portion of the phase response curve while they were asleep: (1 2-second flashes of 111 W/m2 of blue (λmax ≈ 480 nm light once every minute for 1 hour, (2 131 W/m2 of green (λmax ≈ 527 nm light, continuously on for 1 hour, and (3 2-second flashes of the same green light once every minute for 1 hour. Inferential statistics showed that the blue flash light-stimulus condition significantly delayed circadian phase and significantly suppressed nocturnal melatonin. The results of this study further our

  13. EDITORIAL: Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light (OPTIMAMM)

    Hebden, Jeremy C.; Rinneberg, Herbert

    2005-06-01

    The Commission of the European Union (EU) conceived its Fifth Framework Programme (FP5) to identify the priorities for the European Union's research, technological development and demonstration activities for the period 1998-2002. By encouraging collaborative research between groups in different member countries, FP5 was intended to help solve problems the EU is facing and respond to major socio-economic challenges. The programme focused on a number of objectives and areas combining technological, industrial, economic, social and cultural aspects. A specific call was made, under its `Quality of Life and Management of Living Resources' section, for proposals which aim to explore improvements in non-invasive methods of imaging for early diagnosis and clinical evaluation of disease. Among the projects successfully funded under the FP5 programme was one entitled `Optical mammography: Imaging and characterization of breast lesions by pulsed near-infrared laser light', known by its acronym OPTIMAMM. The project involved a consortium of nine partners, comprising ten applied science and clinical research groups based in six EU countries, with overall administration and management provided by the Physikalisch-Technische Bundesanstalt, Berlin, Germany. The broad aim of the OPTIMAMM project was to combine multi-disciplinary basic (physics, engineering, mathematics, computer science) and clinical (oncology, histology) research to assess the diagnostic potential of time-domain optical and photoacoustic mammography as novel, non-invasive imaging modalities for the detection and clinical evaluation of breast lesions. Funding for the project, at a total cost of about 1.67 MEuro, began in December 2000 for a period of three years, although a zero-cost extension was granted to enable the ongoing project activities to continue until the end of May 2004. The importance of developing new tools for the detection and diagnosis of breast disease is evident from the very high incidence and

  14. Light field driven streak-camera for single-shot measurements of the temporal profile of XUV-pulses from a free-electron laser; Lichtfeld getriebene Streak-Kamera zur Einzelschuss Zeitstrukturmessung der XUV-Pulse eines Freie-Elektronen Lasers

    Fruehling, Ulrike

    2009-10-15

    The Free Electron Laser in Hamburg (FLASH) is a source for highly intense ultra short extreme ultraviolet (XUV) light pulses with pulse durations of a few femtoseconds. Due to the stochastic nature of the light generation scheme based on self amplified spontaneous emission (SASE), the duration and temporal profile of the XUV pulses fluctuate from shot to shot. In this thesis, a THz-field driven streak-camera capable of single pulse measurements of the XUV pulse-profile has been realized. In a first XUV-THz pump-probe experiment at FLASH, the XUV-pulses are overlapped in a gas target with synchronized THz-pulses generated by a new THz-undulator. The electromagnetic field of the THz light accelerates photoelectrons produced by the XUV-pulses with the resulting change of the photoelectron momenta depending on the phase of the THz field at the time of ionisation. This technique is intensively used in attosecond metrology where near infrared streaking fields are employed for the temporal characterisation of attosecond XUV-Pulses. Here, it is adapted for the analysis of pulse durations in the few femtosecond range by choosing a hundred times longer far infrared streaking wavelengths. Thus, the gap between conventional streak cameras with typical resolutions of hundreds of femtoseconds and techniques with attosecond resolution is filled. Using the THz-streak camera, the time dependent electric field of the THz-pulses was sampled in great detail while on the other hand the duration and even details of the time structure of the XUV-pulses were characterized. (orig.)

  15. The radiofrequency frontier: a review of radiofrequency and combined radiofrequency pulsed-light technology in aesthetic medicine.

    Sadick, Neil; Sorhaindo, Lian

    2005-05-01

    Radiofrequency (RF) and combined RF light source technologies have established themselves as safe and effective treatment modalities for several dermatologic procedures, including skin tightening, hair and leg vein removal, acne scarring, skin rejuvenation, and wrinkle reduction. This article reviews the technology, clinical applications, and recent advances of RF and combined RF light/laser source technologies in aesthetic medicine.

  16. High power, ultra-broadband supercontinuum source based on highly GeO2 doped silica fiber

    Jain, Deepak; Sidharthan, Raghuraman; Moselund, Peter M.

    2017-01-01

    We demonstrate a 74 mol % GeO2 doped fiber for mid-infrared supercontinuum generation. Experiments ensure a highest output power for a broadest spectrum from 700nm to 3200nm from this fiber, while being pumped by a broadband 4 stage Erbium fiber based MOPA. The effect of repetition rate of pump...

  17. Light

    Ditchburn, R W

    1963-01-01

    This classic study, available for the first time in paperback, clearly demonstrates how quantum theory is a natural development of wave theory, and how these two theories, once thought to be irreconcilable, together comprise a single valid theory of light. Aimed at students with an intermediate-level knowledge of physics, the book first offers a historical introduction to the subject, then covers topics such as wave theory, interference, diffraction, Huygens' Principle, Fermat's Principle, and the accuracy of optical measurements. Additional topics include the velocity of light, relativistic o

  18. Consequences of the magnetic field, sonic and radiofrequency waves and intense pulsed light on the labeling of blood constituents with technetium-99m

    Meyer, Patricia Froes; Costa, Iris do Ceu Clara; Brandao-Neto, Jose; Medeiros, Aldo da Cunha; Bonelli, Ludmila

    2007-01-01

    Sources of magnetic field, radiofrequency and audible sonic waves and pulsed light have been used in physiotherapy to treat different disorders. In nuclear medicine, blood constituents(Bl-Co) are labeled with technetium-99m ( 99m Tc) are used. This study evaluated the consequences of magnetic field, radiofrequency and audible sonic waves and intense pulsed light sources on the labeling of Bl-Co with 99m Tc. Blood from Wistar rats was exposed to the cited sources. The labeling of Bl-Co with 99m Tc was performed. Blood not exposed to the physical agents was used(controls). Data showed that the exposure to the different studied sources did not alter significantly (p>0.05) the labeling of Bl-Co. Although the results were obtained with animals, the data suggest that no alteration on examinations performed with Bl-Co labeled with 99m Tc after exposition to the cited agents. The biological consequences associated with these agents would be not capable to interfere with some properties of the Bl-Co. (author)

  19. Consequences of the magnetic field, sonic and radiofrequency waves and intense pulsed light on the labeling of blood constituents with technetium-99m

    Meyer, Patricia Froes; Costa, Iris do Ceu Clara; Brandao-Neto, Jose; Medeiros, Aldo da Cunha [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil). Programa de Pos-graduacao em Ciencias da Saude; Santos-Filho, Sebastiao David; Adenilson de Souza da Fonseca; Bernardo-Filho, Mario [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. de Biologia Roberto Alcantara Gomes. Lab. de Radiofarmacia Experimental; Ariel Ronzio, Oscar [Universidad de Buenos Aires (Argentina); Bonelli, Ludmila [Universidade Salgado de Oliveira, Belo Horizonte, MG (Brazil)

    2007-09-15

    Sources of magnetic field, radiofrequency and audible sonic waves and pulsed light have been used in physiotherapy to treat different disorders. In nuclear medicine, blood constituents(Bl-Co) are labeled with technetium-99m ({sup 99m}Tc) are used. This study evaluated the consequences of magnetic field, radiofrequency and audible sonic waves and intense pulsed light sources on the labeling of Bl-Co with {sup 99m}Tc. Blood from Wistar rats was exposed to the cited sources. The labeling of Bl-Co with {sup 99m}Tc was performed. Blood not exposed to the physical agents was used(controls). Data showed that the exposure to the different studied sources did not alter significantly (p>0.05) the labeling of Bl-Co. Although the results were obtained with animals, the data suggest that no alteration on examinations performed with Bl-Co labeled with {sup 99m}Tc after exposition to the cited agents. The biological consequences associated with these agents would be not capable to interfere with some properties of the Bl-Co. (author)

  20. Dynamic View on Nanostructures: A Technique for Time Resolved Optical Luminescence Using Synchrotron Light Pulses at SRC, APS, and CLS

    Heigl, F.; Jurgensen, A.; Zhou, X.-T.; Lam, S.; Murphy, M.; Ko, J.Y.P.; Sham, T.K.; Rosenberg, R.A.; Gordon, R.; Brewe, D.; Regier, T.; Armelao, L.

    2007-01-01

    We present an experimental technique using the time structure of synchrotron radiation to study time resolved X-ray excited optical luminescence. In particular we are taking advantage of the bunched distribution of electrons in a synchrotron storage ring, giving short x-ray pulses (10-10 2 picoseconds) which are separated by non-radiating gaps on the nano- to tens of nanosecond scale - sufficiently wide to study a broad range of optical decay channels observed in advanced nanostructured materials.

  1. Light dark matter candidates in intense laser pulses II: the relevance of the spin degrees of freedom

    Villalba-Chávez, S.; Müller, C. [Institut für Theoretische Physik I, Heinrich-Heine-Universität DüsseldorfUniversitätsstr. 1, 40225 Düsseldorf (Germany)

    2016-02-03

    Optical searches assisted by the field of a laser pulse might allow for exploring a variety of not yet detected dark matter candidates such as hidden-photons and scalar minicharged particles. These hypothetical degrees of freedom may be understood as a natural consequence of extensions of the Standard Model incorporating a hidden U(1)-gauge sector. In this paper, we study the effects induced by both candidates on the propagation of a probe electromagnetic wave in the vacuum polarized by a long laser pulse of moderate intensity, this way complementing our previous study [http://dx.doi.org/10.1007/JHEP06(2015)177]. We describe how the absence of a spin in the scalar charged carriers modifies the photon-paraphoton oscillations as compared with a fermionic minicharge model. In particular, we find that the regime close to their lowest threshold mass might provide the most stringent upper limit for minicharged scalars. The pure-laser based experiment investigated here could allow for excluding a sector in the parameter space of the particles which has not been experimentally ruled out by setups driven by dipole magnets. We explain how the sign of the ellipticity and rotation of the polarization plane acquired by a probe photon — in combination with their dependencies on the pulse parameters — can be exploited to elucidate the quantum statistics of the charge carriers.

  2. Four-photon parametric light scattering of ultrashort laser pulses in water in case of weak self-phase modulation

    Babenko, V A; Sychev, Andrei A

    2009-01-01

    The hyper-Raman scattering (HRS) of light in water is detected reliably by the active spectroscopy method of coherent light scattering, in particular, by the method of four-photon parametric light scattering in a medium in which HRS is a 'signal' wave in the parametric process involving simultaneously two high-power laser photons and IR photons of an 'idler' wave. Hyper-Raman scattering by libration vibrations of water molecules, which virtually cannot be detected by conventional methods of Raman scattering, was observed. (nonlinear optical phenomena)

  3. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Fulop, Jozsef A.; Farkas, Gyozo; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-08-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  4. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Balogh, Emeric; Kovacs, Katalin; Dombi, Peter; Farkas, Gyozo; Fulop, Jozsef A.; Hebling, Janos; Tosa, Valer; Varju, Katalin

    2011-01-01

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  5. Single attosecond pulse from terahertz-assisted high-order harmonic generation

    Balogh, Emeric [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); Kovacs, Katalin [Department of Optics and Quantum Electronics, University of Szeged, H-6701 Szeged (Hungary); National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Dombi, Peter; Farkas, Gyozo [Research Institute for Solid State Physics and Optics, H-1525 Budapest (Hungary); Fulop, Jozsef A.; Hebling, Janos [Department of Experimental Physics, University of Pecs, H-7624 Pecs (Hungary); Tosa, Valer [National Institute for R and D of Isotopic and Molecular Technologies, RO-400293 Cluj-Napoca (Romania); Varju, Katalin [HAS Research Group on Laser Physics, University of Szeged, H-6701 Szeged (Hungary)

    2011-08-15

    High-order harmonic generation by few-cycle 800 nm laser pulses in neon gas in the presence of a strong terahertz (THz) field is investigated numerically with propagation effects taken into account. Our calculations show that the combination of THz fields with up to 12 fs laser pulses can be an effective gating technique to generate single attosecond pulses. We show that in the presence of the strong THz field only a single attosecond burst can be phase matched, whereas radiation emitted during other half cycles disappears during propagation. The cutoff is extended and a wide supercontinuum appears in the near-field spectra, extending the available spectral width for isolated attosecond pulse generation from 23 to 93 eV. We demonstrate that phase-matching effects are responsible for the generation of isolated attosecond pulses, even in conditions when single-atom response yields an attosecond pulse train.

  6. High repetition rate tunable femtosecond pulses and broadband amplification from fiber laser pumped parametric amplifier.

    Andersen, T V; Schmidt, O; Bruchmann, C; Limpert, J; Aguergaray, C; Cormier, E; Tünnermann, A

    2006-05-29

    We report on the generation of high energy femtosecond pulses at 1 MHz repetition rate from a fiber laser pumped optical parametric amplifier (OPA). Nonlinear bandwidth enhancement in fibers provides the intrinsically synchronized signal for the parametric amplifier. We demonstrate large tunability extending from 700 nm to 1500 nm of femtosecond pulses with pulse energies as high as 1.2 muJ when the OPA is seeded by a supercontinuum generated in a photonic crystal fiber. Broadband amplification over more than 85 nm is achieved at a fixed wavelength. Subsequent compression in a prism sequence resulted in 46 fs pulses. With an average power of 0.5 W these pulses have a peak-power above 10 MW. In particular, the average power and pulse energy scalability of both involved concepts, the fiber laser and the parametric amplifier, will enable easy up-scaling to higher powers.

  7. Investigations, Experiments, and Implications for using existing Pulse Magnets for 'TOPOFF' Operation at the Advanced Light Source

    Stover, Gregory D.; Baptiste, Kenneth Michael; Barry, Walter; Gath, William; Julian, James; Kwiatkowski, Slawomir; Prestemon, Soren; Schlueter, Ross; Shuman, Derek; Steier, Christoph

    2005-01-01

    ALS top-off mode of operation will require injection of the electron beam from the Booster Ring into the Storage Ring at the full ALS energy level of 1.9 GeV. Currently the Booster delivers a beam at 1.5 GeV to the Storage Ring where it is then ramped to the full energy and stored for the user operation. The higher Booster beam energy will require the pulse magnets in the Booster and Storage Rings to operate at proportionally higher magnetic gap fields. Our group studied and tested the possible design and installation modifications required to operate the magnets and drivers at ''top-off'' levels. Our results and experiments show that with minor electrical modifications all the existing pulse magnet systems can be used at the higher energy levels, and the increased operational stresses should have a negligible impact on magnet reliability. Furthermore, simple electrical modifications to the storage ring thick septum will greatly reduce the present level of septum stray leakage fields into the storage ring beam

  8. Kinetics of polymer degradation in solution. 6. Laser flash photolysis and pulse radiolysis studies of polymethylvinylketone in solution using the light scattering detection method

    Lindenau, D; Beavan, S W; Beck, G; Schnabel, W [Hahn-Meitner-Institut fuer Kernforschung Berlin G.m.b.H. (Germany, F.R.)

    1977-01-01

    Polymethylvinylketone (PMVK) was irradiated in solution with 2 ..mu..s pulses of 15 MeV electrons or with 15 ns flashes of 262 nm light. The change of the intensity of the light scattered by the solution (LSI) after the irradiation was measured. For the radiolysis experiments, a main chain scission process tausub(1/2) (decr) approximately 20 ..mu..s) and a subsequent crosslinking process (tausub(1/2) (incr) approximately 0.4 sec) could be discriminated. The LSI change pertaining to the main chain degradation was found to be due to disentanglement diffusion, whereas the LSI change pertaining to the crosslinking process could be correlated to a chemical reaction. The rate constant for combination of lateral macroradicals in acetone solution was estimated as 2 k/sub 2/ - (4.5 +- 1.5)10/sup 6/ M/sup -1/ sec/sup -1/. Stationary irradiation with /sup 60/Co-..gamma..-rays showed that PMVK is predominantly crosslinked to form a macrogel when irradiated in the solid state or in solution at concentrations greater than 100 g/l. At lower concentrations, microgel formation occurred. Photolysis of PMVK in solution yielded only main chain degradation. The LSI change was found to be due to disentanglement diffusion as during radiolysis. It was concluded that the same mechanism for main chain rupture is operative as in radiolysis. Stationary irradiations with uv light (lambda > 260 nm ) resulted in main chain degradation; no indication of crosslinking was obtained.

  9. Self-magnetically-insulated 'plasma-focus diode' as a new source of an intence pulsed light-ion beam

    Takahashi, Akira; Aga, Keigo; Masugata, Katsumi; Ito, Michiaki; Yatsui, Kiyoshi

    1986-01-01

    A new and simple type of self-magnetically-insulated diode named ''Plasma-Focus Diode'' has been successfully developed, where anode and cathode are constituted by a pair of coaxial cylindrical electrodes similarly to a Mather-type plasma-focus device. Operating conditions are typically as follows: inductively-calibrated diode voltage ∼ 660 kV, diode current ∼ 142 kA, total ion current ∼ 32 kA, pulse width ∼ 90 ns and diode efficiency ∼ 22 %. Multiple-shots operation more than 50 shots has been possible without changing flashboard. Local divergence angle has been observed to be 0.9 deg ∼ 1.6 deg. Using such a simple ion diode, we have demonstrated a possibility of high concentration of beam-power density onto a target placed at the center. (author)

  10. Comparative Study of Diode Laser Versus Neodymium-Yttrium Aluminum: Garnet Laser Versus Intense Pulsed Light for the Treatment of Hirsutism.

    Puri, Neerja

    2015-01-01

    Lasers are widely used for the treatment of hirsutism. But the choice of the right laser for the right skin type is very important. Before starting with laser therapy, it is important to assess the skin type, the fluence, the pulse duration and the type of laser to be used. To compare the efficacy and side effects of Diode laser, Neodymium-yttrium aluminum - garnet (Nd: YAG) laser and intense pulsed light (IPL) on 30 female patients of hirsutism. Thirty female patients with hirsutism were selected for a randomised controlled study. The patients were divided into three groups of 10 patients each. In group I patients diode laser was used, in group II patients long pulsed Nd: YAG laser was used and in group III, IPL was used. The patients were evaluated and result graded according to a 4-point scale as excellent, >75% reduction; good, 50-75% reduction; fair; 25-50% reduction; and poor, diode laser group, followed by 35% hair reduction in the Nd: Yag laser group and 10% hair reduction in the IPL group. The percentage of hair reduction after four sessions of treatment was maximum (64%) in the diode laser group, followed by 62% hair reduction in the Nd: Yag laser group and 48% hair reduction in the IPL group. The percentage of hair reduction after eight sessions of treatment was maximum (92%) in the diode laser group, followed by 90% hair reduction in the Nd: YAG group and 70% hair reduction in the IPL group. To conclude for the Indian skin with dark hairs, the diode laser still stands the test of time. But, since the diode laser has a narrow margin of safety, proper pre and post-procedure cooling is recommended. Although, the side effects of Nd: YAG laser are less as compared to the diode laser, it is less efficacious as compared to the diode laser.

  11. In0.15Ga0.85N visible-light metal-semiconductor-metal photodetector with GaN interlayers deposited by pulsed NH3

    Wang, Hongxia; Zhang, Xiaohan; Wang, Hailong; Lv, Zesheng; Li, Yongxian; Li, Bin; Yan, Huan; Qiu, Xinjia; Jiang, Hao

    2018-05-01

    InGaN visible-light metal-semiconductor-metal photodetectors with GaN interlayers deposited by pulsed NH3 were fabricated and characterized. By periodically inserting the GaN thin interlayers, the surface morphology of InGaN active layer is improved and the phase separation is suppressed. At 5 V bias, the dark current reduced from 7.0 × 10-11 A to 7.0 × 10-13 A by inserting the interlayers. A peak responsivity of 85.0 mA/W was measured at 420 nm and 5 V bias, corresponding to an external quantum efficiency of 25.1%. The insertion of GaN interlayers also lead to a sharper spectral response cutoff.

  12. Characterization of plastic scintillators for detection of radioactivity: Light yield, Time decay measurements and Neutron/γ Pulse Shape Discrimination

    Montbarbon, E.; Pansu, R.B.; Hamel, M.; Coulon, R.

    2015-07-01

    Since Helium-3 shortage, organic scintillators play a major role in neutron detection. CEA LIST decided to focus on plastic scintillators. By definition, a plastic scintillator is a radio-luminescent polymer; this means that it emits light after interaction with an ionizing radiation. A platform was developed to characterize lab-made prepared scintillators and to compare them with commercial scintillators. Three physicochemical criteria are determined with this unique platform. (authors)

  13. Ultrabroadband, Midinfrared Supercontinuum Generation in Dispersion Engineered As2Se3-Based Chalcogenide Photonic Crystal Fibers

    Rim Cherif

    2013-01-01

    Full Text Available Small core As2Se3-based photonic crystal fibers (PCFs are accurately characterized for compact, high power, ultrabroadband, and coherent supercontinuum generation within few millimeters fiber length. Bandwidths of ~5.3 μm, 5 μm, and 3.2 μm were calculated for hole-to-hole spacings Λ= 3.5 μm, 4.5 μm, and 5.5 μm, respectively. The spectral broadening in the chalcogenide PCF is mainly caused by self-phase modulation and Raman-induced soliton self-frequency shift. The results show that small core As2Se3 PCFs are a promising candidate for mid-IR SCG up to ~8 μm.

  14. Supercontinuum generation covering the entire 0.4-5 µm transmission window in a tapered ultra-high numerical aperture all-solid fluorotellurite fiber

    Jia, Z. X.; Yao, C. F.; Jia, S. J.; Wang, F.; Wang, S. B.; Zhao, Z. P.; Liao, M. S.; Qin, G. S.; Hu, L. L.; Ohishi, Y.; Qin, W. P.

    2018-02-01

    Enormous efforts have been made to realize supercontinuum (SC) generation covering the entire transmission window of fiber materials for their wide applications in many fields. Here we demonstrate ultra-broadband SC generation from 400 to 5140 nm in a tapered ultra-high numerical aperture (NA) all-solid fluorotellurite fiber pumped by a 1560 nm mode-locked fiber laser. The fluorotellurite fibers are fabricated using a rod-in-tube method. The core and cladding materials are TeO2-BaF2-Y2O3- and TeO2-modified fluoroaluminate glasses, respectively, which have large refractive index contrast and similar thermal expansion coefficients and softening temperatures. The NA at 3200 nm of the fluorotellurite fiber is about 1.11. Furthermore, tapered fluorotellurite fibers are prepared using an elongation machine. SC generation covering the entire 0.4-5 µm transmission window is achieved in a tapered fluorotellurite fiber for a pumping peak power of ~10.5 kW through synergetic control of dispersion, nonlinearity, confinement loss and other unexpected effects (e.g. the attachment of dust or water to the surface of the fiber core) of the fiber. Our results show that tapered ultra-high NA all-solid soft glass fibers have a potential for generating SC light covering their entire transmission window.

  15. TH-CD-207B-06: Swank Factor of Segmented Scintillators in Multi-Slice CT Detectors: Pulse Height Spectra and Light Escape

    Howansky, A; Peng, B; Lubinsky, A; Zhao, W [Stony Brook University, Stony Brook, NY (United States)

    2016-06-15

    Purpose: Pulse height spectra (PHS) have been used to determine the Swank factor of a scintillator by measuring fluctuations in its light output per x-ray interaction. The Swank factor and x-ray quantum efficiency of a scintillator define the upper limit to its imaging performance, i.e. DQE(0). The Swank factor below the K-edge is dominated by optical properties, i.e. variations in light escape efficiency from different depths of interaction, denoted e(z). These variations can be optimized to improve tradeoffs in x-ray absorption, light yield, and spatial resolution. This work develops a quantitative model for interpreting measured PHS, and estimating e(z) on an absolute scale. The method is used to investigate segmented ceramic GOS scintillators used in multi-slice CT detectors. Methods: PHS of a ceramic GOS plate (1 mm thickness) and segmented GOS array (1.4 mm thick) were measured at 46 keV. Signal and noise propagation through x-ray conversion gain, light escape, detection by a photomultiplier tube and dynode amplification were modeled using a cascade of stochastic gain stages. PHS were calculated with these expressions and compared to measurements. Light escape parameters were varied until modeled PHS agreed with measurements. The resulting estimates of e(z) were used to calculate PHS without measurement noise to determine the inherent Swank factor. Results: The variation in e(z) was 67.2–89.7% in the plate and 40.2–70.8% in the segmented sample, corresponding to conversion gains of 28.6–38.1 keV{sup −1} and 17.1–30.1 keV{sup −1}, respectively. The inherent Swank factors of the plate and segmented sample were 0.99 and 0.95, respectively. Conclusion: The high light escape efficiency in the ceramic GOS samples yields high Swank factors and DQE(0) in CT applications. The PHS model allows the intrinsic optical properties of scintillators to be deduced from PHS measurements, thus it provides new insights for evaluating the imaging performance of

  16. Are lasers superior to lights in the photoepilation of Fitzpatrick V and VI skin types? - A comparison between Nd:YAG laser and intense pulsed light.

    Bs, Bibilash; Chittoria, Ravi Kumar; Thappa, Devinder Mohan; Mohapatra, Devi Prasad; Mt, Friji; S, Dineshkumar; Pandey, Sandhya

    2017-10-01

    There are no large volume comparative studies available to compare the efficacy of lasers over lights for hair removal in Fitzpatrick V and VI skin types. This study is designed to compare the efficacy of Nd:YAG laser versus IPL in the darker skin types. Thirty-nine patients included in Group-1 were treated with Nd:YAG and 31 in Group-2 with IPL. Both groups received 5 sessions of treatment. The hair counts were assessed using digital photography and manual counting method before and after treatment and the results were analysed. Patient satisfaction scores and pain scores were recorded in each session and compared. Mean hair reduction in the IPL group was 25.70 and Nd:YAG group was 24.12 (95% CI). In the Nd:YAG group, 59% of subjects had burning sensation while the figure was 32.3% in IPL group. Burning was less in IPL group (p < 0.023). There were no statistically significant differences noticed regarding hyperpigmentation in both the groups (p < 0.115). Both Nd:YAG and IPL are equally effective for epilation of the darker skin types. Nd:YAG is associated with mild burning sensation in a significant number of patients. Patient satisfaction scores were comparable in both the groups.

  17. Generation of Langmuir wave supercontinuum by phase-preserving equilibration of plasmons with irreversible wave-particle interaction

    Eiichirou, Kawamori

    2018-04-01

    We report the observation of supercontinuum of Langmuir plasma waves, that exhibits broad power spectrum having significant spatio-temporal coherence grown from a monochromatic seed-wave, in one-dimensional particle-in-cell simulations. The Langmuir wave supercontinuum (LWSC) is formed when the seed wave excites side-band fields efficiently by the modulational instabilities. Its identification is achieved by the use of the tricoherence analysis, which detects four wave mixings (FWMs) of plasmons (plasma wave quanta), and evaluation of the first order coherence, which is a measure of temporal coherence, of the wave electric fields. The irreversible evolution to the coherent LWSC from the seed wave is realized by the wave-particle interactions causing stochastic electron motions in the phase space and the coherence of LWSC is maintained by the phase-preserving FWMs of plasmons. The LWSC corresponds to a quasi Bernstein-Greene-Kruskal mode.

  18. Filament-induced luminescence and supercontinuum generation in undoped, Yb-doped, and Nd-doped YAG crystals

    Kudarauskas, D.; Tamošauskas, G.; Vengris, M.; Dubietis, A.

    2018-01-01

    We present a comparative spectral study of filament-induced luminescence and supercontinuum generation in undoped, Yb-doped, and Nd-doped YAG crystals. We show that supercontinuum spectra generated by femtosecond filamentation in undoped and doped YAG crystals are essentially identical in terms of spectral extent. On the other hand, undoped and doped YAG crystals exhibit remarkably different filament-induced luminescence spectra whose qualitative features are independent of the excitation wavelength and provide information on the energy deposition to embedded dopants, impurities, and the crystal lattice itself. Our findings suggest that filament-induced luminescence may serve as a simple and non-destructive tool for spectroscopic studies in various transparent dielectric media.

  19. An adaptive neuro fuzzy inference system controlled space cector pulse width modulation based HVDC light transmission system under AC fault conditions

    Ajay Kumar, M.; Srikanth, N. V.

    2014-03-01

    In HVDC Light transmission systems, converter control is one of the major fields of present day research works. In this paper, fuzzy logic controller is utilized for controlling both the converters of the space vector pulse width modulation (SVPWM) based HVDC Light transmission systems. Due to its complexity in the rule base formation, an intelligent controller known as adaptive neuro fuzzy inference system (ANFIS) controller is also introduced in this paper. The proposed ANFIS controller changes the PI gains automatically for different operating conditions. A hybrid learning method which combines and exploits the best features of both the back propagation algorithm and least square estimation method is used to train the 5-layer ANFIS controller. The performance of the proposed ANFIS controller is compared and validated with the fuzzy logic controller and also with the fixed gain conventional PI controller. The simulations are carried out in the MATLAB/SIMULINK environment. The results reveal that the proposed ANFIS controller is reducing power fluctuations at both the converters. It also improves the dynamic performance of the test power system effectively when tested for various ac fault conditions.

  20. Three-pulse multiplex coherent anti-Stokes/Stokes Raman scattering (CARS/CSRS) microspectroscopy using a white-light laser source

    Bito, Kotatsu; Okuno, Masanari; Kano, Hideaki; Leproux, Philippe; Couderc, Vincent; Hamaguchi, Hiro-o

    2013-01-01

    Highlights: ► We have developed a simultaneous measurement system of CARS and CSRS. ► We can obtain information on the electronic resonance effect with the measurement. ► The simultaneous measurement provides us with more reliable spectral information. - Abstract: We have developed a three-pulse non-degenerate multiplex coherent Raman microspectroscopic system using a white-light laser source. The fundamental output (1064 nm) of a Nd:YAG laser is used for the pump radiation with the white-light laser output (1100–1700 nm) for the Stokes radiation to achieve broadband multiplex excitations of vibrational coherences. The second harmonic (532 nm) of the same Nd:YAG laser is used for the probe radiation. Thanks to the large wavelength difference between the pump and probe radiations, coherent anti-Stokes Raman scattering (CARS) and coherent Stokes Raman scattering (CSRS) can be detected simultaneously. Simultaneous detection of CARS and CSRS enables us to obtain information on the electronic resonance effect that affects differently the CARS and CSRS signals. Simultaneous analysis of the CARS and CSRS signals provides us the imaginary part of χ (3) without introducing any arbitrary parameter in the maximum entropy method (MEM)

  1. Visible light activity of pulsed layer deposited BiVO{sub 4}/MnO{sub 2} films decorated with gold nanoparticles: The evidence for hydroxyl radicals formation

    Trzciński, Konrad, E-mail: trzcinskikonrad@gmail.com [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Szkoda, Mariusz [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Sawczak, Mirosław [Centre for Plasma and Laser Engineering, The Szewalski Institute of Fluid Flow Machinery, Fiszera 14, 80-231 Gdansk (Poland); Karczewski, Jakub [Faculty of Applied Physics and Mathematics, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland); Lisowska-Oleksiak, Anna [Faculty of Chemistry, Gdansk University of Technology, Narutowicza 11/12, 80-233 Gdansk (Poland)

    2016-11-01

    Highlights: • The BiVO{sub 4} + MnO{sub 2} photoactive layers were prepared by pulsed laser deposition method. • Prepared layers can act as photoanodes for water splitting. • The thin BiVO{sub 4} + MnO{sub 2} film can be used as photocatalyst for methylene blue degradation. • The formation of hydroxyl radicals during photocatalys illumination has been proved. • The dropcasted GNP improved significantly photocatalytic properties of tested layers. - Abstract: Thin films containing BiVO{sub 4} and MnO{sub 2} deposited on FTO and modified by Au nanoparticles were studied towards their photoelectrochemical and photocatalytical activities in an aqueous electrolyte. Electrodes were prepared by the pulsed laser deposition (PLD) method. The surfactant-free ablation process was used for preparation of the gold nanoparticles (GNP) water suspension. Obtained layers of varied thicknesses (27–115 nm) were characterized using Raman spectroscopy, UV–vis spectroscopy and scanning electron microscopy. Electrochemical methods such as electrochemical impedance spectroscopy, linear voltammetry and chronoamperometry under visible light illumination and in the dark were applied to characterize layers as photoanodes. Simple modification of the BiVO{sub 4} + MnO{sub 2} layer by drop-casting of small amount of colloidal gold (1.5 × 10{sup −14} mol of GNP on 1 cm{sup 2}) leads to enhancement of the generated photocurrent recorded at E = 0.5 V vs. Ag/AgCl (0.1 M KCl) from 63 μA/cm{sup 2} to 280 μA/cm{sup 2}. Photocatalytical studies were also exploited towards decomposition of methylene blue (MB). A possible mechanism of MB photodegradation was proposed. The formation of hydroxyl radicals was detected by photoluminescence spectra using terephthalic acid as the probe molecule.

  2. Influence of dispersion of nonlinearity on coherent supercontinuum generation bandwidth in photonic crystal fibers pumped at 2 μm

    Klimczak, Mariusz; Siwicki, Bartlomiej; Zhou, Binbin

    2017-01-01

    Sources of spectrally broadband and coherent light are necessary for frequency metrology and ultrashort pulse generation. Near-infrared (NIR) wavelengths are practical for such devices because of the emergence of robust and reasonably priced femtosecond lasers operating in this part of spectrum...... lasers as pump sources, exceeding the 2400 nm barrier has proved a challenge. ANDi SC requires strong nonlinear response of the optical material, since self-phase modulation (SPM) and optical wave breaking (OWB) mediated four-wave mixing (FWM) are almost exclusively shaping the ANDi SC pulses. Flatness...

  3. Pulsed Nd:YAG laser deposition of indium tin oxide thin films in different gases and organic light emitting device applications

    Yong, T.Y.; Tou, T.Y.; Yow, H.K.; Safran, G.

    2008-01-01

    The microstructures, electrical and optical properties of indium-doped tin oxide (ITO) films, deposited on glass substrates in different background gases by a pulsed Nd:YAG laser, were characterized. The optimal pressure for obtaining the lowest resistivity in ITO thin film is inversely proportional to the molecular weight of the background gases, namely the argon (Ar), oxygen (O 2 ), nitrogen (N 2 ) and helium (He). While substrate heating to 250 deg. C decreased the ITO resistivity to -4 Ω cm, obtaining the optical transmittance of higher than 90% depended mainly on the background gas pressure for O 2 and Ar. Obtaining the lowest ITO resistivity, however, did not beget a high optical transmittance for ITO deposition in N 2 and He. Scanning electron microscope pictures show distinct differences in microstructures due to the background gas: nanostructures when using Ar and N 2 but polycrystalline for using O 2 and He. The ITO surface roughness varied with the deposition distance. The effects on the molecularly doped, single-layer organic light emitting device (OLED) operation and performance were also investigated. Only ITO thin films prepared in O 2 and Ar are suitable for the fabrication OLED with performance comparable to that fabricated on the commercially available, magnetron-sputtered ITO

  4. Efficacy of Intense-pulsed Light Therapy with Topical Benzoyl Peroxide 5% versus Benzoyl Peroxide 5% Alone in Mild-to-moderate Acne Vulgaris: A Randomized Controlled Trial.

    Mokhtari, Fatemeh; Gholami, Maryam; Siadat, Amir Hossein; Jafari-Koshki, Tohid; Faghihi, Gita; Nilforoushzadeh, Mohammad Ali; Hosseini, Sayed Mohsen; Abtahi-Naeini, Bahareh

    2017-01-01

    Acne vulgaris is a disease of pilosebaceous unit with multifactorial pathogenesis and threats patients' social functioning. There is a growing research to find faster, more effective, and easy to use treatments. The aim of this study is to evaluate the efficacy of benzoyl peroxide 5% (BP) with and without concomitant intense-pulsed light (IPL) therapy in mild-to-moderate acne vulgaris. In this controlled trial, 58 eligible patients with mild-to-moderate acne and Fitzpatrick skin phototype III and IV were randomly allocated to two groups. All patients were asked to use a thin layer of BP every night. The IPL therapy was administered at the end of first, 2 nd , and 3 rd months. Acne Global Severity Scale (AGSS), Acne Severity Index (ASI), and total lesion counting (TLC) along with patient satisfaction were recorded. Patients were also examined 1 month after the final therapeutic visit. The IPL group showed greater reduction in AGSS ( P < 0.001) and TLC ( P = 0.005) than the control group. However, the difference in ASI was not significant ( P = 0.12). Patients in IPL groups were more satisfied than control group ( P < 0.001). Adding IPL to BP can result better response to BP alone. In acne treatment, combination therapy such as IPL and other topical agents should be kept in mind.

  5. Comparing Two Methods of Cryotherapy and Intense Pulsed Light with Triamcinolone Injection in the Treatment of Keloid and Hypertrophic Scars: A Clinical Trial.

    Meymandi, Simin Shamsi; Moosazadeh, Mahmood; Rezazadeh, Azadeh

    2016-10-01

    Keloid and hypertrophic scars are abnormal manifestations of wounds that occur following skin injuries in the form of local proliferation of fibroblasts and increased production of collagen. There are several ways to cure these scars; treatment must be selected based on the nature of the scars. In this clinical trial, two methods-cryotherapy and intense pulsed light (IPL)-are compared in the treatment of scars, and the results are presented in terms of improvement level, complications, and patient satisfaction. This clinical trial was conducted in southeastern Iran. The intervention group included scars that underwent the IPL method and the control group, which consisted of scars that were subjected to cryotherapy. In both methods, intralesional corticosteroid injection was administered. To select samples, the easy sampling method was used. To determine the expected outcomes, the criteria determined in the Vancouver scar scale were used. Data were analyzed using the Mix Model, chi-square test, and t test. In this study, 166 samples of keloid and hypertrophic scars were cured using two methods (Cryotherapy, 83; IPL, 83). The recovery rate was higher in the Cryotherapy group than in the IPL group ( p  > 0.05), and the incidence of complications was also higher in the Cryotherapy group (14.5% vs. 12%). Moreover, patients were more satisfied, although not significantly so, with the cryotherapy method ( p  = 0.09). Both methods were highly successful in curing scars; participants were totally satisfied with both methods.

  6. Split-face comparison of intense pulsed light and nonablative 1,064-nm Q-switched laser in skin rejuvenation.

    Huo, Meng-Hua; Wang, Yong-Qian; Yang, Xin

    2011-01-01

    Multiple nonablative skin rejuvenation techniques have been used to improve facial aging. To compare rejuvenation efficiency of intense pulsed light (IPL) with nonablative 1,064-nm Q-switched laser in Asian patients. Twelve female subjects were enrolled and received five sessions of treatments at 2-week intervals. A split-face study was performed, with IPL applied to the left side of the face and nonablative 1,064-nm Q-switched laser to the right side. All assessments showed significant skin rejuvenation. For the improvement of skin texture, pore size, and sebum secretion, similar efficiency from laser and IPL was observed. For lightening of skin tone and macula, the IPL was more efficient than the laser after the first treatment, although no further clinical improvement resulted after three treatments. The laser gradually lightened the skin tone and macula and was ultimately more efficient than the IPL after five treatments. A series of IPL and nonablative 1,064-nm Q-switched laser treatments were performed with similar efficiency and safety for the improvement in skin texture, pore size, and sebum secretion. IPL was faster, but nonablative 1,064-nm Q-switched laser was more effective in improving skin tone and macula. © 2010 by the American Society for Dermatologic Surgery, Inc.

  7. Is the pulsed xenon ultraviolet light no-touch disinfection system effective on methicillin-resistant Staphylococcus aureus in the absence of manual cleaning?

    Jinadatha, Chetan; Villamaria, Frank C; Restrepo, Marcos I; Ganachari-Mallappa, Nagaraja; Liao, I-Chia; Stock, Eileen M; Copeland, Laurel A; Zeber, John E

    2015-08-01

    Methicillin-resistant Staphylococcus aureus (MRSA) has been shown to survive on ambient surfaces for extended periods of time. Leftover MRSA environmental contamination in a hospital room places future patients at risk. Manual disinfection supplemented by pulsed xenon ultraviolet (PX-UV) light disinfection has been shown to greatly decrease the MRSA bioburden in hospital rooms. However, the effect of PX-UV in the absence of manual disinfection has not been evaluated. Rooms that were previously occupied by a MRSA-positive patient (current colonization or infection) were selected for the study immediately postdischarge. Five high-touch surfaces were sampled, before and after PX-UV disinfection, in each hospital room. The effectiveness of the PX-UV device on the concentration of MRSA was assessed employing a Wilcoxon signed-rank test for all 70 samples with MRSA in 14 rooms, as well as by surface location. The final analysis included 14 rooms. Before PX-UV disinfection there were a total of 393 MRSA colonies isolated from the 5 high-touch surfaces. There were 100 MRSA colonies after disinfection by the PX-UV device and the overall reduction was statistically significant (P disinfection. These findings are important for hospital and environmental services supervisors who plan to adapt new technologies as an adjunct to routine manual disinfection. Published by Elsevier Inc.

  8. Within-patient right-left blinded comparison of diode (810 nm) laser therapy and intense pulsed light therapy for hair removal.

    Cameron, H; Ibbotson, S H; Dawe, R S; Ferguson, J; Moseley, H

    2008-10-01

    Excessive facial hair in women can cause significant psychological distress. A variety of treatment methods are available, including lasers and, more recently, intense pulsed light (IPL) sources. There are very few studies comparing laser and IPL devices. The purpose of our study was to compare a laser diode device with an IPL, using a within-patient, right-left, assessor-blinded, controlled, study design. Hair counts were made, using coded close-up photographs. Treatments were carried out on three occasions at 6-week intervals, and a final assessment was made 6 weeks following the third treatment. Patient self-assessment was also included. Nine women were recruited, and seven completed the study. Average hair counts in a 16 cm(2) area before and after treatment were, respectively, 42.4 and 10.4 (laser), 38.1 and 20.4 (IPL), 45.3 and 44.7 (control). Both laser and IPL reduced the hair count substantially; laser vs control was significant at P=0.028, but IPL vs control had P=0.13, suggesting that more subjects or more treatments were required if statistical significance were to be achieved. Despite subjecting the patients to higher pain scores and more inflammation, laser was preferred by five patients; two preferred IPL and one had no preference.

  9. Sculpting light for new biophotonics applications

    Glückstad, Jesper; Palima, Darwin; Villangca, Mark Jayson

    illumination, optical phase encryption, and recently in contemporary biophotonics applications such as for real-time parallel twophoton optogenetics and neurophotonics [3]. Our most recent GPC light sculpting developments will be presented. These include both static and dynamic GPC Light Shapers where lasers......Generalized Phase Contrast (GPC) is a power efficient approach for generating speckle-free contiguous optical distributions using spatial phaseonly light modulation. GPC has been demonstrated in a variety of applications such as optical micro-manipulation [1], active microscopy [2], structured...... have to be actively shaped into particular light patterns [4]. We show the potential of GPC for biomedical and multispectral applications where we demonstrate phase-only light shaping of a supercontinuum laser over most of its visible wavelength range [5]....

  10. Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

    Nader, Nima; Maser, Daniel L.; Cruz, Flavio C.; Kowligy, Abijith; Timmers, Henry; Chiles, Jeff; Fredrick, Connor; Westly, Daron A.; Nam, Sae Woo; Mirin, Richard P.; Shainline, Jeffrey M.; Diddams, Scott

    2018-03-01

    Laser frequency combs, with their unique combination of precisely defined spectral lines and broad bandwidth, are a powerful tool for basic and applied spectroscopy. Here, we report offset-free, mid-infrared frequency combs and dual-comb spectroscopy through supercontinuum generation in silicon-on-sapphire waveguides. We leverage robust fabrication and geometrical dispersion engineering of nanophotonic waveguides for multi-band, coherent frequency combs spanning 70 THz in the mid-infrared (2.5 μm-6.2 μm). Precise waveguide fabrication provides significant spectral broadening with engineered spectra targeted at specific mid-infrared bands. We characterize the relative-intensity-noise of different bands and show that the measured levels do not pose any limitation for spectroscopy applications. Additionally, we use the fabricated photonic devices to demonstrate dual-comb spectroscopy of a carbonyl sulfide gas sample at 5 μm. This work forms the technological basis for applications such as point sensors for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy.

  11. Hole-Size Increasing PCFs for Blue-Extended Supercontinuum Generation

    Sørensen, Simon Toft; Larsen, Casper; Jakobsen, C.

    2013-01-01

    into the deep-blue in a single mode PCF with varying hole-size and pitch fabricated directly at the draw-tower. The PCFs in this work are fabricated by increasing the pressure on the air holes during the drawing. However, this process alone will lead to an undesirable structure where both the relative hole......Supercontinuum (SC) sources with spectra extending into the deep-blue region below 400 nm are highly desirable in areas such as fluorescent microscopy [1]. Tapering of photonic crystal fibers (PCFs) with high air-fill fractions has proven an effective way of extending the spectra into the deep...... wavelength spectral edge to wavelengths in the deep-blue or even UV. Previous reports on blue-extended SC generation were typically achieved in tapered PCFs where the air-hole structure was preserved [1-4], i.e. the relative hole-size constant. However, such PCFs with high air-fill fractions are inevitably...

  12. Versatile silicon-waveguide supercontinuum for coherent mid-infrared spectroscopy

    Nima Nader

    2018-03-01

    Full Text Available Laser frequency combs, with their unique combination of precisely defined spectral lines and broad bandwidth, are a powerful tool for basic and applied spectroscopy. Here, we report offset-free, mid-infrared frequency combs and dual-comb spectroscopy through supercontinuum generation in silicon-on-sapphire waveguides. We leverage robust fabrication and geometrical dispersion engineering of nanophotonic waveguides for multi-band, coherent frequency combs spanning 70 THz in the mid-infrared (2.5 μm–6.2 μm. Precise waveguide fabrication provides significant spectral broadening with engineered spectra targeted at specific mid-infrared bands. We characterize the relative-intensity-noise of different bands and show that the measured levels do not pose any limitation for spectroscopy applications. Additionally, we use the fabricated photonic devices to demonstrate dual-comb spectroscopy of a carbonyl sulfide gas sample at 5 μm. This work forms the technological basis for applications such as point sensors for fundamental spectroscopy, atmospheric chemistry, trace and hazardous gas detection, and biological microscopy.

  13. High-speed combustion diagnostics in a rapid compression machine by broadband supercontinuum absorption spectroscopy.

    Werblinski, Thomas; Fendt, Peter; Zigan, Lars; Will, Stefan

    2017-05-20

    The first results under fired internal combustion engine conditions based on a supercontinuum absorption spectrometer are presented and discussed. Temperature, pressure, and water mole fraction are inferred simultaneously from broadband H 2 O absorbance spectra ranging from 1340 nm to 1440 nm. The auto-ignition combustion process is monitored for two premixed n-heptane/air mixtures with 10 kHz in a rapid compression machine. Pressure and temperature levels during combustion exceed 65 bar and 1900 K, respectively. To allow for combustion measurements, the robustness of the spectrometer against beam steering has been improved compared to its previous version. Additionally, the detectable wavelength range has been extended further into the infrared region to allow for the acquisition of distinct high-temperature water transitions located in the P-branch above 1410 nm. Based on a theoretical study, line-of-sight (LOS) effects introduced by temperature stratification on the broadband fitting algorithm in the complete range from 1340 nm to 1440 nm are discussed. In this context, the recorded spectra during combustion were evaluated only within a narrower spectral region exhibiting almost no interference from low-temperature molecules (here, P-branch from 1410 nm to 1440 nm). It is shown that this strategy mitigates almost all of the LOS effects introduced by cold molecules and the evaluation of the spectrum in the entirely recorded wavelength range at engine combustion conditions.

  14. Influence of induced colour centres on the frequency - angular spectrum of a light bullet of mid-IR radiation in lithium fluoride

    Chekalin, S. V.; Kompanets, V. O.; Dormidonov, A. E.; Kandidov, V. P.

    2017-04-01

    The influence of the occurrence of a structure consisting of long-lived colour centres, formed in an LiF crystal upon filamentation of femtosecond mid-IR radiation, on the supercontinuum characteristics is investigated. With an increase in the number of incident pulses, the length and transverse size of the structure of colour centres induced in LiF increase, and the supercontinuum spectrum in the short-wavelength region is markedly transformed due to the occurrence of the waveguide propagation regime, absorption, and scattering of radiation from the newly formed structure of colour centres. Under these conditions, the intensity of the anti-Stokes wing decreases by two orders of magnitude after several tens of pulses. Spectral components arise in the visible range, the angular divergence of which increases with increasing wavelength.

  15. Method for improving the spectral flatness of the supercontinuum at 1.55 μm in tapered microstructured optical fibers

    Vukovic, N.; Broderick, N. G. R.

    2010-01-01

    We propose a method for enhancing the flatness of a supercontinuum centered at 1.55 μm by the use of specially designed tapered microstructured optical fibers (MOFs). Based on the procedure presented one can determine the linear taper profile parameters and the optimum launching conditions needed to achieve the broadest supercontinuum spectra (SC) and the best spectra flatness. We quantify the maximally broad and flat SC using the calculated standard deviation of the spectra at the required wavelength range and show that it is possible to obtain significantly better results than those obtained by using an untapered fiber.

  16. Method for improving the spectral flatness of the supercontinuum at 1.55 {mu}m in tapered microstructured optical fibers

    Vukovic, N; Broderick, N G. R. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2010-10-15

    We propose a method for enhancing the flatness of a supercontinuum centered at 1.55 {mu}m by the use of specially designed tapered microstructured optical fibers (MOFs). Based on the procedure presented one can determine the linear taper profile parameters and the optimum launching conditions needed to achieve the broadest supercontinuum spectra (SC) and the best spectra flatness. We quantify the maximally broad and flat SC using the calculated standard deviation of the spectra at the required wavelength range and show that it is possible to obtain significantly better results than those obtained by using an untapered fiber.

  17. Light storage via slow-light four-wave mixing

    Fan, Yun-Fei; Wang, Hai-Hua; Wei, Xiao-Gang; Li, Ai-Jun; Kang, Zhi-Hui; Wu, Jin-Hui; Zhang, Han-Zhuang; Xu, Huai-Liang; Gao, Jin-Yue

    2012-01-01

    We experimentally demonstrate a light storage via slow-light four-wave mixing in a solid-state medium with a four-level double lambda scheme. Using slow light based on electromagnetically induced transparency, we obtain a slowed four-wave mixing signal pulse together with the slowed probe pulse. During the propagation of light pulses, the storage and retrieval of both the slowed four-wave mixing pulse and the slowed probe pulse are studied by manipulating the intensities of the control fields. -- Highlights: ► A light storage via slow-light four-wave mixing is observed in a solid. ► The probe pulse is slowed under electromagnetically induced transparency. ► A slowed four-wave mixing pulse is obtained by slow light. ► The storage of slowed double pulses is studied.

  18. Pulse height model for deuterated scintillation detectors

    Wang, Haitang; Enqvist, Andreas

    2015-01-01

    An analytical model of light pulse height distribution for finite deuterated scintillation detectors is created using the impulse approximation. Particularly, the energy distribution of a scattered neutron is calculated based on an existing collision probability scheme for general cylindrical shaped detectors considering double differential cross-sections. The light pulse height distribution is analytically and numerically calculated by convoluting collision sequences with the light output function for an EJ-315 detector from our measurements completed at Ohio University. The model provides a good description of collision histories capturing transferred neutron energy in deuterium-based scintillation materials. The resulting light pulse height distribution details pulse compositions and their corresponding contributions. It shows that probabilities of neutron collision with carbon and deuterium nuclei are comparable, however the light pulse amplitude due to collisions with carbon nuclei is small and mainly located at the lower region of the light pulse distribution axis. The model can explore those neutron interaction events that generate pulses near or below a threshold that would be imposed in measurements. A comparison is made between the light pulse height distributions given by the analytical model and measurements. It reveals a significant probability of a neutron generating a small light pulse due to collisions with carbon nuclei when compared to larger light pulse generated by collisions involving deuterium nuclei. This model is beneficial to understand responses of scintillation materials and pulse compositions, as well as nuclei information extraction from recorded pulses.

  19. Injection current dependences of electroluminescence transition energy in InGaN/GaN multiple quantum wells light emitting diodes under pulsed current conditions

    Zhang, Feng; Ikeda, Masao, E-mail: mikeda2013@sinano.ac.cn; Liu, Jianping; Zhang, Shuming [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Zhou, Kun; Yang, Hui [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences (CAS), Suzhou 215123 (China); Institute of Semiconductors (CAS), Beijing 100083 (China); Liu, Zongshun [Institute of Semiconductors (CAS), Beijing 100083 (China)

    2015-07-21

    Injection current dependences of electroluminescence transition energy in blue InGaN/GaN multiple quantum wells light emitting diodes (LEDs) with different quantum barrier thicknesses under pulsed current conditions have been analyzed taking into account the related effects including deformation caused by lattice strain, quantum confined Stark effects due to polarization field partly screened by carriers, band gap renormalization, Stokes-like shift due to compositional fluctuations which are supposed to be random alloy fluctuations in the sub-nanometer scale, band filling effect (Burstein-Moss shift), and quantum levels in finite triangular wells. The bandgap renormalization and band filling effect occurring at high concentrations oppose one another, however, the renormalization effect dominates in the concentration range studied, since the band filling effect arising from the filling in the tail states in the valence band of quantum wells is much smaller than the case in the bulk materials. In order to correlate the carrier densities with current densities, the nonradiative recombination rates were deduced experimentally by curve-fitting to the external quantum efficiencies. The transition energies in LEDs both with 15 nm quantum barriers and 5 nm quantum barriers, calculated using full strengths of theoretical macroscopic polarization given by Barnardini and Fiorentini [Phys. Status Solidi B 216, 391 (1999)] are in excellent accordance with experimental results. The LED with 5 nm barriers has been shown to exhibit a higher transition energy and a smaller blue shift than those of LED with 15 nm barriers, which is mainly caused by the smaller internal polarization field in the quantum wells.

  20. Ablative fractional carbon dioxide laser combined with intense pulsed light for the treatment of photoaging skin in Chinese population: A split-face study.

    Mei, Xue-Ling; Wang, Li

    2018-01-01

    Intense pulsed light (IPL) is effective for the treatment of lentigines, telangiectasia, and generalized erythema, but is less effective in the removal of skin wrinkles. Fractional laser is effective on skin wrinkles and textural irregularities, but can induce postinflammatory hyperpigmentation (PIH), especially in Asians. This study evaluated the safety and efficacy of ablative fractional laser (AFL) in combination with IPL in the treatment of photoaging skin in Asians.This study included 28 Chinese women with Fitzpatrick skin type III and IV. The side of the face to be treated with IPL alone (3 times) or AFL in combination with IPL (2 IPL treatments and 1 AFL treatment) was randomly selected. Skin conditions including hydration, transepidermal water loss, elasticity, spots, ultraviolet spots, brown spots, wrinkle, texture, pore size and red areas, as well as adverse effects were evaluated before the treatment and at 30 days after the treatment.Compared with IPL treatment alone, AFL in combination with IPL significantly increased elasticity, decreased pore size, reduced skin wrinkles, and improved skin texture (P = .004, P = .039, P = .015, and P = .035, respectively). Both treatment protocols produced similar effects in relation to the improvement of photoaging-induced pigmentation. The combined therapy did not impair epidermal barrier function. No postoperative infection, hypopigmentation, or scarring occurred after IPL and AFL treatments. PIH occurred at 1 month after AFL treatment and disappeared at 30 days after completion of the combined therapy.AFL in combination with IPL is safe and effective for photoaging skin in Asians. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  1. Evaluation of pulsed light treatments on inactivation of Salmonella on blueberries and its impact on shelf-life and quality attributes.

    Cao, Xinang; Huang, Runze; Chen, Haiqiang

    2017-11-02

    Blueberry have a short shelf life when fully ripe and susceptible to contamination of various pathogens. Our study investigated the effect of pulsed light (PL) on inactivation of Salmonella on blueberries and its impact on shelf-life, quality attributes and health-benefit compounds of blueberries. Dry PL (6J/cm 2 ) and water-assisted PL (samples were agitated in water during PL treatment; 9J/cm 2 ) along with two controls, dry control (untreated) and water-assisted control (water washing without PL), were applied to blueberries with subsequent storages at room temperature (3days) or 5°C (7days). For Salmonella inactivation, dry PL treatment achieved 0.9 and 0.6 log reduction of Salmonella for spot and dip inoculation, respectively; while the water-assisted PL treatment reduced Salmonella by 4.4 log and 0.8 log for spot and dip inoculation, respectively. The water-assisted PL treatment resulted in Salmonella populations significantly lower than the dry control after storage regardless of the storage temperature and inoculation method. Neither dry nor water-assisted PL treatments improved the shelf life of blueberries even though direct inactivation of natural yeasts and molds were achieved. Surface lightness was instantly reduced after both dry and water-assisted PL treatments. Compared with the dry control, the two PL treatments did not reduce the firmness of blueberries. Weight loss was increased for the dry PL treated samples, but not for the water-assisted PL treatment for both storage conditions. Delayed anthocyanins accumulation and reduced total antioxidant activity were induced by both PL treatments at the end of storage at room temperature, while slight enhancement in total phenolics content was achieved by water-assisted PL treatment. In conclusion, the water-assisted PL treatment could effectively decontaminate Salmonella on blueberries while showed minimal or no impact on the shelf-life, quality attributes and health-benefit compounds of blueberries. PL

  2. Spin dynamics of light-induced charge separation in composites of semiconducting polymers and PC60BM revealed using Q-band pulse EPR.

    Lukina, E A; Suturina, E; Reijerse, E; Lubitz, W; Kulik, L V

    2017-08-23

    Light-induced processes in composites of semiconducting polymers and fullerene derivatives have been widely studied due to their usage as active layers of organic solar cells. However the process of charge separation under light illumination - the key process of an organic solar cell is not well understood yet. Here we report a Q-band pulse electron paramagnetic resonance study of composites of the fullerene derivative PC 60 BM ([6,6]-phenyl-C 61 -butyric acid methyl ester) with different p-type semiconducting polymers regioregular and regiorandom P3HT (poly(3-hexylthiophene-2,5-diyl), MEH-PPV (poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]), PCDTBT (poly[N-9'-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)]), PTB7 (poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl}))), resulting in a detailed description of the in-phase laser flash-induced electron spin echo (ESE) signal. We found that in organic donor-acceptor composites the laser flash simultaneously induces species of two types: a polymer˙ + /fullerene˙ - spin-correlated polaron pair (SCPP) with an initial singlet spin state and (nearly) free polymer˙ + and fullerene˙ - species with non-equilibrium spin polarization. Species of the first type (SCPP) are well-known for polymer/fullerene blends and are usually associated with a charge-separated state. Also, spin polarization of long-living free species (polarons in deep traps) is affected by the laser flash, which is the third contribution to the flash-induced ESE signal. A protocol for extracting the in-phase ESE signal of the SCPP based on the dependence of the microwave nutation frequency on the strength of the spin coupling within the polaron pair was developed. Nutation experiments revealed an unusual pattern of the SCPP in RR-P3HT/PC 60 BM composites, from which the strength of the exchange interaction between the polymer

  3. Pulse Generator

    Greer, Lawrence (Inventor)

    2017-01-01

    An apparatus and a computer-implemented method for generating pulses synchronized to a rising edge of a tachometer signal from rotating machinery are disclosed. For example, in one embodiment, a pulse state machine may be configured to generate a plurality of pulses, and a period state machine may be configured to determine a period for each of the plurality of pulses.

  4. Single-mode pumped high air-fill fraction photonic crystal fiber taper for high-power deep-blue supercontinuum sources

    Sørensen, Simon Toft; Larsen, Casper; Jakobsen, Christian

    2014-01-01

    Dispersion control with axially nonuniform photonic crystal fibers (PCFs) permits supercontinuum (SC) generation into the deep-blue from an ytterbium pump laser. In this Letter, we exploit the full degrees of freedom afforded by PCFs to fabricate a fiber with longitudinally increasing air-fill fr...

  5. Design of a randomized controlled trial on the effect on return to work with coaching plus light therapy and pulsed electromagnetic field therapy for workers with work-related chronic stress

    Antonius M. C. Schoutens

    2016-07-01

    Full Text Available Abstract Background Work-related chronic stress is a common problem among workers. The core complaint is that the employee feels exhausted, which has an effect on the well-being and functioning of the employee, and an impact on the employer and society. The employee’s absence is costly due to lost productivity and medical expenses. The usual form of care for work-related chronic stress is coaching, using a cognitive-behavioural approach whose primary aim is to reduce symptoms and improve functioning. Light therapy and pulsed electromagnetic field therapy are used for the treatment of several mental and physical disorders. The objective of this study is to determine whether coaching combined with light therapy plus pulsed electromagnetic field therapy is an effective treatment for reducing absenteeism, fatigue and stress, and improving quality of life compared to coaching alone. Methods/design The randomized placebo-controlled trial consists of three arms. The population consists of 90 participants with work-related chronic stress complaints. The research groups are: (i intervention group; (ii placebo group; and (iii control group. Participants in the intervention group will be treated with light therapy/pulsed electromagnetic field therapy for 12 weeks, twice a week for 40 min, and coaching (once a fortnight for 50 min. The placebo group receives the same treatment but with the light and pulsed electromagnetic field switched to placebo settings. The control group receives only coaching for 12 weeks, a course of six sessions, once a fortnight for 50 min. The primary outcome is the level of return to work. Secondary outcomes are fatigue, stress and quality of life. Outcomes will be measured at baseline, 6 weeks, 12 and 24 weeks after start of treatment. Discussion This study will provide information about the effectiveness of coaching and light therapy plus pulsed electromagnetic field therapy on return to work, and secondly on fatigue

  6. Design of a randomized controlled trial on the effect on return to work with coaching plus light therapy and pulsed electromagnetic field therapy for workers with work-related chronic stress.

    Schoutens, Antonius M C; Frings-Dresen, Monique H W; Sluiter, Judith K

    2016-07-19

    Work-related chronic stress is a common problem among workers. The core complaint is that the employee feels exhausted, which has an effect on the well-being and functioning of the employee, and an impact on the employer and society. The employee's absence is costly due to lost productivity and medical expenses. The usual form of care for work-related chronic stress is coaching, using a cognitive-behavioural approach whose primary aim is to reduce symptoms and improve functioning. Light therapy and pulsed electromagnetic field therapy are used for the treatment of several mental and physical disorders. The objective of this study is to determine whether coaching combined with light therapy plus pulsed electromagnetic field therapy is an effective treatment for reducing absenteeism, fatigue and stress, and improving quality of life compared to coaching alone. The randomized placebo-controlled trial consists of three arms. The population consists of 90 participants with work-related chronic stress complaints. The research groups are: (i) intervention group; (ii) placebo group; and (iii) control group. Participants in the intervention group will be treated with light therapy/pulsed electromagnetic field therapy for 12 weeks, twice a week for 40 min, and coaching (once a fortnight for 50 min). The placebo group receives the same treatment but with the light and pulsed electromagnetic field switched to placebo settings. The control group receives only coaching for 12 weeks, a course of six sessions, once a fortnight for 50 min. The primary outcome is the level of return to work. Secondary outcomes are fatigue, stress and quality of life. Outcomes will be measured at baseline, 6 weeks, 12 and 24 weeks after start of treatment. This study will provide information about the effectiveness of coaching and light therapy plus pulsed electromagnetic field therapy on return to work, and secondly on fatigue, stress and quality of life in people with work-related chronic

  7. DogPulse

    Skovgaard, Christoffer; Thomsen, Josephine Raun; Verdezoto, Nervo

    2015-01-01

    This paper presents DogPulse, an ambient awareness system to support the coordination of dog walking among family members at home. DogPulse augments a dog collar and leash set to activate an ambient shape-changing lamp and visualize the last time the dog was taken for a walk. The lamp gradually...... changes its form and pulsates its lights in order to keep the family members aware of the dog walking activity. We report the iterative prototyping of DogPulse, its implementation and its preliminary evaluation. Based on our initial findings, we present the limitations and lessons learned as well...

  8. The dynamic characteristics and linewidth enhancement factor of quasi-supercontinuum self-assembled quantum dot lasers

    Tan, Cheeloon

    2009-09-01

    The theoretical analysis of optical gain and chirp characteristics of a semiconductor quantum dot (Qdot) broadband laser is presented. The model based on population rate equations, has been developed to investigate the multiple states lasing or quasi-supercontinuum lasing in InGaAs/GaAs Qdot laser. The model takes into account factors such as Qdot size fluctuation, finite carrier lifetime in each confined energy states, wetting layer induced nonconfined states and the presence of continuum states. Hence, calculation of the linewidth enhancement factor together with the variation of optical gain and index change across the spectrum of interest becomes critical to yield a basic understanding on the limitation of this new class of lasers. Such findings are important for the design of a practical single broadband laser diode for applications in low coherence interferometry sensing and optical fiber communications. Calculation results show that the linewidth enhancement factor from the ground state of broadband Qdot lasers (α ∼ 3) is slightly larger but in the same order of magnitude as compared to that of conventional Qdot lasers. The gain spectrum of the quasi-supercontinuum lasing system exhibits almost twice the bandwidth than conventional lasers but with comparable material differential gain (∼ 10-16 cm2) and material differential refractive index (∼ 10sup>-20 cm3 ) near current threshold. © 2009 IEEE.

  9. The dynamic characteristics and linewidth enhancement factor of quasi-supercontinuum self-assembled quantum dot lasers

    Tan, Cheeloon; Wang, Yang; Djie, Hery Susanto; Ooi, Boon S.

    2009-01-01

    The theoretical analysis of optical gain and chirp characteristics of a semiconductor quantum dot (Qdot) broadband laser is presented. The model based on population rate equations, has been developed to investigate the multiple states lasing or quasi-supercontinuum lasing in InGaAs/GaAs Qdot laser. The model takes into account factors such as Qdot size fluctuation, finite carrier lifetime in each confined energy states, wetting layer induced nonconfined states and the presence of continuum states. Hence, calculation of the linewidth enhancement factor together with the variation of optical gain and index change across the spectrum of interest becomes critical to yield a basic understanding on the limitation of this new class of lasers. Such findings are important for the design of a practical single broadband laser diode for applications in low coherence interferometry sensing and optical fiber communications. Calculation results show that the linewidth enhancement factor from the ground state of broadband Qdot lasers (α ∼ 3) is slightly larger but in the same order of magnitude as compared to that of conventional Qdot lasers. The gain spectrum of the quasi-supercontinuum lasing system exhibits almost twice the bandwidth than conventional lasers but with comparable material differential gain (∼ 10-16 cm2) and material differential refractive index (∼ 10sup>-20 cm3 ) near current threshold. © 2009 IEEE.

  10. Pulse on pulse: modulation and signification in Rafael Lozano-Hemmer's Pulse Room

    Merete Carlson

    2012-06-01

    Full Text Available This article investigates the relation between signifying processes and non-signifying material dynamism in the installation Pulse Room (2006 by Mexican Canadian artist Rafael Lozano-Hemmer. In Pulse Room the sense of pulse is ambiguous. Biorhythms are transmitted from the pulsing energy of the visitor's beating heart to the flashing of a fragile light bulb, thereby transforming each light bulb into a register of individual life. But at the same time the flashing light bulbs together produce a chaotically flickering light environment composed by various layers of repetitive rhythms, a vibrant and pulsating “room”. Hence, the visitor in Pulse Room is invited into a complex scenario that continuously oscillates between various aspects of signification (the light bulbs representing individual lives; the pulse itself as the symbolic “rhythm of life” and instants of pure material processuality (flickering light bulbs; polyrhythmic layers. Taking our point of departure in a discussion of Gilles Deleuze's concepts of modulation and signaletic material in relation to electronic media, we examine how the complex orchestration of pulsation between signification and material modulation produces a multilayered sense of time and space that is central to the sensory experience of Pulse Room as a whole. Pulse Room is, at the very same time, a relational subject–object intimacy and an all-encompassing immersive environment modulating continuously in real space-time.

  11. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  12. Differential Protein Expression in Explanted Human Retinal Pigment Epithelial Cells 24-Hours Post-Exposure 532 nm, 3.0 ns Pulsed Laser Light

    Obringer, John

    2004-01-01

    .... Further, the nature and importance of the biophysical mechanisms of photon-tissue interaction at such pulse widths and irradiances are not understood at the fundamental cell and molecular level...

  13. Generation of dual-wavelength, synchronized, tunable, high energy, femtosecond laser pulses with nearly perfect gaussian spatial profile

    Wang, J.-K.; Siegal, Y.; Lü, C.; Mazur, E.

    1992-07-01

    We use self-phase modulation in a single-mode fiber to produce broadband femtosecond laser pulses. Subsequent amplification through two Bethune cells yields high-energy, tunable, pulses synchronized with the output of an amplified colliding-pulse-modelocked (CPM) laser. We routinely obtain tunable 200 μJ pulses of 42 fs (fwhm) duration with a nearly perfect gaussian spatial profile. Although self-phase modulation in a single-mode fiber is widely used in femtosecond laser systems, amplification of a fiber-generated supercontinuum in a Bethune cell amplifier is a new feature which maintains the high-quality spatial profile while providing high gain. This laser system is particularly well suited for high energy dual-wavelength pump=probe experiments and time-resolved four-wave mixing spectroscopy.

  14. Laser e luz pulsada de alta energia: indução e tratamento de reações alérgicas relacionadas a tatuagens Laser and intense pulsed light: induction and treatment of allergic reactions related to tattoos

    Tatiana Sacks

    2004-12-01

    Full Text Available Os autores apresentam dois casos de reações alérgicas relacionadas a tatuagens, em que o laser e a luz pulsada de alta energia tiveram papel fundamental na indução e no tratamento dessas reações. No primeiro, houve surgimento de lesão eczematosa no local do pigmento vermelho utilizado na tatuagem. Após várias tentativas terapêuticas, a luz pulsada de alta energia foi utilizada com sucesso na remoção do pigmento e desaparecimento dos sintomas. No segundo, os autores demonstram um caso de reação anafilática induzida pelo laser Nd:YAG de pulso longo.The authors describe two cases of allergic reactions related to tattoos, in which laser and intense pulsed light had an important role in inducing and treating these allergic reactions. In the first case, the patient developed eczematous lesions at the site of the red pigment used in tattooing. After several unsuccessful therapeutic attempts, intense pulsed light was used. It successfully removed the red pigment and treated the allergy symptoms. In the second case, the authors describe a case of anaphylactic reaction precipitated by the long pulse Nd:YAD laser.

  15. Characterisation of the light pulses of a cavity dumped dye laser pumped by a cw mode-locked and q-switched Nd:YAG laser

    Geist, P.; Heisel, F.; Martz, A.; Miehe, J.A.; Miller, R.J.D.

    1984-01-01

    The frequency doubled pulses (of 532 nm) obtained, with the help of a KTP crystal, from those delivered by either a continuous wave mode-locked (100 MHz) or mode-locked Q-switched (0-1 KHz) Nd: YAG laser, are analyzed by means of a streak camera, operating in synchroscan or triggered mode. In the step-by-step measurements the pulse stability, concerning form and amplitude, is shown. In addition, measurements effectuated with synchronously pumped and cavity dumped dye laser (Rhodamine 6G), controlled by a Pockels cell, allows the obtention of stable and reproducible single pulses of 30 ps duration, 10 μJ energy and 500Hz frequency [fr

  16. Spectral confocal reflection microscopy using a white light source

    Booth, M.; Juškaitis, R.; Wilson, T.

    2008-08-01

    We present a reflection confocal microscope incorporating a white light supercontinuum source and spectral detection. The microscope provides images resolved spatially in three-dimensions, in addition to spectral resolution covering the wavelength range 450-650nm. Images and reflection spectra of artificial and natural specimens are presented, showing features that are not normally revealed in conventional microscopes or confocal microscopes using discrete line lasers. The specimens include thin film structures on semiconductor chips, iridescent structures in Papilio blumei butterfly scales, nacre from abalone shells and opal gemstones. Quantitative size and refractive index measurements of transparent beads are derived from spectral interference bands.

  17. Progress in pulsed power fusion

    Quintenz, J P; Adams, R G; Bailey, J E [Sandia Labs., Albuquerque, NM (United States); and others

    1997-12-31

    Pulsed power offers an efficient, high energy, economical source of x-rays for inertial confinement fusion (ICF) research. Two main approaches to ICF driven with pulsed power accelerators are pursued: intense light ion beams and z-pinches. Recent progress in each approach and plans for future development is described. (author). 2 figs., 10 refs.

  18. Progress in pulsed power fusion

    Quintenz, J.P.; Adams, R.G.; Bailey, J.E.

    1996-01-01

    Pulsed power offers an efficient, high energy, economical source of x-rays for inertial confinement fusion (ICF) research. Two main approaches to ICF driven with pulsed power accelerators are pursued: intense light ion beams and z-pinches. Recent progress in each approach and plans for future development is described. (author). 2 figs., 10 refs

  19. Generation of shock fronts in the interaction of short pulses of intense laser light in supercritical plasma; Generacion de frentes de choque en la interaccion de pulsos cortos de luz laser intensa en plasmas supercriticos

    Lopez V, V.E. [ITESST, 52650 Estado de Mexico (Mexico); Ondarza R, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2004-07-01

    The investigation of the laser interaction with plasma has been carried out mainly in laboratories of Europe, Japan and United States during the last decades. This studies concern the propagation of intense light laser in a non homogeneous plasma, the radiation absorption and the generation of suprathermal electrons, among others. Numerical simulations made by Denavit, for radiation pulses for up of 10{sup 20} W/cm{sup 2} on solid targets, have allowed to observe the generation of ionic crash fronts with high propagation speeds. In this work it is expanded the study of this effect through algorithms of particles simulation. (Author)

  20. Enhanced performance of an EUV light source (λ = 84 nm) using short-pulse excitation of a windowless dielectric barrier discharge in neon

    Carman, R J; Kane, D M; Ward, B K

    2010-01-01

    The electrical and optical characteristics of a dielectric barrier discharge (DBD) based neon excimer lamp generating output in the extreme ultraviolet (EUV) spectral range (λ = 84 nm) have been investigated experimentally. We report a detailed comparison of lamp performance for both pulsed and sinusoidal voltage excitation waveforms, using otherwise identical operating conditions. The results show that pulsed voltage excitation yields a ∼50% increase in the overall electrical to EUV conversion efficiency compared with sinusoidal waveforms, when operating in the pressure range 500-900 mbar. Pulsed operation allows greater control of parameters associated with the temporal evolution of the EUV pulse shapes (risetime, instantaneous peak power). The Ne DBD based source is also found to be highly monochromatic with respect to its spectral output from the second continuum band at λ ∼ 84 nm (5 nm FWHM). This continuum band dominates the spectral emission over the wavelength range 30-550 nm. Lamp performance; as measured by the overall EUV output energy, electrical to EUV conversion efficiency and spectral purity at λ ∼ 84 nm; improves with increasing gas pressure up to p = 900 mbar.

  1. Mid-IR supercontinuum generation beyond 7 μm using a silica-fluoride-chalcogenide fiber cascade

    Petersen, Christian Rosenberg; Moselund, Peter M.; Petersen, Christian

    2016-01-01

    and fluoride fibers by an amplified 1.55 μm nanosecond diode laser. By pumping a commercial Ge10As22Se68 single-material photonic crystal fiber with 135.7 mW of the pump continuum from 3.5- 4.4 μm, we obtained a continuum up to 7.2 μm with a total output power after the collimating lens of 54.5 mW, and 3.7 m......We report on an experimental demonstration of mid-infrared cascaded supercontinuum generation in commercial silica, fluoride, and chalcogenide fibers as a potentially cheap and practical alternative to direct pumping schemes. A pump continuum up to 4.4 μm was generated in cascaded silica...

  2. Short-pulse lasers for weather control

    Wolf, J. P.

    2018-02-01

    Filamentation of ultra-short TW-class lasers recently opened new perspectives in atmospheric research. Laser filaments are self-sustained light structures of 0.1–1 mm in diameter, spanning over hundreds of meters in length, and producing a low density plasma (1015–1017 cm‑3) along their path. They stem from the dynamic balance between Kerr self-focusing and defocusing by the self-generated plasma and/or non-linear polarization saturation. While non-linearly propagating in air, these filamentary structures produce a coherent supercontinuum (from 230 nm to 4 µm, for a 800 nm laser wavelength) by self-phase modulation (SPM), which can be used for remote 3D-monitoring of atmospheric components by Lidar (Light Detection and Ranging). However, due to their high intensity (1013–1014 W cm‑2), they also modify the chemical composition of the air via photo-ionization and photo-dissociation of the molecules and aerosols present in the laser path. These unique properties were recently exploited for investigating the capability of modulating some key atmospheric processes, like lightning from thunderclouds, water vapor condensation, fog formation and dissipation, and light scattering (albedo) from high altitude clouds for radiative forcing management. Here we review recent spectacular advances in this context, achieved both in the laboratory and in the field, reveal their underlying mechanisms, and discuss the applicability of using these new non-linear photonic catalysts for real scale weather control.

  3. iPhone 4s photoplethysmography: which light color yields the most accurate heart rate and normalized pulse volume using the iPhysioMeter Application in the presence of motion artifact?

    Kenta Matsumura

    Full Text Available Recent progress in information and communication technologies has made it possible to measure heart rate (HR and normalized pulse volume (NPV, which are important physiological indices, using only a smartphone. This has been achieved with reflection mode photoplethysmography (PPG, by using a smartphone's embedded flash as a light source and the camera as a light sensor. Despite its widespread use, the method of PPG is susceptible to motion artifacts as physical displacements influence photon propagation phenomena and, thereby, the effective optical path length. Further, it is known that the wavelength of light used for PPG influences the photon penetration depth and we therefore hypothesized that influences of motion artifact could be wavelength-dependant. To test this hypothesis, we made measurements in 12 healthy volunteers of HR and NPV derived from reflection mode plethysmograms recorded simultaneously at three different spectral regions (red, green and blue at the same physical location with a smartphone. We then assessed the accuracy of the HR and NPV measurements under the influence of motion artifacts. The analyses revealed that the accuracy of HR was acceptably high with all three wavelengths (all rs > 0.996, fixed biases: -0.12 to 0.10 beats per minute, proportional biases: r =  -0.29 to 0.03, but that of NPV was the best with green light (r = 0.791, fixed biases: -0.01 arbitrary units, proportional bias: r = 0.11. Moreover, the signal-to-noise ratio obtained with green and blue light PPG was higher than that of red light PPG. These findings suggest that green is the most suitable color for measuring HR and NPV from the reflection mode photoplethysmogram under motion artifact conditions. We conclude that the use of green light PPG could be of particular benefit in ambulatory monitoring where motion artifacts are a significant issue.

  4. Multi-pulse operation of a dissipative soliton fibre laser based on nonlinear polarisation rotation

    Yu, H L; Wang, X L; Zhou, P; Chen, J B [College of Optoelectronics Science and Engineering, National University of Defense Technology, Changsha, Hunan, 410073 (China)

    2016-03-31

    We report an experimental observation of multiple dissipative soliton (DS) operation states in an all-normal-dispersion passively mode-locked Yb-doped fibre laser, including DS bound and oscillating states. In the bound state, multiple DSs up to 11 can coexist in the cavity. In the oscillating state, the DSs' movements are not purely random and three typical states are generalised and illustrated. A single-pulse mode-locked state is established at a high pump power by carefully adjusting the polarisation controllers. The broad spectrum indicates that it may be noise-like pulses, which can serve as a pump to generate a supercontinuum. (control of laser radiation parameters)

  5. Nonlinear polarization dynamics in a weakly birefringent all-normal dispersion photonic crystal fiber : toward a practical coherent fiber supercontinuum laser

    Tu, Haohua; Liu, Yuan; Liu, Xiaomin

    2012-01-01

    Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generat...... of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser.......Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC...... generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10...

  6. Electromagnetically induced transparency and retrieval of light pulses in a Λ-type and a V-type level scheme in Pr3+:Y2SiO5

    Beil, Fabian; Klein, Jens; Halfmann, Thomas; Nikoghosyan, Gor

    2008-01-01

    We examine electromagnetically induced transparency (EIT), the optical preparation of persistent nuclear spin coherences and the retrieval of light pulses both in a Λ-type and a V-type coupling scheme in a Pr 3+ :Y 2 SiO 5 crystal, cooled to cryogenic temperatures. The medium is prepared by optical pumping and spectral hole burning, creating a spectrally isolated Λ-type and a V-type system within the inhomogeneous bandwidth of the 3 H 4 ↔ 1 D 2 transition of the Pr 3+ ions. By EIT, in the Λ-type scheme we drive a nuclear spin coherence between the ground-state hyperfine levels, while in the V-type scheme we drive a coherence between the excited-state hyperfine levels. We observe the cancellation of absorption due to EIT and the retrieval of light pulses in both level schemes. This also permits the determination of dephasing times of the nuclear spin coherence, either in the ground state or the optically excited state

  7. Luz intensa pulsada no fotoenvelhecimento: avaliação clínica, histopatológica e imuno-histoquímica Intense pulsed light in photoaging: a clinical, histopathological and immunohistochemical evaluation

    Régia Celli Ribeiro Patriota

    2011-12-01

    Full Text Available FUNDAMENTOS: A luz intensa pulsada tem sido muito utilizada no tratamento do fotoenvelhecimento sem completo conhecimento de seu mecanismo de ação. OBJETIVO: Estudar a ação da luz intensa pulsada no fotoenvelhecimento e na resposta imunológica cutânea por meio de estudo clínico, histopatológico, avaliando células de Langerhans (CD1, expressão da molécula de adesão intercelular, de linfócitos CD4 e CD8 e quantificação de colágeno e fibras elásticas. MÉTODOS: Um total de 26 pacientes, com idades entre 40 e 65 anos, com fototipos II a III de Fitzpatrick, foram tratadas do fotoenvelhecimento usando LIP, em 5 sessões, com intervalo mensal, durante o ano de 2006. Todas as pacientes foram submetidas à avaliação histológica e imuno-histoquímica 6 meses após o tratamento. RESULTADOS: Ao término do tratamento, houve melhora clínica em 76,92% dos casos, estando relacionada ao aumento significante de fibras colágenas (51,33% e elásticas (44,13%. O tratamento com luz intensa pulsada promoveu redução de linfócitos CD4 e não alterou a intensidade de linfócitos CD8. Além disso, promoveu aumento significante de pequenos vasos sanguíneos, não ectásicos, molécula de adesão intercelular positivos. CONCLUSÃO: O tratamento facial com luz intensa pulsada promoveu intensa melhora clínica que foi comprovada pelo estudo histopatológico da pele, constituindo boa opção de tratamento para o fotoenvelhecimento cutâneo, por ser técnica não- ablativa, segura e eficazBACKGROUND: Intense pulsed light has been used in the treatment of photoaging without a full understanding of its mechanism of action. OBJECTIVE: To study the effect of intense pulsed light on photoaging and on the skin immune response by means of a clinical and histopathological study, evaluating Langerhans cells (CD1, expression of intercellular adhesion molecule, of CD4 and CD8 lymphocytes and quantification of collagen and elastic fibers. METHODS: In 2006 a total

  8. Noise study of all-normal dispersion supercontinuum sources for potential application in optical coherence tomography

    Bravo Gonzalo, Ivan; Engelsholm, Rasmus Dybbro; Bang, Ole

    2017-01-01

    bandwidths, such sources are characterized by large intensity fluctuations, limiting their performance for applications in imaging such as optical coherence tomography (OCT). An approach to eliminate the influence of noise sensitive effects is to use a so-called all-normal dispersion (ANDi) fiber, in which...... the dispersion is normal for all the wavelengths of interest. Pumping these types of fibers with short enough femtosecond pulses allows to suppress stimulated Raman scattering (SRS), which is known to be as noisy process as modulation instability (MI), and coherent SC is generated through self-phase modulation...... (SPM) and optical wave breaking (OWB). In this study, we show the importance of the pump laser and fiber parameters in the design of low-noise ANDi based SC sources, for application in OCT. We numerically investigate the pulse-to-pulse fluctuations of the SC, calculating the relative intensity noise...

  9. Advanced injection seeder for various applications: form LIDARs to supercontinuum sources

    Grzes, Pawel

    2017-12-01

    The paper describes an injection seeder driver (prototype) for a directly modulated semiconductor laser diode. The device provides adjustable pulse duration and repetition frequency to shape an output signal. A temperature controller stabilizes a laser diode spectrum. Additionally, to avoid a back oscillation, redundant power supply holds a generation until next stages shut down. Low EMI design and ESD protection guarantee stable operation even in a noisy environment. The controller is connected to the PC via USB and parameters of the pulse are digitally controlled through a graphical interface. The injection seeder controller can be used with a majority of commercially available laser diodes. In the experimental setup a telecommunication DFB laser with 4 GHz bandwidth was used. It allows achieving subnanosecond pulses generated at the repetition rate ranging from 1 kHz to 50 MHz. The developed injection seeder controller with a proper laser diode can be used in many scientific, industrial and medical applications.

  10. High reliability low jitter pulse generator

    Savage, Mark E.; Stoltzfus, Brian S.

    2013-01-01

    A method and concomitant apparatus for generating pulses comprising providing a laser light source, disposing a voltage electrode between ground electrodes, generating laser sparks using the laser light source via laser spark gaps between the voltage electrode and the ground electrodes, and outputting pulses via one or more insulated ground connectors connected to the voltage electrode.

  11. Nonlinear propagation of ultrashort laser pulses in transparent media

    Vincotte, A.

    2006-10-01

    We present different aspects of the propagation of ultrashort laser pulses in transparent media. First, we derive the propagation equations starting from the Maxwell equations. We remind of the main physical phenomena undergone by ultrashort and powerful laser pulses. First self-focusing occurs, owing to the Kerr response of the medium. This self-focusing is stopped by plasma generation from the laser-induced ionization of the ambient atoms. The propagation of the wave generates a super-continuum through self-phase modulation. We recall the main results concerning the simple and multiple filamentation of an intense wave, induced by the beam inhomogeneities and which take place as soon as the beam power is above critical. In a second part, we investigate the influence of high-order nonlinearities on the propagation of the beam and especially on its filamentation pattern. To control the multi-filamentation process, we investigate in a third part the propagation of beams with special designs, namely; Gradient- and vortex-shaped beams. We justify the robustness of this latter kind of optical objects. Eventually, we investigate multi-filamentation patterns of femtosecond pulses in a fog tube and in cells of ethanol doped with coumarin, for different beam configurations. (author)

  12. Coiled transmission line pulse generators

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  13. Ultra-low noise supercontinuum source for ultra-high resolution optical coherence tomography at 1300 nm

    Bravo Gonzalo, Ivan; Maria, Michael; Engelsholm, Rasmus Dybbro

    2018-01-01

    of OCT, resulting in a reduced signal-to-noise ratio (SNR) [10-12]. Much work has been done to reduce the noise of the SC sources for instance with fiber tapers [7,8] or increasing the repetition rate of the pump laser for averaging in the spectrometer [10,12]. An alternative approach is to use all......-normal dispersion (ANDi) fibers [13,14] to generate SC light from well-known coherent nonlinear processes [15-17]. In fact, reduction of SC noise using ANDi fibers compared to anomalous dispersion SC pumped by sub-picosecond pulses has been recently demonstrated [18], but a cladding mode was used to stabilize...

  14. Breaking time-resolution limits in pulse radiolysis

    Yang Jinfeng; Kondoh, Takafumi; Norizawa, Kimihiro; Yoshida, Yoichi; Tagawa, Seiichi

    2009-01-01

    Pulse radiolysis, which is a time-resolved stroboscopic method based on ultrashort electron pulse and ultrashort analyzing light, is widely used for the study of the chemical kinetics and radiation primary processes or reactions. Although it has become possible to use femtosecond-pulse electron beam and femtosecond laser light in pulse radiolysis, the resolution is limited by the difference in group velocities of the electrons and the light in sample. In this contribution, we introduce a concept of equivalent velocity spectroscopy (EVS) into pulse radiolysis and demonstrate the methodology experimentally. In EVS, both the electron and the analyzing light pulses precisely overlap at every point in the sample and throughout the propagation time by rotating the electron pulse. The advance allows us to overcome the resolution degradation due to the different group velocity. We also present a method for measuring the rotated angle of the electron pulse and a technique for rotating the electron pulse with a deflecting cavity.

  15. Shape deformation of a light flash through a light pipe

    Calligaris, F.; Ciuti, P.; Gabrielli, I.; Giacomich, R.

    1976-01-01

    The propagation of a LED light pulse entering a rectangular light pipe under different angles is studied by the single-photon counting technique. A comparison with the theoretical predictions based on geometrical optics is reported. (Auth.)

  16. Evaluation of a randomized controlled trial on the effect on return to work with coaching combined with light therapy and pulsed electromagnetic field therapy for workers with work-related chronic stress

    Karen Nieuwenhuijsen

    2017-10-01

    Full Text Available Abstract Background Chronic work-related stress is quite prevalent in the working population and is in some cases accompanied by long-term sick leave. These stress complaints highly impact employees and are costly due to lost productivity and medical expenses. A new treatment platform with light therapy plus Pulsed Electro Magnetic Fields (PEMF in combination with coaching was used to assess whether more positive effects on return to work, stress, work-related fatigue, and quality of life could be induced compared to coaching alone. Methods A placebo-controlled trial was executed after inclusion of 96 workers, aged 18–65 with work-related chronic stress complaints and who were on sick leave (either part-time or full-time. Participants were divided into three arms at random. Group 1 (n = 28 received the treatment and coaching (Intervention group, group 2 (n = 28 received the treatment with the device turned off and coaching (Placebo group and group 3 (n = 28 received coaching only (Control group. The data were collected at baseline, and after 6, 12 and 24 weeks. The primary outcome was % return to work, and secondary outcomes were work-related fatigue (emotional exhaustion and need for recovery after work, stress (distress and hair cortisol, and quality of life (SF-36 dimensions: vitality, emotional role limitation, and social functioning. Results Eighty-four workers completed all measurements, 28 in each group. All groups improved significantly over time in the level of return to work, as well as on all secondary outcomes. No statistical differences between the three groups were found either on the primary outcome or on any of the secondary outcomes. Conclusions Light therapy with Pulsed Electro Magnetic Fields PEMF therapy has no additional effect on return to work, stress, fatigue, and quality of live compared to coaching alone. Trial registration NTR4794 , registration date: 18-sep-2014

  17. Evaluation of a randomized controlled trial on the effect on return to work with coaching combined with light therapy and pulsed electromagnetic field therapy for workers with work-related chronic stress.

    Nieuwenhuijsen, Karen; Schoutens, Antonius M C; Frings-Dresen, Monique H W; Sluiter, Judith K

    2017-10-02

    Chronic work-related stress is quite prevalent in the working population and is in some cases accompanied by long-term sick leave. These stress complaints highly impact employees and are costly due to lost productivity and medical expenses. A new treatment platform with light therapy plus Pulsed Electro Magnetic Fields (PEMF) in combination with coaching was used to assess whether more positive effects on return to work, stress, work-related fatigue, and quality of life could be induced compared to coaching alone. A placebo-controlled trial was executed after inclusion of 96 workers, aged 18-65 with work-related chronic stress complaints and who were on sick leave (either part-time or full-time). Participants were divided into three arms at random. Group 1 (n = 28) received the treatment and coaching (Intervention group), group 2 (n = 28) received the treatment with the device turned off and coaching (Placebo group) and group 3 (n = 28) received coaching only (Control group). The data were collected at baseline, and after 6, 12 and 24 weeks. The primary outcome was % return to work, and secondary outcomes were work-related fatigue (emotional exhaustion and need for recovery after work), stress (distress and hair cortisol), and quality of life (SF-36 dimensions: vitality, emotional role limitation, and social functioning). Eighty-four workers completed all measurements, 28 in each group. All groups improved significantly over time in the level of return to work, as well as on all secondary outcomes. No statistical differences between the three groups were found either on the primary outcome or on any of the secondary outcomes. Light therapy with Pulsed Electro Magnetic Fields PEMF therapy has no additional effect on return to work, stress, fatigue, and quality of live compared to coaching alone. NTR4794 , registration date: 18-sep-2014.

  18. Third-order gap plasmon based metasurfaces for visible light

    Deshpande, Rucha Anil; Pors, Anders; Bozhevolnyi, Sergey I.

    2017-01-01

    with different dimensions, to operate as a polarization beam splitter for linearly polarized light. The fabricated polarization beam splitter is characterized using a super-continuum light source at normal light incidence and found to exhibit a polarization contrast ratio of up to 40 dB near the design...... of the performance of polarization beam splitters based on third-order GSP resonance as well as other potential applications of the suggested approach....... by an optically thick gold film are calculated for the operation wavelength of 633 nm. Exploiting the occurrence of the third-order GSP resonance for nanobricks having their lengths close to 300 nm, we design the phase-gradient metasurface, representing an array of (450 x 2250 nm2) supercells made of 5 nanobricks...

  19. Ultrashort Generation Regimes in the All-Fiber Kerr Mode-Locked Erbium-Doped Fiber Ring Laser for Terahertz Pulsed Spectroscopy

    V. S. Voropaev

    2015-01-01

    Full Text Available Many femtosecond engineering applications require for a stable generation of ultrashort pulses. Thus, in the terahertz pulsed spectroscopy a measurement error in the refractive index is strongly dependent on the pulse duration stability with allowable variation of few femtoseconds. The aim of this work is to study the ultrashort pulses (USP regimes stability in the all – fiber erbium doped ring laser with Kerr mode-locking. The study was conducted at several different values of the total resonator intra-cavity dispersion. Three laser schemes with the intra-cavity dispersion values from -1.232 ps2 to +0.008 ps2 have been studied. In the experiment there were two regimes of generation observed: the stretched pulse generation and ordinary soliton generation. Main attention is focused on the stability of regimes under study. The most stable regime was that of the stretched pulse generation with a spectrum form of sech2 , possible pulse duration of 490 fs at least, repetition rate of 2.9 MHz, and average output power of 17 mW. It is worth noting, that obtained regimes had characteristics suitable for the successful use in the terahertz pulsed spectroscopy. The results may be useful in the following areas of science and technology: a high-precision spectroscopy, optical frequency standards, super-continuum generation, and terahertz pulsed spectroscopy. The future system development is expected to stabilize duration and repetition rate of the obtained regime of ultra-short pulse generation.

  20. Studies on the pathogenesis and survival of different culture forms of Listeria monocytogenes to pulsed UV-light irradiation after exposure to mild-food processing stresses.

    Bradley, Derek; McNeil, Brian; Laffey, John G; Rowan, Neil J

    2012-06-01

    The effects of mild conventional food-processing conditions on Listeria monocytogenes survival to pulsed UV (PUV) irradiation and virulence-associated characteristics were investigated. Specifically, this study describes the inability of 10 strains representative of 3 different culture forms or morphotypes of L. monocytogenes to adapt to normally lethal levels of PUV-irradiation after exposure to sub-lethal concentrations of salt (7.5% (w/v) NaCl for 1 h), acid (pH 5.5 for 1 h), heating (48 °C for 1 h) or PUV (UV dose 0.08 μJ/cm(2)). Findings showed that the order of increasing sensitivity of L. monocytogenes of non-adapted and stressed morphotypes to low pH (pH 3.5 for 5 h, adjusted with lactic), high salt (17.5% w/v NaCl for 5 h), heating (60 °C for 1 h) and PUV-irradiation (100 pulses at 7.2 J and 12.8 J, equivalent to UV doses of 2.7 and 8.4 μJ/cm(2) respectively) was typical wild-type smooth (S/WT), atypical filamentous rough (FR) and atypical multiple-cell-chain (MCR) variants. Exposure of L. monocytogenes cells to sub-lethal acid, salt or heating conditions resulted in similar or increased susceptibility to PUV treatments. Only prior exposure to mild heat stressing significantly enhanced invasion of Caco-2 cells, whereas subjection of L. monocytogenes cells to combined sub-lethal salt, acid and heating conditions produced the greatest reduction in invasiveness. Implications of these findings are discussed. This constitutes the first study to show that pre-exposure to mild conventional food-processing stresses enhances sensitivity of different culture morphotypes of L. monocytogenes to PUV, which is growing in popularity as an alternative or complementary approach for decontamination in the food environment. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Development of optical parametric chirped-pulse amplifiers and their applications

    Ishii, Nobuhisa

    2006-11-21

    In this work, optical pulse amplification by parametric chirped-pulse amplification (OPCPA) has been applied to the generation of high-energy, few-cycle optical pulses in the near-infrared (NIR) and infrared (IR) spectral regions. Amplification of such pulses is ordinarily difficult to achieve by existing techniques of pulse amplification based on standard laser gain media followed by external compression. Potential applications of few-cycle pulses in the IR have also been demonstrated. The NIR OPCPA system produces 0.5-terawatt (10 fs,5 mJ) pulses by use of noncollinearly phase-matched optical parametric amplification and a down-chirping stretcher and up-chirping compressor pair. An IR OPCPA system was also developed which produces 20-gigawatt (20 fs,350 {mu}J) pulses at 2.1 {mu}m. The IR seed pulse is generated by optical rectification of a broadband pulse and therefore it exhibits a self-stabilized carrier-envelope phase (CEP). In the IR OPCPA a common laser source is used to generate the pump and seed resulting in an inherent sub-picosecond optical synchronization between the two pulses. This was achieved by use of a custom-built Nd:YLF picosecond pump pulse amplifier that is directly seeded with optical pulses from a custom-built ultrabroadband Ti:sapphire oscillator. Synchronization between the pump and seed pulses is critical for efficient and stable amplification. Two spectroscopic applications which utilize these unique sources have been demonstrated. First, the visible supercontinuum was generated in a solid-state media by the infrared optical pulses and through which the carrier-envelope phase (CEP) of the driving pulse was measured with an f-to-3f interferometer. This measurement confirms the self-stabilization mechanism of the CEP in a difference frequency generation process and the preservation of the CEP during optical parametric amplification. Second, high-order harmonics with energies extending beyond 200 eV were generated with the few

  2. Living Matter Observations with a Novel Hyperspectral Supercontinuum Confocal Microscope for VIS to Near-IR Reflectance Spectroscopy

    Francesca R. Bertani

    2013-10-01

    Full Text Available A broad range hyper-spectroscopic microscope fed by a supercontinuum laser source and equipped with an almost achromatic optical layout is illustrated with detailed explanations of the design, implementation and data. The real novelty of this instrument, a confocal spectroscopic microscope capable of recording high resolution reflectance data in the VIS-IR spectral range from about 500 nm to 2.5 μm wavelengths, is the possibility of acquiring spectral data at every physical point as defined by lateral coordinates, X and Y, as well as at a depth coordinate, Z, as obtained by the confocal optical sectioning advantage. With this apparatus we collect each single scanning point as a whole spectrum by combining two linear spectral detector arrays, one CCD for the visible range, and one InGaAs infrared array, simultaneously available at the sensor output channel of the home made instrument. This microscope has been developed for biomedical analysis of human skin and other similar applications. Results are shown illustrating the technical performances of the instrument and the capability in extracting information about the composition and the structure of different parts or compartments in biological samples as well as in solid statematter. A complete spectroscopic fingerprinting of samples at microscopic level is shown possible by using statistical analysis on raw data or analytical reflectance models based on Abelés matrix transfer methods.

  3. Pulsed laser synthesis in liquid of efficient visible-light-active ZnO/rGO nanocomposites for improved photo-catalytic activity

    Moqbel, Redhwan A.; Gondal, Mohammed A.; Qahtan, Talal F.; Dastageer, Mohamed A.

    2018-03-01

    In this work the synthesis of visible light active zinc oxide/reduced graphene oxide (ZnO/rGO) nanocomposite by laser induced fragmentation of particulates in liquid, its morphological/optical characterizations, and its application in the process of photo-catalytic degradation of toxic Rhodamine B (RhB) dye under visible radiation were studied. It is observed from the optical and morphological characterization that the anchoring of ZnO on the rGO sheets in ZnO/rGO nanocomposite considerably reduced the aggregation of ZnO (increased surface area), reduced the recombination of photo-induced charge carriers, promoted more adsorption of reactants on the catalytic surface and also enhanced and extended the light absorption in the visible spectral region. With all these improved characteristics of ZnO/rGO nanocomposite, it was found that this material as a photo-catalyst yielded an RhB degradation efficiency of 86%, as compared to the 40% degradation with pure ZnO NPs under the same experimental conditions. In the ZnO/rGO nanocomposite, rGO functions as an electron acceptor to promote charge separation, an aggregation inhibitor to enhance the active surface area, a co-catalyst, a good dye adsorber and also as a supporting matrix for ZnO.

  4. Light sources and light pollution

    Pichler, G.

    2005-01-01

    From the dawn of mankind fire and light sources in general played an essential role in everyday life and protection over night. The development of new light sources went through many stages and is now an immense technological achievement, but also a threat for the wildlife at night, mainly because of the so-called light pollution. This paper discusses several very successful light sources connected with low pressure mercury and sodium vapour electric discharges. The luminous efficacy, colour rendering index and other lighting features cannot be always satisfactory, but at least some of the features can be much better than those met by the standard tungsten filament bulbs. High-pressure metal-vapour discharge lamps definitely have a good colour rendering index and a relatively high luminosity. Different light sources with burners at high pressure are discussed, paying special attention to their spectrum. The paper investigates new trends in development through a number of examples with non-toxic elements and pulsed electric discharge, which may be good news in terms of clean environment and energy savings. Light emitting diodes have recently appeared as worthy competitors to conventional light sources. White LEDs have approached 100 lumen/Watt efficacy in laboratories. This suggests that in some not very distant future they could completely replace high-pressure lamps, at least in indoor lighting. The article speculates on new developments which combine trends in nano technology and material science. The paper concludes with light pollution in view of several recent observations of plant and animal life at night in the vicinity of strong light sources. Photo-induced changes at the cell level may completely alter the normal life of plants and animals.(author)

  5. Self-focusing and guiding of short laser pulses in ionizing gases and plasmas

    Esarey, E.; Sprangle, P.; Krall, J.; Ting, A.

    1997-01-01

    The propagation of intense laser pulses in gases and plasmas is relevant to a wide range of applications, including laser-driven accelerators, laser-plasma channeling, harmonic generation, supercontinuum generation, X-ray lasers, and laser-fusion schemes. Here, several features of intense, short-pulse (≤1 ps) laser propagation in gases undergoing ionization and in plasmas are reviewed, discussed, and analyzed. The wave equations for laser pulse propagation in a gas undergoing ionization and in a plasma are derived. The source-dependent expansion method is discussed, which is a general method for solving the paraxial wave equation with nonlinear source terms. In gases, the propagation of high-power (near the critical power) laser pulses is considered including the effects of diffraction, nonlinear self-focusing, ionization, and plasma generation. Self-guided solutions and the stability of these solutions are discussed. In plasmas, optical guiding by relativistic effects, ponderomotive effects, and preformed density channels is considered. The self-consistent plasma response is discussed, including plasma wave effects and instabilities such as self-modulation. Recent experiments on the guiding of laser pulses in gases and in plasmas are briefly summarized

  6. Pulse plating

    Hansal, Wolfgang E G; Green, Todd; Leisner, Peter; Reichenbach, Andreas

    2012-01-01

    The electrodeposition of metals using pulsed current has achieved practical importance in recent years. Although it has long been known that changes in potential, with or without polarity reversal, can significantly affect the deposition process, the practical application of this has been slow to be adopted. This can largely be explained in terms of the complex relationship between the current regime and its effect on the electrodeposition process. In order to harness these effects, an understanding of the anodic and cathodic electrochemical processes is necessary, together with the effects of polarity reversal and the rate of such reversals. In this new monograph, the basics of metal electrodeposition from solution are laid out in great detail in seven distinct chapters. With this knowledge, the reader is able to predict how a given pulse train profile can be adopted to achieve a desired outcome. Equally important is the choice of a suitable rectifier and the ancillary control circuits to enable pulse platin...

  7. Femto-second pulses of synchrotron radiation

    Zholents, A.A.; Zolotorev, M.S.

    1995-07-01

    A method capable of producing femto-second pulses of synchrotron radiation is proposed. It is based on the interaction of femto-second light pulses with electrons in a storage ring. The application of the method to the generation of ultra-short x-ray pulses at the Advance Light Source of Lawrence Berkeley National Laboratory has been considered. The same method can also be used for extraction of electrons from a storage ring in ultra-short series of microbunches spaced by the periodicity of light wavelength

  8. Pulsed inductive HF laser

    Razhev, A M; Kargapol' tsev, E S [Institute of Laser Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation); Churkin, D S; Demchuk, S V [Novosibirsk State University, Novosibirsk (Russian Federation)

    2016-03-31

    We report the results of experimentally investigated dependences of temporal, spectral and spatial characteristics of an inductive HF-laser generation on the pump conditions. Gas mixtures H{sub 2} – F{sub 2}(NF{sub 3} or SF6{sub 6}) and He(Ne) – H{sub 2} – F{sub 2}(NF{sub 3} or SF{sub 6}) were used as active media. The FWHM pulse duration reached 0.42 μs. This value corresponded to a pulsed power of 45 kW. For the first time, the emission spectrum of an inductive HF laser was investigated, which consisted of seven groups of bands with centres around the wavelengths of 2732, 2736, 2739, 2835, 2837, 2893 and 2913 nm. The cross section profile of the laser beam was a ring with a diameter of about 20 mm and width of about 5 mm. Parameters of laser operation in the repetitively pulsed regime were sufficiently stable. The amplitude instability of light pulses was no greater than 5% – 6%. (lasers)

  9. Fiber Based Mid Infrared Supercontinuum Source for Spectroscopic Analysis in Food Production

    Ramsay, Jacob; Dupont, Sune Vestergaard Lund; Keiding, Søren Rud

    Optimization of sustainable food production is a worldwide challenge that is undergoing continuous development as new technologies emerge. Applying solutions for food analysis with novel bright and broad mid-infrared (MIR) light sources has the potential to meet the increasing demands for food...

  10. Pulse interactions in a quantum dot waveguide in the regime of electromagnetically Induced transparency

    Nielsen, Per; Nielsen, Henri; Mørk, Jesper

    2006-01-01

    The interaction of optical pulses in a quantum dot waveguide in the slow-light regime is investigated. Dipole oscillations lead to strong interactions between the two pulses, implying a minimum pulse separation for optical buffer applications.......The interaction of optical pulses in a quantum dot waveguide in the slow-light regime is investigated. Dipole oscillations lead to strong interactions between the two pulses, implying a minimum pulse separation for optical buffer applications....

  11. Generation of single attosecond pulse within one atomic unit by using multi-cycle inhomogeneous polarization gating technology in bowtie-shaped nanostructure

    Feng, Liqiang; Liu, Hang

    2018-04-01

    The generations of high-order harmonic spectra and single attosecond pulses (SAPs) driven by the multi-cycle inhomogeneous polarization gating (PG) technology in the bowtie-shaped nanostructure have been theoretically investigated. It is found that by setting the bowtie-shaped nanostructure along the driven laser polarization direction, not only the extension of the harmonic cutoff can be achieved, caused by the surface plasmon polaritons, but also the modulations of the harmonics can be decreased, caused by the PG technology and the inhomogeneous effect. As a result, the contribution of the harmonic plateau is only from one harmonic emission peak with the dominant short quantum path. Further, by properly adding a half-cycle pulse into the driven laser field, the harmonic emission process can be precisely controlled in the half-cycle duration and a supercontinuum with the bandwidth of 263 eV can be obtained. Finally, by directly superposing the harmonics from this supercontinuum, a SAP with the full width at half maximum of 23 as can be obtained, which is shorter than one atomic unit.

  12. Synthesis of green TiO{sub 2}/ZnO/CdS hybrid nano-catalyst for efficient light harvesting using an elegant pulsed laser ablation in liquids method

    Gondal, M.A., E-mail: magondal@kfupm.edu.sa [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Ilyas, A.M.; Fasasi, T.A.; Dastageer, M.A. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia); Seddigi, Z.S. [Department of Environmental Health, Faculty of Public Health and Health Informatics, Umm Al-Qura University, 21955 Makkah (Saudi Arabia); Qahtan, T.F.; Faiz, M.; Khattak, G.D. [Laser Research Group, Physics Department & Center of Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261 (Saudi Arabia)

    2015-12-01

    Graphical abstract: - Highlights: • Facile strategy for synthesis of green catalyst (TiO{sub 2}/ZnO/CdS) was developed. • Clean synthesis of green catalyst was done using pulsed laser ablation in liquids. • Synthesized composite size ranges between 10 and 40 nm confirmed by HRTEM studies. • Enhanced improvement was noticed in the carriers transport in the visible region. • Visible region absorption opens door to many applications for solar energy harvesting. - Abstract: The main limitation on the applications of TiO{sub 2} as a photocatalyst is its large band gap (3.2 eV) which limits its absorption only to the ultraviolet region of the solar spectrum. To overcome this problem, a facile strategy for clean synthesis of a nanocomposite green catalyst of zinc oxide (ZnO), titanium dioxide (TiO{sub 2}) and cadmium sulphide (CdS) was developed using pulsed laser ablation in liquids (PLAL) technique for the first time to the best of our knowledge. The main aim of addition of ZnO is to reduce the electron–hole recombination in the TiO{sub 2} while CdS is used to increase the light harvesting efficiency of TiO{sub 2} in the visible spectral region. The absorption spectrum of the TiO{sub 2}/ZnO/CdS composite obtained from the UV–vis spectrophotometer exhibits strong absorption in the visible region as compared to the pure TiO{sub 2} whose absorption band lies around 380 nm which is in the UV-region. The morphology of the composite quantum dots was also investigated using high resolution TEM technique which shows that the synthesized composite size ranges between 10 and 40 nm. These nanocomposites have demosntarted noticible improvement in the carriers transport in the visible region which could enhance its efficiency for many applications in the visible region especially for energy harvesting using solar radiations.

  13. Noise Pulses in Large Area Optical Modules

    Aiello, Sebastiano; Leonora, Emanuele; Giordano, Valentina

    2013-06-01

    A great number of large area photomultipliers are widely used in neutrino and astro-particle detector to measure Cherenkov light in medium like water or ice. The key element of these detectors are the so-called 'optical module', which consist in photodetectors closed in a transparent pressure-resistant container to protect it and ensure good light transmission. The noise pulses present on the anode of each photomultiplier affect strongly the performance of the detector. A large study was conducted on noise pulses of large area photomultipliers, considering time and charge distributions of dark pulses, prepulses, delayed pulses, and after pulses. The contribution to noise pulses due to the presence of the external glass spheres was also studied, even comparing two vessels of different brands. (authors)

  14. Femtosecond pulse shaping using plasmonic snowflake nanoantennas

    Tok, Ruestue Umut; Sendur, Kuersat [Sabanci University, Orhanli-Tuzla, 34956, Istanbul (Turkey)

    2011-09-15

    We have theoretically demonstrated femtosecond pulse manipulation at the nanoscale using the plasmonic snowflake antenna's ability to localize light over a broad spectrum. To analyze the interaction of the incident femtosecond pulse with the plasmonic nanoantenna, we first decompose the diffraction limited incident femtosecond pulse into its spectral components. The interaction of each spectral component with the nanoantenna is analyzed using finite element technique. The time domain response of the plasmonic antenna is obtained using inverse Fourier transformation. It is shown that the rich spectral characteristics of the plasmonic snowflake nanoantenna allow manipulation of the femtosecond pulses over a wide spectrum. Light localization around the gap region of the nanoantenna is shown for femtosecond pulses. As the alignment of incident light polarization is varied, different antenna elements oscillate, which in turn creates a different spectrum and a distinct femtosecond response.

  15. Development of subpicosecond pulse radiolysis system

    Kozawa, T.; Saeki, A.; Okamoto, K.; Numata, Y.; Kaseda, K.; Yamamoto, T.; Suemine, S.; Yoshida, Y.; Tagawa, S.

    2000-01-01

    Subpicosecond pulse radiolysis system was developed to elucidate the primary processes of radiation chemistry in the time region of femtosecond. The system consists of a femtosecond electron linac as an irradiation source, a femtosecond laser as an analyzing light and a jitter compensation system which was designed to reduce the effect of jitter between an electron pulse and a laser pulse on the time resolution. The time resolution of 800 fs was achieved. (author)

  16. Pulsed power

    Anon.

    1977-01-01

    The key element of our pulsed power program is concentration of power in time and space by suppression of breakdown in dielectrics and in vacuum. Magnetically insulated vacuum transmission lines and magnetic suppression of insulator flashover have continued as the main reserch directions. Vacuum insulated line studies at Physics International have been expanded and a test bed at Sandia, called MITE (Magnetically Insulated Transmission Experiment), is under development. The choice for the baseline EBFA design will depend on the outcome of these studies and should be made in July 1977. The slow and intermediate speed pulsed power approaches to EBFA will be based on Proto I and Proto II results and several of the projected EBFA subsystems are presently being tested in Proto II. A further stage of power concentration, within the vacuum diode itself, would considerably ease the burden on dielectrics; methods of power multiplication involving magnetically imploded plasmas are being considered and tests have begun using the Ripple III apparatus

  17. Simultaneous, noninvasive, in vivo, continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate and breathing rate in humans and other animal models using a single light source

    Dent, Paul; Tun, Sai Han; Fillioe, Seth; Deng, Bin; Satalin, Josh; Nieman, Gary; Wilcox, Kailyn; Searles, Quinn; Narsipur, Sri; Peterson, Charles M.; Goodisman, Jerry; Mostrom, James; Steinmann, Richard; Chaiken, J.

    2018-02-01

    We previously reported a new algorithm "PV[O]H" for continuous, noninvasive, in vivo monitoring of hematocrit changes in blood and have since shown its utility for monitoring in humans during 1) hemodialysis, 2) orthostatic perturbations and 3) during blood loss and fluid replacement in a rat model. We now show that the algorithm is sensitive to changes in hemoglobin oxygen saturation. We document the phenomenology of the effect and explain the effect using new results obtained from humans and rat models. The oxygen sensitivity derives from the differential absorption of autofluorescence originating in the static tissues by oxy and deoxy hemoglobin. Using this approach we show how to perform simultaneous, noninvasive, in vivo, continuous monitoring of hematocrit, vascular volume, hemoglobin oxygen saturation, pulse rate and breathing rate in mammals using a single light source. We suspect that monitoring of changes in this suite of vital signs can be provided with improved time response, sensitivity and precision compared to existing methodologies. Initial results also offer a more detailed glimpse into the systemic oxygen transport in the circulatory system of humans.

  18. A trillion frames per second: the techniques and applications of light-in-flight photography.

    Faccio, Daniele; Velten, Andreas

    2018-06-14

    Cameras capable of capturing videos at a trillion frames per second allow to freeze light in motion, a very counterintuitive capability when related to our everyday experience in which light appears to travel instantaneously. By combining this capability with computational imaging techniques, new imaging opportunities emerge such as three dimensional imaging of scenes that are hidden behind a corner, the study of relativistic distortion effects, imaging through diffusive media and imaging of ultrafast optical processes such as laser ablation, supercontinuum and plasma generation. We provide an overview of the main techniques that have been developed for ultra-high speed photography with a particular focus on `light in flight' imaging, i.e. applications where the key element is the imaging of light itself at frame rates that allow to freeze it's motion and therefore extract information that would otherwise be blurred out and lost. . © 2018 IOP Publishing Ltd.

  19. Time-resolved pulse propagation in a strongly scattering material

    Johnson, Patrick M.; Imhof, Arnout; Bret, B.P.J.; Gomez Rivas, J.; Gomez Rivas, Jaime; Lagendijk, Aart

    2003-01-01

    Light transport in macroporous gallium phosphide, perhaps the strongest nonabsorbing scatterer of visible light, is studied using phase-sensitive femtosecond pulse interferometry. Phase statistics are measured at optical wavelengths in both reflection and transmission and compared with theory. The

  20. PULSE COLUMN

    Grimmett, E.S.

    1964-01-01

    This patent covers a continuous countercurrent liquidsolids contactor column having a number of contactor states each comprising a perforated plate, a layer of balls, and a downcomer tube; a liquid-pulsing piston; and a solids discharger formed of a conical section at the bottom of the column, and a tubular extension on the lowest downcomer terminating in the conical section. Between the conical section and the downcomer extension is formed a small annular opening, through which solids fall coming through the perforated plate of the lowest contactor stage. This annular opening is small enough that the pressure drop thereacross is greater than the pressure drop upward through the lowest contactor stage. (AEC)

  1. Pulse radiolysis

    Greenshields, H.; Seddon, W.A.

    1982-03-01

    This supplement to two bibliographies published in 1970 and 1972 lists 734 references to the literature of pulse radiolysis, arranged under eight broad subject headings. The references were compiled by searching Biological Abstracts, Chemical Abstracts, Nuclear Science Abstracts and the Weekly List of Papers in Radiation Chemistry issued by the Radiation Chemistry Data Center of Notre Dame University. Full bibliographic data is given for papers published in the period 1971 to 1974. A personal author index listing more than 600 authors and a similar number of co-authors is included

  2. Relativistic motion of charged particles in the interaction of short pulses of intense laser light with plasma; Movimiento relativista de particulas cargadas en la interaccion de pulsos cortos de luz laser intensa con plasma

    Gomez R, F

    2004-07-01

    interval d{tau} of the electron that per se is an invariant, it is proportional to a certain interval d{eta}. In the chapter 3 it will see that the movement analysis of the charged particles in the electromagnetic field presents serious mathematical difficulties, where the integration of the movement equations results extraordinarily complex and it can only be integrated in most of the cases by numerical means. We will present the procedure used for the deduction of the equations of motion of a charged particle in the interaction of a laser light pulse and a homogeneous magnetic field in arbitrary direction, with the addition of an harmonic term of force. In this chapter it is not sought to make a meticulous discussion of the involved physics and only we will present the algebraic procedure. In the chapter 4 we will present the integration method of the Lorentz force, and we will obtain the exact solution for the case of a pulse of a plane wave elliptically polarized of arbitrary amplitude spreading along an external magnetic field. The solution method will allow to decrease the solutions to the case in which we have an infinite waves train reported by Ondarza (10) and so the corresponding solutions will be obtained reported in the literature by other authors. The main contribution in this part will be the one of obtaining an exact solution for the problem of the interaction of an electromagnetic pulse, modulated by a form of gaussian type, and a charged particle. The above-mentioned approaches in acceptable measure to real situations in well-known experiments. It will be found that when the form of the pulse is introduced to modulate the electromagnetic field, an amplification of the resonance zone in the solutions appears. Such resonance depends of the external magnetic field that fixes by turns the cyclotron frequency, and of the number of optical cycles that compose the encircling one that modulates the pulse form. In the chapter 5 it will see the case of small

  3. Pulse pile-up. I: Short pulses

    Wilkinson, D.H.

    1990-07-01

    The search for rare large pulses against an intense background of smaller ones involves consideration of pulse pile-up. Approximate methods are presented, based on ruin theory, by which the probability of such pile-up may be estimated for pulses of arbitrary form and of arbitrary pulse-height distribution. These methods are checked against cases for which exact solutions are available. The present paper is concerned chiefly with short pulses of finite total duration. (Author) (5 refs., 24 figs.)

  4. Device for flattening statistically distributed pulses

    Il'kanaev, G.I.; Iskenderov, V.G.; Rudnev, O.V.; Teller, V.S.

    1976-01-01

    The description is given of a device that converts the series of statistically distributed pulses into a pseudo-uniform one. The inlet pulses switch over the first counter, and the second one is switched over by the clock pulses each time the uniformity of the counters' states is violated. This violation is recorded by the logic circuit which passes to the output the clock pulses in the amount equal to that of the pulses that reached the device inlet. Losses at the correlation between the light velocity and the sampling rate up to 0.3 do not exceed 0.7 per cent for the memory of pulse counters 3, and 0.035 per cent for memory 7

  5. Mid-infrared supercontinuum generation to 12.5μm in large NA chalcogenide step-index fibres pumped at 4.5μm

    Kubat, Irnis; Agger, Christian; Møller, Uffe Visbech

    2014-01-01

    We present numerical modeling of mid-infrared (MIR) supercontinuum generation (SCG) in dispersion-optimized chalcogenide (CHALC) step-index fibres (SIFs) with exceptionally high numerical aperture (NA) around one, pumped with mode-locked praseodymium-doped (Pr3+) chalcogenide fibre lasers. The 4...... for the highest NA considered but required pumping at 4.7kW as well as up to 3m of fibre to compensate for the lower nonlinearities. The amount of power converted into the 8-10 μm band was 7.5 and 8.8mW for the 8 and 10μm fibres, respectively. For the 20μm core fibres up to 46mW was converted....

  6. Energy-dependent losses in pulsed-feedback preamplifiers

    Landis, D.A.; Madden, N.W.; Goulding, F.S.

    1978-11-01

    Energy dependent counting losses occur in most pulsed-feedback preamplifiers due to the loss of those pulses which activate the recharge system. A pulsed-feedback system that overcomes this inefficiency is described. Pulsed-light feedback as used with germanium gamma-ray spectrometers is discussed as used at high energies and high rates where those losses become significant. Experimental results are presented

  7. A pulse generator for xenon lamps

    Janata, E

    2002-01-01

    A pulse generator is described, which enhances the analyzing light emitted from a xenon lamp as used in kinetic photospectrometry experiments. The lamp current is increased to 600 A for a duration of 3 ms; the current is constant within +-0.2% during a time interval of 2 ms. Because of instabilities of the lamp arc during pulsing, the use of the enhanced light source is limited to measuring times up to 500 mu s. The enhancement in light intensity depends on the wavelength and amounts to more than 400-fold in the UV-region.

  8. Integrated Photonics Enabled by Slow Light

    Mørk, Jesper; Chen, Yuntian; Ek, Sara

    2012-01-01

    In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources.......In this talk we will discuss the physics of slow light in semiconductor materials and in particular the possibilities offered for integrated photonics. This includes ultra-compact slow light enabled optical amplifiers, lasers and pulse sources....

  9. Partially coherent isodiffracting pulsed beams

    Koivurova, Matias; Ding, Chaoliang; Turunen, Jari; Pan, Liuzhan

    2018-02-01

    We investigate a class of isodiffracting pulsed beams, which are superpositions of transverse modes supported by spherical-mirror laser resonators. By employing modal weights that, for stationary light, produce a Gaussian Schell-model beam, we extend this standard model to pulsed beams. We first construct the two-frequency cross-spectral density function that characterizes the spatial coherence in the space-frequency domain. By assuming a power-exponential spectral profile, we then employ the generalized Wiener-Khintchine theorem for nonstationary light to derive the two-time mutual coherence function that describes the space-time coherence of the ensuing beams. The isodiffracting nature of the laser resonator modes permits all (paraxial-domain) calculations at any propagation distance to be performed analytically. Significant spatiotemporal coupling is revealed in subcycle, single-cycle, and few-cycle domains, where the partial spatial coherence also leads to reduced temporal coherence even though full spectral coherence is assumed.

  10. Digital pulse shape discrimination

    Miller, L. F.; Preston, J.; Pozzi, S.; Flaska, M.; Neal, J.

    2007-01-01

    Pulse-shape discrimination (PSD) has been utilised for about 40 years as a method to obtain estimates for dose in mixed neutron and photon fields. Digitizers that operate close to GHz are currently available at a reasonable cost, and they can be used to directly sample signals from photomultiplier tubes. This permits one to perform digital PSD rather than the traditional, and well-established, analogous techniques. One issue that complicates PSD for neutrons in mixed fields is that the light output characteristics of typical scintillators available for PSD, such as BC501A, vary as a function of energy deposited in the detector. This behaviour is more easily accommodated with digital processing of signals than with analogous signal processing. Results illustrate the effectiveness of digital PSD. (authors)

  11. Relativistic dynamics of an electron in a pulse of laser light with propagation along of an external magnetic field; Dinamica relativista de un electron en un pulso de luz laser con propagacion a lo largo de un campo magnetico externo

    Gomez, F. [UAEM, Facultad de Ciencias, 50000 Toluca, Estado de Mexico (Mexico); Ondarza, R. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)

    2003-07-01

    The exact solution for the movement of a charged particle in the interaction of an electromagnetic pulse elliptically polarized spreading along a static and homogeneous magnetic field is obtained starting from the equation of force. The solution method allows to solve, in terms of the phase, the trajectory of an accelerated particle by a pulse of arbitrary width and modulated by an encircling in Gaussian form. The reported solutions in this work have diverse applications in the laser-plasma interaction physics. (Author)

  12. Generation of ultra short pulses by auto injection in the Nd: YAG laser

    Faria, I.C. de.

    1986-01-01

    Yhe work presented here, was concerned to the construction of a coherent light source in the near infrared region with pulses of 10 -10 seconds. The auto-injection technique was employed for generating these short pulses with posterior extraction of the pulse applied to a Nd=YAG-pulsed laser. (author) [pt

  13. Generation of shock fronts in the interaction of the short pulses of intense laser light in supercritical plasma; Generacion de frentes de choque en la interaccion de pulsos cortos de luz laser intensa en plasmas supercriticos

    Lopez V, V.E

    2004-07-01

    The plasma is the state of the matter but diffused in the nature. The sun and the stars big heaps of hot plasma can be considered. The external surface of the terrestrial atmosphere this recovered by a layer of plasma. All gassy discharge (lightning spark arch etc.) this related with the formation of plasma. This way, 99 percent of our environment this formed almost of plasma. It is denominated plasma to the ionized gas in the one which all or most of the atoms have lost one or several of the electrons that belonged him, becoming positive ions and free electrons. In the plasma certain physical characteristics exist as for their behavior like they are the collective movements the quasi neutrality, the Debye length, the uncertainty etc. All these behaviors make that the study of the plasma is complex. For this they exist technical of numeric simulation joined to the technological advance of big computers of more capacity and prosecution speed. The simulation techniques of particles are those where a numeric code is built based on a model or theory of a system that it is wanted to investigate. This way through the simulation the results are compared with those theoretical predictions based on an analytic model. The applications of the physics of the plasma are multiple however we focus ourselves in the interaction laser-plasma. Both finish decades of investigation in the interaction of lasers with plasma they have been carried out in laboratories of Europe, Japan, United States. This studies concern the propagation of intense light laser in dense plasma homogeneous, the radiation absorption in cold plasma and problems related with the generation of suprathermal electrons among others. Other areas of the physics of the plasma-laser interaction that it has been considerable attention is the broadly well-known field as parametric uncertainties induced instabilities by the light and that they include the dispersions for example stimulated Raman and Brillouin being able to

  14. Modeling pulse characteristics in Xenon with NEST

    Mock, J; Stolp, D; Szydagis, M; Tripathi, M; Uvarov, S; Woods, M; Walsh, N; Barry, N; Kazkaz, K

    2014-01-01

    A comprehensive model for describing the characteristics of pulsed signals, generated by particle interactions in xenon detectors, is presented. An emphasis is laid on two-phase time projection chambers, but the models presented are also applicable to single phase detectors. In order to simulate the pulse shape due to primary scintillation light, the effects of the ratio of singlet and triplet dimer state populations, as well as their corresponding decay times, and the recombination time are incorporated into the model. In a two phase time projection chamber, when simulating the pulse caused by electroluminescence light, the ionization electron mean free path in gas, the drift velocity, singlet and triplet decay times, diffusion constants, and the electron trapping time, have been implemented. This modeling has been incorporated into a complete software package, which realistically simulates the expected pulse shapes for these types of detectors

  15. Random pulse generator

    Guo Ya'nan; Jin Dapeng; Zhao Dixin; Liu Zhen'an; Qiao Qiao; Chinese Academy of Sciences, Beijing

    2007-01-01

    Due to the randomness of radioactive decay and nuclear reaction, the signals from detectors are random in time. But normal pulse generator generates periodical pulses. To measure the performances of nuclear electronic devices under random inputs, a random generator is necessary. Types of random pulse generator are reviewed, 2 digital random pulse generators are introduced. (authors)

  16. Modeling Pulse Characteristics in Xenon with NEST

    Mock, Jeremy; Barry, Nichole; Kazkaz, Kareem; Szydagis, Matthew; Tripathi, Mani; Uvarov, Sergey; Woods, Michael; Walsh, Nicholas

    2013-01-01

    A comprehensive model for describing the characteristics of pulsed signals, generated by particle interactions in xenon detectors, is presented. An emphasis is laid on two-phase time projection chambers, but the models presented are also applicable to single phase detectors. In order to simulate the pulse shape due to primary scintillation light, the effects of the ratio of singlet and triplet dimer state populations, as well as their corresponding decay times, and the recombination time are ...

  17. Programmable pulse generator

    Xue Zhihua; Lou Binqiao; Duan Xiaohui

    2002-01-01

    The author introduces the design of programmable pulse generator that is based on a micro-controller and controlled by RS232 interface of personal computer. The whole system has good stability. The pulse generator can produce TTL pulse and analog pulse. The pulse frequency can be selected by EPLD. The voltage amplitude and pulse width of analog pulse can be adjusted by analog switches and digitally-controlled potentiometers. The software development tools of computer is National Instruments LabView5.1. The front panel of this virtual instrumentation is intuitive and easy-to-use. Parameters can be selected and changed conveniently by knob and slide

  18. Few-cycle isolated attosecond pulses

    Sansone, G.; Benedetti, E.; Calegari, F.; Stagira, S.; Vozzi, C.; Silvestri De, S.; Nisoli, M.

    2006-01-01

    Complete test of publication follows. In the last few years the field of attosecond science has shown impressive and rapid progress, mainly due to the introduction of novel experimental methods for the characterization of extreme ultraviolet (XUV) pulses and attosecond electron wave packets. This development has been also triggered by significant improvements in the control of the electric field of the driving infrared pulses. Particularly interesting for the applications is the generation of isolated attosecond XUV pulses using few-cycle driving pulses. In this case significant progresses have been achieved thanks to the stabilization of the carrier-envelope phase (CEP) of amplified light pulses. In this work we demonstrate that the polarization gating (PG) method with few-cycle phase-stabilized driving pulses allows one to generate few-cycle isolated attosecond pulses tunable on a very broad spectral region. The PG method is based on temporal modulation of the ellipticity of a light pulse, which confines the XUV emission in the temporal gate where the polarization is close to linear. The time-dependent polarization of phase-stabilized sub-6-fs pulses, generated by the hollow fiber technique, has been obtained using two birefringent plates. It is possible to create a linear polarization gate, whose position is imposed by the intensity profile of the pulse whilst the emission time is linked to the CEP of the electric field. The pulses have been analyzed by using a flat-field spectrometer. Continuous XUV spectra, corresponding to the production of isolated attosecond pulses, have been generated for particular CEP values. Upon changing the rotation of the first plate it was possible to tune the XUV emission in a broad spectra range. We have then achieved a complete temporal characterization of the generated isolated attosecond pulses using frequency-resolved optical gating for complete reconstruction of attosecond bursts (FROG CRAB). The measured parabolic phase

  19. Intense Ion Pulses for Radiation Effects Research

    2017-04-01

    induction linear accelerator that has been developed to deliver intense, up to 50 nC/pulse/mm2, sub-ns pulses of light ions with kinetic energy up to 1.2...II induction linear accelerator for intense ion beam pulses at Berkeley Lab. Figure 3. Helium current and integrated charge versus time at the...under contracts DE-AC02-205CH11231 and DE-AC52-07NA27344. JOURNAL OF RADIATION EFFECTS, Research and Engineering Vol. 35, No. 1, April 2017 158 INTENSE

  20. Switching Exciton Pulses Through Conical Intersections

    Leonhardt, K.; Wüster, S.; Rost, J. M.

    2014-11-01

    Exciton pulses transport excitation and entanglement adiabatically through Rydberg aggregates, assemblies of highly excited light atoms, which are set into directed motion by resonant dipole-dipole interaction. Here, we demonstrate the coherent splitting of such pulses as well as the spatial segregation of electronic excitation and atomic motion. Both mechanisms exploit local nonadiabatic effects at a conical intersection, turning them from a decoherence source into an asset. The intersection provides a sensitive knob controlling the propagation direction and coherence properties of exciton pulses. The fundamental ideas discussed here have general implications for excitons on a dynamic network.

  1. Long pulse microsphere experiments at 3 TW

    Boyle, M.J.; Attwood, D.T.; Brooks, K.M.

    1977-01-01

    Previous 1.06 μm laser implosion experiments have explored the parameter space associated with microsphere targets of typically less than 100 psec. Exploding pusher experiments have now been performed using long pulses (100 to 200 psec FWHM), and large diameter (100 to 150 μm) targets on the 3 TW Argus laser facility. Absorption, transport, implosion and neutron and α yield characteristics are discussed and compared with earlier short pulse results. The observed neutron yields are discussed in light of the temporal mismatch between the absorption and implosion time scales imposed by the large diameter, long pulse conditions

  2. Generation of programmable temporal pulse shape and applications in micromachining

    Peng, X.; Jordens, B.; Hooper, A.; Baird, B. W.; Ren, W.; Xu, L.; Sun, L.

    2009-02-01

    In this paper we presented a pulse shaping technique on regular solid-state lasers and the application in semiconductor micromachining. With a conventional Q-switched laser, all of the parameters can be adjusted over only limited ranges, especially the pulse width and pulse shape. However, some laser link processes using traditional laser pulses with pulse widths of a few nanoseconds to a few tens of nanoseconds tend to over-crater in thicker overlying passivation layers and thereby cause IC reliability problems. Use of a laser pulse with a special shape and a fast leading edge, such as tailored pulse, is one technique for controlling link processing. The pulse shaping technique is based on light-loop controlled optical modulation to shape conventional Q-switched solid-state lasers. One advantage of the pulse shaping technique is to provide a tailored pulse shape that can be programmed to have more than one amplitude value. Moreover, it has the capability of providing programmable tailored pulse shapes with discrete amplitude and time duration components. In addition, it provides fast rising and fall time of each pulse at fairly high repetition rate at 355nm with good beam quality. The regular-to-shaped efficiency is up to 50%. We conclude with a discussion of current results for laser processing of semiconductor memory link structures using programmable temporal pulse shapes. The processing experiments showed promising results with shaped pulse.

  3. Pulsed water jet generated by pulse multiplication

    Dvorský, R.; Sitek, Libor; Sochor, T.

    2016-01-01

    Roč. 23, č. 4 (2016), s. 959-967 ISSN 1330-3651 R&D Projects: GA MŠk(CZ) LO1406; GA MŠk ED2.1.00/03.0082 Institutional support: RVO:68145535 Keywords : high- pressure pulses * pulse intensifier * pulsed water jet * water hammer effect Subject RIV: JQ - Machines ; Tools Impact factor: 0.723, year: 2016 http://hrcak.srce.hr/163752?lang=en

  4. Driver circuit for pulse modulation of a semiconductor laser

    Ueki, A.

    1975-01-01

    A pulse modulation driver circuit for a semiconductor laser is disclosed which discriminates among input pulse signals composed of binary codes to detect the occurrence of a pulse having a code of ''I'' following a pulse having a code of ''0''. Detection of this pattern is used to control the driver to increase either or both the width or peak value of the pulse having a code of 1. The effect of this is to eliminate a pattern effect in the light emitted by the semiconductor laser caused by an attenuation of the population inversion in the laser. (U.S.)

  5. White light wavefront control with a spatial light modulator

    Spangenberg, D-M

    2014-01-01

    Full Text Available manipulation. In this work we show that such devices can also be used to shape broadband sources without any wavelength dependence on the output beam’s phase. We outline the principle mathematically and then demonstrate it experimentally using a supercontinuum...

  6. Fast light in atomic media

    Akulshin, Alexander M; McLean, Russell J

    2010-01-01

    Atomic media have played a major role in studies of fast light. One of their attractive features is the ability to manipulate experimental parameters to control the dispersive properties that determine the group velocity of a propagating light pulse. We give an overview of the experimental methods, based on both linear and nonlinear atom–light interaction, that have produced superluminal propagation in atomic media, and discuss some of the significant theoretical contributions to the issues of pulse preservation and reconciling faster-than-light propagation and the principle of causality. The comparison of storage of light, enhanced Kerr nonlinearity and efficient wave mixing processes in slow and fast light atomic media illustrates their common and distinct features. (review article)

  7. A Radiation Dosimetry Method Using Pulsed Optically Stimulated Luminescence

    Akselrod, M.S.; McKeever, S.W.S.

    1999-01-01

    A method for the determination of absorbed radiation dose is described based on pulsed optically stimulated luminescence (POSL). The method relies upon the stimulation of an irradiated sample with a train of light pulses from a suitable light source (e.g. a laser) using a wavelength which is within the range of wavelengths corresponding to the radiation-induced optical absorption in the irradiated sample. The subsequent emitted light, due to the detrapping of trapped charges and their subsequent recombination with charge of the opposite sign, is synchronously detected in the period between each stimulation pulse. The total luminescence is summed over the desired number of stimulation pulses and this forms the measured POSL signal. By monitoring the emitted light only in the period between stimulation pulses one can reduce the optical filtering required to discriminate between the stimulation light and the emission light; in this way a high measurement efficiency, and, therefore, a high radiation sensitivity (luminescence intensity per unit absorbed dose) is achieved. Key parameters in the method are the intrinsic luminescence lifetime for the material being used as the luminescent detector, the width of the optical stimulation pulse, and the period between pulses. For optimum operation the measurement parameters should be such that both the pulse width and the time between pulses are much less than the luminescence lifetime. By appropriate choice of the power of the optical stimulation, the frequency of the stimulation pulses, and the total stimulation period, one can also re-measure the absorbed dose several times. In this way, a re-read capability is available with the procedure. The method is illustrated using light from a 2nd-harmonic Nd:YAG laser, with irradiated, anion-deficient aluminium oxide as the luminescent detector material. (author)

  8. Characterization and modulation of femtosecond laser pulse

    Dorrer, Christophe

    1999-01-01

    This work brings some solutions to the characterization and control of femtosecond laser pulses. Spectral interferometry has been extensively studied; whereas this is a rather old technique, it has found new specific applications to short pulses. Several important points concerning the experimental implementation of this technique are treated. Sources of errors have been tracked and simple solutions have been found to enhance its reliability. A recently demonstrated technique for the complete characterization of short pulses has been used to characterize short pulses from Chirped Pulse Amplification Systems. This transposition of shearing interferometry to the optical frequency domain, known as Spectral Phase Interferometry for Direct Electric-field Reconstruction (SPlDER), is conceptually very interesting: for example, the inversion from the experimental data to the electric field to be characterized is completely algebraic. A reliable tool for the characterization and optimization of Chirped pulse amplification systems has been built on this principle. This is the first single-shot real-time characterization implementation of this technique. An improvement of the method has also allowed the first single-shot real-time characterization of a short pulse using a single mono-dimensional integrative detector and an algebraic inversion of the experimental data. The control of these pulses is also of prior interest. Through a collaboration with Thomson CSF-LCR, the demonstration of the use of an optically addressed light valve at the Fourier plane of a zero-dispersion line for spectral phase modulation has been made. This device allows a high-resolution control of the spectral phase of a short pulse. It is a well-adapted tool for the correction of the residual spectral phase, at the output of Chirped Pulse Amplification systems and the temporal synthesis of shaped pulses for specific experiments. (author) [fr

  9. Laser pulse stacking method

    Moses, E.I.

    1992-12-01

    A laser pulse stacking method is disclosed. A problem with the prior art has been the generation of a series of laser beam pulses where the outer and inner regions of the beams are generated so as to form radially non-synchronous pulses. Such pulses thus have a non-uniform cross-sectional area with respect to the outer and inner edges of the pulses. The present invention provides a solution by combining the temporally non-uniform pulses in a stacking effect to thus provide a more uniform temporal synchronism over the beam diameter. 2 figs.

  10. Single attosecond pulse generation by using plasmon-driven double optical gating technology in crossed metal nanostructures

    Feng, Liqiang; Liu, Katheryn

    2018-05-01

    An effective method to obtain the single attosecond pulses (SAPs) by using the multi-cycle plasmon-driven double optical gating (DOG) technology in the specifically designed metal nanostructures has been proposed and investigated. It is found that with the introduction of the crossed metal nanostructures along the driven and the gating polarization directions, not only the harmonic cutoff can be extended, but also the efficient high-order harmonic generation (HHG) at the very highest orders occurs only at one side of the region inside the nanostructure. As a result, a 93 eV supercontinuum with the near stable phase can be found. Further, by properly introducing an ultraviolet (UV) pulse into the driven laser polarization direction (which is defined as the DOG), the harmonic yield can be enhanced by two orders of magnitude in comparison with the singe polarization gating (PG) technology. However, as the polarized angle or the ellipticity of the UV pulse increase, the enhancement of the harmonic yield is slightly reduced. Finally, by superposing the selected harmonics from the DOG scheme, a 30 as SAP with intensity enhancement of two orders of magnitude can be obtained.

  11. Vessel calibre and haemoglobin effects on pulse oximetry

    McEwen, M P; Reynolds, K J; Bull, G P

    2009-01-01

    Despite its success as a clinical monitoring tool, pulse oximetry may be improved with respect to the need for empirical calibration and the reports of biases in readings associated with peripheral vasoconstriction and haemoglobin concentration. To effect this improvement, this work aims to improve the understanding of the photoplethysmography signal—as used by pulse oximeters—and investigates the effect of vessel calibre and haemoglobin concentration on pulse oximetry. The digital temperature and the transmission of a wide spectrum of light through the fingers of 57 people with known haemoglobin concentrations were measured and simulations of the transmission of that spectrum of light through finger models were performed. Ratios of pulsatile attenuations of light as used in pulse oximetry were dependent upon peripheral temperature and on blood haemoglobin concentration. In addition, both the simulation and in vivo results showed that the pulsatile attenuation of light through fingers was approximately proportional to the absorption coefficients of blood, only when the absorption coefficients were small. These findings were explained in terms of discrete blood vessels acting as barriers to light transmission through tissue. Due to the influence of discrete blood vessels on light transmission, pulse oximeter outputs tend to be dependent upon haemoglobin concentration and on the calibre of pulsing blood vessels—which are affected by vasoconstriction/vasodilation. The effects of discrete blood vessels may account for part of the difference between the Beer–Lambert pulse oximetry model and empirical calibration

  12. Pulse to pulse klystron diagnosis system

    Nowak, J.; Davidson, V.; Genova, L.; Johnson, R.; Reagan, D.

    1981-03-01

    This report describes a system used to study the behavior of SLAC high powered klystrons operating with a twice normal pulse width of 5 μs. At present, up to eight of the klystrons installed along the accelerator can be operated with long pulses and monitored by this system. The report will also discuss some of the recent findings and investigations

  13. Mid-infrared supercontinuum generation in chalcogenide step-index fibers pumped at 2.9 and 4.5µm

    Kubat, Irnis; Agger, Christian; Møller, Uffe Visbech

    The Mid-InfraRed (MIR) spectral range (2-12µm) contains the spectral fingerprint of many organic molecules, which can be probed nondestructively for e.g. detection of skin cancer. For this SuperContinuum (SC) laser sources are good candidates since they can have broadband bandwidths together...... with high spectral densities. Here we consider a MIR SC laser sources based on chalcogenide step-index fibers with exceptionally high numerical aperture of ~1 pumped either with Er:ZBLAN and Pr:CHALC fiber laser operating at 2.9 and 4.5µm, respectively, having P0=1kW, T0=50ps, ν_R=4MHz and Pavg=200m......W. The optical properties of fibers (dispersion, nonlinearity and confinement loss) are modeled using the finite element tools based on measured refractive indices of the core and the cladding chalcogenide compositions. Generation of MIR SC is investigated using the Generalized Nonlinear Schrödinger Equation...

  14. Photonic textiles for pulse oximetry.

    Rothmaier, Markus; Selm, Bärbel; Spichtig, Sonja; Haensse, Daniel; Wolf, Martin

    2008-08-18

    Biomedical sensors, integrated into textiles would enable monitoring of many vitally important physiological parameters during our daily life. In this paper we demonstrate the design and performance of a textile based pulse oximeter, operating on the forefinger tip in transmission mode. The sensors consisted of plastic optical fibers integrated into common fabrics. To emit light to the human tissue and to collect transmitted light the fibers were either integrated into a textile substrate by embroidery (producing microbends with a nominal diameter of 0.5 to 2 mm) or the fibers inside woven patterns have been altered mechanically after fabric production. In our experiments we used a two-wavelength approach (690 and 830 nm) for pulse wave acquisition and arterial oxygen saturation calculation. We have fabricated different specimens to study signal yield and quality, and a cotton glove, equipped with textile based light emitter and detector, has been used to examine movement artifacts. Our results show that textile-based oximetry is feasible with sufficient data quality and its potential as a wearable health monitoring device is promising.

  15. Control of giant pulse duration in neodymium mini lasers with controllable cavity length and pulsed pumping

    Berenberg, Vladimir A.; Cervantes, Miguel A.; Terpugov, Vladimir S.

    2006-01-01

    In a solid-state laser incident on aLiNdP4O12 crystal, pumped by a short light pulse, giant pulse oscillation without the use of resonator Q switching is realized. Tuning of the oscillation pulse duration from 2 up to 20 ns is achieved by changing the cavity length from 24 to 3 mm, respectively. Our analysis of this mode of laser radiation is made on the basis of the rate equations. The factors influencing oscillation pulse duration a reinvestigated. It is shown that in a limiting case the minimal value of the pulse duration is limited by only the rate of excitation transfer from the pumping band to the metastable level

  16. An Advantage of the Equivalent Velocity Spectroscopy for Femtsecond Pulse Radiolysis

    Kondoh, Takafumi; Tagawa, Seiichi; Tomosada, Hiroshi; Yang Jin Feng; Yoshida, Yoichi

    2005-01-01

    For studies of electron beam induced ultra-fast reaction process, femtosecond(fs) pulse radiolysis is under construction. To realize fs time resolution, fs electron and analyzing light pulses and their jitter compensation system are needed. About a 100fs electron pulse was generated by a photocathode RF gun linac and a magnetic pulse compressor. Synchronized Ti: Sapphire laser have a puleswidth about 160fs. And, it is significant to avoid degradation of time resolution caused by velocity difference between electron and analyzing light in a sample. In the 'Equivalent velocity spectroscopy' method, incident analyzing light is slant toward electron beam with an angle associated with refractive index of sample. Then, to overlap light wave front and electron pulse shape, electron pulse shape is slanted toward the direction of travel. As a result of the equivalent velocity spectroscopy for hydrated electrons, using slanted electron pulse shape, optical absorption rise time was about 1.4ps faster than normal electro...

  17. Pulsed laser illumination of photovoltaic cells

    Yater, Jane A.; Lowe, Roland A.; Jenkins, Phillip P.; Landis, Geoffrey A.

    1995-01-01

    In future space missions, free electron lasers (FEL) may be used to illuminate photovoltaic receivers to provide remote power. Both the radio-frequency (RF) and induction FEL produce pulsed rather than continuous output. In this work we investigate cell response to pulsed laser light which simulates the RF FEL format. The results indicate that if the pulse repetition is high, cell efficiencies are only slightly reduced compared to constant illumination at the same wavelength. The frequency response of the cells is weak, with both voltage and current outputs essentially dc in nature. Comparison with previous experiments indicates that the RF FEL pulse format yields more efficient photovoltaic conversion than does an induction FEL format.

  18. Generation of picosecond pulsed coherent state superpositions

    Dong, Ruifang; Tipsmark, Anders; Laghaout, Amine

    2014-01-01

    We present the generation of approximated coherent state superpositions-referred to as Schrodinger cat states-by the process of subtracting single photons from picosecond pulsed squeezed states of light. The squeezed vacuum states are produced by spontaneous parametric down-conversion (SPDC...... which exhibit non-Gaussian behavior. (C) 2014 Optical Society of America...

  19. Mid-infrared supercontinuum generation in tapered ZBLAN fiber with a standard Erbium mode-locked fiber laser

    Kubat, Irnis; Moselund, Peter M.; Bang, Ole

    2013-01-01

    to generate a broadband SC using direct pumping with commercially available Erbium (Er) mode-locked fiber lasers at 1550 nm. Formation of SC is manipulated both in the UV and IR by changing the fiber dispersion and nonlinearity using tapers. This has been much studied in various silica fiber designs...... and is now also becoming used in ZBLAN [2], and other soft glasses such as chalcogenide [3] and tellurite [4]. The aim of this nummerical work is to show how pumping tapered commercially available ZBLAN fibers with an Er mode-locked fiber laser can generate a broadband SC approaching the ZBLAN long....... commercially available), core diameter Dc=7 μm, and ZDW=1.5 μm, is pumped with TFWHM=10 ps and P0=10 kW pulses from an Er mode-locked laser with a 40 MHz repetition rate and 4W average power. The resulting MIR SC seen in Fig. 1(b) is based on Modulation Instability breakup of the pump pulse, which generates...

  20. Dispersion and guidance characteristics of microstructured 68TeO2 - 22WO3 - 8La2O3 - 2Bi2O3 glass fibres for supercontinuum generation

    Yatsenko, Yu P; Nazaryants, V O; Kosolapov, A F; Astapovich, M S; Plotnichenko, V G; Dianov, Evgenii M; Moiseev, A N; Churbanov, M F; Dorofeev, V V; Chilyasov, A V; Snopatin, G E

    2010-01-01

    We report the preparation of a high-purity optical-quality four-component glass of composition 68TeO 2 - 22WO 3 - 8La 2 O 3 - 2Bi 2 O 3 , containing (2.7±0.5)x10 -5 mol % OH groups. Its refractive index has been determined in the range 0.9 - 5.45 μm using interference refractometry. The data are used to assess the dispersion and guidance characteristics of microstructured optical fibres potentially attractive for supercontinuum generation in the range 1 - 5 μm (optical fibres)