WorldWideScience

Sample records for superconductors requires synthesis

  1. Novel Synthesis of Thallium-Barium - Superconductors

    Science.gov (United States)

    Bayya, Shyam Sundar

    This thesis addresses the processing difficulties associated with the synthesis of double layer superconductors in the Tl-Ba-Ca-Cu-O system and presents some novel processing techniques for their synthesis. Tl-2212 and Tl-2223 superconducting powders were made by a self-propagating high-temperature synthesis (SHS). Preheating of the reactants was necessary to self sustain the reactions. This method produced a higher amount of the Tl-2223 phase as compared to the powders produced from furnace synthesis. A microwave assisted combustion synthesis (MACS) was developed to synthesize Tl-2212 and Tl-2223 powders. A short reaction time in the microwave oven resulted in a high fraction of the Tl-2212 phase. A post-heat treatment was required to synthesize Tl-2212 and Tl-2223 phases of high purity. Synthesis of Tl-2201, Tl-2212 and Tl-2223 by melt quench and glass ceramic processes was attempted. These compositions didn't form glasses on melt quenching, however, a heat treatment resulted in Tl-2201 and Tl-2212 phases from their stoichiometric compositions. A low purity Tl -2223 sample was obtained by this process from its stoichiometric composition. Smaller additions of boric acid or gallia to the batches did not improve the glass formability of the systems. Higher additions of boric acid improved the glass formability but they crystallized binary and complex borates on devitrification. Smaller additions of gallia crystallized the superconducting phases. A molten salt synthesis was developed to prepare Tl-2201 and Tl-2212 superconducting powders. Tl-2212 was found to be stable over a wide composition range. Sodium containing salts were found to deteriorate the superconducting properties. Optimum growth and good electrical properties of Tl-2212 were obtained from the KCl salt. A doctor blade process was used to fabricate grain-oriented ceramic using these powders.

  2. Synthesis of highly phase pure BSCCO superconductors

    Science.gov (United States)

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1995-11-21

    An article and method of manufacture (Bi, Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  3. Superconductors

    CERN Document Server

    Narlikar, A V

    2014-01-01

    Superconductors is neither about basic aspects of superconductivity nor about its applications, but its mainstay is superconducting materials. Unusual and unconventional features of a large variety of novel superconductors are presented and their technological potential as practical superconductors assessed. The book begins with an introduction to basic aspects of superconductivity. The presentation is readily accessible to readers from a diverse range of scientific and technical disciplines, such as metallurgy, materials science, materials engineering, electronic and device engineering, and chemistry. The derivation of mathematical formulas and equations has been kept to a minimum and, wherever necessary, short appendices with essential mathematics have been added at the end of the text. The book is not meant to serve as an encyclopaedia, describing each and every superconductor that exists, but focuses on important milestones in their exciting development.

  4. Single Crystal Synthesis and STM Studies of High Temperature Superconductors

    Science.gov (United States)

    Barrientos, Alfonso

    1997-01-01

    This is a final report for the work initiated in September of 1994 under the grant NAG8-1085 - NASA/OMU, on the fabrication of bulk and single crystal synthesis, specific heat measuring and STM studies of high temperature superconductors. Efforts were made to fabricate bulk and single crystals of mercury based superconducting material. A systematic thermal analysis on the precursors for the corresponding oxides and carbonates were carried out to synthesized bulk samples. Bulk material was used as seed in an attempt to grow single crystals by a two-step self flux process. On the other hand bulk samples were characterized by x-ray diffraction, electrical resistivity and magnetic susceptibility, We studied the specific heat behavior in the range from 80 to 300 K. Some preliminary attempts were made to study the atomic morphology of our samples. As part of our efforts we built an ac susceptibility apparatus for measuring the transition temperature of our sintered samples.

  5. Biomimetic synthesis of high-t{sub c}, type-II superconductor nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Hall, S.R. [Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Cantock' s Close, Bristol BS8 1TS (United Kingdom)

    2006-02-17

    Chitosan from crab shells is used to control the synthesis of superconductors. The morphological control over crystallization provided by the chitosan matrix during calcination allows the production of nanowires of the high-T{sub c} superconductor Y124 (YBa{sub 2}Cu{sub 4}O{sub 8}). SQUID magnetometry of these nanowires indicates that the high T{sub c} is successfully retained in this highly anisotropic and technologically important morphology. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  6. Electrochemical synthesis of alkali-intercalated iron selenide superconductors

    Institute of Scientific and Technical Information of China (English)

    申士杰; 应天平; 王刚; 金士锋; 张韩; 林志萍; 陈小龙

    2015-01-01

    Electrochemical method has been used to insert K/Na into FeSe lattice to prepare alkali-intercalated iron selenides at room temperature. Magnetization measurement reveals that KxFe2Se2 and NaxFe2Se2 are superconductive at 31 K and 46 K, respectively. This is the first successful report of obtaining metal-intercalated FeSe-based high-temperature superconductors using electrochemical method. It provides an effective route to synthesize metal-intercalated layered compounds for new superconductor exploration.

  7. Superconductor Requirements and Characterization for High Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, E.; Zlobin, A. V.

    2015-05-01

    The 2014 Particle Physics Project Prioritization Panel (P5) strategic plan for U.S. High Energy Physics (HEP) endorses a continued world leadership role in superconducting magnet technology for future Energy Frontier Programs. This includes 10 to 15 T Nb3Sn accelerator magnets for LHC upgrades and a future 100 TeV scale pp collider, and as ultimate goal that of developing magnet technologies above 20 T based on both High Temperature Superconductors (HTS) and Low Temperature Superconductors (LTS) for accelerator magnets. To achieve these objectives, a sound conductor development and characterization program is needed and is herein described. This program is intended to be conducted in close collaboration with U.S. and International labs, Universities and Industry.

  8. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials

    Directory of Open Access Journals (Sweden)

    Petre Badica, Adrian Crisan, Gheorghe Aldica, Kazuhiro Endo, Hanna Borodianska, Kazumasa Togano, Satoshi Awaji, Kazuo Watanabe, Yoshio Sakka and Oleg Vasylkiv

    2011-01-01

    Full Text Available Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering, nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  9. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials.

    Science.gov (United States)

    Badica, Petre; Crisan, Adrian; Aldica, Gheorghe; Endo, Kazuhiro; Borodianska, Hanna; Togano, Kazumasa; Awaji, Satoshi; Watanabe, Kazuo; Sakka, Yoshio; Vasylkiv, Oleg

    2011-02-01

    Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering), nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  10. Electrochemical synthesis of alkali-intercalated iron selenide superconductors

    Science.gov (United States)

    Shen, Shi-Jie; Ying, Tian-Ping; Wang, Gang; Jin, Shi-Feng; Zhang, Han; Lin, Zhi-Ping; Chen, Xiao-Long

    2015-11-01

    Electrochemical method has been used to insert K/Na into FeSe lattice to prepare alkali-intercalated iron selenides at room temperature. Magnetization measurement reveals that KxFe2Se2 and NaxFe2Se2 are superconductive at 31 K and 46 K, respectively. This is the first successful report of obtaining metal-intercalated FeSe-based high-temperature superconductors using electrochemical method. It provides an effective route to synthesize metal-intercalated layered compounds for new superconductor exploration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51322211and 91422303), the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No. XDB07020100), Beijing Nova Program of China (Grant No. 2011096), and K. C. Wong Education Foundation, Hong Kong, China.

  11. Advantages of barium peroxide in the powder synthesis of perovskite superconductors

    Science.gov (United States)

    Hepp, A. F.; Gaier, J. R.; Philipp, W. H.; Warner, J. D.; Garlick, R. G.; Pouch, J. J.

    1988-01-01

    This paper compares reaction chemistry, material processing, and material characteristics for the solid state reaction using BaCO3 or BaO2 in the synthesis of perovskite superconductors. Results are presented for weight loss and X-ray diffraction, sample morphology and homogeneity as monitored by SEM and EDS, and the superconductivity critical temperature and ac susceptibility. Greater mass density, increased sample homogeneity, lower resistance, and improved reproducibility for material are found when BaO32 is used.

  12. Synthesis of BiPbSrCaCuO superconductor

    Science.gov (United States)

    Hults, William L.; Kubat-Martin, Kimberly A.; Salazar, Kenneth V.; Phillips, David S.; Peterson, Dean E.

    1994-01-01

    A process and a precursor composition for preparing a lead-doped bismuth-strontium-calcium-copper oxide superconductor of the formula Bi.sub.a Pb.sub.b Sr.sub.c Ca.sub.d Cu.sub.e O.sub.f wherein a is from about 1.7 to about 1.9, b is from about 0.3 to about 0.45, c is from about 1.6 to about 2.2, d is from about 1.6 to about 2.2, e is from about 2.97 to about 3.2 and f is 10.+-.z by reacting a mixture of Bi.sub.4 Sr.sub.3 Ca.sub.3 Cu.sub.4 O.sub.16.+-.z, an alkaline earth metal cuprate, e.g., Sr.sub.9 Ca.sub.5 Cu.sub.24 O.sub.41, and an alkaline earth metal plumbate, e.g., Ca.sub.2-x Sr.sub.x PbO.sub.4 wherein x is about 0.5, is disclosed.

  13. Synthesis of superconductor MgCNi3 with carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xia Qing-Lin; Yi Jian-Hong; Peng Yuan-Dong; Luo Shu-Dong; Wang Hong-Zhong; Li Li-Ya

    2008-01-01

    MgCNia, an intermetallic compound superconductor with a cubic perovskite crystal structure, has been synthesized using fine Mg and Ni powders and carbon nanotubes (CNTs) as starting materials by the conventional powder metallurgy method. The composition, microstructure and superconductivity are characterized using x-ray diffraction (XRD), energy dispersive x-ray (EDX) analysis, scanning electron microscopy (SEM), and superconducting quantum interference device (SQUID) magnetometer. The results indicate that the phases of the synthesized samples are MgCNi3 (major phase) and traces of C and MgO. The MgCNi3 particle sizes range from several hundreds of nanometres to several micrometres.The onset superconducting transition temperature Tc of the MgCNi3 sample is about 7.2 K. The critical current density Jc is about 3.44 × 104 A/cm2 calculated according to the Bean model from the magnetization hysteresis loop of the slab MgCNi3 sample at 5 K and zero applied field.

  14. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2010-01-01

    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  15. Combustion synthesis and engineering nanoparticles for electronic, structural and superconductor applications. Final report, May 31, 1992--May 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Stangle, G.C.; Schulze, W.A.; Amarakoon, V.R.W.

    1996-05-30

    Dense, nanocrystalline ceramic articles of doped ZrO{sub 2} (for use in solid electrolytes, oxygen sensors, electrode materials, thermal barrier coatings, etc.), BaTiO{sub 3} (for capacitor applications), and YBa{sub 2}Cu{sub 3}O{sub 7-x} (a high-temperature superconductor with uses, e.g., in magnetic flux trapping and high-speed capacitor applications) were prepared by the new nanofabrication process that has been developed in this research program. The process consists of two steps: synthesis of ceramic nanoparticles, and fabrication of dense ceramic articles that possess nanocrystalline features. The synthesis step is capable of producing 10-nanometer-diameter crystallites of doped ZrO{sub 2}, and of being scaled up to kilogram/hour production rates. The fabrication step produced dense, ultrafine-grained articles at significantly reduced sintering temperatures and times--representing a factor of 10-100 reduction in process energy requirements. The process has thus been shown to be technically feasible, while a preliminary engineering cost analysis of a pilot plant-scale version of the process indicates that it is both a cost- and an energy-efficient method of producing nanoparticles and nanocrystalline ceramics from those nanoparticles. One U.S. patent for this process has been allowed, and an additional five (continuation-in-part) applications have been filed. Technology transfer efforts have begun, through ongoing discussions with representatives from three manufacturing concerns.

  16. Synthesis of highly phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor

    Science.gov (United States)

    Dorris, Stephen E.; Poeppel, Roger B.; Prorok, Barton C.; Lanagan, Michael T.; Maroni, Victor A.

    1994-01-01

    An article and method of manufacture of (Bi,Pb)-Sr-Ca-Cu-O superconductor. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi,Pb)-Sr-Ca-Cu-O superconductor.

  17. Practical superconductor development for electrical power applications

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C. (comp.)

    1992-10-01

    Development of useful high-critical-temperature (high-[Tc]) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes the technical progress of research and development efforts aimed at producing superconducting components that are based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and (TI,Pb)-(Ba,Sr)-Ca-Cu oxide systems. Topics discussed are synthesis and heat treatment of high-[Tc] superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, fabrication and properties of thin films, and development of prototype components. Collaborations with industry and academia are documented.

  18. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and dev

  19. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    Science.gov (United States)

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  20. Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

    Science.gov (United States)

    Robbins, Spencer W.; Beaucage, Peter A.; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G.; Sethna, James P.; DiSalvo, Francis J.; Gruner, Sol M.; Van Dover, Robert B.; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  1. Low-temperature rapid synthesis and superconductivity of Fe-based oxypnictide superconductors.

    Science.gov (United States)

    Fang, Ai-Hua; Huang, Fu-Qiang; Xie, Xiao-Ming; Jiang, Mian-Heng

    2010-03-17

    Fe-based oxypnictide superconductors were successfully synthesized at lower reaction temperatures and with shorter reaction times made possible by starting with less stable compounds, which provide a larger driving force for reactions. Using ball-milled powders of intermediate compounds, phase-pure superconductors with T(c) above 50 K were synthesized at 1173 K in 20 min. This method is particularly advantageous for retaining F, a volatile dopant that enhances superconductivity. Bulk superconductivity and high upper critical fields up to 392 T in Sm(0.85)Nd(0.15)FeAsO(0.85)F(0.15) were demonstrated.

  2. Facile synthesis of Ba1-xKxFe₂As₂ superconductors via hydride route

    Energy Technology Data Exchange (ETDEWEB)

    Zaikina, Julia V. [Univ. of California at Davis, Davis, CA (United States); Batuk, Maria [Univ. of Antwerp, Antwerp (Belgium); Abakumov, Artem M. [Univ. of Antwerp, Antwerp (Belgium); Navrotsky, Alexandra [Univ. of California at Davis, Davis, CA (United States); Kauzlarich, Susan M. [Univ. of California at Davis, Davis, CA (United States)

    2014-12-03

    We have developed a fast, easy, and scalable synthesis method for Ba1-xKxFe₂As₂ (0 ≤ x ≤ 1) superconductors using hydrides BaH₂ and KH as a source of barium and potassium metals. Synthesis from hydrides provides better mixing and easier handling of the starting materials, consequently leading to faster reactions and/or lower synthesis temperatures. The reducing atmosphere provided by the evolved hydrogen facilitates preparation of oxygen-free powders. By a combination of methods we have shown that Ba1-xKxFe₂As₂ obtained via hydride route has the same characteristics as when it is prepared by traditional solid-state synthesis. Refinement from synchrotron powder X-ray diffraction data confirms a linear dependence of unit cell parameters upon K content as well as the tetragonal to orthorhombic transition at low temperatures for compositions with x < 0.2. Magnetic measurements revealed dome-like dependence of superconducting transition temperature Tc upon K content with a maximum of 38 K for x close to 0.4. Electron diffraction and high-resolution high-angle annular dark-field scanning transmission electron microscopy indicates an absence of Ba/K ordering, while local inhomogeneity in the Ba/K distribution takes place at a scale of several angstroms along [110] crystallographic direction.

  3. Synthesis and Structural Study of Sr2CuO3+δ Superconductor under High Pressure

    Institute of Scientific and Technical Information of China (English)

    LIU Qing-Qing; WANG Fu-Ren; LI Feng-Ying; CHEN Liang-Chen; YU Ri-Cheng; JIN Chang-Qing; LI Yan-Chun; LIU Jing

    2008-01-01

    A single-phase Sr2CuO3+δ superconductor is synthesized under high temperature and high pressure, in which oxygen atoms only partially occupy the apical sites next to the CuO2 planes and act as hole-dopants. The superconducting transition temperature with Tcmax = 75 K is achieved in the material. Structure analysis from x-ray powder diffraction data show that this material crystallizes into a K2NiF4 structure with tetragonal unit cell of α = 3.795(3) (A) and c = 12.507(1) (A). Energy-dispersive synchrotron x-ray-diffraction studies at ambient are performed on powder samples of St2CuO3+δ in a diamond-anvil cell at pressure up to 35 GPa. Anisotropic compressibility is found. Pressure-induced isostructural phase transition might exist as revealed by the discontinuous change of crystal cell volume V with pressure.

  4. Synthesis and formation of TlSr1212 superconductors from coprecipitated oxalate precursors

    Energy Technology Data Exchange (ETDEWEB)

    Salleh, F.Md. [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)]. E-mail: faizah163@salam.uitm.edu.my; Yahya, A.K. [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Imad, H. [Faculty of Science and Environmental Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor (Malaysia); Jumali, M.H. [School of Applied Physics, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2005-10-01

    TlSr1212 superconductors were synthesized by solid-state reaction using Tl-containing precursor powder prepared by coprecipitation of metal acetates with stoichiometric ratio based on Tl{sub 0.8}Bi{sub 0.2}Sr{sub 2}Ca{sub 0.8}Y{sub 0.2}Cu{sub 2}O{sub 7{+-}}{sub {delta}} composition. The samples were sintered at temperatures between 870 and 980 deg. C for different durations. XRD patterns for samples sintered at 870 deg. C showed formation of dominant 1212 phase in addition to minor 1201 phase and SrCO{sub 3} impurity. At this sintering temperature, the best superconducting behavior with T {sub czero} of 94 K was observed for the sample sintered for 60 min. SEM investigations on the sample revealed elongated grains with a slight directional grain alignment. Effect of using metal acetates with a slightly different starting stoichiometric ratio of Tl{sub 0.96}Bi{sub 0.2}Sr{sub 1.6}Ca{sub 0.8}Y{sub 0.2}Cu{sub 2}O{sub 7{+-}}{sub {delta}} was also investigated.

  5. Synthesis of large FeSe superconductor crystals via ion release/introduction and property characterization

    Institute of Scientific and Technical Information of China (English)

    苑冬娜; 董晓莉; 周放; 黄裕龙; 倪顺利; 周花雪; 毛义元; 胡卫; 袁洁; 金魁; 张广铭

    2016-01-01

    Large superconducting FeSe crystals of (001) orientation have been prepared via a hydrothermal ion re-lease/introduction route for the first time. The hydrothermally derived FeSe crystals are up to 10 mm×5 mm×0.3 mm in dimension. The pure tetragonal FeSe phase has been confirmed by x-ray diffraction (XRD) and the composition de-termined by both inductively coupled plasma atomic emission spectroscopy (ICP-AES) and energy dispersive x-ray spec-troscopy (EDX). The superconducting transition of the FeSe samples has been characterized by magnetic and transport measurements. The zero-temperature upper critical field Hc2 is calculated to be 13.2–16.7 T from a two-band model. The normal-state cooperative paramagnetism is found to be predominated by strong spin frustrations below the characteris-tic temperature Tsn, where the Ising spin nematicity has been discerned in the FeSe superconductor crystals as reported elsewhere.

  6. Combustion Synthesis of Yttrium BARIUM(2) COPPER(3) OXYGEN(6+X) Superconductor.

    Science.gov (United States)

    Lin, Sy-Chyi

    YBa_2Cu_3 O_{rm 6 + x} was produced from copper, barium peroxide, and yttrium oxide by Self-propagating High-temperature Synthesis (SHS) and thermal explosion methods. The SHS process was conducted in two modes: a horizontal combustion and a vertical combustion. The influence of copper particle size on the stability of the reaction front was studied. In contrast to previous studies, a stable reaction front could be maintained even when relatively large copper particles (smaller than 325 mesh) were used. In the horizontal SHS process, large diameter pellets (larger than 22 mm in diameter) enabled stable combustion at room temperature. Elevated ambient temperatures (400 {~} 500^circ C) were needed to stabilize the combustion front movement in small diameter pellets. The product had an average concentration of 84 wt% YBa_2Cu _3O_{rm 6 + x}. In the vertical SHS process, with the aid of a booster, the combustion front moved more rapidly and smoothly than that in the horizontal SHS process and gave a product concentration of about 90 wt% YBa _2Cu_3O_ {rm 6 + x}. High quality product (above 95 wt% YBa_2Cu_3 O_{rm 6 + x}) may be obtained by sintering/calcining the SHS product in an oxygen atmosphere. Three different sintering/calcining processes were studied and the required temperature and the time for each process were determined. The temperature at the center of the pellet in a vertical SHS was measured by thermocouples. The pellet temperature rise is a two step process. The first temperature rise is caused by the oxidation of the copper and the second is caused by the reaction between yttrium oxide and barium cuprate. A reaction mechanism is proposed to explain this behavior. A thermal explosion process was conducted in a continuous rotary kiln. In this mode a pellet was introduced suddenly into a heated rotary kiln causing it to be combusted. After the combustion, the pellet was sintered at 900 to 980 ^circC and a product containing about 95 wt% YBa_2Cu_3 O_{rm 6 + x

  7. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  8. Microemulsions as an emerging technology. From petroleum recovery to nanoparticel synthesis of magnetic materials and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, V.; Free, M.L.; Kang, P.K. [Center for Surface Science and Engineering, Depts. of Chemical Engineering and Anesthesiology and Engineering Research Center for Particle Science in Technology, Florida Univ., Gainesville, FL (United States); Truesdail, S.E. [Center for Surface Science and Engineering, Depts. of Chemical Engineering and Anesthesiology and Engineering Research Center for Particle Science in Technology, Florida Univ., Gainesville, FL (United States); Shah, D.O. [Center for Surface Science and Engineering, Depts. of Chemical Engineering and Anesthesiology and Engineering Research Center for Particle Science in Technology, Florida Univ., Gainesville, FL (United States)

    1997-05-01

    Since the discovery of microemulsions by Schulman and co-workers in the early 1940`s, the applications of microemulsions have extended to numerous technological areas from tertiary oil recovery to nanoparticle synthesis. The availability of high interfacial area, combined with thermodynamic stability and the ability to solubilize otherwise immiscible liquids have led to the use of microemulsions in cosmetics, pharmaceutics, lubrication, food technology, agricultural sprays, coatings, environmental remediation, cleaning, combustion, chemical synthesis, microporous media synthesis, enhanced reaction kinetics, and chemical analysis. This paper discusses the potential applications of microemulsions in emerging technologies. (orig.) [Deutsch] Seit ihrer Entdeckung in den fruehen 40er Jahren durch Schulman et al. haben Mikroemulsionen ein weites Anwendungsspektrum in zahlreichen technischen Bereichen gefunden, von der tertiaeren Erdoelfoerderung bis hin zur Synthese von Nanopartikeln. Ihre Eigenschaften - eine grosse Grenzflaeche in Verbindung mit thermodynamischer Stabilitaet und der Faehigkeit, Fluessigkeiten zu loesen, die normalerweise nicht mischbar sind - fuehrten zu ihrer Anwendung in Kosmetika, Pharmazeutika, Schmiermitteln, landwirtschaftlichen Sprays, Coatings, in der Lebensmitteltechnologie, der Umweltsanierung, Reinigungstechnologie, Verbrennung, Chemischen Synthese von mikroporoesen Stoffen, als Reaktionsbeschleuniger, und in der Chemischen Analyse. Diese Arbeit befasst sich mit Anwendungsmoeglichkeiten von Mikroemulsionen in neu entstehenden Technologien. (orig.)

  9. Estimation of the Required Amount of Superconductors for High-field Accelerator Dipole Magnets

    CERN Document Server

    Schwerg, N

    2007-01-01

    The coil size and the corresponding amount of superconducting material that is used during the design process of a magnet cross-section have direct impacts on the overall magnet cost. It is therefore of interest to estimate the minimum amount of conductors needed to reach the defined field strength before a detailed design process starts. Equally, it is useful to evaluate the efficiency of a given design by calculating the amount of superconducting cables that are used to reach the envisaged main field by simple rule. To this purpose, the minimum amount of conductors for the construction of a dipole of given main field strength and aperture size is estimated taking the actual critical current density of the used strands into account. Characteristic curves applicable for the NED Nb3Sn strand specification are given and some of the recently studied different dipole configurations are compared. Based on these results, it is shown how the required amount of conductors changes due to the iron yoke contribution and...

  10. Superconductor Composite

    Science.gov (United States)

    Dorris, Stephen E.; Burlone, Dominick A.; Morgan; Carol W.

    1999-02-02

    A superconducting conductor fabricated from a plurality of wires, e.g., fine silver wires, coated with a superconducting powder. A process of applying superconducting powders to such wires, to the resulting coated wires and superconductors produced therefrom.

  11. Practical superconductor development for electrical power applications. Annual report for FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C. [comp.

    1992-10-01

    Development of useful high-critical-temperature (high-{Tc}) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes the technical progress of research and development efforts aimed at producing superconducting components that are based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and (TI,Pb)-(Ba,Sr)-Ca-Cu oxide systems. Topics discussed are synthesis and heat treatment of high-{Tc} superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, fabrication and properties of thin films, and development of prototype components. Collaborations with industry and academia are documented.

  12. A convenient, one-step synthesis of YBa{sub 2}Cu{sub 3}O{sub 7-x} superconductors: An undergraduate in organic/materials laboratory experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cogdell, C.D.; Wayment, D.G.; Casadonte, D.J. Jr. [Texas Tech Univ., Lubbock, TX (United States)

    1995-12-01

    The preparation of YBa{sub 2}Cu{sub 3}O{sub 7-x} (Y-123) high-temperature superconductor material generally requires repeated grinding and heating of binary oxide or carbonate reactants to inhibit the formation of the low-melting insulating phases BaCuO{sub 2} and Y{sub 2}BaCuO{sub 5} (Y-211). This multiple processing renders the synthesis tedious and somewhat impractical for use in an undergraduate laboratory setting. We describe here a convenient, single-step synthesis of Y-123 from the ternary oxide precursors Y{sub 2}Cu{sub 2}O{sub 5} and BaCuO{sub 2}. This reaction can be accomplished in a single 24 hour period and does not suffer from the formation of eutectic phases. The precursor materials can be prepared and stored in advance of the experiment. Students are also exposed to the concepts of ternary phase equilibria and other concepts of modern matter processing.

  13. Facile and Cost-Effective Synthesis and Deposition of a YBCO Superconductor on Copper Substrates by High-Energy Ball Milling

    Science.gov (United States)

    Alami, Abdul Hai; Assad, Mhd Adel; Aokal, Camilia

    2016-09-01

    The article investigates the synthesis and deposition of YBCO on a copper substrate for various functional purposes. The superconductor is first prepared by mechanically alloying elemental components (yttrium, barium, and copper) for 50 hours in a high-energy ball mill with subsequent protocol of heat treatment in an oxygen-rich atmosphere to arrive at stoichiometric ratios of YBa2Cu3O7. The material is then deposited on a thin copper substrate also by ball milling under various parameters of rotational speed and deposition time to select the best and most homogenous substrate coverage. Atomic force microscopy has confirmed the desired results, and other microstructural, thermal, and electrical techniques are used to characterize the obtained material. High-energy ball milling proved to be a versatile means to synthesize and deposit the material in a straightforward manner and controllable parameters for different deposit thicknesses and coverages.

  14. Facile and Cost-Effective Synthesis and Deposition of a YBCO Superconductor on Copper Substrates by High-Energy Ball Milling

    Science.gov (United States)

    Alami, Abdul Hai; Assad, Mhd Adel; Aokal, Camilia

    2016-12-01

    The article investigates the synthesis and deposition of YBCO on a copper substrate for various functional purposes. The superconductor is first prepared by mechanically alloying elemental components (yttrium, barium, and copper) for 50 hours in a high-energy ball mill with subsequent protocol of heat treatment in an oxygen-rich atmosphere to arrive at stoichiometric ratios of YBa2Cu3O7. The material is then deposited on a thin copper substrate also by ball milling under various parameters of rotational speed and deposition time to select the best and most homogenous substrate coverage. Atomic force microscopy has confirmed the desired results, and other microstructural, thermal, and electrical techniques are used to characterize the obtained material. High-energy ball milling proved to be a versatile means to synthesize and deposit the material in a straightforward manner and controllable parameters for different deposit thicknesses and coverages.

  15. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  16. Synthesis and characterization of superconductor Bi{sub 3}O{sub 2}S{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gaobin [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); School of Science, University of Science and Technology Liaoning, Anshan 114051 (China); Li, Da; Li, Shaojie [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Wang, Jian [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); School of Science, University of Science and Technology Liaoning, Anshan 114051 (China); Liu, Wei; Zhang, Zhidong [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China)

    2015-03-15

    Highlights: • Layered superconductor Bi{sub 3}O{sub 2}S{sub 3} have been successfully prepared with Bi{sub 2}O{sub 2}S precursor. • The zero resistivity transition temperature of bulk Bi{sub 3}O{sub 2}S{sub 3} is observed at 4.62 K. • The susceptibility at 2 K is 0.031 emu Oe{sup −1} g{sup −1}, indicating a perfect diamagnetism. - Abstract: Bulk and nanoscale powder layered superconductor Bi{sub 3}O{sub 2}S{sub 3} have been successfully prepared via conventional solid-state reaction route. The diffraction peaks observed for Bi{sub 3}O{sub 2}S{sub 3}, except for the small impurity peaks belong to Bi{sub 28}O{sub 32}(SO{sub 4}){sub 10}, can be indexed to the orthorhombic (I4/mmm tetragonal) phase for Bi{sub 3}O{sub 2}S{sub 3} with cell constants a = 3.961 Å, c = 41.316 Å. The pill comprised of nanoscale Bi{sub 3}O{sub 2}S{sub 3} behaves like insulator. However the zero resistivity of bulk Bi{sub 3}O{sub 2}S{sub 3} is observed at 4.62 K. The superconductivity is also proved by the Meissner effect from the zero-field cooled and field cooled dc magnetization measurements, and the diamagnetic susceptibility which reflects shielding volume fraction of superconductor at 2 K is about −0.031 emu Oe{sup −1} g{sup −1}, indicating a perfect diamagnetism.

  17. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  18. Superconductor Dynamics

    CERN Document Server

    Gömöry, F

    2014-01-01

    Superconductors used in magnet technology could carry extreme currents because of their ability to keep the magnetic flux motionless. The dynamics of the magnetic flux interaction with superconductors is controlled by this property. The cases of electrical transport in a round wire and the magnetization of wires of various shapes (circular, elliptical, plate) in an external magnetic field are analysed. Resistance to the magnetic field penetration means that the field produced by the superconducting magnet is no longer proportional to the supplied current. It also leads to a dissipation of electromagnetic energy. In conductors with unequal transverse dimensions, such as flat cables, the orientation with respect to the magnetic field plays an essential role. A reduction of magnetization currents can be achieved by splitting the core of a superconducting wire into fine filaments; however, new kinds of electrical currents that couple the filaments consequently appear. Basic formulas allowing qualitative analyses ...

  19. Requirements engineering and program synthesis: Mutually exclusive or synergistic?

    Science.gov (United States)

    Lowry, M. R.

    2001-01-01

    There has often been a clash within the formal methods community between early life-cycle proponents such as the requirements engineering community and late life-cycle proponents such as the program synthesis community. This talk will first characterize these positions and their underlying assumptions, and then expose a common set of problems and approaches. The talk will then propose an integrated life-cycle framework, and expound on its potential benefits. Technical challenges to achieving this integrated life-cycle framework will be described, as well as some preliminary work towards that goal.

  20. Requirements engineering and program synthesis: Mutually exclusive or synergistic?

    Science.gov (United States)

    Lowry, M. R.

    2001-01-01

    There has often been a clash within the formal methods community between early life-cycle proponents such as the requirements engineering community and late life-cycle proponents such as the program synthesis community. This talk will first characterize these positions and their underlying assumptions, and then expose a common set of problems and approaches. The talk will then propose an integrated life-cycle framework, and expound on its potential benefits. Technical challenges to achieving this integrated life-cycle framework will be described, as well as some preliminary work towards that goal.

  1. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  2. Influence of precursor oxygen stoichiometry on the formation of Hg, Re-1223 superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sin, A.; Calleja, A.; Pinol, S.; Obradors, X. [Institut de Ciencia de Materials de Barcelona (CSIC), Campus de la UAB, Bellaterra E-08193, Barcelona (Spain); Cunha, A.G.; Orlando, M.T.D. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil); Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Siguad 150-Urca, 22290-180 Rio de Janeiro-RJ (Brazil); Emmerich, F.G. [Departamento de Fisica, Universidade Federal do Espirito Santo, 29060-900 Vitoria-ES (Brazil); Baggio-Saitovitch, E. [Centro Brasileiro de Pesquisas Fisicas, Rua Dr Xavier Siguad 150-Urca, 22290-180 Rio de Janeiro-RJ (Brazil); Segarra, M. [Departament d' Enginyeria Quimica i Metallurgia, Facultat de Quimica, Universitat de Barcelona, Diagonal 647, E-08028, Barcelona (Spain)

    1999-03-01

    Thanks to a novel technique (thermobaric analyser or TBA) for measuring the in situ pressure in quartz tubes, we have investigated the precursor quality for the synthesis of the superconductor Hg-1223 which is an essential parameter to control. We have made this study on the Hg{sub 0.82}Re{sub 0.18}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} samples and we can conclude that this superconductor phase requires a ceramic precursor sintered in a low P{sub o{sub 2}} mixture gas flux. An excessively oxygenated precursor leads to overdoped superconducting phases, presence of other members with lower n, HgCaO{sub 2} and some unreacted precursor. The precursor oxygenation degree also modifies the kinetics of formation of HgCaO{sub 2} and the partial melting of the superconductor material may be affected. (author)

  3. Synthesis and characterization of PbO-CdO nanocomposite and its effect on (Bi,Pb)-2223 superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Nabil A.A. [Thamar University, Physics Department, Faculty of Education, Thamar (Yemen); Al-Gaashani, R. [Thamar University, Physics Department, Faculty of Education, Thamar (Yemen); Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University (HBKU), Doha (Qatar); Abd-Shukor, R. [Universiti Kebangsaan Malaysia, School of Applied Physics, Bangi, Selangor (Malaysia)

    2017-03-15

    A PbO-CdO nanocomposite-added Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub 10} ((Bi,Pb)-2223) superconductor has been prepared. The effect of the PbO-CdO nanocomposite addition on the transport critical current density (J{sub c}) of (Bi,Pb)-2223 superconductor was investigated. The transition temperature (T{sub c-onset}), zero electrical resistance temperature (T{sub c-R=0}), and J{sub c} of the samples were measured by the four-probe method. Phase formation, structure, and microstructure of samples were investigated. The distribution of nanoparticle size was determined. The results indicated that the PbO-CdO-added samples showed larger grain size and an increased volume fraction of high-T{sub c} phase (Bi-2223) compared to the non-added sample. A slight increase in T{sub c-R=0} of x = 0.15 wt% was observed. J{sub c} of the PbO-CdO nanocomposite-added samples was significantly higher than for the non-added sample. That could be explained by the possibility that the PbO-CdO nanocomposite acts as an effective flux pinning center in (Bi,Pb)-2223. At 77 K, J{sub c} of x = 0.15 wt% added sample was more than 20 times larger than J{sub c} of the non-added sample (x = 0 wt%). A combined effect of enhanced flux pinning, increased fraction of high-T{sub c} phase and improved grain size, which led to increase in the J{sub c} of added samples, is discussed. (orig.)

  4. Synthesis and characterization of PbO-CdO nanocomposite and its effect on (Bi,Pb)-2223 superconductor

    Science.gov (United States)

    Yahya, Nabil A. A.; Al-Gaashani, R.; Abd-Shukor, R.

    2017-03-01

    A PbO-CdO nanocomposite-added Bi1.6Pb0.4Sr2Ca2Cu3O10 ((Bi,Pb)-2223) superconductor has been prepared. The effect of the PbO-CdO nanocomposite addition on the transport critical current density ( J c) of (Bi,Pb)-2223 superconductor was investigated. The transition temperature ( T c-onset), zero electrical resistance temperature ( T c- R=0), and J c of the samples were measured by the four-probe method. Phase formation, structure, and microstructure of samples were investigated. The distribution of nanoparticle size was determined. The results indicated that the PbO-CdO-added samples showed larger grain size and an increased volume fraction of high- T c phase (Bi-2223) compared to the non-added sample. A slight increase in T c- R=0 of x = 0.15 wt% was observed. J c of the PbO-CdO nanocomposite-added samples was significantly higher than for the non-added sample. That could be explained by the possibility that the PbO-CdO nanocomposite acts as an effective flux pinning center in (Bi,Pb)-2223. At 77 K, J c of x = 0.15 wt% added sample was more than 20 times larger than J c of the non-added sample ( x = 0 wt%). A combined effect of enhanced flux pinning, increased fraction of high- T c phase and improved grain size, which led to increase in the J c of added samples, is discussed.

  5. 1111型 GdFePO超导体的合成与位错%Synthesis and Dislocation of 1111-type GdFePO Superconductor

    Institute of Scientific and Technical Information of China (English)

    梁重云; 车仁超

    2015-01-01

    Pnictide oxide superconductor GdFePO has been synthesized by a two‐step solid reaction method .Gd‐Fe‐P ternary alloy is firstly prepared using pre‐melting technology .T he superconductivity at a‐round 6 .1 K in GdFePO is observed .An annealing treatment done after synthesis could effectively reduce the dislocation density and furthermore affect the superconducting transition .Detailed evidences based on transmission electron microscopy analysis reveal the relationship between the adjustable superconducting properties and the dislocations along[001] orientation of GdFePO .%文章采用两步固相反应法合成磷族氧化物超导体GdFePO .首先采用预熔技术制备Gd‐Fe‐P系三元合金,GdFePO的超导性在约6.1 K时可以观察的到,合成后进行退火处理,可以有效地降低位错密度,进而影响到超导转变.通过透射电子显微镜的分析可以揭示可调整的超导性能和GdFePO沿[001]方向的位错之间的关系.

  6. Solid state synthesis and characterization of bulk FeTe0.5Se0.5 superconductors

    Science.gov (United States)

    Onar, K.; Yakinci, M. E.

    2016-01-01

    FeTe0.5Se0.5 polycrystalline superconductor samples were synthesized by solid- state reaction method at different heating temperatures. The morphological and structural characterization of FeTe0 5Se0.5 samples were carried out by X-rays Diffraction, Scanning Electron Microscope and Energy Dispersive X-ray Spectroscopy. The electrical, magnetic and thermal transport properties were investigated up to 8 T by using physical property measurement system. The results reveal that the sensitivity of electrical and magnetic properties strongly depends on the heat treatment cycles. The upper critical field, Hc2(0), was determined with the magnetic field parallel to the sample surface. It gives a maximum value of 36.3 T. The lower critical field, Hc1(T), was obtained as 210, 140 and 70 Oe at 5, 8 and 12 K, respectively. The coherence length, ξ, at the zero field, was calculated to be 1.94 nm and suggested a transparent intergrain boundaries peculiarity. The μ0Hc2(0)/kBTc rate shows higher value (3.36 T/K) than the Pauli limit (1.84 T/K) which suggests unconventional nature of superconductivity for the polycrystalline FeTe0.5Se0.5 superconducting samples.

  7. Ferromagnetic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Huxley, Andrew D.

    2015-07-15

    Highlights: • Review of ferromagnetic superconductors. • Covers UGe{sub 2}, URhGe and UCoGe and briefly other materials. • The focus is on experimental data and the pairing mechanism. - Abstract: The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a ‘standard’ theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the ‘standard’ model and from each other.

  8. 15 CFR 715.1 - Annual declaration requirements for production by synthesis of unscheduled discrete organic...

    Science.gov (United States)

    2010-01-01

    ... production by synthesis of unscheduled discrete organic chemicals (UDOCs). 715.1 Section 715.1 Commerce and... DISCRETE ORGANIC CHEMICALS (UDOCs) § 715.1 Annual declaration requirements for production by synthesis of unscheduled discrete organic chemicals (UDOCs). (a) Declaration of production by synthesis of UDOCs for...

  9. Concurrent protein synthesis is required for in vivo chitin synthesis in postmolt blue crabs

    Energy Technology Data Exchange (ETDEWEB)

    Horst, M.N. (Mercer Univ., Macon, GA (USA))

    1990-12-01

    Chitin synthesis in crustaceans involves the deposition of a protein-polysaccharide complex at the apical surface of epithelial cells which secrete the cuticle or exoskeleton. The present study involves an examination of in vivo incorporation of radiolabeled amino acids and amino sugars into the cuticle of postmolt blue crabs, Callinectes sapidus. Rates of incorporation of both 3H leucine and 3H threonine were linear with respect to time of incubation. Incorporation of 3H threonine into the endocuticle was inhibited greater than 90% in the presence of the protein synthesis inhibitor, puromycin. Linear incorporation of 14C glucosamine into the cuticle was also demonstrated; a significant improvement of radiolabeling was achieved by using 14C-N-acetylglucosamine as the labeled precursor. Incorporation of 3H-N-acetylglucosamine into the cuticle of postmolt blue crabs was inhibited 89% by puromycin, indicating that concurrent protein synthesis is required for the deposition of chitin in the blue crab. Autoradiographic analysis of control vs. puromycin-treated crabs indicates that puromycin totally blocks labeling of the new endocuticle with 3H glucosamine. These results are consistent with the notion that crustacean chitin is synthesized as a protein-polysaccharide complex. Analysis of the postmolt and intermolt blue crab cuticle indicates that the exoskeleton contains about 60% protein and 40% chitin. The predominant amino acids are arginine, glutamic acid, alanine, aspartic acid, and threonine.

  10. Haematopoietic stem cells require a highly regulated protein synthesis rate.

    Science.gov (United States)

    Signer, Robert A J; Magee, Jeffrey A; Salic, Adrian; Morrison, Sean J

    2014-05-01

    Many aspects of cellular physiology remain unstudied in somatic stem cells, for example, there are almost no data on protein synthesis in any somatic stem cell. Here we set out to compare protein synthesis in haematopoietic stem cells (HSCs) and restricted haematopoietic progenitors. We found that the amount of protein synthesized per hour in HSCs in vivo was lower than in most other haematopoietic cells, even if we controlled for differences in cell cycle status or forced HSCs to undergo self-renewing divisions. Reduced ribosome function in Rpl24(Bst/+) mice further reduced protein synthesis in HSCs and impaired HSC function. Pten deletion increased protein synthesis in HSCs but also reduced HSC function. Rpl24(Bst/+) cell-autonomously rescued the effects of Pten deletion in HSCs; blocking the increase in protein synthesis, restoring HSC function, and delaying leukaemogenesis. Pten deficiency thus depletes HSCs and promotes leukaemia partly by increasing protein synthesis. Either increased or decreased protein synthesis impairs HSC function.

  11. Ferromagnetic superconductors

    Science.gov (United States)

    Huxley, Andrew D.

    2015-07-01

    The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a 'standard' theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the 'standard' model and from each other.

  12. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank (Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  13. Analysis of physical requirements for simple three-qubit and nine-qubit quantum error correction on quantum-dot and superconductor qubits

    Science.gov (United States)

    Sohn, IlKwon; Tarucha, Seigo; Choi, Byung-Soo

    2017-01-01

    The implementation of a scalable quantum computer requires quantum error correction (QEC). An important step toward this goal is to demonstrate the effectiveness of QEC where the fidelity of an encoded qubit is higher than that of the physical qubits. Therefore, it is important to know the conditions under which QEC code is effective. In this study, we analyze the simple three-qubit and nine-qubit QEC codes for quantum-dot and superconductor qubit implementations. First, we carefully analyze QEC codes and find the specific range of memory time to show the effectiveness of QEC and the best QEC cycle time. Second, we run a detailed error simulation of the chosen error-correction codes in the amplitude damping channel and confirm that the simulation data agreed well with the theoretically predicted accuracy and minimum QEC cycle time. We also realize that since the swap gate worked rapidly on the quantum-dot qubit, it did not affect the performance in terms of the spatial layout.

  14. Iron pnictide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tegel, Marcus Christian

    2011-03-22

    The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co{sub x}Fe{sub 1-x})PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr{sub 2}Si{sub 2}-type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, is unveiled. A detailed examination of the complete solid solution series (Ba{sub 1-x}K{sub x})Fe{sub 2}As{sub 2} is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe{sub 2}As{sub 2} and EuFe{sub 2}As{sub 2} are characterised and the superconductors Sr{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se{sub 1-x}Te{sub x}) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr{sub 3}Sc{sub 2}O{sub 5}Fe{sub 2}As{sub 2} are presented and Ba{sub 2}ScO{sub 3}FeAs and Sr{sub 2}CrO{sub 3}FeAs, the first two members of the new 21311-type are portrayed. Sr{sub 2}CrO{sub 3}FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound

  15. Modified Entropic Gravitation in Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2011-01-01

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde's derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor's quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravit...

  16. Practical superconductor development for electrical power applications. Annual report for FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    Balachandran, U.

    1995-10-01

    Development of useful high-critical-temperature (high-{Tc}) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds: production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes the technical progress of research and development efforts aimed at producing superconducting components in the (Bi,Pb)-Sr-Ca-Cu, (Tl,Pb,Bi,V)-(Ba,Sr)-Ca-Cu, and Y-Ba-Cu oxide systems. The topics that are discussed are synthesis and heat treatment of high-{Tc} superconductors, formation of monolithic and composite conductors, characterization of structures and superconducting and mechanical properties, and fabrication and testing of prototype components. Collaboration with industry and academia is documented.

  17. Practical superconductor development for electrical power applications. Annual report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Poeppel, R.B.; Goretta, K.C. [comp.; Askew, T.R. [Kalamazoo, Coll., MI (United States)] [and others

    1993-10-01

    Development of useful high-critical-temperature superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes technical progress of research and development efforts aimed at producing superconducting components in the Y-Ba-Cu, (Bi,Pb)-Sr-Ca-Cu,(Tl,Pb, Bi)-(Ba,Sr)-Ca-Cu, and Hg-Ba-Ca-Cu-O oxide systems. Topics discussed are synthesis and heat treatment of high-T{sub c} superconductors; formation of monolithic and composite wires, tapes, and coils, characterization of structures and superconducting and mechanical properties; fabrication and properties of films; and development of properties of films; and development of prototype components. Collaborations with industry and academia are documented.

  18. Hybrid superconductor magnet bearings

    Science.gov (United States)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  19. Cytoskeletal Requirements for Hepatitis C Virus (HCV) RNA Synthesis in the HCV Replicon Cell Culture System

    OpenAIRE

    Bost, Anne G.; Venable, Daryl; Liu, Lifei; Heinz, Beverly A.

    2003-01-01

    Hepatitis C virus (HCV) induces microtubule aggregates in infected hepatocytes. To determine if cytoskeletal elements are important for HCV RNA synthesis, we examined the effect of cytoskeleton inhibitors on HCV replicon transcription in Huh7 cells. The data demonstrate that HCV replication complex-mediated RNA synthesis requires microtubule and actin polymerization.

  20. Cytoskeletal requirements for hepatitis C virus (HCV) RNA synthesis in the HCV replicon cell culture system.

    Science.gov (United States)

    Bost, Anne G; Venable, Daryl; Liu, Lifei; Heinz, Beverly A

    2003-04-01

    Hepatitis C virus (HCV) induces microtubule aggregates in infected hepatocytes. To determine if cytoskeletal elements are important for HCV RNA synthesis, we examined the effect of cytoskeleton inhibitors on HCV replicon transcription in Huh7 cells. The data demonstrate that HCV replication complex-mediated RNA synthesis requires microtubule and actin polymerization.

  1. Building blocks for correlated superconductors and magnets

    Directory of Open Access Journals (Sweden)

    J. L. Sarrao

    2015-04-01

    Full Text Available Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  2. Building blocks for correlated superconductors and magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; Batista, C. D.; Zhu, J.-X.; Thompson, J. D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  3. Fine uniform filament superconductors

    Science.gov (United States)

    Riley, Jr., Gilbert N.; Li, Qi; Roberts, Peter R.; Antaya, Peter D.; Seuntjens, Jeffrey M.; Hancock, Steven; DeMoranville, Kenneth L.; Christopherson, Craig J.; Garrant, Jennifer H.; Craven, Christopher A.

    2002-01-01

    A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.

  4. Superconductor rotor cooling system

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  5. Photothermal measurements of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kino, G.S.; Studenmund, W.R.; Fishman, I.M. [Stanford Univ., Stanford, CA (United States)

    1996-12-31

    A photothermal technique has been used to measure diffusion and critical temperature in high temperature superconductors. The technique is particularly suitable for determining material quality and inhomogeneity.

  6. Performance of ceramic superconductors in magnetic bearings

    Science.gov (United States)

    Kirtley, James L., Jr.; Downer, James R.

    1993-01-01

    Magnetic bearings are large-scale applications of magnet technology, quite similar in certain ways to synchronous machinery. They require substantial flux density over relatively large volumes of space. Large flux density is required to have satisfactory force density. Satisfactory dynamic response requires that magnetic circuit permeances not be too large, implying large air gaps. Superconductors, which offer large magnetomotive forces and high flux density in low permeance circuits, appear to be desirable in these situations. Flux densities substantially in excess of those possible with iron can be produced, and no ferromagnetic material is required. Thus the inductance of active coils can be made low, indicating good dynamic response of the bearing system. The principal difficulty in using superconductors is, of course, the deep cryogenic temperatures at which they must operate. Because of the difficulties in working with liquid helium, the possibility of superconductors which can be operated in liquid nitrogen is thought to extend the number and range of applications of superconductivity. Critical temperatures of about 98 degrees Kelvin were demonstrated in a class of materials which are, in fact, ceramics. Quite a bit of public attention was attracted to these new materials. There is a difficulty with the ceramic superconducting materials which were developed to date. Current densities sufficient for use in large-scale applications have not been demonstrated. In order to be useful, superconductors must be capable of carrying substantial currents in the presence of large magnetic fields. The possible use of ceramic superconductors in magnetic bearings is investigated and discussed and requirements that must be achieved by superconductors operating at liquid nitrogen temperatures to make their use comparable with niobium-titanium superconductors operating at liquid helium temperatures are identified.

  7. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis.

    Science.gov (United States)

    Levring, Trine B; Kongsbak, Martin; Rode, Anna K O; Woetmann, Anders; Ødum, Niels; Bonefeld, Charlotte Menné; Geisler, Carsten

    2015-09-08

    Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined. The aim of this study was to elucidate why activated human T cells require exogenous Cys2 in order to proliferate. We activated purified naïve human CD4+ T cells and found that glutathione (GSH) levels and DNA synthesis were dependent on Cys2 and increased in parallel with increasing concentrations of Cys2. Vice-versa, the GSH synthesis inhibitor L-buthionine-sulfoximine (BSO) and inhibition of Cys2 uptake with glutamate inhibited GSH and DNA synthesis in parallel. We further found that thioredoxin (Trx) can partly substitute for GSH during DNA synthesis. Finally, we show that GSH or Trx is required for the activity of ribonucleotide reductase (RNR), the enzyme responsible for generation of the deoxyribonucleotide DNA building blocks. In conclusion, we show that activated human T cells require exogenous Cys2 to proliferate and that this is partly explained by the fact that Cys2 is required for production of GSH, which in turn is required for optimal RNR-mediated deoxyribonucleotide synthesis and DNA replication.

  8. Film Synthesis and New Superconductors.

    Science.gov (United States)

    1983-05-01

    use of atomic and molecular beam codeposition techniques. The pseudo-binary system Nb-Mo-Si has been investigated. The A15 phase has been extended...Istituto di Fisica Teorica and ICTP, Trieste, Italy "Plasmons and Charge Density Waves in 2H-TaSe 2 " January 26, 1978 10. Dr. J. M. Rowell, Bell...Associate Universidade Estadual 4/1/79 - 6/30/79 de Campinas Instituto De Fisica BRASIL Bormann, Rudiger Visiting Research Associate Institute fur

  9. Directional resolution of head-related transfer functions required in binaural synthesis

    DEFF Research Database (Denmark)

    Minnaar, Pauli; Plogsties, Jan; Christensen, Flemming

    2005-01-01

    In binaural synthesis a virtual sound source is implemented by convolving an anechoic signal with a pair of head-related transfer functions (HRTFs). In order to represent all possible directions of the sound source with respect to the listener a discrete number of HRTFs are measured...... and moving sound sources. A criterion was found that predicts the experimental results. This criterion was used to estimate the directional resolution required in binaural synthesis for all directions on the sphere around the head....

  10. Fabrication of high temperature superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya

    2003-06-17

    A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.

  11. Modified entropic gravitation in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Clovis Jacinto de, E-mail: clovis.de.matos@esa.int [European Space Agency, 8-10 rue Mario Nikis, 75015 Paris (France)

    2012-01-15

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde's derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor's quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.

  12. Presynaptic Protein Synthesis Is Required for Long-Term Plasticity of GABA Release.

    Science.gov (United States)

    Younts, Thomas J; Monday, Hannah R; Dudok, Barna; Klein, Matthew E; Jordan, Bryen A; Katona, István; Castillo, Pablo E

    2016-10-19

    Long-term changes of neurotransmitter release are critical for proper brain function. However, the molecular mechanisms underlying these changes are poorly understood. While protein synthesis is crucial for the consolidation of postsynaptic plasticity, whether and how protein synthesis regulates presynaptic plasticity in the mature mammalian brain remain unclear. Here, using paired whole-cell recordings in rodent hippocampal slices, we report that presynaptic protein synthesis is required for long-term, but not short-term, plasticity of GABA release from type 1 cannabinoid receptor (CB1)-expressing axons. This long-term depression of inhibitory transmission (iLTD) involves cap-dependent protein synthesis in presynaptic interneuron axons, but not somata. Translation is required during the induction, but not maintenance, of iLTD. Mechanistically, CB1 activation enhances protein synthesis via the mTOR pathway. Furthermore, using super-resolution STORM microscopy, we revealed eukaryotic ribosomes in CB1-expressing axon terminals. These findings suggest that presynaptic local protein synthesis controls neurotransmitter release during long-term plasticity in the mature mammalian brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  14. Superconductor terahertz metamaterial

    CERN Document Server

    Gu, Jianqiang; Tian, Zhen; Cao, Wei; Xing, Qirong; Han, Jiaguang; Zhang, Weili

    2010-01-01

    We characterize the behaviour of split ring resonators made up of high-transition temperature YBCO superconductor using terahertz time domain spectroscopy. The superconductor metamaterial shows sharp change in the transmission spectrum at the fundamental inductive-capacitive resonance and the dipole resonance as the temperature dips below the transition temperature. Our results reveal that the high performance of such a metamaterial is limited by material imperfections and defects such as cracks, voids and secondary phases which play dominant role in partially impeding the flow of current causing dissipation of energy and electrical resistance to appear in the superconductor film.

  15. Genes Required for Bacillus anthracis Secondary Cell Wall Polysaccharide Synthesis

    Science.gov (United States)

    Oh, So-Young; Lunderberg, J. Mark; Chateau, Alice; Schneewind, Olaf

    2016-01-01

    ABSTRACT The secondary cell wall polysaccharide (SCWP) is thought to be essential for vegetative growth and surface (S)-layer assembly in Bacillus anthracis; however, the genetic determinants for the assembly of its trisaccharide repeat structure are not known. Here, we report that WpaA (BAS0847) and WpaB (BAS5274) share features with membrane proteins involved in the assembly of O-antigen lipopolysaccharide in Gram-negative bacteria and propose that WpaA and WpaB contribute to the assembly of the SCWP in B. anthracis. Vegetative forms of the B. anthracis wpaA mutant displayed increased lengths of cell chains, a cell separation defect that was attributed to mislocalization of the S-layer-associated murein hydrolases BslO, BslS, and BslT. The wpaB mutant was defective in vegetative replication during early logarithmic growth and formed smaller colonies. Deletion of both genes, wpaA and wpaB, did not yield viable bacilli, and when depleted of both wpaA and wpaB, B. anthracis could not maintain cell shape, support vegetative growth, or assemble SCWP. We propose that WpaA and WpaB fulfill overlapping glycosyltransferase functions of either polymerizing repeat units or transferring SCWP polymers to linkage units prior to LCP-mediated anchoring of the polysaccharide to peptidoglycan. IMPORTANCE The secondary cell wall polysaccharide (SCWP) is essential for Bacillus anthracis growth, cell shape, and division. SCWP is comprised of trisaccharide repeats (→4)-β-ManNAc-(1→4)-β-GlcNAc-(1→6)-α-GlcNAc-(1→) with α-Gal and β-Gal substitutions; however, the genetic determinants and enzymes for SCWP synthesis are not known. Here, we identify WpaA and WpaB and report that depletion of these factors affects vegetative growth, cell shape, and S-layer assembly. We hypothesize that WpaA and WpaB are involved in the assembly of SCWP prior to transfer of this polymer onto peptidoglycan. PMID:27795328

  16. Requirement of proline synthesis during Arabidopsis reproductive development

    Directory of Open Access Journals (Sweden)

    Funck Dietmar

    2012-10-01

    Full Text Available Abstract Background Gamete and embryo development are crucial for successful reproduction and seed set in plants, which is often the determining factor for crop yield. Proline accumulation was largely viewed as a specific reaction to overcome stress conditions, while recent studies suggested important functions of proline metabolism also in reproductive development. Both the level of free proline and proline metabolism were proposed to influence the transition to flowering, as well as pollen and embryo development. Results In this study, we performed a detailed analysis of the contribution of individual proline biosynthetic enzymes to vegetative development and reproductive success in Arabidopsis. In contrast to previous reports, we found that pyrroline-5-carboxylate (P5C synthetase 2 (P5CS2 is not essential for sexual reproduction although p5cs2 mutant plants were retarded in vegetative development and displayed reduced fertility under long-day conditions. Single mutant plants devoid of P5CS1 did not show any developmental defects. Simultaneous absence of both P5CS isoforms resulted in pollen sterility, while fertile egg cells could still be produced. Expression of P5C reductase (P5CR was indispensable for embryo development but surprisingly not needed for pollen or egg cell fertility. The latter observation could be explained by an extreme stability of P5CR activity, which had a half-life time of greater than 3 weeks in vitro. Expression of P5CR-GFP under the control of the endogenous P5CR promoter was able to restore growth of homozygous p5cr mutant embryos. The analysis of P5CR-GFP-fluorescence in planta supported an exclusively cytoplasmatic localisation of P5CR. Conclusions Our results demonstrate that potential alternative pathways for proline synthesis or inter-generation transfer of proline are not sufficient to overcome a defect in proline biosynthesis from glutamate during pollen development. Proline biosynthesis through P5CS2 and P5

  17. Electrodynamics of Metallic Superconductors

    Directory of Open Access Journals (Sweden)

    M. Dressel

    2013-01-01

    Full Text Available The theoretical and experimental aspects of the microwave, terahertz, and infrared properties of superconductors are discussed. Electrodynamics can provide information about the superconducting condensate as well as about the quasiparticles. The aim is to understand the frequency dependence of the complex conductivity, the change with temperature and time, and its dependence on material parameters. We confine ourselves to conventional metallic superconductors, in particular, Nb and related nitrides and review the seminal papers but also highlight latest developments and recent experimental achievements. The possibility to produce well-defined thin films of metallic superconductors that can be tuned in their properties allows the exploration of fundamental issues, such as the superconductor-insulator transition; furthermore it provides the basis for the development of novel and advanced applications, for instance, superconducting single-photon detectors.

  18. Topological superconductors: a review.

    Science.gov (United States)

    Sato, Masatoshi; Ando, Yoichi

    2017-04-03

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  19. Layered nickel based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Park, Tuson [Los Alamos National Laboratory; Kurita, Nobuyuki [Los Alamos National Laboratory; Klimczuk, T [Los Alamos National Laboratory; Movshovich, R [Los Alamos National Laboratory; Thompson, J D [Los Alamos National Laboratory; Sefat, A S [ORNL; Mandrus, D [ORNL

    2009-01-01

    We review the properties of Ni-based superconductors which contain Ni{sub 2}X{sub 2} (X=As, P, Bi, Si, Ge, B) planes, a common structural element to the recently discovered FeAs superconductors. We also compare the properties ofthe Ni-and Fe-based systems from a perspective ofelectronic structure as well as structure-property relations.

  20. Amino acid substrates impose polyamine, eIF5A, or hypusine requirement for peptide synthesis.

    Science.gov (United States)

    Shin, Byung-Sik; Katoh, Takayuki; Gutierrez, Erik; Kim, Joo-Ran; Suga, Hiroaki; Dever, Thomas E

    2017-08-21

    Whereas ribosomes efficiently catalyze peptide bond synthesis by most amino acids, the imino acid proline is a poor substrate for protein synthesis. Previous studies have shown that the translation factor eIF5A and its bacterial ortholog EF-P bind in the E site of the ribosome where they contact the peptidyl-tRNA in the P site and play a critical role in promoting the synthesis of polyproline peptides. Using misacylated Pro-tRNAPhe and Phe-tRNAPro, we show that the imino acid proline and not tRNAPro imposes the primary eIF5A requirement for polyproline synthesis. Though most proline analogs require eIF5A for efficient peptide synthesis, azetidine-2-caboxylic acid, a more flexible four-membered ring derivative of proline, shows relaxed eIF5A dependency, indicating that the structural rigidity of proline might contribute to the requirement for eIF5A. Finally, we examine the interplay between eIF5A and polyamines in promoting translation elongation. We show that eIF5A can obviate the polyamine requirement for general translation elongation, and that this activity is independent of the conserved hypusine modification on eIF5A. Thus, we propose that the body of eIF5A functionally substitutes for polyamines to promote general protein synthesis and that the hypusine modification on eIF5A is critically important for poor substrates like proline. Published by Oxford University Press on behalf of Nucleic Acids Research 2017.

  1. Continuous lengths of oxide superconductors

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  2. Late protein synthesis-dependent phases in CTA long-term memory: BDNF requirement

    Directory of Open Access Journals (Sweden)

    Araceli eMartínez-Moreno

    2011-09-01

    Full Text Available It has been proposed that long-term memory persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related long-term memory when protein synthesis was inhibited. Our previous studies on the insular cortex (IC, a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA, have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis dependent in different time-windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 hours after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes.

  3. Late Protein Synthesis-Dependent Phases in CTA Long-Term Memory: BDNF Requirement

    Science.gov (United States)

    Martínez-Moreno, Araceli; Rodríguez-Durán, Luis F.; Escobar, Martha L.

    2011-01-01

    It has been proposed that long-term memory (LTM) persistence requires a late protein synthesis-dependent phase, even many hours after memory acquisition. Brain-derived neurotrophic factor (BDNF) is an essential protein synthesis product that has emerged as one of the most potent molecular mediators for long-term synaptic plasticity. Studies in the rat hippocampus have been shown that BDNF is capable to rescue the late-phase of long-term potentiation as well as the hippocampus-related LTM when protein synthesis was inhibited. Our previous studies on the insular cortex (IC), a region of the temporal cortex implicated in the acquisition and storage of conditioned taste aversion (CTA), have demonstrated that intracortical delivery of BDNF reverses the deficit in CTA memory caused by the inhibition of IC protein synthesis due to anisomycin administration during early acquisition. In this work, we first analyze whether CTA memory storage is protein synthesis-dependent in different time windows. We observed that CTA memory become sensible to protein synthesis inhibition 5 and 7 h after acquisition. Then, we explore the effect of BDNF delivery (2 μg/2 μl per side) in the IC during those late protein synthesis-dependent phases. Our results show that BDNF reverses the CTA memory deficit produced by protein synthesis inhibition in both phases. These findings support the notion that recurrent rounds of consolidation-like events take place in the neocortex for maintenance of CTA memory trace and that BDNF is an essential component of these processes. PMID:21960964

  4. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  5. High-Temperature Ceramic Superconductors

    Science.gov (United States)

    1989-07-15

    error quoted above, since the solid state synthesis did not include any standard- ization of the component oxides. When a similar standardization is...included, the errors are about the same, about 1 to 2% for the solid state synthesis . In looking at the error analysis above, it first appears that...while 0.3% total error is required, the solution method and solid state synthesis methods will both fail. This conclusion is not entirely warranted

  6. 373 K Superconductors

    CERN Document Server

    Kostadinov, Ivan Zahariev

    2016-01-01

    Experimental evidence of superconductors with critical temperatures above $373\\:K$ is presented. In a family of different compounds we demonstrate the superconductor state, the transition to normal state above $387\\:K$, an intermediate $242\\:K$ superconductor, susceptibility up to $350\\:K$, $I-V$ curves at $4.2\\:K$ in magnetic field of $12\\:T$ and current up to $60\\:A$, $300\\:K$ Josephson Junctions and Shapiro steps with radiation of $5\\:GHz$ to $21\\:THz$, $300\\:K$ tapes tests with high currents up to $3000\\:A$ and many $THz$ images of coins and washers. Due to a pending patent, the exact chemical characterization and technological processes for these materials are temporarily withheld and will be presented elsewhere.

  7. Lightning in superconductors.

    Science.gov (United States)

    Vestgården, J I; Shantsev, D V; Galperin, Y M; Johansen, T H

    2012-01-01

    Crucially important for application of type-II superconductor films is the stability of the vortex matter--magnetic flux lines penetrating the material. If some vortices get detached from pinning centres, the energy dissipated by their motion will facilitate further depinning, and may trigger a massive electromagnetic breakdown. Up to now, the time-resolved behaviour of these ultra-fast events was essentially unknown. We report numerical simulation results revealing the detailed dynamics during breakdown as within nanoseconds it develops branching structures in the electromagnetic fields and temperature, with striking resemblance of atmospheric lightning. During a dendritic avalanche the superconductor is locally heated above its critical temperature, while electrical fields rise to several kV/m as the front propagates at instant speeds near up to 100 km/s. The numerical approach provides an efficient framework for understanding the ultra-fast coupled non-local dynamics of electromagnetic fields and dissipation in superconductor films.

  8. Bi-based superconductor

    Directory of Open Access Journals (Sweden)

    S E Mousavi

    2009-08-01

    Full Text Available   In this paper, Bi-Sr-Ca-Cu-O (BCSCCO system superconductor is made by the solid state reaction method. The effect of doping Pb, Cd, Sb, Cu and annealing time on the critical temperature and critical current density have been investigated. The microstructure and morphology of the samples have been studied by X-ray diffraction, scanning electron microscope and energy dispersive X-ray. The results show that the fraction of Bi-2223 phase in the Bi- based superconductor, critical temperature and critical current density depend on the annealing temperature, annealing time and the kind and amount of doping .

  9. Physical Vacuum in Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2009-01-01

    Although experiments carried out by Jain et al. showed that the Cooper pairs obey the strong equivalence principle, The measurement of the Cooper pairs inertial mass by Tate et al. revealed an anomalous excess of mass. In the present paper we interpret these experimental results in the framework of an electromagnetic model of dark energy for the superconductors' vacuum. We argue that this physical vacuum is associated with a preferred frame. Ultimately from the conservation of energy for Cooper pairs we derive a model for a variable vacuum speed of light in the superconductors physical vacuum in relation with a possible breaking of the weak equivalence principle for Cooper pairs.

  10. Type synthesis for sensing mechanism of superconductor gravity gradient based on constraint pattern%基于约束线图的超导重力梯度敏感结构型综合

    Institute of Scientific and Technical Information of China (English)

    贾明; 杨功流

    2012-01-01

    基于约束线图对超导重力梯度敏感结构进行型综合,分析轴向分量与交叉分量单独敏感的结构自由度与约束线图,并结合超导重力梯度测量应用提出两分量同时敏感的结构,利用自由度与约束线图确定约束类型,等效为柔性圆柱副,并选择柔性元件进行并联机构形式的布局.在型综合的基础上,通过模态仿真对比,得到两端与柔性球铰联接的刚性杆结构适于在两分量敏感结构中应用的结论.刚度特性仿真分析结果表明两分量敏感结构具有设计运动方向刚度小、寄生运动方向刚度大、运动耦合小的特点,适于在超导重力梯度测量系统中应用.%Based on constraint pattern,the type synthesis for sensing mechanism of superconductor gravity gradient was produced.The independent sensing mechanism of inline or cross component of gravity gradient was analyzed,and the freedoms of motion and constraint pattern of mechanism were deduced.The simultaneous sensing mechanism of two components was presented for the measurement application.The constraint type was determined by the freedoms of motion and constraint pattern and equivalent to flexible cylinder joint,which could be built by flexible elements according to parallel mechanism form.By means of modal emulation,it can be concluded that rigid rod with flexible spherical hinge on two ends of rod is applicable for the sensing mechanism of two components.The stiffness emulation results indicate that the stiffness of design motion is small,the stiffness of parasitic motion is large,and coupling of motions is little.It is proved that the simultaneous sensing mechanism of two components is appropriate for the measurement system of superconductor gravity gradient.

  11. Synthesis methods and character of iron-based mixed-anion superconductor with suppression of the amorphous FeAs impurity phase

    Science.gov (United States)

    Fujioka, Masaya; Ozaki, Toshinori; Okazaki, Hiroyuki; Saleem, Denholme; Deguchi, Keita; Demura, Satoshi; Hara, Hiroshi; Watanabe, Tohru; Takeya, Hiroyuki; Yamaguchi, Takahide; Kumakura, Hiroaki; Takano, Yoshihiko

    2013-03-01

    To obtain the high superconducting properties of polycrystalline SmFeAsO1-xFx, we investigated the following three synthesis methods: a high pressure synthesis, a low temperature synthesis with gradual cooling and a metal added synthesis. Generally, polycrystalline SmFeAsO1-xFx is composed of superconducting grains and a little amorphous FeAs compounds. These areas randomly co-exist and amorphous areas are located between the superconducting grains. Therefore, we suggest that the superconducting current is prevented by the amorphous areas. In fact, although the single crystal of this material shows a large critical current density of 106 A/cm2, polycrystalline SmFeAsO1-xFx shows a significant depression of critical current density due to this grain boundary blocking effect. To obtain a high global critical current density, it is important to investigate how to remove the amorphous FeAs. It is found that the impurity phase of amorphous FeAs is decreased by using the above three synthesis methods.

  12. Synthesis of YBa2Cu3O(7-δ) and Y2BaCuO5 nanocrystalline powders for YBCO superconductors using carbon nanotube templates.

    Science.gov (United States)

    Shi, Yunhua; Hasan, Tawfique; Babu, Nadendla H; Torrisi, Felice; Milana, Silvia; Ferrari, Andrea C; Cardwell, David A

    2012-06-26

    We fabricate nanosized superconducting YBa(2)Cu(3)O(7-δ) (Y-123) and nonsuperconducting Y(2)BaCuO(5) (Y-211) powders using carbon nanotubes as template. The mean particle size of Y-123 and Y-211 is 12 and 30 nm, respectively. The superconducting transition temperature of the Y-123 nanopowder is 90.9 K, similar to that of commercial, micrometer-scale powders fabricated by conventional processing. The elimination of carbon and the formation of a high purity superconducting phase both on the micro- and macroscale is confirmed by Raman spectroscopy and X-ray diffraction. We also demonstrate improvement in the superconducting properties of YBCO single grain bulk samples fabricated using the nanosize Y-211 powder, both in terms of trapped field and critical current density. The former reaches 553 mT at 77 K, with a ∼20% improvement compared to samples fabricated from commercial powders. Thus, our processing method is an effective source of pinning centers in single grain superconductors.

  13. Four gene products are required for the fungal synthesis of the indole-diterpene, paspaline.

    Science.gov (United States)

    Saikia, Sanjay; Parker, Emily J; Koulman, Albert; Scott, Barry

    2006-03-06

    Paspaline belongs to a large, structurally and functionally diverse group of indole-diterpenes synthesized by filamentous fungi. However, the identity of the gene products required for the biosynthesis of paspaline, a key intermediate for the synthesis of paxilline and other indole-diterpenes, is not known. Transfer of constructs containing different pax gene combinations into a paxilline negative deletion derivative of Penicillium paxilli demonstrated that just four proteins, PaxG, a geranylgeranyl diphosphate synthase, PaxM, a FAD-dependent monooxygenase, PaxB, a putative membrane protein, and PaxC, a prenyl transferase, are required for the biosynthesis of paspaline.

  14. Superconductor bearings, flywheels and transportation

    Science.gov (United States)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  15. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  16. Method to improve superconductor cable

    Science.gov (United States)

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  17. Manufacturing of Superconductors

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels

    Superconducting tapes based on the ceramic high temperature superconductor (HTS) is a new promising product for high current applications such as electro-magnets and current transmission cables. The tapes are made by the oxide powder in tube (OPIT) method implying drawing and rolling of silver tu...

  18. A human telomerase holoenzyme protein required for Cajal body localization and telomere synthesis.

    Science.gov (United States)

    Venteicher, Andrew S; Abreu, Eladio B; Meng, Zhaojing; McCann, Kelly E; Terns, Rebecca M; Veenstra, Timothy D; Terns, Michael P; Artandi, Steven E

    2009-01-30

    Telomerase is a ribonucleoprotein (RNP) complex that synthesizes telomere repeats in tissue progenitor cells and cancer cells. Active human telomerase consists of at least three principal subunits, including the telomerase reverse transcriptase, the telomerase RNA (TERC), and dyskerin. Here, we identify a holoenzyme subunit, TCAB1 (telomerase Cajal body protein 1), that is notably enriched in Cajal bodies, nuclear sites of RNP processing that are important for telomerase function. TCAB1 associates with active telomerase enzyme, established telomerase components, and small Cajal body RNAs that are involved in modifying splicing RNAs. Depletion of TCAB1 by using RNA interference prevents TERC from associating with Cajal bodies, disrupts telomerase-telomere association, and abrogates telomere synthesis by telomerase. Thus, TCAB1 controls telomerase trafficking and is required for telomere synthesis in human cancer cells.

  19. EDITORIAL: Focus on Superconductors with Exotic Symmetries FOCUS ON SUPERCONDUCTORS WITH EXOTIC SYMMETRIES

    Science.gov (United States)

    Rice, T. Maurice; Sigrist, Manfred; Maeno, Yoshiteru

    2009-05-01

    Superconductors can usefully be divided into two classes, those that are well described by the classic Bardeen-Cooper-Schrieffer (BCS) theory and its extensions and those which require a different microscopic description. The BCS theory of superconductivity solved the long standing mystery of this spectacular phenomenon and described all superconductors that were known when it was formulated in the 1950s. The key ingredient is an attractive interaction generated by the exchange of phonons between electrons which overcomes a Coulomb repulsion weakened by screening, to give a net attractive force on the low energy scale. In this case the simplest s-wave pairing always maximises the energy gain. There were speculations a little later that other types of electron pairing could be possible, but it took a quarter of a century until the first signs of superconductors with different and exotic pairing appeared. In the intervening thirty years many superconductors with exotic pairing have been and continue to be discovered and the study of their superconductivity has grown into a major subfield of condensed matter physics today. The importance of these exotic superconductors with unconventional symmetry is that their pairing is of electronic origin. As a result they are freed from the restrictions of low transition temperatures that go along with the phonon driven conventional superconductors. However in two of the main classes of the exotic superconductors, namely heavy fermion and organic superconductors, the intrinsic energy scales are very small leading to low temperature scales. The third class contains the small number of superconducting transition metal compounds with exotic pairing symmetry. The most studied of these are the high-Tc cuprates, the newly discovered iron pnictides and strontium ruthenate which is closely related to superfluid 3He. Although the basic electronic structure of these materials is well understood, the origin of the pairing is more complex

  20. Thermodynamic Study of Energy Dissipation in Adiabatic Superconductor Logic

    Science.gov (United States)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2015-09-01

    Because of its extremely high energy efficiency, adiabatic superconductor logic is one of the most promising candidates for the realization of a practical reversible computer. In a previous study, we proposed a logically and physically reversible logic gate using adiabatic superconductor logic, and numerically demonstrated reversible computing. In the numerical calculation, we assumed that the average energy dissipation at finite temperature corresponds to that at zero temperature. However, how the phase difference of a Josephson junction in adiabatic superconductor logic behaves at finite temperature is not yet well understood, and whether thermal noise can induce a nonadiabatic state change remains unclear. In the present study, we investigate energy dissipation in adiabatic superconductor logic at finite temperature through numerical analyses using the Monte Carlo method. We investigate the average and standard deviation of the energy dissipation through both numerical calculation and analytical estimation. Finally, we discuss the minimum energy dissipation required for adiabatic switching operations.

  1. Ambient-pressure organic superconductor

    Science.gov (United States)

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  2. Introduction to Holographic Superconductor Models

    CERN Document Server

    Cai, Rong-Gen; Li, Li-Fang; Yang, Run-Qiu

    2015-01-01

    In the last years it has been shown that some properties of strongly coupled superconductors can be potentially described by classical general relativity living in one higher dimension, which is known as holographic superconductors. This paper gives a quick and introductory overview of some holographic superconductor models with s-wave, p-wave and d-wave orders in the literature from point of view of bottom-up, and summarizes some basic properties of these holographic models in various regimes. The competition and coexistence of these superconductivity orders are also studied in these superconductor models.

  3. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  4. Vortex cutting in superconductors

    Science.gov (United States)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  5. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions

    Science.gov (United States)

    Kleinsasser, A. W.; Barner, J. B.

    1997-01-01

    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  6. Searching for the Genes of Unconventional High Temperature Superconductors

    Science.gov (United States)

    Hu, Jiangping

    In the past, both curates and iron-based superconductors were discovered accidentally. Lacking of successful predictions on new high Tc materials is one of major obstacles to reach a consensus on the high Tc mechanism. In this talk, we discuss two emergent principles, which are called as the correspondence principle and the selective magnetic pairing rule, to unify the understanding of both cuprates and iron-based superconductors. These two principles provide an unified explanation why the d-wave pairing symmetry and the s-wave pairing symmetry are robust respectively in cuprates and iron-based superconductors. In the meanwhile, the above two principles explain the rareness of unconventional high Tc superconductivity, identify necessary electronic environments required for high Tc superconductivity and finally serve as direct guiding rules to search new high Tc materials. We predict that the third family of unconventional high Tc superconductors exist in the compounds which carry two dimensional hexagonal lattices formed by cation-anion trigonal bipyramidal complexes with a d filling configuration on the cation ions. Their superconducting states are expected to be dominated by the d+id pairing symmetry and their maximum Tc should be higher than those of iron-based superconductors. Verifying the prediction can convincingly establish the high Tc superconducting mechanism and pave a way to design new high Tc superconductors

  7. Preparation and characterization of superconductor thin films for application in printed circuit boards

    Energy Technology Data Exchange (ETDEWEB)

    Souza, G.A.; Carvalho, C.L.; Torsoni, G.B.; Rodrigues, V.D.; Souza, E.J.; Zadorosny, R. [UNESP, Ilha Solteira, SP (Brazil). Fac. de Engenharia. Grupo de Desenvolvimento e Aplicacoes de Materiais (GDAM)

    2011-07-01

    Full text: Since the discovery of high temperature superconductors (HTS) many studies have been performed, in terms to discover new materials with higher critical temperature and its potential applications. Technological advances have induced to use superconductor materials in the development of new devices that have higher processing speed, storage capacity and are miniaturized, what may imply in great evolution in the electronic area. Thinking about that advances and looking to supply some requirements, this work proposed to prepare a printed circuit board (PCB) with a superconductor thin film using an inexpensive and conventional photographic method. This work was divided in two steps: synthesis of the precursor solution and film preparation for superconductor printed circuit. In the preparation of superconductor thin film was considered to use the 2223 phase of the BSCCO system, which has been doped with Pb (BPSCCO) for stabilizing the same, and it presents a critical temperature around 110 K. This film was prepared from a precursor solution based on similar method developed by M. P. Pechini. The printed circuit was created by the photographic method of heat transfer which consisted of creation a circuit layout, with different dimensions and printed on photo paper (Epson S041140). The layout was transferred to the FR4 printed copper clad laminate was made with the household clothes iron. The precursor solution was deposited on Si substrate by spin-coating. The control of film thickness was performed by the deposition number that in this case was done five subsequent depositions to obtain an ideal thickness. Between each deposition the film was submitted to calcinations in order to eliminate organic matter. After that the film was submitted a heat treatment around 820 deg C / 5 minutes to obtain the expected superconducting phase and coupling and the grain growth. Film characterizations were made using optical microscopy, XRD and EDX, to check the dimensions and

  8. Testability issues in Superconductor Electronics

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Arun, A.J.

    2004-01-01

    An emerging technology for solutions in high-end applications in computing and telecommunication is superconductor electronics. A system-level study has been carried out to verify the feasibility of DfT in superconductor electronics. In this paper, we present how this can be realized to monitor

  9. Magnetic chains on a triplet superconductor.

    Science.gov (United States)

    Sacramento, P D

    2015-11-11

    The topological state of a two-dimensional triplet superconductor may be changed by an appropriate addition of magnetic impurities. A ferromagnetic magnetic chain at the surface of a superconductor with spin-orbit coupling may eliminate the edge states of a finite system giving rise to localized zero modes at the edges of the chain. The coexistence/competition between the two types of zero modes is considered. The reduction of the system to an effective 1d system gives partial information on the topological properties but the study of the two sets of zero modes requires a two-dimensional treatment. Increasing the impurity density from a magnetic chain to magnetic islands leads to a finite Chern number. At half-filling small concentrations are enough to induce chiral modes.

  10. Bulk MgB2 superconductor with high critical current density synthesized by self-propagating high-temperature synthesis method

    Institute of Scientific and Technical Information of China (English)

    Feng Wang-Jun; Xia Tian-Dong; Liu Tian-Zuo; Zhao Wen-Jun; Wei Zhi-Qiang

    2005-01-01

    Pure MgB2 bulk samples are successfully synthesized by self-propagating high-temperature synthesis (SHS)method. The experiments show that the best preheating temperature is 250℃, the highest Jc values of the prepared MgB2 reach 1.5×106A/cm2 (10K, 0.5T) and 1.7×106A/cm2 (20K, 0T), and the MgB2 particle sizes range from 2 to 5μm. The advantages of this method are that it is simple, economical and suitable for the manufacture of bulk MgB2 materials on industrial scale.

  11. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  12. Superconductor digital electronics: Scalability and energy efficiency issues (Review Article)

    Science.gov (United States)

    Tolpygo, Sergey K.

    2016-05-01

    Superconductor digital electronics using Josephson junctions as ultrafast switches and magnetic-flux encoding of information was proposed over 30 years ago as a sub-terahertz clock frequency alternative to semiconductor electronics based on complementary metal-oxide-semiconductor (CMOS) transistors. Recently, interest in developing superconductor electronics has been renewed due to a search for energy saving solutions in applications related to high-performance computing. The current state of superconductor electronics and fabrication processes are reviewed in order to evaluate whether this electronics is scalable to a very large scale integration (VLSI) required to achieve computation complexities comparable to CMOS processors. A fully planarized process at MIT Lincoln Laboratory, perhaps the most advanced process developed so far for superconductor electronics, is used as an example. The process has nine superconducting layers: eight Nb wiring layers with the minimum feature size of 350 nm, and a thin superconducting layer for making compact high-kinetic-inductance bias inductors. All circuit layers are fully planarized using chemical mechanical planarization (CMP) of SiO2 interlayer dielectric. The physical limitations imposed on the circuit density by Josephson junctions, circuit inductors, shunt and bias resistors, etc., are discussed. Energy dissipation in superconducting circuits is also reviewed in order to estimate whether this technology, which requires cryogenic refrigeration, can be energy efficient. Fabrication process development required for increasing the density of superconductor digital circuits by a factor of ten and achieving densities above 107 Josephson junctions per cm2 is described.

  13. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  14. Antenna applications of superconductors

    Science.gov (United States)

    Hansen, R. C.

    1991-09-01

    The applicability of superconductors to antennas is examined. Potential implementations that are examined are superdirective arrays; electrically small antennas; tuning and matching of these two; high-gain millimeter-wavelength arrays; and kinetic inductance slow wave structures for array phasers and traveling wave array feeds. It is thought that superdirective arrays and small antennas will not benefit directly, but their tuning/matching networks will undergo major improvements. Miniaturization of antennas will not be aided, but much higher gain millimeter-wave arrays will be realizable. Kinetic inductance slow-wave lines appear advantageous for improved array phasers and time delay, as well as for traveling-wave array feeds.

  15. Automatic Synthesis of UML Designs from Requirements in an Iterative Process

    Science.gov (United States)

    Schumann, Johann; Whittle, Jon; Clancy, Daniel (Technical Monitor)

    2001-01-01

    The Unified Modeling Language (UML) is gaining wide popularity for the design of object-oriented systems. UML combines various object-oriented graphical design notations under one common framework. A major factor for the broad acceptance of UML is that it can be conveniently used in a highly iterative, Use Case (or scenario-based) process (although the process is not a part of UML). Here, the (pre-) requirements for the software are specified rather informally as Use Cases and a set of scenarios. A scenario can be seen as an individual trace of a software artifact. Besides first sketches of a class diagram to illustrate the static system breakdown, scenarios are a favorite way of communication with the customer, because scenarios describe concrete interactions between entities and are thus easy to understand. Scenarios with a high level of detail are often expressed as sequence diagrams. Later in the design and implementation stage (elaboration and implementation phases), a design of the system's behavior is often developed as a set of statecharts. From there (and the full-fledged class diagram), actual code development is started. Current commercial UML tools support this phase by providing code generators for class diagrams and statecharts. In practice, it can be observed that the transition from requirements to design to code is a highly iterative process. In this talk, a set of algorithms is presented which perform reasonable synthesis and transformations between different UML notations (sequence diagrams, Object Constraint Language (OCL) constraints, statecharts). More specifically, we will discuss the following transformations: Statechart synthesis, introduction of hierarchy, consistency of modifications, and "design-debugging".

  16. Expression and characterization of streptococcal rgp genes required for rhamnan synthesis in Escherichia coli.

    Science.gov (United States)

    Shibata, Yukie; Yamashita, Yoshihisa; Ozaki, Kazuhisa; Nakano, Yoshio; Koga, Toshihiko

    2002-06-01

    Six genes (rgpA through rgpF) that were involved in assembling the rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans were previously identified (Y. Yamashita, Y. Tsukioka, K. Tomihisa, Y. Nakano, and T. Koga, J. Bacteriol. 180:5803-5807, 1998). The group-specific antigens of Lancefield group A, C, and E streptococci and the polysaccharide antigen of Streptococcus sobrinus have the same rhamnan backbone as the RGP of S. mutans. Escherichia coli harboring plasmid pRGP1 containing all six rgp genes did not synthesize complete RGP. However, E. coli carrying a plasmid with all of the rgp genes except for rgpE synthesized the rhamnan backbone of RGP without glucose side chains, suggesting that in addition to rgpE, another gene is required for glucose side-chain formation. Synthesis of the rhamnan backbone in E. coli required the initiation of transfer of N-acetylglucosamine to a lipid carrier and the expression of the rgpC and rgpD genes encoding the putative ABC transporter specific for RGP. The similarities in RGP synthesis between E. coli and S. mutans suggest common pathways for rhamnan synthesis. Therefore, we evaluated the rhamnosyl polymerization process in E. coli by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the lipooligosaccharide (LOS). An E. coli transformant harboring rgpA produced the LOS modified by the addition of a single rhamnose residue. Furthermore, the rgpA, rgpB, and rgpF genes of pRGP1 were independently mutated by an internal deletion, and the LOS chemotypes of their transformants were examined. The transformant with an rgpA deletion showed the same LOS profile as E. coli without a plasmid. The transformant with an rgpB deletion showed the same LOS profile as E. coli harboring rgpA alone. The transformant with an rgpF deletion showed the LOS band with the most retarded migration. On the basis of these results, we speculated that RgpA, RgpB, and RgpF, in that order, function in rhamnan polymerization.

  17. Expression and Characterization of Streptococcal rgp Genes Required for Rhamnan Synthesis in Escherichia coli†

    Science.gov (United States)

    Shibata, Yukie; Yamashita, Yoshihisa; Ozaki, Kazuhisa; Nakano, Yoshio; Koga, Toshihiko

    2002-01-01

    Six genes (rgpA through rgpF) that were involved in assembling the rhamnose-glucose polysaccharide (RGP) in Streptococcus mutans were previously identified (Y. Yamashita, Y. Tsukioka, K. Tomihisa, Y. Nakano, and T. Koga, J. Bacteriol. 180:5803-5807, 1998). The group-specific antigens of Lancefield group A, C, and E streptococci and the polysaccharide antigen of Streptococcus sobrinus have the same rhamnan backbone as the RGP of S. mutans. Escherichia coli harboring plasmid pRGP1 containing all six rgp genes did not synthesize complete RGP. However, E. coli carrying a plasmid with all of the rgp genes except for rgpE synthesized the rhamnan backbone of RGP without glucose side chains, suggesting that in addition to rgpE, another gene is required for glucose side-chain formation. Synthesis of the rhamnan backbone in E. coli required the initiation of transfer of N-acetylglucosamine to a lipid carrier and the expression of the rgpC and rgpD genes encoding the putative ABC transporter specific for RGP. The similarities in RGP synthesis between E. coli and S. mutans suggest common pathways for rhamnan synthesis. Therefore, we evaluated the rhamnosyl polymerization process in E. coli by high-resolution sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the lipooligosaccharide (LOS). An E. coli transformant harboring rgpA produced the LOS modified by the addition of a single rhamnose residue. Furthermore, the rgpA, rgpB, and rgpF genes of pRGP1 were independently mutated by an internal deletion, and the LOS chemotypes of their transformants were examined. The transformant with an rgpA deletion showed the same LOS profile as E. coli without a plasmid. The transformant with an rgpB deletion showed the same LOS profile as E. coli harboring rgpA alone. The transformant with an rgpF deletion showed the LOS band with the most retarded migration. On the basis of these results, we speculated that RgpA, RgpB, and RgpF, in that order, function in rhamnan polymerization

  18. Flux pinning in superconductors

    CERN Document Server

    Matsushita, Teruo

    2014-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  19. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  20. Materials design for new superconductors.

    Science.gov (United States)

    Norman, M R

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  1. Spin manipulation in nanoscale superconductors.

    Science.gov (United States)

    Beckmann, D

    2016-04-27

    The interplay of superconductivity and magnetism in nanoscale structures has attracted considerable attention in recent years due to the exciting new physics created by the competition of these antagonistic ordering phenomena, and the prospect of exploiting this competition for superconducting spintronics devices. While much of the attention is focused on spin-polarized supercurrents created by the triplet proximity effect, the recent discovery of long range quasiparticle spin transport in high-field superconductors has rekindled interest in spin-dependent nonequilibrium properties of superconductors. In this review, the experimental situation on nonequilibrium spin injection into superconductors is discussed, and open questions and possible future directions of the field are outlined.

  2. Materials design for new superconductors

    Science.gov (United States)

    Norman, M. R.

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  3. Simple One-Step Synthesis and Superconducting Properties of SmFeAsO1-x Fx

    Institute of Scientific and Technical Information of China (English)

    MA Yan-Wei; GAO Zhao-Shun; WANG Lei; QI Yan-Peng; WANG Dong-Liang; ZHANG Xian-Ping

    2009-01-01

    The recent discovery of superconductivity in REFeAsO (RE,rare-earth metal) has generated enormous interest because these materials are the first non-copper oxide superconductors with critical temperatures Tc exceeding 50 K as well as upper critical fields well above 100 T.However,for these new superconductors,very complicated synthesis routes,such as the complex two-step synthesis or high-pressure sintering,are required.Furthermore,there is the toxicity and volatility of arsenic to consider,sometimes a sealed quartz tube of arsenic exploded during annealing.We present a new method for producing high-temperature SmFeAsO1-xFx superconductors by using a one-step sintering process.Superconducting transition with the onset temperature of 54.6 K and high critical fields Hc2 (0) ≥ 200 T were confirmed in SmFeAsO0.7F0.3.At 5 K and at self field,critical current densities Jc estimated from the magnetization hysteresis using the whole sample size and the average particle size have reached 8.5×103 and 1.2×106 A/cm2,respectively.Moreover,Jc exhibited a very weak dependence on magnetic field. This simple and safe one-step synthesis technique should be effective in other rare earth derivatives of iron-based superconductors.

  4. Manufacturing a Superconductor in School.

    Science.gov (United States)

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  5. Superconductor stripes move on

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, J. [Physics Department, Brookhaven National Laboratory, Upton, NY (United States)

    1999-11-01

    Differences in fundamental assumptions are behind much of the controversy among theorists over the cause of high-temperature superconductivity the absence of resistance to electrical current at temperatures as high as 130 K in layered copper-oxide compounds. One common assumption is that the charge carriers are distributed uniformly throughout the all-important CuO{sub 2} layers. However, there is growing experimental evidence that this is not the case and that 'stripes' of charge form in these puzzling materials. Now a significant step forward in the struggle to understand the behaviour of charge carriers in high-temperature superconductors has been made at the Oak Ridge National Laboratory in the US. (UK)

  6. Manufacturing of Superconductors

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels

    Superconducting tapes based on the ceramic high temperature superconductor (HTS) is a new promising product for high current applications such as electro-magnets and current transmission cables. The tapes are made by the oxide powder in tube (OPIT) method implying drawing and rolling of silver...... on the mechanical and thermal processes applied. One of the most crucial processes is probably the flat rolling process, where the round or square wire is rolled to form a thin tape (about 3 mm x 0.2 mm), while the density of the powder fibres increase and the fibres obtain their final geometry. For instance...... rolling a tape to a thickness of 250 µm may give a very high Je, whereas further reduction to 200 µm may be fatal. In the present work the flat rolling process is analysed systematically from a mechanical forming point of view. This work implies · Mechanical characterisation of the plastic parameters...

  7. Development of the superconductors for ITER magnet system

    Science.gov (United States)

    Shikov, A.; Nikulin, A.; Silaev, A.; Vorobieva, A.; Pantsyrnyi, V.; Vedernikov, G.; Salunin, N.; Sudiev, S.

    1998-10-01

    A review is given of the present status of the development and production of Nb 3Sn and Nb-Ti superconductors for the Model Coils and the real Magnet System of the International Thermonuclear Experimental Reactor (ITER) in the Russian Federation Home Team. It is shown that Nb 3Sn bronze processed superconductors produced for the Model Central Solenoid Coil insert meet the ITER joint Central Team requirements. In particular, the critical current density, measued in non-Cu area is not less than 550 A/mm 2 for 12 T at 4.2 K, the level of hysteresis losses is not in excess of 200 mJ/cm 3, and the Cu-stabilizing shell resistivity ratio of Cr-plated wire is 150. Internal tin Nb 3Sn superconductor development and test results are presented, confirming the possibility of their application for the ITER Magnet System winding. Nb-Ti superconductors for PF coils properties have also been considered. The possibility of Nb 3Sn and Nb-Ti superconductor manufacture with the use of large composite billets up to 300 mm in dia is shown, creating the possibility for large scale industrial production (several tens of tons/year) of these materials for the ITER Magnet System.

  8. The LHC's future, part 2: The High-Luminosity superconductor

    CERN Multimedia

    2017-01-01

    The goal of the HL-LHC project is to increase the total number of collisions of the LHC by a factor of 10 . Among the components to be upgraded are the interaction region quadrupole magnets in IP1 and IP5, which will implement a new superconducting technology based on Nb3Sn superconductor. This superconductor will allow reaching magnetic field of about 12 T, but it requires a complex fabrication process which includes heat treatment of the coils to about 650 C and vacuum impregnation with epoxy. In the Superconducting Model Magnets Laboratory (building 927), the Magnet, Superconductors and Cryostats (MSC) group is currently fabricating short models of the final Nb3Sn LHL-LHC quadrupole magnet to verify the magnet design and define fabrication and assembly procedures

  9. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  10. Testable design and testing of high-speed superconductor microelectronics

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Joseph, Arun A.; Heuvelmans, Sander

    2004-01-01

    True software-defined radio cellular base stations require extremely fast data converters, which can not currently be implemented in semiconductor technology. Superconductor niobium-based delta ADCs have shown to be able to perform this task. The problem of testing these devices is a severe task, as

  11. Capsaicin Synthesis Requires in Situ Phenylalanine and Valine Formation in in Vitro Maintained Placentas from Capsicum chinense

    Directory of Open Access Journals (Sweden)

    Fray M. Baas-Espinola

    2016-06-01

    Full Text Available Capsaicinoids (CAP are nitrogenous metabolites formed from valine (Val and phenylalanine (Phe in the placentas of hot Capsicum genotypes. Placentas of Habanero peppers can incorporate inorganic nitrogen into amino acids and have the ability to secure the availability of the required amino acids for CAP biosynthesis. In order to determine the participation of the placental tissue as a supplier of these amino acids, the effects of blocking the synthesis of Val and Phe by using specific enzyme inhibitors were analyzed. Isolated placentas maintained in vitro were used to rule out external sources′ participation. Blocking Phe synthesis, through the inhibition of arogenate dehydratase, significantly decreased CAP accumulation suggesting that at least part of Phe required in this process has to be produced in situ. Chlorsulfuron inhibition of acetolactate synthase, involved in Val synthesis, decreased not only Val accumulation but also that of CAP, pointing out that the requirement for this amino acid can also be fulfilled by this tissue. The presented data demonstrates that CAP accumulation in in vitro maintained placentas can be accomplished through the in situ availability of Val and Phe and suggests that the synthesis of the fatty acid chain moiety may be a limiting factor in the biosynthesis of these alkaloids.

  12. The Timing of Multiple Retrieval Events Can Alter GluR1 Phosphorylation and the Requirement for Protein Synthesis in Fear Memory Reconsolidation

    Science.gov (United States)

    Jarome, Timothy J.; Kwapis, Janine L.; Werner, Craig T.; Parsons, Ryan G.; Gafford, Georgette M.; Helmstetter, Fred J.

    2012-01-01

    Numerous studies have indicated that maintaining a fear memory after retrieval requires de novo protein synthesis. However, no study to date has examined how the temporal dynamics of repeated retrieval events affect this protein synthesis requirement. The present study varied the timing of a second retrieval of an established auditory fear memory…

  13. Requirement of Rad5 for DNA Polymerase ζ-Dependent Translesion Synthesis in Saccharomyces cerevisiae

    Science.gov (United States)

    Pagès, Vincent; Bresson, Anne; Acharya, Narottam; Prakash, Satya; Fuchs, Robert P.; Prakash, Louise

    2008-01-01

    In yeast, Rad6–Rad18-dependent lesion bypass involves translesion synthesis (TLS) by DNA polymerases η or ζ or Rad5-dependent postreplication repair (PRR) in which error-free replication through the DNA lesion occurs by template switching. Rad5 functions in PRR via its two distinct activities—a ubiquitin ligase that promotes Mms2–Ubc13-mediated K63-linked polyubiquitination of PCNA at its lysine 164 residue and a DNA helicase that is specialized for replication fork regression. Both these activities are important for Rad5's ability to function in PRR. Here we provide evidence for the requirement of Rad5 in TLS mediated by Polζ. Using duplex plasmids carrying different site-specific DNA lesions—an abasic site, a cis–syn TT dimer, a (6-4) TT photoproduct, or a G-AAF adduct—we show that Rad5 is needed for Polζ-dependent TLS. Rad5 action in this role is likely to be structural, since neither the inactivation of its ubiquitin ligase activity nor the inactivation of its helicase activity impairs its role in TLS. PMID:18757916

  14. Iron-based superconductors via soft chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Friederichs, Gina Maya

    2015-06-30

    This thesis provides new soft chemistry approaches to Fe-based superconductors. Mild syntheses were demonstrated to be able to overcome difficulties, occurring in conventional synthesis and to enable the access to new metastable phases. A solvent-based metathesis reaction led to β-FeSe exclusively. Contrary to solid state syntheses, the formation of hexagonal α-FeSe could be avoided under mild conditions. The deintercalation of interstitial Fe (by formation of Fe{sub 3}O{sub 4}) could be proven by low temperature O{sub 2}-annealing of Fe{sub 1+x}Te{sub 1-y}Se{sub y}. By using redox (de)intercalations K{sub 1-x}Fe{sub 2-y}Se{sub 2}, metastable Na{sub 1-x}Fe{sub 2-y}As{sub 2} and Na{sub 1-x}((Fe{sub 1-y}Co{sub y}){sub 1-z}As){sub 2} could successfully be obtained at room temperature. The mild synthesis conditions led to compounds like FeSe and K{sub 1-x}Fe{sub 2-y}Se{sub 2} which exhibited different physical properties than found by conventional high temperature methods. In general, the developed (de)intercalation reactions represent a new, universally applicable tool in order to manipulate the structure along with the properties of Fe-based superconductors. The basic structural features of the characteristic FeX{sub 4/4} tetrahedral layers, however, are preserved. Soft chemistry syntheses have been shown to allow the formation of a variety of phases, like Na{sub 1-x}Fe{sub 2-y}As{sub 2}, Na{sub 1-x}((Fe{sub 1-y}Co{sub y}){sub 1-z}As){sub 2} and K{sub 1-x}Fe{sub 2-y}Se{sub 2}. Hence, especially low temperature approaches may enable the realization of complex stacking sequences, potentially leading to the fulfillment of the greatest goal in the research of superconductors - room temperature superconductivity.

  15. Social Recognition Memory Requires Two Stages of Protein Synthesis in Mice

    Science.gov (United States)

    Wolf, Gerald; Engelmann, Mario; Richter, Karin

    2005-01-01

    Olfactory recognition memory was tested in adult male mice using a social discrimination task. The testing was conducted to begin to characterize the role of protein synthesis and the specific brain regions associated with activity in this task. Long-term olfactory recognition memory was blocked when the protein synthesis inhibitor anisomycin was…

  16. Wax ester synthesis is required for Mycobacterium tuberculosis to enter in vitro dormancy.

    Directory of Open Access Journals (Sweden)

    Tatiana D Sirakova

    Full Text Available Mycobacterium tuberculosis (Mtb is known to produce wax esters (WE when subjected to stress. However, nothing is known about the enzymes involved in biosynthesis of WE and their role in mycobacterial dormancy. We report that two putative Mtb fatty acyl-CoA reductase genes (fcr expressed in E. coli display catalytic reduction of fatty acyl-CoA to fatty aldehyde and fatty alcohol. Both enzymes (FCR1/Rv3391 and FCR2/Rv1543 showed a requirement for NADPH as the reductant, a preference for oleoyl-CoA over saturated fatty acyl-CoA and were inhibited by thiol-directed reagents. We generated Mtb gene-knockout mutants for each reductase. Metabolic incorporation of( 14C-oleate into fatty alcohols and WE was severely diminished in the mutants under dormancy-inducing stress conditions that are thought to be encountered by the pathogen in the host. The fatty acyl-CoA reductase activity in cell lysates of the mutants under nitric oxide stress was significantly reduced when compared with the wild type. Complementation restored the lost activity completely in the Δfcr1 mutant and partially in the Δfcr2 mutant. WE synthesis was inhibited in both Δfcr mutants. The Δfcr mutants exhibited faster growth rates, an increased uptake of (14C-glycerol suggesting increased permeability of the cell wall, increased metabolic activity levels and impaired phenotypic antibiotic tolerance under dormancy-inducing combined multiple stress conditions. Complementation of the mutants did not restore the development of antibiotic tolerance to wild-type levels. Transcript analysis of Δfcr mutants showed upregulation of genes involved in energy generation and transcription, indicating the inability of the mutants to become dormant. Our results indicate that the fcr1 and fcr2 gene products are involved in WE synthesis under in vitro dormancy-inducing conditions and that WE play a critical role in reaching a dormant state. Drugs targeted against the Mtb reductases may inhibit its

  17. Process for fabricating continuous lengths of superconductor

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    1998-01-01

    A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.

  18. Ferromagnet / superconductor oxide superlattices

    Science.gov (United States)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  19. Gravitoelectromagnetism and Dark Energy in Superconductors

    CERN Document Server

    De Matos, C J

    2006-01-01

    A gravitomagnetic analogue of the London moment in superconductors can explain the anomalous Cooper pair mass excess reported by Janet Tate. Ultimately the gravitomagnetic London moment is attributed to the breaking of the principle of general covariance in superconductors. This naturally implies non-conservation of classical energy-momentum. Possible relation with the manifestation of dark energy in superconductors is questioned.

  20. DNA polymerase delta, RFC and PCNA are required for repair synthesis of large looped heteroduplexes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Corrette-Bennett, Stephanie E; Borgeson, Claudia; Sommer, Debbie; Burgers, Peter M J; Lahue, Robert S

    2004-01-01

    Small looped mispairs are corrected by DNA mismatch repair (MMR). In addition, a distinct process called large loop repair (LLR) corrects loops up to several hundred nucleotides in extracts of bacteria, yeast or human cells. Although LLR activity can be readily demonstrated, there has been little progress in identifying its protein components. This study identified some of the yeast proteins responsible for DNA repair synthesis during LLR. Polyclonal antisera to either Pol31 or Pol32 subunits of polymerase delta efficiently inhibited LLR in extracts by blocking repair just prior to gap filling. Gap filling was inhibited regardless of whether the loop was retained or removed. These experiments suggest polymerase delta is uniquely required in yeast extracts for LLR-associated synthesis. Similar results were obtained with antisera to the clamp loader proteins Rfc3 and Rfc4, and to PCNA, i.e. LLR was inhibited just prior to gap filling for both loop removal and loop retention. Thus PCNA and RFC seem to act in LLR only during repair synthesis, in contrast to their roles at both pre- and post-excision steps of MMR. These biochemical experiments support the idea that yeast polymerase delta, RFC and PCNA are required for large loop DNA repair synthesis.

  1. Multistrand superconductor cable

    Science.gov (United States)

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  2. Terahertz Detection with Twin Superconductor-Insulator-Superconductor Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Jing; WANG Ming-Jye; SHI Sheng-Cai; Hiroshi Mat-suo

    2007-01-01

    Terahertz detection with twin superconductor-insulator-superconductor (SIS) tunnel junctions, which are connected in parallel via an inductive thin-film superconducting microstrip line, is mainly studied. Firstly, we investigate the direct-detection response of a superconducting twin-junction device by means of a Fourier transform spectrometer. Secondly, we construct a direct-detection model of twin SIS tunnel junctions. The superconducting twin-junction device is then simulated in terms of the constructed model. The simulation result is found to be in good agreement with the measured one. In addition, we observe that the direct-detection response of the device is consistent with the noise temperature behaviour.

  3. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  4. Superconductor stability, 1983: a review

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1983-01-01

    Three main topics have been discussed in this paper, namely, internally cooled superconductors, cooling by superfluid helium, and metastable magnets. The discussion of each has centered around a dominant idea, and it is fitting to highlight these ideas by way of conclusion. With regard to internally cooled superconductors, most of what we have learned in the last few years centers on the strong motion caused by the thermal expansion of helium. How naive were our early calculations that treated the helium as though it were incompressible. Our discussion of He-II was organized around the Gorter-Mellink relation and the solutions of the nonlinear diffusion equation it gives rise to. And our discussion of metastable magnets revolved around the fruitful concept of the MPZ. These three ideas are sturdy trunks that support much of the thought about superconductor stability that has flowered in the past several years.

  5. Cycloheximide prevents the de novo polypeptide synthesis required to recover from acetylene inhibition in Nitrosopumilus maritimus.

    Science.gov (United States)

    Vajrala, Neeraja; Bottomley, Peter J; Stahl, David A; Arp, Daniel J; Sayavedra-Soto, Luis A

    2014-06-01

    Developing methods to differentiate the relative contributions of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) to ammonia (NH3) oxidation has been challenging due to the lack of compounds that selectively inhibit AOA. In this study, we investigated the effects of specific bacteria- and eukaryote-selective protein synthesis inhibitors on the recovery of acetylene (C2H2)-inactivated NH3 oxidation in the marine AOA Nitrosopumilus maritimus and compared the results with recovery of the AOB Nitrosomonas europaea. C2 H2 irreversibly inhibited N. maritimus NH3 oxidation in a similar manner to what was observed previously with N. europaea. However, cycloheximide (CHX), a widely used eukaryotic protein synthesis inhibitor, but not bacteria-specific protein synthesis inhibitors (kanamycin and gentamycin), inhibited the recovery of NH3-oxidizing activity in N. maritimus. CHX prevented the incorporation of (14)CO2 -labeling into cellular proteins, providing further evidence that CHX acts as a protein synthesis inhibitor in N. maritimus. If the effect of CHX on protein synthesis can be confirmed among other isolates of AOA, the combination of C2H2 inactivation followed by recovery of NH3 oxidation either in the presence of bacteria-selective protein synthesis inhibitors or CHX might be used to estimate the relative contributions of AOB and AOA to NH3 oxidation in natural environments.

  6. Topological surface states in nodal superconductors.

    Science.gov (United States)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  7. Apparatus for fabricating continuous lengths of superconductor

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2002-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  8. Towards identifying nurse educator competencies required for simulation-based learning: A systemised rapid review and synthesis

    DEFF Research Database (Denmark)

    Bøje, Rikke Buus; Topping, Annie; Rekola, Leena;

    2015-01-01

    Objectives: This paper presents the results of a systemised rapid reviewand synthesis of the literature undertaken to identify competencies required by nurse educators to facilitate simulation-based learning (SBL). Design: An international collaboration undertook a protocol-based search, retrieval...... and designing simulations, facilitating learning in “safe” environments, expert nursing knowledge based on credible clinical realism, reference to evidence-based knowledge and demonstration of professional values and identity. Conclusions: This review derived a preliminary competency framework. This needs...

  9. Holographic Multi-Band Superconductor

    CERN Document Server

    Huang, Ching-Yu; Maity, Debaprasad

    2011-01-01

    We propose a gravity dual for the holographic superconductor with multi-band carriers. Moreover, the currents of these carriers are unified under a global non-Abelian symmetry, which is dual to the bulk non-Abelian gauge symmetry. We study the phase diagram of our model, and find it qualitatively agrees with the one for the realistic 2-band superconductor, such as MgB2. We also evaluate the holographic conductivities and find the expected mean-field like behaviors in some cases. However, for a wide range of the parameter space, we also find the non-mean-field like behavior with negative conductivities.

  10. High temperature superconductor current leads

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  11. Terahertz Spectroscopy of Novel Superconductors

    Directory of Open Access Journals (Sweden)

    Stefano Lupi

    2011-01-01

    Full Text Available Through the coupling of Synchrotron Radiation and Michelson interferometry, one may obtain in the terahertz (THz range transmittance and reflectivity spectra with a signal-to-noise ratio (S/N up to 103. In this paper we review the application of this spectroscopic technique to novel superconductors with an increasing degree of complexity: the single-gap boron-doped diamond; the isotropic multiband V3Si, where superconductivity opens two gaps at the Fermi energy; the CaAlSi superconductor, isostructural to MgB2, with a single gap in the hexagonal ab plane and two gaps along the orthogonal c axis.

  12. Topological Aspects of Triplet Superconductors

    Institute of Scientific and Technical Information of China (English)

    REN Ji-Rong; XU Dong-Hui; ZHANG Xin-Hui; LI Ran

    2007-01-01

    In this paper, using the φ-mapping theory, it is shown that two kinds of topological defects, i.e., the vortex lines and the monopoles exist in the helical configuration of magnetic field in triplet superconductors. And the inner topological structure of these defects is studied. Because the knot solitons in the triplet superconductors are characterized by the Hopf invariant, we also establish a relationship between the Hopf invariant and the linking number of knots family,and reveal the inner topological structure of the Hopf invariant.

  13. Holographic superconductors without translational symmetry

    CERN Document Server

    Zeng, Hua Bi

    2014-01-01

    A holographic superconductor is constructed in the background of a massive gravity theory. In the normal state without condensation, the conductivity exhibits a Drude peak that approaches a delta function in the massless gravity limit as studied by David Vegh. In the superconducting state, besides the infinite DC conductivity, the AC conductivity has Drude behavior at low frequency followed by a power law-fall. These results are in agreement with that found earlier by Horowitz and Santos, who studied a holographic superconductor with an implicit periodic potential beyond the probe limit. The results also agree with measurements on some cuprates.

  14. Highly oxidized superconductors

    Science.gov (United States)

    Morris, Donald E.

    1994-01-01

    Novel superconducting materials in the form of compounds, structures or phases are formed by performing otherwise known syntheses in a highly oxidizing atmosphere rather than that created by molecular oxygen at atmospheric pressure or below. This leads to the successful synthesis of novel superconducting compounds which are thermodynamically stable at the conditions under which they are formed.

  15. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  16. Nature of the superconductor-insulator transition in disordered superconductors.

    Science.gov (United States)

    Dubi, Yonatan; Meir, Yigal; Avishai, Yshai

    2007-10-18

    The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors.

  17. A novel heat engine for magnetizing superconductors

    Science.gov (United States)

    Coombs, T. A.; Hong, Z.; Zhu, X.; Krabbes, G.

    2008-03-01

    The potential of bulk melt-processed YBCO single domains to trap significant magnetic fields (Tomita and Murakami 2003 Nature 421 517-20 Fuchs et al 2000 Appl. Phys. Lett. 76 2107-9) at cryogenic temperatures makes them particularly attractive for a variety of engineering applications including superconducting magnets, magnetic bearings and motors (Coombs et al 1999 IEEE Trans. Appl. Supercond. 9 968-71 Coombs et al 2005 IEEE Trans. Appl. Supercond. 15 2312-5). It has already been shown that large fields can be obtained in single domain samples at 77 K. A range of possible applications exist in the design of high power density electric motors (Jiang et al 2006 Supercond. Sci. Technol. 19 1164-8). Before such devices can be created a major problem needs to be overcome. Even though all of these devices use a superconductor in the role of a permanent magnet and even though the superconductor can trap potentially huge magnetic fields (greater than 10 T) the problem is how to induce the magnetic fields. There are four possible known methods: (1) cooling in field; (2) zero field cooling, followed by slowly applied field; (3) pulse magnetization; (4) flux pumping. Any of these methods could be used to magnetize the superconductor and this may be done either in situ or ex situ. Ideally the superconductors are magnetized in situ. There are several reasons for this: first, if the superconductors should become demagnetized through (i) flux creep, (ii) repeatedly applied perpendicular fields (Vanderbemden et al 2007 Phys. Rev. B 75 (17)) or (iii) by loss of cooling then they may be re-magnetized without the need to disassemble the machine; secondly, there are difficulties with handling very strongly magnetized material at cryogenic temperatures when assembling the machine; thirdly, ex situ methods would require the machine to be assembled both cold and pre-magnetized and would offer significant design difficulties. Until room temperature superconductors can be prepared, the

  18. A novel heat engine for magnetizing superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T A; Hong, Z; Zhu, X [Cambridge University Engineering Department, Trumpington Street, CB2 1PZ (United Kingdom); Krabbes, G [IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2008-03-01

    The potential of bulk melt-processed YBCO single domains to trap significant magnetic fields (Tomita and Murakami 2003 Nature 421 517-20; Fuchs et al 2000 Appl. Phys. Lett. 76 2107-9) at cryogenic temperatures makes them particularly attractive for a variety of engineering applications including superconducting magnets, magnetic bearings and motors (Coombs et al 1999 IEEE Trans. Appl. Supercond. 9 968-71; Coombs et al 2005 IEEE Trans. Appl. Supercond. 15 2312-5). It has already been shown that large fields can be obtained in single domain samples at 77 K. A range of possible applications exist in the design of high power density electric motors (Jiang et al 2006 Supercond. Sci. Technol. 19 1164-8). Before such devices can be created a major problem needs to be overcome. Even though all of these devices use a superconductor in the role of a permanent magnet and even though the superconductor can trap potentially huge magnetic fields (greater than 10 T) the problem is how to induce the magnetic fields. There are four possible known methods: (1) cooling in field; (2) zero field cooling, followed by slowly applied field; (3) pulse magnetization; (4) flux pumping. Any of these methods could be used to magnetize the superconductor and this may be done either in situ or ex situ. Ideally the superconductors are magnetized in situ. There are several reasons for this: first, if the superconductors should become demagnetized through (i) flux creep, (ii) repeatedly applied perpendicular fields (Vanderbemden et al 2007 Phys. Rev. B 75 (17)) or (iii) by loss of cooling then they may be re-magnetized without the need to disassemble the machine; secondly, there are difficulties with handling very strongly magnetized material at cryogenic temperatures when assembling the machine; thirdly, ex situ methods would require the machine to be assembled both cold and pre-magnetized and would offer significant design difficulties. Until room temperature superconductors can be prepared, the

  19. Development of Strengthened Bundle High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Demko, J.A. [Oak Ridge Inst. for Science and Education, TN (United States); Tomsic, M. [Plastronic, Inc., Troy, OH (United States); Sinha, U. [Southwire Company, Carollton, GA (United States)

    1997-12-31

    In the process of developing high temperature superconducting (HTS) transmission cables, it was found that mechanical strength of the superconducting tape is the most crucial property that needs to be improved. It is also desirable to increase the current carrying capacity of the conductor so that fewer layers are needed to make the kilo-amp class cables required for electric utility usage. A process has been developed by encapsulating a stack of Bi-2223/Ag tapes with a silver or non-silver sheath to form a strengthened bundle superconductor. This process was applied to HTS tapes made by the Continuous Tube Forming and Filling (CTFF) technique pursued by Plastronic Inc. and HTS tapes obtained from other manufacturers. Conductors with a bundle of 2 to 6 HTS tapes have been made. The bundled conductor is greatly strengthened by the non-silver sheath. No superconductor degradation as compared to the sum of the original critical currents of the individual tapes was seen on the finished conductors.

  20. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  1. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  2. Development of superconductor application technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G. W.; Kim, C. J.; Lee, H. G.; Lee, H. J.; Kim, K. B.; Won, D. Y.; Jang, K. I.; Kwon, S. C.; Kim, W. J.; Ji, Y. A.; Yang, S. W.; Kim, W. K.; Park, S. D.; Lee, M. H.; Lee, D. M.; Park, H. W.; Yu, J. K.; Lee, I. S.; Kim, J. J.; Choi, H. S.; Chu, Y.; Kim, Y. S.; Kim, D. H.

    1997-09-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs.

  3. High temperature superconductors for magnetic suspension applications

    Science.gov (United States)

    Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.

    1994-01-01

    High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.

  4. High temperature superconductor materials and applications

    Science.gov (United States)

    Doane, George B., III. (Editor); Banks, Curtis; Golben, John

    1991-01-01

    One of the areas concerned itself with the investigation of the phenomena involved in formulating and making in the laboratory new and better superconductor material with enhanced values of critical current and temperature. Of special interest were the chemistry, physical processes, and environment required to attain these enhanced desirable characteristics. The other area concerned itself with producing high temperature superconducting thin films by pulsed laser deposition techniques. Such films are potentially very useful in the detection of very low power signals. To perform this research high vacuum is required. In the course of this effort, older vacuum chambers were maintained and used. In addition, a new facility is being brought on line. This latter activity has been replete with the usual problems of bringing a new facility into service. Some of the problems are covered in the main body of this report.

  5. Dendritic BDNF synthesis is required for late-phase spine maturation and recovery of cortical responses following sensory deprivation.

    Science.gov (United States)

    Kaneko, Megumi; Xie, Yuxiang; An, Juan Ji; Stryker, Michael P; Xu, Baoji

    2012-04-04

    Sensory experience in early postnatal life shapes neuronal connections in the brain. Here we report that the local synthesis of brain-derived neurotrophic factor (BDNF) in dendrites plays an important role in this process. We found that dendritic spines of layer 2/3 pyramidal neurons of the visual cortex in mutant mice lacking dendritic Bdnf mRNA and thus local BDNF synthesis were normal at 3 weeks of age, but thinner, longer, and more closely spaced (morphological features of immaturity) at 4 months of age than in wild-type (WT) littermates. Layer 2/3 of the visual cortex in these mutant animals also had fewer GABAergic presynaptic terminals at both ages. The overall size and shape of dendritic arbors were, however, similar in mutant and WT mice at both ages. By using optical imaging of intrinsic signals and single-unit recordings, we found that mutant animals failed to recover cortical responsiveness following monocular deprivation (MD) during the critical period, although they displayed normally the competitive loss of responsiveness to an eye briefly deprived of vision. Furthermore, MD still induced a loss of responsiveness to the closed eye in adult mutant mice, but not in adult WT mice. These results indicate that dendritic BDNF synthesis is required for spine pruning, late-phase spine maturation, and recovery of cortical responsiveness following sensory deprivation. They also suggest that maturation of dendritic spines is required for the maintenance of cortical responsiveness following sensory deprivation in adulthood.

  6. Identifying the genes of unconventional high temperature superconductors.

    Science.gov (United States)

    Hu, Jiangping

    We elucidate a recently emergent framework in unifying the two families of high temperature (high [Formula: see text]) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the former to realize robust extended s-wave pairing symmetries in a square lattice. The unification identifies that the key ingredients (gene) of high [Formula: see text] superconductors is a quasi two dimensional electronic environment in which the d-orbitals of cations that participate in strong in-plane couplings to the p-orbitals of anions are isolated near Fermi energy. With this gene, the superexchange magnetic interactions mediated by anions could maximize their contributions to superconductivity. Creating the gene requires special arrangements between local electronic structures and crystal lattice structures. The speciality explains why high [Formula: see text] superconductors are so rare. An explicit prediction is made to realize high [Formula: see text] superconductivity in Co/Ni-based materials with a quasi two dimensional hexagonal lattice structure formed by trigonal bipyramidal complexes.

  7. Bottlenecks reduction using superconductors in high voltage transmission lines

    Directory of Open Access Journals (Sweden)

    Daloub Labib

    2016-01-01

    Full Text Available Energy flow bottlenecks in high voltage transmission lines known as congestions are one of the challenges facing power utilities in fast developing countries. Bottlenecks occur in selected power lines when transmission systems are operated at or beyond their transfer limits. In these cases, congestions result in preventing new power supply contracts, infeasibility in existing contracts, price spike and market power abuse. The “Superconductor Technology” in electric power transmission cables has been used as a solution to solve the problem of bottlenecks in energy transmission at high voltage underground cables and overhead lines. The increase in demand on power generation and transmission happening due to fast development and linked to the intensive usage of transmission network in certain points, which in turn, lead to often frequent congestion in getting the required power across to where it is needed. In this paper, a bottleneck in high voltage double overhead transmission line with Aluminum Conductor Steel Reinforced was modeled using conductor parameters and replaced by Gap-Type Superconductor to assess the benefit of upgrading to higher temperature superconductor and obtain higher current carrying capacity. This proved to reduce the high loading of traditional aluminum conductors and allow more power transfer over the line using superconductor within the same existing right-of-way, steel towers, insulators and fittings, thus reducing the upgrade cost of building new lines.

  8. BDNF stimulation of protein synthesis in cortical neurons requires the MAP kinase-interacting kinase MNK1.

    Science.gov (United States)

    Genheden, Maja; Kenney, Justin W; Johnston, Harvey E; Manousopoulou, Antigoni; Garbis, Spiros D; Proud, Christopher G

    2015-01-21

    Although the MAP kinase-interacting kinases (MNKs) have been known for >15 years, their roles in the regulation of protein synthesis have remained obscure. Here, we explore the involvement of the MNKs in brain-derived neurotrophic factor (BDNF)-stimulated protein synthesis in cortical neurons from mice. Using a combination of pharmacological and genetic approaches, we show that BDNF-induced upregulation of protein synthesis requires MEK/ERK signaling and the downstream kinase, MNK1, which phosphorylates eukaryotic initiation factor (eIF) 4E. Translation initiation is mediated by the interaction of eIF4E with the m(7)GTP cap of mRNA and with eIF4G. The latter interaction is inhibited by the interactions of eIF4E with partner proteins, such as CYFIP1, which acts as a translational repressor. We find that BDNF induces the release of CYFIP1 from eIF4E, and that this depends on MNK1. Finally, using a novel combination of BONCAT and SILAC, we identify a subset of proteins whose synthesis is upregulated by BDNF signaling via MNK1 in neurons. Interestingly, this subset of MNK1-sensitive proteins is enriched for functions involved in neurotransmission and synaptic plasticity. Additionally, we find significant overlap between our subset of proteins whose synthesis is regulated by MNK1 and those encoded by known FMRP-binding mRNAs. Together, our data implicate MNK1 as a key component of BDNF-mediated translational regulation in neurons.

  9. Taurine homeostasis requires de novo synthesis via cysteine sulfinic acid decarboxylase during zebrafish early embryogenesis.

    Science.gov (United States)

    Chang, Yen-Chia; Ding, Shih-Torng; Lee, Yen-Hua; Wang, Ya-Ching; Huang, Ming-Feng; Liu, I-Hsuan

    2013-02-01

    Cysteine sulfinic acid decarboxylase (Csad) is the rate-limiting enzyme in the de novo biosynthesis of taurine. There are a number of physiological roles of taurine, such as bile salt synthesis, osmoregulation, lipid metabolism, and oxidative stress inhibition. To investigate the role of de novo synthesis of taurine during embryonic development, zebrafish csad was cloned and functionally analyzed. Semi-quantitative RT-PCR showed that csad transcripts are maternally deposited, while whole-mount in situ hybridization demonstrated that csad is expressed in yolk syncytial layer and various embryonic tissues such as notochord, brain, retina, pronephric duct, liver, and pancreas. Knockdown of csad significantly reduced the embryonic taurine level, and the affected embryos had increased early mortality and cardiac anomalies. mRNA coinjection and taurine supplementation rescued the cardiac phenotypes suggesting that taurine originating from the de novo synthesis pathway plays a role in cardiac development. Our findings indicated that the de novo synthesis pathway via Csad plays a critical role in taurine homeostasis and cardiac development in zebrafish early embryos.

  10. Reconsolidation of a Context Long-Term Memory in the Terrestrial Snail Requires Protein Synthesis

    Science.gov (United States)

    Gainutdinova, Tatiana H.; Tagirova, Rosa R.; Ismailova, Asja I.; Muranova, Lyudmila N.; Samarova, Elena I.; Gainutdinov, Khalil L.; Balaban, Pavel M.

    2005-01-01

    We investigated the influence of the protein synthesis blocker anisomycin on contextual memory in the terrestrial snail "Helix." Prior to the training session, the behavioral responses in two contexts were similar. Two days after a session of electric shocks (5 d) in one context only, the context conditioning was observed as the significant…

  11. Directional resolution of head-related transfer functions required in binaural synthesis

    DEFF Research Database (Denmark)

    Minnaar, Pauli; Plogsties, Jan; Christensen, Flemming

    2005-01-01

    In binaural synthesis a virtual sound source is implemented by convolving an anechoic signal with a pair of head-related transfer functions (HRTFs). In order to represent all possible directions of the sound source with respect to the listener a discrete number of HRTFs are measured...

  12. Josephson Current in Superconductor-Ferromagnet/Insulator/d-Wave Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei; DONG Zheng-Chao

    2005-01-01

    Solving the Bogoliubov-de Gennes equation, the energy levels of bound states are obtained in the ferromagnetic superconductor. The Josephson currents in a ferromagnetic superconductor/Insulator/d-wave superconductor junction are calculated as a function of the exchange field, temperature, and insulating barrier strength. It is found that the Josephson critical current is always suppressed by the presence of exchange field h and depends on crystalline axis orientation of d-wave superconductor.

  13. Thermal Analysis for the Recovery and Quenching of Disturbed Composite Superconductors.

    Science.gov (United States)

    Seol, Seoung Yun

    Thermal stability is one of the major issues in the design and operation of superconducting devices. Due to a thermal disturbance, the superconductor may experience a transition from the superconducting state to the normal resistive state, a phenomenon known as quenching. The high electrical resistivity of normal state superconductor contribute to an excessive amount of heat generation which may cause an irrecoverable damage. In a composite superconductor, a stabilizer is provided to alleviate the problem through a current sharing process. For a low disturbance energy, the conductor can reinstate its superconducting state. However for a large disturbance energy, irrecoverable quenching still occurs. The critical energy is referred to a maximum energy required to initiate quenching. The one-dimensional heat balance equation based on the assumption of uniform cross-sectional temperature distribution has been used to calculate the critical energy in previous studies. Cryogenic stability criterion and the Minimum Propagation Zone (MPZ) theory have been typical tools to analyze the stability of composite superconductors. The present study investigates the effect of non -uniform temperature distribution in a cross-section of a composite superconductor. Mathematical models of current sharing and Joule heat generation in the superconductor and the stabilizer are formulated. The transient solution by finite-difference method reveals the scenario of the behavior of the conductor, starting from the deposition of initial disturbance energy, current sharing, quenching, and possible recovery of superconductivity. The analytical solutions of the critical energies in the superconductor and the stabilizer are also obtained for special geometries, such as a tape/film superconductor sandwiched between two stabilizers, and a wire superconductor imbedded in a stabilizer. Based on the analytical calculation of the critical energies, a new stability criterion for the composite

  14. Iron-Based Superconductors as Odd-Parity Superconductors

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-07-01

    Full Text Available Parity is a fundamental quantum number used to classify a state of matter. Materials rarely possess ground states with odd parity. We show that the superconducting state in iron-based superconductors is classified as an odd-parity s-wave spin-singlet pairing state in a single trilayer FeAs/Se, the building block of the materials. In a low-energy effective model constructed on the Fe square bipartite lattice, the superconducting order parameter in this state is a combination of an s-wave normal pairing between two sublattices and an s-wave η pairing within the sublattices. The state has a fingerprint with a real-space sign inversion between the top and bottom As/Se layers. The results suggest that iron-based superconductors are a new quantum state of matter, and the measurement of the odd parity can help to establish high-temperature superconducting mechanisms.

  15. Current status of iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kamihara, Yoichi, E-mail: kamihara_yoichi@appi.keio.ac.jp [Keio University, Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology (Japan)

    2012-03-15

    Current status of iron-based superconductors is summarized. Although short range magnetic ordering and magnetic phase separation of Fe are controversial, (long range) magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type. Antiferromagnetic ordering of itinerant Fe does not coexist with superconducting phase of SmFeAsO{sub 1 - x}F{sub x}. The very large H{sub c2} of iron-based superconductors attract us to attempts at applications.

  16. Current status of iron-based superconductors

    Science.gov (United States)

    Kamihara, Yoichi

    2012-03-01

    Current status of iron-based superconductors is summarized. Although short range magnetic ordering and magnetic phase separation of Fe are controversial, (long range) magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type. Antiferromagnetic ordering of itinerant Fe does not coexist with superconducting phase of SmFeAsO1 - xFx. The very large H c2 of iron-based superconductors attract us to attempts at applications.

  17. A Road Towards High Temperature Superconductors

    Science.gov (United States)

    2013-08-01

    AFRL-AFOSR-UK-TR-2013-0040 A Road Towards High Temperature Superconductors Guy Deutscher Tel Aviv University Research... Superconductors 5a. CONTRACT NUMBER FA8655-10-1-3011 5b. GRANT NUMBER Grant 10-3011 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...issue in trying to make useful high temperature superconductors is obviously to discover superconductivity at higher temperatures. But there is also

  18. Holographic complexity in gauge/string superconductors

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2016-05-01

    Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T

  19. Arabidopsis CHL27, located in both envelope and thylakoid membranes, is required for the synthesis of protochlorophyllide.

    Science.gov (United States)

    Tottey, Stephen; Block, Maryse A; Allen, Michael; Westergren, Tomas; Albrieux, Catherine; Scheller, Henrik V; Merchant, Sabeeha; Jensen, Poul Erik

    2003-12-23

    CHL27, the Arabidopsis homologue to Chlamydomonas Crd1, a plastid-localized putative diiron protein, is required for the synthesis of protochlorophyllide and therefore is a candidate subunit of the aerobic cyclase in chlorophyll biosynthesis. delta-Aminolevulinic acid-fed antisense Arabidopsis plants with reduced amounts of Crd1/CHL27 accumulate Mg-protoporphyrin IX monomethyl ester, the substrate of the cyclase reaction. Mutant plants have chlorotic leaves with reduced abundance of all chlorophyll proteins. Fractionation of Arabidopsis chloroplast membranes shows that Crd1/CHL27 is equally distributed on a membrane-weight basis in the thylakoid and inner-envelope membranes.

  20. Recent progress on carbon-based superconductors.

    Science.gov (United States)

    Kubozono, Yoshihiro; Eguchi, Ritsuko; Goto, Hidenori; Hamao, Shino; Kambe, Takashi; Terao, Takahiro; Nishiyama, Saki; Zheng, Lu; Miao, Xiao; Okamoto, Hideki

    2016-08-24

    This article reviews new superconducting phases of carbon-based materials. During the past decade, new carbon-based superconductors have been extensively developed through the use of intercalation chemistry, electrostatic carrier doping, and surface-proving techniques. The superconducting transition temperature T c of these materials has been rapidly elevated, and the variety of superconductors has been increased. This review fully introduces graphite, graphene, and hydrocarbon superconductors and future perspectives of high-T c superconductors based on these materials, including present problems. Carbon-based superconductors show various types of interesting behavior, such as a positive pressure dependence of T c. At present, experimental information on superconductors is still insufficient, and theoretical treatment is also incomplete. In particular, experimental results are still lacking for graphene and hydrocarbon superconductors. Therefore, it is very important to review experimental results in detail and introduce theoretical approaches, for the sake of advances in condensed matter physics. Furthermore, the recent experimental results on hydrocarbon superconductors obtained by our group are also included in this article. Consequently, this review article may provide a hint to designing new carbon-based superconductors exhibiting higher T c and interesting physical features.

  1. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  2. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  3. Theoretical studies of unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Groensleth, Martin Sigurd

    2008-07-01

    This thesis presents four research papers. In the first three papers we have derived analytical results for the transport properties in unconventional superconductors and ferromagnetic systems with multiple broken symmetries. In Paper I and parts of Paper II we have studied tunneling transport between two non-unitary ferromagnetic spin-triplet superconductors, and found a novel interplay between ferromagnetism and superconductivity manifested in the Josephson effect as a spin- and charge-current in the absence of an applied voltage across the junction. The critical amplitudes of these currents can be adjusted by the relative magnetization direction on each side of the junction. Furthermore, in Paper II, we have found a way of controlling a spin-current between two ferromagnets with spin-orbit coupling. Paper III considers a junction consisting of a ferromagnet and a non-unitary ferromagnetic superconductor, and we show that the conductance spectra contains detailed information about the superconducting gaps and pairing symmetry of the Cooper-pairs. In the last paper we present a Monte Carlo study of an effective Hamiltonian describing orbital currents in the CuO2 layers of high-temperature superconductive cuprates. The model features two intrinsically anisotropic Ising models, coupled through an anisotropic next-nearest neighbor interaction, and an Ashkin-Teller nearest neighbor fourth order coupling. We have studied the specific heat anomaly, as well as the anomaly in the staggered magnetization associated with the orbital currents and its susceptibility. We have found that in a limited parameter regime, the specific heat anomaly is substantially suppressed, while the susceptibility has a non-analytical peak across the order-disorder transition. The model is therefore a candidate for describing the breakup of hidden order when crossing the pseudo-gap line on the under-doped side in the phase diagram of high-temperature superconductors. (Author) 64 refs., figs

  4. Negative magnetic relaxation in superconductors

    Directory of Open Access Journals (Sweden)

    Krasnoperov E.P.

    2013-01-01

    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  5. Generalized Superconductors and Holographic Optics

    CERN Document Server

    Mahapatra, Subhash; Sarkar, Tapobrata

    2013-01-01

    We study generalized holographic s-wave superconductors in four dimensional R-charged black hole backgrounds, in the probe limit. We first establish the superconducting nature of the boundary theory, and then study its optical properties. Numerical analysis indicates that a negative index of refraction appears at low frequencies in the theory, for certain temperature ranges, for specific values of the charge parameter. The corresponding cut-off values for these are numerically established in several cases.

  6. Holographic superconductors with Weyl corrections

    Science.gov (United States)

    Momeni, Davood; Raza, Muhammad; Myrzakulov, Ratbay

    2016-10-01

    A quick review on the analytical aspects of holographic superconductors (HSCs) with Weyl corrections has been presented. Mainly, we focus on matching method and variational approaches. Different types of such HSC have been investigated — s-wave, p-wave and Stúckelberg ones. We also review the fundamental construction of a p-wave type, in which the non-Abelian gauge field is coupled to the Weyl tensor. The results are compared from numerics to analytical results.

  7. The 3'-terminal 55 nucleotides of bovine coronavirus defective interfering RNA harbor cis-acting elements required for both negative- and positive-strand RNA synthesis.

    Directory of Open Access Journals (Sweden)

    Wei-Yu Liao

    Full Text Available The synthesis of the negative-strand [(--strand] complement of the ∼30 kilobase, positive-strand [(+-strand] coronaviral genome is a necessary early step for genome replication. The identification of cis-acting elements required for (--strand RNA synthesis in coronaviruses, however, has been hampered due to insufficiencies in the techniques used to detect the (--strand RNA species. Here, we employed a method of head-to-tail ligation and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR to detect and quantitate the synthesis of bovine coronavirus (BCoV defective interfering (DI RNA (- strands. Furthermore, using the aforementioned techniques along with Northern blot assay, we specifically defined the cis-acting RNA elements within the 3'-terminal 55 nucleotides (nts which function in the synthesis of (-- or (+-strand BCoV DI RNA. The major findings are as follows: (i nts from -5 to -39 within the 3'-terminal 55 nts are the cis-acting elements responsible for (--strand BCoV DI RNA synthesis, (ii nts from -3 to -34 within the 3'-terminal 55 nts are cis-acting elements required for (+-strand BCoV DI RNA synthesis, and (iii the nucleotide species at the 3'-most position (-1 is important, but not critical, for both (-- and (+-strand BCoV DI RNA synthesis. These results demonstrate that the 3'-terminal 55 nts in BCoV DI RNA harbor cis-acting RNA elements required for both (-- and (+-strand DI RNA synthesis and extend our knowledge on the mechanisms of coronavirus replication. The method of head-to-tail ligation and qRT-PCR employed in the study may also be applied to identify other cis-acting elements required for (--strand RNA synthesis in coronaviruses.

  8. Nanoridges that characterize the surface morphology of flowers require the synthesis of cutin polyester.

    Science.gov (United States)

    Li-Beisson, Yonghua; Pollard, Mike; Sauveplane, Vincent; Pinot, Franck; Ohlrogge, John; Beisson, Fred

    2009-12-22

    Distinctive nanoridges on the surface of flowers have puzzled plant biologists ever since their discovery over 75 years ago. Although postulated to help attract insect pollinators, the function, chemical nature, and ontogeny of these surface nanostructures remain uncertain. Studies have been hampered by the fact that no ridgeless mutants have been identified. Here, we describe two mutants lacking nanoridges and define the biosynthetic pathway for 10,16-dihydroxypalmitate, a major cutin monomer in nature. Using gene expression profiling, two candidates for the formation of floral cutin were identified in the model plant Arabidopsis thaliana: the glycerol-3-phosphate acyltransferase 6 (GPAT6) and a member of a cytochrome P450 family with unknown biological function (CYP77A6). Plants carrying null mutations in either gene produced petals with no nanoridges and no cuticle could be observed by either scanning or transmission electron microscopy. A strong reduction in cutin content was found in flowers of both mutants. In planta overexpression suggested GPAT6 preferentially uses palmitate derivatives in cutin synthesis. Comparison of cutin monomer profiles in knockouts for CYP77A6 and the fatty acid omega-hydroxylase CYP86A4 provided genetic evidence that CYP77A6 is an in-chain hydroxylase acting subsequently to CYP86A4 in the synthesis of 10,16-dihydroxypalmitate. Biochemical activity of CYP77A6 was demonstrated by production of dihydroxypalmitates from 16-hydroxypalmitate, using CYP77A6-expressing yeast microsomes. These results define the biosynthetic pathway for an abundant and widespread monomer of the cutin polyester, show that the morphology of floral surfaces depends on the synthesis of cutin, and identify target genes to investigate the function of nanoridges in flower biology.

  9. Edge instabilities of topological superconductors

    Science.gov (United States)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  10. Is a color superconductor topological?

    CERN Document Server

    Nishida, Yusuke

    2010-01-01

    A fully gapped state of matter, whether insulator or superconductor, can be asked if it is topologically trivial or nontrivial. Here we investigate topological properties of superconducting Dirac fermions in 3D having a color superconductor as an application. In the chiral limit, when the pairing gap is parity even, the right-handed and left-handed sectors of the free space Hamiltonian have nontrivial topological charges with opposite signs. Accordingly, a vortex line in the superconductor supports localized gapless right-handed and left-handed fermions with the dispersion relations E=+/-vp_z (v is a parameter dependent velocity) and thus propagating in opposite directions along the vortex line. However, the presence of the fermion mass immediately opens up a mass gap for such localized fermions and the dispersion relations become E=+/-v(m^2+p_z^2)^(1/2). When the pairing gap is parity odd, the situation is qualitatively different. The right-handed and left-handed sectors of the free space Hamiltonian in the ...

  11. Fault current limiters using superconductors

    Science.gov (United States)

    Norris, W. T.; Power, A.

    Fault current limiters on power systems are to reduce damage by heating and electromechanical forces, to alleviate duty on switchgear used to clear the fault, and to mitigate disturbance to unfaulted parts of the system. A basic scheme involves a super-resistor which is a superconductor being driven to high resistance when fault current flows either when current is high during a cycle of a.c. or, if the temperature of the superconductive material rises, for the full cycle. Current may be commuted from superconductor to an impedance in parallel, thus reducing the energy dispersed at low temperature and saving refrigeration. In a super-shorted transformer the ambient temperature primary carries the power system current; the superconductive secondary goes to a resistive condition when excessive currents flow in the primary. A super-transformer has the advantage of not needing current leads from high temperature to low temperature; it behaves as a parallel super-resistor and inductor. The supertransductor with a superconductive d.c. bias winding is large and has small effect on the rate of fall of current at current zero; it does little to alleviate duty on switchgear but does reduce heating and electromechanical forces. It is fully active after a fault has been cleared. Other schemes depend on rapid recooling of the superconductor to achieve this.

  12. The pbrB gene encodes a laccase required for DHN-melanin synthesis in conidia of Talaromyces (Penicillium) marneffei.

    Science.gov (United States)

    Sapmak, Ariya; Boyce, Kylie J; Andrianopoulos, Alex; Vanittanakom, Nongnuch

    2015-01-01

    Talaromyces marneffei (Basionym: Penicillium marneffei) is a significant opportunistic fungal pathogen in patients infected with human immunodeficiency virus in Southeast Asia. T. marneffei cells have been shown to become melanized in vivo. Melanins are pigment biopolymers which act as a non-specific protectant against various stressors and which play an important role during virulence in fungi. The synthesis of the two most commonly found melanins in fungi, the eumelanin DOPA-melanin and the allomelanin DHN-melanin, requires the action of laccase enzymes. The T. marneffei genome encodes a number of laccases and this study describes the characterization of one of these, pbrB, during growth and development. A strain carrying a PbrB-GFP fusion shows that pbrB is expressed at high levels during asexual development (conidiation) but not in cells growing vegetatively. The pbrB gene is required for the synthesis of DHN-melanin in conidia and when deleted results in brown pigmented conidia, in contrast to the green conidia of the wild type.

  13. The surprising superconductor

    Directory of Open Access Journals (Sweden)

    Taner Yildirim

    2002-04-01

    The serendipitous discovery by Akimitsu’s group1 of the superconductivity of MgB2 at Tc=39 K, almost twice the temperature of other simple intermetallic compounds, has sparked a race to uncover its basic properties and to find other related diborides with even higher Tcs. After the first announcement, the number of preprints appearing on the Los Alamos preprint server (Fig. 1 grew almost exponentially, reaching a maximum of about 60 studies in March (two papers a day, then decreasing linearly down to a paper every other day in August, and staying steady at about this rate until now. During the first year of the MgB2 era, more than 300 studies were published, exploring both fundamental and practical issues, such as the mechanism of the superconductivity; synthesis of MgB2 in the form of powder, thin films, wires, and tapes; the effect on Tc of substitution with various elements and on critical current and fields.

  14. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  15. Electromagnetic Dark Energy and Gravitoelectrodynamics of Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2007-01-01

    It is shown that Beck's electromagnetic model of dark energy in superconductors can account for the gravitomagnetic London moment, which has been conjectured by the author to explain the Cooper pair's mass excess reported by Cabrera and Tate. A new Einstein-Planck regime for gravitation in condensed matter is proposed as a natural scale to host the gravitoelectrodynamic properties of superconductors.

  16. Gravitational force between two electrons in superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2007-01-01

    The attractive gravitational force between two electrons in superconductors is deduced from the Eddington-Dirac large number relation, together with Beck and Mackey electromagnetic model of vacuum energy in superconductors. This force is estimated to be weaker than the gravitational attraction between two electrons in the vacuum.

  17. High temperature superconductors: A technological revolution

    Science.gov (United States)

    1990-01-01

    The objectives are to demonstrate the Meissner effect through magnetic levitation, to demonstrate one application of the Meissner effect, the low friction magnetic rotation bearing, and to demonstrate magnetic flux penetration and the Type II nature of ceramic superconductors via the stacking of the superconductor disks. Experimental equipment and procedures are described.

  18. Permanent magnet with MgB2 bulk superconductor

    Science.gov (United States)

    Yamamoto, Akiyasu; Ishihara, Atsushi; Tomita, Masaru; Kishio, Kohji

    2014-07-01

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB2) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (cryocoolers, making MgB2 bulks promising for the next generation of Tesla-class permanent-magnet applications.

  19. High critical temperature superconductor Josephson junctions for quantum circuit applications

    Energy Technology Data Exchange (ETDEWEB)

    Bauch, T; Gustafsson, D; Cedergren, K; Nawaz, S; Mumtaz Virk, M; Lombardi, F [Department of Microtechnology and Nanoscience, MC2, Chalmers University of Technology, Goeteborg (Sweden); Pettersson, H; Olsson, E [Department of Applied Physics, Chalmers University of Technology, Goeteborg (Sweden)], E-mail: bauch@chalmers.se

    2009-12-15

    Recent findings of macroscopic quantum properties in high critical temperature superconductor (HTS) Josephson junctions (JJs) point toward the need to revise the role of zero energy quasi-particles in this novel superconductor. We will discuss the possibility of designing superconducting artificial atoms in a transmon configuration to study the low energy excitation spectra of HTS. We have engineered high quality grain boundary JJs on low dielectric constant substrates. By fabricating submicron junctions, we extract values of capacitance and Josephson critical current densities that satisfy the main transmon design requirements. Moreover, the measured critical current noise power extrapolated at 1 Hz gives a dephasing time of 25 ns, which indicates that the observation of macroscopic quantum coherent effects in HTS JJ is a feasible task.

  20. Design of High Field Solenoids made of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bartalesi, Antonio; /Pisa U.

    2010-12-01

    This thesis starts from the analytical mechanical analysis of a superconducting solenoid, loaded by self generated Lorentz forces. Also, a finite element model is proposed and verified with the analytical results. To study the anisotropic behavior of a coil made by layers of superconductor and insulation, a finite element meso-mechanic model is proposed and designed. The resulting material properties are then used in the main solenoid analysis. In parallel, design work is performed as well: an existing Insert Test Facility (ITF) is adapted and structurally verified to support a coil made of YBa{sub 2}Cu{sub 3}O{sub 7}, a High Temperature Superconductor (HTS). Finally, a technological winding process was proposed and the required tooling is designed.

  1. Superconductors Enable Lower Cost MRI Systems

    Science.gov (United States)

    2013-01-01

    The future looks bright, light, and green, especially where aircraft are concerned. The division of NASA s Fundamental Aeronautics Program called the Subsonic Fixed Wing Project is aiming to reach new heights by 2025-2035, improving the efficiency and environmental impact of air travel by developing new capabilities for cleaner, quieter, and more fuel efficient aircraft. One of the many ways NASA plans to reach its aviation goals is by combining new aircraft configurations with an advanced turboelectric distributed propulsion (TeDP) system. Jeff Trudell, an engineer at Glenn Research Center, says, "The TeDP system consists of gas turbines generating electricity to power a large number of distributed motor-driven fans embedded into the airframe." The combined effect increases the effective bypass ratio and reduces drag to meet future goals. "While room temperature components may help reduce emissions and noise in a TeDP system, cryogenic superconducting electric motors and generators are essential to reduce fuel burn," says Trudell. Superconductors provide significantly higher current densities and smaller and lighter designs than room temperature equivalents. Superconductors are also able to conduct direct current without resistance (loss of energy) below a critical temperature and applied field. Unfortunately, alternating current (AC) losses represent the major part of the heat load and depend on the frequency of the current and applied field. A refrigeration system is necessary to remove the losses and its weight increases with decreasing temperature. In 2001, a material called magnesium diboride (MgB2) was discovered to be superconducting. The challenge, however, has been learning to manufacture MgB2 inexpensively and in long lengths to wind into large coils while meeting the application requirements.

  2. Antidepressant stimulation of CDP-diacylglycerol synthesis does not require monoamine reuptake inhibition

    Directory of Open Access Journals (Sweden)

    Aboukhatwa Marwa A

    2010-01-01

    Full Text Available Abstract Background Recent studies demonstrate that diverse antidepressant agents increase the cellular production of the nucleolipid CDP-diacylglycerol and its synthetic derivative, phosphatidylinositol, in depression-relevant brain regions. Pharmacological blockade of downstream phosphatidylinositide signaling disrupted the behavioral antidepressant effects in rats. However, the nucleolipid responses were resistant to inhibition by serotonin receptor antagonists, even though antidepressant-facilitated inositol phosphate accumulation was blocked. Could the neurochemical effects be additional to the known effects of the drugs on monoamine transmitter transporters? To examine this question, we tested selected agents in serotonin-depleted brain tissues, in PC12 cells devoid of serotonin transporters, and on the enzymatic activity of brain CDP-diacylglycerol synthase - the enzyme that catalyzes the physiological synthesis of CDP-diacylglycerol. Results Imipramine, paroxetine, and maprotiline concentration-dependently increased the levels of CDP-diacylglycerol and phosphatidylinositides in PC12 cells. Rat forebrain tissues depleted of serotonin by pretreatment with p-chlorophenylalanine showed responses to imipramine or maprotiline that were comparable to respective responses from saline-injected controls. With fluoxetine, nucleolipid responses in the serotonin-depleted cortex or hippocampus were significantly reduced, but not abolished. Each drug significantly increased the enzymatic activity of CDP-diacylglycerol synthase following incubations with cortical or hippocampal brain tissues. Conclusion Antidepressants probably induce the activity of CDP-diacylglycerol synthase leading to increased production of CDP-diacylglycerol and facilitation of downstream phosphatidylinositol synthesis. Phosphatidylinositol-dependent signaling cascades exert diverse salutary effects in neural cells, including facilitation of BDNF signaling and neurogenesis. Hence

  3. Iron Pnictide Superconductors: discovery and advances

    Science.gov (United States)

    Hosono, Hideo

    2009-03-01

    Superconducting transition in a layered ZrCuSiAs-type crystal was first reported for LaFePO in 2006 [1] and subsequently, a similar Tc was found for LaNiPO with the same crystal structure in 2007. However, Tc of these compounds reminded low (˜4K). On February 23, 2008, our paper reporting a layered compound in LaFeAsO1-xFx(x=0.1) exhibiting a superconducting critical temperature Tc (mid-point) = 26K was published [3]. In this presentation I talk the background of this discovery and the subsequent advance in materials. The following points have been clarified to date; (1) Iron-based superconductors reported are 4-types crystal structures, the 1111[3], 122[4], 111[5], and 11 [6] type. All the high Tc iron-based superconductors contain a Fe square lattice and the Fe 3d orbitals dominate the Fermi-level. (2) The occurrence of a crystallographic transition accompanying anti-ferromagnetic to paramagnetic state in the parent compound is a requisite for a high Tc. (3) There exist a vast number of materials containing the Fe square lattice. (4). A partial substitution of Fe with other transition metal is possible without serious reduction of Tc. (4) A new insulating layer AEF (AE=Ca, Sr)was found to be effective in the 1111 phase [7]. (5) High pressure synthesis was effective to obtain the 1111 phases with higher Tc, (6) Epitaxial thin films exhibiting a Tc almost the same as that in the bulk were fabricated for CaFeAsO:Co[8]. Epitaxial thin films of LaFeAsO was recently reported as well [9]. [4pt] [1] Y.Kamihara et al. JACS, 28 (2006)10012, [2] T.Watanabe et al.Inorg.Chem,46(2007) 7719, [3 ]Y.Kamihara et al. J.Am.Chem.Soc.130(2008)3296., [4]M.Rotter et al. PRL, 101(2008) 107006, [5] J.H.Tapp et al. PRB,78(2008)060505 [6] F.C.Hsu et al. PNAS,105(2008)14262., [7] S.Matsuishi et al. JACS 130(2008)14428 [8] H.Hiramatsu et al. Appl.Phys.Express 1(2008)101702, [9] H.Hiramatsu et al. APL. 93(2008) 162504.

  4. Superconductors are about to come to electrical engineering; Les supraconducteurs en electrotechnique, c'est pour bientot

    Energy Technology Data Exchange (ETDEWEB)

    Therond, P.G.

    1999-07-01

    Because there is no electrical energy loss involved in using superconductors, they have a very bright future ahead of them. However, many potential applications are still only at the theoretical project stage, and in practice, superconductors are difficult to use. In spite of this, those operating at very low temperatures have now been tamed, and a few applications have been developed, such as a superconductor current limiter which could be tested on the EDF network by 1998, although until further advances are made, they will continue to require costly and delicate liquid helium cooling. (author)

  5. Electronic Structure of the Bismuth Family of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2002-03-07

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  6. Definition of the minimal viral components required for the initiation of unprimed RNA synthesis by influenza virus RNA polymerase.

    Science.gov (United States)

    Lee, M T Michael; Bishop, Konrad; Medcalf, Liz; Elton, Debra; Digard, Paul; Tiley, Laurence

    2002-01-15

    The first 11 nt at the 5' end of influenza virus genomic RNA were shown to be both necessary and sufficient for specific binding by the influenza virus polymerase. A novel in vitro transcription assay, in which the polymerase was bound to paramagnetic beads via a biotinylated 5'-vRNA oligonucleotide, was used to study the activities of different forms of the polymerase. Complexes composed of co-expressed PB1/PB2/PA proteins and a sub-complex composed of PB1/PA bound to the 5'-vRNA oligonucleotide, whereas PB1 expressed alone did not. The enriched 5'-vRNA/PB1/PB2/PA complex was highly active for ApG and globin mRNA primed transcription on a model 3'-vRNA template. RNA synthesis in the absence of added primers produced products with 5'-terminal tri- or diphosphate groups, indicating that genuine unprimed initiation of transcription also occurred. No transcriptase activity was detected for the PB1/PA complex. These results demonstrate a role for PA in the enhancement of 5' end binding activity of PB1, a role for PB2 in the assembly of a polymerase complex able to perform both cap-dependent and -independent synthesis and that NP is not required for the initiation of replicative transcription.

  7. Identification of Cis-Acting Elements on Positive-Strand Subgenomic mRNA Required for the Synthesis of Negative-Strand Counterpart in Bovine Coronavirus

    Directory of Open Access Journals (Sweden)

    Po-Yuan Yeh

    2014-07-01

    Full Text Available It has been demonstrated that, in addition to genomic RNA, sgmRNA is able to serve as a template for the synthesis of the negative-strand [(−-strand] complement. However, the cis-acting elements on the positive-strand [(+-strand] sgmRNA required for (−-strand sgmRNA synthesis have not yet been systematically identified. In this study, we employed real-time quantitative reverse transcription polymerase chain reaction to analyze the cis-acting elements on bovine coronavirus (BCoV sgmRNA 7 required for the synthesis of its (−-strand counterpart by deletion mutagenesis. The major findings are as follows. (1 Deletion of the 5'-terminal leader sequence on sgmRNA 7 decreased the synthesis of the (−-strand sgmRNA complement. (2 Deletions of the 3' untranslated region (UTR bulged stem-loop showed no effect on (−-strand sgmRNA synthesis; however, deletion of the 3' UTR pseudoknot decreased the yield of (−-strand sgmRNA. (3 Nucleotides positioned from −15 to −34 of the sgmRNA 7 3'-terminal region are required for efficient (−-strand sgmRNA synthesis. (4 Nucleotide species at the 3'-most position (−1 of sgmRNA 7 is correlated to the efficiency of (−-strand sgmRNA synthesis. These results together suggest, in principle, that the 5'- and 3'-terminal sequences on sgmRNA 7 harbor cis-acting elements are critical for efficient (−-strand sgmRNA synthesis in BCoV.

  8. TIF-IA-dependent regulation of ribosome synthesis in drosophila muscle is required to maintain systemic insulin signaling and larval growth.

    Science.gov (United States)

    Ghosh, Abhishek; Rideout, Elizabeth J; Grewal, Savraj S

    2014-10-01

    The conserved TOR kinase signaling network links nutrient availability to cell, tissue and body growth in animals. One important growth-regulatory target of TOR signaling is ribosome biogenesis. Studies in yeast and mammalian cell culture have described how TOR controls rRNA synthesis-a limiting step in ribosome biogenesis-via the RNA Polymerase I transcription factor TIF-IA. However, the contribution of TOR-dependent ribosome synthesis to tissue and body growth in animals is less clear. Here we show in Drosophila larvae that ribosome synthesis in muscle is required non-autonomously to maintain normal body growth and development. We find that amino acid starvation and TOR inhibition lead to reduced levels of TIF-IA, and decreased rRNA synthesis in larval muscle. When we mimic this decrease in muscle ribosome synthesis using RNAi-mediated knockdown of TIF-IA, we observe delayed larval development and reduced body growth. This reduction in growth is caused by lowered systemic insulin signaling via two endocrine responses: reduced expression of Drosophila insulin-like peptides (dILPs) from the brain and increased expression of Imp-L2-a secreted factor that binds and inhibits dILP activity-from muscle. We also observed that maintaining TIF-IA levels in muscle could partially reverse the starvation-mediated suppression of systemic insulin signaling. Finally, we show that activation of TOR specifically in muscle can increase overall body size and this effect requires TIF-IA function. These data suggest that muscle ribosome synthesis functions as a nutrient-dependent checkpoint for overall body growth: in nutrient rich conditions, TOR is required to maintain levels of TIF-IA and ribosome synthesis to promote high levels of systemic insulin, but under conditions of starvation stress, reduced muscle ribosome synthesis triggers an endocrine response that limits systemic insulin signaling to restrict growth and maintain homeostasis.

  9. Noncentrosymmetric superconductors in one dimension

    Science.gov (United States)

    Samokhin, K. V.

    2017-02-01

    We study the fermionic boundary modes (Andreev bound states) in a time-reversal invariant one-dimensional superconductor. In the presence of a substrate, spatial inversion symmetry is broken and the electronic properties are strongly affected by an antisymmetric spin-orbit coupling. We assume an arbitrary even number of nondegenerate bands crossing the Fermi level. We show that there is only one possible pairing symmetry in one dimension, an analog of s -wave pairing. The zero-energy Andreev bound states are present if the sign of the gap function in an odd number of the bands is different from all other bands.

  10. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  11. Microgravity Processing of Oxide Superconductors

    Science.gov (United States)

    Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus; McCallum, William; Peters, Palmer (Technical Monitor)

    2000-01-01

    The primary goal is to understand the microstructures which develop under the nonequilibrium solidification conditions achieved by melt processing in copper oxide superconductor systems. More specifically, to define the liquidus at the Y- 1:2:3 composition, the Nd-1:2:3 composition, and several intermediate partial substitution points between pure Y-1:2:3 and Nd-1:2:3. A secondary goal has been to understand resultant solidification morphologies and pathways under a variety of experimental conditions and to use this knowledge to better characterize solidification phenomena in these systems.

  12. Holographic superconductors with hyperscaling violation

    CERN Document Server

    Fan, ZhongYing

    2013-01-01

    We investigate holographic superconductors in asympototically geometries with hyperscaling violation. The mass of the scalar field decouples from the UV dimension of the dual scalar operator and can be chosen as negative as we want, without disturbing the Breitenlohner-Freedman bound. We first numerically find that the scalar condenses below a critical temperature and a gap opens in the real part of the conductivity, indicating the onset of superconductivity. We further analytically explore the effects of the hyperscaling violation on the superconducting transition temperature. We find that the critical temperature increases with the increasing of hyperscaling violation.

  13. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  14. Superconductor lunar telescopes --Abstract only

    Science.gov (United States)

    Chen, P. C.; Pitts, R.; Shore, S.; Oliversen, R.; Stolarik, J.; Segal, K.; Hojaji, H.

    1994-01-01

    We propose a new type of telescope designed specifically for the lunar environment of high vacuum and low temperature. Large area UV-Visible-IR telescope arrays can be built with ultra-light-weight replica optics. High T(sub c) superconductors provide support, steering, and positioning. Advantages of this approach are light-weight payload compatible with existing launch vehicles, configurable large area optical arrays, no excavation or heavy construction, and frictionless electronically controlled mechanisms. We have built a prototype and will be demonstarting some of its working characteristics.

  15. Generalized superconductors and holographic optics

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Subhash; Phukon, Prabwal; Sarkar, Tapobrata [Department of Physics, Indian Institute of Technology,Kanpur 208016 (India)

    2014-01-24

    We study generalized holographic s-wave superconductors in four dimensional R-charged black hole and Lifshitz black hole backgrounds, in the probe limit. We first establish the superconducting nature of the boundary theories, and then study their optical properties. Numerical analysis indicates that a negative Depine-Lakhtakia index may appear at low frequencies in the theory dual to the R-charged black hole, for certain temperature ranges, for specific values of the charge parameter. The corresponding cut-off values for these are numerically established in several cases. Such effects are seen to be absent in the Lifshitz background where this index is always positive.

  16. EDITORIAL: Focus on Iron-Based Superconductors FOCUS ON IRON-BASED SUPERCONDUCTORS

    Science.gov (United States)

    Hosono, Hideo; Ren, Zhi-An

    2009-02-01

    -L Drechsler, N Kozlova, M Bartkowiak, J E Hamann-Borrero, G Behr, K Nenkov, H-H Klauss, H Maeter, A Amato, H Luetkens, A Kwadrin, R Khasanov, J Freudenberger, A Köhler, M Knupfer, E Arushanov, H Rosner, B Büchner and L Schultz Low-energy spin dynamics in the antiferromagnetic phase of CaFe2As2 N J Curro, A P Dioguardi, N ApRoberts-Warren, A C Shockley and P Klavins Muon spin rotation study of magnetism and superconductivity in BaFe2-xCoxAs2 and Pr1-xSrxFeAsO C Bernhard, A J Drew, L Schulz, V K Malik, M Rössle, Ch Niedermayer, Th Wolf, G D Varma, G Mu, H-H Wen, H Liu, G Wu and X H Chen Magnetic impurities in the pnictide superconductor Ba1-xKxFe2As2 Sutirtha Mukhopadhyay, Sangwon Oh, A M Mounce, Moohee Lee, W P Halperin, N Ni, S L Bud'ko, P C Canfield, A P Reyes and P L Kuhns Neutron scattering investigation of the magnetic order in single crystalline BaFe2As2 M Kofu, Y Qiu, Wei Bao, S-H Lee, S Chang, T Wu, G Wu and X H Chen An NMR study on the F-doping evolution of the iron oxypnictide LaFeAs(O1-xFx) Y Nakai, S Kitagawa, K Ishida, Y Kamihara, M Hirano and H Hosono The peculiar physical properties and phase diagram of BaFe2-xCoxAs2 single crystals X F Wang, T Wu, G Wu, R H Liu, H Chen, Y L Xie and X H Chen Synthesis of LnFeAsO1-y superconductors (Ln=La and Nd) using the high-pressure technique Kiichi Miyazawa, Kunihiro Kihou, Motoyuki Ishikado, Parasharam M Shirage, Chul-Ho Lee, Nao Takeshita, Hiroshi Eisaki, Hijiri Kito and Akira Iyo Correlation effects in the iron pnictides Qimiao Si, Elihu Abrahams, Jianhui Dai and Jian-Xin Zhu Competition/coexisitence of magnetism and superconductivity in iron pnictides probed by muon spin rotation Soshi Takeshita and Ryosuke Kadono Impurity-induced in-gap state and Tc in sign-reversing s-wave superconductors: analysis of iron oxypnictide superconductors Yuko Senga and Hiroshi Kontani Intrinsic magnetic properties of the superconductor NdFeAsO0.9F0.1 from local and global measurements R Prozorov, M E Tillman, E D Mun and P C Canfield

  17. Human CD4+ T cells require exogenous cystine for glutathione and DNA synthesis

    DEFF Research Database (Denmark)

    Levring, Trine B; Kongsbak-Wismann, Martin; Rode, Anna Kathrine Obelitz

    2015-01-01

    Adaptive immune responses require activation and expansion of antigen-specific T cells. Whereas early T cell activation is independent of exogenous cystine (Cys2), T cell proliferation is dependent of Cys2. However, the exact roles of Cys2 in T cell proliferation still need to be determined. The ...

  18. Processing of bulk Bi-2223 high-temperature superconductor

    Directory of Open Access Journals (Sweden)

    Alexander Polasek

    2005-12-01

    Full Text Available The Bi2Sr2Ca2Cu3 O10+x (Bi-2223 is one of the main high temperature superconductors for applications. One of these applications is the Superconductor Fault Current Limiter (SCFCL, which is a very promising high temperature superconducting device. SCFCL's can be improved by using bulk superconductors with high critical currents, which requires a sufficiently dense and textured material. In the present work, a process for improving the microstructure of Bi-2223 bulk samples is investigated. Pressed precursor blocks are processed by sintering with a further partial melting step, in order to enhance the Bi-2223 grain texture and to healing cracks induced by pressing. In order to improve the microstructure, the precursor is mixed with silver powder before pressing. Samples with and without silver powder have been studied, with the aim of investigating the influence of silver on the microstructure evolution. The phase contents and the microstructure obtained have been analyzed through XRD and SEM/EDS. The electromagnetic characterization has been performed by Magnetic Susceptibility Analysis. We present and discuss the process and the properties of the superconducting blocks. High fractions of textured Bi-2223 grains have been obtained.

  19. FBXO22 Protein Is Required for Optimal Synthesis of the N-Methyl-d-Aspartate (NMDA) Receptor Coagonist d-Serine

    DEFF Research Database (Denmark)

    Dikopoltsev, Elena; Foltyn, Veronika N; Zehl, Martin;

    2014-01-01

    , SR interacts preferentially with free FBXO22 species. In vivo ubiquitination and SR half-life determination indicate that FBXO22 does not target SR to the proteasome system. FBXO22 primarily affects SR subcellular localization and seems to increase d-serine synthesis by preventing the association...... is known about the regulation of d-serine synthesis. We now demonstrate that the F-box only protein 22 (FBXO22) interacts with SR and is required for optimal d-serine synthesis in cells. Although FBXO22 is classically associated with the ubiquitin system and is recruited to the Skip1-Cul1-F-box E3 complex...... of SR to intracellular membranes. Our data highlight an atypical role of FBXO22 in enhancing d-serine synthesis that is unrelated to its classical effects as a component of the ubiquitin-proteasome degradation pathway....

  20. Losses of Superconductor Journal Bearing

    Science.gov (United States)

    Han, Y. H.; Hull, J. R.; Han, S. C.; Jeong, N. H.; Oh, J. M.; Sung, T. H.

    2004-06-01

    A high-temperature superconductor (HTS) journal bearing was studied for rotational loss. Two HTS bearings support the rotor at top and bottom. The rotor weight is 4 kg and the length is about 300 mm. Both the top and bottom bearings have two permanent magnet (PM) rings with an iron pole piece separating them. Each HTS journal bearing is composed of six pieces of superconductor blocks of size 35×25×10 mm. The HTS blocks are encased in a cryochamber through which liquid nitrogen flows. The inner spool of the cryochamber is made from G-10 to reduce eddy current loss, and the rest of the cryochamber is stainless steel. The magnetic field from the PM rings is < 10 mT on the stainless part. The rotational drag was measured over the same speed range at several chamber pressures. Results indicate that a chamber pressure of 0.4 mtorr is sufficiently low to minimize windage loss, and the 10 mT design criterion for the magnetic field on the stainless part of the cryochamber is too high.

  1. Electronic transport in unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Graf, M.J.

    1998-12-31

    The author investigates the electron transport coefficients in unconventional superconductors at low temperatures, where charge and heat transport are dominated by electron scattering from random lattice defects. He discusses the features of the pairing symmetry, Fermi surface, and excitation spectrum which are reflected in the low temperature heat transport. For temperatures {kappa}{sub B}T {approx_lt} {gamma} {much_lt} {Delta}{sub 0}, where {gamma} is the bandwidth of impurity induced Andreev states, certain eigenvalues become universal, i.e., independent of the impurity concentration and phase shift. Deep in the superconducting phase ({kappa}{sub B}T {approx_lt} {gamma}) the Wiedemann-Franz law, with Sommerfeld`s value of the Lorenz number, is recovered. He compares the results for theoretical models of unconventional superconductivity in high-{Tc} and heavy fermion superconductors with experiment. The findings show that impurities are a sensitive probe of the low-energy excitation spectrum, and that the zero-temperature limit of the transport coefficients provides an important test of the order parameter symmetry.

  2. Position-sensitive superconductor detectors

    Science.gov (United States)

    Kurakado, M.; Taniguchi, K.

    2016-12-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  3. The intercalation chemistry of layered iron chalcogenide superconductors

    Science.gov (United States)

    Vivanco, Hector K.; Rodriguez, Efrain E.

    2016-10-01

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the role of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials-mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.

  4. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 2

    Science.gov (United States)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from desi gn requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, flight dynamics and control, and formal logic. Major design goals are (1) system design integrity based on proof of correctness at the design level, (2) significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  5. Postsynaptic protein synthesis is required for presynaptic enhancement in persistent forms of long-term potentiation.

    Directory of Open Access Journals (Sweden)

    Victoria Philippa Anne Johnstone

    2013-02-01

    Full Text Available Long-term potentiation (LTP in the hippocampus is a fundamental process underlying learning and memory in the brain. At CA3-CA1 synapses, three discrete forms of LTP (LTP1, 2 and 3 have been differentiated on the basis of their persistence, maintenance mechanisms, Ca2+ signaling pathways, expression loci, and electrophysiological requirements. We previously showed that LTP2 and LTP3 involve a presynaptic expression component that is established in a translation-dependent manner. Here we investigate the locus of translation required for presynaptic expression. Neurotransmitter release rate was estimated via FM 1-43 destaining from CA3 terminals in hippocampal slices from male Wistar rats (6-8 weeks. Destaining was measured at sites making putative contact with CA1 dendritic processes in stratum radiatum that had been filled with a membrane impermeable translation inhibitor and a fluorescent indicator. Our results suggest that inhibition of postsynaptic translation eliminates the enhanced release ordinarily observed at 160 min post LTP induction, and that this effect is limited to sites closely apposed to the filled postsynaptic cell. We conclude that postsynaptic translation is required for the presynaptic component of LTP2 and LTP3 expression. These data considerably strengthen the mechanistic separation of LTP1, 2 and 3 and provide evidence for an expanded repertoire of communication between synaptic elements.

  6. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  7. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  8. Tuning non-equilibrium superconductors with lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael A.; Kollath, Corinna [HISKP, University of Bonn, Nussallee 14-16, D-53115 Bonn (Germany); Kemper, Alexander F. [LBL Berkeley (United States); Georges, Antoine [Ecole Polytechnique and College de France, Paris (France)

    2015-07-01

    The study of the real-time dynamics dynamics of solids perturbed by short laser pulses is an intriguing opportunity of ultrafast materials science. Previous theoretical work on pump-probe photoemission spectroscopy revealed spectroscopic signatures of electron-boson coupling, which are reminiscent of features observed in recent pump-probe photoemission experiments on cuprate superconductors. Here we investigate the ordered state of electron-boson mediated superconductors subject to laser driving using Migdal-Eliashberg theory on the Kadanoff-Baym-Keldysh contour. We extract the characteristic time scales on which the non-equilibrium superconductor reacts to the perturbation, and their relation to the coupling boson and the underlying order.

  9. Synthesis from Design Requirements of a Hybrid System for Transport Aircraft Longitudinal Control. Volume 1

    Science.gov (United States)

    Hynes, Charles S.; Hardy, Gordon H.; Sherry, Lance

    2007-01-01

    Volume I of this report presents a new method for synthesizing hybrid systems directly from design requirements, and applies the method to design of a hybrid system for longitudinal control of transport aircraft. The resulting system satisfies general requirement for safety and effectiveness specified a priori, enabling formal validation to be achieved. Volume II contains seven appendices intended to make the report accessible to readers with backgrounds in human factors, fli ght dynamics and control. and formal logic. Major design goals are (1) system desi g n integrity based on proof of correctness at the design level, (2), significant simplification and cost reduction in system development and certification, and (3) improved operational efficiency, with significant alleviation of human-factors problems encountered by pilots in current transport aircraft. This report provides for the first time a firm technical basis for criteria governing design and certification of avionic systems for transport aircraft. It should be of primary interest to designers of next-generation avionic systems.

  10. mTORC1-dependent protein synthesis underlying rapid antidepressant effect requires GABABR signaling.

    Science.gov (United States)

    Workman, E R; Niere, Farr; Raab-Graham, Kimberly F

    2013-10-01

    Administration of N-methyl-D-aspartate receptors (NMDAR) antagonists initiates a rapid anti-depressant response requiring mammalian Target of Rapamycin Complex 1 (mTORC1) kinase; however the molecular mechanism is unknown. We have determined that upon NMDAR blockade, dendritic γ-amino-butyric acid B receptors (GABABR) facilitate dendritic calcium entry. The GABABR-mediated increase in calcium signal requires the availability of dendritic L-type calcium channels. Moreover, GABABR can activate mTOR and increase mTOR dependent expression of BDNF under the same NMDAR blocked conditions. In vivo, blocking GABABR prevents the fast-acting, anti-depressant effect of the NR2B antagonist, Ro-25-6891, decreases active mTORC1 kinase, and reduces expression of BDNF and the AMPA receptor subunit GluA1. These findings propose a novel role for GABABRs in the antidepressant action of NR2B antagonists and as an initiator/regulator of mTORC1-mediated translation.

  11. MiR-155 induction by microbes/microbial ligands requires NF-kB-dependent de novo protein synthesis

    Directory of Open Access Journals (Sweden)

    Susheela eTridandapani

    2012-06-01

    Full Text Available MiR-155 regulates numerous aspects of innate and adaptive immune function. This miR is induced in response to toll-like receptor ligands, cytokines, and microbial infection. We have previously shown that miR-155 is induced in monocytes/macrophages infected with Francisella tularensis and suppresses expression of the inositol phosphatase SHIP to enhance activation of the PI3K/Akt pathway, which in turn promotes favorable responses for the host. Here we examined how miR-155 expression is regulated during infection. First, our data demonstrate that miR-155 can be induced through soluble factors of bacterial origin and not the host. Second, miR-155 induction is not a direct effect of infection and it requires NF-κB signaling to up-regulate fos/jun transcription factors. Finally, we demonstrate that the requirement for NF-κB-dependent de novo protein synthesis is globally shared by microbial ligands and live bacteria. This study provides new insight into the complex regulation of miR-155 during microbial infection.

  12. Application Fields of High-Temperature Superconductors

    OpenAIRE

    Hott, Roland

    2003-01-01

    Potential application fields for cuprate high-temperature superconductors (HTS) and the status of respective projects are reviewed. The availability of a reliable and inexpensive cooling technique will be essential for a future broad acceptance of HTS applications.

  13. Progress of metallic superconductors in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji, E-mail: tacsuper@keyaki.cc.u-tokai.ac.jp [Faculty of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2013-01-15

    Highlights: ► Japanese contributions on the R and D of different metallic superconductors are summarized. ► Nb–Ti wires have been developed for MRI, accelerator, MAGLEV train and other applications. ► Multifilamentary Nb{sub 3}Sn wires with excellent performance have been developed for high-field use. ► Long-length Nb{sub 3}Al wires with promising strain tolerance have been fabricated by a new process. -- Abstract: This article overviews the development of metallic superconductors in Japan covering different kinds of alloys and intermetallic compounds. Metallic superconductors have opened many new application areas in science and technology. Japan has been one of the leading countries in the world, both in the research and development and in large-scale manufacturing of metallic superconductors.

  14. De-Sitter spacetime as a superconductor

    CERN Document Server

    Momeni, D

    2016-01-01

    A superconductor is a material with infinite electric conductivity. Superconductivity and magnetism are happening as two opposite phenomena: superconductors need weak external magnetic fields (the Meissner effect) while generally with a strong external magnetic field we loose superconductivity. In \\cite{ref:I}-\\cite{Chernodub:2011tv} , the author showed that a very strong magnetic field can turn an empty space into a superconductor. We extended this idea to the constant curvature spaces, de Sitter (dS) spacetime and by a careful analysis of the modes for a spinor with arbitrary spin, we show that in a very similar condensation scenario as was proposed for flat space, we could transform dS to a superconductor.

  15. The Challenge of Self-Directed and Self-Regulated Learning in Vocational Education: A Theoretical Analysis and Synthesis of Requirements

    Science.gov (United States)

    Jossberger, Helen; Brand-Gruwel, Saskia; Boshuizen, Henny; van de Wiel, Margje

    2010-01-01

    Workplace simulations (WPS), authentic learning environments at school, are increasingly used in vocational education. This article provides a theoretical analysis and synthesis of requirements considering learner skills, characteristics of the learning environment and the role of the teacher that influence good functioning in WPS and foster…

  16. Thermoelectric effect in a nonequilibrium superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Falco, C. M.

    1977-01-01

    Initial results are reported showing experimental evidence for a pair-quasiparticle electrochemical potential difference in a superconductor in a temperature gradient. This potential diverges at low temperature and, within the resolution of the data, seems to approach a constant value at T/sub c/. The data can be used to extract a value for the thermal transport current of normal excitations in the superconductor.

  17. Majorana Fermions and Topology in Superconductors

    OpenAIRE

    Sato, Masatoshi; Fujimoto, Satoshi

    2016-01-01

    Topological superconductors are novel classes of quantum condensed phases, characterized by topologically nontrivial structures of Cooper pairing states. On the surfaces of samples and in vortex cores of topological superconductors, Majorana fermions, which are particles identified with their own anti-particles, appear as Bogoliubov quasiparticles. The existence and stability of Majorana fermions are ensured by bulk topological invariants constrained by the symmetries of the systems. Majorana...

  18. Holographic entanglement entropy in imbalanced superconductors

    CERN Document Server

    Dutta, Arghya

    2014-01-01

    We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductor. It is found that HEE for this imbalanced system decreases with the increase of imbalance in chemical potentials. Also for an arbitrary mismatch between two chemical potentials, below the critical temperature, superconducting phase has a lower HEE in comparison to the AdS-Reissner-Nordstrom black hole phase. This suggests entanglement entropy to be a useful physical probe for understanding the imbalanced holographic superconductors.

  19. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  20. Simultaneous constraint and phase conversion processing of oxide superconductors

    Science.gov (United States)

    Li, Qi; Thompson, Elliott D.; Riley, Jr., Gilbert N.; Hellstrom, Eric E.; Larbalestier, David C.; DeMoranville, Kenneth L.; Parrell, Jeffrey A.; Reeves, Jodi L.

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  1. Superconductors in the power grid materials and applications

    CERN Document Server

    2015-01-01

    Superconductors offer high throughput with low electric losses and have the potential to transform the electric power grid. Transmission networks incorporating cables of this type could, for example, deliver more power and enable substantial energy savings. Superconductors in the Power Grid: Materials and Applications provides an overview of superconductors and their applications in power grids. Sections address the design and engineering of cable systems and fault current limiters and other emerging applications for superconductors in the power grid, as well as case studies of industrial applications of superconductors in the power grid. Expert editor from highly respected US government-funded research centre Unique focus on superconductors in the power grid Comprehensive coverage

  2. Charge order in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, Sinan; Kampf, Arno P. [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Atkinson, Bill A. [Department of Physics and Astronomy, Trent University, Peterborough, Ontario (Canada)

    2015-07-01

    Motivated by widespread experimental evidence of charge orders in underdoped cuprate superconductors, we study a three band model of a cuprate plane. Our calculations start from a pseudogap-like normal system with a reconstructed Fermi surface, and we search for charge instabilities. From the charge susceptibilities, we identify a charge ordering instability with an ordering wavevector, q*, that matches experimental results not only with respect to the doping dependence but more importantly regarding its magnitude and direction. Namely, q* points along the Brillouin zone axes. Thus, our results clarify the discrepancy between many recent theoretical calculations and the experiments. We extend this calculation towards possible loop current instabilities and the charge ordering pattern in bilayer systems.

  3. Ultrasonic attenuation in cuprate superconductors

    Indian Academy of Sciences (India)

    T Gupta; D M Gaitonde

    2002-05-01

    We calculate the longitudinal ultrasonic attenuation rate (UAR) in clean d-wave superconductors in the Meissner and the mixed phases. In the Meissner phase we calculate the contribution of previously ignored processes involving the excitation of a pair of quasi-holes or quasi-particles. There is a contribution ∝ in the regime B ≪ F ≪ 0 and a contribution ∝ 1/ in the regime F ≪ B ≪ 0. We find that these contributions to the UAR are large and cannot be ignored. In the mixed phase, using a semi-classical description, we calculate the electronic quasi-particle contribution to the UAR which at very low , has a independent term proportional to $\\sqrt{H}$.

  4. Moessbauer studies of ternary superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, C.W.; Van Landuyt, G.L.; Barnet, C.D.; Shenoy, G.K.; Dunlap, B.D.; Fradin, F.Y.

    1978-01-01

    Moessbauer studies of the ternary Chevrel phase and rare earth rhodium boride superconductors have been made. Anomalous phonon properties at the Sn site in SnMo/sub 6/S/sub 8/, SnMo/sub 6/Se/sub 8/, and La/sub 0/ /sub 98/Sn/sub 0/ /sub 02/Mo/sub 6/Se/sub 8/ have been investigated. Studies of polarization of conduction electrons at the site of the magnetic ion have been made by means of the /sup 151/Eu Moessbauer effect in Eu/sub x/Sn/sub 1-x/Mo/sub 6/S/sub 8/ and the effects of such polarization on superconducting properties discussed. The Moessbauer effect in /sup 166/Er has been used to investigate the electronic ground state in the ternary compound ErRh/sub 4/B/sub 4/ both in the superconducting and magnetically ordered states.

  5. Subgap states in disordered superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, M. A., E-mail: skvor@itp.ac.ru; Feigel' man, M. V., E-mail: feigel@landau.ac.ru [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)

    2013-09-15

    We revise the problem of the density of states in disordered superconductors. Randomness of local sample characteristics translates to the quenched spatial inhomogeneity of the spectral gap, smearing the BCS coherence peak. We show that various microscopic models of potential and magnetic disorder can be reduced to a universal phenomenological random order parameter model, whereas the details of the microscopic description are encoded in the correlation function of the order parameter fluctuations. The resulting form of the density of states is generally described by two parameters: the width {Gamma} measuring the broadening of the BCS peak and the energy scale {Gamma}{sub tail} that controls the exponential decay of the density of subgap states. We refine the existing instanton approaches for determination of {Gamma}{sub tail} and show that they appear as limiting cases of a unified theory of optimal fluctuations in a nonlinear system. The application to various types of disorder is discussed.

  6. Search for Majorana fermions in topological superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shi, Xiaoyan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hawkins, Samuel D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John Frederick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

  7. Synthesis of esters of androgens with unsaturated fatty acids for androgen requiring therapy.

    Science.gov (United States)

    Aiello, F; Garofalo, A; Aloisi, A M; Lamponi, S; Magnani, A; Petroni, A

    2013-06-01

    Androgens' metabolism and activity are gaining a more and more important role in human physiology particularly referring to aging and to neurodegenerative diseases. Androgen treatment is often required for long-lasting disorders. In order to improve their duration and effects, androgens can be administered as esters of carboxylic acids. The novelty of our research is the use of esters of androgens with specific unsaturated fatty acids, in order to reduce possible side effects particularly related to chronic pathologies with altered lipid homeostasis such as X-linked adrenoleukodystrophy and cardiovascular disorders. Thus the esters of the main androgenic substances testosterone, dihydrotestosterone (DHT) and their metabolite 5α-androstan-3α,17β-diol were chemically obtained by coupling with different unsaturated fatty acids. To this aim, fatty acids with various degree of unsaturation and belonging to different series were selected. Specifically, oleic acid (18:1, n-9), linoleic acid (18:2, n-6), and the n-3 fatty acids, α-linolenic acid (18:3), eicosapentaenoic acid (EPA, 20:5), and docosahexaenoic acid (DHA, 22:6) were used obtaining corresponding esters with acceptable yields and good degree of purity. All the synthesized compounds were tested for their cytotoxic activities in mouse NIH3T3 and human astrocyte cell lines. The esters demonstrated good tolerability and no in vitro cytotoxic effect in both cell cultures. After these promising preliminary results, the esters will be suitable for in vivo studies in order to ascertain their pharmacokinetic characteristics and their biological effects.

  8. Hybrid superconductor-quantum point contact devices using InSb nanowires

    Science.gov (United States)

    Gill, S. T.; Damasco, J.; Car, D.; Bakkers, E. P. A. M.; Mason, N.

    2016-12-01

    Proposals for studying topological superconductivity and Majorana bound states in a nanowire proximity coupled to superconductors require that transport in the nanowire is ballistic. Previous works on hybrid nanowire-superconductor systems have shown evidence for Majorana bound states, but these experiments were also marked by disorder, which disrupts ballistic transport. In this paper, we demonstrate ballistic transport in the InSb nanowires interfaced directly with superconducting Al by observing quantized conductance at zero-magnetic field. Additionally, we demonstrate that the nanowire is proximity coupled to the superconducting contacts by observing Andreev reflection. These results are important steps for robustly establishing topological superconductivity in the InSb nanowires.

  9. Superconductors

    Science.gov (United States)

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1977-02-01

    The structural quality of niobium germanide as a high-transition-temperature superconducting material is substantially improved by the presence of about 5 at. % oxygen. Niobium germanide having this oxygen content may readily be prepared as a bulk coating bonded to a metallic substrate by chemical vapor deposition techniques.

  10. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan

    1997-01-01

    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  11. Geometric heat trapping in niobium superconductor-insulator-superconductor mixers due to niobium titanium nitride leads

    NARCIS (Netherlands)

    Leone, B; Jackson, BD; Gao, [No Value; Klapwijk, TM

    2000-01-01

    We analyze the current-voltage characteristics of a Nb superconductor-insulator-superconductor mixer with NbTiN leads to identify the heating processes in this device. We argue that the electron-electron interaction is much faster than the electron-phonon interaction, and show that the heat flow to

  12. Strong nonequilibrium coherent states in mesoscopic superconductor-semiconductor-superconductor junctions

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Wildt, Morten; Taboryski, Rafael Jozef;

    1999-01-01

    A biased superconductor-normal metal-superconductor junction is known to be a strong nonequilibrium system, where Andreev scattering at the interfaces creates a quasiparticle distribution function far from equilibrium, a manifestation of this is the well-known subgap structure in the I...

  13. Direct current heating in superconductor-insulator-superconductor tunnel devices for THz mixing applications

    NARCIS (Netherlands)

    Dieleman, P; Klapwijk, T.M; Kovtonyuk, S.; van de Stadt, H.

    1996-01-01

    DC heating effects in superconductor-insulator-superconductor (SIS) tunnel junctions are studied by comparing junctions sandwiched between niobium or aluminum layers. With niobium a temperature rise of several Kelvin is observed, which is reduced by an order of magnitude by using aluminum. A simple

  14. Niobium titanium nitride-based superconductor-insulator-superconductor mixers for low-noise terahertz receivers

    NARCIS (Netherlands)

    Jackson, B.D.; De Lange, G.; Zijlstra, T.; Kroug, M.; Klapwijk, T.M.; Stern, J.A.

    2005-01-01

    Integrating NbTiN-based microstrip tuning circuits with traditional Nb superconductor-insulator-superconductor (SIS) junctions enables the low-noise operation regime of SIS mixers to be extended from below 0.7 to 1.15 THz. In particular, mixers incorporating a NbTiN/SiO2/NbTiN microstrip tuning circ

  15. Josephson current in a normal-metal nanowire coupled to a superconductor/ferromagnet/superconductor junction

    NARCIS (Netherlands)

    Ebisu, H.; Lu, B.; Taguchi, K.; Golubov, Alexandre Avraamovitch; Tanaka, Y.

    2016-01-01

    We consider a superconducting nanowire proximity coupled to a superconductor/ferromagnet/superconductor (S/F/S) junction, where the magnetization penetrates into a superconducting segment in a nanowire decaying as ∼exp[−∣n∣ξ], where n is the site index and the ξ is the decay length. We tune chemical

  16. Fault current limiter using bulk oxides superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Belmont, O.; Ferracci, P.; Porcar, L.; Barbut, J.M. [Schneider Electric, Grenoble (France). Usine A3; Tixador, P.; Noudem, J.G.; Bourgault, D.; Tournier, R

    1998-08-01

    We study the limitation possibilities of bulk Bi high T{sub c} materials. For this we test these materials with AC or DC currents above their critical currents. We study particularly the evolution of the voltage with time or with current. The material, the value of the current and the time duration play important parts. For sintered Bi samples the voltage depends only on the current even for values much larger than the critical current. With textured samples the V(I) curves shows an hysteretic behaviour due to a warming up. The textured materials are more interesting than sintered ones in terms of required volume for the current limitation. In both cases the superconductors are in a dissipative state but not in the normal state. This state is nevertheless reached if the dissipated energy inside the sample is sufficient. We have tried to apply a magnetic field on the samples in order to trigger a more effective limitation. The voltage increases but with a limited effect for currents much higher (3-4 times) than the critical zero field current. We think that the dissipative state is due mainly to the grain boundaries which become resistive above the critical current. (orig.) 11 refs.

  17. Topological transitions in multi-band superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Continentino, Mucio A., E-mail: mucio@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, Urca 22290-180, Rio de Janeiro, RJ (Brazil); Deus, Fernanda, E-mail: fernanda@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, Urca 22290-180, Rio de Janeiro, RJ (Brazil); Padilha, Igor T., E-mail: igorfis@ufam.edu.br [Universidade Federal do Amazonas, Campus Capital, 69077-070, Manaus, AM (Brazil); Caldas, Heron, E-mail: hcaldas@ufsj.edu.br [Departamento de Ciências Naturais, Universidade Federal de São João Del Rei, 36301-000, São João Del Rei, MG (Brazil)

    2014-09-15

    The search for Majorana fermions has been concentrated in topological insulators or superconductors. In general, the existence of these modes requires the presence of spin–orbit interactions and of an external magnetic field. The former implies in having systems with broken inversion symmetry, while the latter breaks time reversal invariance. In a recent paper, we have shown that a two-band metal with an attractive inter-band interaction has non-trivial superconducting properties, if the k-dependent hybridization is anti-symmetric in the wave-vector. This is the case, if the crystalline potential mixes states with different parities as for orbitals with angular momentum l and l+1. In this paper we take into account the effect of an external magnetic field, not considered in the previous investigation, in a two-band metal and show how it modifies the topological properties of its superconducting state. We also discuss the conditions for the appearance of Majorana fermions in this system.

  18. A high-Tc superconductor bolometer for remote sensing of atmospheric OH

    NARCIS (Netherlands)

    Nivelle, de M.J.M.E.; Bruijn, M.P.; Vries, de R.; Wijnbergen, J.J.; Korte, de P.A.J.; Sanchez, S.; Elwenspoek, M.; Heidenblut, T.; Schwierzi, B.; Michalke, W.; Steinbeiss, E.; Frericks, M.

    1996-01-01

    The technological feasibility is being investigated of a high-Tc superconductor transition edge bolometer for far-infrared detection, which can meet the requirements of a Fabry-Perot based satellite instrument designed for remote sensing of atmospheric OH. These include a time constant τ<0.3 s, an o

  19. Requirement for the eIF4E binding proteins for the synergistic down-regulation of protein synthesis by hypertonic conditions and mTOR inhibition.

    Science.gov (United States)

    Clemens, Michael J; Elia, Androulla; Morley, Simon J

    2013-01-01

    The protein kinase mammalian target of rapamycin (mTOR) regulates the phosphorylation and activity of several proteins that have the potential to control translation, including p70S6 kinase and the eIF4E binding proteins 4E-BP1 and 4E-BP2. In spite of this, in exponentially growing cells overall protein synthesis is often resistant to mTOR inhibitors. We report here that sensitivity of wild-type mouse embryonic fibroblasts (MEFs) to mTOR inhibitors can be greatly increased when the cells are subjected to the physiological stress imposed by hypertonic conditions. In contrast, protein synthesis in MEFs with a double knockout of 4E-BP1 and 4E-BP2 remains resistant to mTOR inhibitors under these conditions. Phosphorylation of p70S6 kinase and protein kinase B (Akt) is blocked by the mTOR inhibitor Ku0063794 equally well in both wild-type and 4E-BP knockout cells, under both normal and hypertonic conditions. The response of protein synthesis to hypertonic stress itself does not require the 4E-BPs. These data suggest that under certain stress conditions: (i) translation has a greater requirement for mTOR activity and (ii) there is an absolute requirement for the 4E-BPs for regulation by mTOR. Importantly, dephosphorylation of p70S6 kinase and Akt is not sufficient to affect protein synthesis acutely.

  20. Optimisation of nutritional requirements for dopamine synthesis by calcium alginate-entrapped mutant strain of Aspergillus oryzae EMS-6.

    Science.gov (United States)

    Ali, Sikander; Nawaz, Wajeeha

    2017-02-01

    The optimisation of nutritional requirements for dopamine (DA) synthesis by calcium alginate-entrapped mutant variant of Aspergillus oryzae EMS-6 using submerged fermentation technique was investigated. A total of 13 strains were isolated from soil. Isolate I-2 was selected as a better producer of DA and improved by exposing with ethyl methylsulphonate (EMS). EMS-6 was selected as it exhibited 43 μg/mL DA activity. The mutant variable was further treated with low levels of l-cysteine HCl to make it resistant against diversion and environmental stress. The conidiospores of mutant variant were entrapped in calcium alginate beads for stable product formation. EMS-6 gave maximum DA activity (124 μg/mL) when supplemented with 0.1% peptone and 0.2% sucrose, under optimised parameters viz. pH 3, temperature of 55 °C and incubation time of 70 min. The study involves the high profile of DA activity and is needed, as DA is capable to control numerous neurogenic disorders.

  1. Karrikins discovered in smoke trigger Arabidopsis seed germination by a mechanism requiring gibberellic acid synthesis and light.

    Science.gov (United States)

    Nelson, David C; Riseborough, Julie-Anne; Flematti, Gavin R; Stevens, Jason; Ghisalberti, Emilio L; Dixon, Kingsley W; Smith, Steven M

    2009-02-01

    Discovery of the primary seed germination stimulant in smoke, 3-methyl-2H-furo[2,3-c]pyran-2-one (KAR1), has resulted in identification of a family of structurally related plant growth regulators, karrikins. KAR1 acts as a key germination trigger for many species from fire-prone, Mediterranean climates, but a molecular mechanism for this response remains unknown. We demonstrate that Arabidopsis (Arabidopsis thaliana), an ephemeral of the temperate northern hemisphere that has never, to our knowledge, been reported to be responsive to fire or smoke, rapidly and sensitively perceives karrikins. Thus, these signaling molecules may have greater significance among angiosperms than previously realized. Karrikins can trigger germination of primary dormant Arabidopsis seeds far more effectively than known phytohormones or the structurally related strigolactone GR-24. Natural variation and depth of seed dormancy affect the degree of KAR1 stimulation. Analysis of phytohormone mutant germination reveals suppression of KAR1 responses by abscisic acid and a requirement for gibberellin (GA) synthesis. The reduced germination of sleepy1 mutants is partially recovered by KAR1, which suggests that germination enhancement by karrikin is only partly DELLA dependent. While KAR1 has little effect on sensitivity to exogenous GA, it enhances expression of the GA biosynthetic genes GA3ox1 and GA3ox2 during seed imbibition. Neither abscisic acid nor GA levels in seed are appreciably affected by KAR1 treatment prior to radicle emergence, despite marked differences in germination outcome. KAR1 stimulation of Arabidopsis germination is light-dependent and reversible by far-red exposure, although limited induction of GA3ox1 still occurs in the dark. The observed requirements for light and GA biosynthesis provide the first insights into the karrikin mode of action.

  2. Application of superconductor-semiconductor Schottky barrier for electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Savin, Alexander; Prunnila, Mika; Ahopelto, Jouni; Kivinen, Pasi; Toermae, Paeivi; Pekola, Jukka

    2003-05-01

    Electronic cooling in superconductor-semiconductor-superconductor structures at sub kelvin temperatures has been demonstrated. Effect of the carrier concentration in the semiconductor on performance of the micro-cooler has been investigated.

  3. Dependence of levitation force on frequency of an oscillating magnetic levitation field in a bulk YBCO superconductor

    Science.gov (United States)

    Carter, Hamilton; Pate, Stephen; Goedecke, George

    2013-02-01

    The dependence of the magnetic field strength required for levitation of a melt textured, single domain YBCO superconductor disk on the frequency of the current generating the levitating magnetic field has been investigated. The magnetic field strength is found to be independent of frequency between 10 and 300 Hz. This required field strength is found to be in good experimental and theoretical agreement with the field strength required to levitate the same superconductor with a non-oscillating magnetic field. Hysteretic losses within the superconductor predicted by Bean’s critical-state model were also calculated. The measured data rules out any significant Bean’s model effects on the required levitation field strength within the measured frequency range.

  4. Sealed glass coating of high temperature ceramic superconductors

    Science.gov (United States)

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  5. Electron tunneling and point contact Andreev reflection studies of superconductors

    Science.gov (United States)

    Dai, Wenqing

    The energy gap is the most fundamental property of a superconductor. Electron tunneling spectroscopy and point contact spectroscopy (PCS) are powerful techniques for studying the density of states and energy gap features of superconductors. Two different superconducting systems, multiband superconductor MgB2 and proximity induced topological superconductor NbSe2/Bi 2Se3 heterostructures were studied using either quasiparticle tunneling in planar tunnel junctions or PCS in this work. (Abstract shortened by ProQuest.).

  6. Studies on Magnetization Technique of High Temperature Superconductors

    OpenAIRE

    大橋, 忠巌; 荻原, 宏康

    1999-01-01

    It is known that permanent magnets produce magnetic fields up to 1T. On the other hand, magnetized high temperature superconductors can be used as "super"-permanent magnets which produce magnetic fields higher than 1T, because superconductors can trap higher magnetic fluxes than usual permanent magnets. In order to magnetize a YBCO bulk superconductor, there are two ways; a field cooling (FC) method and a zero field cooling (ZFC) method. FC is the way of magnetizing the superconductor by appl...

  7. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Science.gov (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  8. Inhomogeneous magnetic field in AdS/CFT superconductor

    OpenAIRE

    Wen, Wen-Yu

    2008-01-01

    We study the holographically dual description of superconductor in (2+1)-dimensions in the presence of inhomogeneous magnetic field and observe that there exists type I and type II superconductor. A new feature of type changing is observed for type I superconductor near critical temperature.

  9. Physics and chemistry review of layered chalcogenide superconductors

    OpenAIRE

    Deguchi, Keita; Takano, Yoshihiko; Mizuguchi, Yoshikazu

    2012-01-01

    Structural and physical properties of layered chalcogenide superconductors are summarized. In particular, we review the remarkable properties of the Fe-chalcogenide superconductors, FeSe and FeTe-based materials. Furthermore, we introduce the recently-discovered new BiS2-based layered superconductors and discuss its prospects.

  10. Chemical stabilization and high pressure synthesis of Ba-free Hg-based superconductors, (Hg,M)Sr2Ca(n-1)Cu(n)O(y)(n=1 to approximately 3)

    Science.gov (United States)

    Kishio, K.; Shimoyama, J.; Hahakura, S.; Kitazawa, K.; Yamaura, K.; Hiroi, Z.; Takano, M.

    1995-01-01

    A homologous series of new Hg-based HTSC compounds, (Hg,M)Sr2Ca(n - 1)Cu(n)P(y) with n = 1 to 3, have been synthesized. The stabilization of the pure phases have been accomplished by chemical doping of third elements such as M = Cr, Mo and Re. While the Hgl2O1(n = 1) phase was readily obtained in this way, it was necessary to simultaneously dope Y into the Ca site to stabilize the Hg1212(n = 2) phase. On the other hand, single-phase Y-free Hg1212(n = 2) and Hg1223 (n = 3) samples were synthesized only under a high pressure of 6 GPa. In sharp contrast to the Ba containing compounds, all the samples prepared in the present study have been quite stable during the synthesis and no deterioration in air has been observed after the preparation.

  11. Synthesis of Bi{sub 1.8}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} superconductor

    Science.gov (United States)

    Smith, M.G.

    1996-10-29

    Two-powder processes for the synthesis of superconducting (Bi, Pb)-2223/Ag-clad wires by the oxide-powder-in-the-robe are provided. The first precursor powder, of nominal stoichiometry CaCuO{sub x}, is a solution-synthesized mixture of Ca{sub 0.45}Cu{sub 0.55}O{sub 2} and CaO. Using these oxide precursor mixtures, superconducting tapes with well-aligned grains and reproducible critical current densities J{sub c} in the range of 20,000 to 26,000 A/cm{sup 2} at 75 K in self-field after annealing less than 200 hours were obtained. 2 figs.

  12. Pressure-controlled synthesis of the Hg{sub 0.82}Re{sub 0.18}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 8+{delta}} superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Sin, A.; Calleja, A.; Pinol, S.; Obradors, X. [Consejo Superior de Investigaciones Cientificas, Barcelona (Spain). Inst. de Ciencia de Materiales; Cunha, A.G.; Orlando, M.T.D.; Emmerich, F.G.; Baggio-Saitovitch, E.; Segarra, M.

    1998-10-01

    Obtaining single-phase Hg{sub 1-x}M{sub x}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 8+{delta}} materials has proved difficult using the sealed quartz tube technique, mainly because of the poor knowledge of the synthesis mechanisms. A technique is described for the measurement of the system pressure in situ, allowing both the thermodynamic and kinetic aspects of the reaction to be investigated. The power of this technique is demonstrated by studying the stability of the Hg{sub 0.82}Re{sub 0.18}Ba{sub 2}Ca{sub 2}Cu{sub 3}O{sub 8+} {sub de} {sub lta} compound, but should also be applicable to in-situ pressure determination in gas-solid reactions. (orig.) 17 refs.

  13. Chemical stabilization and high pressure synthesis of Ba-free Hg-based superconductors, (Hg,M)Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub y}(N=1{approximately}3)

    Energy Technology Data Exchange (ETDEWEB)

    Kishio, K. [Univ. of Tokyo (Japan)]|[Kyoto Univ. (Japan); Shimoyama, J.; Hahakura, S. [Univ. of Tokyo (Japan)] [and others

    1994-12-31

    A homologous series of new Hg-based HTSC compounds, (Hg,M)Sr{sub 2}Ca{sub n-1}Cu{sub n}O{sub y} with n=1 to 3, have been synthesized. The stabilization of the pure phases have been accomplished by chemical doping of third elements such as M=Cr, Mo and Re. While the Hg1201(n=1) phase was readily obtained in this way, it was necessary to simultaneously dope Y into the Ca site to stabilize the Hg1212(n=2) phase. On the other hand, single-phase Y-free Hg1212(n=2) and Hg1223(n=3) samples were synthesized only under a high pressure of 6 GPa. In sharp contrast to the Ba-containing compounds, all the samples prepared in the present study have been quite stable during the synthesis and no deterioration in air has been observed after the preparation.

  14. Quantum interference in an interfacial superconductor

    Science.gov (United States)

    Goswami, Srijit; Mulazimoglu, Emre; Monteiro, Ana M. R. V. L.; Wölbing, Roman; Koelle, Dieter; Kleiner, Reinhold; Blanter, Ya. M.; Vandersypen, Lieven M. K.; Caviglia, Andrea D.

    2016-10-01

    The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (Tc; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-Tc superconductors. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.

  15. Stable binding of the eukaryotic acidic phosphoproteins to the ribosome is not an absolute requirement for in vivo protein synthesis.

    Science.gov (United States)

    Remacha, M; Santos, C; Bermejo, B; Naranda, T; Ballesta, J P

    1992-06-15

    The genes encoding the four acidic ribosomal phosphoproteins have been inactivated in Saccharomyces cerevisae by recombination with truncated genes carrying different genetic markers. By crossing single haploid disruptants, strains harboring two simultaneously inactivated acidic protein genes were constructed. None of the six possible double disruptions was lethal, but the simultaneous inactivation of either YP1 alpha and YP1 beta(L44') or YP2 alpha(L44) and YP2 beta(L45) caused an important decrease in the cell growth rate. Ribosomes isolated from these slow-growing strains did not contain acidic proteins, not even the two polypeptides whose genes were still intact, although these proteins were present in the cell extracts and they seem to be able to form high-molecular weight protein complexes. Transformation of a slow-growing double transformant with a plasmid containing one of the disrupted genes restored the presence of the acidic proteins in the ribosomes and normal growth rates. The particles of the slow-growing strains were active in an in vitro amino acid polymerizing system, although their activity could be stimulated by the exogenous addition of the missing proteins. These results indicate that in the absence of either YP1 alpha and YP1 beta(L44') or YP2 alpha (L44) and YP2 beta(L45), the remaining acidic proteins are unable to interact with the ribosome in a stable manner, but that a strong interaction of these ribosomal components with the particle is not an absolute requirement for in vivo and in vitro protein synthesis.

  16. Reversibility and energy dissipation in adiabatic superconductor logic.

    Science.gov (United States)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-03-06

    Reversible computing is considered to be a key technology to achieve an extremely high energy efficiency in future computers. In this study, we investigated the relationship between reversibility and energy dissipation in adiabatic superconductor logic. We analyzed the evolution of phase differences of Josephson junctions in the reversible quantum-flux-parametron (RQFP) gate and confirmed that the phase differences can change time reversibly, which indicates that the RQFP gate is physically, as well as logically, reversible. We calculated energy dissipation required for the RQFP gate to perform a logic operation and numerically demonstrated that the energy dissipation can fall below the thermal limit, or the Landauer bound, by lowering operation frequencies. We also investigated the 1-bit-erasure gate as a logically irreversible gate and the quasi-RQFP gate as a physically irreversible gate. We calculated the energy dissipation of these irreversible gates and showed that the energy dissipation of these gate is dominated by non-adiabatic state changes, which are induced by unwanted interactions between gates due to logical or physical irreversibility. Our results show that, in reversible computing using adiabatic superconductor logic, logical and physical reversibility are required to achieve energy dissipation smaller than the Landauer bound without non-adiabatic processes caused by gate interactions.

  17. The unexpected properties of alkali metal iron selenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dagotto, Elbio R [ORNL

    2013-01-01

    The iron-based superconductors that contain FeAs layers as the fundamental building block in the crystal structures have been rationalized in the past using ideas based on the Fermi surface nesting of hole and electron pockets when in the presence of weak Hubbard U interactions. This approach seemed appropriate considering the small values of the magnetic moments in the parent compounds and the clear evidence based on photoemission experiments of the required electron and hole pockets. However, recent results in the context of alkali metal iron selenides, with generic chemical composition AxFe2ySe2 (A alkali metal element), have challenged those previous ideas since at particular compositions y the low-temperature ground states are insulating and display antiferromagnetic order with large iron magnetic moments. Moreover, angle-resolved photoemission studies have revealed the absence of hole pockets at the Fermi level in these materials. The present status of this exciting area of research, with the potential to alter conceptually our understanding of the ironbased superconductors, is here reviewed, covering both experimental and theoretical investigations. Other recent related developments are also briefly reviewed, such as the study of selenide two-leg ladders and the discovery of superconductivity in a single layer of FeSe. The conceptual issues considered established for the alkali metal iron selenides, as well as several issues that still require further work, are discussed.

  18. Bringing Superconductor Digital Technology to the Market Place

    Science.gov (United States)

    Nisenoff, Martin

    The unique properties of superconductivity can be exploited to provide the ultimate in electronic technology for systems such as ultra-precise analogue-to-digital and digital-to-analogue converters, precise DC and AC voltage standards, ultra high speed logic circuits and systems (both digital and hybrid analogue-digital systems), and very high throughput network routers and supercomputers which would have superior electrical performance at lower overall electrical power consumption compared to systems with comparable performance which are fabricated using conventional room temperature technologies. This potential for high performance electronics with reduced power consumption would have a positive impact on slowing the increase in the demand for electrical utility power by the information technology community on the overall electrical power grid. However, before this technology can be successfully brought to the commercial market place, there must be an aggressive investment of resources and funding to develop the required infrastructure needed to yield these high performance superconductor systems, which will be reliable and available at low cost. The author proposes that it will require a concerted effort by the superconductor and cryogenic communities to bring this technology to the commercial market place or make it available for widespread use in scientific instrumentation.

  19. Hacia el motor superconductor: estudio de las interacciones entre un rotor superconductor y un estator convencional

    OpenAIRE

    Pallarès Viña, Miquel Joan

    2002-01-01

    de la tesis:Hacia el motor superconductor: estudio de las interacciones entre un estator convencional y un rotor superconductorEl desarrollo de superconductores de alta temperatura (HTSC) de gran corriente crítica ha permitido la fabricación de dispositivos en varias áreas de la ingeniería electromecánica. En particular, los HTSC pueden mejorar el rendimiento de los motores eléctricos, ya sea sustituyendo el cobre en el rotor de los mismos o con la realización de nuevos diseños.El particular...

  20. dc Josephson Effect in s-Wave Superconductor/Ferromagnet Insulator/p-Wave Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2007-01-01

    The Josephson currents in s-wave superconductor/ferromagnet insulator/p-wave superconductor(s/FI/p)junctions are calculated as a function of temperature and the phase taking into account the roughness scattering effect at interface.The phase dependence of the Josephson current I ( φ) between s-wave and px-wave superconductor is predicted to be sin(2φ).The ferromagnet scattering effect,the barrier strength,and the roughness strength at interface suppress the dc currents in s/FI/p junction.

  1. High field superconductor development and understanding

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, David C. [Florida State Univ., Tallahassee, FL (United States); Lee, Peter J. [Florida State Univ., Tallahassee, FL (United States); Tarantini, Chiara [Florida State Univ., Tallahassee, FL (United States)

    2014-09-28

    All present circular accelerators use superconducting magnets to bend and to focus the particle beams. The most powerful of these machines is the large hadron collider (LHC) at CERN. The main ring dipole magnets of the LHC are made from Nb-Ti but, as the machine is upgraded to higher luminosity, more powerful magnets made of Nb3Sn will be required. Our work addresses how to make the Nb3Sn conductors more effective and more suitable for use in the LHC. The most important property of the superconducting conductor used for an accelerator magnet is that it must have very high critical current density, the property that allows the generation of high magnetic fields in small spaces. Nb3Sn is the original high field superconductor, the material which was discovered in 1960 to allow a high current density in the field of about 9 T. For the high luminosity upgrade of the LHC, much higher current densities in fields of about 12 Tesla will be required. The critical value of the current density is of order 2600 A/mm2 in a field of 12 Tesla. But there are very important secondary factors that complicate the attainment of this critical current density. The first is that the effective filament diameter must be no larger than about 40 µm. The second factor is that 50% of the cross-section of the Nb3Sn conductor that is pure copper must be protected from any poisoning by any Sn leakage through the diffusion barrier that protects the package of niobium and tin from which the Nb3Sn is formed by a high temperature reaction. These three, somewhat conflicting requirements, mean that optimization of the conductor is complex. The work described in this contract report addresses these conflicting requirements. They show that very sophisticated characterizations can uncover the way to satisfy all 3 requirements and they also suggest that the ultimate optimization of Nb3Sn is still not yet in sight

  2. Shock compaction of high- Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Weir, S.T.; Nellis, W.J.; McCandless, P.C.; Brocious, W.F. (Lawrence Livermore National Lab., CA (USA)); Seaman, C.L.; Early, E.A.; Maple, M.B. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Physics); Kramer, M.J. (Ames Lab., IA (USA)); Syono, Y.; Kikuchi, M. (Tohoku Univ., Sendai (Japan))

    1990-09-01

    We present the results of shock compaction experiments on high-{Tc} superconductors and describe the way in which shock consolidation addresses critical problems concerning the fabrication of high J{sub c} bulk superconductors. In particular, shock compaction experiments on YBa{sub 2}Cu{sub 3}O{sub 7} show that shock-induced defects can greatly increase intragranular critical current densities. The fabrication of crystallographically aligned Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} samples by shock-compaction is also described. These experiments demonstrate the potential of the shock consolidation method as a means for fabricating bulk high-{Tc} superconductors having high critical current densities.

  3. Radiation shielding effectiveness of newly developed superconductors

    Science.gov (United States)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  4. Fracture toughness for copper oxide superconductors

    Science.gov (United States)

    Goretta, Kenneth C.; Kullberg, Marc L.

    1993-01-01

    An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.

  5. High-temperature superconductor antenna investigations

    Science.gov (United States)

    Karasack, Vincent G.

    1990-10-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  6. On n-quantum vortices in superconductors

    CERN Document Server

    Marchenko, V I

    2002-01-01

    The conditions of the n-quantum vortices observation in the superconductors are discussed. It is established in the course of calculating the coefficient by the |psi| sup 6 (psi - the order parameter) in the Ginzburg-Landau theory for the BCS standard model that the sign of this coefficient is negative. This favours the possibility of observing the n-quantum vortices in the superconductors, wherein the vortex lattice with gravitation is formed. The existence of gravitation is manifested in the magnetization finite jump in the H sub 0 = H sub c sub sup 1 field. When by the temperature change the superconductor behavior changes in such a way, that its magnetization in the H sub 0 = H sub c field reduces to the zero, than the observation of the n-quantum vortices near this transition is possible

  7. Charge and spin transport in mesoscopic superconductors

    Directory of Open Access Journals (Sweden)

    M. J. Wolf

    2014-02-01

    Full Text Available Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin.Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models.Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.

  8. AC susceptibilities of grain-textured superconductors

    Science.gov (United States)

    Sakamoto, N.; Fukuda, Y.; Koga, M.; Akune, T.; Khan, H. R.; Lüders, K.

    2008-09-01

    In-phase χ n‧ and out-phase χ n″ components of nth harmonics of AC susceptibility with measuring parameters of a DC magnetic field Bdc, an amplitude Ba and a frequency f of the superimposed AC magnetic fields give substantial information of the superconducting properties. In low- Tc metallic superconductors, χ1‧ shows smooth transition and χ1″ does single peak. High- Tc oxide superconductors with anisotropic and grain-textured structures show deformed complex characteristics. Double peaks in χ1″ and shoulders in χ1‧ appear in AC susceptibility of Hg-1223 superconductors. Instead of simple Bean model, a grained model, where the superconducting grains are immersed in weak superconducting matrix, are proposed. The susceptibilities numerically analyzed using the model show varied and deformed curves and are successfully compared with the measured results.

  9. Crack problem in a long cylindrical superconductor

    Science.gov (United States)

    Yong, Hua-Dong; Zhou, You-He; Zeng, Jun

    2008-12-01

    In this work, the general problem of a center crack in a long cylindrical superconductor is studied. The dependence of the stress intensity factor on the parameters, including the crack length and the applied field, is investigated. We presented a simple model in which the effect of the crack on the critical current is taken into account. It is assumed that the crack forms a perfect barrier to the flow of current. The Bean model and the Kim model are considered for the critical state. Based on the complex potential and boundary collocation methods, the stress intensity factor under the magnetic field is obtained for a long cylindrical superconductor containing a central crack. The results show that the crack length and the applied field have significant effects on the fracture behavior of the superconductor.

  10. Thermomagnetic phenomena in the mixed state of high temperature superconductors

    Science.gov (United States)

    Meilikhov, E. Z.

    1995-01-01

    Galvano- and thermomagnetic-phenomena in high temperature superconductors, based on kinetic coefficients, are discussed, along with a connection between the electric field and the heat flow in superconductor mixed state. The relationship that determines the transport coefficients of high temperature superconductors in the mixed state based on Seebeck and Nernst effects is developed. It is shown that this relationship is true for a whole transition region of the resistive mixed state of a superconductor. Peltier, Ettingshausen and Righi-Leduc effects associated with heat conductivity as related to high temperature superconductors are also addressed.

  11. Surface texturing of superconductors by controlled oxygen pressure

    Science.gov (United States)

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  12. Superfluid response in heavy fermion superconductors

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  13. TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides.

    Science.gov (United States)

    Marie, Corinne; Deakin, William J; Ojanen-Reuhs, Tuula; Diallo, Ericka; Reuhs, Brad; Broughton, William J; Perret, Xavier

    2004-09-01

    Formation of nitrogen-fixing nodules on legume roots by Rhizobium sp. NGR234 requires an array of bacterial factors, including nodulation outer proteins (Nops) secreted through a type III secretion system (TTSS). Secretion of Nops is abolished upon inactivation of ttsI (formerly y4xI), a protein with characteristics of two-component response regulators that was predicted to activate transcription of TTSS-related genes. During the symbiotic interaction, the phenotype of NGR omega ttsI differs from that of a mutant with a nonfunctional secretion machine, however. This indicated that TtsI regulates the synthesis of other symbiotic factors as well. Conserved sequences, called tts boxes, proposed to act as binding sites for TtsI, were identified not only within the TTSS cluster but also in the promoter regions of i) genes predicted to encode homologs of virulence factors secreted by pathogenic bacteria, ii) loci involved in the synthesis of a rhamnose-rich component (rhamnan) of the lipopolysaccharides (LPS), and iii) open reading frames that play roles in plasmid partitioning. Transcription studies showed that TtsI and tts boxes are required for the activation of TTSS-related genes and those involved in rhamnose synthesis. Furthermore, extraction of polysaccharides revealed that inactivation of ttsI abolishes the synthesis of the rhamnan component of the LPS. The phenotypes of mutants impaired in TTSS-dependent protein secretion, rhamnan synthesis, or in both functions were compared to assess the roles of some of the TtsI-controlled factors during symbiosis.

  14. Workshop on accelerator magnet superconductors. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The workshop on accelerator magnet superconductors has gathered 102 registered participants from research laboratories, universities and industry. 8 European companies, active in superconducting materials and cables were present. This workshop has been organized to deal with the status of the world research and development on superconducting materials and cables for high field magnets (B > 10 T). The workshop has also reviewed the status of high temperature superconductors and transmission line cables for potential use in low field superconducting magnets for injectors and beam transfer lines, as well as cables for pulsed magnets that might be used in future hadron colliders or injectors.

  15. Order parameter fluctuations in the holographic superconductor

    CERN Document Server

    Plantz, N W M; Vandoren, S

    2015-01-01

    We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, the fully backreacted spectral functions of the order parameter in both the normal and the superconducting phase are computed. We also present a vector-like large-$N$ version of the Ginzburg-Landau model that accurately describes our long-wavelength results in both phases. The large-$N$ limit of the latter model explains why the Higgs mode and the second-sound mode are not present in the spectral functions. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC-BCS crossover.

  16. Aluminum-stabilized NB3SN superconductor

    Science.gov (United States)

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  17. Electrical connection structure for a superconductor element

    Science.gov (United States)

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  18. Electromagnetic Effects in Superconductors in Gravitational Field

    CERN Document Server

    Ahmedov, B J

    2005-01-01

    The general relativistic modifications to the resistive state in superconductors of second type in the presence of a stationary gravitational field are studied. Some superconducting devices that can measure the gravitational field by its red-shift effect on the frequency of radiation are suggested. It has been shown that by varying the orientation of a superconductor with respect to the earth gravitational field, a corresponding varying contribution to AC Josephson frequency would be added by gravity. A magnetic flux (being proportional to angular velocity of rotation $\\Omega$) through a rotating hollow superconducting cylinder with the radial gradient of temperature $\

  19. Long-range spin transport in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael J. [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)

    2012-07-01

    Recently, there has been some controversy about spin-polarized quasiparticle transport and relaxation in superconductors, with reports of both anomalously short or anomalously long relaxation times as compared to the normal state. Here, we report on non-local transport in multiterminal superconductor-ferromagnet structures. We find signatures of spin transport over distances much larger than the normal-state spin-diffusion length in the presence of a large Zeeman splitting of the quasiparticle states. The relaxation length shows a nearly linear increase with magnetic field, hinting at a freeze-out of spin relaxation by the Zeeman splitting.

  20. Order parameter fluctuations in the holographic superconductor

    Science.gov (United States)

    Plantz, N. W. M.; Stoof, H. T. C.; Vandoren, S.

    2017-03-01

    We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, following an introduction to the concept of intrinsic dynamics and its implementation within holographic models, we compute the intrinsic spectral functions of the order parameter in both the normal and the superconducting phase, using a fully backreacted bulk geometry. We also present a vector-like large-N version of the Ginzburg–Landau model that accurately describes our long-wavelength results in both phases. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC–BCS crossover.

  1. Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoyan, E-mail: xshi@sandia.gov; Pan, W.; Hawkins, S. D.; Klem, J. F. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Yu, Wenlong; Jiang, Zhigang [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Andrei Bernevig, B. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-10-07

    Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here, we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic field (T – H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure.

  2. Analytical Result on the Supercurrent Through a Superconductor/Quantum-Dot/Superconductor Junction

    Institute of Scientific and Technical Information of China (English)

    LI Wei; ZHU Yu; LIN Tsung-Han

    2002-01-01

    We present an analytical result for the supercurrent across a superconductor/quantum-dot/superconductor junction. By converting the current integration into a special contour integral, we can express the current as a sum of the residues of poles. These poles are real and give a natural definition of the Andreev bound states. We also use the exact result to explain some features of the supercurrent transport behavior.

  3. RNA:protein ratio of the unicellular organism as a characteristic of phosphorous and nitrogen stoichiometry and of the cellular requirement of ribosomes for protein synthesis

    Directory of Open Access Journals (Sweden)

    Sams Carl E

    2006-09-01

    Full Text Available Abstract Background Mean phosphorous:nitrogen (P:N ratios and relationships of P:N ratios with the growth rate of organisms indicate a surprising similarity among and within microbial species, plants, and insect herbivores. To reveal the cellular mechanisms underling this similarity, the macromolecular composition of seven microorganisms and the effect of specific growth rate (SGR on RNA:protein ratio, the number of ribosomes, and peptide elongation rate (PER were analyzed under different conditions of exponential growth. Results It was found that P:N ratios calculated from RNA and protein contents in these particular organisms were in the same range as the mean ratios reported for diverse organisms and had similar positive relationships with growth rate, consistent with the growth-rate hypothesis. The efficiency of protein synthesis in microorganisms is estimated as the number of active ribosomes required for the incorporation of one amino acid into the synthesized protein. This parameter is calculated as the SGR:PER ratio. Experimental and theoretical evidence indicated that the requirement of ribosomes for protein synthesis is proportional to the RNA:protein ratio. The constant of proportionality had the same values for all organisms, and was derived mechanistically from the characteristics of the protein-synthesis machinery of the cell (the number of nucleotides per ribosome, the average masses of nucleotides and amino acids, the fraction of ribosomal RNA in the total RNA, and the fraction of active ribosomes. Impairment of the growth conditions decreased the RNA:protein ratio and increased the overall efficiency of protein synthesis in the microorganisms. Conclusion Our results suggest that the decrease in RNA:protein and estimated P:N ratios with decrease in the growth rate of the microorganism is a consequence of an increased overall efficiency of protein synthesis in the cell resulting from activation of the general stress response and

  4. Requirements of glycerol and fatty acid for triglyceride synthesis and ketogenesis by hepatocytes from normal and triiodothyronine-treated rats

    Energy Technology Data Exchange (ETDEWEB)

    Olubadewo, J.O.; Heimberg, M.

    1985-11-15

    Hepatocytes from T3-treated rats synthesized less triglyceride and more ketone bodies from (1-/sup 14/C)oleate at all concentrations from 0-2 mM, than did hepatocytes from euthyroid animals; addition of 1.0 mM glycerol increased triglyceride synthesis and reduced ketogenesis in hepatocytes from T3-treated rats to the rates observed in euthyroid hepatocytes in the absence of added glycerol. Glycerol did not alter triglyceride synthesis, but reduced ketogenesis genesis by euthyroid hepatocytes. It is probable from these and other data that, in the hyperthyroid rat, glycero-3-P, and not fatty acid, is rate limiting for synthesis of triglyceride, and, secondarily for reducing rates of ketogenesis in the hepatocyte.

  5. Permanent magnet with MgB{sub 2} bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, Akiyasu, E-mail: yamamoto@appchem.t.u-tokyo.ac.jp [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Ishihara, Atsushi; Tomita, Masaru [Railway Technical Research Institute, 2-8-38 Hikari, Kokubunji, Tokyo 185-8540 (Japan); Kishio, Kohji [The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2014-07-21

    Superconductors with persistent zero-resistance currents serve as permanent magnets for high-field applications requiring a strong and stable magnetic field, such as magnetic resonance imaging. The recent global helium shortage has quickened research into high-temperature superconductors (HTSs)—materials that can be used without conventional liquid-helium cooling to 4.2 K. Herein, we demonstrate that 40-K-class metallic HTS magnesium diboride (MgB{sub 2}) makes an excellent permanent bulk magnet, maintaining 3 T at 20 K for 1 week with an extremely high stability (<0.1 ppm/h). The magnetic field trapped in this magnet is uniformly distributed, as for single-crystalline neodymium-iron-boron. Magnetic hysteresis loop of the MgB{sub 2} permanent bulk magnet was determined. Because MgB{sub 2} is a simple-binary-line compound that does not contain rare-earth metals, polycrystalline bulk material can be industrially fabricated at low cost and with high yield to serve as strong magnets that are compatible with conventional compact cryocoolers, making MgB{sub 2} bulks promising for the next generation of Tesla-class permanent-magnet applications.

  6. p-wave superconductors in dilaton gravity

    CERN Document Server

    Fan, ZhongYing

    2013-01-01

    In this paper, we study peculiar properties of p-wave superconductors in dilaton gravity. The scale invariance of the bulk geometry is effectively broken due to the existence of dilaton. By coupling the dilaton to the non-Abelian gauge field, i.e., $-\\frac14 e^{-\\beta \\Phi} F^a_{\\mu\

  7. Enhancing critical current density of cuprate superconductors

    Science.gov (United States)

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  8. Stripe phases in high-temperature superconductors.

    Science.gov (United States)

    Emery, V J; Kivelson, S A; Tranquada, J M

    1999-08-03

    Stripe phases are predicted and observed to occur in a class of strongly correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representatives. The existence of stripe correlations necessitates the development of new principles for describing charge transport and especially superconductivity in these materials.

  9. Kinetic energy driven pairing in cuprate superconductors

    NARCIS (Netherlands)

    Maier, TA; Jarrell, M; Macridin, A; Slezak, C

    2004-01-01

    Pairing occurs in conventional superconductors through a reduction of the electronic potential energy accompanied by an increase in kinetic energy. In the underdoped cuprates, optical experiments show that pairing is driven by a reduction of the electronic kinetic energy. Using the dynamical cluster

  10. Stripe Phases in High-Temperature Superconductors

    Science.gov (United States)

    Emery, V. J.; Kivelson, S. A.; Tranquada, J. M.

    1999-08-01

    Stripe phases are predicted and observed to occur in a class of strongly correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representatives. The existence of stripe correlations necessitates the development of new principles for describing charge transport and especially superconductivity in these materials.

  11. Epitaxy of semiconductor-superconductor nanowires

    DEFF Research Database (Denmark)

    Krogstrup, P.; Ziino, N.L.B.; Chang, W.

    2015-01-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface...

  12. Transverse acousto-electric effect in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lipavský, P., E-mail: lipavsky@karlov.mff.cuni.cz [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2 121 16 (Czech Republic); Koláček, J., E-mail: kolacek@fzu.cz [Institute of Physics, Academy of Sciences, Cukrovarnická 10, Prague 6 162 00 (Czech Republic); Lin, P.-J., E-mail: fareh.lin@gmail.com [Research Department, Universal Analytics Inc., RR2 Airdrie, AB T4B 2A4 (Canada)

    2016-06-15

    Highlights: • A description of an acousto-electric effect of superconductors is formulated, continuous over the phase transition. • Interactions among a sound wave, normal and superconducting electrons are included. • Response radiation attains a maximum before transition to the normal state. • Effects should be observable in clean niobium. - Abstract: We formulate a theory based on the time-dependent Ginzburg–Landau (TDGL) theory and Newtonian vortex dynamics to study the transverse acousto-electric response of a type-II superconductor with Abrikosov vortex lattice. When exposed to a transverse acoustic wave, Cooper pairs emerge from the moving atomic lattice and moving electrons. As in the Tolman–Stewart effect in a normal metal, an electromagnetic field is radiated from the superconductor. We adapt the equilibrium-based TDGL theory to this non-equilibrium system by using a floating condensation kernel. Due to the interaction between normal and superconducting components, the radiated electric field as a function of magnetic field attains a maximum value occurring below the upper critical magnetic field. This local increase in electric field has weak temperature dependence and is suppressed by the presence of impurities in the superconductor.

  13. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  14. Noncontact Measurement Of Critical Current In Superconductor

    Science.gov (United States)

    Israelsson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Critical current measured indirectly via flux-compression technique. Magnetic flux compressed into gap between superconductive hollow cylinder and superconductive rod when rod inserted in hole in cylinder. Hall-effect probe measures flux density before and after compression. Method does not involve any electrical contact with superconductor. Therefore, does not cause resistive heating and consequent premature loss of superconductivity.

  15. Excitations in Topological Superfluids and Superconductors

    Science.gov (United States)

    Wu, Hao

    In this thesis I present the theoretical work on Fermionic surface states, and %the bulk Bosonic collective excitations in topological superfluids and superconductors. Broken symmetries %Bulk-edge correspondence in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. (Abstract shortened by ProQuest.).

  16. Technological Evolution of High Temperature Superconductors

    Science.gov (United States)

    2015-12-01

    power level would reach 250 kilowatts in a joint Navy-Advanced Research Projects Agency (the fore- runner to the Defense Advanced Research Projects...A1 2/22/2007 Method and apparatus for cooling a blade server H01L 021/66 US- 20060283620 A1 American Superconductor Corporation (United States

  17. Towards Structural Testing of Superconductor Electronics

    NARCIS (Netherlands)

    Arun, A.J.; Kerkhoff, Hans G.

    2003-01-01

    Many of the semiconductor technologies are already facing limitations while new-generation data and telecommunication systems are implemented. Although in its infancy, superconductor electronics (SCE) is capable of handling some of these high-end tasks. We have started a defect-oriented test

  18. Isotope and multiband effects in layered superconductors.

    Science.gov (United States)

    Bussmann-Holder, Annette; Keller, Hugo

    2012-06-13

    In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.

  19. Tomato LeTHIC is an Fe-requiring HMP-P synthase involved in thiamine synthesis and regulated by multiple factors.

    Science.gov (United States)

    Zhao, Weina; Cheng, Xudong; Huang, Zongan; Fan, Huajie; Wu, Huilan; Ling, Hong-Qing

    2011-06-01

    Thiamine is a key primary metabolite which is necessary for the viability of all organisms. It is a dietary requirement for mammals because only prokaryotes, fungi and plants are thiamine prototrophs. In contrast to the well documented biosynthetic mechanism in bacteria, much remains to be deciphered in plants. In this work, a tomato thiamine-auxotrophic (thiamineless, tl) mutant was characterized. The tl mutant occurs due to inactivation of LeTHIC transcription as a result of insertion of a large unknown DNA fragment in its 5'-untranslated region. Expression of wild-type LeTHIC in tl plants was able to complement the mutant to wild type. LeTHIC possessed the same function as E.cTHIC [an Escherichia coli 4-amino-5-hydroxymethyl-2-methylpyrimidine phosphate (HMP-P) synthase involved in synthesis of the pyrimidine moiety of thiamine] because expression of LeTHIC rescued THIC-deficient strains of E. coli under culture conditions without thiamine supplementation, suggesting that plants employ a bacteria-like route of pyrimidine moiety synthesis. LeTHIC is an Fe-S cluster protein localized in chloroplasts, and Fe is required for maintenance of its enzyme activity because Fe deficiency resulted in a significant reduction of thiamine content in tomato leaves. Further, we also showed that the expression of LeTHIC is tightly regulated at the transcriptional and post-transcriptional level by multiple factors, such as light, Fe status and thiamine pyrophosphate (TPP)-riboswitch. The results clearly demonstrated that a feedback regulation mechanism is involved in synthesis of the pyrimidine moiety for controlling thiamine synthesis in tomato. Our results provide a new insight into understanding the molecular mechanism of thiamine biosynthesis in plants.

  20. DNA damage-processing in E. coli: on-going protein synthesis is required for fixation of UV-induced lethality and mutation.

    Science.gov (United States)

    Burger, Amanda; Raymer, Jenny; Bockrath, R

    2002-10-01

    UV irradiation of E. coli produces photoproducts in the DNA genome. In consequence, some bacteria lose viability (colony-forming ability) or remain viable as mutant cells. However, the end-points of viability inactivation (lethality) or mutation are determined by cellular processes that act on the UV-damaged DNA. We have investigated the in vivo time course for processes that deal with cyclobutane pyrimidine dimers (CPD) which can be specifically removed by photoreactivation (PR). At different times during post-UV incubation, samples were challenged with PR and assayed for viability or mutation. We used excision-defective E. coli B/r cells and worked under yellow light to avoid background PR. During post-UV incubation (0-100min) in fully supplemented defined medium, inactivation and mutation were initially significantly reversed by PR but the extent of this reversal decreased during continued incubation defining "fixation" of lethality or mutation, respectively. In contrast, if protein synthesis was restricted during the post-UV incubation, no fixation developed. When chloramphenicol was added to inhibit protein synthesis after 30min of supplemented post-UV incubation, at a time sufficient for expression of UV-induced protein(s), fixation of lethality or mutation was still annulled (no change in the effectiveness of PR developed). Lethality fixation did progress when protein synthesis was restricted and the cells were incubated in the presence of puromycin or were either clpP or clpX defective. We discuss these and related results to suggest (1) on-going protein synthesis is required in the fixation process for lethality and mutation to sustain an effective level of a hypothetical protein sensitive to ClpXP proteolysis and (2) this protein plays a critical role in the process leading to exchange between Pol III activity and alternative polymerase activities required as each cell deals with damage in template DNA.

  1. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Krockenberger, Y.

    2006-07-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  2. Synthesis, structural and physico-chemical studies of the monocrystal superconductor oxides Hg Ba{sub 2} Ca{sub n-1} Cu{sub n} O{sub 2n+2+{delta}}; Synthese, etudes structurales et physico-chimiques de monocristaux d`oxydes supraconducteurs Hg Ba{sub 2} Ca{sub n-1} Cu{sub n} O{sub 2n+2+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Viallet-Guillen, Virginie [Dept. de Recherche sur l`Etat Condense, CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-01-01

    The thesis presents the synthesis and the structural and physico-chemical properties of the mercury-based monocrystal superconductor oxides. The results reported in the first chapter refer to the first three members of the mercury cuprate series Hg-1201, Hg-1212 and Hg-1223. In the second chapter detailed results concerning the structure of these compounds are given highlighting the features common to all cuprates and pointing out the peculiarities of mercury phases. The third chapter presents the phase diagrams ({delta}, T, p(O{sub 2})) of the compounds HgBa{sub 2}CuO{sub 4+{delta}} and HgBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 8+{delta}} obtained by thermogravimetry under controlled atmosphere between 150 deg.C and 500 deg.C and thermodynamic equilibrium conditions. In the case of Hg-1201, the critical temperature shows a variation close to a parabolic law, with an optimal Tc of 96 K ({delta}{approx_equal}0.10) while in Hg-1223 the Tc increases linearly with the O content up to the optimal Tc of 135 K ({delta}{approx_equal}0.19) and decreases only by 2 K in the over-doped regime. Finally, in the fourth chapter different physical properties are reviewed. The obtained monocrystals allowed studying the resistive transitory anisotropy, the torque, the specific heat, the nuclear magnetic resonance and the Raman diffusion 212 refs., 106 figs., 30 tabs.

  3. Ecological Requirements for Pallid Sturgeon Reproduction and Recruitment in the Lower Missouri River: A Research Synthesis 2005-08

    Science.gov (United States)

    DeLonay, Aaron J.; Jacobson, Robert B.; Papoulias, Diana M.; Simpkins, Darin G.; Wildhaber, Mark L.; Reuter, Joanna M.; Bonnot, Tom W.; Chojnacki, Kimberly A.; Korschgen, Carl E.; Mestl, Gerald E.; Mac, Michael J.

    2009-01-01

    This report provides a synthesis of results obtained between 2005 and 2008 from the Comprehensive Sturgeon Research Program, an interagency collaboration between the U.S. Geological Survey, Nebraska Game and Parks Commission, U.S. Fish and Wildlife Service, and the U.S. Army Corps of Engineers' Missouri River Recovery - Integrated Science Program. The goal of the Comprehensive Sturgeon Research Program is to improve fundamental understanding of reproductive ecology of the pallid sturgeon with the intent that improved understanding will inform river and species management decisions. Specific objectives include: *Determining movement, habitat-use, and reproductive behavior of pallid sturgeon; *Understanding reproductive physiology of pallid sturgeon and relations to environmental conditions; *Determining origin, transport, and fate of drifting pallid sturgeon larvae, and evaluating bottlenecks for recruitment of early life stages; *Quantifying availability and dynamics of aquatic habitats needed by pallid sturgeon for all life stages; and *Managing databases, integrating understanding, and publishing relevant information into the public domain. Management actions to increase reproductive success and survival of pallid sturgeon in the Lower Missouri River have been focused on flow regime, channel morphology, and propagation. Integration of 2005-08 Comprehensive Sturgeon Research Program research provides insight into linkages among flow regime, re-engineered channel morphology, and pallid sturgeon reproduction and survival. The research approach of the Comprehensive Sturgeon Research Program integrates opportunistic field studies, field-based experiments, and controlled laboratory studies. The field study plan is designed to explore the role of flow regime and associated environmental cues using two complementary approaches. An upstream-downstream approach compares sturgeon reproductive behavior between an upstream section of the Lower Missouri River with highly

  4. Gate-tuned Superconductor-Insulator transition in (Li,Fe)OHFeSe

    OpenAIRE

    Lei, B; Xiang, Z. J.; Lu, X. F.; Wang, N. Z.; Chang, J. R.; Shang, C.; Luo, X. G.; Wu, T.; Z. Sun; Chen, X. H.

    2015-01-01

    The antiferromagnetic(AFM) insulator-superconductor transition has been always a center of interest in the underlying physics of unconventional superconductors. The quantum phase transition between Mott insulator with AFM and superconductor can be induced by doping charge carriers in high-Tc cuprate superconductors. For the best characterized organic superconductors of k-(BEDT-TTF)2X (X=anion), a first order transition between AFM insulator and superconductor can be tuned by applied external ...

  5. Ginzburg-Landau theory of dirty two band s(+/-) superconductors.

    Science.gov (United States)

    Ng, Tai-Kai

    2009-12-04

    In this Letter, we study the effect of nonmagnetic impurities on two-band superconductors by deriving the corresponding Ginzburg-Landau equation. Depending on the strength of (impurity-induced) interband scattering, we find that there are two distinctive regions where the superconductors behave very differently. In the strong impurity-induced interband scattering regime T(c) band, the two-band superconductor behaves as an effective one-band dirty superconductor. In the other limit T(c) > or = tau(t)(-1), the dirty two-band superconductor is described by a network of frustrated two-band superconductor grains connected by Josephson tunneling junctions, and the Anderson theorem breaks down.

  6. Shiba chains of scalar impurities on unconventional superconductors

    Science.gov (United States)

    Neupert, Titus; Yazdani, A.; Bernevig, B. Andrei

    2016-03-01

    We show that a chain of nonmagnetic impurities deposited on a fully gapped two- or three-dimensional superconductor can become a topological one-dimensional superconductor with protected Majorana bound states at its end. A prerequisite is that the pairing potential of the underlying superconductor breaks the spin-rotation symmetry, as it is generically the case in systems with strong spin-orbit coupling. We illustrate this mechanism for a spinless triplet-superconductor (px+i py ) and a time-reversal symmetric Rashba superconductor with a mixture of singlet and triplet pairing. For the latter, we show that the impurity chain can be topologically nontrivial even if the underlying superconductor is topologically trivial.

  7. Synthesis of chromone, quinolone, and benzoxazinone sulfonamide nucleosides as conformationally constrained inhibitors of adenylating enzymes required for siderophore biosynthesis.

    Science.gov (United States)

    Engelhart, Curtis A; Aldrich, Courtney C

    2013-08-02

    MbtA catalyzes the first committed step of mycobactin biosynthesis in Mycobacterium tuberculosis (Mtb) and is responsible for the incorporation of salicylic acid into the mycobactin siderophores. 5'-O-[N-(Salicyl)sulfamoyl]adenosine (Sal-AMS) is an extremely potent nucleoside inhibitor of MbtA that possesses excellent activity against whole-cell Mtb but suffers from poor bioavailability. In an effort to improve the bioavailability, we have designed four conformationally constrained analogues of Sal-AMS that remove two rotatable bonds and the ionized sulfamate group on the basis of computational and structural studies. Herein we describe the synthesis, biochemical, and microbiological evaluation of chromone-, quinolone-, and benzoxazinone-3-sulfonamide derivatives of Sal-AMS. We developed new chemistry to assemble these three heterocycles from common β-ketosulfonamide intermediates. The synthesis of the chromone- and quinolone-3-sulfonamide intermediates features formylation of a β-ketosulfonamide employing dimethylformamide dimethyl acetal to afford an enaminone that can react intramolecularly with a phenol or intermolecularly with a primary amine via addition-elimination reaction(s). The benzoxazinone-3-sulfonamide was prepared by nitrosation of a β-ketosulfonamide followed by intramolecular nucleophilic aromatic substitution. Mitsunobu coupling of these bicyclic sulfonamides with a protected adenosine derivative followed by global deprotection provides a concise synthesis of the respective inhibitors.

  8. Mechanisms of assembly of the enzyme-ssDNA complexes required for recombination-dependent DNA synthesis and repair in bacteriophage T4

    Energy Technology Data Exchange (ETDEWEB)

    Morrical, S.; Hempstead, K.; Morrical, M. [Univ. of Vermont College of Medicine, Burlington, VT (United States)

    1994-12-31

    During late stages of bacteriophage T4 infection in E. coli, the initiation of phage DNA replication is dependent on the homologous recombination activity of the T4 uvsX protein. In vitro, uvsX protein initiates DNA synthesis on a duplex template by inserting the 3{prime} end of a homologous ssDNA molecule into the duplex. The resulting D-loop structure serves as a primer-template junction for the assembly of the T4 replication fork. Two key steps in this initiation process are (A) the assembly of uvsX-ssDNA complexes necessary for recombination activity and for the priming of lead-strand DNA synthesis, and (B) the assembly of the T4 primosome (gp41 helicase/gp61 primase complex) onto the single-stranded template for lagging-strand synthesis. Our laboratory is focusing on the mechanisms of these two different but related enzyme-ssDNA assembly processes. In this extended abstract, we describe recent efforts in our laboratory to elucidate the mechanism by which the gp41 helicase enzyme is assembled onto gp32-covered ssDNA, a process requiring the activity of a special helicase assembly factor, the T4 gp59 protein.

  9. Theoretical study of pair density wave superconductors

    Science.gov (United States)

    Zheng, Zhichao

    In conventional superconductors, the Cooper pairs are formed from quasiparticles. We explore another type of superconducting state, a pair density wave (PDW) order, which spontaneously breaks some of the translational and point group symmetries. In a PDW superconductor, the order parameter is a periodic function of the center-of-mass coordinate, and the spatial average value of the superconducting order parameter vanishes. In the early 1960s, following the success of the BCS theory of superconductivity, Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) developed theories of inhomogeneous superconducting states. Because of this Zeeman splitting in a magnetic field, the Cooper pairs having a nonzero center-of-mass momentum are more stable than the normal pairing, leading to the FFLO state. Experiments suggest possible occurrence of the FFLO state in the heavy-fermion compound CeCoIn5, and in quasi-low-dimensional organic superconductors. FFLO phases have also been argued to be of importance in understanding ultracold atomic Fermi gases and in the formation of color superconductivity in high density quark matter. In all Fermi superfluids known at the present time, Cooper pairs are composed of particles with spin 1/2. The spin component of a pair wave function can be characterized by its total spin S = 0 (singlet) and S = 1 (triplet). In the discovered broken inversion superconductors CePt3Si, Li2Pt3B, and Li2Pd3B, the magnetic field leads to novel inhomogeneous superconducting states, namely the helical phase and the multiple-q phase. Its order parameter exhibits periodicity similar to FFLO phase, and the consequences of both phases are same: the enhancement of transition temperature as a function of magnetic field. We have studied the PDW phases in broken parity superconductors with vortices included. By studying PDW vortex states, we find the usual Abrikosov vortex solution is unstable against a new solution with fractional vortex pairs. We have also studied the

  10. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli

    OpenAIRE

    Fenton, Andrew K.; Gerdes, Kenn

    2013-01-01

    How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin–MreB while cell division is governed by tubulin–FtsZ. A ring-like structure containing FtsZ (the Z ring) at mid-cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid-cell during a major part of the cell cycle without contracting. Here, we show that MreB and...

  11. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  12. Low resistivity contact to iron-pnictide superconductors

    Science.gov (United States)

    Tanatar, Makariy; Prozorov, Ruslan; Ni, Ni; Bud& #x27; ko, Sergey; Canfield, Paul

    2013-05-28

    Method of making a low resistivity electrical connection between an electrical conductor and an iron pnictide superconductor involves connecting the electrical conductor and superconductor using a tin or tin-based material therebetween, such as using a tin or tin-based solder. The superconductor can be based on doped AFe.sub.2As.sub.2, where A can be Ca, Sr, Ba, Eu or combinations thereof for purposes of illustration only.

  13. Search for New and Better High Temperature Superconductors

    Science.gov (United States)

    2014-03-30

    AFRL-OSR-VA-TR-2015-0096 (MURI 09) TOWARDS NEW AND BETTER HIGH TEMPERATURE SUPERCONDUCTORS Malcolm Beasley LELAND STANFORD JUNIOR UNIV CA Final...Search for New and Better High Temperature Superconductors 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0583 5c. PROGRAM ELEMENT NUMBER 6...SUPPLEMENTARY NOTES 14. ABSTRACT This program was focused on an integrated search for new superconductors in material systems with perceived

  14. Andreev Spectra and Subgap Bound States in Multiband Superconductors

    OpenAIRE

    Golubov, A. A.; Brinkman, A.; Tanaka, Yukio; Mazin, I.I.; Dolgov, O. V.

    2009-01-01

    The theory of Andreev conductance is formulated for junctions involving normal metals (N) and multiband superconductors (S) and applied to the case of superconductors with nodeless extended $s_{\\pm}$-wave order parameter symmetry, as possibly realized in the recently discovered ferro pnictides. We find qualitative differences from tunneling into s-wave or d-wave superconductors that may help to identify such a state. First, interband interference leads to a suppression of Andreev reflection i...

  15. Conductance of d-wave superconductor/normal metal/d-wave superconductor junctions

    Science.gov (United States)

    Pesin, Dmytro; Andreev, Anton; Spivak, Boris

    2008-03-01

    We develop a theory of the low-temperature conductance of superconductor/normal metal/superconductor junctions in which the superconductors have d-wave pairing symmetry. We show that at low temperatures the conductance of the junction is determined by the inelastic relaxation time of quasiparticles in the bulk of d-wave superconductors, GDND√&(d)circ;ɛ. Thus it greatly exceeds the conductance of the normal metal part of the junction, which is controlled by the elastic mean free path. This dependence of GDND on the inelastic relaxation time should be contrasted with that of the low-temperature conductance of the junction in the case of the s- wave superconductor leads, GSNS. In the latter case the conductance is proportional to the first power of the inelastic electron relaxation time in the normal metal part of the junction, GSNSτɛ^(n) [1]. [1] S. V. Lempitskii, Sov. Phys. JETP 58, 624 (1983); U. Gunsenheimer and A. D. Zaikin, Phys. Rev. B50, 6317 (1994); F. Zhou and B. Spivak, JETP Lett. 65, 369 (1997).

  16. Assessment of the impact of HTSCs on superconducting fault-current limiters. [High Temperature SuperConductors (HTSCs)

    Energy Technology Data Exchange (ETDEWEB)

    Giese, R.F. (Argonne National Lab., IL (United States)); Runde, M. (Energiforsyningens Forskningsinstitutt A/S, Trondheim (Norway))

    1993-01-01

    The possible impact of nitrogen-cooled superconductors on the desip and cost of superconducting fault-current limiters is assessed by considering the technical specifications such devices must meet and by comparing material properties of 77-K and 4-K superconductors. The main advantages of operating superconductors at 77 K are that the refrigeration operating cost is reduced by a factor of up to 25 and the refrigeration capital cost is reduced by a factor of up to 10. The heat capacity is several orders of magnitude Larger at 77 K and at 4 K. This phenomenon increases conductor stability against flux jumps but makes switching from the superconducting to the normal state slow and difficult. Therefore, a high critical current density, probably at least 10[sup 5] A/cm[sup 2], is required.

  17. Gravitomagnetic Flux Quantization in superconductors and a Method for the Experimental Detection of Gravitomagnetism in the Terrestrial Laboratory

    CERN Document Server

    De Matos, C J; Matos, Clovis J. de; Becker, Robert E.

    1999-01-01

    It is extraordinarely difficult to detect the extremely weak gravitomagnetic (GM) field of even as large a body as the earth. To detect the GM field, the gravitational analog of an ordinary magnetic field, in a modest terrestrial laboratory should be that much more difficult. Here we show, however, that for certain superconductor configuration and topologies, it should be possible to detect a measurable GM field in the terrestrial laboratory, by using the properties of superconductors imposed by quantum mechanical requirements. In particular, we show that the GM Flux should be quantized in a superconductor with non-vanishing genus, just like the ordinary magnetic flux. And this magnetically induced, quantized GM Flux, for sufficiently high quantum number and favorable geometries, should be distinguishable from the effects produced by an ordinary magnetic field.

  18. Genomic plus-strand RNA synthesis by the brome mosaic virus (BMV) RNA replicase requires a sequence that is complementary to the binding site of the BMV helicase-like protein.

    Science.gov (United States)

    Sivakumaran, K; Kao, C C

    2000-11-01

    Summary Initiation of genomic plus-strand RNA synthesis by the brome mosaic virus (BMV) replicase in vitro requires a 26-nucleotide (nt) RNA sequence at the 3' end of the minus-strand RNA and a nontemplated nucleotide 3' of the initiation cytidylate [Sivakumaran, K. and Kao, C.C. (1999)J. Virol.64, 6415-6423]. At the 5' end of this RNA is a 9-nt sequence called the cB box, the complement of the previously defined B box. The cB box can not be functionally replaced by the B box and has specific positional and sequence requirements. The portion of the cB box that is required for RNA synthesis in vitro is well-conserved in species in the Bromoviridae family. An equivalent RNA from Cucumber mosaic virus was unable to direct efficient RNA synthesis by the BMV replicase until the cB box was positioned at the same site relative to the BMV RNA and guanylates were present at positions +6 and +7 from the initiation cytidylate. These results further define the elements required for the recognition and initiation of viral genomic plus-strand RNA synthesis and suggest that a sequence important for minus-strand RNA synthesis is also required for plus-strand RNA synthesis.

  19. A modified beam stiffness matrix for superconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Gori, R.; Schrefler, B.A. (Padua Univ. (Italy). Ist. di Scienza e Tecnica delle Costruzioni)

    1989-10-01

    The components of the stiffness matrix of superconductor elements are derived taking into account the effects of the wrapping of superconductor strands around the internal insulating strip and of possible stabilizing profiles around conductor core. It is already known that the inclination of the strands referred to the longitudinal axis of the superconductor produces a reduction of the axial stiffness and a considerable increase in torsional stiffness. Here also the effects of bending are taken into account, completing hence the previous investigation. Examples relating to superconductors proposed for the Toroidal Field Coil of the Next European Torus are shown. In that instance the strand transposition is carried out by roebling. (orig.).

  20. Structural and Chemical Diversity of Tl-Based Cuprate Superconductors

    Institute of Scientific and Technical Information of China (English)

    信赢

    2003-01-01

    The Tl-based cuprate superconductor family is the largest family in crystal structure and chemical composition among all high Tc cuprate superconductors. The Tl family can be divided into two sub-families, the Tl single layer family and the Tl double layer family, based on their crystal structural characteristics. The Tl single layer family is an ideal material for investigating the evolution of crystalline formation, charge carrier density, chemical composition, transport properties, superconductivity and their relationships. The Tl family contains almostall possible crystal structures discovered in high-Tc cuprate superconductors. Tl cuprate superconductors are of great importance not only in studying high-temperature superconductivity but also in commercial applications.

  1. High temperature superconductors for fusion at the Swiss Plasma Center

    Science.gov (United States)

    Bruzzone, P.; Wesche, R.; Uglietti, D.; Bykovsky, N.

    2017-08-01

    High temperature superconductors (HTS) may become in future an option for the superconducting magnets of commercial fusion plants. At the Swiss Plasma Center (SPC) the R&D activity toward HTS high current, high field cables suitable for fusion magnets started in 2012 and led in 2015 to the assembly of the first 60 kA, 12 T prototype conductor. The cable concept developed at the SPC is based on the principle of ‘soldered, twisted stacks’ of REBCO tapes. The required number of stacks is assembled in a cored flat cable, cooled by forced flow of supercritical helium. The sample environment of the test facility at SPC has been upgraded with a HTS adapter and a counter-flow heat exchanger to allow testing the HTS sample in a broader range of temperature (4.5 K-50 K) using the existing, NbTi based superconducting transformer and the closed loop refrigerator.

  2. PROTEIN TARGETING TO STARCH is required for localising GRANULE-BOUND STARCH SYNTHASE to starch granules and for normal amylose synthesis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    David Seung

    2015-02-01

    Full Text Available The domestication of starch crops underpinned the development of human civilisation, yet we still do not fully understand how plants make starch. Starch is composed of glucose polymers that are branched (amylopectin or linear (amylose. The amount of amylose strongly influences the physico-chemical behaviour of starchy foods during cooking and of starch mixtures in non-food manufacturing processes. The GRANULE-BOUND STARCH SYNTHASE (GBSS is the glucosyltransferase specifically responsible for elongating amylose polymers and was the only protein known to be required for its biosynthesis. Here, we demonstrate that PROTEIN TARGETING TO STARCH (PTST is also specifically required for amylose synthesis in Arabidopsis. PTST is a plastidial protein possessing an N-terminal coiled coil domain and a C-terminal carbohydrate binding module (CBM. We discovered that Arabidopsis ptst mutants synthesise amylose-free starch and are phenotypically similar to mutants lacking GBSS. Analysis of granule-bound proteins showed a dramatic reduction of GBSS protein in ptst mutant starch granules. Pull-down assays with recombinant proteins in vitro, as well as immunoprecipitation assays in planta, revealed that GBSS physically interacts with PTST via a coiled coil. Furthermore, we show that the CBM domain of PTST, which mediates its interaction with starch granules, is also required for correct GBSS localisation. Fluorescently tagged Arabidopsis GBSS, expressed either in tobacco or Arabidopsis leaves, required the presence of Arabidopsis PTST to localise to starch granules. Mutation of the CBM of PTST caused GBSS to remain in the plastid stroma. PTST fulfils a previously unknown function in targeting GBSS to starch. This sheds new light on the importance of targeting biosynthetic enzymes to sub-cellular sites where their action is required. Importantly, PTST represents a promising new gene target for the biotechnological modification of starch composition, as it is

  3. Electrical bushing for a superconductor element

    Science.gov (United States)

    Mirebeau, Pierre; Lallouet, Nicolas; Delplace, Sebastien; Lapierre, Regis

    2010-05-04

    The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.

  4. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  5. Method for fabrication of high temperature superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam; Ma, Beihai; Miller, Dean

    2009-07-14

    A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y.sub.2O.sub.3 and then a layer of CeO.sub.2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO.sub.2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10.degree. to about 40.degree. and YBCO superconductors are used.

  6. A Fifth Force: Generalized through Superconductors

    Science.gov (United States)

    Robertson, Glen A.

    1999-01-01

    The connection between the Biefield-Brown Effect, the recent repeat of the 1902 Trouton-Noble (TN) experiments, and the gravity shielding experiments was explored. This connection is visualized through high capacitive electron concentrations. From this connection, a theory is proposed that connects mass energy to gravity and a fifth force. The theory called the Gravi-Atomic Energy theory presents two new terms: Gravi-atomic energy and quantum vacuum pressure (QVP). Gravi-atomic energy is defined as the radiated mass energy, which acts on vacuum energy to create a QVP about a mass, resulting in gravity and the fifth force. The QVP emission from a superconductor was discussed followed by the description of a test for QVP from a superconductor using a Cavendish balance.

  7. Abrikosov Gluon Vortices in Color Superconductors

    CERN Document Server

    Ferrer, Efrain J

    2010-01-01

    In this talk I will discuss how the in-medium magnetic field can influence the gluon dynamics in a three-flavor color superconductor. It will be shown how at field strengths comparable to the charged gluon Meissner mass a new phase can be realized, giving rise to Abrikosov's vortices of charged gluons. In that phase, the inhomogeneous gluon condensate anti-screens the magnetic field due to the anomalous magnetic moment of these spin-1 particles. This paramagnetic effect can be of interest for astrophysics, since due to the gluon vortex antiscreening mechanism, compact stars with color superconducting cores could have larger magnetic fields than neutron stars made up entirely of nuclear matter. I will also discuss a second gluon condensation phenomenon connected to the Meissner instability attained at moderate densities by two-flavor color superconductors. In this situation, an inhomogeneous condensate of charged gluons emerges to remove the chromomagnetic instability created by the pairing mismatch, and as a ...

  8. Phases of holographic d-wave superconductor

    CERN Document Server

    Krikun, Alexander

    2015-01-01

    We study different phases in the holographic model of d-wave superconductor. These are described by solutions to the classical equations of motion found in different ansatze. Apart from the known homogeneous d-wave superconducting phase we find three new solutions. Two of them represent two distinct families of the spatially modulated solutions, which realize the charge density wave phases in the dual theory. The third one is the new homogeneous phase with nonzero anapole moment. These phases are relevant to the physics of cuprate high-Tc superconductor in pseudogap region. While the d-wave phase preserves translation, parity and time reversal symmetry, the striped phases break translations spontaneously. Parity and time-reversal are preserved when combined with discrete half-periodic shift of the wave. In anapole phase translation symmetry is preserved, but parity and time reversal are spontaneously broken. All of the considered solutions brake the global $U(1)$. Thermodynamical treatment shows that in the s...

  9. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    Kalobaran Maiti

    2015-06-01

    Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant role of states in their electronic properties, which is significantly different from the cuprate superconductors. In this article, some of our studies of the electronic structure of these fascinating systems employing high-resolution photoemission spectroscopy is reviewed. The combined effect of electron correlation and covalency reveals an interesting scenario in their electronic structure. The contribution of ligand states at the Fermi level is found to be much more significant than indicated in earlier studies. Temperature evolution of the energy bands reveals the signature of transition akin to Lifshitz transition in these systems.

  10. Shot Noise in Ferromagnetic Superconductor Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, the superconducting order parameter and the energy spectrum of the Bogoliubov excitations are obtained from the Bogoliubov-de Gennes (BdG) equation for a ferromagnetic superconductor (FS). Taking into account the rough interface scattering effect, we calculate the shot noise and the differential conductance of the normal- metal insulator ferromagnetic superconductor junction. It is shown that the exchange energy Eh in FS can lead to splitting of the differential shot noise peaks and the conductance peaks. The energy difference between the two splitting peaks is equal to 2Eh. The rough interface scattering strength results in descent of conductance peaks and the shot noise-to-current ratio but increases the shot noise.

  11. Iron-Based Superconductors as topological matter

    Science.gov (United States)

    Hu, Jiangping

    We show the existence of non-trivial topological properties in Iron-based superconductors. Several examples are provided, including (1) the single layer FeSe grown on SrTiO3 substrate, in which an topological insulator phase exists due to the band inversion at M point; (2) CaFeAs2, a staggered intercalation compound that integrates both quantum spin hall and superconductivity in which the nontrivial topology stems from the chain-like As layers away from FeAs layers; (3) the Fe(Te,Se) thin films in which the nontrivial Z2 topological invariance originates from the parity exchange at Γ point that is controlled by the Te(Se) height; (4 nontrivial topology that is driven by the nematic order in FeSe. These results lay ground for integrating high Tc superconductivity with topological properties to realize new emergent phenomena, such as majorana particles, in iron-based high temperature superconductors

  12. Topological properties in Iron-Based Superconductors

    Science.gov (United States)

    Hu, Jiangping; Hao, Ningning; Wu, X. X.

    2015-03-01

    We show the existence of non-trivial topological properties in Iron-based superconductors. Several examples are provided, including (1) the single layer FeSe grown on SrTiO3 substrate, in which an topological insulator phase exists due to the band inversion at M point; (2) CaFeAs2, a staggered intercalation compound that integrates both quantum spin hall and superconductivity in which the nontrivial topology stems from the chain-like As layers away from FeAs layers; (3) the Fe(Te,Se) thin films in which the nontrivial Z2 topological invariance originates from the parity exchange at ? point that is controlled by the Te(Se) height. These results lay ground for integrating high Tc superconductivity with topological properties to realize new emergent phenomena, such as majorana particles, in iron-based high temperature superconductors. The work is supported by NSFC and the Ministry of Science and Technology of China.

  13. Asymmetric Ferromagnet-Superconductor-Ferromagnet Switch

    Energy Technology Data Exchange (ETDEWEB)

    Cadden-Zimansky, P.; Bazaliy, Ya.B.; Litvak, L.M.; Jiang, J.S.; Pearson, J.; Gu, J.Y.; You, Chun-Yeol; Beasley, M.R.; Bader, S.D.

    2011-11-04

    In layered ferromagnet-superconductor-ferromagnet F{sub 1} /S/F{sub 2} structures, the critical temperature T{sub c} of the superconductors depends on the magnetic orientation of the ferromagnetic layers F{sub 1} and F{sub 2} relative to each other. So far, the experimentally observed magnitude of change in T{sub c} for structures utilizing weak ferromagnets has been 2 orders of magnitude smaller than is expected from calculations. We theoretically show that such a discrepancy can result from the asymmetry of F/S boundaries, and we test this possibility by performing experiments on structures where F{sub 1} and F{sub 2} are independently varied. Our experimental results indicate that asymmetric boundaries are not the source of the discrepancy. If boundary asymmetry is causing the suppressed magnitude of T{sub c} changes, it may only be possible to detect in structures with thinner ferromagnetic layers.

  14. Unconventional Disorder Effects in Correlated Superconductors

    Science.gov (United States)

    Gastiasoro, Maria N.; Bernardini, Fabio; Andersen, Brian M.

    2016-12-01

    We study the effects of disorder on unconventional superconductors in the presence of correlations, and explore a novel correlated disorder paradigm dominated by strong deviations from standard Abrikosov-Gor'kov theory due to generation of local bound states and cooperative impurity behavior driven by Coulomb interactions. Specifically we explain under which circumstances magnetic disorder acts as a strong poison destroying high-Tc superconductivity at the sub-1% level, and when nonmagnetic disorder, counterintuitively, hardly affects the unconventional superconducting state while concomitantly inducing an inhomogeneous full-volume magnetic phase. Recent experimental studies of Fe-based superconductors have discovered that such unusual disorder behavior seems to be indeed present in those systems.

  15. Very General Holographic Superconductors and Entanglement Thermodynamics

    CERN Document Server

    Dey, Anshuman; Sarkar, Tapobrata

    2014-01-01

    We construct and analyze holographic superconductors with generalized higher derivative couplings, in single R-charged black hole backgrounds in four and five dimensions. These systems, which we call very general holographic superconductors, have multiple tuning parameters and are shown to exhibit a rich phase structure. We establish the phase diagram numerically as well as by computing the free energy, and then validated the results by calculating the entanglement entropy for these systems. The entanglement entropy is shown to be a perfect indicator of the phase diagram. The differences in the nature of the entanglement entropy in R-charged backgrounds compared to the AdS-Schwarzschild cases are pointed out. We also compute the analogue of the entangling temperature for a subclass of these systems and compare the results with non-hairy backgrounds.

  16. Revisiting holographic superconductors with hyperscaling violation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Qiyuan [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil); Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Zhang, Shao-Jun [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil)

    2016-03-15

    We investigate the effect of the hyperscaling violation on the holographic superconductors. In the s-wave model, we find that the critical temperature decreases first and then increases as the hyperscaling violation increases, and the mass of the scalar field will not modify the value of the hyperscaling violation which gives the minimum critical temperature. We analytically confirm the numerical results by using the Sturm-Liouville method with the higher order trial function and improve the previous findings in Fan (J High Energy Phys 09:048, 2013). However, different from the s-wave case, we note that the critical temperature decreases with the increase of the hyperscaling violation in the p-wave model. In addition, we observe that the hyperscaling violation affects the conductivity of the holographic superconductors and changes the expected relation in the gap frequency in both s-wave and p-wave models. (orig.)

  17. Energy efficiency of adiabatic superconductor logic

    Science.gov (United States)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2015-01-01

    Adiabatic superconductor logic (ASL), including adiabatic quantum-flux-parametron (AQFP) logic, exhibits high energy efficiency because its bit energy can be decreased below the thermal energy through adiabatic switching operations. In the present paper, we present the general scaling laws of ASL and compare the energy efficiency of ASL with those of other energy-efficient logics. Also, we discuss the minimum energy-delay product (EDP) of ASL at finite temperature. Our study shows that there is a maximum temperature at which the EDP can reach the quantum limit given by ħ/2, which is dependent on the superconductor material and the Josephson junction quality, and that it is reasonable to operate ASL at cryogenic temperatures in order to achieve an EDP that approaches ħ/2.

  18. Analysis of Magnetic Critical Fields in Iron-Based SmFeAsO0.85 HIGH-Tc Superconductor

    Science.gov (United States)

    Ahmad, Dawood; Song, Tae Kwon; Park, In Suk; Kim, G. C.; Ren, Zhi-An; Kim, Y. C.

    The magnetic properties of the newly discovered iron-oxypnictide SmFeAsO0.85 high-Tc superconductor with a Tc of around 55 K were investigated. Bulk SmFeAsO0.85 was prepared by a method for high-pressure synthesis. The lower critical field Hc1 was estimated from the magnetization at low fields; Hc1(0) was measured to be 212 Oe. A linear temperature dependence instead of saturation at low temperatures in Hc1(T) revealed unconventional superconductivity with a nodal gap structure in our SmFeAsO0.85 superconductor. The results showed that the well-known secondary peak in the temperature dependence of the critical current density Jc is absent in the SmFeAsO0.85 high-Tc superconductor. The irreversibility line Birr was fitted well by the power law dependence (1 - T/Tc)n with n ~ 1.5. This is indicative of the flux creep phenomena in the SmFeAsO0.85 high-Tc superconductor. In addition, within the range of measurement temperatures in this study, no crossover was observed in the temperature dependence of the irreversibility line Birr which may be due to low anisotropy in our SmFeAsO0.85 superconductor.

  19. Flywheel energy storage with superconductor magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT); Hull, John R. (Hinsdale, IL)

    1993-01-01

    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  20. Scale dependent superconductor-insulator transition

    OpenAIRE

    D. Kowal; Ovadyahu, Z.

    2007-01-01

    We study the disorder driven superconductor to insulator transition in amorphous films of high carrier-concentration indium-oxide. Using thin films with various sizes and aspect ratios we show that the `critical' sheet-resistance $R_{{\\small \\square}}$ depends systematically on sample geometry; superconductivity disappears when $R_{{\\small \\square}}$ exceeds $\\approx6 $k$\\Omega$ in large samples. On the other hand, wide and sufficiently short samples of the same batch exhibit superconductivit...

  1. High temperature superconductors applications in telecommunications

    Science.gov (United States)

    Kumar, A. Anil; Li, Jiang; Zhang, Ming Fang

    1995-01-01

    The purpose of this paper is twofold: (1) to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and (2) to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices - obvious advantages versus practical difficulties - needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models - a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B) - shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance - conductivity, surface resistance and attenuation constant - will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T

  2. Magnetic impurities in spin-split superconductors

    Science.gov (United States)

    van Gerven Oei, W.-V.; Tanasković, D.; Žitko, R.

    2017-02-01

    Hybrid semiconductor-superconductor quantum dot devices are tunable physical realizations of quantum impurity models for a magnetic impurity in a superconducting host. The binding energy of the localized subgap Shiba states is set by the gate voltages and external magnetic field. In this work we discuss the effects of the Zeeman spin splitting, which is generically present both in the quantum dot and in the (thin-film) superconductor. The unequal g factors in semiconductor and superconductor materials result in respective Zeeman splittings of different magnitude. We consider both classical and quantum impurities. In the first case we analytically study the spectral function and the subgap states. The energy of bound states depends on the spin-splitting of the Bogoliubov quasiparticle bands as a simple rigid shift. For the case of collinear magnetization of impurity and host, the Shiba resonance of a given spin polarization remains unperturbed when it overlaps with the branch of the quasiparticle excitations of the opposite spin polarization. In the quantum case, we employ numerical renormalization group calculations to study the effect of the Zeeman field for different values of the g factors of the impurity and of the superconductor. We find that in general the critical magnetic field for the singlet-doublet transition changes nonmonotonically as a function of the superconducting gap, demonstrating the existence of two different transition mechanisms: Zeeman splitting of Shiba states or gap closure due to Zeeman splitting of Bogoliubov states. We also study how in the presence of spin-orbit coupling, modeled as an additional noncollinear component of the magnetic field at the impurity site, the Shiba resonance overlapping with the quasiparticle continuum of the opposite spin gradually broadens and then merges with the continuum.

  3. Phases of holographic d-wave superconductor

    OpenAIRE

    Krikun, A.

    2015-01-01

    We study different phases in the holographic model of d-wave superconductor. These are described by solutions to the classical equations of motion found in different ansatze. Apart from the known homogeneous d-wave superconducting phase we find three new solutions. Two of them represent two distinct families of the spatially modulated solutions, which realize the charge density wave phases in the dual theory. The third one is the new homogeneous phase with nonzero anapole moment. These phases...

  4. Soft wall model for a holographic superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Afonin, S.S.; Pusenkov, I.V. [Saint Petersburg State University, St.Petersburg (Russian Federation)

    2016-06-15

    We consider the soft wall holographic approach for description of the high-T{sub c} superconductivity. In comparison with the existing bottom-up holographic superconductors, the proposed approach is more phenomenological and does not describe the superconducting phase transition. On the other hand, technically it is simpler and has more freedom for fitting the conductivity properties of the real high-T{sub c} materials in the superconducting phase. Some examples of emerging models are analyzed. (orig.)

  5. Review of holographic superconductors with Weyl corrections

    CERN Document Server

    Momeni, Davood; Myrzakulov, Ratbay

    2014-01-01

    A quick review on the analytical aspects of holographic superconductors (HSC) with Weyl corrections has been presented. Mainly we focus on matching method and variations approaches. Different types of such HSC have been investigated, s-wave, p-wave and St\\'{u}ckelberg ones. We also review the fundamental construction of a p-wave type , in which the non-Abelian gauge field is coupled to the Weyl tensor. The results are compared from numerics to analytical results.

  6. Soft wall model for a holographic superconductor

    CERN Document Server

    Afonin, S S

    2015-01-01

    We apply the soft wall holographic model from hadron physics to a description of the high-$T_c$ superconductivity. In comparison with the existing bottom-up holographic superconductors, the proposed approach is more phenomenological. On the other hand, it is much simpler and has more freedom for fitting the conductivity properties of the real high-$T_c$ materials. We demonstrate some examples of emerging models and discuss a possible origin of the approach.

  7. Superconductor Digital Electronics: -- Current Status, Future Prospects

    Science.gov (United States)

    Mukhanov, Oleg

    2011-03-01

    Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The

  8. Spray-Deposited Superconductor/Polymer Coatings

    Science.gov (United States)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  9. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  10. Towards Structural Testing of Superconductor Electronics

    OpenAIRE

    Arun, A.J.; Kerkhoff, Hans G.

    2003-01-01

    Many of the semiconductor technologies are already facing limitations while new-generation data and telecommunication systems are implemented. Although in its infancy, superconductor electronics (SCE) is capable of handling some of these high-end tasks. We have started a defect-oriented test methodology for SCE, so that reliable systems can be implemented in this technology. In this paper, the details of the study on the Rapid Single-Flux Quantum (RSFQ) process are presented. We present commo...

  11. Progress in American Superconductor's HTS wire and optimization for fault current limiting systems

    Science.gov (United States)

    Malozemoff, Alexis P.

    2016-11-01

    American Superconductor has developed composite coated conductor tape-shaped wires using high temperature superconductor (HTS) on a flexible substrate with laminated metal stabilizer. Such wires enable many applications, each requiring specific optimization. For example, coils for HTS rotating machinery require increased current density J at 25-50 K. A collaboration with Argonne, Brookhaven and Los Alamos National Laboratories and several universities has increased J using an optimized combination of precipitates and ion irradiation defects in the HTS. Major commercial opportunities also exist to enhance electric power grid resiliency by linking substations with distribution-voltage HTS power cables [10]. Such links provide alternative power sources if one substation's transmission-voltage power is compromised. But they must also limit fault currents which would otherwise be increased by such distribution-level links. This can be done in an HTS cable, exploiting the superconductor-to-resistive transition when current exceeds the wires' critical J. A key insight is that such transitions are usually nonuniform; so the wire must be designed to prevent localized hot spots from damaging the wire or even generating gas bubbles in the cable causing dielectric breakdown. Analysis shows that local heating can be minimized by increasing the composite tape's total thickness, decreasing its total resistance in the normal state and decreasing its critical J. This conflicts with other desirable wire characteristics. Optimization of these conflicting requirements is discussed.

  12. Topology of nonsymmorphic crystalline insulators and superconductors

    Science.gov (United States)

    Shiozaki, Ken; Sato, Masatoshi; Gomi, Kiyonori

    2016-05-01

    Topological classification in our previous paper [K. Shiozaki and M. Sato, Phys. Rev. B 90, 165114 (2014), 10.1103/PhysRevB.90.165114] is extended to nonsymmorphic crystalline insulators and superconductors. Using the twisted equivariant K theory, we complete the classification of topological crystalline insulators and superconductors in the presence of additional order-two nonsymmorphic space-group symmetries. The order-two nonsymmorphic space groups include half-lattice translation with Z2 flip, glide, twofold screw, and their magnetic space groups. We find that the topological periodic table shows modulo-2 periodicity in the number of flipped coordinates under the order-two nonsymmorphic space group. It is pointed out that the nonsymmorphic space groups allow Z2 topological phases even in the absence of time-reversal and/or particle-hole symmetries. Furthermore, the coexistence of the nonsymmorphic space group with time-reversal and/or particle-hole symmetries provides novel Z4 topological phases, which have not been realized in ordinary topological insulators and superconductors. We present model Hamiltonians of these new topological phases and analytic expressions of the Z2 and Z4 topological invariants. The half-lattice translation with Z2 spin flip and glide symmetry are compatible with the existence of boundaries, leading to topological surface gapless modes protected by the order-two nonsymmorphic symmetries. We also discuss unique features of these gapless surface modes.

  13. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  14. The polar Kerr effect in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua; Annett, James F.; Gradhand, Martin [University of Bristol (United Kingdom)

    2016-07-01

    The polar Kerr effect is an optical phenomenon which arises in states with broken time-reversal symmetry. This effect has recently been observed in a series of unconventional superconductors, including the layered perovskite compound Sr{sub 2}RuO{sub 4}. Confirmation of a Kerr signal below T{sub c} supports the hypothesis of chiral p-wave superconductivity in this material. However, the nature of the unconventional superconducting state remains a source of controversy. Here, we present calculations for the chiral superconducting state including spin-orbit coupling (SOC) by extending the three dimensional, multiband model considered previously. SOC was found to induce strong mixing of the orbital characters within the bandstructure. This mixing is essential for the existence of the polar Kerr effect and the large increase due to SOC has a significant influence on the frequency dependence of the predicted Kerr signal. We will extend and apply the model to other unconventional superconductors which have displayed the Kerr effect in recent years. This will allow a detailed study of the symmetry properties of these systems and will provide valuable insight into the pairing mechanism of superconductors.

  15. Electronic structure investigation of novel superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Buling, Anna

    2014-05-15

    The discovery of superconductivity in iron-based pnictides in 2008 gave rise to a high advance in the research of high-temperature superconductors. But up to now there is no generally admitted theory of the non-BCS mechanism of these superconductors. The electron and hole doped Ba122 (BaFe{sub 2}As{sub 2}) compounds investigated in this thesis are supposed to be suitable model systems for studying the electronic behavior in order to shed light on the superconducting mechanisms. The 3d-transition metal doped Ba122 compounds are investigated using the X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and X-ray magnetic circular dichroism (XMCD), while the completely hole doped K122 is observed using XPS. The experimental measurements are complemented by theoretical calculations. A further new class of superconductors is represented by the electride 12CaO*7Al{sub 2}O{sub 3}: Here superconductivity can be realized by electrons accommodated in the crystallographic sub-nanometer-sized cavities, while the mother compound is a wide band gap insulator. Electronic structure investigations, represented by XPS, XAS and resonant X-ray photoelectron spectroscopy (ResPES), carried out in this work, should help to illuminate this unconventional superconductivity and resolve a debate of competing models for explaining the existence of superconductivity in this compound.

  16. Free energy of a Lovelock holographic superconductor

    CERN Document Server

    Aranguiz, Ligeia

    2014-01-01

    We study black hole solutions in Lanczos-Lovelock AdS gravity in d+1 dimensions coupled to nonlinear electrodynamics and a Stueckelberg scalar field. This class of theories with [d/2] gravitational coupling constants and two arbitrary functions that govern the matter interaction is used in the context of gauge/gravity duality to describe a high-temperature superconductor in d dimensions. We regularize the gravitational action and find the finite conserved quantities for a planar black hole with scalar hair. Then we derive the quantum statistical relation in the Euclidean sector of the theory, and obtain the exact formula for the free energy of the superconductor in the holographic quantum field theory. Our result is exact, analytic and it includes the effects of back reaction of the gravitational field. We further discuss on how this formula could be used to analyze second order phase transitions through the discontinuities of the free energy, and classify holographic superconductors in terms of the parameter...

  17. Charge of a quasiparticle in a superconductor.

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-02-16

    Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.

  18. AC susceptibilities of grain-textured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, N. [Department of Electrical Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai, 813-8503 Fukuoka (Japan)], E-mail: saka@te.kyusan-u.ac.jp; Fukuda, Y.; Koga, M.; Akune, T. [Department of Electrical Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai, 813-8503 Fukuoka (Japan); Khan, H.R. [Institut von Ionenstrahl und Vakuum Technologie, 73728 Esslingen (Germany); Lueders, K. [Freie Universitaet Berlin, Arnimallee, Fac.Physik, D-14195 Berlin (Germany)

    2008-09-15

    In-phase {chi}{sub n}' and out-phase {chi}{sub n}'' components of nth harmonics of AC susceptibility with measuring parameters of a DC magnetic field B{sub dc}, an amplitude B{sub a} and a frequency f of the superimposed AC magnetic fields give substantial information of the superconducting properties. In low-T{sub c} metallic superconductors, {chi}{sub 1}' shows smooth transition and {chi}{sub 1}'' does single peak. High-T{sub c} oxide superconductors with anisotropic and grain-textured structures show deformed complex characteristics. Double peaks in {chi}{sub 1}'' and shoulders in {chi}{sub 1}' appear in AC susceptibility of Hg-1223 superconductors. Instead of simple Bean model, a grained model, where the superconducting grains are immersed in weak superconducting matrix, are proposed. The susceptibilities numerically analyzed using the model show varied and deformed curves and are successfully compared with the measured results.

  19. Meissner holes in iron-based superconductors

    Science.gov (United States)

    Tamegai, Tsuyoshi; Mohan, Shyam; Tsuchiya, Yuji; Nakajima, Yasuyuki

    2012-02-01

    Magnetic flux penetrates into a superconductor in the form of quantized vortices. This process is usually described by the Bean model, and the flux front forms a regular pattern reflecting the shape of the sample. However, a novel form of flux penetration accompanying wiggling fronts between vortices and antivortices has been observed in YBa2Cu3O7-δ upon remagnetization [1]. Such a phenomenon is ascribed to the presence of special arrangements of vortices at the front accompanying flux free regions and excess current around it. The flux free region is called as `Mesissner hole'. We have performed extensive magneto-optical imagings of iron-based superconductor single crystals and found similar anomalous features for the first time in superconductors other than 123-type cuprates [2]. Implications of this finding will be discussed with possible origins of the anomalous vortex arrangements. [1] V. K. Vlasko-Vlasov et al., Phys. Rev. B 56, 5622 (1997). [2] S. Mohan, Y. Tsuchiya, Y. Nakajima, and T. Tamegai, Phys. Rev. B 84, 18050X (2011).

  20. A Simple Holographic Superconductor with Momentum Relaxation

    CERN Document Server

    Kim, Keun-Young; Park, Miok

    2015-01-01

    We study a holographic superconductor model with momentum relaxation due to massless scalar fields linear to spatial coordinates($\\psi_I = \\beta \\delta_{Ii} x^i$), where $\\beta$ is the strength of momentum relaxation. In addition to the original superconductor induced by the chemical potential($\\mu$) at $\\beta=0$, there exists a new type of superconductor induced by $\\beta$ even at $\\mu=0$. It may imply a new `pairing' mechanism of particles and antiparticles interacting with $\\beta$, which may be interpreted as `impurity'. Two parameters $\\mu$ and $\\beta$ compete in forming superconducting phase. As a result, the critical temperature behaves differently depending on $\\beta/\\mu$. It decreases when $\\beta/\\mu$ is small and increases when $\\beta/\\mu$ is large, which is a novel feature compared to other models. After analysing ground states and phase diagrams for various $\\beta/\\mu$, we study optical electric($\\sigma$), thermoelectric($\\alpha$), and thermal($\\bar{\\kappa}$) conductivities. When the system undergo...

  1. UvrD Participation in Nucleotide Excision Repair Is Required for the Recovery of DNA Synthesis following UV-Induced Damage in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Kelley N. Newton

    2012-01-01

    Full Text Available UvrD is a DNA helicase that participates in nucleotide excision repair and several replication-associated processes, including methyl-directed mismatch repair and recombination. UvrD is capable of displacing oligonucleotides from synthetic forked DNA structures in vitro and is essential for viability in the absence of Rep, a helicase associated with processing replication forks. These observations have led others to propose that UvrD may promote fork regression and facilitate resetting of the replication fork following arrest. However, the molecular activity of UvrD at replication forks in vivo has not been directly examined. In this study, we characterized the role UvrD has in processing and restoring replication forks following arrest by UV-induced DNA damage. We show that UvrD is required for DNA synthesis to recover. However, in the absence of UvrD, the displacement and partial degradation of the nascent DNA at the arrested fork occur normally. In addition, damage-induced replication intermediates persist and accumulate in uvrD mutants in a manner that is similar to that observed in other nucleotide excision repair mutants. These data indicate that, following arrest by DNA damage, UvrD is not required to catalyze fork regression in vivo and suggest that the failure of uvrD mutants to restore DNA synthesis following UV-induced arrest relates to its role in nucleotide excision repair.

  2. Protein synthesis is not required for acquisition, consolidation, and extinction of high foot-shock active avoidance training.

    Science.gov (United States)

    González-Salinas, Sofía; Medina, Andrea C; Marín-Vignando, Vera; Ruiz-López, Clyo X; Quirarte, Gina L; Prado-Alcalá, Roberto A

    2015-01-01

    Long-term memory of active avoidance in mice is not disturbed by administration of protein synthesis inhibitors (PSIs) when relatively high levels of training are used, whereas a detrimental effect is produced with lower levels of training. PSIs also disrupt extinction of avoidance behaviors in rodents, but it is not clear whether PSIs also affect this form of learning when the behavior to be extinguished was produced by a high level of training. Experiment 1 demonstrated that rats treated with the PSI cycloheximide (CXM) 30 min before training developed normal acquisition after training with either high or low foot-shock stimulation, but that memory consolidation was hindered only after low foot-shock training. Experiment 2 demonstrated that CXM disrupted extinction when administered before the first of a series of extinction sessions when low foot-shock intensity was used during training; in contrast, after training with a higher foot-shock, the PSI treatment only interfered transiently with extinction. These results indicate that acquisition, consolidation, and extinction of active avoidance learning produced by high aversive stimulation are not dependent on protein synthesis and that these processes are governed by mechanisms different from those underlying moderate forms of learning.

  3. Newly identified phosphorylation site in the vesicular stomatitis virus P protein is required for viral RNA synthesis.

    Science.gov (United States)

    Mondal, Arindam; Victor, Ken G; Pudupakam, R S; Lyons, Charles E; Wertz, Gail W

    2014-02-01

    The vesicular stomatitis virus (VSV) RNA-dependent RNA polymerase consists of two viral proteins; the large (L) protein is the main catalytic subunit, and the phosphoprotein (P) is an essential cofactor for polymerase function. The P protein interacts with the L protein and the N-RNA template, thus connecting the polymerase to the template. P protein also binds to free N protein to maintain it in a soluble, encapsidation-competent form. Previously, five sites of phosphorylation were identified on the P protein and these sites were reported to be differentially important for mRNA synthesis or genomic replication. The previous studies were carried out by biochemical analysis of portions of the authentic viral P protein or by analysis of bacterium-expressed, exogenously phosphorylated P protein by mutagenesis. However, there has been no systematic biochemical search for phosphorylation sites on authentic, virus-expressed P protein. In this study, we analyzed the P protein isolated from VSV-infected cells for sites of phosphorylation by mass spectrometry. We report the identification of Tyr14 as a previously unidentified phosphorylation site of VSV P and show that it is essential for viral transcription and replication. However, our mass spectral analysis failed to observe the phosphorylation of previously reported C-terminal residues Ser226 and Ser227 and mutagenic analyses did not demonstrate a role for these sites in RNA synthesis.

  4. McMillan-Rowell like oscillations in a superconductor-InAs/GaSb-superconductor junction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoyan, E-mail: xshi@sandia.gov; Yu, Wenlong; Hawkins, S. D.; Klem, J. F.; Pan, W. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-08-03

    We have fabricated a superconductor (Ta)-InAs/GaSb bilayer-superconductor (Ta) junction device that has a long mean free path and can preserve the wavelike properties of particles (electrons and holes) inside the junction. Differential conductance measurements were carried out at low temperatures in this device, and McMillan-Rowell like oscillations (MROs) were observed. Surprisingly, a much larger Fermi velocity, compared to that from Shubnikov-de Haas oscillations, was obtained from the frequency of MROs. Possible mechanisms are discussed for this discrepancy.

  5. McMillan-Rowell Like Oscillations in a Superconductor-InAs/GaSb-Superconductor Junction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoyan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yu, Wenlong [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hawkins, Samuel D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-04

    We fabricated a superconductor (Ta)-InAs/GaSb bilayer-superconductor (Ta) junction device that has a long mean free path and can preserve the wavelike properties of particles (electrons and holes) inside the junction. Differential conductance measurements were also carried out at low temperatures in this device, and McMillan-Rowell like oscillations (MROs) were observed. A much larger Fermi velocity, compared to that from Shubnikov-de Haas oscillations, was obtained from the frequency of MROs. Possible mechanisms are discussed for this discrepancy.

  6. McMillan-Rowell like oscillations in a superconductor-InAs/GaSb-superconductor junction

    Science.gov (United States)

    Shi, Xiaoyan; Yu, Wenlong; Hawkins, S. D.; Klem, J. F.; Pan, W.

    2015-08-01

    We have fabricated a superconductor (Ta)-InAs/GaSb bilayer-superconductor (Ta) junction device that has a long mean free path and can preserve the wavelike properties of particles (electrons and holes) inside the junction. Differential conductance measurements were carried out at low temperatures in this device, and McMillan-Rowell like oscillations (MROs) were observed. Surprisingly, a much larger Fermi velocity, compared to that from Shubnikov-de Haas oscillations, was obtained from the frequency of MROs. Possible mechanisms are discussed for this discrepancy.

  7. Glass precursor approach to high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    The available studies on the synthesis of high T sub c superconductors (HTS) via the glass precursor approach were reviewed. Melts of the Bi-Sr-Ca-Cu-O system as well as those doped with oxides of some other elements (Pb, Al, V, Te, Nb, etc.) could be quenched into glasses which, on further heat treatments under appropriate conditions, crystallized into the superconducting phase(s). The nature of the HTS phase(s) formed depends on the annealing temperature, time, atmosphere, and the cooling rate and also on the glass composition. Long term annealing was needed to obtain a large fraction of the 110 K phase. The high T sub c phase did not crystallize out directly from the glass matrix, but was preceded by the precipitation of other phases. The 110 K HTS was produced at high temperatures by reaction between the phases formed at lower temperatures resulting in multiphase material. The presence of a glass former such as B2O3 was necessary for the Y-Ba-Cu-O melt to form a glass on fast cooling. A discontinuous YBa2Cu3O(7-delta) HTS phase crystallized out on heat treatment of this glass. Attempts to prepare Tl-Ba-Ca-Cu-O system in the glassy state were not successful.

  8. MgB sub 2 superconductor: a review

    CERN Document Server

    Mollah, S; Chaudhuri, B K

    2003-01-01

    Synthesis, structure and properties of the most intensively studied newly discovered intermetallic binary superconductor MgB sub 2 have been reviewed up to October, 2002. It has a hexagonal unit cell with cell parameters a approx 3.1432 A and c approx 3.5193 A. MgB sub 2 bulk samples synthesized under high pressure (approx 3.5 GPa) and high temperature (approx 1000 degC) has density approx 2.63 g/cm sup 3. The normal state carriers of MgB sub 2 are holes which have been established from the positive thermoelectric power and Hall coefficient measurements. The external pressure decreases the critical temperature (T sub c) with dT sub c /dP in the range of -1 to -2 K/GPa. The T sub c decreases rapidly by the doping of Mn, Li, Co, C, Al, Ni and Fe but increases slightly by Zn doping. However, no significant change of T sub c is observed by the doping of Si and Be. It is further noticed that the anisotropic ratio gamma(= H sub c sub 2 sup a sup b /H sub c sub 2 sup c) approx 1-5 with lower critical field (H sub c ...

  9. Oxide superconductor physics and nano-engineering II

    Energy Technology Data Exchange (ETDEWEB)

    Bozovic, I. [ed.] [Varian Research Center, Palo Alto, CA (United States); Pavuna, D. [ed.] [Swiss Federal Inst. of Tech., Lausanne (Switzerland)

    1996-12-31

    This book is organized as follows: In the first section the authors editors have grouped the papers dealing with physics and fundamental aspects of cuprate superconductors. Here, they have included also several theoretical papers that deal with the most basic issues related to the mechanism of HTS. Some of these ideas are clearly controversial and speculative, but they have decided to include them in line with the spirit of open-minded exchange of ideas that pervaded both conferences. In the second section the authors present the papers that deal with the synthesis of thin HTS films and their characterization. The third section contains papers related to artificial superlattices and multilayers and their properties. The fourth deals with intrinsic and artificial Josephson junctions. Finally, in the last section they present the articles dealing with novel HTS devices. Here, the progress with SFET, as reported by the IBM group, seems rather encouraging. Bold new ideas for other novel HTS devices are not lacking either. Separate abstracts were prepared for most papers in this book.

  10. Flux pinning in superconductors. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Teruo [Kyushu Institute of Technology, Iizuka, Fukuoka (Japan). Dept. of Computer Science and Electronics

    2014-04-01

    Ideal for graduate students studying superconductivity and experts alike. Written by a researcher with more than 30 years experience in the field. All chapters are completely revised. The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of superconductor, specimen size and electric field strength. Recent developments of critical current properties in various high-Tc superconductors and MgB2 are introduced. Other topics are: singularity in the case of transport current in a parallel magnetic field such as deviation from the Josephson relation, reversible flux motion inside pinning potentials which causes deviation from the critical state model prediction, the concept of the minimization of energy dissipation in the flux pinning phenomena which gives the basis for the critical state model, etc. Significant reduction in the AC loss in AC wires with very fine filaments originates from the reversible flux motion which is dominant in the two-dimensional pinning. The concept of minimum energy dissipation explains also the behavior

  11. Magnetic excitations in iron chalcogenide superconductors.

    Science.gov (United States)

    Kotegawa, Hisashi; Fujita, Masaki

    2012-10-01

    Nuclear magnetic resonance and neutron scattering experiments in iron chalcogenide superconductors are reviewed to make a survey of the magnetic excitations in FeSe, FeSe1-x Te x and alkali-metal-doped Ax Fe2-y Se2 (A = K, Rb, Cs, etc). In FeSe, the intimate relationship between the spin fluctuations and superconductivity can be seen universally for the variations in the off-stoichiometry, the Co-substitution and applied pressure. The isovalent compound FeTe has a magnetic ordering with different wave vector from that of other Fe-based magnetic materials. The transition temperature Tc of FeSe increases with Te substitution in FeSe1-x Te x with small x, and decreases in the vicinity of the end member FeTe. The spin fluctuations are drastically modified by the Te substitution. In the vicinity of the end member FeTe, the low-energy part of the spin fluctuation is dominated by the wave vector of the ordered phase of FeTe; however, the reduction of Tc shows that it does not support superconductivity. The presence of same wave vector as that of other Fe-based superconductors in FeSe1-x Te x and the observation of the resonance mode demonstrate that FeSe1-x Te x belongs to the same group as most of other Fe-based superconductors in the entire range of x, where superconductivity is mediated by the spin fluctuations whose wave vector is the same as the nesting vector between the hole pockets and the electron pockets. On the other hand, the spin fluctuations differ for alkali-metal-doped Ax Fe2-y Se2 and FeSe or other Fe-based superconductors in their wave vector and strength in the low-energy part, most likely because of the different Fermi surfaces. The resonance mode with different wave vector suggests that Ax Fe2-y Se2 has an exceptional superconducting symmetry among Fe-based superconductors.

  12. Activation of p38 and JNK MAPK pathways abrogates requirement for new protein synthesis for phorbol ester mediated induction of select MMP and TIMP genes.

    Science.gov (United States)

    Sampieri, Clara L; Nuttall, Robert K; Young, David A; Goldspink, Deborah; Clark, Ian M; Edwards, Dylan R

    2008-03-01

    The human matrix metalloproteinase (MMP) gene family includes 24 genes whose regulated expression, together with that of four tissue inhibitors of metalloproteinases (TIMPs), is essential in tissue remodelling and cell signalling. Quantitative real-time-PCR (qPCR) analysis was used to evaluate the shared and unique patterns of control of these two gene families in human MRC-5 and WI-38 fibroblasts in response to the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate (PMA). The requirement for ongoing translation was analysed using three protein synthesis inhibitors, anisomycin, cycloheximide and emetine. PMA induced MMP1, 3, 8, 9, 10, 12, 13, 14 and TIMP1 and TIMP3 RNAs after 4-8 h, and induction of all except MMP9 and TIMP3 was blocked by all protein synthesis inhibitors. However, even though all inhibitors effectively blocked translation, PMA-induction of MMP9 and TIMP3 was blocked by emetine but was insensitive to cycloheximide and anisomycin. Anisomycin alone induced MMP9 and TIMP3, along with MMP25 and MMP19. The extracellular signal-regulated kinases (ERKs)-1/2 were strongly activated by PMA, while anisomycin activated the c-Jun N-terminal kinase (JNK) and p38 pathways, and cycloheximide activated p38, but emetine had no effect on the stress-activated mitogen-activated protein kinase (MAPK) pathways. The involvement of the p38 and JNK pathways in the selective effects of anisomycin and cycloheximide on MMP/TIMP expression was supported by use of pharmacological inhibitors. These data confirm that most inducible MMPs and TIMP1 behave as "late" activated, protein synthesis-dependent genes in fibroblasts. However, the requirement of protein synthesis for PMA-induction of MMPs and TIMPs is not universal, since it is abrogated for MMP9 and TIMP3 by stimulation of the stress-activated MAPK pathways. The definition of clusters of co-regulated genes among the two gene families will aid in bioinformatic dissection of control mechanisms.

  13. Sexual differentiation in Aspergillus nidulans: the requirement for manganese and the correlation between phosphoglucomutase and the synthesis of reserve material.

    Science.gov (United States)

    Zonneveld, B J

    1975-10-27

    Aspergillus nidulans was completely devoid of fruit bodies when grown on manganese deficient cultures. This result was shown earlier to be due to a lack of alpha-1,3 glucan in the cell wall. Several enzymes of carbon and nitrogen metabolism were investigated in an attempt to explain the absence of this reserve material. Synthesis of glucose-6-phosphate dehydrogenase, phosphoglucoisomerase and aldolase, were not strongly affected by manganese deficiency. However, phosphoglucomutase showed only 60% of the activity of the control cultures and it was argued that this was connected with the low amounts of alpha-1,3 glucan synthesized. Malate dehydrogenase was the enzyme the least affected by manganese deficiency and the two to threefold higher activity measured after glucose depletion might indicate the induction of the glyoxylate cycle. An impaired glutamine synthetase could explain the increase in activity observed for NAD-glutamine dehydrogenase.

  14. Monogalactosyldiacylglycerol synthesis in the outer envelope membrane of chloroplasts is required for enhanced growth under sucrose supplementation

    Directory of Open Access Journals (Sweden)

    Masato eMurakawa

    2014-06-01

    Full Text Available Plant galactolipid synthesis on the outer envelope membranes of chloroplasts is an important biosynthetic pathway for sustained growth under conditions of phosphate (Pi depletion. During Pi starvation, the amount of digalactosyldiacylglycerol (DGDG is increased to substitute for the phospholipids that are degraded for supplying Pi. An increase in DGDG concentration depends on an adequate supply of monogalactosyldiacylglycerol (MGDG, which is a substrate for DGDG synthesis and is synthesized by a type-B MGDG synthase, MGD3. Recently, sucrose was suggested to be a global regulator of plant responses to Pi starvation. Thus, we analyzed expression levels of several genes involved in lipid remodeling during Pi starvation in Arabidopsis thaliana and found that the abundance of MGD3 mRNA increased when sucrose was exogenously supplied to the growth medium. Sucrose supplementation retarded the growth of the Arabidopsis MGD3 knockout mutant mgd3 but enhanced the growth of transgenic Arabidopsis plants overexpressing MGD3 compared with wild type, indicating the involvement of MGD3 in plant growth under sucrose-replete conditions. Although most features such as chlorophyll content, photosynthetic activity, and Pi content were comparable between wild-type and the transgenic plants overexpressing MGD3, sucrose content in shoot tissues decreased and incorporation of exogenously supplied carbon to DGDG was enhanced in the MGD3-overexpressing plants compared with wild type. Our results suggest that MGD3 plays an important role in supplying DGDG as a component of extraplastidial membranes to support enhanced plant growth under conditions of carbon excess.

  15. Fluxons in thin-film superconductor-insulator superlattices

    DEFF Research Database (Denmark)

    Sakai, S.; Bodin, P.; Pedersen, Niels Falsig

    1993-01-01

    films; in the limit of ultrathin superconductor films it may give a model for describing fluxon motion in layered high-Tc superconductors. Numerical examples of current versus voltage curves to be expected in such an experiment are presented. Journal of Applied Physics is copyrighted by The American...... Institute of Physics....

  16. Peltier effect in the mixed state of high- Tc superconductors

    Science.gov (United States)

    Logvenov, G. Yu.; Ryazanov, V. V.; Ustinov, A. V.; Huebener, R. P.

    1991-04-01

    The Peltier and Seebeck effects in the mixed state of high- Tc superconductors are proportional to the resistivity due to flux motion. Therefore, both effects also show the broadening of the transition regime characteristic for these superconductors. The origin of the Peltier effect is discussed in detail, and the validity of the Thomson relation is confirmed, as expected.

  17. High temperature superconductor bulk materials fundamentals, processing, properties control, applications aspects

    CERN Document Server

    Krabbes, Gernot; Canders, Wolf-Rüdiger; May, Hardo; Palka, Ryszard

    2005-01-01

    With its comprehensive review of the current knowledge and the future requirements in the field, this book presents all the features of bulk high temperature superconducting materials. Starting from physical and chemical fundamentals, the authors move on to portray methods and problems of materials processing, thoroughly working out the characteristic properties of bulk superconductors in contrast to long conductors and films. They provide a wide range of specific materials characteristics with respect to the latest developments and future applications guiding from fundamentals to practical engineering examples. The authors are all leading international specialists involved in the field of high TC superconductor bulk materials since the beginning. Of utmost interest to engineers, scientists, and PhD students working in this field

  18. Superconductor-Magnet Bearings With Inherent Stability and Velocity-Independent Drag Torque

    Science.gov (United States)

    Lee, Eun-Jeong; Ma, Ki Bui; Wilson, Thomas L.; Chu, Wei-Kan

    1999-01-01

    A hybrid superconductor magnet bearing system has been developed based on passive magnetic levitation and the flux pinning effect of high-temperature superconductivity. The rationale lies in the unique capability of a high-temperature superconductor (HTS) to enhance system stability passively without power consumption. Characterization experiments have been conducted to understand its dynamic behavior and to estimate the required motor torque for its driving system design. These experiments show that the hybrid HTS-magnet bearing system has a periodic oscillation of drag torque due mainly to the nonuniform magnetic field density of permanent magnets. Furthermore, such a system also suffers from a small superimposed periodic oscillation introduced by the use of multiple HTS disks rather than a uniform annulus of HTS material. The magnitude of drag torque is velocity independent and very small. These results make this bearing system appealing for high-speed application. Finally, design guidelines for superconducting bearing systems are suggested based on these experimental results.

  19. A battery-powered high-current power supply for superconductors

    CERN Document Server

    Wake, M; Suda, K

    2002-01-01

    Since superconductors do not require voltages, a high-current power supply could run with low power if the voltage is sufficiently reduced. Even a battery-powered power supply could give as much as 2,000A for a superconductor. To demonstrate this hypothesis, a battery-powered 2,000A power supply was constructed. It uses an IGBT chopper and Schottky diode together with a specially arranged transformer to produce a high current with low voltage. Testing of 2,000A operation was performed for about 1.5 hr using 10 car batteries. Charging time for this operation was 8 hr. Ramping control was smooth and caused no trouble. Although the IGBT frequency ripple of 16.6 kHz was easily removed using a passive filter, spike noise remained in the output voltage. This ripple did not cause any trouble in operating a pancake-type inductive superconducting load. (author)

  20. Topological spin-singlet superconductors with underlying sublattice structure

    Science.gov (United States)

    Dutreix, C.

    2017-07-01

    Majorana boundary quasiparticles may naturally emerge in a spin-singlet superconductor with Rashba spin-orbit interactions when a Zeeman magnetic field breaks time-reversal symmetry. Their existence and robustness against adiabatic changes is deeply related, via a bulk-edge correspondence, to topological properties of the band structure. The present paper shows that the spin-orbit may be responsible for topological transitions when the superconducting system has an underlying sublattice structure, as it appears in a dimerized Peierls chain, graphene, and phosphorene. These systems, which belong to the Bogoliubov-de Gennes class D, are found to have an extra symmetry that plays the role of the parity. It enables the characterization of the topology of the particle-hole symmetric band structure in terms of band inversions. The topological phase diagrams this leads to are then obtained analytically and exactly. They reveal that, because of the underlying sublattice structure, the existence of topological superconducting phases requires a minimum doping fixed by the strength of the Rashba spin orbit. Majorana boundary quasiparticles are finally predicted to emerge when the Fermi level lies in the vicinity of the bottom (top) of the conduction (valence) band in semiconductors such as the dimerized Peierls chain and phosphorene. In a two-dimensional topological superconductor based on (stretched) graphene, which is semimetallic, Majorana quasiparticles cannot emerge at zero and low doping, that is, when the Fermi level is close to the Dirac points. Nevertheless, they are likely to appear in the vicinity of the van Hove singularities.

  1. Oestrogen requires the insulin-like growth factor-I receptor for stimulation of prolactin synthesis via mitogen-activated protein kinase.

    Science.gov (United States)

    Arroba, A I; Frago, L M; Argente, J; Chowen, J A

    2005-02-01

    Sex steroids and growth factors interact at the intracellular level in a variety of tissues to control numerous physiological functions. Oestrogen is known to stimulate prolactin synthesis and secretion, but the effect of insulin-like growth factor (IGF)-I is less clear. We used GH3 cells, a somatolactotroph cell line, to study the interaction of 17beta-oestradiol (E(2)) and IGF-I on prolactin protein levels and the intracellular mechanisms involved. Cell cultures were treated with E(2) (10 nM) and/or IGF-I (10 ng/ml) for 8 h. The real-time reverse transcriptase-polymerase chain reaction, Western blot and enzyme-immunoassay were used to determine changes in prolactin mRNA and protein levels. At this time-point, there were no significant changes in cell number, prolactin mRNA expression, or the amount of secreted prolactin. However, E(2) increased intracellular prolactin concentrations. IGF-I alone had no effect, but blocked the stimulatory effect of E(2). MAPK (ERK1/2) activation, as determined by Western blot analysis, increased with both E(2) and IGF-I, but not with the combination of these factors. The MAPK inhibitor PD98059 blocked the ability of E(2) to increase intracellular prolactin concentrations. Similarly, the IGF-I receptor antagonist, JB1, blocked the effect of E(2) on prolactin synthesis and MAPK activation, as did the oestrogen receptor antagonist ICI182 780. These results suggest that, to stimulate prolactin synthesis, E(2) activates the MAPK cascade and that this requires the presence of both oestrogen and IGF-I receptors.

  2. A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA), but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival.

    Science.gov (United States)

    Chen, Grischa Y; McDougal, Courtney E; D'Antonio, Marc A; Portman, Jonathan L; Sauer, John-Demian

    2017-03-21

    Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK), an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA), an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity.IMPORTANCE Cytosolic bacterial pathogens, such as Listeria monocytogenes and Francisella tularensis, are exquisitely evolved to colonize the host cytosol in a variety of cell types. Establishing an intracellular niche shields these pathogens from effectors of humoral immunity, grants access to host nutrients, and is essential for pathogenesis. Through yet-to-be-defined mechanisms, the host cytosol restricts replication of non-cytosol-adapted bacteria, likely through a combination of cell autonomous defenses (CADs) and nutritional immunity. Utilizing a novel genetic screen, we identified determinants of L. monocytogenes cytosolic survival and virulence and identified a role for

  3. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  4. Stop of magnetic flux movement in levitating superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Smolyak, B.M., E-mail: b-smolyak@yandex.ru; Zakharov, M.S., E-mail: maksim.s.zakharov@gmail.com

    2017-01-15

    Highlights: • A direct experimental study of magnetic flux creep in the levitating superconductor. • When a levitating object is in a fixed position, magnetic flux movement is observed. • Levitation stops flux creep process. - Abstract: A phenomenon of magnetic relaxation stopping in a levitating superconductor was studied. It was experimentally shown that magnetic flux creep (diffusion of flux lines to regions with lower vortex density) is absent in magnetic suspension of the superconductor. Magnetic relaxation arises, when a rigid constraint that fixes a position of the superconductor relative to a magnet is imposed on a levitating object. It is assumed that oscillations of magnetic structure, which is due to free oscillations of the levitating superconductor, stop magnetic relaxation.

  5. Optical studies of crystalline organic superconductors under extreme conditions

    CERN Document Server

    McDonald, R D

    2001-01-01

    the aim being to make an optical measurement of the pressure dependence of the charge carrier effective mass. Chapter 4 concentrates on the vibrational modes of kappa-(BEDT-TTF) sub 2 Cu(SCN) sub 2. This chapter reports the first Raman scattering experiments on an organic superconductor at high pressure. Comparison of the infrared reflectance and Raman scattering measurements are used to elucidate the role of electron-phonon coupling in this material's superconductivity. Chapter 5 reports the first non-resonant measurements of the GHz conductivity of an organic molecular superconductor. These experiments probe the unconventional metallic properties of an organic superconductor during the onset of superconductivity. This thesis reports experiments which involve the interaction of light and matter to probe the properties of crystalline organic superconductors. The organic superconductors of the BEDT-TTF family are prototypical correlated electron systems; their low-temperature ground states are dominated by man...

  6. System and method for quench protection of a superconductor

    Science.gov (United States)

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  7. Stable and unstable thermo -current states of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Romanovskii, V; Lavrov, N; Ozhogina, V [Russian Research Center ' Kurchatov Institute' , Moscow 123182 (Russian Federation)], E-mail: vromanovskii@netscape.net

    2008-02-01

    Formation peculiarities of the stable and unstable states of high-T{sub c} superconductors are discussed. To understand the basic physical trends, which are characteristic for the current penetration mechanism in high temperature superconductors, the operating states of Bi2212 slab without stabilizing matrix placed in DC external magnetic fields at low coolant temperature are theoretically investigated. It is proved that the temperature of a high-T{sub c} superconductor is not equals to the coolant temperature before instability onset. Therefore, the voltage-current characteristic of a high-T{sub c} superconductor has only a positive slope during continuous current charging. As a result, it does not allow one to find the boundary between stable and unstable thermo - current states. This peculiarity has to be considered during experiments at which the critical current of high-T{sub c} superconductors is defined.

  8. Disappearance of nodal gap across the insulator-superconductor transition in a copper-oxide superconductor.

    Science.gov (United States)

    Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J

    2013-01-01

    The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.

  9. The improved damping of superconductor bearings for 35 kWh superconductor flywheel energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Han, Y.H., E-mail: yhhan@kepri.re.kr [KEPCO Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejeon 305-760 (Korea, Republic of); Park, B.J.; Jung, S.Y.; Han, S.C.; Lee, W.R.; Bae, Y.C. [KEPCO Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejeon 305-760 (Korea, Republic of)

    2013-02-14

    Highlights: ► We made a 35 kWh superconductor flywheel energy storage system. ► The damping coefficient of the superconductor bearing was increased over 3000 N s/m. ► The source of damping was discussed. -- Abstract: A 35 kWh Superconductor Flywheel Energy Storage system (SFES) using hybrid bearing sets, which is composed of a high temperature superconductor (HTS) bearing and an active magnet damper (AMD), has been developed at KEPCO Research Institute (KEPRI). Damping is a source of energy loss but necessary for the stability of the flywheel system. We found that the damping of HTS bearings can be improved by thermal insulating bolts, which play a role of passive type external damper. To investigate the source of the increased damping, damping coefficients were measured with HTS bearings using insulating bolts made of three kinds of polymer materials. The damping coefficient was raised over 3000 N s/m in the case of PEEK bolts. The value was almost a quarter of the AMD. In this study, thermoelastic and Coulomb friction damping mechanisms are discussed. The main damping mechanism was the thermoelastic damping of the bolts themselves. And interfacial gap between the insulating bolt and metal chamber, which increased during the cooling process, was considered to be the cause of the anisotropic damping coefficients. Finally, the effects of the HTS bearings on the first critical speed are shown.

  10. A Double-Decker Levitation Experiment Using a Sandwich of Superconductors.

    Science.gov (United States)

    Jacob, Anthony T.; And Others

    1988-01-01

    Shows that the mutual repulsion that enables a superconductor to levitate a magnet and a magnet to levitate a superconductor can be combined into a single demonstration. Uses an overhead projector, two pellets of "1-2-3" superconductor, Nd-Fe-B magnets, liquid nitrogen, and paraffin. Offers superconductor preparation, hazards, and disposal…

  11. Coherent diffusive transport mediated by Andreev reflections at V=Delta/e in a mesoscopic superconductor/semiconductor/superconductor junction

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Kuhn, Oliver

    1997-01-01

    We present experiments revealing a singularity in the coherent current across a superconductor/semiconductor/superconductor (SSmS) junction at the bias voltage corresponding to the superconducting energy gap V=Delta/e. The SSmS structure consists of highly doped GaAs with superconducting electrodes...

  12. A Genetic Screen Reveals that Synthesis of 1,4-Dihydroxy-2-Naphthoate (DHNA, but Not Full-Length Menaquinone, Is Required for Listeria monocytogenes Cytosolic Survival

    Directory of Open Access Journals (Sweden)

    Grischa Y. Chen

    2017-03-01

    Full Text Available Through unknown mechanisms, the host cytosol restricts bacterial colonization; therefore, only professional cytosolic pathogens are adapted to colonize this host environment. Listeria monocytogenes is a Gram-positive intracellular pathogen that is highly adapted to colonize the cytosol of both phagocytic and nonphagocytic cells. To identify L. monocytogenes determinants of cytosolic survival, we designed and executed a novel screen to isolate L. monocytogenes mutants with cytosolic survival defects. Multiple mutants identified in the screen were defective for synthesis of menaquinone (MK, an essential molecule in the electron transport chain. Analysis of an extensive set of MK biosynthesis and respiratory chain mutants revealed that cellular respiration was not required for cytosolic survival of L. monocytogenes but that, instead, synthesis of 1,4-dihydroxy-2-naphthoate (DHNA, an MK biosynthesis intermediate, was essential. Recent discoveries showed that modulation of the central metabolism of both host and pathogen can influence the outcome of host-pathogen interactions. Our results identify a potentially novel function of the MK biosynthetic intermediate DHNA and specifically highlight how L. monocytogenes metabolic adaptations promote cytosolic survival and evasion of host immunity.

  13. Exploring intertwined orders in cuprate superconductors

    Science.gov (United States)

    Tranquada, John M.

    2015-03-01

    The concept of intertwined orders has been introduced to describe the cooperative relationship between antiferromagnetic spin correlations and electron (or hole) pair correlations that develop in copper-oxide superconductors. This contrasts with systems in which, for example, charge-density-wave (CDW) order competes for Fermi surface area with superconductivity. La2-xBaxCuO4 with x=0.125 provides an example in which the ordering of spin stripes coincides with the onset of two-dimensional superconducting correlations. The apparent frustration of the interlayer Josephson coupling has motivated the concept of the pair-density-wave superconductor, a state that theoretical calculations show to be energetically competitive with the uniform d-wave superconductor. Even at x=0.095, where there is robust superconductivity below 32 K in zero field, the coexistence of strong, low-energy, incommensurate spin excitations implies a spatially modulated and intertwined pair wave function. Recent observations of CDW order in YBa2Cu3O6+x and other cuprate families have raised interesting questions regarding the general role of charge modulations and the relation to superconductivity. While there are differences in the doping dependence of the modulation wave vectors in YBa2Cu3O6+x and La2-xBaxCuO4, the maximum ordering strength is peaked at the hole concentration of 1/8 in both cases. There are also possible connections with the quantum oscillations that have been detected about the same hole concentration but at high magnetic fields. Resolving these relationships remains a research challenge.

  14. Interaction of gravitational waves with superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)

    2017-06-15

    Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Synthesis and characterization of tetra phenoxy-substituted halogen-rich metallophthalocyanine derivatives: A study on their LCD color filter requirements

    Science.gov (United States)

    Muthukumar, Palanisamy; Kim, Hak-Soo; Jeong, Jong Woo; Son, Young-A.

    2016-09-01

    This study addresses the synthesis and characterization of new tetra phenoxy-substituted halogen-rich metallophthalocyanine derivatives (MPcs) 4-7 (M = Co, Ni, Cu and Zn). The synthesized new compounds were characterized using UV-Vis, FT-IR, MALDI-TOF, 1H NMR and elemental analyses. In addition, the basic requirements such as aggregation behavior, thermal stability, transmittance and solubility in propylene glycol monomethyl ether acetate (PGMEA) of MPcs 4-7 were investigated for their usage as a green color filter in Liquid Crystal Displays (LCDs). All of the MPcs showed thermal stability and sufficient solubility in PGMEA. However, the addition of binder into PGMEA solution of MPcs 5 and 6 leads to precipitation. Among the four MPcs, zinc phthalocyanine (7) showed higher transmittance. The higher transmittance of zinc phthalocyanine (7) along with its thermal stability and sufficient solubility in PGMEA are promising for its application as a green color filter in LCDs.

  16. Ginzburg-Landau theory of noncentrosymmetric superconductors

    OpenAIRE

    Mukherjee, Soumya P.; Mandal, Sudhansu S.

    2007-01-01

    The data of temperature dependent superfluid density $n_s(T)$ in Li$_2$Pd$_3$B and Li$_2$Pt$_3$B [Yuan {\\it et al.}, \\phrl97, 017006 (2006)] show that a sudden change of the slope of $n_s (T)$ occur at slightly lower than the critical temperature. Motivated by this observation, we microscopically derive the Ginzburg-Landau (GL) equations for noncentrosymmetric superconductors with Rashba type spin orbit interaction. Cooper pairing is assumed to occur between electrons only in the same spin sp...

  17. Quantum oscillations in superconductors in magnetic field

    Science.gov (United States)

    Gvozdikov, Vladimir M.; Gvozdikova, Mariya V.

    2000-07-01

    The Aharonov-Bohm oscillations (ABO) of the free energy, the critical temperature, and the magnetic susceptibility in a stack of hollow mesoscopic cylinders are calculated. It is shown that sinusoidal (in flux) ABO crosses over to the parabolic Little-Parks oscillations (LPO) when the diameter of cylinders exceeds the coherence length. The exponential temperature behaviour of the magnetic susceptibility is like that found in Ag cylinders with thin Nb coating [Czech. J. Physics 46 (1996) 2317]. The formal analogy between oscillations of the free energy in the Aharonov-Bohm system in question and the de Haas-van Alphen oscillations (dHvAO) in layered superconductors is discussed.

  18. Topological Aspects of Superconductors at Dual Point

    Institute of Scientific and Technical Information of China (English)

    REN Ji-Rong; XU Dong-Hui; ZHANG Xin-Hui; DUAN Yi-Shi

    2008-01-01

    We study the properties of the Ginzburg-Landau model at the dual point for the superconductors. By making use of the U(1) gauge potential decomposition and the C-mapping theory, we investigate the topological inner structure of the Bogomol'nyi equations and deduce a modified deeoupled Bogomol'nyi equation with a nontrivial topo-logical term, which is ignored in conventional model. We find that the nontrivial topological term is closely related tothe N-vortex, which arises from the zero points of the complex scalar field. Furthermore, we establish a relationship between Ginzburg-Landau free energy and the winding number.

  19. Applications of bulk high-temperature superconductors

    Science.gov (United States)

    Hull, J. R.

    The development of high-temperature superconductors (HTS's) can be broadly generalized into thin-film electronics, wire applications, and bulk applications. We consider bulk HTS's to include sintered or crystallized forms that do not take the geometry of filaments or tapes, and we discuss major applications for these materials. For the most part applications may be realized with the HTS's cooled to 77 K, and the properties of the bulk HTS's are often already sufficient for commercial use. A non-exhaustive list of applications for bulk HTS's includes trapped field magnets, hysteresis motors, magnetic shielding, current leads, and magnetic bearings. These applications are briefly discussed in this paper.

  20. Photoemission study of iron-based superconductor

    Institute of Scientific and Technical Information of China (English)

    Liu Zhong-Hao; Cai Yi-Peng; Zhao Yan-Ge; Jia Lei-Lei; Wang Shan-Cai

    2013-01-01

    The iron-based superconductivity (IBSC) is a great challenge in correlated system.Angle-resolved photoemission spectroscopy (ARPES) provides electronic structure of the IBSCs,the pairing strength,and the order parameter symmetry.Here,we briefly review the recent progress in IBSCs and focus on the results from ARPES.The ARPES study shows the electronic structure of “122”,“111”,“11”,and “122*” families of IBSCs.It has been agreed that the IBSCs are unconventional superconductors in strong coupling region.The order parameter symmetry basically follows s± form with considerable out-of-plane contribution.

  1. Collective excitations in unconventional superconductors and superfluids

    CERN Document Server

    Brusov, Peter

    2009-01-01

    This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF&SC). Using the most powerful method of modern theoretical physics - the path (functional) integral technique - authors build the three- and two-dimensional models for s -, p - and d -wave pairing in neutral as well as in charged Fermi-systems, models of superfluid Bose-systems and Fermi-Bose-mixtures. Within these models they study the collective properties of such systems as superfluid 3 He, superfluid 4 He, superfluid 3 He-

  2. Practical Low-Temperature Superconductors for Electromagnets

    CERN Document Server

    Devred, Arnaud

    2004-01-01

    After a brief history of the main discoveries in applied superconductivity, the structure and properties of NbTi and Nb3Sn are discussed. Then, we explain why low-critical-temperature superconductors are produced under the form of multifilament composites, and we review the manufacturing processes of NbTi and Nb3Sn wires. We follow by a description of the transition from the superconducting to the normal resistive state of multifilament composite wires and we detail their magnetization properties. Last, we present the most commonly used cable configurations and we provide simple formulae illustrating with a few examples the computation of losses generated under time-varying magnetic fields.

  3. Quench in high temperature superconductor magnets

    CERN Document Server

    Schwartz, J

    2013-01-01

    High field superconducting magnets using high temperature superconductors are being developed for high energy physics, nuclear magnetic resonance and energy storage applications. Although the conductor technology has progressed to the point where such large magnets can be readily envisioned, quench protection remains a key challenge. It is well-established that quench propagation in HTS magnets is very slow and this brings new challenges that must be addressed. In this paper, these challenges are discussed and potential solutions, driven by new technologies such as optical fiber based sensors and thermally conducting electrical insulators, are reviewed.

  4. Detection of infrared photons with a superconductor

    Institute of Scientific and Technical Information of China (English)

    ZHANG LaBao; ZHONG YangYin; KANG Lin; CHEN Jian; JI ZhengMing; XU WeiWei; CAO ChunHai

    2009-01-01

    A superconductor single photon detector based on NbN nanowire was fabricated using electron beam lithography (EBL) and reactive ion etching (RIE) for infrared photon detection. When biased well below its critical current at 4.2 K, NbN nanowire is very sensitive to the incident photons. Typical telecommunication photons with a wavelength of 1550 nm were detected by this detector. Data analysis indicates the repeating rate of the device with 200 nm NbN nanowire may be up to 100 MHz, and the quantum efficiency is about 0.01% when biased at 0.95Ic.

  5. High-Tc superconductor coplanar waveguide filter

    Science.gov (United States)

    Chew, Wilbert; Bajuk, Louis J.; Cooley, Thomas W.; Foote, Marc C.; Hunt, Brian D.; Rascoe, Daniel L.; Riley, A. L.

    1991-01-01

    Coplanar waveguide (CPW) low-pass filters made of YBa2Cu3O(7-delta) (YBCO) on LaAlO3 substrates, with dimensions suited for integrated circuits, were fabricated and packaged. A complete filter gives a true idea of the advantages and difficulties in replacing thin-film metal with a high-temperature superconductor in a practical circuit. Measured insertion losses in liquid nitrogen were superior to the loss of a similar thin-film copper filter throughout the 0- to 9.5-GHz passband. These results demonstrate the performance of fully patterned YBCO in a practical CPW structure after sealing in a hermetic package.

  6. Paramagnetic excited vortex states in superconductors

    Science.gov (United States)

    Gomes, Rodolpho Ribeiro; Doria, Mauro M.; Romaguera, Antonio R. de C.

    2016-06-01

    We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The solution for any number of vortices in any cross-section geometry can be read off from the Schwarz-Christoffel mapping. The method is based on the first-order equations used by Abrikosov to discover vortices.

  7. Discovery of a Superhard Iron Tetraboride Superconductor

    Science.gov (United States)

    Gou, Huiyang; Dubrovinskaia, Natalia; Bykova, Elena; Tsirlin, Alexander A.; Kasinathan, Deepa; Schnelle, Walter; Richter, Asta; Merlini, Marco; Hanfland, Michael; Abakumov, Artem M.; Batuk, Dmitry; Van Tendeloo, Gustaaf; Nakajima, Yoichi; Kolmogorov, Aleksey N.; Dubrovinsky, Leonid

    2013-10-01

    Single crystals of novel orthorhombic (space group Pnnm) iron tetraboride FeB4 were synthesized at pressures above 8 GPa and high temperatures. Magnetic susceptibility and heat capacity measurements demonstrate bulk superconductivity below 2.9 K. The putative isotope effect on the superconducting critical temperature and the analysis of specific heat data indicate that the superconductivity in FeB4 is likely phonon mediated, which is rare for Fe-based superconductors. The discovered iron tetraboride is highly incompressible and has the nanoindentation hardness of 62(5) GPa; thus, it opens a new class of highly desirable materials combining advanced mechanical properties and superconductivity.

  8. Coulomb blockade in fractional topological superconductors

    Science.gov (United States)

    Kim, Younghyun; Clarke, David J.; Lutchyn, Roman M.

    2017-07-01

    We study charge transport through a floating mesoscopic superconductor coupled to counterpropagating fractional quantum Hall edges at filling fraction ν =2 /3 . We consider a superconducting island with finite charging energy and investigate its effect on transport through the device. We calculate conductance through such a system as a function of temperature and gate voltage applied to the superconducting island. We show that transport is strongly affected by the presence of parafermionic zero modes, leading at zero temperature to a zero-bias conductance quantized in units of ν e2/h independent of the applied gate voltage.

  9. Plasma Synthesized Doped Boron Nanopowder for MgB2 Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    James V. Marzik

    2012-03-26

    Under this program, a process to synthesize nano-sized doped boron powder by a plasma synthesis process was developed and scaled up from 20 gram batches at program start to over 200 grams by program end. Over 75 batches of boron nanopowder were made by RF plasma synthesis. Particle sizes were typically in the 20-200 nm range. The powder was synthesized by the reductive pyrolysis of BCl{sub 3} in hydrogen in an RF plasma. A wide range of process parameters were investigated including plasma power, torch geometry, gas flow rates, and process pressure. The powder-in-tube technique was used to make monofilament and multifilament superconducting wires. MgB{sub 2} wire made with Specialty Materials plasma synthesized boron nanopowder exhibited superconducting properties that significantly exceeded the program goals. Superconducting critical currents, J{sub c}, in excess of 10{sup 5} A cm{sup -2} at magnetic fields of 8 tesla were reproducibly achieved. The upper critical magnetic field in wires fabricated with program boron powder were H{sub c2}(0) = 37 tesla, demonstrating the potential of these materials for high field magnet applications. T{sub c} in carbon-doped MgB{sub 2} powder showed a systematic decrease with increasing carbon precursor gas flows, indicating the plasma synthesis process can give precise control over dopant concentrations. Synthesis rates increased by a factor of 400% over the course of the program, demonstrating the scalability of the powder synthesis process. The plasma synthesis equipment at Specialty Materials has successfully and reproducibly made high quality boron nanopowder for MgB{sub 2} superconductors. Research and development from this program enabled Specialty Materials to successfully scale up the powder synthesis process by a factor of ten and to double the size of its powder pilot plant. Thus far the program has been a technical success. It is anticipated that continued systematic development of plasma processing parameters, dopant

  10. RNA synthesis by the brome mosaic virus RNA-dependent RNA polymerase in human cells reveals requirements for de novo initiation and protein-protein interaction.

    Science.gov (United States)

    Subba-Reddy, Chennareddy V; Tragesser, Brady; Xu, Zhili; Stein, Barry; Ranjith-Kumar, C T; Kao, C Cheng

    2012-04-01

    Brome mosaic virus (BMV) is a model positive-strand RNA virus whose replication has been studied in a number of surrogate hosts. In transiently transfected human cells, the BMV polymerase 2a activated signaling by the innate immune receptor RIG-I, which recognizes de novo-initiated non-self-RNAs. Active-site mutations in 2a abolished RIG-I activation, and coexpression of the BMV 1a protein stimulated 2a activity. Mutations previously shown to abolish 1a and 2a interaction prevented the 1a-dependent enhancement of 2a activity. New insights into 1a-2a interaction include the findings that helicase active site of 1a is required to enhance 2a polymerase activity and that negatively charged amino acid residues between positions 110 and 120 of 2a contribute to interaction with the 1a helicase-like domain but not to the intrinsic polymerase activity. Confocal fluorescence microscopy revealed that the BMV 1a and 2a colocalized to perinuclear region in human cells. However, no perinuclear spherule-like structures were detected in human cells by immunoelectron microscopy. Sequencing of the RNAs coimmunoprecipitated with RIG-I revealed that the 2a-synthesized short RNAs are derived from the message used to translate 2a. That is, 2a exhibits a strong cis preference for BMV RNA2. Strikingly, the 2a RNA products had initiation sequences (5'-GUAAA-3') identical to those from the 5' sequence of the BMV genomic RNA2 and RNA3. These results show that the BMV 2a polymerase does not require other BMV proteins to initiate RNA synthesis but that the 1a helicase domain, and likely helicase activity, can affect RNA synthesis by 2a.

  11. Differential requirements of hippocampal de novo protein and mRNA synthesis in two long-term spatial memory tests: Spontaneous place recognition and delay-interposed radial maze performance in rats.

    Science.gov (United States)

    Ozawa, Takaaki; Yamada, Kazuo; Ichitani, Yukio

    2017-01-01

    Hippocampal de novo mRNA and protein synthesis has been suggested to be critical for long-term spatial memory. However, its requirement in each memory process (i.e. encoding, consolidation and retrieval) and the differences in the roles of de novo mRNA and protein synthesis in different situations where spatial memory is tested have not been thoroughly investigated. To address these questions, we examined the effects of hippocampal administration of the protein synthesis inhibitors, anisomycin (ANI) and emetine (EME), as well as that of an mRNA synthesis inhibitor, 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DRB), on rat performance in two long-term spatial memory tests. In a spontaneous place recognition test with a 6 h delay, ANI, administered either before or immediately after the sample phase, but not before the test phase, eliminated the exploratory preference for the object in a novel place. This amnesic effect was replicated by both EME and DRB. In a 6 h delay-interposed radial maze task, however, administering ANI before the first-half and before the second-half, but not immediately or 2 h after the first-half, impaired performance in the second-half. This disruptive effect of ANI was successfully replicated by EME. However, DRB administered before the first-half performance did not impair the second-half performance, while it did impair it if injected before the second-half. None of these drugs caused amnesic effects during the short (5 min)/non-delayed conditions in either tests. These results suggest that 1) hippocampal protein synthesis is required for the consolidation of spatial memory, while mRNA synthesis is not necessarily required, and 2) hippocampal mRNA and protein synthesis requirement for spatial memory retrieval depends on the types of memory tested, probably because their demands are different.

  12. Differential requirements of hippocampal de novo protein and mRNA synthesis in two long-term spatial memory tests: Spontaneous place recognition and delay-interposed radial maze performance in rats

    Science.gov (United States)

    Ozawa, Takaaki; Yamada, Kazuo; Ichitani, Yukio

    2017-01-01

    Hippocampal de novo mRNA and protein synthesis has been suggested to be critical for long-term spatial memory. However, its requirement in each memory process (i.e. encoding, consolidation and retrieval) and the differences in the roles of de novo mRNA and protein synthesis in different situations where spatial memory is tested have not been thoroughly investigated. To address these questions, we examined the effects of hippocampal administration of the protein synthesis inhibitors, anisomycin (ANI) and emetine (EME), as well as that of an mRNA synthesis inhibitor, 5,6-dichlorobenzimidazole 1-β-D-ribofuranoside (DRB), on rat performance in two long-term spatial memory tests. In a spontaneous place recognition test with a 6 h delay, ANI, administered either before or immediately after the sample phase, but not before the test phase, eliminated the exploratory preference for the object in a novel place. This amnesic effect was replicated by both EME and DRB. In a 6 h delay-interposed radial maze task, however, administering ANI before the first-half and before the second-half, but not immediately or 2 h after the first-half, impaired performance in the second-half. This disruptive effect of ANI was successfully replicated by EME. However, DRB administered before the first-half performance did not impair the second-half performance, while it did impair it if injected before the second-half. None of these drugs caused amnesic effects during the short (5 min)/non-delayed conditions in either tests. These results suggest that 1) hippocampal protein synthesis is required for the consolidation of spatial memory, while mRNA synthesis is not necessarily required, and 2) hippocampal mRNA and protein synthesis requirement for spatial memory retrieval depends on the types of memory tested, probably because their demands are different. PMID:28178292

  13. Direct interaction of FtsZ and MreB is required for septum synthesis and cell division in Escherichia coli.

    Science.gov (United States)

    Fenton, Andrew K; Gerdes, Kenn

    2013-07-03

    How bacteria coordinate cell growth with division is not well understood. Bacterial cell elongation is controlled by actin-MreB while cell division is governed by tubulin-FtsZ. A ring-like structure containing FtsZ (the Z ring) at mid-cell attracts other cell division proteins to form the divisome, an essential protein assembly required for septum synthesis and cell separation. The Z ring exists at mid-cell during a major part of the cell cycle without contracting. Here, we show that MreB and FtsZ of Escherichia coli interact directly and that this interaction is required for Z ring contraction. We further show that the MreB-FtsZ interaction is required for transfer of cell-wall biosynthetic enzymes from the lateral to the mature divisome, allowing cells to synthesise the septum. Our observations show that bacterial cell division is coupled to cell elongation via a direct and essential interaction between FtsZ and MreB.

  14. The Requirement for Vocational Skills in the Engineering Industry in the Areas of Modena and Vienna. Synthesis Report.

    Science.gov (United States)

    Gatti, Mario; Mereu, Maria Grazia; Tagliaferro, Claudio; Markowitsch, Jorg; Neuberger, Robert

    Requirements for vocational skills in the engineering industry in Modena, Italy, and Vienna, Austria, were studied. In Modena, employees of a representative sample of 90 small, medium, and large firms in the mechanical processing, agricultural machinery, and sports car manufacturing sectors were interviewed. In Vienna, data were collected through…

  15. Leukotriene synthesis is required for hedgehog-dependent neurite projection in neuralized embryoid bodies but not for motor neuron differentiation

    NARCIS (Netherlands)

    Bijlsma, Maarten F.; Peppelenbosch, Maikel P.; Spek, C. Arnold; Roelink, Henk

    2008-01-01

    The hedgehog (Hh) pathway is required for many developmental processes,. as well as for adult homeostasis. Although all known effects of Hh signaling affecting patterning and differentiation are mediated by members of the Gli family of zinc ringer transcription factors, we demonstrate that the Hh-de

  16. Develop and test an Internally Cooled, Cabled Superconductor (ICCS) for large scale MHD magnets

    Science.gov (United States)

    Marston, P. G.; Hale, J. R.; Dawson, A. M.

    1990-04-01

    The work included four principal tasks: (1) development of a design requirements definition for a retrofit MHD magnet system; (2) analysis of an internally cooled, cabled superconductor (ICCS) to use in that design; (3) design of an experiment to test a subscale version of that conductor, which is a NbTi, copper stabilized superconductor; and (4) proof-of-concept testing of the conductor. The program was carried forth through the third task with very successful development and test of a conventional ICCS conductor with 27 multifilamentary copper-superconductor composite strands and a new concept conductor in which, in each triplet, two strands were pure copper and the third strand was a multifilamentary composite. In reviewing the magnet design and the premises for the conductor design it became obvious that an extra barrier might be highly effective in enhancing magnet stability and protection. This concept was developed and a sample conductor manufactured and tested in comparison with an identical conductor lacking such an additional barrier. Results of these conductor tests confirm the potential value of such a barrier. Since the work of tasks 1 through 3 has been reported in detail in quarterly and semiannual reports, as well as in special reports prepared throughout the course of this project, this report reviews early work briefly and then discusses this last phase in great detail.

  17. Develop and test an internally cooled, cabled superconductor (ICCS) for large scale MHD magnets

    Energy Technology Data Exchange (ETDEWEB)

    Marston, P.G.; Hale, J.R.; Dawson, A.M.

    1990-04-30

    The work conducted under DOE/PETC Contract DE-AC22-84PC70512 has included four principal tasks, (1) development of a Design Requirements Definition for a retrofit MHD magnet system, (2) analysis of an internally cooled, cabled superconductor (ICCS) to use in that design, (3) design of an experiment to test a subscale version of that conductor, which is a NbTi, copper stabilized superconductor, and (4) proof-of-concept testing of the conductor. The program was carried forth through the third task with very successful development and test of a conventional ICCS conductor with 27 multifilamentary copper-superconductor composite strands and a new concept conductor in which, in each triplet, two strands were pure copper and the third strand was a multifilamentary composite. In reviewing the magnet design and the premises for the conductor design it became obvious that, since the principal source of perturbation in MHD magnets derives from slippage between coils, or between turns in a coil, thereby producing frictional heat which must flow through the conductor sheath and the helium to the superconductor strands, an extra barrier might be highly effective in enhancing magnet stability and protection. This concept was developed and a sample conductor manufactured and tested in comparison with an identical conductor lacking such an additional barrier. Results of these conductor tests confirm the potential value of such a barrier. As the work of tasks 1 through 3 has been reported in detail in quarterly and semiannual reports, as well as in special reports prepared throughout the course of this project, this report reviews early work briefly and then discusses this last phase in great detail. 8 refs., 36 figs.

  18. Development of Y-Ba-Cu-O Superconductors for Magnetic Bearings

    Science.gov (United States)

    Selvamanickam, V.; Pfaffenbach, K.; Sokolowski, R. S.; Zhang, Y.; Salama, K.

    1996-01-01

    The material requirements, material manufacturing and magnetic properties that are relevant to fabrication of High Temperature Superconductor (HTS) magnetic bearings have been discussed. It is found that the seeded-melt-texturing method can be used to fabricate the single domain material that is required to achieve the best magnetic properties. Trapped-field mapping has been used as a non-destructive tool to determine the single-domain nature of the HTS material and quantity of the HTS disks. Both the trapped field and the levitation force of the Y-Ba-Cu-O disks are found to be strongly sensitive to the oxygen content.

  19. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  20. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  1. Charge of a quasiparticle in a superconductor

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-01-01

    Nonlinear charge transport in superconductor–insulator–superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e=n, with n = 1–4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD∼2Δ, we found a reproducible and clear dip in the extracted charge to q ∼0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure. PMID:26831071

  2. Demagnetisation by crossed fields in superconductors

    Science.gov (United States)

    Campbell, Archie; Baghdadi, Mehdi; Patel, Anup; Zhou, Difan; Huang, K. Y.; Shi, Yunhua; Coombs, Tim

    2017-03-01

    A study has been made of the decay of the trapped magnetisation in superconductors when exposed to a crossed field. Numerical results have been compared with the theory of Brandt and Mikitik (2002 Phys. Rev. Lett. 89 027002) which solves the problem for a thin strip superconductor. FlexPDE with the A formulation and COMSOL with the H formulation were both used. Simulations of a strip with a cross section aspect ratio of 20 showed good agreement with theory both for the case of a transverse field larger than the transverse penetration field and for one smaller. In the latter case the magnetisation saturates as predicted, however the simulations show a slow decay after many cycles. In the case of stacked YBCO tapes the movement of flux lines is very small and the effects of the reversible motion were investigated. This can decrease the decay initially for very thin decoupled tapes, but cause a steady decay after very large numbers of cycles. Simulations on stacked strips showed that the decay constant increased approximately linearly with the number of strips. When combined with the theory for one tape this can explain the very slow decay observed in previous experiments. Experimental results were qualitatively in agreement with theory and simulations but showed some discrepancies. However there are a number of differences between the experimental situation and theory so good agreement is not expected.

  3. Magnetic Excitations from Stripes in Cuprate Superconductors

    Science.gov (United States)

    Tranquada, J. M.; Woo, H.; Perring, T. G.; Goka, H.; Gu, G. D.; Xu, G.; Fujita, M.; Yamada, K.

    2004-03-01

    While it is generally believed that antiferromagnetic spin excitations play a significant role in the pairing mechanism of copper-oxide superconductors [1], the nature of the magnetic excitations themselves remains a matter of controversy. Recent measurements of the dispersion of spin excitations in superconducting YBa_2Cu_3O_6+x (YBCO) have attracted much attention. Here we present the results of comprehensive inelastic neutron scattering measurements of the momentum- and energy-dependent spectra of the magnetic fluctuations in La_0.875Ba_0.125CuO_4, which exhibits inhomogeneous, charge-stripe order. We will also point out universalities and differences in the magnetic excitation spectra compared to related charge-stripe ordered compounds and high-temperature superconductors, including La_2-xSr_xNiO4 and YBCO. JMT, HW, GDG and GX are supported by U.S. Department of Energy contract # DE-AC02-98CH1088 [1] J. Orenstein and A. J. Millis, Science 288, 468 (2000).

  4. Electronic phase separation and high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, S.A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Emery, V.J. [Brookhaven National Lab., Upton, NY (United States)

    1994-01-11

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional.

  5. Percolation effect in thick film superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sali, R.; Harsanyi, G. [Technical Univ. of Budapest (Hungary)

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  6. American superconductor technology to help CERN to explore the mysteries of matter company's high temperature superconductor wire to be used in CERN's Large Hadron Collider

    CERN Multimedia

    2003-01-01

    American Superconductor Corporation has been selected by CERN, to provide 14,000 meters of high temperature superconductor (HTS) wire for current lead devices that will be used in CERN's Large Hadron Collider (1 page).

  7. Design features of internal tin superconductors for ITER magnetic system

    Energy Technology Data Exchange (ETDEWEB)

    Pantsyrnyi, V.I.; Shikov, A.K.; Nikulin, A.D.; Silaev, A.G.; Bel`akov, N.A.; Vdovin, V.F.; Semin, M.J. [Bochvar All-Russia Inst. of Inorganic Materials, Moscow (Russian Federation)

    1996-07-01

    The influence of parameters of internal tin superconductor design on the main working characteristics such as critical current density and hysteresis losses were analyzed. It was shown that having the value of hysteresis losses at the acceptable level of 400--600 mJ/cm{sup 3} the critical current density 20--30% higher than the value typical for bronze route processed superconductors was attainable in principle. The results of experimental work on the design of new types of internal tin superconductors for ITER magnetic system are given.

  8. Study of the glass formation of high temperature superconductors

    Science.gov (United States)

    Ethridge, Edwin C.; Kaukler, William F.; Rolin, Terry

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were elevated for their glass formation ability by means of rapid thermal analysis during quenching, optical, and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass; then, with subsequent devitrification, it was formed into a bulk crystalline superconductor by a series of processing methods.

  9. Observability of surface currents in p-wave superconductors

    Science.gov (United States)

    Bakurskiy, S. V.; Klenov, N. V.; Soloviev, I. I.; Kupriyanov, M. Yu; Golubov, A. A.

    2017-04-01

    A general approach is formulated to describe spontaneous surface current distribution in a chiral p-wave superconductor. We use the quasiclassical Eilenberger formalism in the Ricatti parametrization to describe various types of the superconductor surface, including arbitrary roughness and metallic behavior of the surface layer. We calculate angle resolved distributions of the spontaneous surface currents and formulate the conditions of their observability. We argue that local measurements of these currents by muon spin rotation technique may provide an information on the underlying pairing symmetry in the bulk superconductor.

  10. Vortex loops entry into type-II superconductors

    CERN Document Server

    Samokhvalov, A V

    1996-01-01

    The magnetic field distribution, the magnetic flux, and the free energy of an Abrikosov vortex loop near a flat surface of type--II superconductors are calculated in the London approximation. The shape of such a vortex line is a semicircle of arbitrary radius. The interaction of the vortex half--ring and an external homogeneous magnetic field applied along the surface is studied. The magnitude of the energy barrier against the vortex expansion into superconductor is found. The possibilities of formation of an equilibrium vortex line determined by the structure of the applied magnetic field by creating the expanding vortex loops near the surface of type--II superconductor are discussed.

  11. Effects of chiral helimagnets on vortex states in a superconductor

    Science.gov (United States)

    Fukui, Saoto; Kato, Masaru; Togawa, Yoshihiko

    2016-12-01

    We have investigated vortex states in chiral helimagnet/superconductor bilayer systems under an applied external magnetic field {H}{appl}, using the Ginzburg-Landau equations. Effect of the chiral helimagnet on the superconductor is taken as a magnetic field {H}{CHM}, which is perpendicular to the superconductor and oscillates spatially. For {H}{appl}=0 and weak {H}{CHM}, there appear pairs of up- and down-vortices. Increasing {H}{appl}, down-vortices gradually disappear, and the number of up-vortices increases in the large magnetic field region. Then, up-vortices form parallel, triangular, or square structures.

  12. Magnetization of two-dimensional superconductors with defects

    CERN Document Server

    Kashurnikov, V A; Zyubin, M V

    2002-01-01

    The new method for modeling the layered high-temperature superconductors magnetization with defects, based on the Monte-Carlo algorithm, is developed. Minimization of the free energy functional of the vortex two-dimensional system made it possible to obtain the equilibrium vortex density configurations and calculate the magnetization of the superconductor with the arbitrary defects distribution in the wide range of temperatures. The magnetic induction profiles and magnetic flux distribution inside the superconductor, proving the applicability of the Bean model, are calculated

  13. Flux jump-assisted pulsed field magnetisation of high-J c bulk high-temperature superconductors

    Science.gov (United States)

    Ainslie, M. D.; Zhou, D.; Fujishiro, H.; Takahashi, K.; Shi, Y.-H.; Durrell, J. H.

    2016-12-01

    Investigating, predicting and optimising practical magnetisation techniques for charging bulk superconductors is a crucial prerequisite to their use as high performance ‘psuedo’ permanent magnets. The leading technique for such magnetisation is the pulsed field magnetisation (PFM) technique, in which a large magnetic field is applied via an external magnetic field pulse of duration of the order of milliseconds. Recently ‘giant field leaps’ have been observed during charging by PFM: this effect greatly aids magnetisation as flux jumps occur in the superconductor leading to magnetic flux suddenly intruding into the centre of the superconductor. This results in a large increase in the measured trapped field at the centre of the top surface of the bulk sample and full magnetisation. Due to the complex nature of the magnetic flux dynamics during the PFM process, simple analytical methods, such as those based on the Bean critical state model, are not applicable. Consequently, in order to successfully model this process, a multi-physical numerical model is required, including both electromagnetic and thermal considerations over short time scales. In this paper, we show that a standard numerical modelling technique, based on a 2D axisymmetric finite-element model implementing the H -formulation, can model this behaviour. In order to reproduce the observed behaviour in our model all that is required is the insertion of a bulk sample of high critical current density, J c. We further explore the consequences of this observation by examining the applicability of the model to a range of previously reported experimental results. Our key conclusion is that the ‘giant field leaps’ reported by Weinstein et al and others need no new physical explanation in terms of the behaviour of bulk superconductors: it is clear the ‘giant field leap’ or flux jump-assisted magnetisation of bulk superconductors will be a key enabling technology for practical applications.

  14. Mottness collapse and T-linear resistivity in cuprate superconductors.

    Science.gov (United States)

    Phillips, Philip

    2011-04-28

    Central to the normal state of cuprate high-temperature superconductors is the collapse of the pseudo-gap, briefly reviewed here, at a critical point and the subsequent onset of the strange metal characterized by a resistivity that scales linearly with temperature. A possible clue to the resolution of this problem is the inter-relation between two facts: (i) a robust theory of T-linear resistivity resulting from quantum criticality requires an additional length scale outside the standard one-parameter scaling scenario and (ii) breaking the Landau correspondence between the Fermi gas and an interacting system with short-range repulsions requires non-fermionic degrees. We show that a low-energy theory of the Hubbard model that correctly incorporates dynamical spectral weight transfer has the extra degrees of freedom needed to describe this physics. The degrees of freedom that mix into the lower band as a result of dynamical spectral weight transfer are shown to either decouple beyond a critical doping, thereby signalling Mottness collapse, or unbind above a critical temperature, yielding strange metal behaviour characterized by T-linear resistivity.

  15. Structural requirements for roxatidine in the stimulant effect of rat gastric mucin synthesis and the participation of nitric oxide in this mechanism.

    Science.gov (United States)

    Ichikawa, T; Ishihara, K; Saigenji, K; Hotta, K

    1997-11-01

    1. The structural requirements of the histamine H2-receptor antagonist, roxatidine (2-acetoxy-N-(3-[m-(1-piperidinylmethyl)phenoxy]-propyl)acetamide hydrochloride), for the stimulant effect on mucin biosynthesis and their relation to histamine H2-receptor antagonism were identified by considering the structural analogues of this drug using an organ culture system of the rat stomach and competition studies with [125I]iodoaminopotentidine ([125I]-APT) binding to membranes of the guinea pig striatum. 2. [3H]Glucosamine incorporation into mucin during 5 h incubation period was stimulated by roxatidine and its structural analogues A (2-hydroxy-N-(3-[m-(1-piperidinylmethyl)phenoxy]-propyl)acetamide) and B (N-(3-[m-(1-piperidinylmethyl)phenoxy]-propyl)acetamide). This effect was seen in mucosal cultures of the corpus, but not antrum, region. 3. Structural analogues, in which the length of the flexible chain between the benzene ring and the amide structure differs from that of roxatidine, failed to activate mucin synthesis. No significant change in mucus synthesis occurred with the addition of analogues in which the piperidine ring attached to the benzene ring via a methylene bridge was changed. 4. Specific [125I]-APT binding to the histamine H2 receptor of guinea pig brain membranes was inhibited by roxatidine and all structural analogues used in this study, except F (N-(3-[m-(N, N-dimethyl-aminomethyl)phenoxy]-propyl)acetamide). 5. Ranitidine at 10(-4) M did not suppress the roxatidine-induced increase in [3H]glucosamine incorporation into mucin. 6. Roxatidine-induced stimulation of [3H]glucosamine incorporation into mucin was completely blocked by the addition of either NG-nitro-L-arginine (10(-5) M) or 2-(4-carboxyphenyl)-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide sodium salt (10(-5) M). The inhibitory action of NG-nitro-L-arginine was totally reversed by L-arginine (5 x 10(-3) M). 7. These results suggest that the cardinal chemical features of roxatidine for the

  16. Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.

    Science.gov (United States)

    Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A

    2012-02-01

    We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.

  17. Carbonic anhydrase III (Car3) is not required for fatty acid synthesis and does not protect against high-fat diet induced obesity in mice.

    Science.gov (United States)

    Renner, Sarah W; Walker, Lauren M; Forsberg, Lawrence J; Sexton, Jonathan Z; Brenman, Jay E

    2017-01-01

    Carbonic anhydrases are a family of enzymes that catalyze the reversible condensation of water and carbon dioxide to carbonic acid, which spontaneously dissociates to bicarbonate. Carbonic anhydrase III (Car3) is nutritionally regulated at both the mRNA and protein level. It is highly enriched in tissues that synthesize and/or store fat: liver, white adipose tissue, brown adipose tissue, and skeletal muscle. Previous characterization of Car3 knockout mice focused on mice fed standard diets, not high-fat diets that significantly alter the tissues that highly express Car3. We observed lower protein levels of Car3 in high-fat diet fed mice treated with niclosamide, a drug published to improve fatty liver symptoms in mice. However, it is unknown if Car3 is simply a biomarker reflecting lipid accumulation or whether it has a functional role in regulating lipid metabolism. We focused our in vitro studies toward metabolic pathways that require bicarbonate. To further determine the role of Car3 in metabolism, we measured de novo fatty acid synthesis with in vitro radiolabeled experiments and examined metabolic biomarkers in Car3 knockout and wild type mice fed high-fat diet. Specifically, we analyzed body weight, body composition, metabolic rate, insulin resistance, serum and tissue triglycerides. Our results indicate that Car3 is not required for de novo lipogenesis, and Car3 knockout mice fed high-fat diet do not have significant differences in responses to various diets to wild type mice.

  18. A STUDY OF THE SYNTHESIS OF VERATRYL CYANIDE REQUIRED AS AN INTERMEDIATE FOR THE PREPARATION OF C-9154 ANTIBIOTIC DERIVATIVE FROM VANILIN

    Directory of Open Access Journals (Sweden)

    Ila Rosilawati

    2010-06-01

    Full Text Available The synthesis of veratryl cyanide [1-(3,4-dimethoxy phenyl acetonitril] required as an intermediate for the preparation of C-9154 antibiotic derivative was carried out. The starting material used was vanilin, while the reaction steps consisted of (1 methylation of vanilin, (2 reduction of veratraldehyde, (3 synthesis of veratryl bromide, and (4 treatment of this bromide with KCN. The analysis of the products was carried out using IR, 1H NMR and GC-MS spectrophotometers.             The methylation of vanilin was conducted using dimethylsulfate and NaOH at 100  oC for 2 hours to give 79.3% yield of veratraldehyde. The reduction of veratraldehyde with LiBH4 in ethanol - THF mixture (1:1 v/v at reflux for 4 hours afforded veratryl alcohol in 85.3% yield. This veratryl alcohol was treated with red phosphorous and Br2 in CCl4 at 60 oC for 2 hours to give 1-(2-bromo-4,5-dimethoxy-phenyl bromomethane in 67.4% yield, instead of the desired veratryl bromide [1-3,4-dimethoxy-phenyl bromomethane]. This benzyl bromide derivative was then treated with KCN in the presence of tween 80 as a phase catalyst transsfer in benzene-water solvent system at reflux for 2 hours to yield 1-(2-bromo-4,5-dimethoxyphenyl acetonitril in 58.5%.   Keywords: Vanilin, veratryl cyanide, C-9154 antibiotic derivative

  19. Metabolic consequences of knocking out UGT85B1, the gene encoding the glucosyltransferase required for synthesis of dhurrin in Sorghum bicolor (L. Moench).

    Science.gov (United States)

    Blomstedt, Cecilia K; O'Donnell, Natalie H; Bjarnholt, Nanna; Neale, Alan D; Hamill, John D; Møller, Birger Lindberg; Gleadow, Roslyn M

    2016-02-01

    Many important food crops produce cyanogenic glucosides as natural defense compounds to protect against herbivory or pathogen attack. It has also been suggested that these nitrogen-based secondary metabolites act as storage reserves of nitrogen. In sorghum, three key genes, CYP79A1, CYP71E1 and UGT85B1, encode two Cytochrome P450s and a glycosyltransferase, respectively, the enzymes essential for synthesis of the cyanogenic glucoside dhurrin. Here, we report the use of targeted induced local lesions in genomes (TILLING) to identify a line with a mutation resulting in a premature stop codon in the N-terminal region of UGT85B1. Plants homozygous for this mutation do not produce dhurrin and are designated tcd2 (totally cyanide deficient 2) mutants. They have reduced vigor, being dwarfed, with poor root development and low fertility. Analysis using liquid chromatography-mass spectrometry (LC-MS) shows that tcd2 mutants accumulate numerous dhurrin pathway-derived metabolites, some of which are similar to those observed in transgenic Arabidopsis expressing the CYP79A1 and CYP71E1 genes. Our results demonstrate that UGT85B1 is essential for formation of dhurrin in sorghum with no co-expressed endogenous UDP-glucosyltransferases able to replace it. The tcd2 mutant suffers from self-intoxication because sorghum does not have a feedback mechanism to inhibit the initial steps of dhurrin biosynthesis when the glucosyltransferase activity required to complete the synthesis of dhurrin is lacking. The LC-MS analyses also revealed the presence of metabolites in the tcd2 mutant which have been suggested to be derived from dhurrin via endogenous pathways for nitrogen recovery, thus indicating which enzymes may be involved in such pathways.

  20. Dependence of levitation force on frequency of an oscillating magnetic levitation field in a bulk YBCO superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Hamilton, E-mail: hcarter3@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Pate, Stephen, E-mail: pate@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Goedecke, George, E-mail: ggoedeck@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States)

    2013-02-14

    Highlights: ► AC magnetic field strength required for levitation is independent of frequency. ► RMS magnetic field strength is in good agreement with DC magnetic field strength. ► Dependence of YBCO levitation force on AC magnetic field frequency is investigated. -- Abstract: The dependence of the magnetic field strength required for levitation of a melt textured, single domain YBCO superconductor disk on the frequency of the current generating the levitating magnetic field has been investigated. The magnetic field strength is found to be independent of frequency between 10 and 300 Hz. This required field strength is found to be in good experimental and theoretical agreement with the field strength required to levitate the same superconductor with a non-oscillating magnetic field. Hysteretic losses within the superconductor predicted by Bean’s critical-state model were also calculated. The measured data rules out any significant Bean’s model effects on the required levitation field strength within the measured frequency range.

  1. Experiments on non-equilibrium superconductor-normal metal-superconductor Josephson junctions

    Science.gov (United States)

    Crosser, Michael S.

    By controlling the distribution function within the normal metal of a superconductor/normal metal/superconductor (SNS) Josephson junction, one can reverse the supercurrent-phase relation in the normal wire, creating a pi-junction. This manipulation is done by injecting normal quasiparticle current into the wire, via one or more leads attached at the middle of the junction. Two experiments evolve from this concept. First, in a sample of four reservoirs, two normal and two superconducting, all connected by a wire cross of normal metal, one may inject current either antisymmetrically (AS) or symmetrically (S). In the AS case, current is injected into one normal lead and extracted from the other, creating normal current flow that does not interact with the supercurrent except at the junction. In the S case, current is injected into both normal leads and extracted from the superconductors. Theory predicts that, in the absence of electron energy relaxation in the normal part of the junction, these two situations should result in identical behavior of the Josephson junction. However, due to Joule heating, the S case shows a slightly larger maximum pi-current than the AS case. The second experiment considers a more subtle effect resulting from normal current being injected symmetrically into a SNS Josephson junction. One side of the SNS junction has both normal current and supercurrent flowing in the same direction while the other side has opposing current flows. This situation creates an effective energy gradient across the SNS junction that can appear in the distribution function of the normal wire. Using superconductor/insulator/normal metal tunnelling spectroscopy, it is possible to extract these changes to the distribution function.

  2. Solution-sol-gel-SHS process of quickly synthesizing bismuth-based superconductor precursor powder

    Institute of Scientific and Technical Information of China (English)

    毛传斌; 周廉; 孙祥云

    1996-01-01

    A new process (solution-sol-gel-SHS,SSGS) based on the combination of the advantages of solution-sol-gel (SSG) process and solution self-propagating high-temperature synthesis (SHS) process has been developed to synthesize bismuth-based superconductor precursor powder.The new process consists of two main steps: (i) SSG process is used to prepare homogeneous wet gel;(ii) solution SHS process is carried out to transit wet gel to soft-agglomerated ultrafine (~0.3μm) precursor powder with low carbon content (<400×10-6).The new process has overcome many serious shortcomings of traditional SSG-processed powder such as hard agglomerate,coarse particles and high carbon content,and also greatly shortened the powder preparation period.The powder can be sintered into 110K 2223 superconductor with excellent quality in a short time.The process parameters to obtain homogeneous wet gel are optimized and SSG transition mechanism is also discussed.

  3. Campbell penetration depth in Fe-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Prommapan, Plegchart [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    A 'true' critical current density, jc, as opposite to commonly measured relaxed persistent (Bean) current, jB, was extracted from the Campbell penetration depth, Λc(T,H) measured in single crystals of LiFeAs, and optimally electron-doped Ba(Fe0.954Ni0.046)2As2 (FeNi122). In LiFeAs, the effective pinning potential is nonparabolic, which follows from the magnetic field - dependent Labusch parameter α. At the equilibrium (upon field - cooling), α(H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamic explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of jc(2 K) ≅ 1.22 x 106 A/cm2 provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe2As2 based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, jc(2K) ≅ 3.3 x 106 A/cm2. The magnetic-dependent feature was observed near the transition temperature in FeTe0.53Se0.47 and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the

  4. High-temperature superconductor applications development at Argonne National Laboratory

    Science.gov (United States)

    Hull, J. R.; Poeppel, R. B.

    1992-02-01

    Developments at Argonne National Laboratory of near and intermediate term applications using high-temperature superconductors are discussed. Near-term applications of liquid-nitrogen depth sensors, current leads, and magnetic bearings are discussed in detail.

  5. The Discovery of a Class of High-Temperature Superconductors.

    Science.gov (United States)

    Muller, K. Alex; Bednorz, J. Georg

    1987-01-01

    Describes the new class of oxide superconductors, the importance of these materials, and the concepts that led to its discovery. Summarizes the discovery itself and its early confirmation. Discusses the observation of a superconductive glass state in percolative samples. (TW)

  6. Interaction effects along the edge of a topological superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher [Institut fuer Theoretische Physik und Astrophysik, Wuerzburg (Germany)

    2015-07-01

    Topological nodal superconductors, such as d{sub xy}-wave and nodal non-centrosymmetric superconductors, exhibit protected zero-energy flat-band edge states. These zero-energy edge modes are protected by time-reversal and translation symmetry and their stability is guaranteed by the conservation of a quantized topological invariant. Here, we study the fate of these flat-band edge states in the presence of interactions. We find that Hubbard interactions lead to spontaneous breaking of time-reversal or translation symmetry at the edge of the system. For the d{sub xy}-wave superconductor in the presence of attractive Hubbard interactions we find that the flat-band states become unstable towards the formation of a charge-density wave state or a state with s-wave type pairing correlations. Repulsive Hubbard interactions, on the other hand, induce ferromagnetic order at the edge of the d{sub xy}-wave superconductor.

  7. Scaling rules for critical current density in anisotropic biaxial superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingxu, E-mail: yingxuli@swjtu.edu.cn [Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Kang, Guozheng [Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-06-15

    Recent researches highlight the additional anisotropic crystallographic axis within the superconducting plane of high temperature superconductors (HTS), demonstrating the superconducting anisotropy of HTS is better understood in the biaxial frame than the previous uniaxial coordinates within the superconducting layer. To quantitatively evaluate the anisotropy of flux pinning and critical current density in HTS, we extend the scaling rule for single-vortex collective pinning in uniaxial superconductors to account for flux-bundle collective pinning in biaxial superconductors. The scaling results show that in a system of random uncorrected point defects, the field dependence of the critical current density is described by a unified function with the scaled magnetic field of the isotropic superconductor. The obtained angular dependence of the critical current density depicts the main features of experimental observations, considering possible corrections due to the strong-pinning interaction.

  8. High point for CERN and high-temperature superconductors

    CERN Multimedia

    2007-01-01

    Amalia Ballarino is named the Superconductor Industry Person of the year 2006. Amalia Ballarino showing a tape of high-superconducting material used for the LHC current leads.The CERN project leader for the high-temperature superconducting current leads for the LHC, Amalia Ballarino, has received the award for "Superconductor Industry Person of the Year". This award, the most prestigious international award in the development and commercialization of superconductors, is presented by the leading industry newsletter "Superconductor Week". Amalia Ballarino was selected from dozens of nominations from around the world by a panel of recognized leading experts in superconductivity. "It is a great honour for me," says Amalia Ballarino. "It has been many years of hard work, and it’s a great satisfaction to see that the work has been completed successfully." Amalia Ballarino has been working on high-temperature superconducting materials sin...

  9. Superconductor Materials-A Revolutionary Value Addition to Space Electronics

    Directory of Open Access Journals (Sweden)

    Rathindra Nath Biswas

    2004-04-01

    Full Text Available An early success in low temperature superconductor technology has led to the development of a number of high temperature superconductor (H TS materials, which have critical temperature above 77 K. When the temperature of a solid is lowered below critical temperature, the material loses its electrical resistivity. Because resistance is almost zero, superconductors can carry very high current, generating very large homogeneous magnetic fields. Due to these features, it is possible to design electronic devices with extremely thin profile, offering less weight and low manufacturing cost. Such exceptional properties have made HTS materials useful in military and space sectors, wherc airborne systems have already provided with cryogenic infrastructure which can he used for cooling a high temperature superconductor at no extra cost.

  10. Leaders in high temperature superconductivity commercialization win superconductor industry award

    CERN Multimedia

    2007-01-01

    CERN's Large Hadron Collider curretn leads project head Amalia Ballarino named superconductor industry person of the year 2006. Former high temperature superconductivity program manager at the US Department of energy James Daley wins lifetime achievement award. (1,5 page)

  11. Entanglement Entropy for time dependent two dimensional holographic superconductor

    CERN Document Server

    Mazhari, N S; Myrzakulov, Kairat; Myrzakulov, R

    2016-01-01

    We studied entanglement entropy for a time dependent two dimensional holographic superconductor. We showed that the conserved charge of the system plays the role of the critical parameter to have condensation.

  12. Antiferromagnetic topological superconductor and electrically controllable Majorana fermions.

    Science.gov (United States)

    Ezawa, Motohiko

    2015-02-01

    We investigate the realization of a topological superconductor in a generic bucked honeycomb system equipped with four types of mass-generating terms, where the superconductor gap is introduced by attaching the honeycomb system to an s-wave superconductor. Constructing the topological phase diagram, we show that Majorana modes are formed in the phase boundary. In particular, we analyze the honeycomb system with antiferromagnetic order in the presence of perpendicular electric field E(z). It becomes topological for |E(z)|>E(z)(cr) and trivial for |E(z)|superconductor by controlling applied electric field. One Majorana zero-energy bound state appears at the phase boundary. We can arbitrarily control the position of the Majorana fermion by moving the spot of applied electric field, which will be made possible by a scanning tunneling microscope probe.

  13. Chiral CP2 skyrmions in three-band superconductors

    Science.gov (United States)

    Garaud, Julien; Carlström, Johan; Babaev, Egor; Speight, Martin

    2013-01-01

    It is shown that under certain conditions, three-component superconductors (and, in particular, three-band systems) allow stable topological defects different from vortices. We demonstrate the existence of these excitations, characterized by a CP2 topological invariant, in models for three-component superconductors with broken time-reversal symmetry. We term these topological defects “chiral GL(3) skyrmions,” where “chiral” refers to the fact that due to broken time-reversal symmetry, these defects come in inequivalent left- and right-handed versions. In certain cases, these objects are energetically cheaper than vortices and should be induced by an applied magnetic field. In other situations, these skyrmions are metastable states, which can be produced by a quench. Observation of these defects can signal broken time-reversal symmetry in three-band superconductors or in Josephson-coupled bilayers of s± and s-wave superconductors.

  14. New application of superconductors: high sensitivity cryogenic light detectors

    CERN Document Server

    Cardani, L; Casali, N; Casellano, M G; Colantoni, I; Coppolecchia, A; Cosmelli, C; Cruciani, A; D'Addabbo, A; Di Domizio, S; Martinez, M; Tomei, C; Vignati, M

    2016-01-01

    In this paper we describe the current status of the CALDER project, which is developing ultra-sensitive light detectors based on superconductors for cryogenic applications. When we apply an AC current to a superconductor, the Cooper pairs oscillate and acquire kinetic inductance, that can be measured by inserting the superconductor in a LC circuit with high merit factor. Interactions in the superconductor can break the Cooper pairs, causing sizable variations in the kinetic inductance and, thus, in the response of the LC circuit. The continuous monitoring of the amplitude and frequency modulation allows to reconstruct the incident energy with excellent sensitivity. This concept is at the basis of Kinetic Inductance Detectors (KIDs), that are characterized by natural aptitude to multiplexed read-out (several sensors can be tuned to different resonant frequencies and coupled to the same line), resolution of few eV, stable behavior over a wide temperature range, and ease in fabrication. We present the results ob...

  15. Nonadiabatic dynamics and coherent control of nonequilibrium superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schnyder, Andreas; Manske, Dirk [Max-Planck-Institut fuer Festkoerperforschung, Heisenbergstrasse 1, D-70569 Stuttgart (Germany); Krull, Holger; Uhrig, Goetz [Lehrstuhl fuer Theoretische Physik I, Technische Univeritaet Dortmund, Otto-Hahn Strasse 4, 44221 Dortmund (Germany)

    2015-07-01

    Inspired by recent THz pump-THz probe experiments on NbN films, we theoretically study the pump-probe response of nonequilibrium superconductors coupled to optical phonons. For ultrashort pump pulses a nonadiabatic regime emerges, which is characterized by amplitude oscillations of the superconducting gap and by the generation of coherent phonons. Using density-matrix theory as well as analytical methods, we compute the pump-probe response of the superconductor in the nonadiabatic regime and determine the signatures of the order parameter and of the phonon oscillations in the pump-probe conductivity. We find that the nonadiabatic dynamics of the superconductor reflects itself in oscillations of the pump-probe response as a function of delay time between pump and probe pulses. We also consider two-band superconductors and study the interplay of the two amplitude oscillations of the two gaps.

  16. Factors affecting characterization of bulk high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J.R. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-11-01

    Three major factors affect the characterization of bulk high-temperature superconductors in terms of their levitation properties during interaction with permanent magnets. First, the appropriate parameter for the permanent magnet is internal magnetization, not the value of the magnetic field measured at the magnet`s surface. Second, although levitation force grows with superconductor thickness and surface area, for a given permanent magnet size, comparison of levitation force between samples is meaningful when minimum values are assigned to the superconductor size parameters. Finally, the effect of force creep must be considered when time-averaging the force measurements. In addition to levitational force, the coefficient of friction of a levitated rotating permanent magnet may be used to characterize the superconductor.

  17. Ecological requirements for pallid sturgeon reproduction and recruitment in the Missouri River—A synthesis of science, 2005 to 2012

    Science.gov (United States)

    Delonay, Aaron J.; Chojnacki, Kimberly A.; Jacobson, Robert B.; Albers, Janice L.; Braaten, Patrick J.; Bulliner, Edward A.; Elliott, Caroline M.; Erwin, Susannah O.; Fuller, David B; Haas, Justin D.; Ladd, Hallie L.A.; Mestl, Gerald E.; Papoulias, Diana M.; Wildhaber, Mark L.

    2016-01-20

    This report is intended to synthesize the state of the scientific understanding of pallid sturgeon ecological requirements to provide recommendations for future science directions and context for Missouri River restoration and management decisions. Recruitment of pallid sturgeon has been low to non-existent throughout its range. Emerging understanding of the genetic structure of pallid sturgeon populations sets a broad framework for species and river management decisions, including decisions about managing the future genetic diversity of the species, but also decisions about where and what type of river restoration actions will be effective for subpopulations of this highly migratory species. Adult pallid sturgeon may migrate hundreds of kilometers (km) to spawn and their progeny may disperse even greater distances downstream as drifting free embryos. As a result of their complex life history pallid sturgeon naturally exploit a wide range of habitats during their life cycles. The construction of dams and reservoirs has fragmented habitats and may have shifted Missouri River subpopulations downstream. Research has not identified one primary biological or ecological constraint that appears to limit populations of the pallid sturgeon. With the present (2013) state of knowledge many life stages and life-stage transitions cannot be ruled out as contributing to recruitment failure.

  18. Enhancement of critical temperature in fractal metamaterial superconductors

    CERN Document Server

    Smolyaninov, Igor I

    2016-01-01

    Fractal metamaterial superconductor geometry has been suggested and analyzed based on the recently developed theoretical description of critical temperature increase in epsilon near zero (ENZ) metamaterial superconductors. Considerable enhancement of critical temperature has been predicted in such materials due to appearance of large number of additional poles in the inverse dielectric response function of the fractal. Our results agree with the recent observation (Fratini et al. Nature 466, 841 (2010)) that fractal defect structure promotes superconductivity.

  19. P-Wave Holographic Insulator/Superconductor Phase Transition

    CERN Document Server

    Akhavan, Amin

    2010-01-01

    Using a five dimensional AdS soliton in an Einstein-Yang-Mills theory with SU(2) gauge group we study p-wave holographic insulator/superconductor phase transition. To explore the phase structure of the model we consider the system in the probe limit as well as fully back reacted solutions. We will also study zero temperature limit of the p-wave holographic superconductor in four dimensions.

  20. Holographic Entanglement Entropy in Insulator/Superconductor Transition

    CERN Document Server

    Cai, Rong-Gen; Li, Li; Zhang, Yun-Long

    2012-01-01

    We investigate the behaviors of entanglement entropy in the holographical insulator/superconductor phase transition. We calculate the holographic entanglement entropy for two kinds of geometry configurations in a completely back-reacted gravitational background describing the insulator/superconductor phase transition. The non-monotonic behavior of the entanglement entropy is found in this system. In the belt geometry case, there exist four phases characterized by the chemical potential and belt width.

  1. Holographic Entanglement Entropy in Insulator/Superconductor Transition

    OpenAIRE

    Cai, Rong-Gen; He, Song; Li, Li; Zhang, Yun-Long

    2012-01-01

    We investigate the behaviors of entanglement entropy in the holographical insulator/superconductor phase transition. We calculate the holographic entanglement entropy for two kinds of geometry configurations in a completely back-reacted gravitational background describing the insulator/superconductor phase transition. The non-monotonic behavior of the entanglement entropy is found in this system. In the belt geometry case, there exist four phases characterized by the chemical potential and be...

  2. Thermal metal-insulator transition in a helical topological superconductor

    OpenAIRE

    Fulga, I. C.; Akhmerov, A. R.; Tworzydło, J.; Béri, B.; Beenakker, C. W. J.

    2012-01-01

    Two-dimensional superconductors with time-reversal symmetry have a Z_2 topological invariant, that distinguishes phases with and without helical Majorana edge states. We study the topological phase transition in a class-DIII network model, and show that it is associated with a metal-insulator transition for the thermal conductance of the helical superconductor. The localization length diverges at the transition with critical exponent nu approx 2.0, about twice the known value in a chiral supe...

  3. Scanning tunneling spectroscopy on electron-boson interactions in superconductors

    CERN Document Server

    Schackert, Michael Peter

    2015-01-01

    This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.

  4. Magnetic irreversibility in granular superconductors: ac susceptibility study

    Energy Technology Data Exchange (ETDEWEB)

    Perez, F.; Obradors, X.; Fontcuberta, J. (ICMAB, CSIC, Bellaterra, Barcelona (Spain)); Vallet, M.; Gonzalez-Calbet, J. (Lab. Magnetismo Aplicado, RENFE-U.C. Madrid, Las Matas (Spain))

    1991-12-01

    Ac susceptibility measurements of a ceramic weak-coupled superconductor in very low ac fields (2mG, 111Hz) are reported. We present evidence for the observation of the magnetic irreversibility following a ZFC-FC thermal cycling by means of ac susceptibilty measurements. It is shown that this technique also reflect local magnetic field effects in granular superconductors, as previously suggested in microwave surface resistance and I-V characteristics. (orig.).

  5. Identifying the genes of unconventional high temperature superconductors

    OpenAIRE

    Hu, Jiangping

    2016-01-01

    We elucidate a recently emergent framework in unifying the two families of high temperature (high \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$T_{\\rm c}$$\\end{document} T c ) superconductors, cuprates and iron-based superconductors. The unification suggests that the latter is simply the counterpart of the forme...

  6. Enhancement of critical temperature in fractal metamaterial superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Smolyaninov, Igor I., E-mail: smoly@umd.edu [Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742 (United States); Smolyaninova, Vera N. [Department of Physics Astronomy and Geosciences, Towson University, 8000 York Road, Towson, MD 21252 (United States)

    2017-04-15

    Fractal metamaterial superconductor geometry has been suggested and analyzed based on the recently developed theoretical description of critical temperature increase in epsilon near zero (ENZ) metamaterial superconductors. Considerable enhancement of critical temperature has been predicted in such materials due to appearance of large number of additional poles in the inverse dielectric response function of the fractal. Our results agree with the recent observation (Fratini et al. Nature 466, 841 (2010)) that fractal defect structure promotes superconductivity.

  7. Multiple phase transitions in Pauli limited iron-based superconductors

    OpenAIRE

    Ptok, Andrzej

    2015-01-01

    Specific heat measurements have been successfully used to probe unconventional superconducting phases in one-band heavy-fermion and organic superconductors. We extend the method to study successive phase transitions in multi-band materials such as iron based superconductors. The signatures are multiple peaks in the specific heat, at low temperatures and high magnetic field, which can lead the experimental verification of unconventional superconducting states with non-zero total momentum.

  8. Experimental demonstration of vortex pancake in high temperature superconductor

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-xian; ZHANG Yu-heng

    2006-01-01

    In order to demonstrate the existence of the vortex pancake in high temperature superconductor experimentally,a configuration in which the current and voltage electrodes lies separately on the top and bottom surface is used.The E-j relation obtained with this electrodes spatial configuration is different from the expected E-j behavior of the stiff vortex line model.Thus,the current results support the existence of the vortex pancake in high temperature superconductor.

  9. Stability of magnetic tip/superconductor levitation systems

    Institute of Scientific and Technical Information of China (English)

    M. K. Alqadi

    2015-01-01

    The vertical stability of a magnetic tip over a superconducting material is investigated by using the critical state and the frozen image models. The analytical expressions of the stiffness and the vibration frequency about the equilibrium position are derived in term of the geometrical parameters of the magnet/superconductor system. It is found that the stability of the system depends on the shape of the superconductor as well as its thickness.

  10. Weyl holographic superconductor in the Lifshitz black hole background

    CERN Document Server

    Mansoori, S A Hosseini; Mokhtari, A; Dezaki, F Lalehgani; Sherkatghanad, Z

    2016-01-01

    We investigate analytically the properties of the Weyl holographic superconductor in the Lifshitz black hole background. We find that the critical temperature of the Weyl superconductor decreases with increasing Lifshitz dynamical exponent, $z$, indicating that condensation becomes difficult. In addition, it is found that the critical temperature and condensation operator could be affected by applying the Weyl coupling, $\\gamma$. Finally, we compute the critical magnetic field and investigate its dependence on the parameters $\\gamma$ and $z$.

  11. On the critical temperatures of superconductors: a quantum gravity approach

    OpenAIRE

    Gregori, Andrea

    2010-01-01

    We consider superconductivity in the light of the quantum gravity theoretical framework introduced in [1]. In this framework, the degree of quantum delocalization depends on the geometry of the energy distribution along space. This results in a dependence of the critical temperature characterizing the transition to the superconducting phase on the complexity of the structure of a superconductor. We consider concrete examples, ranging from low to high temperature superconductors, and discuss h...

  12. Low field magnetic measurements on high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, G.; Murphy, S.D.; Li, Z.Y.; Stewart, A.M.; Bhagat, S.M. (Maryland Univ., College Park, MD (USA). Dept. of Physics and Astronomy)

    1989-09-01

    The authors report dc magnetization and ac susceptibility measurements on both micron size powders and sintered samples of several high temperature superconductors. The powder data confirm previous findings that the materials can be treated as conventional superconductors with s-wave pairing. The ac results on sintered slabs ar interpreted using Bean's model and yield the temperature dependence of the shielding current.

  13. Odd triplet superconductivity in superconductor ferromagnet structures: a survey

    Energy Technology Data Exchange (ETDEWEB)

    Bergeret, F.S. [Universidad Autonoma de Madrid, Departamento de Fisica Teorica de la Materia Condensada C-V, Madrid (Spain); Volkov, A.F. [Ruhr-Universitaet Bochum, Theoretische Physik III, Bochum (Germany); Russian Academy of Sciences, Institute for Radioengineering and Electronics, Moscow (Russian Federation); Efetov, K.B. [Ruhr-Universitaet Bochum, Theoretische Physik III, Bochum (Germany); L.D. Landau Institute for Theoretical Physics RAS, Moscow (Russian Federation)

    2007-11-15

    We review the main features of odd triplet superconductivity in superconductor-ferromagnet (S/F) structures. We discuss the different types of superconducting condensate that can be experimentally observed and pay special attention to the triplet component induced in a ferromagnet which is in contact with a superconductor. The triplet component is an even function of the momentum and an odd function of the frequency and leads to novel phenomena. (orig.)

  14. Current fluctuations in unconventional superconductor junctions with impurity scattering

    Science.gov (United States)

    Burset, Pablo; Lu, Bo; Tamura, Shun; Tanaka, Yukio

    2017-06-01

    The order parameter of bulk two-dimensional superconductors is classified as nodal if it vanishes for a direction in momentum space, or gapful if it does not. Each class can be topologically nontrivial if Andreev bound states are formed at the edges of the superconductor. Nonmagnetic impurities in the superconductor affect the formation of Andreev bound states and can drastically change the tunneling spectra for small voltages. Here, we investigate the mean current and its fluctuations for two-dimensional tunnel junctions between normal-metal and unconventional superconductors by solving the quasiclassical Eilenberger equation self-consistently, including the presence of nonmagnetic impurities in the superconductor. As the impurity strength increases, we find that superconductivity is suppressed for almost all order parameters since (i) at zero applied bias, the effective transferred charge calculated from the noise-current ratio tends to the electron charge e , and (ii) for finite bias, the current-voltage characteristics follows that of a normal-state junction. There are notable exceptions to this trend. First, gapful nontrivial (chiral) superconductors are very robust against impurity scattering due to the linear dispersion relation of their surface Andreev bound states. Second, for nodal nontrivial superconductors, only px-wave pairing is almost immune to the presence of impurities due to the emergence of odd-frequency s -wave Cooper pairs near the interface. Due to their anisotropic dependence on the wave vector, impurity scattering is an effective pair-breaking mechanism for the remaining nodal superconductors. All these behaviors are neatly captured by the noise-current ratio, providing a useful guide to find experimental signatures for unconventional superconductivity.

  15. Quaternary borocarbides: Relatively high T{sub c} intermetallic superconductors and magnetic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Mazumdar, Chandan, E-mail: chandan.mazumdar@saha.ac.in [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Nagarajan, R., E-mail: nagarajan@cbs.ac.in [University of Mumbai-Department of Atomic Energy Centre for Excellence in Basic Sciences, Santacruz (East), Mumbai 400 098 (India)

    2015-07-15

    Discovery of superconductivity in Y–Ni–B–C (T{sub c} ∼ 13 K) gave rise to the class of quaternary rare earth transition metal borocarbide superconductors. Before the discovery of Fe-based arsenide superconductors, this was the only class of materials containing a magnetic element, viz., Ni, yet exhibiting T{sub c}s > 5 K. Many members of this class have high T{sub c} (>10 K). T{sub c} of ∼23 K in Y–Pd–B–C system equaled the record T{sub c} known then, for intermetallics. Another feature that sets this class apart, is the occurrence of the exotic phenomenon of coexistence of superconductivity and magnetism at temperatures >5 K. Availability of large and electronically ‘clean’ single crystals and large Ginzburg-Landau (G–L) parameter, κ, have enabled detailed investigation of nonlocal effects of superconductivity. Intermediate value of upper critical field H{sub c2}, has enabled detailed investigation of superconductivity in this class, over the complete H–T plane. This has revealed details of anisotropy of superconductivity (e.g., a fourfold symmetry in the square a–b plane is found) and raised questions on the symmetry of order parameter. After a brief outline of the discovery, this article gives a summary of the materials and highlights of superconducting properties of this class of materials. Interesting results from studies, using various techniques, on YNi{sub 2}B{sub 2}C (T{sub c} ∼ 15 K) and LuNi{sub 2}B{sub 2}C (T{sub c} ∼ 16 K) are presented, including observation of unusual square vortex lattice and its structural transformation with H and T. With conduction electrons involved in the magnetic order of this class of superconductors, the interplay of superconductivity and magnetism is intimate in these magnetic superconductors. With T{sub c} (∼11 K) > T{sub N} (∼6 K) in ErNi{sub 2}B{sub 2}C, T{sub c} (∼8 K) = T{sub N} (∼8 K) in HoNi{sub 2}B{sub 2}C and T{sub c} (∼6 K) < T{sub N} (∼11 K) in DyNi{sub 2}B{sub 2}C, and

  16. A review of finite size effects in quasi-zero dimensional superconductors.

    Science.gov (United States)

    Bose, Sangita; Ayyub, Pushan

    2014-11-01

    Quantum confinement and surface effects (SEs) dramatically modify most solid state phenomena as one approaches the nanometer scale, and superconductivity is no exception. Though we may expect significant modifications from bulk superconducting properties when the system dimensions become smaller than the characteristic length scales for bulk superconductors-such as the coherence length or the penetration depth-it is now established that there is a third length scale which ultimately determines the critical size at which Cooper pairing is destroyed. In quasi-zero-dimensional (0D) superconductors (e.g. nanocrystalline materials, isolated or embedded nanoparticles), one may define a critical particle diameter below which the mean energy level spacing arising from quantum confinement becomes equal to the bulk superconducting energy gap. The so-called Anderson criterion provides a remarkably accurate estimate of the limiting size for the destabilization of superconductivity in nanosystems. This review of size effects in quasi-0D superconductors is organized as follows. A general summary of size effects in nanostructured superconductors (section 1) is followed by a brief overview of their synthesis (section 2) and characterization using a variety of techniques (section 3). Section 4 reviews the size-evolution of important superconducting parameters-the transition temperature, critical fields and critical current-as the Anderson limit is approached from above. We then discuss the effect of thermodynamic fluctuations (section 5), which become significant in confined systems. Improvements in fabrication methods and the increasing feasibility of addressing individual nanoparticles using scanning probe techniques have lately opened up new directions in the study of nanoscale superconductivity. Section 6 reviews both experimental and theoretical aspects of the recently discovered phenomena of 'parity effect' and 'shell effect' that lead to a strong, non-monotonic size

  17. Designing heterostructures -- a route towards new superconductors

    Science.gov (United States)

    Kopp, Thilo

    2013-03-01

    By now it has become technologically feasible to grow controllably transition metal oxides layer by layer. In effect, the achieved progress allows to design heterostructures with optimized electronic properties. The talk will specifically address scenarios for interface superconductivity and the possibility to raise the transition temperature of bulk superconductors by layer design. Heterostructures offer a complexity beyond that of bulk materials. The nature of the superconducting states formed in layered materials and at interfaces is a fascinating topic of recent research which will be in the focus of this presentation. This work was supported by the DFG (TRR 80). I thankfully acknowledge the collaboration with Natalia Pavlenko, Peter Hirschfeld, Cyril Stephanos, Florian Loder, Arno Kampf, and Jochen Mannhart.

  18. Noncommutative effects of spacetime on holographic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ghorai, Debabrata, E-mail: debanuphy123@gmail.com [S.N. Bose National Centre for Basic Sciences, JD Block, Sector III, Salt Lake, Kolkata 700098 (India); Gangopadhyay, Sunandan, E-mail: sunandan.gangopadhyay@gmail.com [Department of Physics, West Bengal State University, Barasat (India); Inter University Centre for Astronomy & Astrophysics, Pune (India)

    2016-07-10

    The Sturm–Liouville eigenvalue method is employed to analytically investigate the properties of holographic superconductors in higher dimensions in the framework of Born–Infeld electrodynamics incorporating the effects of noncommutative spacetime. In the background of pure Einstein gravity in noncommutative spacetime, we obtain the relation between the critical temperature and the charge density. We also obtain the value of the condensation operator and the critical exponent. Our findings suggest that the higher value of noncommutative parameter and Born–Infeld parameter make the condensate harder to form. We also observe that the noncommutative structure of spacetime makes the critical temperature depend on the mass of the black hole and higher value of black hole mass is favourable for the formation of the condensate.

  19. Transport and Magnetism in Mesoscopic Superconductors

    CERN Document Server

    Fauchère, A L

    1999-01-01

    Superconductivity, discovered by Kamerlingh Onnes in 1911, continues to be a fascinating subject of condensed matter physics today. Much interest has been devoted to the study of the superconductivity induced in a metal which by itself is not superconducting but is in electrical contact with a superconductor. As the carriers of superconductivity, the Cooper pairs, diffuse across the contact into the metal they remain correlated, although the pairing mechanism is lifted; we call this the proximity effect. The observation of these superconducting correlations has come within the reach of experiments in the last decade. With state-of-the-art fabrication techniques mesoscopic samples have been produced which are small and clean enough for the quantum mechanical coherence of the electrons to be preserved over the sample size. This theoretical thesis focuses on the variety of signatures of single-particle physics that appear in the electrical transport and the magnetic screening properties of these systems. We stud...

  20. Gravimeter using high-temperature superconductor bearing.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1998-09-11

    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.