Calculation of TC in a normal-superconductor bilayer using the microscopic-based Usadel theory
International Nuclear Information System (INIS)
Martinis, John M.; Hilton, G.C.; Irwin, K.D.; Wollman, D.A.
2000-01-01
The Usadel equations give a theory of superconductivity, valid in the diffusive limit, that is a generalization of the microscopic equations of the BCS theory. Because the theory is expressed in a tractable and physical form, even experimentalists can analytically and numerically calculate detailed properties of superconductors in physically relevant geometries. Here, we describe the Usadel equations and review their solution in the case of predicting the transition temperature T C of a thin normal-superconductor bilayer. We also extend this calculation for thicker bilayers to show the dependence on the resistivity of the films. These results, which show a dependence on both the interface resistance and heat capacity of the films, provide important guidance on fabricating bilayers with reproducible transition temperatures
Microscopic theory of vortex interaction in two-band superconductors and type-1.5 superconductivity
Silaev, Mihail; Babaev, Egor
2011-03-01
In the framework of self-consistent microscopic theory we study the structure and interaction of vortices in two-gap superconductor taking into account the interband Josephson coupling. The asymptotical behavior of order parameter densities and magnetic field is studied analytically within the microscopic theory at low temperature. At higher temperatures, results consistent with Ginzburg-Landau theory are obtained. It is shown that under quite general conditions and in a wide temperature ranges (in particular outside the validity of the Ginzburg-Landau theory) there can exist an additional characteristic length scale of the order parameter density variation which exceeds the London penetration length of magnetic field due to the multi-component nature of superconducting state. Such behavior of order parameter density variation leads to the attractive long-range and repulsive short-range interaction between vortices. Supported by NSF CAREER Award DMR-0955902, Knut and Alice Wallenberg Foundation through the Royal Swedish Academy of Sciences and Swedish Research Council, ''Dynasty'' foundation and Russian Foundation for Basic Research.
Microscopic Theory of Magnetic Detwinning in Iron-Based Superconductors with Large-Spin Rare Earths
Directory of Open Access Journals (Sweden)
Jannis Maiwald
2018-01-01
Full Text Available Detwinning of magnetic (nematic domains in Fe-based superconductors has so far only been obtained through mechanical straining, which considerably perturbs the ground state of these materials. The recently discovered nonmechanical detwinning in EuFe_{2}As_{2} by ultralow magnetic fields offers an entirely different, nonperturbing way to achieve the same goal. However, this way seemed risky due to the lack of a microscopic understanding of the magnetically driven detwinning. Specifically, the following issues remained unexplained: (i ultralow value of the first detwinning field of approximately 0.1 T, two orders of magnitude below that of BaFe_{2}As_{2}, and (ii reversal of the preferential domain orientation at approximately 1 T and restoration of the low-field orientation above 10–15 T. In this paper, we present, using published as well as newly measured data, a full theory that quantitatively explains all the observations. The key ingredient of this theory is a biquadratic coupling between Fe and Eu spins, analogous to the Fe-Fe biquadratic coupling that drives the nematic transition in this family of materials.
Microscopic theory of ultrasonic attenuation in high-Tc superconductors in normal state
International Nuclear Information System (INIS)
Bishoyi, K.C.; Rout, G.C.; Behera, S.N.
2001-01-01
The mechanism of the ultrasonic attenuation in high temperature superconductors is not yet studied thoroughly both experimentally and theoretically. A microscopic theoretical model is proposed here to study the attenuation in the electron doped and hole doped compounds like L 2-x M x CuO 4 (L=La,Nd; M=Sr,Ca,Ce). The model Hamiltonian contains the staggered magnetic field in the d-electrons of copper, the doped f-electrons term and the hybridisation between d- and f-electrons. The electron-phonon interaction arises due to the volume strain dependence of the hybridisation. The phonon Green's function is calculated by equations of motion of Zubarev technique. The temperature dependence of the ultrasonic attenuation coefficient (α) is calculated from the imaginary part of the phonon self energy and the velocity of sound in the dynamic and long wavelength limit. The dimensionless parameters involved in the calculations are the electron-phonon coupling (g), staggered magnetic field (h) , hybridization (υ), position of the f-level (d), frequency (ω), and temperature (t). The results are discussed. (author)
Macroscopic theory of superconductors
International Nuclear Information System (INIS)
Carr, W.J. Jr.
1981-01-01
A macroscopic theory for bulk superconductors is developed in the framework of the theory for other magnetic materials, where ''magnetization'' current is separated from ''free'' current on the basis of scale. This contrasts with the usual separation into equilibrium and nonequilibrium currents. In the present approach magnetization, on a large macroscopic scale, results from the vortex current, while the Meissner current and other surface currents are surface contributions to the Maxwell j. The results are important for the development of thermodynamics in type-II superconductors. The advantage of the description developed here is that magnetization becomes a local concept and its associated magnetic field can be given physical meaning
Energy-gap spectroscopy of superconductors using a tunneling microscope
International Nuclear Information System (INIS)
Le Duc, H.G.; Kaiser, W.J.; Stern, J.A.
1987-01-01
A unique scanning tunneling microscope (STM) system has been developed for spectroscopy of the superconducting energy gap. High-resolution control of tunnel current and voltage allows for measurement of superconducting properties at tunnel resistance levels 10 2 --10 3 greater than that achieved in prior work. The previously used STM methods for superconductor spectroscopy are compared to those developed for the work reported here. Superconducting energy-gap spectra are reported for three superconductors, Pb, PbBi, and NbN, over a range of tunnel resistance. The measured spectra are compared directly to theory
Theory of disordered superconductors
International Nuclear Information System (INIS)
Wysokinski, K.I.
1991-01-01
The influence of disorder on the superconducting transition temperature is discussed. The main steps on the way to complete theory of disordered superconductors follows the steps in the authors' understanding of disorder and its effect on the quasiparticles in metals. Loosely speaking one can distinguish three such steps. First is the study of weakly disordered systems and this resulted in famous, celebrated Anderson theorem. The second step is ultimately connected with the coherent potential approximation as a method to study the spectrum and transport in concentrated alloys. The discovery of the role of usually neglected interferences between scattered waves in disordered conductors leading to decrease in mobility and increase of the mutual interactions between quantum particles, known as localization and interaction effects has given the new impetus to the theory of superconductivity. This is third step to be discussed in this lecture. The authors limit themselves to homogeneous bulk superconductors. In this paper some experiments on thin films as well as on copper oxides related to the presented theory are briefly mentioned
Scanning laser microscope for imaging nanostructured superconductors
International Nuclear Information System (INIS)
Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen
2010-01-01
The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.
Scanning laser microscope for imaging nanostructured superconductors
Ishida, Takekazu; Arai, Kohei; Akita, Yukio; Miyanari, Mitsunori; Minami, Yusuke; Yotsuya, Tsutomu; Kato, Masaru; Satoh, Kazuo; Uno, Mayumi; Shimakage, Hisashi; Miki, Shigehito; Wang, Zhen
2010-10-01
The nanofabrication of superconductors yields various interesting features in superconducting properties. A variety of different imaging techniques have been developed for probing the local superconducting profiles. A scanning pulsed laser microscope has been developed by the combination of the XYZ piezo-driven stages and an optical fiber with an aspheric focusing lens. The scanning laser microscope is used to understand the position-dependent properties of a superconducting MgB 2 stripline of length 100 μm and width of 3 μm under constant bias current. Our results show that the superconducting stripline can clearly be seen in the contour image of the scanning laser microscope on the signal voltage. It is suggested from the observed image that the inhomogeneity is relevant in specifying the operating conditions such as detection efficiency of the sensor.
Microscopic tunneling theory of long Josephson junctions
DEFF Research Database (Denmark)
Grønbech-Jensen, N.; Hattel, Søren A.; Samuelsen, Mogens Rugholm
1992-01-01
We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate that the detai......We present a numerical scheme for solving a nonlinear partial integro-differential equation with nonlocal time dependence. The equation describes the dynamics in a long Josephson junction modeled by use of the microscopic theory for tunneling between superconductors. We demonstrate...
International Nuclear Information System (INIS)
Younes, W; Gogny, D
2008-01-01
In recent years, the microscopic method has been applied to the notoriously difficult problem of nuclear fission with unprecedented success. In this paper, we discuss some of the achievements and promise of the microscopic method, as embodied in the Hartree-Fock method using the Gogny finite-range effective interaction, and beyond-mean-field extensions to the theory. The nascent program to describe induced fission observables using this approach at the Lawrence Livermore National Laboratory is presented
Theory of antiferromagnetic pairing in cuprate superconductors
International Nuclear Information System (INIS)
Plakida, N.M.
2006-01-01
A review of the antiferromagnetic exchange and spin-fluctuation pairing theory in the cuprate superconductors is given. We briefly discuss a phenomenological approach and a theory in the limit of weak Coulomb correlations. A microscopic theory in the strong correlation limit is presented in more detail. In particular, results of our recently developed theory for the effective p-d Hubbard model and the reduced t-J model are given. We have proved that retardation effects for the antiferromagnetic exchange interaction are unimportant that results in pairing of all charge carriers in the conduction band and high Tc proportional to the Fermi energy. The spin-fluctuation interaction caused by kinematic interaction gives an additional contribution to the d-wave pairing. Dependence of Tc on the hole concentration and the lattice constant (or pressure) and an oxygen isotope shift are discussed
Electromagnetic theory for filamentary superconductors
International Nuclear Information System (INIS)
Carr, W.J. Jr.
1975-01-01
It is shown that a multifilament superconductor, made up of a bundle of twisted filaments embedded in a normal matrix, can be treated as a new state of matter with anisotropic electrical and magnetic properties. Macroscopic electromagnetic field vectors, which satisfy Maxwell's equations, are defined in terms of averages over the ''microscopic'' fields. However, the sources for the field, i.e., the current and charge densities and the magnetization and polarization, differ in some respects from those for ordinary matter. In particular, since the elementary magnetic dipole moments are distributed along lines rather than located at fixed points, the definition of the magnetization transverse to the filaments differs by a factor of 2 from that for ordinary matter, and the definition of the macroscopic current density is also slightly modified. Constitutive relationships among the field vectors in terms of permeabilities, dielectric constants, and conductivities are examined in the limits of strong and weak fields
Microscopic Theory of Transconductivity
Directory of Open Access Journals (Sweden)
A. P. Jauho
1998-01-01
Full Text Available Measurements of momentum transfer between two closely spaced mesoscopic electronic systems, which couple via Coulomb interaction but where tunneling is inhibited, have proven to be a fruitful method of extracting information about interactions in mesoscopic systems. We report a fully microscopic theory for transconductivity σ12, or, equivalently, momentum transfer rate between the system constituents. Our main formal result expresses the transconductivity in terms of two fluctuation diagrams, which are topologically related, but not equivalent to, the Azlamazov-Larkin and Maki-Thompson diagrams known for superconductivity. In the present paper the magnetic field dependence of σ12 is discussed, and we find that σ12(B is strongly enhanced over its zero field value, and it displays strong features, which can be understood in terms of a competition between density-of-states and screening effects.
Topological insulators and superconductors from string theory
International Nuclear Information System (INIS)
Ryu, Shinsei; Takayanagi, Tadashi
2010-01-01
Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).
Theory of terahertz electric oscillations by supercooled superconductors
Energy Technology Data Exchange (ETDEWEB)
Mishonov, Todor M; Mishonov, Mihail T [Department of Theoretical Physics, Faculty of Physics, University of Sofia St Kliment Ohridski, 5 J Bourchier Boulevard, 1164 Sofia (Bulgaria); Laboratorium voor Vaste-Stoffysica en Magnetisme, Katholieke Universiteit Leuven, Celestijnenlaan 200 D B-3001 Leuven (Belgium)
2005-11-15
We predict that below T{sub c} a regime of negative differential conductivity (NDC) can be reached. The superconductor should be supercooled to T
Electron microscopic observation at low temperature on superconductors
International Nuclear Information System (INIS)
Yokota, Yasuhiro; Hashimoto, Hatsujiro; Yoshida, Hiroyuki.
1991-01-01
The authors have observed superconducting materials with a high resolution electron microscope at liquid helium temperature. First, observation was carried out on Nb system intermetallic compounds such as Nb 3 Al and Nb 3 Sn of Al 5 type and Nb 3 Ge of 11 type at extremely low temperature. Next, the observation of high temperature superconductive ceramics in the state of superconductivity was attempted. In this paper, first the development of the liquid helium sample holder for a 400 kV electron microscope to realize the observation is reported. Besides, the sample holder of Gatan Co. and an extremely low temperature, high resolution electron microscope with a superconducting lens are described. The purpose of carrying out the electron microscope observation of superconductors at low temperature is the direct observation of the crystalline lattice image in the state of superconductivity. Also the structural transformation from tetragonal crystals to rhombic crystals in Al 5 type superconductors can be observed. The results of observation are reported. (K.I.)
Microscopic theory of the current-voltage relationship across a normal-superconducting interface
International Nuclear Information System (INIS)
Kraehenbuehl, Y.; Watts-Tobin, R.J.
1979-01-01
Measurements by Pippard et al. have shown the existence of an extra resistance due to the penetration of an electrical potential into a superconductor. Previous theories of this effect are unable to explain the full temperature dependence of the extra resistance because they use oversimplified models of the normal--superconducting interface. We show that the microscopic theory for dirty superconductors leads to a good agreement with experiment over the whole temperature range
Functional development in density functional theory for superconductors
Energy Technology Data Exchange (ETDEWEB)
Sanna, Antonio; Gross, E.K.U.; Essenberger, Frank [Max Planck Institute of Microstructure Physics, Halle (Saale) (Germany)
2015-07-01
Density functional theory for superconductors (SCDFT) is a fully parameter-free approach to superconductivity that allows for accurate predictions of critical temperature and properties of superconductors. We report on the most recent extensions of the method, in particular the development of new functionals to: (1) incorporate in a correct fashion Migdal's theorem; (2) compute the excitation spectrum; (3) include spin-fluctuation mediated pairing Applications and predictions are shown for a set of materials, including conventional and unconventional superconductors.
Theory of the upper critical field in layered superconductors
International Nuclear Information System (INIS)
Klemm, R.A.; Luther, A.; Beasley, M.R.
1975-01-01
The upper critical field H/subc/ 2 in layered superconductors is calculated from a microscopic theory in which the electrons are assumed to propagate freely within the individual layers subject to scattering off impurities and to propagate via tunneling between the layers. For the magnetic field parallel to the layers, there is a temperature T* 2 /sub parallel/ is thus determined by the combined effects of Pauli paramagnetism and spin-orbit scattering, and for sufficiently strong spin-orbit scattering rates, H/subc/ 2 /sub parallel/(T =0) can greatly exceed the Chandrasekhar-Clogston Pauli limiting field H/subP/. This unusual behavior is found to be most pronounced in the dirty limit for the electron propagation within the layers and when the electrons scatter many times in a given layer before tunneling to an adjacent layer. Our results are also discussed in light of the available experimental data. (auth)
Theory of Nernst effect in layered superconductors
International Nuclear Information System (INIS)
Tinh, B D; Rosenstein, B
2009-01-01
We calculate, using the time-dependent Ginzburg-Landau (TDGL) equation with thermal noise, the transverse thermoelectric conductivity α xy , describing the Nernst effect, in type-II superconductor in the vortex-liquid regime. The method is an elaboration of the Hartree-Fock. An often made in analytical calculations additional assumption that only the lowest Landau level significantly contributes to α xy in the high field limit is lifted by including all the Landau levels. The resulting values in two dimensions (2D) are significantly lower than the numerical simulation data of the same model, but are in reasonably good quantitative agreement with experimental data on La 2 SrCuO 4 above the irreversibility line (below the irreversibility line at which α xy diverges and theory should be modified by including pinning effects).
Weak coupling theory of high temperature superconductors
International Nuclear Information System (INIS)
Labbe, J.
1990-01-01
Many theories of the high T c superconductors are founded on the hypothesis that the electron-electron correlations are so strong in these materials that, in the absence of doping or internal charge transfer, they should be Mott insulators. The authors consider this hypothesis as unlikely for the following reasons. At first, very strong correlations would arise from a very large repulsive Coulomb energy between electrons within each atom. This would be the case only with very strongly localized atomic orbitals, as for instance the f orbitals in the rare earths, leading to very narrow energy bands. But in the copper oxides, the d orbitals of copper, or the p orbitals of oxygen, are not so strongly localized, and thus the intra-atomic repulsive Coulomb energy has no reason to be much larger than in the simple transitional metals or their other compounds
Experimental constraints on theories of high Tc superconductors
International Nuclear Information System (INIS)
Little, W.A.
1989-01-01
Recent experiments on the high-T c superconductors have begun to narrow the possible theoretical explanations of the phenomenon. Experimental evidence on the size, structure and symmetry of the charge carriers will be reviewed; evidence for and against strong coupling; and, recent results on a search for direct evidence of magnetic signature in the coupling mechanism will be presented. The authors show how these experiments impose strong constraints on the theories of these superconductors. A new type of experiment is also discussed which appears capable of identifying the true nature of the coupling mechanism if the superconductors prove to be BCS-like in nature
International Nuclear Information System (INIS)
Garcia, N.; Flores, F.; Guinea, F.
1988-01-01
Tunneling experiments in metal-oxide superconductor have shown the existence of ''leakage'' currents for applied voltages V smaller than one-half of the superconductor gap Δ. These currents are independent of temperature T. Recently experiments with scanning tunneling microscopy (STM) and squeezable tunnel junctions have shown that the observation of the superconductor gap depends strongly on the resistance in the junction. In fact only for resistances larger than ∼10 6 Ω the gap is clearly observable. These experiments have been explained in terms of the perturbative Hamiltonian formalism of Bardeen. However, it may happen that this theory while applicable for very large resistances may not be so for small tunnel resistances. We present here a nonperturbative theory in all orders of the transmitivity chemical bondTochemical bond 2 and show the existence of supercurrents for values of V 2 . We believe that experiments in STM and other junctions should be interpreted in the frame of this theory
International Nuclear Information System (INIS)
Honda, T.; Ibe, K.; Ishida, Y.; Kersker, M.M.
1989-01-01
The high resolution electron microscope is powerful for modern materials science because of its direct observation capability for the atomic structure of materials. the JEM-4000EX, a 400 kV accelerating voltage electron microscope whose objective lens has a 1 mm spherical aberration coefficient, has a 0.168 nm theoretical resolving power. Using this microscope, atomic structure images of high Tc superconductor such as Y-Ba-Cu-O, Bi-Ca-Sr-Cu-O and Tl-Ca-Ba-Cu-O are reported
Studies of superconductors using a low-temperature, high-field scanning tunneling microscope
International Nuclear Information System (INIS)
Kirtley, J.R.; Feenstra, R.M.; Fein, A.P.
1988-01-01
We have developed a scanning tunneling microscope (STM) capable of operating at temperatures as low as 0.4 K and fields as high as 8 T. We have used this STM to study the energy gap of the high-T/sub c/ superconductors La--Sr--Cu--O and Y--Ba--Cu--O. We find that the reduced gap for these oxide superconductors falls in the range 3<2Δ/k/sub B/T/sub c/<7, for polycrystalline, single-crystal, and thin-film samples. We have also simultaneously imaged the surface topography and superconducting energy gap for thin films of the granular superconductor NbN. We occasionally see regions with smaller best-fit gaps that correlate with surface topographical features, but have been unable so far to image flux vortices
Microscopic Cluster Theory for Exotic Nuclei
International Nuclear Information System (INIS)
Tomaselli, M; Kuehl, T; Ursescu, D; Fritzsche, S
2006-01-01
For a better understanding of the dynamics of complex exotic nuclei it is of crucial importance to develop a practical microscopic theory easy to be applied to a wide range of masses. In this paper we propose to calculate the structure of neutron-rich nuclei within a dynamic model based on the EoM theory
On the microscopic foundation of scattering theory
International Nuclear Information System (INIS)
Moser, T.
2007-01-01
The aim of the thesis is to give a contribution to the microscopic foundation of scattering theory, i. e. to show, how the asymptotic formalism of scattering theory with objects like the S-matrix as well the initial and final asymptotics ψ in and ψ out can be derived from a microscopic description of the basic system. First the final statistics from a N-particle system through farly distant surfaces is derived. Thereafter we confine us to the 1-particle scattering and apply the final statistics in order to derive the scattering cross section from a microscopical description of the scattering situation. The basing dynamics are Bohm's mechanics, a theory on the motion of point particles, which reproduces all results of nonrelativistic quantum mechanics
Proposed experimental test of an alternative electrodynamic theory of superconductors
Energy Technology Data Exchange (ETDEWEB)
Hirsch, J.E., E-mail: jhirsch@ucsd.edu
2015-01-15
Highlights: • A new experimental test of electric screening in superconductors is proposed. • The electric screening length is predicted to be much larger than in normal metals. • The reason this was not seen in earlier experiments is explained. • This is not predicted by the conventional BCS theory of superconductivity. - Abstract: An alternative form of London’s electrodynamic theory of superconductors predicts that the electrostatic screening length is the same as the magnetic penetration depth. We argue that experiments performed to date do not rule out this alternative formulation and propose an experiment to test it. Experimental evidence in its favor would have fundamental implications for the understanding of superconductivity.
Microscopic analysis of the non-dissipative force on a line vortex in a superconductor
International Nuclear Information System (INIS)
Gaitan, F.
1994-12-01
A microscopic analysis of the non-dissipative force F nd acting on a line vortex in a type-II superconductor at T = 0 is given. All work presented assumes a charged BCS superconductor. We first examine the Berry phase induced in the BCS superconducting ground state by movement of the vortex and show how this phase enters into the hydro-dynamic action S hyd of the superconducting condensate. Appropriate variation of S hyd gives F nd and variation of the Berry phase term is seen to contribute the Magnus or lift force of classical hydrodynamics to F nd . This analysis, based on the BCS ground state of a charged superconductor, confirms in detail the arguments of Ao and Thouless within the context of the BCS model. Our Berry phase, in the limit e → 0, is seen to reproduce the Berry phase determined by these authors for a neutral superfluid. We also provide a second, independent, determination on F nd through a microscopic derivation of the continuity equation for the condensate linear momentum. This equation yields the acceleration equation for the superflow and shows that the vortex acts as a sink for the condensate linear momentum. The rate at which momentum is lost to the vortex determines F nd in this second approach and the result obtained agrees identically with the previous Berry phase calculation. The Magnus force contribution to F nd is seen in both calculations to be a consequence of the vortex topology and motion. (author). 10 refs
High-Temperature Cuprate Superconductors Experiment, Theory, and Applications
Plakida, Nikolay Maksimilianovich
2010-01-01
High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their...
High-temperature cuprate superconductors. Experiment, theory, and applications
International Nuclear Information System (INIS)
Plakida, Nikolay
2010-01-01
High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials. (orig.)
Theory of nanolaser devices: Rate equation analysis versus microscopic theory
DEFF Research Database (Denmark)
Lorke, Michael; Skovgård, Troels Suhr; Gregersen, Niels
2013-01-01
A rate equation theory for quantum-dot-based nanolaser devices is developed. We show that these rate equations are capable of reproducing results of a microscopic semiconductor theory, making them an appropriate starting point for complex device simulations of nanolasers. The input...
Microscopic theory of particle-vibration coupling
Energy Technology Data Exchange (ETDEWEB)
Colo, Gianluca; Bortignon, Pier Francesco [Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sez. di Milano, via Celoria 16, 20133 Milano (Italy); Sagawa, Hiroyuki [Center for Mathematics and Physics, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8560 (Japan); Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van, E-mail: colo@mi.infn.it [Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, 91406 Orsay Cedex (France)
2011-09-16
Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.
Microscopic theory of particle-vibration coupling
International Nuclear Information System (INIS)
Colo, Gianluca; Bortignon, Pier Francesco; Sagawa, Hiroyuki; Moghrabi, Kassem; Grasso, Marcella; Giai, Nguyen Van
2011-01-01
Some recent microscopic implementations of the particle-vibration coupling (PVC) theory for atomic nuclei are briefly reviewed. Within the nonrelativistic framework, the results seem to point to the necessity of fitting new effective interactions that can work beyond mean field. In keeping with this, the divergences which arise must be cured. A method is proposed, and the future perspectives that are opened are addressed.
Isominkowskian theory of Cooper Pairs in superconductors
International Nuclear Information System (INIS)
Animalu, A.O.E.
1993-01-01
Via the use of Santilli's isominkowskian space, the author presents a relativistic extension of the author's recent treatment of the Cooper Pair in superconductivity based on the Lie-isotopic lifting of quantum mechanics known as Hadronic Mechanics. The isominkowskian treatment reduces the solution of the eiganvalue problem for the quasiparticle energy spectrum to a geometric problem of specifying the metric of the isominkowskian space inside the pair in various models of ordinary high T c superconductors. The use of an intriguing realization of the metric due to Dirac reduces the dimensionality of the interior space to two yielding a spin mutation from 1/2 to zero inside a Cooper pair in two-band BCS and Hubbard models. 12 refs
International Nuclear Information System (INIS)
Watts-Tobin, R.J.; Kraehenbuehl, Y.; Kramer, L.
1981-01-01
General equations for the dynamic behavior of dirty superconductors in the Ginzburg--Landau regime Vertical BarT/sub c/-TVertical Bar<< T/sub c/ are derived from microscopic theory. In the immediate vicinity of T/sub c/ a local equilibrium approximation leads to a simple generalized time-dependent Ginzburg--Landau equation. The oscillatory phase-slip solutions presented previously are discussed in greater detail
Microscopic theory of nuclear fission: a review
Schunck, N.; Robledo, L. M.
2016-11-01
spontaneous fission half-lives from multi-dimensional quantum tunnelling probabilities (For the sake of completeness, other approaches to tunnelling based on functional integrals are also briefly discussed, although there are very few applications.) It is also an important component of some of the time-dependent methods that have been used in fission studies. Concerning the latter, both the semi-classical approaches to time-dependent nuclear dynamics and more microscopic theories involving explicit quantum-many-body methods are presented. One of the hallmarks of the microscopic theory of fission is the tremendous amount of computing needed for practical applications. In particular, the successful implementation of the theories presented in this article requires a very precise numerical resolution of the HFB equations for large values of the collective variables. This aspect is often overlooked, and several sections are devoted to discussing the resolution of the HFB equations, especially in the context of very deformed nuclear shapes. In particular, the numerical precision and iterative methods employed to obtain the HFB solution are documented in detail. Finally, a selection of the most recent and representative results obtained for both spontaneous and induced fission is presented, with the goal of emphasizing the coherence of the microscopic approaches employed. Although impressive progress has been achieved over the last two decades to understand fission microscopically, much work remains to be done. Several possible lines of research are outlined in the conclusion.
Theory of Kondo effect in superconductors, 2
International Nuclear Information System (INIS)
Ichinose, Shin-ichi
1977-01-01
Thermodynamic properties of superconducting alloys near the transition temperature are studied within the interpolation approximation which is constructed so as to coincide with theories in limiting cases. By the use of this approximation, the specific heat jump at the transition temperature is calculated in the case of the magnitude of the impurity spin being 1/2. The result shows a continuous change of the specific heat jump with T sub(K)/T sub(c0) from the Abrikosov-Gorkov value to essentially BCS-like behavior in contrast to the Mueller-Hartmann-Zittartz theory. One has an example of a cross over between a weak coupling situation at T sub(K)/T sub(c0) > 1. The Hartree-Fock theory is also discussed in connection with the present calculation. (auth.)
International Nuclear Information System (INIS)
1988-01-01
The chapter 6.3 p. 143 to 153 of this book deals with superconductors 19 items are briefly presented with address of manufacturer or laboratory to contact, mainly in the USA or Japan. In particular magnets, films, high temperature superconductors and various applications are presented [fr
Microscopic theory of ultrafast spin linear reversal
Energy Technology Data Exchange (ETDEWEB)
Zhang, G P, E-mail: gpzhang@indstate.edu [Department of Physics, Indiana State University, Terre Haute, IN 47809 (United States)
2011-05-25
A recent experiment (Vahaplar et al 2009 Phys. Rev. Lett. 103 117201) showed that a single femtosecond laser can reverse the spin direction without spin precession, or spin linear reversal (SLR), but its microscopic theory has been missing. Here we show that SLR does not occur naturally. Two generic spin models, the Heisenberg and Hubbard models, are employed to describe magnetic insulators and metals, respectively. We find analytically that the spin change is always accompanied by a simultaneous excitation of at least two spin components. The only model that has prospects for SLR is the Stoner single-electron band model. However, under the influence of the laser field, the orbital angular momenta are excited and are coupled to each other. If a circularly polarized light is used, then all three components of the orbital angular momenta are excited, and so are their spins. The generic spin commutation relation further reveals that if SLR exists, it must involve a complicated multiple state excitation.
Microscopic theory of one-body dissipation
International Nuclear Information System (INIS)
Koonin, S.E.; Randrup, J.; Hatch, R.; Kolomietz, V.
1977-01-01
A microscopic theory is developed for nuclear collective motion in the limit of a long nuclear mean-free path. Linear response techniques are applied to an independent particle model and expressions for the collective kinetic energy and rate of energy dissipation are obtained. For leptodermous systems, these quantities are characterized by mass and dissipation kernels coupling the velocities at different points on the nuclear surface. In a classical treatment, the kernels are given in terms of nucleon trajectories within the nuclear shape. In a quantal treatment, the dissipation kernel is related to the nuclear Green function. The spatial and thermal properties of the kernels are investigated. Corrections for the diffuseness of the potential and shell effects are also discussed. (Auth.)
Narlikar, A V
2014-01-01
Superconductors is neither about basic aspects of superconductivity nor about its applications, but its mainstay is superconducting materials. Unusual and unconventional features of a large variety of novel superconductors are presented and their technological potential as practical superconductors assessed. The book begins with an introduction to basic aspects of superconductivity. The presentation is readily accessible to readers from a diverse range of scientific and technical disciplines, such as metallurgy, materials science, materials engineering, electronic and device engineering, and chemistry. The derivation of mathematical formulas and equations has been kept to a minimum and, wherever necessary, short appendices with essential mathematics have been added at the end of the text. The book is not meant to serve as an encyclopaedia, describing each and every superconductor that exists, but focuses on important milestones in their exciting development.
Quantum theory and microscopic mechanics. I
International Nuclear Information System (INIS)
Yussouff, M.
1984-08-01
The need for theoretical descriptions and experimental observations on 'small' individual systems is emphasized. It is shown that the mathematical basis for microscopic mechanics is very simple in one dimension. The square well problem is discussed to clarify general points about stationary states and the continuity of (p'/p) across potential boundaries in the applications of microscopic mechanics. (author)
Biophysics and the microscopic theory of He II
International Nuclear Information System (INIS)
Chela-Flores, J.; Ghassib, H.B.
1985-08-01
Bose-Einstein condensation and solitonic propagation have recently been shown to be intimately related in biosystems. From our previous demonstration of the existence of solitons in a dilute Bose gas we set out the basis for a full microscopic theory of He II. This is used to understand recent experiments in He II, which are in apparent contradiction. New experiments are suggested by the microscopic theory. (author)
International Nuclear Information System (INIS)
Ekin, J.W.
1983-01-01
This chapter attempts to provide an introductory guide to interpreting handbook data on practical, high-current, superconducting materials, principally for magnet applications. An overview is given of the properties and operational limits of superconductive materials, as well as techniques used to fabricate practical superconducting wires. Topics considered include critical temperature, critical magnetic field, Type I and Type II superconductors, upper critical field values for practical materials, the temperature dependence of critical field and upper critical field, critical current, critical current density values for practical materials, the measurement of critical current, composite fabrication, stability, ac losses, eddy current loss, hysteretic loss, mechanical properties, critical current degradation, and superconducting materals selection and composite design
Microscopic theory of nuclear collective dynamics
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Hashimoto, Yukio; Tsukuma, Hidehiko; Yamamoto, Yoshifumi; Iwasawa, Kazuo.
1990-10-01
A recent development of the INS-TSUKUBA joint research project on large-amplitude collective motion is summarized by putting special emphasis on an inter-relationship between quantum chaos and nuclear spectroscopy. Aiming at introducing various concepts used in this lecture, we start with recapitulating the semi-classical theory of nuclear collective dynamics formulated within the time-dependent Hartree-Fock (TDHF) theory. The central part of the semi-classical theory is provided by the self-consistent collective coordinate (SCC) method which has been developed to properly take account of the non-linear dynamics specific for the finite many-body quantum system. A decisive role of the level crossing dynamics on the order-to-chaos transition of collective motion is discussed in detail. Extending the basic idea of the semi-classical theory, we discuss a full quantum theory of nuclear collective dynamics which allows us to properly define a concept of the quantum integrability as well as the quantum chaoticity for each eigenfunction. The lecture is arranged so as to clearly show the similar structure between the semi-classical and quantum theories of nuclear collective dynamics. Using numerical calculations, we illustrate what the quantum chaos for each eigenfunction means and relate it to the usual definition of quantum chaos for nearest neighbor level spacing statistics based on the random matrix theory. (author)
Theory of a Quantum Scanning Microscope for Cold Atoms.
Yang, D; Laflamme, C; Vasilyev, D V; Baranov, M A; Zoller, P
2018-03-30
We propose and analyze a scanning microscope to monitor "live" the quantum dynamics of cold atoms in a cavity QED setup. The microscope measures the atomic density with subwavelength resolution via dispersive couplings to a cavity and homodyne detection within the framework of continuous measurement theory. We analyze two modes of operation. First, for a fixed focal point the microscope records the wave packet dynamics of atoms with time resolution set by the cavity lifetime. Second, a spatial scan of the microscope acts to map out the spatial density of stationary quantum states. Remarkably, in the latter case, for a good cavity limit, the microscope becomes an effective quantum nondemolition device, such that the spatial distribution of motional eigenstates can be measured backaction free in single scans, as an emergent quantum nondemolition measurement.
International Nuclear Information System (INIS)
Navani, R.
1974-01-01
Tunneling in the superconductor-insulator-superconductor (S'-I-S) geometry, where the two superconductors are not necessarily the same, is studied theoretically. Two different models of the S'-I-S geometry - which we call the ''initial model'' and the ''improved model'' are discussed. For the initial model the potential barrier is flat. In the improved model, however, the differing material properties of the three regions - S', I, and S - are taken into account in an approximate fashion. In addition, applied, contact, and image potentials in the insulator are included. The solid state material properties that are taken to be different are the effective electronic masses in the three regions and the Fermi energies in the two superconductors. The quasiparticle wave functions in the S', I, and S regions are determined for both models as solutions to the Bogoliubov-de Gennes equations. The electric current transmission coefficients (also the reflection coefficient for the initial model) are derived and their behavior is extensively analyzed. Their forms in the thick barrier limit - where L greater than or approximately equal to 5 A - are related to the BCS densities of states. The tunneling current density is found to depend strongly on the tunneling angle. A relation between the angular position of the tunneling current peak and the barrier thickness is given. Finally, it is shown that the choice of insulator material effects the tunneling current, and the effect is greater the thicker the insulating film
Theory of the upper critical field in antiferromagnetic superconductors
International Nuclear Information System (INIS)
Ro, C.; Levin, K.
1984-01-01
We compute the temperature T dependence of the upper critical field H/sub c/2(T) in antiferromagnetic (AF) superconductors. Using a strong-coupling formalism we explicitly treat the effects of the molecular field H/sub Q/, inelastic and elastic spin-fluctuation scattering and magnetic as well as nonmagnetic impurities. A sum rule is used to relate the T dependence of H/sub Q/ to that of the spin-fluctuation scattering. The decreased pair breaking observed below the Neel temperature in SmRh 4 B 4 and the increased pair breaking seen in the AF Chevrel compounds will both occur in our theory for a reasonable choice of parameters. For larger values of the dimensionless spin-exchange coupling constant N(0)J/sup c/f, spin-fluctuation-scattering effects dominate over those of H/sub Q/ and decreased pair breaking is observed below T/sub N/. For smaller values of the coupling constant, the converse is true. Impurity scattering is treated in a self-consistent fashion. As a consequence, the molecular field H/sub Q/ is altered by nonmagnetic impurities. This leads to important pair-breaking effects in H/sub c/2. A physical manifestation of this pair breaking is a qualitative change in the shape of the H/sub c/2 versus T curve, as nonmagnetic impurities are added. We give detailed predictions for the expected effects of these impurities on H/sub c/2 which can be tested experimentally
Nematic elastomers: from a microscopic model to macroscopic elasticity theory.
Xing, Xiangjun; Pfahl, Stephan; Mukhopadhyay, Swagatam; Goldbart, Paul M; Zippelius, Annette
2008-05-01
A Landau theory is constructed for the gelation transition in cross-linked polymer systems possessing spontaneous nematic ordering, based on symmetry principles and the concept of an order parameter for the amorphous solid state. This theory is substantiated with help of a simple microscopic model of cross-linked dimers. Minimization of the Landau free energy in the presence of nematic order yields the neoclassical theory of the elasticity of nematic elastomers and, in the isotropic limit, the classical theory of isotropic elasticity. These phenomenological theories of elasticity are thereby derived from a microscopic model, and it is furthermore demonstrated that they are universal mean-field descriptions of the elasticity for all chemical gels and vulcanized media.
Self-consistent Ginzburg-Landau theory for transport currents in superconductors
DEFF Research Database (Denmark)
Ögren, Magnus; Sørensen, Mads Peter; Pedersen, Niels Falsig
2012-01-01
We elaborate on boundary conditions for Ginzburg-Landau (GL) theory in the case of external currents. We implement a self-consistent theory within the finite element method (FEM) and present numerical results for a two-dimensional rectangular geometry. We emphasize that our approach can in princi...... in principle also be used for general geometries in three-dimensional superconductors....
International Nuclear Information System (INIS)
Okabe, Y.; Nagi, A.D.S.
1983-01-01
The Shiba-Rusinov theory of magnetic impurities in a superconductor is investigated, with special attention paid to the role of the potential scattering term in the electron-impurity interaction. The meaning of Anderson's theorem in the Shiba-Rusinov theory is discussed
Master equations in the microscopic theory of nuclear collective dynamics
International Nuclear Information System (INIS)
Matsuo, M.; Sakata, F.; Marumori, T.; Zhuo, Y.
1988-07-01
In the first half of this paper, the authors describe briefly a recent theoretical approach where the mechanism of the large-amplitude dissipative collective motions can be investigated on the basis of the microscopic theory of nuclear collective dynamics. Namely, we derive the general coupled master equations which can disclose, in the framework of the TDHF theory, not only non-linear dynamics among the collective and the single-particle modes of motion but also microscopic dynamics responsible for the dissipative processes. In the latter half, the authors investigate, without relying on any statistical hypothesis, one possible microscopic origin which leads us to the transport equation of the Fokker-Planck type so that usefullness of the general framework is demonstrated. (author)
A microscopic theory of the nuclear collective motion
International Nuclear Information System (INIS)
Baranger, M.
1975-01-01
A microscopic theory of the nuclear collective model is reviewed, discussions being concentrated, mainly, on the shape motion. An adiabatic time dependent Hartree-Fock method is used. Kinetic energy using the cranking model is obtained. The generator coordinate method is discussed [pt
Microscopic description of the nuclear-cluster theory
International Nuclear Information System (INIS)
Tang, Y.C.
1980-01-01
The purpose of this series of lectures is to explain the foundation of, the techniques used in, and the results obtained by microscopic cluster theory (MCT). In particular, the important role played by the Pauli principle in determining nuclear characteristics will be extensively discussed
Theory of s-wave superconductor containing impurities with retarded interaction with quasiparticles
International Nuclear Information System (INIS)
K V Grigorishin
2014-01-01
We propose a perturbation theory and diagram technique for a disordered metal when scattering of quasiparticles by nonmagnetic impurities is caused with a retarded interaction. The perturbation theory generalizes a case of elastic scattering in a disordered metal. Eliashberg equations for s-wave superconductivity are generalized for such a disordered superconductor. Anderson's theorem is found to be violated in the sense that embedding of the impurities into an s-wave superconductor increases its critical temperature. We show that the amplification of superconducting properties is a result of nonelastic effects in a scattering by the impurities. (paper)
Anderson phase-slip theory and loss mechanism of the motion of vortices in superconductors
International Nuclear Information System (INIS)
Xu, L.K.; Shan, L.; Tang, Y.L.; Wang, F.; Xu, X.N.; Jin, X.; Nanjing Univ.
2001-01-01
The loss mechanism of the super-current is discussed in the frame of Anderson phase-slip theory and G-L theory. In the discussion we also use vortex conservation equations instead of Maxwell equations. It is found that this method is more reasonable to apply the vortex motion induced energy loss in type II superconductors than the traditional deduction in terms of Maxwell equations. Moreover, we propose a new method to determine the effective pinning energy of vortex lines in type II superconductors. (orig.)
Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z
2012-12-07
We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.
Microscopic theory of cation exchange in CdSe nanocrystals.
Ott, Florian D; Spiegel, Leo L; Norris, David J; Erwin, Steven C
2014-10-10
Although poorly understood, cation-exchange reactions are increasingly used to dope or transform colloidal semiconductor nanocrystals (quantum dots). We use density-functional theory and kinetic Monte Carlo simulations to develop a microscopic theory that explains structural, optical, and electronic changes observed experimentally in Ag-cation-exchanged CdSe nanocrystals. We find that Coulomb interactions, both between ionized impurities and with the polarized nanocrystal surface, play a key role in cation exchange. Our theory also resolves several experimental puzzles related to photoluminescence and electrical behavior in CdSe nanocrystals doped with Ag.
International Nuclear Information System (INIS)
Ishida, Kenji; Hattori, Taisuke; Ihara, Yoshihiko; Nakai, Yusuke; Sato, Noriaki K.; Deguchi, Kazuhiko; Tamura, Nobuyuki; Satoh, Isamu
2010-01-01
We have investigated the relationship between ferromagnetism and superconductivity in ferromagnetic superconductor UCoGe from 59 Co nuclear quadrupole resonance (NQR) measurements. Our experimental results indicate the microscopic coexistence of ferromagnetism and superconductivity in UCoGe, and suggest a 'self-induced vortex state' in its superconducting state. We also review NQR experiments, which play an important role in this study. (author)
Transport properties of clean and disordered superconductors in matrix field theory
International Nuclear Information System (INIS)
Zhou Lubo; Kirkpatrick, T.R.
2004-01-01
A comprehensive field theory is developed for superconductors with quenched disorder. We first show that the matrix field theory, used previously to describe a disordered Fermi liquid and a disordered itinerant ferromagnet, also has a saddle-point solution that describes a disordered superconductor. A general gap equation is obtained. We then expand about the saddle point to Gaussian order to explicitly obtain the physical correlation functions. The ultrasonic attenuation, number density susceptibility, spin-density susceptibility, and the electrical conductivity are used as examples. Results in the clean limit and in the disordered case are discussed, respectively. This formalism is expected to be a powerful tool to study the quantum phase transitions between the normal-metal state and the superconductor state
Dynamical fusion thresholds in macroscopic and microscopic theories
International Nuclear Information System (INIS)
Davies, K.T.R.; Sierk, A.J.; Nix, J.R.
1983-01-01
Macroscopic and microscopic results demonstrating the existence of dynamical fusion thresholds are presented. For macroscopic theories, it is shown that the extra-push dynamics is sensitive to some details of the models used, e.g. the shape parametrization and the type of viscosity. The dependence of the effect upon the charge and angular momentum of the system is also studied. Calculated macroscopic results for mass-symmetric systems are compared to experimental mass-asymmetric results by use of a tentative scaling procedure, which takes into account both the entrance-channel and the saddle-point regions of configuration space. Two types of dynamical fusion thresholds occur in TDHF studies: (1) the microscopic analogue of the macroscopic extra push threshold, and (2) the relatively high energy at which the TDHF angular momentum window opens. Both of these microscopic thresholds are found to be very sensitive to the choice of the effective two-body interaction
Organic superconductors: A current overview, synthesis, structure and theory
International Nuclear Information System (INIS)
Wang, H.H.; Beno, M.A.; Carlson, K.D.; Geiser, U.; Kini, A.M.; Williams, J.M.
1990-01-01
To date, four types of crystal packing motifs (β, θ, κ and α) are known to lead to superconductivity in the BEDT-TTF based materials, where BEDT-TTF is bis(ethylenedithio)tetrathiafulvalene. The syntheses, crystal structures, physical properties and band electronic structures of these materials will be reviewed. Recent progress made in the oxygen containing analogue, BEDO-TTF [bis(ethylenedioxo)tetrathiofulvalene] will be presented. The implication and future prospect of organic superconductors will be discussed
Pairing theory of high and low temperature superconductors
International Nuclear Information System (INIS)
Nam, Sang Boo
1997-01-01
A scenario which can account for all observed features of both high-Tc superconductors (HTS) and low-Tc superconductors (LTS) is discussed. This scenario is based on the fact that a finite pairing interaction energy range Td is required to have a finite value of Tc and that not all carriers participate in pairings, yielding multiconnected superconductors (MS). A new density of states, derived by keeping the order parameter zero outside of Td, is shown to account for the observed low energy states in HTS and for the temperature dependences in the specific heat, the penetration depth, the optical conductivity, and the tunneling conductance data. I argue that the notion of MS can account for the tunneling data along the a(or b)-, ab-, and c-axis, and the 1/2 flux quantum observed in HTS. The region occupied by unpaired carriers can be considered as a vortex with a fluxoid quantum number equal to 1 (VF), 0 (VZF), or -1 (VAF) when the magnetic flux around the vortex is greater than, equal to, or less than the effective flux produced by the supercurrent, respectively. The Hall anomaly depends on the relative strengths of the contributions via VF and VAF. The fact that the present scenario can account for all observed features of HTS and LTS suggests that the symmetry of the order parameter in HTS may not be different from one in LTS. (author)
Microscopic neutron investigation of the Abrikosov state of high-temperature superconductors
International Nuclear Information System (INIS)
Chang, Johan Juul; Mesot, Joel
2008-01-01
Using small angle neutron scattering we have been able to observe for the first time a well-defined vortex lattice (VL) structure both in the hole-doped LSCO and electron-doped NCCO superconductors. Our measurements on optimally doped LSCO reveal the existence of a magnetic field-induced phase transition from a hexagonal to a square coordination of the VL. Various scenarios to explain such phase transition are presented. In NCCO also a clear square VL could be detected, which is unexpectedly kept down to the lowest measurable magnetic fields. (author)
Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch
2007-01-01
We study Josephson effect in d-wave superconductor/diffusive ferromagnet/d-wave superconductor junctions, changing the exchange field and the angles between the normal to the interfaces and the crystal axes of d-wave superconductors. We find a 0–π transition at a certain value of the exchange field.
On microscopic theory of radiative nuclear reaction characteristics
Energy Technology Data Exchange (ETDEWEB)
Kamerdzhiev, S. P. [National Research Centre “Kurchatov Institute” (Russian Federation); Achakovskiy, O. I., E-mail: oachakovskiy@ippe.ru; Avdeenkov, A. V. [Institute for Physics and Power Engineering (Russian Federation); Goriely, S. [Institut d’Astronomie et d’Astrophysique (Belgium)
2016-07-15
A survey of some results in the modern microscopic theory of properties of nuclear reactions with gamma rays is given. First of all, we discuss the impact of Phonon Coupling (PC) on the Photon Strength Function (PSF) because it represents the most natural physical source of additional strength found for Sn isotopes in recent experiments that could not be explained within the standard HFB + QRPA approach. The self-consistent version of the Extended Theory of Finite Fermi Systems in the Quasiparticle Time Blocking Approximation is applied. It uses the HFB mean field and includes both the QRPA and PC effects on the basis of the SLy4 Skyrme force. With our microscopic E1 PSFs, the following properties have been calculated for many stable and unstable even–even semi-magic Sn and Ni isotopes as well as for double-magic {sup 132}Sn and {sup 208}Pb using the reaction codes EMPIRE and TALYS with several Nuclear Level Density (NLD) models: (1) the neutron capture cross sections; (2) the corresponding neutron capture gamma spectra; (3) the average radiative widths of neutron resonances. In all the properties considered, the PC contribution turned out to be significant, as compared with the standard QRPA one, and necessary to explain the available experimental data. The results with the phenomenological so-called generalized superfluid NLD model turned out to be worse, on the whole, than those obtained with the microscopic HFB + combinatorial NLD model. The very topical question about the M1 resonance contribution to PSFs is also discussed.Finally, we also discuss the modern microscopic NLD models based on the self-consistent HFB method and show their relevance to explain the experimental data as compared with the phenomenological models. The use of these self-consistent microscopic approaches is of particular relevance for nuclear astrophysics, but also for the study of double-magic nuclei.
Quantum theory of an atom in proximity to a superconductor
Le Dall, Matthias; Diniz, Igor; Dias da Silva, Luis G. G. V.; de Sousa, Rogério
2018-02-01
The impact of superconducting correlations on localized electronic states is important for a wide range of experiments in fundamental and applied superconductivity. This includes scanning tunneling microscopy of atomic impurities at the surface of superconductors, as well as superconducting-ion-chip spectroscopy of neutral ions and Rydberg states. Moreover, atomlike centers close to the surface are currently believed to be the main source of noise and decoherence in qubits based on superconducting devices. The proximity effect is known to dress atomic orbitals in Cooper-pair-like states known as Yu-Shiba-Rusinov (YSR) states, but the impact of superconductivity on the measured orbital splittings and optical-noise transitions is not known. Here we study the interplay between orbital degeneracy and particle-number admixture in atomic states, beyond the usual classical spin approximation. We model the atom as a generalized Anderson model interacting with a conventional s -wave superconductor. In the limit of zero on-site Coulomb repulsion (U =0 ), we obtain YSR subgap energy levels that are identical to the ones obtained from the classical spin model. When Δ is large and U >0 , the YSR spectra are no longer quasiparticle-like, and the highly degenerate orbital subspaces are split according to their spin, orbital, and number-parity symmetry. We show that U >0 activates additional poles in the atomic Green's function, suggesting an alternative explanation for the peak splittings recently observed in scanning tunneling microscopy of orbitally-degenerate impurities in superconductors. We describe optical excitation and absorption of photons by YSR states, showing that many additional optical channels open up in comparison to the nonsuperconducting case. Conversely, the additional dissipation channels imply increased electromagnetic noise due to impurities in superconducting devices.
Theory of quantum metal to superconductor transitions in highly conducting systems
Energy Technology Data Exchange (ETDEWEB)
Spivak, B.
2010-04-06
We derive the theory of the quantum (zero temperature) superconductor to metal transition in disordered materials when the resistance of the normal metal near criticality is small compared to the quantum of resistivity. This can occur most readily in situations in which 'Anderson's theorem' does not apply. We explicitly study the transition in superconductor-metal composites, in an swave superconducting film in the presence of a magnetic field, and in a low temperature disordered d-wave superconductor. Near the point of the transition, the distribution of the superconducting order parameter is highly inhomogeneous. To describe this situation we employ a procedure which is similar to that introduced by Mott for description of the temperature dependence of the variable range hopping conduction. As the system approaches the point of the transition from the metal to the superconductor, the conductivity of the system diverges, and the Wiedemann-Franz law is violated. In the case of d-wave (or other exotic) superconductors we predict the existence of (at least) two sequential transitions as a function of increasing disorder: a d-wave to s-wave, and then an s-wave to metal transition.
Nonlinear theory of deformable superconductors: Ginzburg-Landau description
Czech Academy of Sciences Publication Activity Database
Lipavský, Pavel; Morawetz, K.; Koláček, Jan; Brandt, E. H.
2008-01-01
Roč. 78, č. 17 (2008), 174516/1-174516/7 ISSN 1098-0121 R&D Projects: GA ČR GA202/08/0326; GA AV ČR IAA100100712; GA ČR(CZ) GA202/06/0040; GA AV ČR IAA1010404 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * magneto-elastic effect * inhomogeneous superconductor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008
On the history of creation of the microscopic theories of superfluidity and superconductivity
International Nuclear Information System (INIS)
Bogolyubov, P.N.; Isaev, P.S.
2002-01-01
The history of creation of the microscopic theory of superfluidity (1947) and the microscopic theory of superconductivity (1957) is expounded. The paper is dedicated to the 90th anniversary of the birth of our genius contemporary Academician Nikolaj Nikolaevich Bogolyubov
Theory of the low-voltage impedance of superconductor-- p insulator--normal metal tunnel junctions
International Nuclear Information System (INIS)
Lemberger, T.R.
1984-01-01
A theory for the low-voltage impedance of a superconductor-- p insulator--normal metal tunnel junction is developed that includes the effects of charge imbalance and of quasiparticle fluctuations. A novel, inelastic, charge-imbalance relaxation process is identified that is associated with the junction itself. This new process leads to the surprising result that the charge-imbalance component of the dc resistance of a junction becomes independent of the electron-phonon scattering rate as the insulator resistance decreases
Microscopic and hydrodynamic theory of superfluidity in periodic solids
International Nuclear Information System (INIS)
Saslow, W.M.
1977-01-01
The microscopic theory of fourth sound and of the superfluid fraction for perfect one-component periodic solids has been derived. It is applicable to finite temperatures and is restricted to the case of well-defined excitations. One finds that the superfluid fraction is a tensor rho/sub s//sub b//sub β//rho 0 and that the fourth-sound velocity C 4 is a tensor (C 2 4 )/sub b//sub β/ = (partialrho 0 /partialμ 0 ) -1 rho/sub s//sub b//sub β/, where μ 0 and rho 0 are the spatially averaged values of the chemical potential (per unit mass) and of the number density. In addition, the exact nonlinearized hydrodynamics is derived, and for fourth sound is found to give agreement with the microscopic theory. Because the superfluid velocity for a periodic solid cannot be generated by a Galilean transformation, it is found that elastic waves are loaded by the average mass density of the system. This is in contrast to the result of Andreev and Lifshitz, which involves only the superfluid fraction. Therefore one cannot look to (hydrodynamic) elastic waves for an obvious signature of superfluidity. A study of the effect of a transducer indicates that fourth sound will be generated to a non-negligible extent only when the crystal is imperfect (i.e., it has vacancies, interstitials, or impurities). On the other hand, a heater might be an effective generator of fourth sound, provided that the mean free path for umklapp processes is sufficiently small. In the limit of zero crystallinity the theory shows that second sound, rather than fourth sound, occurs. Detection of superflow by rotation experiments is also considered. It is pointed out that, because the superfluid velocity is not Galilean, two-fluid counterflow does not occur. Hence, it appears that rapid angular acceleration or deceleration would be the best technique for bringing the superfluid into rotation
New Developments in the Theory of HTSC [High Temperature Superconductors
Abrikosov, A.A.
1994-09-01
The superconductor is supposed to consist of alternating layers of two kinds: (1) layers with an attractive electron interaction and an effective mass of usual magnitude, (2) layers without interaction and with a large effective mass. The overlap between the layers is assumed to be small, its energy, t, being much less than {Delta}. It is shown, that such a model explains the most peculiar property found in experiments on electronic Raman light scattering in BSCCO 2212: different threshold values for the Raman satellite measured at two different polarizations of the incident and scattered light. The tunneling conductance G(V)= dJ/dV is analyzed for the same model. In order to fit the qualitative features of experimental data, it is assumed that the tunneling probability to the normal layers is much less, than to the superconducting layers. The conductance is calculated for the case t{much_lt}{Delta}. A brief analysis is given for the case t{approximately}{Delta}, which proves that such an assumption definitely contradicts the experimental data for BSCCO. The possible nature of the electronic states in the normal layers is discussed. In connection with the experimental discovery (angle resolved photoemission spectroscopy, ARPES) of the extended saddle point singularities in the electron spectrum of a variety of HTSC consequences are derived for T{sub c} and {Delta} in a simple model. A large enhancement of superconductivity is possible if the singularity has a sufficient extension and is located close to the Fermi energy. In order to explain the anisotropy of the energy gap, observed in ARPES experiments, on the basis of the "extended saddle point singularities" an assumption is done that the Coulomb interactions are weakly screened, i.e. the Debye screening radius is much larger than the lattice period; this makes the electron interaction long ranged (E-L model).
International Nuclear Information System (INIS)
Eggleston, S.W.
1988-01-01
The common set of functions used as a basis for the solution to Helmholtz and Laplace's equations is expanded to include solutions not found in the handbooks. With this complete set of basis functions of integer indexes, a multicentered model is developed using Debye-like potentials for electrodynamics and standard potentials for electrostatics. The resonant modes of the model are the exact solution to a wide variety of thin linear antennas and antenna-like structures, narrow linear gaps in superconductors, microscopic linear lasers, and arbitrary linear charge distributions. The model is applied to a linear antenna of large-diameter, via Pocklington's and Hallen's integral equation. The nonsinusoidal current of this linear antenna of large-diameter is decomposed into idealized components using equal and unequal spacing, and single and many centered linear antennas. Babinet's principal is brought into play to apply the model to gaps in superconductors. The model of a laser is in the microscopic domain, a domain that has not been looked at previously. The electrostatic model allows the modeling of an arbitrary linear charge distribution between two points
Toward a microscopic theory of detonations in energetic crystals
International Nuclear Information System (INIS)
Peyrard, M.; Odiot, S.
1991-01-01
Investigations of microscopic structure of detonation waves are useful for extending our basic understanding of the solid state. In a detonation wave, a crystal cell can be compressed to one-half of its equilibrium size. As a result, detonations probe regions of the atom-atom interaction potential curves that can hardly be investigated by any other means. In this paper the authors describe the first investigations of energetic materials after discussing briefly the molecular dynamics techniques themselves and presenting their application to shock waves in solids. We then focus on two particular topics in which molecular dynamics has brought new insights to the propagation of a detonation wave in a crystal, the role of the crystal structure, and the effects of the different steps in the chemistry. Section V presents a new approach that combines a model for the chemistry with standard molecular dynamics techniques, an approach that extends the domain of investigation of the numerical simulations and provides a step toward a microscopic theory of the propagation of a detonation wave. Section VI discusses the results and the future of these approaches
Microscopic theory of longitudinal sound velocity in charge ordered manganites
International Nuclear Information System (INIS)
Rout, G C; Panda, S
2009-01-01
A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e g band, an exchange interaction between spins of the itinerant e g band electrons and the core t 2g electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.
Microscopic theory of longitudinal sound velocity in charge ordered manganites
Energy Technology Data Exchange (ETDEWEB)
Rout, G C [Condensed Matter Physics Group, PG Department of Applied Physics and Ballistics, FM University, Balasore 756 019 (India); Panda, S, E-mail: gcr@iopb.res.i [Trident Academy of Technology, F2/A, Chandaka Industrial Estate, Bhubaneswar 751 024 (India)
2009-10-14
A microscopic theory of longitudinal sound velocity in a manganite system is reported here. The manganite system is described by a model Hamiltonian consisting of charge density wave (CDW) interaction in the e{sub g} band, an exchange interaction between spins of the itinerant e{sub g} band electrons and the core t{sub 2g} electrons, and the Heisenberg interaction of the core level spins. The magnetization and the CDW order parameters are considered within mean-field approximations. The phonon Green's function was calculated by Zubarev's technique and hence the longitudinal velocity of sound was finally calculated for the manganite system. The results show that the elastic spring involved in the velocity of sound exhibits strong stiffening in the CDW phase with a decrease in temperature as observed in experiments.
Geometric model from microscopic theory for nuclear absorption
International Nuclear Information System (INIS)
John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.
1993-07-01
A parameter-free geometric model for nuclear absorption is derived herein from microscopic theory. The expression for the absorption cross section in the eikonal approximation, taken in integral form, is separated into a geometric contribution that is described by an energy-dependent effective radius and two surface terms that cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived from harmonic oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half-density radius for the harmonic oscillator functions. Coulomb corrections are incorporated, and a simplified geometric form of the Bradt-Peters type is obtained. Results spanning the energy range from 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained
Geometric model for nuclear absorption from microscopic theory
International Nuclear Information System (INIS)
John, S.; Townsend, L.W.; Wilson, J.W.; Tripathi, R.K.
1993-01-01
A parameter-free geometric model for nuclear absorption is derived from microscopic theory. The expression for the absorption cross section in the eikonal approximation taken in integral form is separated into a geometric contribution, described by an energy-dependent effective radius, and two surface terms which are shown to cancel in an asymptotic series expansion. For collisions of light nuclei, an expression for the effective radius is derived using harmonic-oscillator nuclear density functions. A direct extension to heavy nuclei with Woods-Saxon densities is made by identifying the equivalent half density radius for the harmonic-oscillator functions. Coulomb corrections are incorporated and a simplified geometric form of the Bradt-Peters type obtained. Results spanning the energy range of 1 MeV/nucleon to 1 GeV/nucleon are presented. Good agreement with experimental results is obtained
Theory of the Knight Shift and Flux Quantization in Superconductors
Cooper, L. N.; Lee, H. J.; Schwartz, B. B.; Silvert, W.
1962-05-01
Consequences of a generalization of the theory of superconductivity that yields a finite Knight shift are presented. In this theory, by introducing an electron-electron interaction that is not spatially invariant, the pairing of electrons with varying total momentum is made possible. An expression for Xs (the spin susceptibility in the superconducting state) is derived. In general Xs is smaller than Xn, but is not necessarily zero. The precise magnitude of Xs will vary from sample to sample and will depend on the nonuniformity of the samples. There should be no marked size dependence and no marked dependence on the strength of the magnetic field; this is in accord with observation. The basic superconducting properties are retained, but there are modifications in the various electromagnetic and thermal properties since the electrons paired are not time sequences of this generalized theory on flux quantization arguments are presented.(auth)
Unconventional superconductors. Anisotropy and multiband effects
Energy Technology Data Exchange (ETDEWEB)
Askerzade, Iman [Ankara Univ. (Turkey). Center of Excellence of Superconductivity Research of Turkey; Azerbaijan National Academy of Sciences (Azerbaijan). Inst. of Physics
2012-07-01
This book deals with the new class of materials unconventional superconductors, cuprate compounds, borocarbides, magnesium-diboride and oxypnictides. It gives a systematical review of physical properties of novel superconductors. There is an increasing number of fundamental properties of these compounds which are relevant to future applications, opening new possibilities. The theoretical explanation is presented as generalization of Ginzburg-Landau phenomenology and microscopical Eliashberg theory for multiband and anisotropic superconductors. Various applications of this approaches and time dependent version of two-band Ginzburg-Landau theory are considered. An important topic are fluctuations in two-band and anisotropic superconductors. Significant new results on current problems are presented to stimulate further research. Numerous illustrations, diagrams and tables make this book useful as a reference for students and researchers. (orig.)
Unconventional superconductors anisotropy and multiband effects
Askerzade, Iman
2012-01-01
This book deals with the new class of materials unconventional superconductors, cuprate compounds, borocarbides, magnesium-diboride and oxypnictides. It gives a systematical review of physical properties of novel superconductors. There is an increasing number of fundamental properties of these compounds which are relevant to future applications, opening new possibilities. The theoretical explanation is presented as generalization of Ginzburg-Landau phenomenology and microscopical Eliashberg theory for multiband and anisotropic superconductors. Various applications of this approachs and time dependent version of two-band Ginzburg-Landau theory are considered. An important topic are fluctuations in two-band and anisotropic superconductors. Significant new results on current problems are presented to stimulate further research. Numerous illustrations, diagrams and tables make this book useful as a reference for students and researchers.
Microscopic Calabi-Yau black holes in string theory
International Nuclear Information System (INIS)
Ansari, Saeid
2011-01-01
In this thesis we study microscopic aspects of Calabi-Yau black holes in string theory. We compute the absorption cross-section of the space-time massless scalars by the worldvolume of D2-branes, wrapped on the S 2 of an AdS 2 x S 2 x CY 3 geometry of a fourdimensional D4-D0 Calabi-Yau black hole. The D2-brane can also have a generic D0 probe-brane charge. However, we restrict ourselves to D2-branes with small D0-charge so that the perturbation theory is applicable. According to the proposed AdS 2 /QM correspondence the candidate for the dual theory is the quantum mechanics of a set of probe D0-branes in the AdS 2 geometry. For small but non-zero probe D0-charge we find the quantum mechanical absorption cross-section seen by an asymptotic anti-de Sitter observer. We repeat the calculations for vanishing probe D0-charge as well and discuss our result by comparing with the classical absorption cross-section. In other project, for a given fourdimensional Calabi-Yau black hole with generic D6-D4-D2-D0 charges we identify a set of supersymmetric branes, which are static or stationary in the global coordinates, of the corresponding eleven-dimensional near horizon geometry. The set of these BPS states, which include the branes partially or fully wrap the horizon, should play a role in understanding the partition function of black holes with D6-charge. (orig.)
Microscopic Calabi-Yau black holes in string theory
Energy Technology Data Exchange (ETDEWEB)
Ansari, Saeid
2011-07-22
In this thesis we study microscopic aspects of Calabi-Yau black holes in string theory. We compute the absorption cross-section of the space-time massless scalars by the worldvolume of D2-branes, wrapped on the S{sup 2} of an AdS{sub 2} x S{sup 2} x CY{sub 3} geometry of a fourdimensional D4-D0 Calabi-Yau black hole. The D2-brane can also have a generic D0 probe-brane charge. However, we restrict ourselves to D2-branes with small D0-charge so that the perturbation theory is applicable. According to the proposed AdS{sub 2}/QM correspondence the candidate for the dual theory is the quantum mechanics of a set of probe D0-branes in the AdS{sub 2} geometry. For small but non-zero probe D0-charge we find the quantum mechanical absorption cross-section seen by an asymptotic anti-de Sitter observer. We repeat the calculations for vanishing probe D0-charge as well and discuss our result by comparing with the classical absorption cross-section. In other project, for a given fourdimensional Calabi-Yau black hole with generic D6-D4-D2-D0 charges we identify a set of supersymmetric branes, which are static or stationary in the global coordinates, of the corresponding eleven-dimensional near horizon geometry. The set of these BPS states, which include the branes partially or fully wrap the horizon, should play a role in understanding the partition function of black holes with D6-charge. (orig.)
Theory of the pairbreaking superconductor-metal transition in nanowires
International Nuclear Information System (INIS)
Del Maestro, Adrian; Rosenow, Bernd; Sachdev, Subir
2009-01-01
We present a detailed description of a zero temperature phase transition between superconducting and diffusive metallic states in very thin wires due to a Cooper pair breaking mechanism. The dissipative critical theory contains current reducing fluctuations in the guise of both quantum and thermally activated phase slips. A full cross-over phase diagram is computed via an expansion in the inverse number of complex components of the superconducting order parameter (one in the physical case). The fluctuation corrections to the electrical (σ) and thermal (κ) conductivities are determined, and we find that σ has a non-monotonic temperature dependence in the metallic phase which may be consistent with recent experimental results on ultra-narrow wires. In the quantum critical regime, the ratio of the thermal to electrical conductivity displays a linear temperature dependence and thus the Wiedemann-Franz law is obeyed, with a new universal experimentally verifiable Lorenz number
Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors
Liarte, Danilo B.; Transtrum, Mark K.; Sethna, James P.
2016-10-01
We investigate the effects of material anisotropy on the superheating field of layered superconductors. We provide an intuitive argument both for the existence of a superheating field, and its dependence on anisotropy, for κ =λ /ξ (the ratio of magnetic to superconducting healing lengths) both large and small. On the one hand, the combination of our estimates with published results using a two-gap model for MgB2 suggests high anisotropy of the superheating field near zero temperature. On the other hand, within Ginzburg-Landau theory for a single gap, we see that the superheating field shows significant anisotropy only when the crystal anisotropy is large and the Ginzburg-Landau parameter κ is small. We then conclude that only small anisotropies in the superheating field are expected for typical unconventional superconductors near the critical temperature. Using a generalized form of Ginzburg Landau theory, we do a quantitative calculation for the anisotropic superheating field by mapping the problem to the isotropic case, and present a phase diagram in terms of anisotropy and κ , showing type I, type II, or mixed behavior (within Ginzburg-Landau theory), and regions where each asymptotic solution is expected. We estimate anisotropies for a number of different materials, and discuss the importance of these results for radio-frequency cavities for particle accelerators.
Microscopic theory of linear and nonlinear terahertz spectroscopy of semiconductors
Energy Technology Data Exchange (ETDEWEB)
Steiner, Johannes
2008-12-09
This Thesis presents a fully microscopic theory to describe terahertz (THz)-induced processes in optically-excited semiconductors. The formation process of excitons and other quasi-particles after optical excitation has been studied in great detail for a variety of conditions. Here, the formation process is not modelled but a realistic initial many-body state is assumed. In particular, the linear THz response is reviewed and it is demonstrated that correlated quasi-particles such as excitons and plasmons can be unambiguously detected via THz spectroscopy. The focus of the investigations, however, is on situations where the optically-excited many-body state is excited by intense THz fields. While weak pulses detect the many-body state, strong THz pulses control and manipulate the quasi-particles in a way that is not accessible via conventional techniques. The nonlinear THz dynamics of exciton populations is especially interesting because similarities and differences to optics with atomic systems can be studied. (orig.)
Microscopic theory for coupled atomistic magnetization and lattice dynamics
Fransson, J.; Thonig, D.; Bessarab, P. F.; Bhattacharjee, S.; Hellsvik, J.; Nordström, L.
2017-12-01
A coupled atomistic spin and lattice dynamics approach is developed which merges the dynamics of these two degrees of freedom into a single set of coupled equations of motion. The underlying microscopic model comprises local exchange interactions between the electron spin and magnetic moment and the local couplings between the electronic charge and lattice displacements. An effective action for the spin and lattice variables is constructed in which the interactions among the spin and lattice components are determined by the underlying electronic structure. In this way, expressions are obtained for the electronically mediated couplings between the spin and lattice degrees of freedom, besides the well known interatomic force constants and spin-spin interactions. These former susceptibilities provide an atomistic ab initio description for the coupled spin and lattice dynamics. It is important to notice that this theory is strictly bilinear in the spin and lattice variables and provides a minimal model for the coupled dynamics of these subsystems and that the two subsystems are treated on the same footing. Questions concerning time-reversal and inversion symmetry are rigorously addressed and it is shown how these aspects are absorbed in the tensor structure of the interaction fields. By means of these results regarding the spin-lattice coupling, simple explanations of ionic dimerization in double-antiferromagnetic materials, as well as charge density waves induced by a nonuniform spin structure, are given. In the final parts, coupled equations of motion for the combined spin and lattice dynamics are constructed, which subsequently can be reduced to a form which is analogous to the Landau-Lifshitz-Gilbert equations for spin dynamics and a damped driven mechanical oscillator for the ionic motion. It is important to notice, however, that these equations comprise contributions that couple these descriptions into one unified formulation. Finally, Kubo-like expressions for
Microscopic theory for dynamics in entangled polymer nanocomposites
Yamamoto, Umi
New microscopic theories for describing dynamics in polymer nanocomposites are developed and applied. The problem is addressed from two distinct perspectives and using two different theoretical approaches. The first half of this dissertation studies the long-time and intermediate-time dynamics of nanoparticles in entangled and unentangled polymer melts for dilute particle concentrations. Using a combination of mode-coupling, Brownian motion, and polymer physics ideas, the nanoparticle long-time diffusion coefficients is formulated in terms of multiple length-scales, packing microstructures, and spatially-resolved polymer density fluctuation dynamics. The key motional mechanism is described via the parallel relaxation of the force exerted on the particle controlled by collective polymer constraint-release and the particle self-motion. A sharp but smooth crossover from the hydrodynamic to the non-hydrodynamic regime is predicted based on the Stokes-Einstein violation ratio as a function of all the system variables. Quantitative predictions are made for the recovery of the Stokes-Einstein law, and the diffusivity in the crossover regime agrees surprisingly well with large-scale molecular dynamics simulations for all particle sizes and chain lengths studied. The approach is also extended to address intermediate-time anomalous transport of a single nanoparticle and two-particle relative diffusion. The second half of this dissertation focuses on developing a novel dynamical theory for a liquid of infinitely-thin rods in the presence of hard spherical obstacles, aiming at a technical and conceptual extension of the existing paradigm for entangled polymer dynamics. As a fundamental theoretical development, the two-component generalization of a first-principles dynamic meanfield approach is presented. The theory enforces inter-needle topological uncrossability and needlesphere impenetrability in a unified manner, leading to a generalized theory of entanglements that
The Hall effect: An acid test for the Luttinger liquid theory of high Tc superconductors
International Nuclear Information System (INIS)
Anderson, P.W.
1992-01-01
The temperature dependence of the Hall effect has been one of the most intriguing puzzles of the 'normal' metallic state in cuprate superconductors. It is shown that the Luttinger liquid theory provides a quantitative picture of the data, in particular showing that relaxation time τ perpendicular defined by the Hall angle tan θ H ω c τ perpendicular is the relaxation rate of the spinon elementary excitations and that θ H has a simple and characteristic temperature dependence (A+BT 2 ) -1 . Observed magnitudes of θ H are incompatible with Fermi liquid theory. A discussion is added of the interlayer mechanism for superconductivity and the new form of BCS gap equation which results from it. (author). 12 refs.; 4 figs
"Fluctuoscopy" of Superconductors
Varlamov, A. A.
Study of fluctuation phenomena in superconductors (SCs) is the subject of great fundamental and practical importance. Understanding of their physics allowed to clear up the fundamental properties of SC state. Being predicted in 1968, one of the fluctuation effects, namely paraconductivity, was experimentally observed almost simultaneously. Since this time, fluctuations became a noticeable part of research in the field of superconductivity, and a variety of fluctuation effects have been discovered. The new wave of interest to fluctuations (FL) in superconductors was generated by the discovery of cuprate oxide superconductors (high-temperature superconductors, HTS), where, due to extremely short coherence length and low effective dimensionality of the electron system, superconductive fluctuations manifest themselves in a wide range of temperatures. Moreover, anomalous properties of the normal state of HTS were attributed by many theorists to strong FL in these systems. Being studied in the framework of the phenomenological Ginzburg-Landau theory and, more extensively, in diagrammatic microscopic approach, SC FLs side by side with other quantum corrections (weak localization, etc.) became a new tool for investigation and characterization of such new systems as HTS, disordered electron systems, granular metals, Josephson structures, artificial super-lattices, etc. The characteristic feature of SC FL is their strong dependence on temperature and magnetic fields in the vicinity of phase transition. This allows one to definitely separate the fluctuation effects from other contributions and to use them as the source of information about the microscopic parameters of a material. By their origin, SC FLs are very sensitive to relaxation processes, which break phase coherence. This allows using them for versatile characterization of SC. Today, one can speak about the " fluctuoscopy" of superconductive systems. In review, we present the qualitative picture both of thermodynamic
Boundary conditions in Ginsburg Landau theory and critical temperature of high-T superconductors
Lykov, A. N.
2008-06-01
New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature ( T) of high- T superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T of cuprate superconductors.
Boundary conditions in Ginsburg-Landau theory and critical temperature of high-Tc superconductors
International Nuclear Information System (INIS)
Lykov, A.N.
2008-01-01
New mixed boundary conditions to the Ginsburg-Landau equations are found to limit the critical temperature (T c ) of high-T c superconductors. Moreover, the value of the pseudogap in these superconductors can be explained by using the method. As a result, the macroscopic approach is proposed to increase T c of cuprate superconductors
Hirsch, J. E.
2018-05-01
Since the discovery of the Meissner effect, the superconductor to normal (S-N) phase transition in the presence of a magnetic field is understood to be a first-order phase transformation that is reversible under ideal conditions and obeys the laws of thermodynamics. The reverse (N-S) transition is the Meissner effect. This implies in particular that the kinetic energy of the supercurrent is not dissipated as Joule heat in the process where the superconductor becomes normal and the supercurrent stops. In this paper, we analyze the entropy generation and the momentum transfer between the supercurrent and the body in the S-N transition and the N-S transition as described by the conventional theory of superconductivity. We find that it is not possible to explain the transition in a way that is consistent with the laws of thermodynamics unless the momentum transfer between the supercurrent and the body occurs with zero entropy generation, for which the conventional theory of superconductivity provides no mechanism. Instead, we point out that the alternative theory of hole superconductivity does not encounter such difficulties.
Microscopic theory of dynamical subspace for large amplitude collective motion
International Nuclear Information System (INIS)
Sakata, Fumihiko; Marumori, Toshio; Ogura, Masanori.
1986-01-01
A full quantum theory appropriate for describing large amplitude collective motion is proposed by exploiting the basic idea of the semi-classical theory so far developed within the time-depedent Hartree-Fock theory. A central problem of the quantum theory is how to determine an optimal representation called a dynamical representation specific for the collective subspace where the large amplitude collective motion is replicated as precisely as possible. As an extension of the semi-classical theory where the concept of an approximate integral surface played an important role, the collective subspace is properly characterized by introducing a concept of an approximate invariant subspace of the Hamiltonian. (author)
International Nuclear Information System (INIS)
Hecher, Johannes; Zehetmayer, Martin; Weber, Harald W
2014-01-01
We present a study of the real-space flux-line lattice (FLL) of pristine and neutron irradiated conventional type-II superconductors using scanning tunnelling microscopy. Our work is focused on the magnetic field range, where the critical current density shows a second peak as a result of neutron irradiation. Scanning tunnelling microscopy images, including more than 2000 flux lines, are used to evaluate various microscopic parameters describing the disorder of the FLL, such as the defect density, the nearest neighbour distances and correlation functions. These parameters are compared with the macroscopic critical current density of the samples. The results show a direct correlation of the micro- and macroscopic properties. We observe a clear transition from an ordered to a disordered lattice at the onset of the second peak. Moreover, we discuss the defects of the FLL and their accumulation to large clusters in the second peak region. (papers)
Exact and microscopic one-instanton calculations in N=2 supersymmetric Yang-Mills theories
International Nuclear Information System (INIS)
Ito, K.; Sasakura, N.
1997-01-01
We study the low-energy effective theory in N=2 super Yang-Mills theories by microscopic and exact approaches. We calculate the one-instanton correction to the prepotential for any simple Lie group from the microscopic approach. We also study the Picard-Fuchs equations and their solutions in the semi-classical regime for classical gauge groups with rank r≤3. We find that for gauge groups G=A r , B r , C r (r≤3) the microscopic results agree with those from the exact solutions. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Wong, D.C.K. [School of Physics, The University of Sydney, New South Wales 2006 (Australia); Yeoh, W.K. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales 2006 (Australia); Australian Centre for Microscopy & Microanalysis, The University of Sydney, New South Wales 2006 (Australia); De Silva, K.S.B. [Institute for Superconducting & Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia); Institute for Nanoscale Technology, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales 2007 (Australia); Kondyurin, A.; Bao, P. [School of Physics, The University of Sydney, New South Wales 2006 (Australia); Li, W.X. [School of Materials Science and Engineering, Shanghai University, Shanghai 200072 (China); Xu, X.; Peleckis, G.; Dou, S.X. [Institute for Superconducting & Electronic Materials, University of Wollongong, North Wollongong, New South Wales 2500 (Australia); Ringer, S.P. [School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney, New South Wales 2006 (Australia); Australian Centre for Microscopy & Microanalysis, The University of Sydney, New South Wales 2006 (Australia); Zheng, R.K., E-mail: rongkun.zheng@sydney.edu.au [School of Physics, The University of Sydney, New South Wales 2006 (Australia)
2015-09-25
Highlights: • First report on nano-carbon doped MgB{sub 2} superconductors synthesized by diffusion method. • Microstructure and superconducting properties of the superconductors are discussed. • B{sub 4}C region blocks the Mg from reacting with B in the 10% nano-carbon doped sample. • MgB{sub 2} with 2.5% nano-carbon doped showed the highest J{sub c}, ≈10{sup 4} A/cm{sup 2} for 20 K at 4 T. - Abstract: We investigated the effects of nano-carbon doping as the intrinsic (B-site nano-carbon substitution) and extrinsic (nano-carbon derivatives) pinning by diffusion method. The contraction of the in-plane lattice confirmed the presence of disorder in boron sublattice caused by carbon substitution. The increasing value in full width half maximum (FWHM) in the X-ray diffraction (XRD) patterns with each increment in the doping level reveal smaller grains and imperfect MgB{sub 2} crystalline. The strain increased across the doping level due to the carbon substitution in the MgB{sub 2} matrix. The broadening of the T{sub c} curves from low to high doping showed suppression of the connectivity of the bulk samples with progressive dirtying. At high doping, the presence of B{sub 4}C region blocked the Mg from reacting with crystalline B thus hampering the formation of MgB{sub 2}. Furthermore, the unreacted Mg acted as a current blocking phase in lowering down the grain connectivity hence depressing the J{sub c} of the 10% nano-carbon doped MgB{sub 2} bulk superconductor.
Microscopic unravelling of nano-carbon doping in MgB2 superconductors fabricated by diffusion method
International Nuclear Information System (INIS)
Wong, D.C.K.; Yeoh, W.K.; De Silva, K.S.B.; Kondyurin, A.; Bao, P.; Li, W.X.; Xu, X.; Peleckis, G.; Dou, S.X.; Ringer, S.P.; Zheng, R.K.
2015-01-01
Highlights: • First report on nano-carbon doped MgB 2 superconductors synthesized by diffusion method. • Microstructure and superconducting properties of the superconductors are discussed. • B 4 C region blocks the Mg from reacting with B in the 10% nano-carbon doped sample. • MgB 2 with 2.5% nano-carbon doped showed the highest J c , ≈10 4 A/cm 2 for 20 K at 4 T. - Abstract: We investigated the effects of nano-carbon doping as the intrinsic (B-site nano-carbon substitution) and extrinsic (nano-carbon derivatives) pinning by diffusion method. The contraction of the in-plane lattice confirmed the presence of disorder in boron sublattice caused by carbon substitution. The increasing value in full width half maximum (FWHM) in the X-ray diffraction (XRD) patterns with each increment in the doping level reveal smaller grains and imperfect MgB 2 crystalline. The strain increased across the doping level due to the carbon substitution in the MgB 2 matrix. The broadening of the T c curves from low to high doping showed suppression of the connectivity of the bulk samples with progressive dirtying. At high doping, the presence of B 4 C region blocked the Mg from reacting with crystalline B thus hampering the formation of MgB 2 . Furthermore, the unreacted Mg acted as a current blocking phase in lowering down the grain connectivity hence depressing the J c of the 10% nano-carbon doped MgB 2 bulk superconductor
Nonlocal microscopic theory of quantum friction between parallel metallic slabs
International Nuclear Information System (INIS)
Despoja, Vito; Echenique, Pedro M.; Sunjic, Marijan
2011-01-01
We present a new derivation of the friction force between two metallic slabs moving with constant relative parallel velocity, based on T=0 quantum-field theory formalism. By including a fully nonlocal description of dynamically screened electron fluctuations in the slab, and avoiding the usual matching-condition procedure, we generalize previous expressions for the friction force, to which our results reduce in the local limit. Analyzing the friction force calculated in the two local models and in the nonlocal theory, we show that for physically relevant velocities local theories using the plasmon and Drude models of dielectric response are inappropriate to describe friction, which is due to excitation of low-energy electron-hole pairs, which are properly included in nonlocal theory. We also show that inclusion of dissipation in the nonlocal electronic response has negligible influence on friction.
The use of the special theory of relativity for the Meissner Effect in superconductor
Rashid, M.
2011-01-01
The electromagnetic waves are considered in this article as the mediators of interaction in the Meissner Effect or the diamagnetic property of the superconductors. During the cooling of a superconductor electromagnetic waves may be released when the electrons occupy lower states of the energy. These
Microscopic theory of coexistence of superconductivity and antiferromagnetism
International Nuclear Information System (INIS)
Ashkenazi, J.; Kuper, C.G.; Ron, A.
1983-01-01
A theory of the coexistence of superconductivity and antiferromagnetism is presented. We study the role of the ''diagonal'' exchange coupling between magnetic ions and conduction electrons, using Eliashberg's formalism. This coupling generates a spatial displacement of the Cooper-paired states, and thus reduces the pairing strength. The reduction is linear in the exchange integral and the staggered magnetization. The theory agrees well with experiment for Dy/sub 1.2/Mo 6 S 8 and Tb/sub 1.2/Mo 6 S 8
Advancing Traffic Flow Theory Using Empirical Microscopic Data
2015-01-01
As reviewed in Section 1.1, much of traffic flow theory depends a fundamental relationship (FR) between flow, density, and space mean speed; either explicitly, e.g., hydrodynamic models such as LWR (Lighthill and Whitham, 1955, and Richards, 1956) or...
Microscopic aspects of wetting using classical density functional theory
Yatsyshin, P.; Durán-Olivencia, M.-A.; Kalliadasis, S.
2018-07-01
Wetting is a rather efficient mechanism for nucleation of a phase (typically liquid) on the interface between two other phases (typically solid and gas). In many experimentally accessible cases of wetting, the interplay between the substrate structure, and the fluid–fluid and fluid–substrate intermolecular interactions brings about an entire ‘zoo’ of possible fluid configurations, such as liquid films with a thickness of a few nanometers, liquid nanodrops and liquid bridges. These fluid configurations are often associated with phase transitions occurring at the solid–gas interface and at lengths of just several molecular diameters away from the substrate. In this special issue article, we demonstrate how a fully microscopic classical density-functional framework can be applied to the efficient, rational and systematic exploration of the rich phase space of wetting phenomena. We consider a number of model prototype systems such as wetting on a planar wall, a chemically patterned wall and a wedge. Through density-functional computations we demonstrate that for these simply structured substrates the behaviour of the solid–gas interface is already highly complex and non-trivial.
Microscopic theories for collective motions of large amplitude
International Nuclear Information System (INIS)
Souza Cruz, F.F. de.
1986-01-01
The many proposals of ''Collective Paths'' that have appeared in literature, were derived through a local analysis of the Time Dependent Hartree Fock dynamics. Those proposals were compared and validity conditions obtained for Semiclassical Hamiltonians which have only quadratic terms in momenta. A careful analysis of the parametrization of Slater Determinants allowed us to exploit the geometrical features of the Time Dependent Hartree Fock Theory and construct the Paths in a covariant way. The analysis was applied to a three level model (Su(3)). (author) [pt
International Nuclear Information System (INIS)
Hsu, T.C.T.
1989-01-01
This thesis describes work on a large-U Hubbard model theory for high temperature superconductors. After an introduction to recent developments in the field, the author reviews experimental results. At the same time he introduces the holon-spinon model and comment on its successes and shortcomings. Using this heuristic model he then describes a holon pairing theory of superconductivity and list some experimental evidence for this interlayer coupling theory. The latter part of the thesis is devoted to projected fermion mean field theories. They are introduced by applying this theory and some recently developed computational techniques to anisotropic antiferromagnets. This scheme is shown to give quantitatively good results for the two dimensional square lattice Heisenberg AFM. The results have definite implications for a spinon theory of quantum antiferromagnets. Finally he studies flux phases and other variational prescriptions for obtaining low lying states of the Hubbard model
On the microscopic foundation of scattering theory; Zur mikroskopischen Begruendung der Streutheorie
Energy Technology Data Exchange (ETDEWEB)
Moser, T.
2007-02-26
The aim of the thesis is to give a contribution to the microscopic foundation of scattering theory, i. e. to show, how the asymptotic formalism of scattering theory with objects like the S-matrix as well the initial and final asymptotics {psi}{sub in} and {psi}{sub out} can be derived from a microscopic description of the basic system. First the final statistics from a N-particle system through farly distant surfaces is derived. Thereafter we confine us to the 1-particle scattering and apply the final statistics in order to derive the scattering cross section from a microscopical description of the scattering situation. The basing dynamics are Bohm's mechanics, a theory on the motion of point particles, which reproduces all results of nonrelativistic quantum mechanics.
Equilibrium and nonequilibrium phenomena in inhomogeneous and weakly-coupled superconductors
International Nuclear Information System (INIS)
Zaikin, A.D.
1988-01-01
In this chapter the authors formulate a microscopic theory of the order parameter suppression effect in a superconductor near the N-S-boundary when T c and T -- T c . The Meissner effect in a normal metal layer making contact with the superconductor is investigated. A microscopic theory of the stationary Josephson effect in various types of SNS - junctions is formulated. Nonstationary and nonequilibrium properties of SNS-junctions with direct conductivity are investigated together with the same properties of SNS - junctions containing a dielectric interlayer. A microscopic theory of the nonstationary Josephson effect in such systems is formulated. The enhancement of supercurrent of such systems in an external microwave field is investigated together with a number of some effects. An expression is derived for the spectrum of minor modes in a system of Josephson junctions in granular superconductors that is not accompanied by a deviation of the quasiparticle distribution function from equilibrium
U(1) x SU(2) Chern-Simons gauge theory of underdoped cuprate superconductors
International Nuclear Information System (INIS)
Marchetti, P.A.; Su Zhao-Bin; Yu Lu
1998-05-01
The Chern-Simons bosonization with U(1)xSU(2) gauge field is applied to the 2-D t-J model in the limit t>>J, to study the normal state properties of underdoped cuprate superconductors. We prove the existence of an upper bound on the partition function for holons in a spinon background, and we find the optimal spinon configuration saturating the upper bound on average - a coexisting flux phase and s+id-like RVB state. After neglecting the feedback of holon fluctuations on the U(1) field B and spinon fluctuations on the SU(2) field V, the holon field is a fermion and the spinon field is a hard-core boson. Within this approximation we show that the B field produces a π flux phase for the holons, converting them into Dirac-like fermions, while the V field, taking into account the feedback of holons produces a gap for the spinons vanishing in the zero doping limit. The nonlinear σ-model with a mass term describes the crossover from the short-ranged antiferromagnetic (AF) state in doped samples to long range AF order in reference compounds. Moreover, we derive a low-energy effective action in terms of spinons holons and a self-generated U(1) gauge field. Neglecting the gauge fluctuations, the holons are described by the Fermi liquid theory with a Fermi surface consisting of 4 ''half-pockets'' centered at (+-π/2,+-π/2) and one reproduces the results for the electron spectral function obtained in the mean field approximation, in agreement with the photoemission data on underdoped cuprates. The gauge fluctuations are not confining due to coupling to holons, but nevertheless yield an attractive interaction between spinons and holons leading to a bound state with electron quantum numbers. The renormalisation effects due to gauge fluctuations give rise to non-Fermi liquid behaviour for the composite electron, in certain temperature range showing the linear in T resistivity. This formalism provides a new interpretation of the spin gap in the underdoped superconductors
Quantum Hall Valley Nematics: From Field Theories to Microscopic Models
Parameswaran, Siddharth
The interplay between quantum Hall ordering and spontaneously broken ``internal'' symmetries in two-dimensional electron systems with spin or pseudospin degrees of freedom gives rise to a variety of interesting phenomena, including novel phases, phase transitions, and topological excitations. I will discuss a theory of broken-symmetry quantum Hall states, applicable to a class of multivalley systems, where the symmetry at issue is a point-group element that combines a spatial rotation with a permutation of valley indices. I will explore its ramifications for the phase diagram of a variety of experimental systems, such as AlAs and Si quantum wells and the surface states of bismuth. I will also discuss unconventional transport phenomena in these phases in the presence of quenched randomness, and the possible mechanisms of selection between degenerate broken-symmetry phases in clean systems. I acknowledge support from NSF DMR-1455366.
Utilizing atomic force spectroscopy to test an alternative electrodynamic theory of superconductors
Energy Technology Data Exchange (ETDEWEB)
Peronio, Angelo; Giessibl, Franz J. [Institut fuer Experimentelle und Angewandte Physik, Universitaet Regensburg, D-93040 Regensburg (Germany)
2016-07-01
In the traditional theoretical description of superconductivity, a static electric field cannot penetrate a superconductor, since screening occurs like in a normal metal. This can be traced back to the fact that the London equations, the phenomenological equations describing the electrodynamics of superconductors, are derived within the Coulomb gauge. J. E. Hirsch proposes to use the Lorenz gauge instead [2], deriving a consistent solution where the electric field penetrates the superconductor up to the London penetration depth. We report on initial experiments to test Hirsch's hypothesis, performed with a combined STM/AFM qPlus sensor equipped with a superconducting tip. If a superconductor screens electric fields differently from a normal metal, the electrostatic interaction between tip and sample should change when the tip becomes superconductive.
High-resolution electron microscope image analysis approach for superconductor YBa2Cu3O7-x
International Nuclear Information System (INIS)
Xu, J.; Lu, F.; Jia, C.; Hua, Z.
1991-01-01
In this paper, an HREM (High-resolution electron microscope) image analysis approach has been developed. The image filtering, segmentation and particles extraction based on gray-scale mathematical morphological operations, are performed on the original HREM image. The final image is a pseudocolor image, with the background removed, relatively uniform brightness, filtered slanting elongation, regular shape for every kind of particle, and particle boundaries that no longer touch each other so that the superconducting material structure can be shown clearly
Conformal Field Theory as Microscopic Dynamics of Incompressible Euler and Navier-Stokes Equations
International Nuclear Information System (INIS)
Fouxon, Itzhak; Oz, Yaron
2008-01-01
We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them
Conformal field theory as microscopic dynamics of incompressible Euler and Navier-Stokes equations.
Fouxon, Itzhak; Oz, Yaron
2008-12-31
We consider the hydrodynamics of relativistic conformal field theories at finite temperature. We show that the limit of slow motions of the ideal hydrodynamics leads to the nonrelativistic incompressible Euler equation. For viscous hydrodynamics we show that the limit of slow motions leads to the nonrelativistic incompressible Navier-Stokes equation. We explain the physical reasons for the reduction and discuss the implications. We propose that conformal field theories provide a fundamental microscopic viewpoint of the equations and the dynamics governed by them.
Theory of novel normal and superconducting states in doped oxide high-Tc superconductors
International Nuclear Information System (INIS)
Dzhumanov, S.
2001-10-01
A consistent and complete theory of the novel normal and superconducting (SC) states of doped high-T c superconductors (HTSC) is developed by combining the continuum model of carrier self-trapping, the tight-binding model and the novel Fermi-Bose-liquid (FBL) model. The ground-state energy of carriers in lightly doped HTSC is calculated within the continuum model and adiabatic approximation using the variational method. The destruction of the long-range antiferromagnetic (AF) order at low doping x≥ x cl ≅0.015, the formation of the in-gap states or bands and novel (bi)polaronic insulating phases at x c2 ≅0.06-0.08, and the new metal- insulator transition at x≅x c2 in HTSC are studied within the continuum model of impurity (defect) centers and large (bi)polarons by using the appropriate tight-binding approximations. It is found that the three-dimensional (3d) large (bi)polarons are formed at ε ∞ /ε 0 ≤0.1 and become itinerant when the (bi)polaronic insulator-to-(bi)polaronic metal transitions occur at x x c2 . We show that the novel pseudogapped metallic and SC states in HTSC are formed at x c2 ≤x≤x p ≅0.20-0.24. We demonstrate that the large polaronic and small BCS-like pairing pseudogaps opening in the excitation spectrum of underdoped (x c2 BCS =0.125), optimally doped (x BCS o ≅0.20) and overdoped (x>x o ) HTSC above T c are unrelated to superconductivity and they are responsible for the observed anomalous optical, transport, magnetic and other properties of these HTSC. We develop the original two-stage FBL model of novel superconductivity describing the combined novel BCS-like pairing scenario of fermions and true superfluid (SF) condensation scenario of composite bosons (i.e. bipolarons and cooperons) in any Fermi-systems, where the SF condensate gap Δ B and the BCS-like pairing pseudogap Δ F have different origins. The pair and single particle condensations of attracting 3d and two- dimensional (2d) composite bosons are responsible for
Theories of superconductivity (a few remarks)
International Nuclear Information System (INIS)
Ginzburg, V.L.
1992-01-01
The early history in the development of superconductivity. Idea of pairing, Schafroth and BCS types of theories. Some remarks on present state of the microscopical theory of high-temperature superconductors (HTSC). Mean field macroscopic theory of superconductivity and its specific features in HTSC. About generalized macroscopic theory applicable in critical region. Concluding remarks. (orig.)
Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch
2007-01-01
We study the Josephson effect in chiral p-wave superconductor/diffusive normal metal (DN)/chiral p-wave superconductor (CP/DN/CP) junctions using quasiclassical Green's function formalism with proper boundary conditions. The px+ipy-wave symmetry of superconducting order parameter is chosen which is
Measuring condensate fraction in superconductors
International Nuclear Information System (INIS)
Chakravarty, Sudip; Kee, Hae-Young
2000-01-01
An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high-temperature superconductors come very close to achieving this goal. (c) 2000 The American Physical Society
Theory of charge transport in diffusive normal metal conventional superconductor point contacts
Tanaka, Y.; Golubov, Alexandre Avraamovitch; Kashiwaya, S.
2003-01-01
Tunneling conductance in diffusive normal (DN) metal/insulator/s-wave superconductor junctions is calculated for various situations by changing the magnitudes of the resistance and Thouless energy in DN and the transparency of the insulating barrier. The generalized boundary condition introduced by
On the theory of type-I superconductor surface tension and twinning-plane-superconductivity
International Nuclear Information System (INIS)
Mishonov, T.M.
1990-01-01
A correction is found to the surface tension in type-I superconductors which is proportional to the square root of the Ginsburg-Landau parameter. This correction is essential for obtaining the phase diagram and other thermodynamical variables of the narrow superconducting layer arising near the twinning plane in some metals
Theory of thermal and charge transport in diffusive normal metal / superconductor junctions
Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Asano, Y.
2005-01-01
Thermal and charge transport in diffusive normal metal (DN)/insulator/s-, d-, and p-wave superconductor junctions are studied based on the Usadel equation with the Nazarov's generalized boundary condition. We derive a general expression of the thermal conductance in unconventional superconducting
International Nuclear Information System (INIS)
Noerenberg, W.
1976-01-01
Relaxation phenomena in deeply inelastic collisions are qualitatively discussed and compared with precompound reactions. Different approaches for describing these processes are reviewed, in particular the microscopic transport theories, which can be understood from a generalized master equation for macroscopic variables. The Markoff approximation and the classical limit for the relative motion lead to two coupled equations, the classical equation of relative motion with friction and a Pauli master equation for the internal degrees of freedom. The master equation approximated by the corresponding Fokker-Planck equation for mass transfer and energy dissipation is discussed in detail. Simple analytic expressions are derived for the transport coefficients as functions of excitation energy, total mass, mass fragmentation and relative angular momentum. Calculated transport coefficients are compared with experimental values. Problems and future developments in microscopic transport theories are outlined. (orig.) [de
Directory of Open Access Journals (Sweden)
R Nourafkan
2009-08-01
Full Text Available It is a common knowledge that the formation of electron pairs is a necessary ingredient of any theoretical work describing superconductivity. Thus, finding the mechanism of the formation of the electron pairs is of utmost importance. There are some experiments on high transition temperature superconductors which support the electron-phonon (e-ph interactions as the pairing mechanism (ARPES, and there are others which support the spin fluctuations as their pairing mechanism (tunneling spectroscopy. In this paper, we introduce the Holstein-Kondo lattice model (H-KLM which incorporates the e-ph as well as the Kondo exchange interaction. We have used the dynamical mean field theory (DMFT to describe heavy fermion semiconductors and have employed the exact-diagonalization technique to obtain our results. The phase diagram of these systems in the parameter space of the e-ph coupling, g, and the Kondo exchange coupling, J, show that the system can be found in the Kondo insulating phase, metallic phase or the bi-polaronic phase. It is shown that these systems develop both spin gap and a charge gap, which are different and possess energies in the range of 1-100 meV. In view of the fact that both spin excitation energies and phonon energies lie in this range, we expect our work on H-KLM opens a way to formalize the theory of the high transition temperature superconductors .
Statistical distribution of partial widths in the microscopic theory of nuclear reactions
International Nuclear Information System (INIS)
Bunakov, V.E.; Ogloblin, S.G.
1978-01-01
Using the microscopic theory of nuclear reaction the distribution function of neutron reduced partial widths is obtained. It is shown that the distribution of reduced partial widths of a radiative transition is of the same form. The distribution obtained differs from the Porter-Thomas law for neutron widths only in the presence of intermediate structures. It is noteworthy that the presence of an intermediate structure leads to a greater dispersion
Quantum chromodynamics and the derivation of a microscopic theory of the nucleus
International Nuclear Information System (INIS)
Sliv, L.A.; Strikman, M.I.; Frankfurt, L.L.
1985-01-01
The progress which has already been made in the construction of a microscopic theory of the nucleus on the basis of quantum chromodynamics, the problems remaining, and the outlook for future progress are analyzed. The problem of nuclear forces, the role played by a high-momentum component in the nuclear wave function, and the role played by relativistic effects in various hard nuclear processes are discussed
Loison, Laurent
2016-07-01
This paper examines the reception of cell theory in the field of French anatomical pathology. This reception is studied under the lens of the concept of the cancer cell, which was developed in Paris in the 1840s. In the medical field, cell theory was quickly accessible, understood, and discussed. In the wake of research by Hermann Lebert, the cancer cell concept was supported by a wealth of high-quality microscopic observations. The concept was constructed in opposition to cell theory, which appears retrospectively paradoxical and surprising. Indeed, the biological atomism inherent in cell theory, according to which the cell is the elementary unit of all organs of living bodies, appeared at the time incompatible with the possible existence of pathological cells without equivalent in healthy tissues. Thus, the postulate of atomism was used as an argument by Parisian clinicians who denied the value of the cancer cell. This study shows that at least in the field of anatomical pathology, cell theory did not directly result from the use of the microscope but was actually hindered by it. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
International Nuclear Information System (INIS)
Sakata, F.; Marumori, T.; Hashimoto, Y.; Tsukuma, H.; Yamamoto, Y.; Terasaki, J.; Iwasawa, Y.; Itabashi, H.
1992-01-01
Since the research field of nuclear physics is expanding rapidly, it is becoming more imperative to develop the microscopie theory of nuclear matter physics which provides us with a unified understanding of diverse phenomena exhibited by nuclei. An estabishment of various stable mean-fields in nuclei allows us to develop the microscopie theory of nuclear collective dynamics within the mean-field approximation. The classical-level theory of nuclear collective dynamics is developed by exploiting the symplectic structure of the timedependent Hartree-Fock (TDHF)-manifold. The importance of exploring the single-particle dynamics, e.g. the level-crossing dynamics in connection with the classical order-to-chaos transition mechanism is pointed out. Since the classical-level theory os directly related to the full quantum mechanical boson expansion theory via the symplectic structure of the TDHF-manifold, the quantum theory of nuclear collective dynamics is developed at the dictation of what os developed on the classical-level theory. The quantum theory thus formulated enables us to introduce the quantum integrability and quantum chaoticity for individual eigenstates. The inter-relationship between the classical-level and quantum theories of nuclear collective dynamics might play a decisive role in developing the quantum theory of many-body problems. (orig.)
Kallin, Catherine; Berlinsky, John
2016-05-01
Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.
Theory of tunneling and photoemission spectroscopy for high-temperature superconductors
International Nuclear Information System (INIS)
Kouznetsov, K.; Coffey, L.
1996-01-01
A comprehensive analysis is presented of the tunneling conductance and angle-resolved photoemission spectra in high-temperature superconductors. It is shown that unexplained features of the tunneling and photoemission spectra such as broad backgrounds, dips, and asymmetry of the tunneling conductance can arise in a model of spin-fluctuation mediated inelastic tunneling. Effects of directionality in tunneling play an important role in determining the behavior of the tunneling conductance. copyright 1996 The American Physical Society
Theory of coherent c-axis Josephson tunneling between layered superconductors
International Nuclear Information System (INIS)
Arnold, G. B.; Klemm, R. A.
2000-01-01
We calculate exactly the Josephson current for c-axis coherent tunneling between two layered superconductors, each with internal coherent tight-binding intra- and interlayer quasiparticle dispersions. Our results also apply when one or both of the superconductors is a bulk material, and include the usually neglected effects of surface states. For weak tunneling, our results reduce to our previous results derived using the tunneling Hamiltonian. Our results are also correct for strong tunneling. However, the c-axis tunneling expressions of Tanaka and Kashiwaya are shown to be incorrect in any limit. In addition, we consider the c-axis coherent critical current between two identical layered superconductors twisted an angle φ 0 about the c axis with respect to each other. Regardless of the order-parameter symmetry, our coherent tunneling results using a tight-binding intralayer quasiparticle dispersion are inconsistent with the recent c-axis twist bicrystal Bi 2 Sr 2 CaCu 2 O 8+δ twist junction experiments of Li et al. [Li et al., Phys. Rev. Lett. 83, 4160 (1999)]. (c) 2000 The American Physical Society
Babin, Anatoli
2016-01-01
In this monograph, the authors present their recently developed theory of electromagnetic interactions. This neoclassical approach extends the classical electromagnetic theory down to atomic scales and allows the explanation of various non-classical phenomena in the same framework. While the classical Maxwell–Lorentz electromagnetism theory succeeds in describing the physical reality at macroscopic scales, it struggles at atomic scales. Here, quantum mechanics traditionally takes over to describe non-classical phenomena such as the hydrogen spectrum and de Broglie waves. By means of modifying the classical theory, the approach presented here is able to consistently explain quantum-mechanical effects, and while similar to quantum mechanics in some respects, this neoclassical theory also differs markedly from it. In particular, the newly developed framework omits probabilistic interpretations of the wave function and features a new fundamental spatial scale which, at the size of the free electron, is much lar...
International Nuclear Information System (INIS)
Shevtsov, O; Löfwander, T
2014-01-01
Non-equilibrium phenomena in superconductors have attracted much attention since the first experiments on charge imbalance in the early 1970's. Nowadays a new promising line of research lies at an intersection between superconductivity and spintronics. Here we develop a quasiclassical theory of a single junction between a normal metal and a superconductor with a spin-active interface at finite bias voltages. Due to spin-mixing and spin-filtering effects of the interface a non-equilibrium magnetization (or spin imbalance) is induced at the superconducting side of the junction, which relaxes to zero in the bulk. A peculiar feature of the system is the presence of interface-induced Andreev bound states, which influence the magnitude and the decay length of spin imbalance. Recent experiments on spin and charge density separation in superconducting wires required external magnetic field for observing a spin signal via non-local measurements. Here, we propose an alternative way to observe spin imbalance without applying magnetic field
Superconductors with excess quasiparticles
International Nuclear Information System (INIS)
Elesin, V.F.; Kopaev, Y.V.
1981-01-01
This review presents a systematic kinetic theory of nonequilibrium phenomena in superconductors with excess quasiparticles created by electromagnetic or tunnel injection. The energy distributions of excess quasiparticles and of nonequilibrium phonons, dependence of the order parameter on the power and frequency (or intensity) of the electromagnetic field, magnetic properties of nonequilibrium superconductors, I-V curves of superconductor-insulator-superconductor junctions, and other properties are described in detail. The stability of superconducting states far from thermodynamic equilibrium is investigated and it is shown that characteristic instabilities leading to the formation of nonuniform states of a new type or phase transitions of the first kind are inherent to superconductors with excess quasiparticles. The results are compared with experimental data
Superfluid response in heavy fermion superconductors
Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang
2017-10-01
Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.
Microscopic theory of light-induced deformation in amorphous side-chain azobenzene polymers.
Toshchevikov, V; Saphiannikova, M; Heinrich, G
2009-04-16
We propose a microscopic theory of light-induced deformation of side-chain azobenzene polymers taking into account the internal structure of polymer chains. Our theory is based on the fact that interaction of chromophores with the polarized light leads to the orientation anisotropy of azobenzene macromolecules which is accompanied by the appearance of mechanical stress. It is the first microscopic theory which provides the value of the light-induced stress larger than the yield stress. This result explains a possibility for the inscription of surface relief gratings in glassy side-chain azobenzene polymers. For some chemical architectures, elongation of a sample demonstrates a nonmonotonic behavior with the light intensity and can change its sign (a stretched sample starts to be uniaxially compressed), in agreement with experiments. Using a viscoplastic approach, we show that the irreversible strain of a sample, which remains after the light is switched off, decreases with increasing temperature and can disappear at certain temperature below the glass transition temperature. This theoretical prediction is also confirmed by recent experiments.
Thermodynamics of vortex motion in type II superconductors
International Nuclear Information System (INIS)
Kopnin, N.B.
1993-01-01
The author re-examines the calculations of the transport entropy of vortices and finds that the old definitions of the heat current available in the literature are unsatisfactory. Based on the microscopic theory of nonstationary superconductivity, the prescription for how to calculate the heat current for the mixed state of superconductors is obtained. The transport entropy of vortices is recalculated in the high-field limit to demonstrate the difference between the new and old definitions of the heat current
Microscopic Theory for the Role of Attractive Forces in the Dynamics of Supercooled Liquids.
Dell, Zachary E; Schweizer, Kenneth S
2015-11-13
We formulate a microscopic, no adjustable parameter, theory of activated relaxation in supercooled liquids directly in terms of the repulsive and attractive forces within the framework of pair correlations. Under isochoric conditions, attractive forces can nonperturbatively modify slow dynamics, but at high enough density their influence vanishes. Under isobaric conditions, attractive forces play a minor role. High temperature apparent Arrhenius behavior and density-temperature scaling are predicted. Our results are consistent with recent isochoric simulations and isobaric experiments on a deeply supercooled molecular liquid. The approach can be generalized to treat colloidal gelation and glass melting, and other soft matter slow dynamics problems.
Avetissian, H K; Ghazaryan, A G; Matevosyan, H H; Mkrtchian, G F
2015-10-01
The microscopic quantum theory of plasma nonlinear interaction with the coherent shortwave electromagnetic radiation of arbitrary intensity is developed. The Liouville-von Neumann equation for the density matrix is solved analytically considering a wave field exactly and a scattering potential of plasma ions as a perturbation. With the help of this solution we calculate the nonlinear inverse-bremsstrahlung absorption rate for a grand canonical ensemble of electrons. The latter is studied in Maxwellian, as well as in degenerate quantum plasma for x-ray lasers at superhigh intensities and it is shown that one can achieve the efficient absorption coefficient in these cases.
Theory of two-magnon Raman scattering in alkaline iron selenide superconductors
Energy Technology Data Exchange (ETDEWEB)
Liu, C.S. [Department of Physics, Yanshan University, Qinhuangdao 006004 (China); Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhang, A.M. [Department of Physics, Renmin University of China, Beijing 100872 (China); Xu, T.F. [Department of Physics, Yanshan University, Qinhuangdao 006004 (China); Wu, W.C., E-mail: wu@phy.ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China)
2014-11-15
Highlights: • Two-magnon Raman scattering is theoretically studied for alkaline iron selenides. • Underlying spin interactions of the √(5)×√(5) AF superstructure are investigated in details. • Optimal set of exchange parameters is revealed when fitting to experiments. - Abstract: Motivated by the recent experiment of two-magnon Raman scattering in alkaline iron selenide superconductors (Zhang et al., 2012), we investigate in details the underlying spin interactions of the √(5)×√(5) antiferromagnetic superstructure. Based on the linear spin wave approximation, the Fleury-London (FL) two-magnon Raman cross-sections are calculated. By comparing theoretical results with the Raman data in both A{sub g} and B{sub g} channels, an optimal set of exchange parameters which are consistent with the fitting to the neutron scattering data are obtained. It reveals that the experimentally observed broad and asymmetric peaks around 1600 cm{sup −1} are dominantly originated from quasiparticle excitations in two nearly degenerate magnon bands in the (0,±π) and (±π,0) directions. The result thus supports that the magnetic properties in alkaline iron selenide AFe{sub 1.6+x}Se{sub 6} superconductors can be basically described by the quantum spin model with up to third nearest-neighbor exchange couplings.
Microscopic theory of the liquid-solid interface of 4He
International Nuclear Information System (INIS)
Pederiva, F.; Fantoni, S.; Reatto, L.
1995-01-01
Based on the shadow wave function we have developed the first microscopic theory of the interface between a quantum liquid and solid. We overcome the difficulties present in other variational theories because no a priori equilibrium positions for the atoms have to be assumed and localization of particles is exclusively due to interparticle correlations. We find that the crystalline order parameters vary smoothly over the interface and the interface itself is mobile. We have extended the previous work to the interface of a fcc crystal of 4 He. The interfacial energy is 0.16 K/angstrom 2 , the width of the interface is about 15 angstrom and the local density has a dip on the liquid side
Topological superconductors: a review.
Sato, Masatoshi; Ando, Yoichi
2017-07-01
This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.
International Nuclear Information System (INIS)
Kerner, Boris S; Klenov, Sergey L; Hiller, Andreas
2006-01-01
Based on empirical and numerical microscopic analyses, the physical nature of a qualitatively different behaviour of the wide moving jam phase in comparison with the synchronized flow phase-microscopic traffic flow interruption within the wide moving jam phase-is found. A microscopic criterion for distinguishing the synchronized flow and wide moving jam phases in single vehicle data measured at a single freeway location is presented. Based on this criterion, empirical microscopic classification of different local congested traffic states is performed. Simulations made show that the microscopic criterion and macroscopic spatiotemporal objective criteria lead to the same identification of the synchronized flow and wide moving jam phases in congested traffic. Microscopic models in the context of three-phase traffic theory have been tested based on the microscopic criterion for the phases in congested traffic. It is found that microscopic three-phase traffic models can explain both microscopic and macroscopic empirical congested pattern features. It is obtained that microscopic frequency distributions for vehicle speed difference as well as fundamental diagrams and speed correlation functions can depend on the spatial co-ordinate considerably. It turns out that microscopic optimal velocity (OV) functions and time headway distributions are not necessarily qualitatively different, even if local congested traffic states are qualitatively different. The reason for this is that important spatiotemporal features of congested traffic patterns are lost in these as well as in many other macroscopic and microscopic traffic characteristics, which are widely used as the empirical basis for a test of traffic flow models, specifically, cellular automata traffic flow models
International Nuclear Information System (INIS)
Lad, J.K.
1979-01-01
Techniques for fabrication of a few important superconductors like Nb, Ti and Nb 3 Sn are described. Copper or bronze or both can be used as a matrix in the superconductor. Current densities obtained for different ratios of copper to superconductor are studied. The specifications of multi-filament Nb 3 Sn superconductors are given. The relative merits of the two superconductors are discussed. The temperature range obtained is approximately 3 0 K and a magnetic field of 9T(tesla) can be achieved. (A.K.)
Microscopic analysis of nuclear collective motions in terms of the boson expansion theory. Pt. 1
International Nuclear Information System (INIS)
Sakamoto, Hideo; Kishimoto, Teruo
1988-01-01
A normal-ordered linked-cluster boson expansion theory, previously worked out by one of the authors (T.K.) and Tamura, has been developed further by reformulating it in a 'physical' quasiparticle subspace which contains no spurious particle-number excitation modes. The expansion coefficients of the collective hamiltonian for low-lying quadrupole motions are determined starting from a microscopic fermion hamiltonian including self-consistent higher-order (many-body) interactions derived in our previous work. The contributions from the non-collective states with all possible non-collective one-boson excitations having I π = 0 + -4 + , which can directly couple to the collective states with one or two phonons, are taken into account in a systematic and compact way. (orig.)
Microscopic optical model potential based on Brueckner-Hartree-Fock theory
International Nuclear Information System (INIS)
Li Lulu; Zhao Enguang; Zhou Shangui; Li Zenghua; Zuo Wei; Bonaccorso, Angela; Lonbardo, Umberto
2010-01-01
The optical model is one of the most important models in the study of nuclear reactions. In the optical model, the elastic channel is considered to be dominant and the contributions of all other absorption channels are described by introducing an imaginary potential, Koning and Delaroche obtained empirically the so-called KDR optical potentials based on a best-fitting of massive experimental data on nucleon-nucleus scattering reactions. The volume part is found to be dominant in the real component of the OMP at low energies. Using the Bruckner-Hartree-Fock theory with Bonn B potential plus self consistent three body force, the nucleon-nucleus optical potential is studied in this thesis. In the Bruckner theory, the on-shell self energy, is corresponding to the depth of the volume part of the optical model potential (OMP) for nucleon-nucleus scattering. Using Bruckner-Hartree-Fock theory, the nucleon on-shell self energy is calculated based on Hughenoltz-Van Hove (HVH) theorem. The microscopic optical potentials thus obtained agree well with the volume part of the KDR potentials. Furthermore, the isospin splitting in the volume part of the OMP is also reproduced satisfactorily. The isospin effect in the volume part of the OMP is directly related to the isospin splitting of the effective mass of the nucleon. According to our results, the isospin splitting of neutron to proton effective mass is such that the neutron effective mass increases with isospin, whereas the proton effective mass decreases. The isovector potential U n (E) - U p (E) vanishes at energy E ≈ 200 MeV and then changes sign indicating a possible inversion in the effective mass isospin spitting. We also calculated from the Bruckner theory the imaginary part of the OMP, and the microscopic calculations predict that the isospin splitting exists also in the imaginary OMP whereas the empirical KDR potentials do not show this feature. The shape of the real component of the nucleon-nucleus OMP is
Nature of Microscopic Black Holes and Gravity in Theories with Particle Species
Dvali, Gia
2010-01-01
Relying solely on unitarity and the consistency with large-distance black hole physics, we derive model-independent properties of the microscopic black holes and of short-distance gravity in theories with N particle species. In this class of theories black holes can be as light as M_{Planck}/\\sqrt{N} and be produced in particle collisions above this energy. We show, that the micro black holes must come in the same variety as the species do, although their label is not associated with any conserved charge measurable at large distances. In contrast with big Schwarzschildian ones, the evaporation of the smallest black holes is maximally undemocratic and is biased in favor of particular species. With an increasing mass the democracy characteristic to the usual macro black holes is gradually regained. The lowest possible mass above which black holes become Einsteinian is \\sqrt{N} M_{Planck}. This fact uncovers the new fundamental scale (below the quantum gravity scale) above which gravity changes classically, and ...
International Nuclear Information System (INIS)
Varelogiannis, G.
1997-01-01
We make a detailed study of the Eliashberg theory in the coupling region where some fundamental qualitative deviations from the conventional BCS- like behavior begin to appear. These deviations are identified as the onset of a cross-over from BCS superconductivity to Bose condensation. We point out that the beginning of this cross-over occurs when the gap Δ g becomes comparable to the boson energies Ω ph . This condition traduces the physical constraint that the distance the paired electron covers during the absorption of the virtual boson, cannot be larger than the coherence length. The frontier region of couplings is of the order of λ∼3, and high-T c , materials are concerned. A clear qualitative indication of the occurrence of a cross-over regime should be a dip structure above the gap in the density of states of excitations, and this is one of the most robust characteristics of the high-T c , superconducting state. Comparing our results with tunneling and photoemission experiments we conclude that high-T c materials (cuprates and fullerides) are indeed at the beginning of a cross-over from BCS superconductivity to Bose condensation, even though the fermionic nature still prevails. If the Uemura plot is relevant, then the dip should also be present in the other materials that are close to the cross-over regime like heavy Fermion and organic superconductors. In all these materials Ginzburg Landau equations are irrelevant. (orig.)
Maximum Entropy Methods as the Bridge Between Microscopic and Macroscopic Theory
Taylor, Jamie M.
2016-09-01
This paper is concerned with an investigation into a function of macroscopic variables known as the singular potential, building on previous work by Ball and Majumdar. The singular potential is a function of the admissible statistical averages of probability distributions on a state space, defined so that it corresponds to the maximum possible entropy given known observed statistical averages, although non-classical entropy-like objective functions will also be considered. First the set of admissible moments must be established, and under the conditions presented in this work the set is open, bounded and convex allowing a description in terms of supporting hyperplanes, which provides estimates on the development of singularities for related probability distributions. Under appropriate conditions it is shown that the singular potential is strictly convex, as differentiable as the microscopic entropy, and blows up uniformly as the macroscopic variable tends to the boundary of the set of admissible moments. Applications of the singular potential are then discussed, and particular consideration will be given to certain free-energy functionals typical in mean-field theory, demonstrating an equivalence between certain microscopic and macroscopic free-energy functionals. This allows statements about L^1-local minimisers of Onsager's free energy to be obtained which cannot be given by two-sided variations, and overcomes the need to ensure local minimisers are bounded away from zero and +∞ before taking L^∞ variations. The analysis also permits the definition of a dual order parameter for which Onsager's free energy allows an explicit representation. Also, the difficulties in approximating the singular potential by everywhere defined functions, in particular by polynomial functions, are addressed, with examples demonstrating the failure of the Taylor approximation to preserve relevant shape properties of the singular potential.
Brillouin-Wigner theory of mixed-valence impurities in BCS superconductor: Tc/TcO and ΔC/ΔCO
International Nuclear Information System (INIS)
Li Jun; Gong Changde.
1986-08-01
The (lowest order) Brillouin-Wigner perturbational expansion theory is adopted to describe the mixed-valence impurities in the BCS superconductor. Two substantial quantities characterizing the superconducting state, i.e. the reduced transition temperature T c /T cO and the reduced specific heat jump ΔC/ΔC O are calculated numerically as a function of the impurity concentration x and the energy level difference E f between two 4f configurations. A comparison with the experimental data of the Th 1-x Ce x and Th 1-x U x alloy is also included with a more reasonable fitting than Kaiser's theory. (author)
International Nuclear Information System (INIS)
Bulaevskij, L.N.; Shchegolev, I.F.
1986-01-01
Main achievements in creating new organic conducting materials - synthetic metals and superconductors, are considered. The processes of superconductivity occurrence in organic materials are discussed. It is shown that conjugated bonds between C and H atoms in organic molecules play an important role in this case. At present ''crystal direction'' in organic superconductor synthesis is mainly developed. Later on, organic superconductor crystals are supposed to be introduced into usual polymers, e.g. polyethylene
Theory of spin-fluctuation induced superconductivity in iron-based superconductors
International Nuclear Information System (INIS)
Zhang, Junhua
2011-01-01
In this dissertation we focus on the investigation of the pairing mechanism in the recently discovered high-temperature superconductor, iron pnictides. Due to the proximity to magnetic instability of the system, we considered short-range spin fluctuations as the major mediating source to induce superconductivity. Our calculation supports the magnetic fluctuations as a strong candidate that drives Cooper-pair formation in this material. We find the corresponding order parameter to be of the so-called ss-wave type and show its evolution with temperature as well as the capability of supporting high transition temperature up to several tens of Kelvin. On the other hand, our itinerant model calculation shows pronounced spin correlation at the observed antiferromagnetic ordering wave vector, indicating the underlying electronic structure in favor of antiferromagnetic state. Therefore, the electronic degrees of freedom could participate both in the magnetic and in the superconducting properties. Our work shows that the interplay between magnetism and superconductivity plays an important role to the understanding of the rich physics in this material. The magnetic-excitation spectrum carries important information on the nature of magnetism and the characteristics of superconductivity. We analyze the spin excitation spectrum in the normal and superconducting states of iron pnictides in the magnetic scenario. As a consequence of the sign-reversed gap structure obtained in the above, a spin resonance mode appears below the superconducting transition temperature. The calculated resonance energy, scaled with the gap magnitude and the magnetic correlation length, agrees well with the inelastic neutron scattering (INS) measurements. More interestingly, we find a common feature of those short-range spin fluctuations that are capable of inducing a fully gapped ss state is the momentum anisotropy with elongated span along the direction transverse to the antiferromagnetic momentum
International Nuclear Information System (INIS)
Vladimirov, A.A.; Plakida, N.M.; Ihle, D.
2010-01-01
A microscopic theory of the dynamic spin susceptibility (DSS) in the superconducting state within the t-J model is presented. It is based on an exact representation for the DSS obtained by applying the Mori-type projection technique for the relaxation function in terms of Hubbard operators. The static spin susceptibility is evaluated by a sum-rule-conserving generalized mean-field approximation, while the self-energy is calculated in the mode-coupling approximation. The spectrum of spin excitations is studied in the underdoped and optimally doped regions. The DSS reveals a resonance mode (RM) at the antiferromagnetic wave vector Q=π(1,1) at low temperatures due to a strong suppression of the damping of spin excitations. This is explained by an involvement of spin excitations in the decay process besides the particle-hole continuum usually considered in random-phase-type approximations. The spin gap in the spin-excitation spectrum at Q plays a dominant role in limiting the decay in comparison with the superconducting gap which results in the observation of the RM even above T c in the underdoped region. A good agreement with inelastic neutron-scattering experiments on the RM in YBCO compounds is found
Energy Technology Data Exchange (ETDEWEB)
Sadeghi, A., E-mail: a_sadeghi@srbiau.ac.ir [Islamic Azad Univ., Dept. of Mechanical and Aerospace Engineering, Science and Research Branch, Tehran (Iran, Islamic Republic of); Zohoor, H. [Sharif Univ. of Technology, Center of Excellence in Design, Robotics and Automation, Tehran (Iran, Islamic Republic of); The Academy of Sciences if I.R. Iran (Iran, Islamic Republic of)
2010-05-15
The nonlinear flexural vibration for a rectangular atomic force microscope cantilever is investigated by using Timoshenko beam theory. In this paper, the normal and tangential tip-sample interaction forces are found from a Hertzian contact model and the effects of the contact position, normal and lateral contact stiffness, tip height, thickness of the beam, and the angle between the cantilever and the sample surface on the nonlinear frequency to linear frequency ratio are studied. The differential quadrature method is employed to solve the nonlinear differential equations of motion. The results show that softening behavior is seen for most cases and by increasing the normal contact stiffness, the frequency ratio increases for the first mode, but for the second mode, the situation is reversed. The nonlinear-frequency to linear-frequency ratio increases by increasing the Timoshenko beam parameter, but decreases by increasing the contact position for constant amplitude for the first and second modes. For the first mode, the frequency ratio decreases by increasing both of the lateral contact stiffness and the tip height, but increases by increasing the angle α between the cantilever and sample surface. (author)
Electrostatic field in superconductors IV: theory of Ginzburg-Landau type
Czech Academy of Sciences Publication Activity Database
Lipavský, Pavel; Koláček, Jan
2009-01-01
Roč. 23, 20-21 (2009), s. 4505-4511 ISSN 0217-9792 R&D Projects: GA ČR GA202/04/0585; GA ČR GA202/05/0173; GA AV ČR IAA1010312 Institutional research plan: CEZ:AV0Z10100521 Keywords : superconductivity * Ginzburg-Landau theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.408, year: 2009
Theory of the magnetic excitations in the Cu-O superconductors
International Nuclear Information System (INIS)
Hedegard, P.; Brix Pedersen, M.
1989-01-01
We show that all the features of the recent neutron scattering data by Shirane et al. on large, superconducting single crystals can be explained in a model with singlet pairing of bosonic spins. The temperature dependence of the integrated intensity seen experimentally is due to the creation of two spin excitations out of the pair condensate in one scattering event. The Goldstone modes of the theory are identified, and suggestions for experimental tests are given. (orig.)
Pinning and creep in superconductors
International Nuclear Information System (INIS)
Ovchinnikov, Yu.N.
1994-01-01
All superconductors can be separated into two large groups: type I and type II. The behaviour of these two groups in a magnetic field is quite different. The superconductors of type I, in a strong magnetic field, enter the intermediate state. Phenomenological picture of this state was given by Landau. The type II superconductors, in strong magnetic fields, form the mixed state (or Shubnikov phase). The microscopic picture of the mixed state was given by Abrikosov on the basis of Ginzburg-Landau equations. In ideal homogeneous superconductors the free energy is not changed if all the vortex structure is shifted on some distance u. The transport current will be proportional, therefore, to the electric field E. All the real superconductors, however, are inhomogeneous. Inhomogeneities interact with vortex lattice and pin it. In this new state the transport current below some critical value does not lead to the motion of the flux lattice and to the energy dissipation. The value of critical current strongly depends on the type of inhomogeneities, on the value of magnetic field and on temperature. In new layered superconductors, the critical current depends also on the orientation of the magnetic field B with respect to the layer planes. Temperature and quantum fluctuations lead to the transition between different metastable states in superconductors with current. As a result, the vortex lattice slowly moves (creep phenomenon). Below we will briefly discuss all these phenomena. (orig.)
International Nuclear Information System (INIS)
Downs, D.; Sharma, R.R.
1995-01-01
First numerical evaluations of T c for oxygenated and argon-reduced single-layered HgBa 2 CuO 4+δ superconductors have been presented. Our calculations are based on the dipolon theory and are found to provide an explanation for the occurrence of superconductivity in single-layered high-T c superconductors. Relevant expressions useful for the evaluation of T c have been given. Since the polarizabilities of the ions are not known exactly for the present systems we have performed calculations making use of Pauling's as well as Tessman, Kahn, and Shockley's polarizabilities in order to estimate the uncertainties in the calculated values of T c associated with uncertainties in the polarizabilities. The effective charges on the ions required for the evaluation of dipoles and dipolon frequencies have been obtained by means of the bond-valence sums. Without fitting with any parameters, our calculations yield T c values equal to 80±21 K for the oxygenated and 50±27 K for the argon-reduced HgBa 2 CuO 4+δ superconductors, in agreement with the corresponding experimental values 95 and 59 K. The uncertainties in the calculated values of T c arise because of the uncertainties in various physical parameters (including polarizabilities) used and due to errors involved in the calculations. The present results are consistent with the observed electronic Raman-scattering intensities which show anomalously broad peaks extended up to several electron volts in cuprate high-T c superconductors. Our calculated dipolon density of states predict four optical absorption peaks at about 77 cm -1 , 195 cm -1 , 1.6 eV, and 2.5 eV
An unconventional colour superconductor
International Nuclear Information System (INIS)
Huang Mei
2007-01-01
Superfluidity, or superconductivity with mismatched Fermi momenta, appears in many systems such as charge-neutral dense quark matter, asymmetric nuclear matter, and in imbalanced cold atomic gases. The mismatch plays the role of breaking the Cooper pairing, and the pair-breaking state cannot be properly described in the framework of standard BCS theory. I give a brief review on recent theoretical developments in understanding unconventional colour superconductivity, including a gapless colour superconductor, chromomagnetic instabilities and the Higgs instability in the gapless phase. I also introduce a possible new framework for describing an unconventional colour superconductor
Continuum theory of the mixed-state and surface Joule effects in type-II superconductors
International Nuclear Information System (INIS)
Hocquet, T.; Mathieu, P.; Simon, Y.
1992-01-01
A phenomenological theory of vortex motion, where the mixed state is regarded as a continuum, has been proposed by two of the authors in a short previous letter. Its outlines are recalled in this paper with further comments and arguments; in particular the basic equations and their implications are discussed at some length. This theory leads to a model of pinning, from which we argue that critical currents I c , in soft type-II samples of standard bulk homogeneity, should be governed essentially by surface defects. I c is interpreted as a physically well-defined part of the total transport current I, which is flowing over a small depth close to the surface. Thus, on the scale of an ordinary sample, this part of the transport current is superficial, the remaining part I-I c being uniformly distributed over the cross section. Coherently, an analysis of the dissipation in such samples predicts that the part VI c of the total Joule effect VI must arise as surface heat sources, while the Joule effect V(I-I c ), usually associated with the steady viscous flow of vortices, is uniformly distributed in the bulk. As a proof, we present a method, using second-sound acoustics, to detect and separate surface and volume heat sources. Experimental results give clear evidence of a surface Joule effect, and support the validity of our model of surface pinning in soft materials
Evaluating superconductors for microwave applications
International Nuclear Information System (INIS)
Hammond, B.; Bybokas, J.
1989-01-01
It is becoming increasingly obvious that some of the earliest applications for high Tc superconductors will be in the microwave market. While this is a major opportunity for the superconductor community, it also represents a significant challenge. At DC or low frequencies a superconductor can be easily characterized by simple measurements of resistivity and magnetic susceptibility versus temperature. These parameters are fundamental to superconductor characterization and various methods exist for measuring them. The only valid way to determine the microwave characteristics of a superconductor is to measure it at microwave frequencies. It is for this reason that measuring microwave surface resistance has emerged as one of the most demanding and telling tests for materials intended for high frequency applications. In this article, the theory of microwave surface resistance is discussed. Methods for characterizing surface resistance theoretically and by practical implementation are described
Charged vortices in high-Tc superconductors
International Nuclear Information System (INIS)
Matsuda, Y.; Kumagai, K.
2002-01-01
It is well known that a vortex in type II superconductors traps a magnetic flux. Recently the possibility that a vortex can accumulate a finite electric charge as well has come to be realized. The sign and magnitude of the vortex charge not only is closely related to the microscopic electronic structure of the vortex, but also strongly affects the dynamical properties of the vortex. In this chapter we demonstrate that a vortex in high-T c superconductors (HTSC) indeed traps a finite electronic charge, using the high resolution measurements of the nuclear quadrupole frequencies. We then discuss the vortex Hall anomaly whose relation with the vortex charging effect has recently received considerable attention. We show that the sign of the trapped charge is opposite to the sign predicted by the conventional BCS theory and deviation of the magnitude of the charge from the theory is also significant. We also show that the electronic structure of underlying system is responsible for the Hall sign in the vortex state and again the Hall sign is opposite to the sign predicted by the BCS theory. It appears that these unexpected features observed in both electrostatics and dynamics of the vortex may be attributed to the novel electronic structure of the vortex in HTSC. (orig.)
Theory of charge transfer at the high-Tc superconductor/electrolyte interface
DEFF Research Database (Denmark)
Gluzman, Sasha; Kuznetsov, Alexander M.
1995-01-01
, involving a gap in the electronic spectrum. The height of the hump should be much less in the case of the unconventional d-wave pairing, while the absence of the hump is a signal about the importance of pair-breaking processes typical of the strong-coupling theories or even about bipolaron (bosonic......We discuss the kinetics of electrochemical process on the high-T-c superconducting electrodes dependent on the type of superconductivity. The existence of the hump of an appreciable height in the temperature dependence of the current clearly points towards the BCS s-type superconductivity......) mechanism. Low-temperature tails at the current/temperature curve are also informative being determined by the electronic states within the gap typical of the unconventional d-wave pairing....
Critical de Broglie wavelength in superconductors
Talantsev, E. F.
2018-03-01
There are growing numbers of experimental evidences that the self-field critical currents, Jc(sf,T), are a new instructive tool to investigate fundamental properties of superconductors ranging from atomically thin films [M. Liao et al., Nat. Phys. 6 (2018), https://doi.org/10.1038/s41567-017-0031-6; E. F. Talantsev et al., 2D Mater. 4 (2017) 025072; A. Fete et al., Appl. Phys. Lett. 109 (2016) 192601] to millimeter-scale samples [E. F. Talantsev et al., Sci. Rep. 7 (2017) 10010]. The basic empirical equation which quantitatively accurately described experimental Jc(sf,T) was proposed by Talantsev and Tallon [Nat. Commun. 6 (2015) 7820] and it was the relevant critical field (i.e. thermodynamic field, Bc, for type-I and lower critical field, Bc1, for type-II superconductors) divided by the London penetration depth, λL. In this paper, we report new findings relating to this empirical equation. It is that the critical wavelength of the de Broglie wave, λdB,c, of the superconducting charge carrier which within a numerical pre-factor is equal to the largest of two characteristic lengths of Ginzburg-Landau theory, i.e. the coherence length, ξ, for type-I superconductors or the London penetration depth, λL, for type-II superconductors. We also formulate a microscopic criterion for the onset of dissipative transport current flow: ps ṡ 2ṡλL ln(1+2ṡ(λL ξ )) ≥ 1 2 ṡ ( h 2π), where ps is the charge carrier momentum, h is Planck’s constant and the inequality sign “ <” is reserved for the dissipation-free flow.
Photothermal measurements of superconductors
International Nuclear Information System (INIS)
Kino, G.S.; Wu, X.D.; Kapitulnik, A.; Fishman, I.
1993-01-01
The authors have developed a new photothermal technique to investigate electronic phase transitions of high temperature superconductors. The phase shift of the thermal wave yields the anisotropic thermal diffusivity coefficient of the sample. The amplitude of the photothermal signal is sensitive to electronic phase transitions of the second kind. The technique is completely noncontacting and nondestructive, and is well suited to measure small and fragile single-crystal high-T c superconductors. The measurements give good agreement with fluctuation theory near the transition temperature. They have studied diffusion in, and superconducting fluctuations of, single crystals of YBa 2 Cu 3 O 7-δ and Bi 2 Sr 2 CaCu 2 O 8 . Both systems show fluctuation effects beyond Gaussian fluctuations. While YBa 2 Cu 3 O 7-δ behaves as a three-dimensional anisotropic superconductor, results on Bi 2 Sr 2 CaCu 2 O 8 indicate strong two-dimensional effects
International Nuclear Information System (INIS)
Brandes, G.R.
1990-01-01
The theory, design, development, and applications of two new imaging instruments, the scanning positron microbeam (SPM) and positron reemission microscope (PRM), are discussed. The SPM consists of a sectored lens which focuses and rasters the positrons from the beam across the sample. The results of rastering the 10μm x 50μm beam across a test grid demonstrate the SPM's ability to scan a 500μm diameter region and to resolve features with ∼ 5μm resolution. The SPM was used to examine the location of defects in a Si-on-SiO 2 sample. Possible applications to three dimensional defect spectroscopy and the observation of small samples are considered. In the PRM, the positrons from the brightness-enhanced beam are focused at 5keV to an 8/Am diameter spot (FWHM) onto a thin metal single crystal. An image of the opposing side of the film is formed by accelerating and focusing the reemitted thermalized positrons with a cathode lens objective and a projector lens. The final image (real) is a record of the thermal positron emission intensity versus position. Images of surface and subsurface defect structures, taken at magnifications up to 4400x and with a resolution up to 80nm, are presented and discussed. The ultimate resolution capabilities and possible applications of the PRM are examined. The implantation and diffusion process of positrons was studied with the PRM by examining the positron emission profile of 3-9keV positrons implanted into a 2200 angstrom thick Ni single crystal
International Nuclear Information System (INIS)
Yu, Jaejun; Freeman, A.J.
1991-01-01
Predictions of local density functional (LDF) calculations of the electronic structure and transport properties of high T(sub c) superconductors are presented. As evidenced by the excellent agreement with both photoemission and positron annihilation experiments, a Fermi liquid nature of the 'normal' state of the high T(sub c) superconductors become clear for the metallic phase of these oxides. In addition, LDF predictions on the normal state transport properties are qualitatively in agreement with experiments on single crystals. It is emphasized that the signs of the Hall coefficients for the high T(sub c) superconductors are not consistent with the types of dopants (e.g., electron-doped or hole-doped) but are determined by the topology of the Fermi surfaces obtained from the LDF calculations
International Nuclear Information System (INIS)
Welch, D.O.
1999-01-01
In this paper the author will discuss how the nature of the stress state in the flux-line lattice (FLL) of superconductors arises from the distribution, density, geometry, and strength of pinning centers. Under certain conditions this stress causes the onset of plastic deformation in the FLL for values of the current density below that required for flux-flow by general depinning. He will describe an analytic framework, based on a theory of plasticity of the FLL, which describes the flux-flow characteristics, including the possibility of thermally-activated flow and flux creep
DEFF Research Database (Denmark)
Hughes, S.; Borri, P.; Knorr, A.
2001-01-01
We present microscopic modeling and experimental measurements of femtosecond-pulse interactions in a semiconductor optical amplifier. Two novel nonlinear propagation effects are demonstrated: pulse breakup in the gain regime and pulse compression in the transparency regime. These propagation phen...... phenomena highlight the microscopic origin and important role of adiabatic following in semiconductor optical amplifiers. Fundamental light-matter interactions are discussed in detail and possible applications are highlighted....
Forces of vortice trapping and critical current in type II superconductors
International Nuclear Information System (INIS)
Bormio, C.
1985-12-01
The vortice-centers interactions of trapping in type II superconductor materials were studied by two theories: thermodynamic (Hampshire-Taylor) and microscopic (Larkin - Ovchinnikov). The study was applied to NbTi with composition of 50% weight of Ti. They are commercial cables containing 361 filaments with final diameter of 0.35 mm for the wire and 9.2 μm foi filaments. The material presents high deformation rate in area and high density of dislocations. These defects actuate as centers of trapping. Variations in themomechanical treatments of superconductor cables modify the interaction mechanisms. The specific mechanism for each treatment type was identified. Measurements of critical current density in function of magnetic field in the range from 1 to 7 Tesla were done, which the usual superconductor parameters as upper critical field and Ginzburg - Landau (Kappa-k) parameter are estimated from literature data. (M.C.K.) [pt
Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Inoue, J.; Asano, Y.
2006-01-01
Charge transport in the diffusive normal metal/insulator/s-wave superconductor junctions is studied in the presence of the magnetic impurity for various situations, where we have used the Usadel equation with Nazarov's generalized boundary condition. It is revealed that the magnetic impurity
Quasiparticle current in superconductor-semiconductor-superconductor junctions
International Nuclear Information System (INIS)
Tartakovskij, A.V.; Fistul', M.V.
1988-01-01
It is shown that the quasiparticle current in a superconductor-semiconductor-superconductor junction may significantly increase as a result of resonant passage of the quasiparticle along particular trajectories from periodically situated localized centers. A prediction of the theory is that with increasing junction resistance there should be a change from an excessive current to a insufficient current on the current-voltage characteristics (at high voltages). The effect of transparency of the boundaries on resonance tunneling in such junctions is also investigated
International Nuclear Information System (INIS)
Crisan, M.
1988-01-01
This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity
Briefing on superconductor developments
International Nuclear Information System (INIS)
Larbalestier, D.
1987-01-01
In this paper, the author covers the technology of the new oxide superconductors and how they might relate to the existing superconductors. He discusses old-fashioned superconductors; the material science of superconductors; the new oxide superconductors; and the future of oxide superconductors. 13 figures, 1 table
International Nuclear Information System (INIS)
Cava, R.J.
2000-01-01
This article briefly reviews ceramic superconductors from historical and materials perspectives. It describes the factors that distinguish high-temperature cuprate superconductors from most electronic ceramics and places them in the context of other families of superconducting materials. Finally, it describes some of the scientific issues presently being actively pursued in the search for the mechanism for high-temperature superconductivity and the directions of research into new superconducting ceramics in recent years
Microscopic theory of photon-correlation spectroscopy in strong-coupling semiconductors
Energy Technology Data Exchange (ETDEWEB)
Schneebeli, Lukas
2009-11-27
would be a great contribution in the growing field of quantum optics in semiconductors. The efforts in QD systems are again driven by the atomic systems which not only have shown the vacuum Rabi splitting, but also the second rung, e.g. via direct spectroscopy and via photon-correlation measurements. In this thesis, it is shown that spectrally resolved photon-statistics measurements of the resonance fluorescence from realistic semiconductor quantum-dot systems allow for high contrast identification of the two-photon strong-coupling states. Using a microscopic theory, the second-rung resonance of Jaynes-Cummings ladder is analyzed and optimum excitation conditions are determined. The computed photon-statistics spectrum displays gigantic, experimentally robust resonances at the energetic positions of the second-rung emission. The resonance fluorescence equations are derived and solved for strong-coupling semiconductor quantum-dot systems using a fully quantized multimode theory and a cluster-expansion approach. A reduced model is developed to explain the origin of auto- and cross-correlation resonances in the two-photon emission spectrum of the fluorescent light. These resonances are traced back to the two-photon strong-coupling states of Jaynes-Cummings ladder. The accuracy of the reduced model is verified via numerical solution of the resonance fluorescence equations. The analysis reveals the direct relation between the squeezed-light emission and the strong-coupling states in optically excited semiconductor systems. (orig.)
Quantum critical point in high-temperature superconductors
Energy Technology Data Exchange (ETDEWEB)
Shaginyan, V.R. [Petersburg Nuclear Physics Institute, RAS, Gatchina 188300 (Russian Federation); Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)], E-mail: vrshag@thd.pnpi.spb.ru; Amusia, M.Ya. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Popov, K.G. [Komi Science Center, Ural Division, RAS, Syktyvkar 167982 (Russian Federation); Stephanovich, V.A. [Opole University, Institute of Mathematics and Informatics, Opole 45-052 (Poland)], E-mail: stef@math.uni.opole.pl
2009-02-02
Recently, in high-T{sub c} superconductors (HTSC), exciting measurements have been performed revealing their physics in superconducting and pseudogap states and in normal one induced by the application of magnetic field, when the transition from non-Fermi liquid to Landau-Fermi liquid behavior occurs. We employ a theory, based on fermion condensation quantum phase transition which is able to explain facts obtained in the measurements. We also show, that in spite of very different microscopic nature of HTSC, heavy-fermion metals and 2D {sup 3}He, the physical properties of these three classes of substances are similar to each other.
Yoshizawa, Shunsuke; Kim, Howon; Kawakami, Takuto; Nagai, Yuki; Nakayama, Tomonobu; Hu, Xiao; Hasegawa, Yukio; Uchihashi, Takashi
2014-12-12
We have studied the superconducting Si(111)-(√7×√3)-In surface using a ³He-based low-temperature scanning tunneling microscope. Zero-bias conductance images taken over a large surface area reveal that vortices are trapped at atomic steps after magnetic fields are applied. The crossover behavior from Pearl to Josephson vortices is clearly identified from their elongated shapes along the steps and significant recovery of superconductivity within the cores. Our numerical calculations combined with experiments clarify that these characteristic features are determined by the relative strength of the interterrace Josephson coupling at the atomic step.
Starke, R.; Schober, G. A. H.
2018-03-01
We provide a systematic theoretical, experimental, and historical critique of the standard derivation of Fresnel's equations, which shows in particular that these well-established equations actually contradict the traditional, macroscopic approach to electrodynamics in media. Subsequently, we give a rederivation of Fresnel's equations which is exclusively based on the microscopic Maxwell equations and hence in accordance with modern first-principles materials physics. In particular, as a main outcome of this analysis being of a more general interest, we propose the most general boundary conditions on electric and magnetic fields which are valid on the microscopic level.
Theory of life time measurements with the scanning electron microscope: steady state
Berz, F.; Kuiken, H.K.
1976-01-01
A theoretical steady state analysis is given of the scanning electron microscope method of measuring bulk life time in diodes, where the plane of the junction is perpendicular to the surface. The current in the junction is obtained as a function of the beam power, the beam penetration into the
Knoester, Jasper; Mukamel, Shaul
1990-01-01
A general scheme is presented for calculating the nonlinear optical response in condensed phases that provides a unified picture of excitons, polaritons, retardation, and local-field effects in crystals and in disordered systems. A fully microscopic starting point is taken by considering the
International Nuclear Information System (INIS)
Yan, M.F.
1988-01-01
This volume compiles papers on ceramic superconductors. Topics include: structural patterns in High-Tc superconductors, phase equilibria of barium oxide superconductors, localized electrons in tetragonal YBa/sub 2/Cu/sub 3/O/sub 7-δ/, lattice and defect structure and properties of rare earth/alkaline earth-copper-oxide superconductors, alternate candidates for High-Tc superconductors, perovskite-structure superconductors; superconductive thin film fabrication, and superconductor/polymer composites
Covariant density functional theory: predictive power and first attempts of a microscopic derivation
Ring, Peter
2018-05-01
We discuss systematic global investigations with modern covariant density functionals. The number of their phenomenological parameters can be reduced considerable by using microscopic input from ab-initio calculations in nuclear matter. The size of the tensor force is still an open problem. Therefore we use the first full relativistic Brueckner-Hartree-Fock calculations in finite nuclear systems in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.
Covariant density functional theory: predictive power and first attempts of a microscopic derivation
Directory of Open Access Journals (Sweden)
Ring Peter
2018-01-01
Full Text Available We discuss systematic global investigations with modern covariant density functionals. The number of their phenomenological parameters can be reduced considerable by using microscopic input from ab-initio calculations in nuclear matter. The size of the tensor force is still an open problem. Therefore we use the first full relativistic Brueckner-Hartree-Fock calculations in finite nuclear systems in order to study properties of such functionals, which cannot be obtained from nuclear matter calculations.
International Nuclear Information System (INIS)
Brut, F.
1982-01-01
The spectroscopy of odd-A nuclei, in the 1p and 2s-1d shells, is studied in the framework of the projected Hartree-Fock method and by the generator coordinate method. The nuclear effective interactions of Cohen and Kurath, on the one hand, and of Kuo or Preedom-Wildenthal, on the other hand, are used. The binding energies, the nuclear spectra, the static moments and the electromagnetic transitions obtained by these two approaches are compared to the same quantities given by a complete diagonalization in the shell model basis. This study of light nuclei gives some possibilities to put in order the energy levels by coupled rotational bands. In the microscopic approach, thus we find all the elements of the unified model of Bohr and Mottelson. To give evidence of such a relation, the functions of the angle β, in the integrals of the projection method of Peierls and Yoccoz, for a Slater determinant, are developed in the vicinity of the bounds β = O and β = π. The microscopic coefficients are evaluated in the Hartree-Fock approximation, using the particle-hole formalism. Calculations are made for 20 Ne and 21 Ne and the resulting microscopic coefficients are compared with the corresponding terms of the unified model of Bohr and Mottelson [fr
International Nuclear Information System (INIS)
McDonald, W.K.
1981-01-01
A method is described of producing composite rod or wire of increased strength and fineness wherein the composite is formed by reducing a lamina of two metals which have been rolled to form a cylindrical billet in which one of the metals is in expanded form. The composite produced can be encased in copper and fabricated to produce a superconductor. Alloys contemplated for producing superconductors are Nb 3 Sn, Nb 3 Ga, Nb 3 Ge, Nb 3 Si, Nb-Ti, V 3 Ga, V 3 Si, V 3 Sn, V 3 Al, and V 3 Ge laminated on bronze, Al, Cu, Ta, or combinations thereof. (author)
Microscopic Theory of Magnon-Drag Thermoelectric Transport in Ferromagnetic Metals
Miura, Daisuke; Sakuma, Akimasa
2012-01-01
A theoretical study of the magnon-drag Peltier and Seebeck effects in ferromagnetic metals is presented. A magnon heat current is described perturbatively from the microscopic viewpoint with respect to electron--magnon interactions and the electric field. Then, the magnon-drag Peltier coefficient $\\Pi_\\MAG$ is obtained as the ratio between the magnon heat current and the electric charge current. We show that $\\Pi_\\MAG=C_\\MAG T^{5/2}$ at a low temperature $T$; that the coefficient $C_\\MAG$ is ...
International Nuclear Information System (INIS)
Tinkham, M.
1978-01-01
The coherence length xi and penetration depth lambda set the characteristic length scales in superconductors, typically 100 to 5,000 A. A lattice of flux lines, each carrying a single quantum, can penetrate type II superconductors, i.e., those for which kappa identical with lambda/xi > 1/√2. Inhomogeneities on the scale of the flux lattice spacing are required to pin the lattice to prevent dissipative flux motion. Recent work using voids as pinning centers has demonstrated this principle, but practical materials rely on cold-work, inclusions of second phases, etc., to provide the inhomogeneity. For stability against thermal fluctuations, the superconductor should have the form of many filaments of diameter 10 to 100 μm imbedded in a highly conductive normal metal matrix. Such wire is made by drawing down billets of copper containing rods of the superconductor. An alternative approach is the metallurgical one of Tsuei, which leads to thousands of superconducting filamentary segments in a copper matrix. The superconducting proximity effect causes the whole material to superconduct at low current densities. At high current densities, the range of the proximity effect is reduced so that the effective superconducting volume fraction falls below the percolation threshold, and a finite resistance arises from the copper matrix. But, because of the extremely elongated filaments, this resistance is orders of magnitude lower than that of the normal wire, and low enough to permit the possibility of technical applications
Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials
International Nuclear Information System (INIS)
Štrbík, V.; Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V.; Knoška, J.; Gál, N.; Chromik, Š.; Sojková, M.; Pisarčík, M.
2017-01-01
Highlights: • Superconductor-ferromagnet-superconductor nanojunction. • Nanojunctions prepared by Ga"3"+ focused ion beam patterning. • Indication of triplet Cooper pair component in junction superconducting current. • Qualitative agreement with theoretical model. - Abstract: The lateral superconductor-ferromagnet–superconductor (SFS) nanojunctions based on high critical temperature superconductor YBa_2Cu_3O_x (YBCO) and half-metallic ferromagnet La_0_._6_7Sr_0_._3_3MnO_3 (LSMO) thin films were prepared to investigate a possible presence of long range triplet component (LRTC) of Cooper pairs in the LSMO. We applied Ga"3"+ focused ion beam patterning to create YBCO/LSMO/YBCO lateral type nanojunctions with LSMO length as small as 40 nm. The resistivity vs. temperature, critical current density vs. temperature and resistance vs. magnetic field dependence were studied to recognize the LRTC of Cooper pairs in the LSMO. A non-monotonic temperature dependence of junction critical current density and a decrease of the SFS nanojunction resistance in increased magnetic field were observed. Only weak manifestations of LRTC and some qualitative agreement with theory were found out in SFS nanojunctions realized from the perovskite materials. The presence of equal-spin triplet component of Cooper pairs in half-metallic LSMO ferromagnet is not such apparent as in SFS junctions prepared from low temperature superconductors NbTiN and half-metallic ferromagnet CrO_2.
Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials
Energy Technology Data Exchange (ETDEWEB)
Štrbík, V., E-mail: vladimir.strbik@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Knoška, J. [Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607, Hamburg (Germany); Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607, Hamburg (Germany); Gál, N.; Chromik, Š.; Sojková, M.; Pisarčík, M. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia)
2017-02-15
Highlights: • Superconductor-ferromagnet-superconductor nanojunction. • Nanojunctions prepared by Ga{sup 3+} focused ion beam patterning. • Indication of triplet Cooper pair component in junction superconducting current. • Qualitative agreement with theoretical model. - Abstract: The lateral superconductor-ferromagnet–superconductor (SFS) nanojunctions based on high critical temperature superconductor YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) and half-metallic ferromagnet La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) thin films were prepared to investigate a possible presence of long range triplet component (LRTC) of Cooper pairs in the LSMO. We applied Ga{sup 3+} focused ion beam patterning to create YBCO/LSMO/YBCO lateral type nanojunctions with LSMO length as small as 40 nm. The resistivity vs. temperature, critical current density vs. temperature and resistance vs. magnetic field dependence were studied to recognize the LRTC of Cooper pairs in the LSMO. A non-monotonic temperature dependence of junction critical current density and a decrease of the SFS nanojunction resistance in increased magnetic field were observed. Only weak manifestations of LRTC and some qualitative agreement with theory were found out in SFS nanojunctions realized from the perovskite materials. The presence of equal-spin triplet component of Cooper pairs in half-metallic LSMO ferromagnet is not such apparent as in SFS junctions prepared from low temperature superconductors NbTiN and half-metallic ferromagnet CrO{sub 2}.
First-principles theory of inelastic currents in a scanning tunneling microscope
DEFF Research Database (Denmark)
Stokbro, Kurt; Hu, Ben Yu-Kuang; Thirstrup, C.
1998-01-01
A first-principles theory of inelastic tunneling between a model probe tip and an atom adsorbed on a surface is presented, extending the elastic tunneling theory of Tersoff and Hamann. The inelastic current is proportional to the change in the local density of states at the center of the tip due...... to the addition of the adsorbate. We use the theory to investigate the vibrational heating of an adsorbate below a scanning tunneling microscopy tip. We calculate the desorption rate of PI from Si(100)-H(2 X 1) as a function of the sample bias and tunnel current, and find excellent a,agreement with recent...
Roy, Chiranjeeb; John, Sajeev
2010-02-01
We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the “colored” electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.
International Nuclear Information System (INIS)
Roy, Chiranjeeb; John, Sajeev
2010-01-01
We derive a quantum theory of the role of acoustic and optical phonons in modifying the optical absorption line shape, polarization dynamics, and population dynamics of a two-level atom (quantum dot) in the ''colored'' electromagnetic vacuum of a photonic band-gap (PBG) material. This is based on a microscopic Hamiltonian describing both radiative and vibrational processes quantum mechanically. We elucidate the extent to which phonon-assisted decay limits the lifetime of a single photon-atom bound state and derive the modified spontaneous emission dynamics due to coupling to various phonon baths. We demonstrate that coherent interaction with undamped phonons can lead to an enhanced lifetime of a photon-atom bound state in a PBG. This results in reduction of the steady-state atomic polarization but an increase in the fractionalized upper state population in the photon-atom bound state. We demonstrate, on the other hand, that the lifetime of the photon-atom bound state in a PBG is limited by the lifetime of phonons due to lattice anharmonicities (breakup of phonons into lower energy phonons) and purely nonradiative decay. We also derive the modified polarization decay and dephasing rates in the presence of such damping. This leads to a microscopic, quantum theory of the optical absorption line shapes. Our model and formalism provide a starting point for describing dephasing and relaxation in the presence of external coherent fields and multiple quantum dot interactions in electromagnetic reservoirs with radiative memory effects.
Upconversion in Nd3+-doped glasses: Microscopic theory and spectroscopic measurements
International Nuclear Information System (INIS)
Oliveira, S. L.; Sousa, D. F. de; Andrade, A. A.; Nunes, L. A. O.; Catunda, T.
2008-01-01
In this work, we report a systematic investigation of upconversion losses and their effects on fluorescence quantum efficiency and fractional thermal loading in Nd 3+ -doped fluoride glasses. The energy transfer upconversion (γ up ) parameter, which describes upconversion losses, was experimentally determined using different methods: thermal lens (TL) technique and steady state luminescence (SSL) measurements. Additionally, the upconversion parameter was also obtained from energy transfer models and excited state absorption measurements. The results reveal that the microscopic treatment provided by the energy transfer models is similar to the macroscopic ones achieved from the TL and SSL measurements because similar γ up parameters were obtained. Besides, the achieved results also point out the migration-assisted energy transfer according to diffusion-limited regime rather than hopping regime as responsible for the upconversion losses in Nd-doped glasses
Microscopic heavy-ion theory. Final technical report, June 1, 1993 - May 31, 1996
International Nuclear Information System (INIS)
Ernst, D.J.; Oberacker, V.E.; Umar, A.S.
1998-01-01
In this Final Technical Report, the authors summarize the research activities of the three Principal Investigators (Professors Ernst, Oberacker, and Umar) at Vanderbilt University since the last reporting period through the subject award expiration date (Dec. 31, 1996) under contract DE-FG05-87ER40376 with the Department of Energy. The research effort is divided between the following three areas: nuclear structure and astrophysics (microscopic nuclear structure studies and properties of exotic nuclei at HRIBF, supernovae calculations in connection with nuclear astrophysics, and nuclear viscosity studies via muon-induced fission at PSI); pion and kaon interactions with the nucleus at high energies (interaction of pions and kaons with nuclei from low energies to 1 GeV, propagation of excited hadrons in the nuclear medium as probed by pion and electron induced reactions); nuclear physics at high energies (dynamical string-parton model to study multi-particle production at RHIC, electromagnetic lepton pair production at RHIC)
BOP theory in an emerging market economy: India under the microscope
Directory of Open Access Journals (Sweden)
Gouher Ahmed
2015-07-01
Full Text Available Poverty is a universal phenomenon which does not go well with the progressive 21st century and hence the worldwide efforts to overcome the problem. At the beginning of the 21st century (2002, the late professor C.K. Prahalad had propounded a path breaking theory of poverty alleviation called the bottom of the pyramid business theory, which is not only making MNCs investments (FDI in underdeveloped countries and promoting their growth and employment generation and increase in incomes and thereby consumption and expenditure but also producing goods and services needed by the poor households at the bottom of the economic and business pyramid. The paper is devoted to the consideration of the theory in the emerging market economy of India where poverty is a biggest problem and the situation is not found significant for the BOP business. Can there be a market solution to it?
International Nuclear Information System (INIS)
Vavra, O.
2007-01-01
In this chapter author deals with superconductors and superconductivity. Different chemical materials used as high-temperature superconductors are presented. Some applications of superconductivity are presented.
International Nuclear Information System (INIS)
Bruun, G.M.; Nicopoulos, V.N.; Johnson, N.F.
1997-01-01
We investigate de Haas endash van Alphen (dHvA) oscillations in the mixed state of a type-II two-dimensional superconductor within a self-consistent Gor close-quote kov perturbation scheme. Assuming that the order parameter forms a vortex lattice we can calculate the expansion coefficients exactly to any order. We have tested the results of the perturbation theory to fourth and eighth order against an exact numerical solution of the corresponding Bogoliubov endash de Gennes equations. The perturbation theory is found to describe well the onset of superconductivity close to the transition point H c2 . Contrary to earlier calculations by other authors we do not find that the perturbative scheme predicts any maximum of the dHvA oscillations below H c2 . Instead we obtain a substantial damping of the magnetic oscillations in the mixed state as compared to the normal state. We have examined the effect of an oscillatory chemical potential due to particle conservation and the effect of a finite Zeeman splitting. Furthermore, we have investigated the recently debated issue of the possibility of a sign change of the fundamental harmonic of the magnetic oscillations. Our theory is compared with experiment and we have found good agreement. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Giorgi, A.L.
1987-01-01
Ternary superconductors constitute a class of superconducting compounds with exceptional properties such as high transition temperatures (≅ 15.2 K), extremely high critical fields (H c2 >60 Tesla), and the coexistence of superconductivity and long-range magnetic order. This has generated great interest in the scientific community and resulted in a large number of experimental and theoretical investigations in which many new ternary compounds have been discovered. A review of some of the properties of these ternary compounds is presented with particular emphasis on the ternary molybdenum chalcogenides and the ternary rare earth transition metal tetraborides. The effect of partial substitution of a second metal atom to form pseudoternary compounds is examined as well as some of the proposed correlations between the superconducting transition temperature and the structural and electronic properties of the ternary superconductors
Energy Technology Data Exchange (ETDEWEB)
Gömöry, F [Bratislava, Inst. Elect. Eng. (Slovakia)
2014-07-01
Superconductors used in magnet technology could carry extreme currents because of their ability to keep the magnetic flux motionless. The dynamics of the magnetic flux interaction with superconductors is controlled by this property. The cases of electrical transport in a round wire and the magnetization of wires of various shapes (circular, elliptical, plate) in an external magnetic field are analysed. Resistance to the magnetic field penetration means that the field produced by the superconducting magnet is no longer proportional to the supplied current. It also leads to a dissipation of electromagnetic energy. In conductors with unequal transverse dimensions, such as flat cables, the orientation with respect to the magnetic field plays an essential role. A reduction of magnetization currents can be achieved by splitting the core of a superconducting wire into fine filaments; however, new kinds of electrical currents that couple the filaments consequently appear. Basic formulas allowing qualitative analyses of various flux dynamic cases are presented.
Evolution from vibration to rotation in 108Cd nucleus within microscopic theory
International Nuclear Information System (INIS)
Ni Shaoyong; Tong Hong; Zhao Xingzhi; Shi Zhuyi; The Secon Northwest Inst. for Minority, Yinchuan; Zhang Chunmei; Lei Yuxi
2008-01-01
Based on the microscopic sdIBM-F max model and the single-particle energies from experiment, with the use of the most general Hamiltonian, the vibrational band and rotational band in 108 Cd nucleus as well as its evolutional process were reproduced very well by two different groups of nucleon-nucleon effective interaction parameters. And phenomenological study identifies that: 1) The coexisting region of two excitation models is on the interval between the state 8+ and state 14 1 + (this is a interval with E x =3.683-5.503 MeV), and the 8 1 + state is a state preponderant in the vibrational model, the 14 1 + state is one predominant in the rotational model, while the state 10 1 + is a cross- bencher state relative to the two models; 2) The yrast states from the ground-state up to the 24 1 + state all are collective states, hereafter the first breaking up and aligning state maybe is a two-quasiparticle state of neutron on the intruder orbits h 11/2 ; 3) This structure evolution has been achieved via the moderate changes of the pair coupling probability of valence nucleons in the coexisting region, and thus is not very rapidly. (authors)
Microscopic theory of spin-filtering in non-magnetic semiconductor nanostructures
Energy Technology Data Exchange (ETDEWEB)
Kubis, T.; Vogl, P. [Walter Schottky Institute, Technische Universitaet Muenchen, Am Coulombwall 3, 85748 Garching (Germany)
2008-07-01
In this paper, we investigate the intrinsic spin-Hall effect in mesoscopic systems, i.e. spin-orbit induced spin-polarizations with and without external magnetic fields in confined two-dimensional systems at low temperatures. We employ a non-equilibrium Green's function approach that takes into account the coupling of non-equilibrium spin occupancies and spin-resolved electronic scattering states in open nanometer quantum systems. Importantly, our calculations go beyond the widely used continuum approximation of the spin-orbit interaction in the envelope function approximation and are based on a microscopic relativistic tight-binding approach that ensures the spin-orbit effects to be properly taken into account for any degree of charge confinement and localization and to all orders in the electron wave vector. We show that the qualitative trends and results in spin polarizations, their dependency on charge density, spin-orbit interaction strength, and confinement, as obtained within the envelope function approximation, agree with the results of atomistic calculations. The quantitative results, on the other hand, can differ significantly. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)
Microscopic approach to the theory of light nuclei and to simple nuclear reactions
International Nuclear Information System (INIS)
Baz', L.I.; Filippov, G.F.
1976-01-01
The results of calculations for the properties of light nuclei and simple nuclear reactions using the Schrodinger multinucleon equation involving the realistic nucleon-nucleon interaction are reviewed. It is noted that the theory for the A(<=)4 nuclei is practically complete at present. The reasons for the good agreement between the theoretical and experimental cross sections of nuclear reactions are given. The programme of a correct separation of the nuclear collective degree of freedom are discussed in detail
Energy Technology Data Exchange (ETDEWEB)
Lacroix, D
2001-07-01
In this work, we introduce a method to reduce the microscopic mean-field theory to a classical macroscopic dynamics at the initial stage of fusion reaction. We show that TDHF (Time-dependent Hartree-Fock) could be a useful tool to infer information on the fusion barrier as well as on one-body dissipation effect. We apply the reduction of information to the case of head-on reaction between a {sup 16}O and {sup 16,22,24,28}O in order to quantify the effect of neutron skin on fusion. We show that the precise determination of fusion barrier requires, in addition to the relative distance between center of mass, the introduction of an additional collective coordinate that explicitly breaks the neutron-proton symmetry. With this additional collective variable, we obtain a rather precise determination of the barrier position, height and diffuseness as well as one-body friction. (author)
High temperature superconductors and other superfluids
Alexandrov, A S
2017-01-01
Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.
Microscopic theories of effective interaction with an application to halo nuclei
International Nuclear Information System (INIS)
Kuo, T.T.S.
1997-01-01
The effective interaction used in shell model calculations plays a central role in nuclear structure calculations. We review here several microscopic methods for deriving such effective interactions, starting from the free NN potential. For a chosen model space, there are formal methods for obtaining a model-space effective hamiltonian H eff which can reproduce certain physical properties of the original hamiltonian. These methods are briefly discussed. Among them, the Q-box folded diagram method initially developed by Kuo-Lee-Ratcliff is relatively more convenient for numerical calculations. To apply this method to nuclear structure calculations, a first step is perform a partial summation of certain Q-box diagrams so as to express the Q-box in terms of G-matrix interactions. Accurate calculation of the G-matrix for finite nuclei is now feasible. For a given Q-box the folded-diagram series for the effective interaction can be summed up to all orders using iterative methods, such as the Lee-Suzuki method and the Krenciglowa-Kuo method. For the Q-box, however, it seems that one has to adopt some low-order, in the G-matrix, approximation. A highly desirable situation seems to be provided by halo nuclei where the valence nucleons are weakly attached to those of the inner core. In this case the effect of core-polarization is largely weakened, and the Q-box may be accurately calculated by including only few low-order G-matrix diagrams. (orig.)
Microscopic Theory of Coupled Slow Activated Dynamics in Glass-Forming Binary Mixtures.
Zhang, Rui; Schweizer, Kenneth S
2018-04-05
The Elastically Collective Nonlinear Langevin Equation theory for one-component viscous liquids and suspensions is generalized to treat coupled slow activated relaxation and diffusion in glass-forming binary sphere mixtures of any composition, size ratio, and interparticle interactions. A trajectory-level dynamical coupling parameter concept is introduced to construct two coupled dynamic free energy functions for the smaller penetrant and larger matrix particle. A two-step dynamical picture is proposed where the first-step process involves matrix-facilitated penetrant hopping quantified in a self-consistent manner based on a temporal coincidence condition. After penetrants dynamically equilibrate, the effectively one-component matrix particle dynamics is controlled by a new dynamic free energy (second-step process). Depending on the time scales associated with the first- and second-step processes, as well as the extent of matrix-correlated facilitation, distinct physical scenarios are predicted. The theory is implemented for purely hard-core interactions, and addresses the glass transition based on variable kinetic criteria, penetrant-matrix coupled activated relaxation, self-diffusion of both species, dynamic fragility, and shear elasticity. Testable predictions are made. Motivated by the analytic ultralocal limit idea derived for pure hard sphere fluids, we identify structure-thermodynamics-dynamics relationships. As a case study for molecule-polymer thermal mixtures, the chemically matched fully miscible polystyrene-toluene system is quantitatively studied based on a predictive mapping scheme. The resulting no-adjustable-parameter results for toluene diffusivity and the mixture glass transition temperature are in good agreement with experiment. The theory provides a foundation to treat diverse dynamical problems in glass-forming mixtures, including suspensions of colloids and nanoparticles, polymer-molecule liquids, and polymer nanocomposites.
Non-equilibrium statistical theory about microscopic fatigue cracks of metal in magnetic field
International Nuclear Information System (INIS)
Zhao-Long, Liu; Hai-Yun, Hu; Tian-You, Fan; Xiu-San, Xing
2010-01-01
This paper develops the non-equilibrium statistical fatigue damage theory to study the statistical behaviour of micro-crack for metals in magnetic field. The one-dimensional homogeneous crack system is chosen for study. To investigate the effect caused by magnetic field on the statistical distribution of micro-crack in the system, the theoretical analysis on microcrack evolution equation, the average length of micro-crack, density distribution function of micro-crack and fatigue fracture probability have been performed. The derived results relate the changes of some quantities, such as average length, density distribution function and fatigue fracture probability, to the applied magnetic field, the magnetic and mechanical properties of metals. It gives a theoretical explanation on the change of fatigue damage due to magnetic fields observed by experiments, and presents an analytic approach on studying the fatigue damage of metal in magnetic field. (cross-disciplinary physics and related areas of science and technology)
Nuclear structure effects on heavy-ion reactions with microscopic theory
Directory of Open Access Journals (Sweden)
Vo-Phuoc K.
2016-01-01
Full Text Available The self-consistent mean-field Hartree–Fock (HF theory, both static and time-dependent (TDHF versions, is used to study static and dynamic properties of fusion reactions between even 40–54Ca isotopes and 116Sn. The bare nucleus-nucleus potential, calculated with the frozen HF approach, is affected by the groundstate density of the nuclei. However, once dynamical effects are included, as in TDHF, the static effects on the barrier are essentially washed out. Dynamic properties of the nuclei, including low-lying vibrational modes, are calculated with TDHF and selectively used in coupled-channels calculations to identify which modes have the most effect on the TDHF fusion threshold. Vibrations cannot fully explain the difference between the static HF and TDHF fusion barriers trend so other dynamical effects such as transfer are considered.
DEFF Research Database (Denmark)
Novitsky, Andrey; Galynsky, Vladimir M.; Zhukovsky, Sergei
2012-01-01
The electronic Lorentz theory is employed to explain the optical properties of planar split-ring metamaterials. Starting from the dynamics of individual free carriers, the electromagnetic response of an individual split-ring meta-atom is determined, and the effective permittivity tensor...... of the metamaterial is calculated for normal incidence of light. Whenever the split ring lacks in-plane mirror symmetry, the corresponding permittivity tensor has a crystallographic structure of an elliptically dichroic medium, and the metamaterial exhibits optical properties of planar chiral structures. Its...... transmission spectra are different for right-handed versus left-handed circular polarization of the incident wave, so the structure changes its transmittance when the direction of incidence is reversed. The magnitude of this change is shown to be related to the geometric parameters of the split ring...
Microscopic theory of the total reaction cross section and application to stable and exotic nuclei
International Nuclear Information System (INIS)
Hussein, M.S.; Rego, R.A.; Bertulani, C.A.
1990-09-01
The multiple scattering theory is used to develop a theoretical framework for the calculation of the heavy-ion total reaction order double scattering contribution to the ion-ion t sub(ρ1 ρ2) interaction is calculated and found to contribute at most 10% effect on σ sub(R). It is found that whereas at intermediate energies the t sub(ρ1ρ2) accounts reasonably well for the total reaction cross section, indicating the predominance, at these energies, of single nucleon knockout, it underestimates σ sub(R) at lower energies by a large amount. This is mainly due to the absence in t sub(ρ1ρ2) of fusion and inelastic surface excitation. The case of exotic (neutron-and proton-rich) nuclei is also discussed. (author) the absence
Magnetic Scaling in Superconductors
International Nuclear Information System (INIS)
Lawrie, I.D.
1997-01-01
The Ginzburg-Landau-Wilson superconductor in a magnetic field B is considered in the approximation that magnetic-field fluctuations are neglected. A formulation of perturbation theory is presented in which multiloop calculations fully retaining all Landau levels are tractable. A 2-loop calculation shows that, near the zero-field critical point, the singular part of the free energy scales as F sing ∼ |t| 2-α F(B|t| -2ν ), where ν is the coherence-length exponent emdash a result which has hitherto been assumed on purely dimensional grounds. copyright 1997 The American Physical Society
International Nuclear Information System (INIS)
Abril, J.M.
1998-01-01
Recently much experimental effort has been focused on determining those factors which affect the kinetics and the final equilibrium conditions for the uptake of radionuclides from the aqueous phase by particulate matter. At present, some of these results appear to be either surprising or contradictory and introduce some uncertainty in which parameter values are most appropriate for environmental modelling. In this paper, we study the ionic exchange between the dissolved phase and suspended particles from a microscopic viewpoint, developing a mathematical description of the kinetic transfer and the k d distribution coefficients. The most relevant contribution is the assumption that the exchange of radionuclides occurs in a specific surface layer on the particles, with a non-zero thickness. A wide range of experimental findings can be explained with this theory. (Copyright (c) 1998 Elsevier Science B.V., Amsterdam. All rights reserved.)
Topological insulators and topological superconductors
Bernevig, Andrei B
2013-01-01
This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...
Evaporation of microscopic black holes in string theory and the bound on species
International Nuclear Information System (INIS)
Dvali, G.; Luest, D.
2010-01-01
We address the question how string compactifications with D-branes are consistent with the black hole bound, which arises in any theory with number of particle species to which the black holes can evaporate. For the Kaluza-Klein particles, both longitudinal and transversal to the D-branes, it is relatively easy to see that the black hole bound is saturated, and the geometric relations can be understood in the language of species-counting. We next address the question of the black hole evaporation into the higher string states and discover, that contrary to the naive intuition, the exponentially growing number of Regge states does not preclude the existence of semi-classical black holes of sub-stringy size. Our analysis indicates that the effective number of string resonances to which such micro black holes evaporate is not exponentially large but is bounded by N = 1/g s 2 , which suggests the interpretation of the well-known relation between the Planck and string scales as the saturation of the black hole bound on the species number. In addition, we also discuss some other issues in D-brane compactifications with a low string scale of order TeV, such as the masses of light moduli fields. (Abstract Copyright [2010], Wiley Periodicals, Inc.)
Abbasi, Mohammad
2018-04-01
The nonlinear vibration behavior of a Tapping mode atomic force microscopy (TM-AFM) microcantilever under acoustic excitation force has been modeled and investigated. In dynamic AFM, the tip-surface interactions are strongly nonlinear, rapidly changing and hysteretic. First, the governing differential equation of motion and boundary conditions for dynamic analysis are obtained using the modified couple stress theory. Afterwards, closed-form expressions for nonlinear frequency and effective nonlinear damping ratio are derived utilizing perturbation method. The effect of tip connection position on the vibration behavior of the microcantilever are also analyzed. The results show that nonlinear frequency is size dependent. According to the results, an increase in the equilibrium separation between the tip and the sample surface reduces the overall effect of van der Waals forces on the nonlinear frequency, but its effect on the effective nonlinear damping ratio is negligible. The results also indicate that both the change in the distance between tip and cantilever free end and the reduction of tip radius have significant effects on the accuracy and sensitivity of the TM-AFM in the measurement of surface forces. The hysteretic behavior has been observed in the near resonance frequency response due to softening and hardening of the forced vibration response. Copyright © 2018 Elsevier Ltd. All rights reserved.
Microscopic theory for nucleon-nucleus optical potential in intermediate energies
International Nuclear Information System (INIS)
He Guozhu; Cai Chonghai
1984-01-01
Based on the scattering theory of KMT and FGH we calculate the nucleon-nucleus optical potentials of 4 He, 16 O and 40 Ca from the Paris N-N potential given by M. Lacombe et al. The real part Vsub(R)(r) of our optential has the form of Woods-Saxon when the kinetic energy E of the incident nucleon is low. The depth of Vsub(R)(r) will decrease as E increases, and it turns into positive in the interior of nucleus when E approx.= 300 MeV. The repulsive effect in the interior of nucleus increases rapidly as E increases even more, butthere always exists some attractive effect at the surface of nucleus. Therefore, Vsub(R)(r) has generally the wine-bottle bottom shape. We also calculate the quatity Jv/N = (4π/N)∫sub(0)sub(infinity)Vsub(R)(r)r 2 dr. Our results are basically in acordance with those of M.Jaminon et al's relativistic Hatree calculation as well as the experimental results. In this work we also calculate the imaginary part of optical potential and its variation with the kinetic energy of the incident nucleon
International Nuclear Information System (INIS)
Xu, J.; Ren, Y.; Ting, C.S.
1995-01-01
The properties of a d x 2 -y 2 -wave superconductor in an external magnetic field are investigated on the basis of Gorkov's theory of weakly coupled superconductors. The Ginzburg-Landau (GL) equations, which govern the spatial variations of the order parameter and the supercurrent, are microscopically derived. The single vortex structure and surface problems in such a superconductor are studied using these equations. It is shown that the d-wave vortex structure is very different from the conventional s-wave vortex: the s-wave and d-wave components, with the opposite winding numbers, are found to coexist in the region near the vortex core. The supercurrent and local magnetic field around the vortex are calculated. Far away from the vortex core, both of them exhibit a fourfold symmetry, in contrast to an s-wave superconductor. The surface problem in a d-wave superconductor is also studied by solving the GL equations. The total order parameter near the surface is always a real combination of s- and d-wave components, which means that the proximity effect cannot induce a time-reversal symmetry-breaking state at the surface
Superconductors: The long road ahead
International Nuclear Information System (INIS)
Foner, S.; Orlando, T.P.
1988-01-01
Before the discovery of high-temperature superconductors, progress in superconductivity was measured by quite small increases in critical temperature, often of less than one degree. Today, there is no reason to believe that the dramatic leaps in critical temperature inaugurated by superconducting ceramics are over. Researchers may find new high-temperature superconducting materials with less severe technical limitations than the ceramics we know today. And if the day ever comes when a superconductor can be reliably manufactured to operate effectively at room temperature, then superconductors will be incorporated in a broad range of everyday household devices - motors, appliances, even children's toys - with a large consumer market. High-temperature superconductors may also cause us to extensively revise our traditional theories about how superconductivity works. Should it run out that superconductivity in ceramics involves new physical mechanisms, then these mechanisms could lead to applications never considered before. The recent discoveries have already reinvigorated superconductivity research. What was once largely the domain of a relatively small group of scientists has become a genuinely multidisciplinary realm. Now physicists, materials scientists, chemists, metallurgists, ceramists, and solid-state electronics engineers are all focusing on superconductivity. The cross-fertilization of these disciplines should contribute to further discoveries of importance to the practical application of superconductors
Electrodynamics of spin currents in superconductors
International Nuclear Information System (INIS)
Hirsch, J.E.
2008-01-01
In recent work we formulated a new set of electrodynamic equations for superconductors as an alternative to the conventional London equations, compatible with the prediction of the theory of hole superconductivity that superconductors expel negative charge from the interior towards the surface. Charge expulsion results in a macroscopically inhomogeneous charge distribution and an electric field in the interior, and because of this a spin current is expected to exist. Furthermore, we have recently shown that a dynamical explanation of the Meissner effect in superconductors leads to the prediction that a spontaneous spin current exists near the surface of superconductors (spin Meissner effect). In this paper we extend the electrodynamic equations proposed earlier for the charge density and charge current to describe also the space and time dependence of the spin density and spin current. This allows us to determine the magnitude of the expelled negative charge and interior electric field as well as of the spin current in terms of other measurable properties of superconductors. We also provide a 'geometric' interpretation of the difference between type I and type II superconductors, discuss how superconductors manage to conserve angular momentum, discuss the relationship between our model and Slater's seminal work on superconductivity, and discuss the magnitude of the expected novel effects for elemental and other superconductors. (Abstract Copyright [2008], Wiley Periodicals, Inc.)
Longo, Roberto C; Cho, Kyeongjae; Brüner, Philipp; Welle, Alexander; Gerdes, Andreas; Thissen, Peter
2015-03-04
In this paper, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as a model surface of cement and concrete. Total energy calculations based on density functional theory combined with kinetic barrier predictions based on nudge elastic band method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO3(2-)) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (also called early stage hydration) and Ca(2+) ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca(2+) reacts again with CO2 and forms carbonate complexes, ending in a delocalized layer. By means of high-resolution time-of-flight secondary-ion mass spectrometry images, we confirm that hydration can lead to a partially delocalization of Ca(2+) ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by the meaning of low-energy ion-scattering spectroscopy combined with careful discussion about the competing reactions of carbonation vs hydration.
Microscopic theory of light exotic nuclei. Shell Models Embedded in the Continuum
International Nuclear Information System (INIS)
Bennaceur, K.
1999-01-01
The recent advances in experimental nuclear physics make it possible to study nuclear systems far from the beta stability line. The discovery of new phenomena, like halos or neutron skins, requires the development of new theoretical models which enable to study these systems. The first part of this work is devoted to the development and the applications of the Shell Model Embedded in the Continuum (SMEC). This new formalism allows to take into account the correlations between the bound and scattering states of loosely bound nuclei. SMEC is applied here to the study of the spectroscopy of the Mirror nuclei 8 B- 8 Li and 17 F- 17 O. It can also be used to calculate the cross sections of the elastic scattering, the Coulomb breakup processes and the radiative n,p capture processes. The results concerning the reactions of astrophysical interest: 18 O(p, γ) 17 F and 7 Be(p, γ) 8 B, are discussed in details. This last reaction is very important because the disintegration of 8 B is the main source of High energy neutrinos in the sun. The second part of this work is related to the analysis of pairing interaction for weakly bound nuclei. We have developed a new approach, based on the Hartree-Fock-Bogolyubov (HFB) theory, that allows to study the pairing correlations between bound and scattering states, both resonant and not resonant ones. The 'particle-hole' potential is replaced by a model potential for which the solutions are analytically known. This method allows to analyse the effect of pairing on bound and resonant states, independently of their energy position. We have clearly demonstrated that the non-resonant continuum plays a crucial role in the loosely bound nuclei and that solving the HFB equations in the coordinate space is the only method that permits to treat this problem correctly. (author)
International Nuclear Information System (INIS)
Ma, M.; Lee, P.A.
1985-01-01
We study the effects of Anderson localization on superconductivity by using a Bardeen-Cooper-Schrieffer (BCS)-type trial wave function which pairs electrons in exact time-reversed eigenstates of the single-particle Hamiltonian. Within this approximation, and neglecting localization effects on the effective Coulomb repulsion and the electron-phonon coupling, we find that superconductivity persists below the mobility edge. In fact, Anderson's theorem is valid in the localized phase as long as rhoΔ 0 L/sup d/ > 1 (rho is the density of states averaged over +- Δ 0 of the Fermi energy, Δ 0 the BCS gap parameter, and L the localization length). Hence the gap order parameter Δ(r) remains uniform in space at the BCS value Δ 0 . The superfluid density and response to electromagnetic perturbations, however, show marked differences from the ''dirty superconductor'' regime. For rhoΔ 0 L/sup d/ < 1, Δ(r) fluctuates spatially and eventually drops to zero. In the limit when states are site localized, the system crosses over into the ''Anderson negative-U glass.'' Considerations beyond the trial wave-function approximation will speed up the destruction of superconductivity. The superconductor formed from localized states has the property that its quasiparticle excitations are also localized. Such excitations can be probed by observing the normal current in a tunneling junction
Microscopic theory of coherent and incoherent optical properties of semiconductor heterostructures
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Martin
2008-09-02
An important question is whether there is a regime in which lasing from indirect semiconductors is possible. Thus, we discuss this question in this thesis. It is shown that under incoherent emission conditions it is possible to create an exciton condensate in multiple-quantum-well (MQW) systems. The influence of a MQW structure on the exciton lifetime is investigated. For the description of the light-matter interaction of a QW in the coherent excitation regime, the semiconductor Bloch equation (SBE) are used. The incoherent regime is described by the semiconductor luminescence equations (SLE). In principle it is even possible to couple SBE and SLE. The resulting theory is able to describe interactions between coherent and incoherent processes we investigate both, the coherent and the incoherent light-emission regime. Thus we define the investigated system and introduce the many-body Hamiltonian that describes consistently the light-matter interaction in the classical and the quantum limit. We introduce the SBE that allow to compute the light-matter interaction in the coherent scenario. The extended scattering model is used to investigate the absorption of a Ge QW for different time delays after the excitations. In this context, we analyze whether there is a regime in which optical gain can be realized. Then we apply a transfer-matrix method to include into our calculations the influence of the dielectric environment on the optical response. Thereafter the SLE for a MQW system are introduced. We derive a scheme that allows for decoupling environmental effects from the pure PL-emission properties of the QW. The PL of the actual QW system is obtained by multiplying this filter function and the free-space PL that describes the quantum emission into a medium with spatially constant background-refractive index. It is studied how the MQW-Bragg structure influences the PL-emission properties compared to the emission of a single QW device. As a last feature, it is shown
Electronic structure and electron-phonon coupling in layered copper oxide superconductors
International Nuclear Information System (INIS)
Pickett, W.E.; Cohen, R.E.; Krakauer, H.
1991-01-01
Experimental data on the layered Cu-O superconductors seem more and more to reflect normal Fermi-liquid behavior and substantial correspondence with band structure predictions. Recent self-consistent, microscopic band theoretic calculations of the electronic structure, lattice instabilities, phonon frequencies, and electron-phonon coupling characteristics and strength for La 2 CuO 4 and YBa 2 Cu 3 O 7 are reviewed. A dominant feature of the coupling is a novel Madelung-like contribution which would be screened out in high density of states superconductors but survives in cuprates because of weak screening. Local density functional theory correctly predicts the instability of (La, Ba) 2 CuO 4 to both the low-temperature orthorhombic phase (below room temperature) and the lower-temperature tetragonal phase (below 50 K). (orig.)
Flux cutting in superconductors
International Nuclear Information System (INIS)
Campbell, A M
2011-01-01
This paper describes experiments and theories of flux cutting in superconductors. The use of the flux line picture in free space is discussed. In superconductors cutting can either be by means of flux at an angle to other layers of flux, as in longitudinal current experiments, or due to shearing of the vortex lattice as in grain boundaries in YBCO. Experiments on longitudinal currents can be interpreted in terms of flux rings penetrating axial lines. More physical models of flux cutting are discussed but all predict much larger flux cutting forces than are observed. Also, cutting is occurring at angles between vortices of about one millidegree which is hard to explain. The double critical state model and its developments are discussed in relation to experiments on crossed and rotating fields. A new experiment suggested by Clem gives more direct information. It shows that an elliptical yield surface of the critical state works well, but none of the theoretical proposals for determining the direction of E are universally applicable. It appears that, as soon as any flux flow takes place, cutting also occurs. The conclusion is that new theories are required. (perspective)
Energy Technology Data Exchange (ETDEWEB)
Elzbieciak-Wodka, Magdalena; Ruiz-Cabello, F. Javier Montes; Trefalt, Gregor; Maroni, Plinio; Borkovec, Michal, E-mail: michal.borkovec@unige.ch [Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, 30, Quai Ernest-Ansermet, 1205 Geneva (Switzerland); Popescu, Mihail N. [Ian Wark Research Institute, University of South Australia, Mawson Lakes, SA 5095 (Australia)
2014-03-14
Interaction forces between carboxylate colloidal latex particles of about 2 μm in diameter immersed in aqueous solutions of monovalent salts were measured with the colloidal probe technique, which is based on the atomic force microscope. We have systematically varied the ionic strength, the type of salt, and also the surface charge densities of the particles through changes in the solution pH. Based on these measurements, we have accurately measured the dispersion forces acting between the particles and estimated the apparent Hamaker constant to be (2.0 ± 0.5) × 10{sup −21} J at a separation distance of about 10 nm. This value is basically independent of the salt concentration and the type of salt. Good agreement with Lifshitz theory is found when roughness effects are taken into account. The combination of retardation and roughness effects reduces the value of the apparent Hamaker constant and its ionic strength dependence with respect to the case of ideally smooth surfaces.
International Nuclear Information System (INIS)
Gebremariam, B.; Bogner, S.K.; Duguet, T.
2011-01-01
The density matrix expansion (DME) of Negele and Vautherin is a convenient tool to map finite-range physics associated with vacuum two- and three-nucleon interactions into the form of a Skyrme-like energy density functional (EDF) with density-dependent couplings. In this work, we apply the improved formulation of the DME proposed recently in (arXiv:0910.4979) by Gebremariam et al. to the non-local Fock energy obtained from chiral effective field theory (EFT) two-nucleon (NN) interactions at next-to-next-to-leading-order (N 2 LO). The structure of the chiral interactions is such that each coupling in the DME Fock functional can be decomposed into a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the universal long-range pion exchanges. This motivates a new microscopically-guided Skyrme phenomenology where the density-dependent couplings associated with the underlying pion-exchange interactions are added to standard empirical Skyrme functionals, and the density-independent Skyrme parameters subsequently refit to data. A link to a downloadable Mathematica notebook containing the novel density-dependent couplings is provided.
Searching for superconductors with high critical temperature
Energy Technology Data Exchange (ETDEWEB)
Chao, C
1977-08-18
Critical temperature of superconductors can be and must be raised so that their range of application can be broadened. It was estimated that, in 3 to 5 years, superconductor electric generators might be used in nuclear submarines and/or other applications where the requirements of small volume and light weight are critical. The BCS theory was recapitulated. Possible methods of achieving higher critical temperature were proposed and discussed.
The iron pnictide superconductors an introduction and overview
Citro, Roberta
2017-01-01
This book covers different aspects of the physics of iron-based superconductors ranging from the theoretical, the numerical and computational, to the experimental ones. It starts from the basic theory modeling many-body physics in Fe-superconductors and other multi-orbital materials and drreaches up to the magnetic and Cooper pair fluctuations and nematic order. Finally, it offers a comprehensive overview of the most recent advancements in the experimental investigations of iron based superconductors. .
Flux Pinning in Superconductors
Matsushita, Teruo
2007-01-01
The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...
International Nuclear Information System (INIS)
Zachariasen, F.
1986-01-01
The author describes the construction of an effective action describing long-range Yang-Mills theory. This action is motivated by a study of the system of Dyson equations and Ward identities, but cannot (yet) be derived from the underlying quantum theory. The effective action turns out to describe a medium very much like a dual relativistic superconductor; that is, with electric and magnetic fields interchanged. There is a dual Meissner effect, which serves to compress color electric fields into flux tubes, containing quantized units of color electric flux. This produces electric confinement. There is a magnetic condensate, resulting from a spontaneous symmetry breaking analogous to that in the relativistic superconductor, as in the Abelian Higgs model. He gives the motivation leading to the effective action, and describes the quantized electric flux tube solutions. Finally, he mentions briefly some other applications
Strong-coupling theory of superconductivity
International Nuclear Information System (INIS)
Rainer, D.; Sauls, J.A.
1995-01-01
The electronic properties of correlated metals with a strong electron-phonon coupling may be understood in terms of a combination of Landau''s Fermi liquid theory and the strong-coupling theory of Migdal and Eliashberg. In these lecture notes we discuss the microscopic foundations of this phenomenological Fermi-liquid model of correlated, strong-coupling metals. We formulate the basic equations of the model, which are quasiclassical transport equations that describe both equilibrium and non-equilibrium phenomena for the normal and superconducting states of a metal. Our emphasis is on superconductors close to equilibrium, for which we derive the general linear response theory. As an application we calculate the dynamical conductivity of strong-coupling superconductors. (author)
Directory of Open Access Journals (Sweden)
G. A. Ummarino
2010-01-01
Full Text Available The s-wave three-band Eliashberg theory can simultaneously reproduce the experimental critical temperatures and the gap values of the superconducting materials LaFeAsO0.9F0.1, Ba0.6K0.4Fe2As2 and SmFeAsO0.8F0.2 as exponent of the more important families of iron pnictides. In this model the dominant role is played by interband interactions and the order parameter undergoes a sign reversal between hole and electron bands (±-wave symmetry. The values of all the gaps (with the exact experimental critical temperature can be obtained by using high values of the electron-boson coupling constants and small typical boson energies (in agreement with experiments.
2014-01-01
Central to effective roadway design is the ability to understand how drivers behave as they traverse a segment of : roadway. While simple and complex microscopic models have been used over the years to analyse driver behaviour, : most models: 1.) inc...
Kondo, Kei-Ichi; Kato, Seikou; Shibata, Akihiro; Shinohara, Toru
2015-05-01
The purpose of this paper is to review the recent progress in understanding quark confinement. The emphasis of this review is placed on how to obtain a manifestly gauge-independent picture for quark confinement supporting the dual superconductivity in the Yang-Mills theory, which should be compared with the Abelian projection proposed by 't Hooft. The basic tools are novel reformulations of the Yang-Mills theory based on change of variables extending the decomposition of the SU(N) Yang-Mills field due to Cho, Duan-Ge and Faddeev-Niemi, together with the combined use of extended versions of the Diakonov-Petrov version of the non-Abelian Stokes theorem for the SU(N) Wilson loop operator. Moreover, we give the lattice gauge theoretical versions of the reformulation of the Yang-Mills theory which enables us to perform the numerical simulations on the lattice. In fact, we present some numerical evidences for supporting the dual superconductivity for quark confinement. The numerical simulations include the derivation of the linear potential for static interquark potential, i.e., non-vanishing string tension, in which the "Abelian" dominance and magnetic monopole dominance are established, confirmation of the dual Meissner effect by measuring the chromoelectric flux tube between quark-antiquark pair, the induced magnetic-monopole current, and the type of dual superconductivity, etc. In addition, we give a direct connection between the topological configuration of the Yang-Mills field such as instantons/merons and the magnetic monopole. We show especially that magnetic monopoles in the Yang-Mills theory can be constructed in a manifestly gauge-invariant way starting from the gauge-invariant Wilson loop operator and thereby the contribution from the magnetic monopoles can be extracted from the Wilson loop in a gauge-invariant way through the non-Abelian Stokes theorem for the Wilson loop operator, which is a prerequisite for exhibiting magnetic monopole dominance for quark
A nonquasiclassical description of inhomogeneous superconductors
International Nuclear Information System (INIS)
Zaikin, A.D.; Panyukov, S.V.
1988-01-01
Exact microscopic equations are derived that make it possible to describe inhomogeneous superconductors when the quasi-classical approach is not suitable. These equations are simpler than the Gorkov equations. The authors generalize the derived equations for describing the nonequilibrium states of inhomogeneous superconductors. It is demonstrated that the derived equations (including the case of a nonequilibrium quasi particle distribution function) may be written in the form of linear differential equations for the simultaneous wave function μ, ν. The quasi-classical limit of such equations is examined. Effective boundary conditions are derived for the μ, ν functions that allow description of superconductors with a sharp change in parameters within the scope of the quasi-classical approach
Scanning Tunneling Spectroscopy on Electron-Boson Interactions in Superconductors
Schackert, Michael Peter
2014-01-01
This thesis describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.
Scanning tunneling spectroscopy on electron-boson interactions in superconductors
Energy Technology Data Exchange (ETDEWEB)
Schackert, Michael Peter
2014-07-01
This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.
Scanning tunneling spectroscopy on electron-boson interactions in superconductors
Schackert, Michael Peter
2015-01-01
This work describes the experimental study of electron-boson interactions in superconductors by means of inelastic electron tunneling spectroscopy performed with a scanning tunneling microscope (STM) at temperatures below 1 K. This new approach allows the direct measurement of the Eliashberg function of conventional superconductors as demonstrated on lead (Pb) and niobium (Nb). Preparative experiments on unconventional iron-pnictides are presented in the end.
International Nuclear Information System (INIS)
Sharma, R.R.
2006-01-01
First temperature dependent regular and pseudo-energy gap parameters and regular and pseudo-transition temperatures arising from the same physical origin have been calculated in the strong coupling formalism. Temperature dependent many-body field-theoretic techniques have been developed, as an extension of our previous zero-temperature formalism, to derive temperature dependent general expressions for the renormalized energy gap parameter Δ(k->,ω), the gap renormalization parameter Z(k->,ω) and energy band renormalization parameter χ(k->,ω) for momentum k-> and frequency ω making use of dipolon propagator and electron Green's function taking into account explicitly the dressed dipolons as mediators of superconductivity, the screened Coulomb repulsion and nonrigid electron energy bands considering retardation and damping effects and electron-hole asymmetry. The theory takes into account all necessary and important correlations. Our self-consistent calculations utilize the previously symmetry predicted two energy gap parameters for superconducting cuprates, one being antisymmetric (''as'') with respect to the exchange of the k x and k y components of vector k-> and the other being symmetric (''s'') with respect to the exchange of k x and k y . Our present temperature dependent self-consistent solutions of the real and imaginary parts of the Δ(k->,ω), Z(k->,ω) and χ(k->,ω) confirm the existence of these two (different) solutions and conclude that the antisymmetric solution of the gap parameter corresponds to the observed regular (''reg'') superconducting energy gap whereas the symmetric solution corresponds to the observed pseudo-(''pse-'') energy gap. Explicit temperature dependent self-consistent calculations have been performed here for Bi 2 Sr 2 CaCu 2 O 8+δ as well as Bi 2 Sr 2 CaCu 2 O 8 giving temperature dependent energy gap parameters and corresponding transition temperatures. The calculated results are consistent with the available experimental
Fine uniform filament superconductors
Riley, Jr., Gilbert N.; Li, Qi; Roberts, Peter R.; Antaya, Peter D.; Seuntjens, Jeffrey M.; Hancock, Steven; DeMoranville, Kenneth L.; Christopherson, Craig J.; Garrant, Jennifer H.; Craven, Christopher A.
2002-01-01
A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.
Energy Technology Data Exchange (ETDEWEB)
Peyral, P; Lebeau, C; Rosenblatt, J; Burin, J P; Raboutou, A; Pena, Q; Perrin, C [Centre National de la Recherche Scientifique, 35 - Rennes (FR)
1991-11-01
Transport properties of high T{sub c} superconductors depend on the microscopic structure of the ideal material and on the mesoscopic characteristics of each sample. From an experimental point of view it is essential to separate their effects. This can be done by describing quantitatively the resistive transition in zero field as a two-step process: a superconducting intragranular transition and an intergranular coherence transition. Well-known theories of critical fluctuations and Gaussian fluctuations allow us to obtain important characteristic parameters of the intragranular material such as the critical temperature, the normal resistivity and the width of the critical region. 20 refs.; 2 figs.
High critical temperature superconductors: Progress achieved after two years
International Nuclear Information System (INIS)
Maillard, J.M.; Rammal, R.; Vittorge, M.C.
1989-01-01
Progress concerning the theory of high temperature superconductors and activity of laboratories of the CNRS (France) are reviewed and news on strategy, budgets, theoretical research, materials characterization, fabrication process technology transfers, commercialisation, uses and data bases are given [fr
Forces and energy dissipation in inhomogeneous non-equilibrium superconductors
International Nuclear Information System (INIS)
Poluehktov, Yu.M.; Slezov, V.V.
1987-01-01
The phenomenological theory of volume forces and dissipation processes in inhomogeneous non-equilibrium superconductors near temperature transition from the normal to superconducting state is constructed. The approach is based on application of dynamic equations of superconductivity formulated on the basis of the Lagrangian formalism. These equations are generalized the Ginzburg-Landau theory in the nonstationary non-equilibrium case for ''foul'' superconductors. The value estimations of volume forces arising in inhomogeneities during relaxation of an order parameter and when the electrical field is penetrated into the superconductor, are given
Charge transport in junctions between d-wave superconductors
International Nuclear Information System (INIS)
Barash, Y.S.; Galaktionov, A.V.; Zaikin, A.D.
1995-01-01
We develop a microscopic analysis of superconducting and dissipative currents in junctions between superconductors with d-wave symmetry of the order parameter. We study the proximity effect in such superconductors and show that for certain crystal orientations the superconducting order parameter can be essentially suppressed in the vicinity of a nontransparent specularly reflecting boundary. This effect strongly influences the value and the angular dependence of the dc Josephson current j S . At T∼T c it leads to a crossover between j S ∝T c -T and j S ∝(T c -T) 2 respectively for homogeneous and nonhomogeneous distribution of the order parameter in the vicinity of a tunnel junction. We show that at low temperatures the current-phase relation j S (cphi) for superconductor--normal-metal--superconductor junctions and short weak links between d-wave superconductors is essentially nonharmonic and contains a discontinuity at cphi=0. This leads to further interesting features of such systems which can be used for pairing symmetry tests in high-temperature superconductors (HTSC). We also investigated the low-temperature I-V curves of normal-metal--superconductor and superconductor-superconductor tunnel junctions and demonstrated that depending on the junction type and crystal orientation these curves show zero-bias anomalies I∝V 2 , I∝V 2 ln(1/V), and I∝V 3 caused by the gapless behavior of the order parameter in d-wave superconductors. Many of our results agree well with recent experimental findings for HTSC compounds
International Nuclear Information System (INIS)
Nishigori, S.; Moriwaki, H.; Suzuki, T.; Fujita, T.; Tanaka, H.; Takabatake, T.; Fujii, H.
1994-01-01
Superconductivity in LaRhSb was newly found below the transition temperature T c = 2.67 K by the measurements of the electrical resistivity, magnetic susceptibility and specific heat in magnetic fields. The characteristics of the superconductivity determined in this study indicate that LaRhSb is a type II superconductor following the BCS theory. (orig.)
Fabrication of high temperature superconductors
Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya
2003-06-17
A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.
Ginsburg-Landau equation around the superconductor-insulator transition
International Nuclear Information System (INIS)
Ng, T.K.
1991-01-01
Based on the scaling theory of localization, we construct a Ginsburg-Landau (GL) equation for superconductors in an arbitrary strength of disordered potential. Using this GL equation, we reexamine the criteria for the superconductor-insulator transition and find that the transition to a localized superconductor can happen on both sides of the (normal) metal-insulator transition, in contrast to a previous prediction by Ma and Lee [Phys. Rev. B 32, 5658 (1985)] that the transition can only be on the insulator side. Furthermore, by comparing our theory with a recent scaling theory of dirty bosons by Fisher et al. [Phys. Rev. Lett. 64, 587 (1990)], we conclude that nontrivial crossover behavior in transport properties may occur in the vicinity of the superconductor-insulator transition
International Nuclear Information System (INIS)
Kamerdzhiev, S.P.
1982-01-01
The purposes of the given review are as follows: 1) brief description of subsequent method for accoUntancy of 2p2h-configurations of the nucleus in the second order by quasiparticle-phonon interaction; the method uses Green functions and it represents specification of microscopic model of 2p2h-configuration accountancy; 2) obtaining the basic results of already existing approaches from the obtained analytical expressions. Accountancy of 2p2h-configurations of magic nuclei is necessary for improvement of microscopic description of multipole giant resonances (MGR). An equation for the effective field in a nucleus induced by an external field is obtained. An expression for polarization operator determining probabilities of nucleus transitions from the ground state to the excited one is obtained graphically. Derivation of the described equation for apex of the effective field and expressions for polarization operator which besides 1p1h-configurations account for 2p2h-configurations are the basic results of the paper
Energy gap of ferromagnet-superconductor bilayers
Energy Technology Data Exchange (ETDEWEB)
Halterman, Klaus; Valls, Oriol T
2003-10-15
The excitation spectrum of clean ferromagnet-superconductor bilayers is calculated within the framework of the self-consistent Bogoliubov-de Gennes theory. Because of the proximity effect, the superconductor induces a gap in the ferromagnet spectrum, for thin ferromagnetic layers. The effect depends strongly on the exchange field in the ferromagnet. We find that as the thickness of the ferromagnetic layer increases, the gap disappears, and that its destruction arises from those quasiparticle excitations with wave vectors mainly along the interface. We discuss the influence that the interface quality and Fermi energy mismatch between the ferromagnet and superconductor have on the calculated energy gap. We also evaluate the density of states in the ferromagnet, and we find it in all cases consistent with the gap results.
The evidence of unconventional pairing in heavy fermion superconductors and high-Tc superconductors
International Nuclear Information System (INIS)
Tien, C.; Wur, C.S.; Jiang, I.M.
1989-01-01
Recently there has been a great deal of interest in two classes of superconductors, heavy fermion superconductors and high T c copper oxide superconductors. The behavior and nature of superconductivity in these two classes of materials are very similar. The temperature dependences of spin-lattice relaxation time (T 1 ) and spin-spin relaxation time (T 2 ) of 9 Be in UBe 13 are quite similar to those of 63 Cu and 89 Y in YBa 2 Cu 3 O 7-δ . The Knight shift of UBe 13 is unchanged during the superconducting phase transition. The Knight shift of YBa 2 Cu 3 O 7-δ changes from the value in the normal state K n /K s = 1 at T ≥ T c to K n /K s = 0.5 at T = 6 K. Both do not approach zero as expected in BCS theory. The acoustic attenuation is enhanced just below T c instead of rapid drop near T c for these two superconducting system. Neither the enhancement, the temperature variation, nor any other anomalous behaviors appear to be mirrored in EPR data for heavy Fermion superconductors and high T c superconductors. This strongly suggests that the unconventional pairing mechanism which induces superconductivity in heavy fermion materials might also involve in high T c superconductors
Federal Laboratory Consortium — FUNCTION: Makes ultra-high-resolution field measurements. The Microwave Microscope (MWM) has been used in support of several NRL experimental programs involving sea...
Towards vortex imaging with scanning tunneling microscope
International Nuclear Information System (INIS)
Fuchs, Dan T.
1994-02-01
A low temperature, Besocke beetle type scanning tunneling microscope, with a scan range of 10 by 10 microns was built. The scanning tunneling microscope was calibrates for various temperatures and tested on several samples. Gold monolayers evaporated at 400 deg C were resolved and their dynamic behavior observed. Atomic resolution images of graphite were obtained. The scanning tunneling microscope was designed for future applications of vortex imaging in superconductors. The special design considerations for this application are discussed and the physics underlying it reviewed. (author)
International Nuclear Information System (INIS)
Machleidt, R.
2010-01-01
The theory of nuclear forces has made great progress since the turn of the millenium using the framework of chiral effective field theory (ChEFT). The advantage of this approach, which was originally proposed by Weinberg, is that it has a firm basis in quantum-chromodynamics and allows for quantitative calculations. Moreover, this theory generates two-nucleon forces (2NF) and many-body forces on an equal footing and provides an explanation for the empirically known fact that 2NF ≫ 3NF ≫ 4NF. I will present the recent advances in more detail and put them into historical context. In addition, I will also provide a critical evaluation of the progress made including a discussion of the limitations of the ChEFT approach. (author)
Dependence of some electromagnetic properties of superconductors on coupling strength
International Nuclear Information System (INIS)
Marsiglio, F.; Carbotte, J.P.; Blezius, J.
1990-01-01
We have calculated select electromagnetic properties for many real superconductors based on tunneling-derived electron-phonon spectral densities. We use this data to fit coefficients in semiphenomenological forms derived through a series of approximations to the exact microscopic expressions. It is found that the derived forms represent well the strong-coupling corrections
Controlled Manipulation of Individual Vortices in a Superconductor
Energy Technology Data Exchange (ETDEWEB)
Straver, E.W.J.
2010-04-05
We report controlled local manipulation of single vortices by low temperature magnetic force microscope (MFM) in a thin film of superconducting Nb. We are able to position the vortices in arbitrary configurations and to measure the distribution of local depinning forces. This technique opens up new possibilities for the characterization and use of vortices in superconductors.
Large area bulk superconductors
Miller, Dean J.; Field, Michael B.
2002-01-01
A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.
Friction in levitated superconductors
International Nuclear Information System (INIS)
Brandt, E.H.
1988-01-01
A type I superconductor levitated above a magnet of low symmetry has a unique equilibrium position about which it may oscillate freely. In contrast, a type II superconductor has a continuous range of stable equilibrium positions and orientations where it floats rigidly without swinging or orbiting as if it were stuck in sand. A strong internal friction conspicuously indicates the existence and unpinning of flux lines in oxide superconductors levitated above liquid nitrogen. It is shown how these effects follow from the hysteretic magnetization curves and how the energy is dissipated
Development of superconductor bulk for superconductor bearing
Energy Technology Data Exchange (ETDEWEB)
Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)
2008-08-15
Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.
Choi, Deung-Jang; Fernández, Carlos García; Herrera, Edwin; Rubio-Verdú, Carmen; Ugeda, Miguel M.; Guillamón, Isabel; Suderow, Hermann; Pascual, José Ignacio; Lorente, Nicolás
2018-04-01
We show that the magnetic ordering of coupled atomic dimers on a superconductor is revealed by their intragap spectral features. Chromium atoms on the superconductor β -Bi2Pd surface display Yu-Shiba-Rusinov bound states, detected as pairs of intragap excitations in tunneling spectra. By means of atomic manipulation with a scanning tunneling microscope's tip, we form Cr dimers with different arrangements and find that their intragap features appear either shifted or split with respect to single atoms. These spectral variations are associated with the magnetic coupling, ferromagnetic or antiferromagnetic, of the dimer, as confirmed by density functional theory simulations. The striking qualitative differences between the observed tunneling spectra prove that intragap Shiba states are extremely sensitive to the magnetic ordering on the atomic scale.
Optical and electron microanalysis of cuprate superconductors
International Nuclear Information System (INIS)
Hoff, H.A.; Osofsky, M.S.; Toth, L.E.; Richards, L.E.; Pande, C.S.; Lechter, W.L.
1990-01-01
Individual anisotropic grains in heterogeneous and opaque cuprate materials, when viewed in a reflected-light optical microscope through crossed polarizers, often have characteristic colors, when a daylight source is used. Of the cuprate superconductors, regardless of charge carrier type, examined so far, only one characteristic color has been observed We have studied the presence of color and found a strong correlation with the existence of superconductivity. The change in color from insulator to metal to superconductor and the compositions corresponding to these changes found by quantitative energy dispersive x-ray spectroscopy on superconducting Tl-Sr-Ca-Cu-O and metallic but not superconducting La-Sr-Cu-O materials is discussed
Kohn anomalies in superconductors
International Nuclear Information System (INIS)
Flatte, M.E.
1994-01-01
The detailed behavior of phonon dispersion curves near momenta which span the electronic Fermi sea in a superconductor is presented. An anomaly, similar to the metallic Kohn anomaly, exists in a superconductor's dispersion curves when the frequency of the photon spanning the Fermi sea exceeds twice the superconducting energy gap. This anomaly occurs at approximately the same momentum but is stronger than the normal-state Kohn anomaly. It also survives at finite temperature, unlike the metallic anomaly. Determination of Fermi-surface diameters from the location of these anomalies, therefore, may be more successful in the superconducting phase than in the normal state. However, the superconductor's anomaly fades rapidly with increased phonon frequency and becomes unobservable when the phonon frequency greatly exceeds the gap. This constraint makes these anomalies useful only in high-temperature superconductors such as La 1.85 Sr 0.15 CuO 4
Energy Technology Data Exchange (ETDEWEB)
NONE
1995-12-31
Funds were granted to the University of Southwestern Louisiana to coordinate and offer a summer enhancement institute for science teachers. Following are highlights from that institute: (1) 20 teachers from Louisiana attended the institute as students; (2) institute faculty included staff members from USL`s Departments of Biology, Mathematics, and Education and 3 principal scientists plus technicians from the Southern Science Center; (3) the institute began June 5, 1995 and ended June 30, 1995, and it featured daily lectures, laboratory exercises, examinations, and field trips--assignments for students included journal keeping, lesson plan development, and presentations, the student`s journal entries proved valuable for evaluating institute activities, students received copies of lesson plans developed at the institute, videos entitled ``Pond Life Diversity`` and ``Chesapeake: The Twilight Estuary,`` a guide to ``Free-lining Freshwater Protozoa,`` a graphing calculator, 2 x 2 slide set of pond life, software or hardware (selected by the teacher to meet specific needs), a field manual for water quality monitoring laboratory exercises (Project Green), and a book on Benchmarks for Science Literacy; (4) follow-up measures included the following--a newsletter disseminated by USL but written with teacher input; making equipment (such as a trinocular compound microscope and video monitor) and materials and supplies available to the teachers and their students in the classroom; and mentoring between USL and SSC staff and the teachers during the school year. Attached to this report are copies of the institute agenda and lesson plans developed in the institute.
International Nuclear Information System (INIS)
Arai, Taketoshi
1997-01-01
The conventional stress analysis evaluation of the ceramic apparatuses is due to a perfect model of continuous mechanical materials. Such approximate and simplified treatment is thought to be unsufficient with the following two reasons. At first, because of changes of materials mechanical properties with manufacturing conditions and presence of limit in experimentalismic understanding, establishment of quantitative guideline for improvement of materials and structures and general understanding of thermo-mechanical property change due to neutron radiation becomes difficult. The second, because of statistical change of mechanical property and others containing fracture condition at various loading types, judgement standard of conventional deterministic evaluation is apt to be conservative and causes inferior performance and economics of the constructions under their using conditions. Therefore, in this study, following two basic approaches are planned; 1) Preparation of material deformation and fracture model considering correlation between microscopic/mesoscopic damage and macroscopic behavior, and 2) Improvement of the finite element method calculation due to parallel treatment for soundness and reliability evaluation of the construction. (G.K.)
Microscopic theory of cavity-enhanced single-photon emission from optical two-photon Raman processes
Breddermann, Dominik; Praschan, Tom; Heinze, Dirk; Binder, Rolf; Schumacher, Stefan
2018-03-01
We consider cavity-enhanced single-photon generation from stimulated two-photon Raman processes in three-level systems. We compare four fundamental system configurations, one Λ -, one V-, and two ladder (Ξ -) configurations. These can be realized as subsystems of a single quantum dot or of quantum-dot molecules. For a new microscopic understanding of the Raman process, we analyze the Heisenberg equation of motion applying the cluster-expansion scheme. Within this formalism an exact and rigorous definition of a cavity-enhanced Raman photon via its corresponding Raman correlation is possible. This definition for example enables us to systematically investigate the on-demand potential of Raman-transition-based single-photon sources. The four system arrangements can be divided into two subclasses, Λ -type and V-type, which exhibit strongly different Raman-emission characteristics and Raman-emission probabilities. Moreover, our approach reveals whether the Raman path generates a single photon or just induces destructive quantum interference with other excitation paths. Based on our findings and as a first application, we gain a more detailed understanding of experimental data from the literature. Our analysis and results are also transferable to the case of atomic three-level-resonator systems and can be extended to more complicated multilevel schemes.
A Fifth Force: Generalized through Superconductors
Robertson, Glen A.
1999-01-01
The connection between the Biefield-Brown Effect, the recent repeat of the 1902 Trouton-Noble (TN) experiments, and the gravity shielding experiments was explored. This connection is visualized through high capacitive electron concentrations. From this connection, a theory is proposed that connects mass energy to gravity and a fifth force. The theory called the Gravi-Atomic Energy theory presents two new terms: Gravi-atomic energy and quantum vacuum pressure (QVP). Gravi-atomic energy is defined as the radiated mass energy, which acts on vacuum energy to create a QVP about a mass, resulting in gravity and the fifth force. The QVP emission from a superconductor was discussed followed by the description of a test for QVP from a superconductor using a Cavendish balance.
Room temperature superconductors
International Nuclear Information System (INIS)
Sleight, A.W.
1995-01-01
If the Holy Grail of room temperature superconductivity could be achieved, the impact on could be enormous. However, a useful room temperature superconductor for most applications must possess a T c somewhat above room temperature and must be capable of sustaining superconductivity in the presence of magnetic fields while carrying a significant current load. The authors will return to the subject of just what characteristics one might seek for a compound to be a room temperature superconductor. 30 refs., 3 figs., 1 tab
Continuous lengths of oxide superconductors
Kroeger, Donald M.; List, III, Frederick A.
2000-01-01
A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.
Signatures of Majorana bound states in one-dimensional topological superconductors
International Nuclear Information System (INIS)
Pientka, Falko
2014-01-01
experimental manifestation of Majoranas is a zero-bias peak in the differential conductance. Here we show that in multi-subband wires the Majorana conductance peak can be suppressed compared to a strictly one-dimensional system, thereby providing a plausible explanation for recent experimental results. Based on this analysis, we furthermore predict an enhancement of the signature by deliberately introducing disorder, which could establish strong evidence for a Majorana bound state. A very recent proposal to realize a topological superconductor is based on a chain of magnetic impurities on the surface of a conventional superconductor. Here we derive a microscopic model in terms of the Shiba states bound to the individual impurities in the superconductor. Under realistic experimental conditions, the model involves long-range couplings leading to a new kind of topological phase transition and remarkable localization properties of the Majoranas. Finally, we investigate the tunneling spectroscopy of subgap states in superconductors. We develop a theory to describe the differential tunneling conductance from a superconducting tip into a localized quasiparticle state including relaxation processes present at nonzero temperature. Our result are in good agreement with experimental data on Shiba states and give access to properties of the bound state such as the local density of states and the nature of the relevant relaxation processes.
The critical current of superconductors: an historical review
International Nuclear Information System (INIS)
Dew-Hughes, D.
2001-01-01
The most important practical characteristic of a superconductor is its critical current density. This article traces the history, both of the experimental discoveries and of the development of the theoretical ideas that have lead to the understanding of those factors that control critical current densities. These include Silsbee's hypothesis, the Meissner effect, London, Ginsburg-Landau and Abrikosov theories, flux pinning and the critical state, and the control of texture in high temperature superconductors
Study of flux flow in high Tc superconductors
International Nuclear Information System (INIS)
Takacs, S.; Gomory, F.
1989-01-01
The magnetic field distribution and the hysteresis losses in superconductors with very large viscous forces are calculated for field amplitudes below and above the penetration field. Both the magnetic field and frequency dependence of the losses are changing with respect to the critical state model. The results are qualitatively confirmed by AC susceptibility measurements on YBaCuO superconductors, but the quantitative differences indicate that the flux flow effects are not so strong as expected and supposed by some theories
Ralko, Arnaud; Mila, Frédéric; Rousochatzakis, Ioannis
2018-03-01
The spin-1/2 Heisenberg model on the kagome lattice, which is closely realized in layered Mott insulators such as ZnCu3(OH) 6Cl2 , is one of the oldest and most enigmatic spin-1/2 lattice models. While the numerical evidence has accumulated in favor of a quantum spin liquid, the debate is still open as to whether it is a Z2 spin liquid with very short-range correlations (some kind of resonating valence bond spin liquid), or an algebraic spin liquid with power-law correlations. To address this issue, we have pushed the program started by Rokhsar and Kivelson in their derivation of the effective quantum dimer model description of Heisenberg models to unprecedented accuracy for the spin-1/2 kagome, by including all the most important virtual singlet contributions on top of the orthogonalization of the nearest-neighbor valence bond singlet basis. Quite remarkably, the resulting picture is a competition between a Z2 spin liquid and a diamond valence bond crystal with a 12-site unit cell, as in the density-matrix renormalization group simulations of Yan et al. Furthermore, we found that, on cylinders of finite diameter d , there is a transition between the Z2 spin liquid at small d and the diamond valence bond crystal at large d , the prediction of the present microscopic description for the two-dimensional lattice. These results show that, if the ground state of the spin-1/2 kagome antiferromagnet can be described by nearest-neighbor singlet dimers, it is a diamond valence bond crystal, and, a contrario, that, if the system is a quantum spin liquid, it has to involve long-range singlets, consistent with the algebraic spin liquid scenario.
Topological insulators and superconductors: tenfold way and dimensional hierarchy
International Nuclear Information System (INIS)
Ryu, Shinsei; Schnyder, Andreas P; Furusaki, Akira; Ludwig, Andreas W W
2010-01-01
It has recently been shown that in every spatial dimension there exist precisely five distinct classes of topological insulators or superconductors. Within a given class, the different topological sectors can be distinguished, depending on the case, by a Z or a Z 2 topological invariant. This is an exhaustive classification. Here we construct representatives of topological insulators and superconductors for all five classes and in arbitrary spatial dimension d, in terms of Dirac Hamiltonians. Using these representatives we demonstrate how topological insulators (superconductors) in different dimensions and different classes can be related via 'dimensional reduction' by compactifying one or more spatial dimensions (in 'Kaluza-Klein'-like fashion). For Z-topological insulators (superconductors) this proceeds by descending by one dimension at a time into a different class. The Z 2 -topological insulators (superconductors), on the other hand, are shown to be lower-dimensional descendants of parent Z-topological insulators in the same class, from which they inherit their topological properties. The eightfold periodicity in dimension d that exists for topological insulators (superconductors) with Hamiltonians satisfying at least one reality condition (arising from time-reversal or charge-conjugation/particle-hole symmetries) is a reflection of the eightfold periodicity of the spinor representations of the orthogonal groups SO(N) (a form of Bott periodicity). Furthermore, we derive for general spatial dimensions a relation between the topological invariant that characterizes topological insulators and superconductors with chiral symmetry (i.e., the winding number) and the Chern-Simons invariant. For lower-dimensional cases, this formula relates the winding number to the electric polarization (d=1 spatial dimensions) or to the magnetoelectric polarizability (d=3 spatial dimensions). Finally, we also discuss topological field theories describing the spacetime theory of
Aspects of electron correlations in the cuprate superconductors
International Nuclear Information System (INIS)
Brenig, W.
1995-01-01
We review concepts and effects of electron correlations in the copper-oxide superconductors. The purpose of this article is twofold. First, we provide an overview of results of various electron spectroscopies, Raman scattering and optical conductivity studies with a particular emphasis on experiments which identify the charge and spin correlations relevant to the cuprates. Second, we focus on microscopic theories of the single-particle excitations, and the charge and spin dynamics in the normal state of cuprates considering those models which incorporate strong electron correlations. The single-particle spectrum of the three-band Hubbard model is reviewed and related to results of electron spectroscopy. The carrier dynamics in the t-J model and the one-band Hubbard model at low doping is discussed in detail. We examine approaches which describe the single-particle excitations of correlated electron systems at finite doping. Theories of the static and dynamic magnetic correlations are considered and we speculate on the consequences of the spin dynamics for Raman scattering and the optical conductivity. Finally, selected phenomenological ideas are reviewed. ((orig.))
... body, specifically the feet, lower legs and, in bed-ridden patients, the buttocks. The skin findings of cutaneous ... that are in contact with the lungs’ microscopic air sacs – the condition may quickly pose a threat ...
High temperature superconductor accelerator magnets
van Nugteren, J.
2016-01-01
For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and
Tunneling current into the vortex lattice states of s-and p- wave superconductors
International Nuclear Information System (INIS)
Kowalewski, L.; Nogala, M.M.; Thomas, M.; Wojciechowski, R.J.
2000-01-01
The tunneling current between the metallic tip of a scanning microscope and s- and p-wave superconductors in quantizing magnetic field is investigated. The differential conductance is calculated both as a function of bias voltage at the centre of the vortex line and for varying position of the scanning tunneling microscope tip at a stable voltage. (author)
Superconductors at the nanoscale. From basic research to applications
Energy Technology Data Exchange (ETDEWEB)
Woerdenweber, Roger [Forschungszentrum Juelich GmbH (Germany). Peter Gruenberg Inst.; Moshchalkov, Victor [KU Leuven (Belgium). Inst. for Nanoscale Physics and Chemistry; Bending, Simon [Bath Univ. (United Kingdom). School of Physics; Tafuri, Francesco (ed.) [Seconda Univ. di Napoli, Aversa (Italy)
2017-07-01
By covering theory, design, and fabrication of nanostructured superconducting materials, this monograph is an invaluable resource for research and development. This book contains the following chapters: Tutorial on nanostructured superconductors; Imaging vortices in superconductors: from the atomic scale to macroscopic distances; Probing vortex dynamics on a single vortex level by scanning ac-susceptibility microscopy; STM studies of vortex cores in strongly confined nanoscale superconductors; Type-1.5 superconductivity; Direct visualization of vortex patterns in superconductors with competing vortex-vortex interactions; Vortex dynamics in nanofabricated chemical solution deposition high-temperature superconducting films; Artificial pinning sites and their applications; Vortices at microwave frequencies; Physics and operation of superconducting single-photon devices; Josephson and charging effect in mesoscopic superconducting devices; NanoSQUIDs: Basics and recent advances; Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} intrinsic Josephson junction stacks as emitters of terahertz radiation; Interference phenomena in superconductor-ferromagnet hybrids; Spin-orbit interactions, spin currents, and magnetization dynamics in superconductor/ferromagnet hybrids; Superconductor/ferromagnet hybrids.
Spins in the vortices of a high-temperature superconductor
DEFF Research Database (Denmark)
Lake, B.; Aeppli, G.; Clausen, K.N.
2001-01-01
Neutron scattering is used to characterize the magnetism of the vortices for the optimally doped high-temperature superconductor La2-xSrxCuO4 (x = 0.163) in an applied magnetic field. As temperature is reduced, Low-frequency spin fluctuations first disappear with the loss of vortex mobility......, but then reappear. We find that the vortex state can be regarded as an inhomogeneous mixture of a superconducting spin fluid and a material containing a nearly ordered antiferromagnet. These experiments show that as for many other properties of cuprate superconductors, the important underlying microscopic forces...
Signature of electron-phonon interaction in high temperature superconductors
Directory of Open Access Journals (Sweden)
Vinod Ashokan
2011-09-01
Full Text Available The theory of thermal conductivity of high temperature superconductors (HTS based on electron and phonon line width (life times formulation is developed with Quantum dynamical approach of Green's function. The frequency line width is observed as an extremely sensitive quantity in the transport phenomena of HTS as a collection of large number of scattering processes. The role of resonance scattering and electron-phonon interaction processes is found to be most prominent near critical temperature. The theory successfully explains the spectacular behaviour of high Tc superconductors in the vicinity of transition temperature. A successful agreement between theory and experiment has been obtained by analyzing the thermal conductivity data for the sample La1.8Sr0.2CuO4 in the temperature range 0 − 200K. The theory is equally and successfully applicable to all other high Tc superconductors.
Ultrasonic attenuation in cuprate superconductors
Indian Academy of Sciences (India)
limits the applicability only to the cleanest samples. (b) We have ignored the incoherent part of the spectral function whose inclusion would require a microscopic theory incorpo- rating strong electronic correlations. Acknowledgements. One of us (DMG) would like to thank T V Ramakrishnan for useful comments. References.
International Nuclear Information System (INIS)
Golub, A.; Horovitz, B.
1994-01-01
The application of superconducting Bi 2 Sr 2 CaCu 2 O 8 and YBa 2 Cu 3 O 7 wires or tapes to electronic devices requires the optimization of the transport properties in Ohmic contacts between the superconductor and the normal metal in the circuit. This paper presents results of tunneling theory in superconductor--normal-metal--superconductor (SNS) junctions, in both pure and dirty limits. We derive expressions for the critical-current density as a function of the normal-metal resistivity in the dirty limit or of the ratio of Fermi velocities and effective masses in the clean limit. In the latter case the critical current increases when the ratio γ of the Fermi velocity in the superconductor to that of the weak link becomes much less than 1 and it also has a local maximum if γ is close to 1. This local maximum is more pronounced if the ratio of effective masses is large. For temperatures well below the critical temperature of the superconductors the model with abrupt pair potential on the SN interfaces is considered and its applicability near the critical temperature is examined
International Nuclear Information System (INIS)
Korayem, M. H.; Khaksar, H.; Taheri, M.
2013-01-01
This article has dealt with the development and modeling of various contact theories for biological nanoparticles shaped as cylinders and circular crowned rollers for application in the manipulation of different biological micro/nanoparticles based on Atomic Force Microscope. First, the effective contact forces were simulated, and their impact on contact mechanics simulation was investigated. In the next step, the Hertz contact model was simulated and compared for gold and DNA nanoparticles with the three types of spherical, cylindrical, and circular crowned roller type contact geometries. Then by reducing the length of the cylindrical section in the circular crowned roller geometry, the geometry of the body was made to approach that of a sphere, and the results were compared for DNA nanoparticles. To anticipatory validate the developed theories, the results of the cylindrical and the circular crowned roller contacts were compared with the results of the existing spherical contact simulations. Following the development of these contact models for the manipulation of various biological micro/nanoparticles, the cylindrical and the circular crowned roller type contact theories were modeled based on the theories of Lundberg, Dowson, Nikpur, Heoprich, and Hertz for the manipulation of biological micro/nanoparticles. Then, for a more accurate validation, the results obtained from the simulations were compared with those obtained by the finite element method and with the experimental results available in previous articles. The previous research works on the simulation of nanomanipulation have mainly investigated the contact theories used in the manipulation of spherical micro/nanoparticles. However since in real biomanipulation situations, biological micro/nanoparticles of more complex shapes need to be displaced in biological environments, this article therefore has modeled and compared, for the first time, different contact theories for use in the biomanipulation of
Anomalous Hall effect from vortex motion in high-Tc superconductors
International Nuclear Information System (INIS)
Chen, J.L.; Yang, T.J.
1994-01-01
In this work, the unusual Seebeck effect is taken into consideration in explaining the possible origin of the anomalous Hall effect for high-T c superconductors. Combining Maki's theory of transport entropy and Tinkham's theory of resistive transition, we explain why the anomalous Hall effect can be observed in high-T c superconductors, but is absent in most conventional superconductors. The behavior of ρ xy (H,T) in our theory is qualitatively consistent with experiments. In addition, our theory not only predicts that ρ xy will become positive from ρ xy xy |∝ρ xx 2 in the region of ρ xy xy will diminish with increasing defect concentration
Ivar Giaever, Tunneling, and Superconductors
dropdown arrow Site Map A-Z Index Menu Synopsis Ivar Giaever, Tunneling, and Superconductors Resources with in Superconductors Measured by Electron Tunneling; Physical Review Letters, Vol. 5 Issue 4: 147 - 148 ; August 15, 1960 Electron Tunneling Between Two Superconductors; Physical Review Letters, Vol. 5 Issue 10
Microscopic theory of magnetization processes in Y (Co sub 1 sub - sub x Al sub x) sub 2
Khmelevskyi, S; Mohn, P
2002-01-01
Employing ab initio electronic structure calculations we study the development of the magnetic properties in Y (Co sub 1 sub - sub x Al sub x) sub 2 for varying Al concentration. The effect of substitutional disorder is treated in the coherent-potential approximation implemented within a tight-binding linear muffin-tin orbital method. The experimentally observed reduction of the critical field of the itinerant electron metamagnetic phase transition with increasing content of non-magnetic Al is explained. It is shown, on the basis of a T = 0 K Stoner type itinerant magnetism theory, that the alloying-induced changes in the shape of the calculated density of states, caused by the Al substitution, lead to (i) a stabilization of the magnetic state, (ii) a smoothening of the first-order metamagnetic transition and (iii) a subsequent suppression of the metamagnetic transition around x 0.15. Analysing the magnetization processes in Y (Co sub 1 sub - sub x Al sub x) sub 2 by varying the strength of the exchange inter...
Granular Superconductors and Gravity
Noever, David; Koczor, Ron
1999-01-01
As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.
Propagation of normal zones in composite superconductors
International Nuclear Information System (INIS)
Dresner, L.
1976-08-01
This paper describes calculations of propagation velocities of normal zones in composite superconductors. Full accounting is made for (1) current sharing, (2) the variation with temperature of the thermal conductivity of the copper matrix, and the specific heats of the matrix and the superconductor, and (3) the variation with temperature of the steady-state heat transfer at a copper-helium interface in the nucleate-boiling, transition, and film-boiling ranges. The theory, which contains no adjustable parameters, is compared with experiments on bare (uninsulated) conductors. Agreement is not good. It is concluded that the effects of transient heat transfer may need to be included in the theory to improve agreement with experiment
Electronic Raman spectra in iron-based superconductors with two-orbital model
International Nuclear Information System (INIS)
Lu Hongyan; Wang Da; Chen San; Wang Wei; Gong Pifeng
2011-01-01
Electronic Raman spectra were calculated in orbital space in a microscopic theory. Both Raman spectra and spectra weight were presented. Raman spectra for the gap symmetries are different from each other. The results can help decide the gap symmetry by comparing with experiments. Electronic Raman spectra in iron-based superconductors with two-orbital model is discussed. In the orbital space, some possible pairing symmetries of the gap are selected. To further discriminate them, electronic Raman spectra and spectra weight at Fermi surface (FS) which helps understand the Raman spectra are calculated in each case. From the low energy threshold, the number of Raman peaks, and the low frequency power law behavior, we can judge whether it is full gap or nodal gap, and even one gap or multi-gaps. The results provide useful predictions for comparison with experiments.
The new superconductors. Les nouveaux supraconducteurs
Energy Technology Data Exchange (ETDEWEB)
Gervais, F
1991-01-01
The first half of the book is a scanning of superconductivity from 1911 to our days, with Bardeen-Cooper-Schrieffer theory in 1957, with the concept of phonons and the importance of the Brillouin zone, with the discovery of high-tc superconductors oxides by Bednortz and Mueller in 1986. The second part is dealing with physical investigation means for trying to explain this high-tc superconductivity.
Some thermodynamical properties of normal (or ferromagnetic) metal / superconductor heterojunctions
International Nuclear Information System (INIS)
Cayssol, Jerome
2003-01-01
We have investigated the orbital magnetism of a ballistic hybrid normal-superconductor ring. We have obtained the flux dependent excitation spectrum for arbitrary normal and superconductor lengths. We have introduced a new method to evaluate the current harmonics. We have described the cross-over from the, 'h/eh/e-periodic persistent current to the', h/2e-periodic Josephson current. In a second study, we have calculated the effect of intrinsic ordinary reflexion on the Josephson current in a ballistic superconductor-ferromagnetic-superconductor. The spectrum is strongly modified by gap openings but the current and the 0-π transition are only slightly modified up to very high spin polarisation. In a third study, we analyse the contain of some solutions of Usadel equation. The standard perturbation theory dressed by cooperons enables us to interpret those solutions in terms of diffusive paths connecting Andreev reflexion events. (author) [fr
2004-01-01
The microscopic imager (circular device in center) is in clear view above the surface at Meridiani Planum, Mars, in this approximate true-color image taken by the panoramic camera on the Mars Exploration Rover Opportunity. The image was taken on the 9th sol of the rover's journey. The microscopic imager is located on the rover's instrument deployment device, or arm. The arrow is pointing to the lens of the instrument. Note the dust cover, which flips out to the left of the lens, is open. This approximated color image was created using the camera's violet and infrared filters as blue and red.
Microscopic description of orbital-selective spin ordering in BaMn2As2
Craco, L.; Carara, S. S.
2018-05-01
Using generalized gradient approximation+dynamical mean-field theory, we provide a microscopic description of orbital-selective spin ordering in the tetragonal manganese pnictide BaMn2As2 . We demonstrate the coexistence of local moments and small band-gap electronic states in the parent compound. We also explore the role played by electron/hole doping, showing that the Mott insulating state is rather robust to small removal of electron charge carriers similar to cuprate oxide superconductors. Good qualitative accord between theory and angle-resolved photoemission as well as electrical transport provides support to our view of orbital-selective spin ordering in BaMn2As2 . Our proposal is expected to be an important step to understanding the emergent correlated electronic structure of materials with persisting ordered localized moments coexisting with Coulomb reconstructed nonmagnetic electronic states.
High temperature superconductors applications in telecommunications
International Nuclear Information System (INIS)
Kumar, A.A.; Li, J.; Zhang, M.F.
1994-01-01
The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T c superconductors
High temperature superconductors applications in telecommunications
Energy Technology Data Exchange (ETDEWEB)
Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)
1994-12-31
The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.
Isotope and multiband effects in layered superconductors.
Bussmann-Holder, Annette; Keller, Hugo
2012-06-13
In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.
Classical spins in superconductors
Energy Technology Data Exchange (ETDEWEB)
Shiba, H [Tokyo Univ.; Maki, K
1968-08-01
It is shown that there exists a localized excited state in the energy gap in a superconductor with a classical spin. At finite concentration localized excited states around classical spins form an impurity band. The process of growth of the impurity band and its effects on observable quantities are investigated.
Superconductors and medical imaging
International Nuclear Information System (INIS)
Aubert, Guy
2011-01-01
After difficult beginnings in the 1970's, magnetic resonance imaging (MRI) has evolved to become nowadays the jewel in the crown of medical technology. Superconductors have been a key factor for the extraordinary expansion of MRI which in turn represents about 75 % of their total market. After recalling some basic principles, this article traces their common history and refers to future developments. (author)
Irradiation damage in superconductors
International Nuclear Information System (INIS)
Quere, Y.
1989-01-01
Most superconductors are quite sensitive to irradiation defects. Critical temperatures may be depressed, critical currents may be increased, by irradiation, but other behaviours may be encountered. In compounds, the sublattice in which defects are created is of significant importance. 24 refs
Optical conductivity of iron-based superconductors
International Nuclear Information System (INIS)
Charnukha, A
2014-01-01
The new family of unconventional iron-based superconductors discovered in 2006 immediately relieved their copper-based high-temperature predecessors as the most actively studied superconducting compounds in the world. The experimental and theoretical effort made in order to unravel the mechanism of superconductivity in these materials has been overwhelming. Although our understanding of their microscopic properties has been improving steadily, the pairing mechanism giving rise to superconducting transition temperatures up to 55 K remains elusive. And yet the hope is strong that these materials, which possess a drastically different electronic structure but similarly high transition temperatures compared to the copper-based compounds, will shed essential new light onto the several-decade-old problem of unconventional superconductivity. In this work we review the current understanding of the itinerant-charge-carrier dynamics in the iron-based superconductors and parent compounds largely based on the optical-conductivity data the community has gleaned over the past seven years using such experimental techniques as reflectivity, ellipsometry, and terahertz transmission measurements and analyze the implications of these studies for the microscopic properties of the iron-based materials as well as the mechanism of superconductivity therein. (topical review)
Kohn anomaly in phonon driven superconductors
International Nuclear Information System (INIS)
Das, M P; Chaudhury, R
2014-01-01
Anomalies often occur in the physical world. Sometimes quite unexpectedly anomalies may give rise to new insight to an unrecognized phenomenon. In this paper we shall discuss about Kohn anomaly in a conventional phonon-driven superconductor by using a microscopic approach. Recently Aynajian et al.'s experiment showed a striking feature; the energy of phonon at a particular wave-vector is almost exactly equal to twice the energy of the superconducting gap. Although the phonon mechanism of superconductivity is well known for many conventional superconductors, as has been noted by Scalapino, the new experimental results reveal a genuine puzzle. In our recent work we have presented a detailed theoretical analysis with the help of microscopic calculations to unravel this mystery. We probe this aspect of phonon behaviour from the properties of electronic polarizability function in the superconducting phase of a Fermi liquid metal, leading to the appearance of a Kohn singularity. We show the crossover to the standard Kohn anomaly of the normal phase for temperatures above the transition temperature. Our analysis provides a nearly complete explanation of this new experimentally discovered phenomenon. This report is a shorter version of our recent work in JPCM.
Zhang, Lifang; Meng, Junling; Liu, Xiaojuan; Yao, Fen; Meng, Jian; Zhang, Hongjie
2017-07-01
Among the iron-based superconductors, the 1111-type Fe-As-based superconductors REFeAs O1 -xFx (RE = rare earth) exhibit high transition temperatures (Tc) above 40 K. We perform first-principles calculations based on density functional theory with the consideration of both electronic correlations and spin-orbit couplings on rare earths and Fe ions to study the underlying mechanism as the microscopic structural distortions in REFeAsO tuned by both lanthanide contraction and external strain. The electronic structures evolve similarly in both cases. It is found that there exist an optimal structural regime that will not only initialize but also optimize the orbital fluctuations due to the competing Fe-As and Fe-Fe crystal fields. We also find that the key structural features in REFeAsO, such as As-Fe-As bond angle, intrinsically induce the modification of the Fermi surface and dynamic spin fluctuation. These results suggest that the superconductivity is mediated by antiferromagnetic spin fluctuations. Simultaneously, we show that the rare-earth 4 f electrons play important roles on the high transition temperature whose behavior might be analogous to that of the heavy-fermion superconductors. The superconductivity of these 1111-type iron-based superconductors with high-Tc is considered to originate from the synergistic effects of local structures and 4 f electrons.
Superconducting proximity effect in mesoscopic superconductor/normal-metal junctions
Takayanagi, H; Toyoda, E
1999-01-01
The superconducting proximity effect is discussed in mesoscopic superconductor/normal-metal junctions. The newly-developed theory shows long-range phase-coherent effect which explaines early experimental results of giant magnetoresistance oscillations in an Andreev interferometer. The theory also shows that the proximity correction to the conductance (PCC) has a reentrant behavior as a function of energy. The reentrant behavior is systematically studied in a gated superconductor-semiconductor junction. A negative PCC is observed in the case of a weak coupling between the normal metal and the external reservoir. Phase coherent ac effect is also observed when rf is irradiated to the junction.
Current correlations in superconductor - normal metal mesoscopic structures
International Nuclear Information System (INIS)
Bignon, Guillaume
2005-01-01
Thanks to the experimental progress in miniaturization and cryogenics over the last twenty years, it is now possible to build sufficiently small electric circuits where the wave like nature of electron becomes significant. In such electric circuit transport properties like current and noise are modified. It corresponds to the mesoscopic scale. Moreover, connecting a mesoscopic circuit to a superconductor enhances the effects due to interference between electrons since a superconductor is a macroscopic source of coherent electrons pairs: the Cooper pairs. In this thesis, we study current correlations in mesoscopic normal metal - superconductor structures. First, the energy dependence of current noise in a normal metal - superconductor tunnel junction is analysed taking into account weak disorder and interactions. We show that if the normal metal is out of equilibrium, current and noise become independent. Next, we consider the case of a superconductor connected to two normal metals by tunnel junctions. We show that it is possible to change the sign of current crossed correlation by tuning the voltages and that it can be used to probe the size of the Cooper pairs. Lastly, using Usadel's quasi-classic theory, we study the energy dependence of noise in a normal metal - normal metal - superconductor double junction. We show that barrier's transparencies modifies significantly both current and noise. (author) [fr
Flux Tube Dynamics in the Dual Superconductor
International Nuclear Information System (INIS)
Lampert, M.; Svetitsky, B.
1999-01-01
We have studied plasma oscillations in a flux tube created in a dual superconductor. The theory contains an Abelian gauge field coupled magnetically to a Higgs field that confines electric charge via the dual Meissner effect. Starting from a static flux tube configuration, with electric charges at either end, we release a fluid of electric charges in the system that accelerate and screen the electric field. The weakening of the electric field allows the flux tube to collapse, and the inertia of the charges forces it open again. We investigate both Type I and Type II superconductors, with plasma frequencies both above and below the threshold for radiation into the Higgs vacuum. (The parameters appropriate to QCD are in the Type II regime; the plasma frequency depends on the mass taken for the fluid constituents.) The coupling of the plasma oscillations to the Higgs field making up the flux tube is the main new feature in our work
Amperean Pairing and the Pseudogap Phase of Cuprate Superconductors
Lee, Patrick A.
2014-07-01
The enigmatic pseudogap phase in underdoped cuprate high-Tc superconductors has long been recognized as a central puzzle of the Tc problem. Recent data show that the pseudogap is likely a distinct phase, characterized by a medium range and quasistatic charge ordering. However, the origin of the ordering wave vector and the mechanism of the charge order is unknown. At the same time, earlier data show that precursive superconducting fluctuations are also associated with this phase. We propose that the pseudogap phase is a novel pairing state where electrons on the same side of the Fermi surface are paired, in strong contrast with conventional Bardeen-Cooper-Schrieffer theory which pairs electrons on opposite sides of the Fermi surface. In this state the Cooper pair carries a net momentum and belongs to a general class called pair density wave. The microscopic pairing mechanism comes from a gauge theory formulation of the resonating valence bond (RVB) picture, where spinons traveling in the same direction feel an attractive force in analogy with Ampere's effects in electromagnetism. We call this Amperean pairing. Charge order automatically appears as a subsidiary order parameter even when long-range pair order is destroyed by phase fluctuations. Our theory gives a prediction of the ordering wave vector which is in good agreement with experiment. Furthermore, the quasiparticle spectrum from our model explains many of the unusual features reported in photoemission experiments. The Fermi arc, the unusual way the tip of the arc terminates, and the relation of the spanning vector of the arc tips to the charge ordering wave vector also come out naturally. Finally, we propose an experiment that can directly test the notion of Amperean pairing.
The microscopic investigation of structures of moving flux lines by ...
Indian Academy of Sciences (India)
Abstract. We have used a variety of microscopic techniques to reveal the structure and motion of flux line arrangements, when the flux lines in low Tc type II superconductors are caused to move by a transport current. Using small-angle neutron scattering by the flux line lattice (FLL), we are able to demonstrate directly the ...
International Nuclear Information System (INIS)
Tegel, Marcus Christian
2011-01-01
The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co x Fe 1-x )PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr 2 Si 2 -type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba 0.6 K 0.4 Fe 2 As 2 , is unveiled. A detailed examination of the complete solid solution series (Ba 1-x K x )Fe 2 As 2 is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe 2 As 2 and EuFe 2 As 2 are characterised and the superconductors Sr 1-x K x Fe 2 As 2 and Ca 1-x Na x Fe 2 As 2 are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se 1-x Te x ) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr 3 Sc 2 O 5 Fe 2 As 2 are presented and Ba 2 ScO 3 FeAs and Sr 2 CrO 3 FeAs, the first two members of the new 21311-type are portrayed. Sr 2 CrO 3 FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound is given. Finally, the superconductor Sr 2 VO 3 FeAs is scrutinised and necessary prerequisites for superconductivity in this compound are suggested. (orig.)
Processing of Mixed Oxide Superconductors
1990-07-01
rapid changes world wide a major research centre on high Tc superconductors was awarded to Cambridge which involved moving the work and people to a...reports and paper is in the appendices. Separation Ceramic superconductors tend to be mixtures of phases, especially when first discovered. It would...properties of the superconducting state will in principle allow superconducting material to be levitated from the non superconductor and several designs
Superconductor stability 90: A review
International Nuclear Information System (INIS)
Dresner, L.
1990-01-01
This paper reviews some recent developments in the field of stability of superconductors. The main topics dealt with are hydrodynamic phenomena in cable-in-conduit superconductors, namely, multiple stability, quench pressure, thermal expulsion, and thermal hydraulic quenchback, traveling normal zones in large, composite conductors, such as those intended for SMES, and the stability of vapor-cooled leads made of high-temperature superconductors. 31 refs., 5 figs
The Born-Mayer-Huggins potential in high temperature superconductors
Singh, Hempal; Singh, Anu; Indu, B. D.
2016-07-01
The Born-Mayer-Huggins potential which has been found the best suitable potential to study the YBa2Cu3O7-δ type high temperature superconductors is revisited in a new framework. A deeper insight in it reveals that the Born-Mayer parameters for different interactions in high temperature superconductor are not simple quantities but several thermodynamic and spatial functions enter the problem. Based on the new theory, the expressions for pressure, bulk modulus and Born-Mayer parameters have been derived and it is established that these quantities depend upon Gruneisen parameter which is the measure of the strength of anharmonic effects in high temperature superconductors. This theory has been applied to a specific model YBa2Cu3O7-δ crystal for the purpose of numerical estimates to justify the new results.
High Temperature Superconductor Resonator Detectors
National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...
Neutron Depolarization in Superconductors
Zhuchenko, N. K.
1995-04-01
The dependences of neutron depolarization on applied magnetic field are deduced along the magnetization hysteresis loop in terms of the Bean model of the critical state. The depolarization in uniaxial superconductors with the reversible magnetization, including uniaxial magnetic superconductors, is also considered. A strong depolarization is expected if the neutrons travel along the vortex lines. On calcule la dépendance en champ magnétique de la dépolarisation des neutrons le long du cycle d'hystérésis en termes du modèle critique de Bean. On considère aussi la dépolarisation dans les supraconducteurs uniaxiaux en fonction de l'aimantation réversible, y compris pour les supraconducteurs magnétiques. On attend une forte dépolarisation si les neutrons se propagent le long des vortex.
Vortices and nanostructured superconductors
2017-01-01
This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...
Complex composition film condensation in the sluice device of an electron microscope
International Nuclear Information System (INIS)
Kukuev, V.I.; Lesovoj, M.V.; Vlasov, D.A.; Malygin, M.V.; Domashevskaya, Eh.P.; Tomashpol'skij, Yu.Ya.
1994-01-01
Based on the sluice device of an electron microscope a system is developed for material laser evaporation and vapor condensation on a substrate, situated in the microscope specimen holder. Substrate heating by laser radiation to 100 deg C is used. The system is applied for investigating growth of high-temperature superconductor films
Radiation behavior of superconductors
International Nuclear Information System (INIS)
Scanlan, R.M.; Raymond, E.L.
1979-01-01
High energy neutron irradiations have been performed on Nb 3 Sn superconductors to assess their behavior in a fusion reactor environment. Irradiations were performed at 4.2 K and property measurements were made without warming the samples. The critical current I/sub c/ increased with irradiation to a level about 50% above the unirradiated value at the highest fluences reached in our experiments. These results are compared with the results of other low temperature irradiations of Nb 3 Sn
On the oscillation of ultrasound absorption in the intermediate-state superconductors
International Nuclear Information System (INIS)
Shepelev, A.G.; Filimonov, G.D.
1981-01-01
The correlation between theory and experiment for the phenomenon of oscillations of ultrasound absorption in the pure superconductor intermediate state is analyzed. High-frequency sound (lambdasub(s) [ru
Spontaneous Hall effect in a chiral p-wave superconductor
Furusaki, Akira; Matsumoto, Masashige; Sigrist, Manfred
2001-08-01
In a chiral superconductor with broken time-reversal symmetry a ``spontaneous Hall effect'' may be observed. We analyze this phenomenon by taking into account the surface properties of a chiral superconductor. We identify two main contributions to the spontaneous Hall effect. One contribution originates from the Bernoulli (or Lorentz) force due to spontaneous currents running along the surfaces of the superconductor. The other contribution has a topological origin and is related to the intrinsic angular momentum of Cooper pairs. The latter can be described in terms of a Chern-Simons-like term in the low-energy field theory of the superconductor and has some similarities with the quantum Hall effect. The spontaneous Hall effect in a chiral superconductor is, however, nonuniversal. Our analysis is based on three approaches to the problem: a self-consistent solution of the Bogoliubov-de Gennes equation, a generalized Ginzburg-Landau theory, and a hydrodynamic formulation. All three methods consistently lead to the same conclusion that the spontaneous Hall resistance of a two-dimensional superconducting Hall bar is of order h/(ekFλ)2, where kF is the Fermi wave vector and λ is the London penetration depth; the Hall resistance is substantially suppressed from a quantum unit of resistance. Experimental issues in measuring this effect are briefly discussed.
Strongly disordered superconductors
International Nuclear Information System (INIS)
Muttalib, K.A.
1982-01-01
We examine some universal effects of strong non-magnetic disorder on the electron-phonon and electron-electron interactions in a superconductor. In particular we explicitly take into account the effect of slow diffusion of electrons in a disordered medium by working in an exact impurity eigenstate representation. We find that the normal diffusion of electrons characterized by a constant diffusion coefficient does not lead to any significant correction to the electron-phonon or the effective electron-electron interactions in a superconductor. We then consider sufficiently strong disorder where Anderson localization of electrons becomes important and determine the effect of localization on the electron-electron interactions. We find that due to localization, the diffusion of electrons becomes anomalous in the sense that the diffusion coefficient becomes scale dependent. This results in an increase in the effective electron-electron interaction with increasing disorder. We propose that this provides a natural explanation for the unusual sensitivity of the transition temperature T/sub c/ of the high T/sub c/ superconductors (T/sub c/ > 10 0 K) to damage effects
Effect of spontaneous decay of superconductor quasiparticles in the tunneling density of states
International Nuclear Information System (INIS)
Coffey, D.
1993-01-01
Superconductivity has been successfully described with either the Landau-Ginzburg theory of second order phase transitions or with strong-coupling versions of the original BCS theory for almost fifty years. Recent tunneling and photoemission data on the cuprate oxide superconductors may now provide evidence of corrections to the mean field approximation. It has been shown by Zasadzinski et al. that there is a dip at eV ≅ 3Δ 0 in the SIS tunneling conductance, which is the derivative of the current across a superconductor-insulator-superconductor junction with respect to the applied voltage, for a set of cuprate superconductors whose T c 's range from 5.5K to 100K. Recently L. Coffey and I proposed an explanation of this feature in terms of the spontaneous decay of mean field quasiparticles. We showed that corrections to the mean field approximation for a superconductor lead to different frequency thresholds for spontaneous quasiparticle decay with different superconductor order parameter symmetries. These effects lead to features in the superconductor density of states and in the SIS tunneling conductance and provide experimental evidence of d-wave symmetry for the superconductor order parameter in the cuprates. I discuss model and also evidence of quasiparticle decay in ARPES data on Bi 2 Sr 2 CaCu 2 O 8
Axiomatic electrodynamics and microscopic mechanics
International Nuclear Information System (INIS)
Yussouff, M.
1981-04-01
A new approach to theoretical physics, along with the basic formulation of a new MICROSCOPIC MECHANICS for the motion of small charged particles is described in this set of lecture notes. Starting with the classical (Newtonian) mechanics and classical fields, the important but well known properties of Classical Electromagnetic field are discussed up to section 4. The next nection describes the usual radiation damping theory and its difficulties. It is argued that the usual treatment of radiation damping is not valid for small space and time intervals and the true description of motion requires a new type of mechanics - the MICROSCOPIC MECHANICS: Section 6 and 7 are devoted to showing that not only the new microscopic mechanics goes over to Newtonian mechanics in the proper limit, but also it is closely connected with Quantum Mechanics. All the known results of the Schroedinger theory can be reproduced by microscopic mechanics which also gives a clear physical picture. It removes Einstein's famous objections against Quantum Theory and provides a clear distinction between classical and Quantum behavior. Seven Axioms (three on Classical Mechanics, two for Maxwell's theory, one for Relativity and a new Axiom on Radiation damping) are shown to combine Classical Mechanics, Maxwellian Electrodynamics, Relativity and Schroedinger's Quantum Theory within a single theoretical framework under Microscopic Mechanics which awaits further development at the present time. (orig.)
Coherent lattice vibrations in superconductors
International Nuclear Information System (INIS)
Kadin, Alan M.
2008-01-01
A recent analysis has shown that the pair wavefunction within the BCS theory may be represented in real-space as a spherical electronic orbital (on the scale of the coherence length ξ 0 ) coupled to a standing-wave lattice vibration with wavevector 2k F and a near-resonant phonon frequency. The present paper extends this picture to a coherent pattern of phonon standing-waves on the macroscopic scale, with electrons forming Bloch waves and an energy gap much like those in the classic band theory of crystals. These parallel planes form a diffractive waveguide permitting electron waves to traveling parallel to the planes, corresponding to lossless supercurrent. A similar picture may be extended to unconventional superconductors such as the cuprates, with an array of standing spin waves rather than phonons. Such coherent lattice vibrations should be universal indicators of the superconducting state, and should be observable below T c using X-ray and neutron diffraction techniques. Further implications of this picture are discussed
Proximity effect in normal metal-multiband superconductor hybrid structures
Brinkman, Alexander; Golubov, Alexandre Avraamovitch; Kupriyanov, M. Yu
2004-01-01
A theory of the proximity effect in normal metal¿multiband superconductor hybrid structures is formulated within the quasiclassical Green's function formalism. The quasiclassical boundary conditions for multiband hybrid structures are derived in the dirty limit. It is shown that the existence of
The deuteron microscopic optical potential
International Nuclear Information System (INIS)
Lu Congshan; Zhang Jingshang; Shen Qingbiao
1991-01-01
The two particle Green's function is introduced. When the direct interaction between two nucleons is neglected, the first and second order mass operators of two particles are the sum of those for each particle. The nucleon microscopic optical potential is calculated by applying nuclear matter approximation and effective Skyrme interaction. Then the deuteron microscopic optical potential (DMOP) is calculated by using fold formula. For improvement of the theory, the two particle polarization diagram contribution to the imaginary part of the deuteron microscopic optical potential is studied
Testability issues in Superconductor Electronics
Kerkhoff, Hans G.; Arun, Arun J.
2004-01-01
An emerging technology for solutions in high-end applications in computing and telecommunication is superconductor electronics. A system-level study has been carried out to verify the feasibility of DfT in superconductor electronics. In this paper, we present how this can be realized to monitor
Method for preparation of superconductors
Energy Technology Data Exchange (ETDEWEB)
Barber, A.C.; McDougall, I.L.
1975-07-10
The invention deals with a method to prepare a superconductor consisting of a superconducting compound of at least two elements. It especially deals with superconductors which surround a superconducting intermetallic compounds of at least two elements, examples of which are Nb/sub 2/Sn and Nb/sub 3/Al.
Nonmagnetic impurities in magnetic superconductors
International Nuclear Information System (INIS)
Mineev, V.P.
1989-01-01
The magnetization and magnetic field arising around the nonmagnetic impurity in magnetic superconductor with triplet pairing are found. The relationship of these results with the data of recent (gm)sR experiments in heavy fermionic superconductor U 1 - x Th x Be 13 is presented
Microscopic dynamical Casimir effect
Souza, Reinaldo de Melo e.; Impens, François; Neto, Paulo A. Maia
2018-03-01
We consider an atom in its ground state undergoing a nonrelativistic oscillation in free space. The interaction with the electromagnetic quantum vacuum leads to two effects to leading order in perturbation theory. When the mechanical frequency is larger than the atomic transition frequency, the dominant effect is the motion-induced transition to an excited state with the emission of a photon carrying the excess energy. We compute the angular distribution of emitted photons and the excitation rate. On the other hand, when the mechanical frequency is smaller than the transition frequency, the leading-order effect is the parametric emission of photon pairs, which constitutes the microscopic counterpart of the dynamical Casimir effect. We discuss the properties of the microscopic dynamical Casimir effect and build a connection with the photon production by an oscillating macroscopic metallic mirror.
International Nuclear Information System (INIS)
Jin Biao; Zhang Yinhan; Cheng Qiang
2010-01-01
The chiral p x+y ± ip y-x -wave state is currently considered to be a promising candidate state for Sr 2 RuO 4 in the light of microscopic theories. We theoretically investigate the tunneling conductance in a normal-metal/p x+y ± ip y-x -wave superconductor junction over a wide range of temperature and barrier strength. For a cylindrical Fermi surface with the magnitude of the radius R, the p x+y ± ip y-x -wave gap function exhibits two typical types of nodal structures when R = 1.0 and R=1/√2, respectively. It is found, in particular, that the line shapes of the conductance spectra for R∼1/√2 cases can qualitatively account for the existing in-plane tunneling experiments on Sr 2 RuO 4 .
Coupling spin qubits via superconductors
DEFF Research Database (Denmark)
Leijnse, Martin; Flensberg, Karsten
2013-01-01
We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....
Angle dependence of Andreev scattering at semiconductor-superconductor interfaces
DEFF Research Database (Denmark)
Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka
1999-01-01
We study the angle dependence of the Andreev scattering at a semiconductor-superconductor interface, generalizing the one-dimensional theory of Blonder, Tinkham, and Klapwijk (BTK),An increase of the momentum parallel to the interface leads to suppression of the probability of Andreev reflection...... and increase of the probability of normal reflection. We show that in the presence of a Fermi velocity mismatch between the semiconductor and the superconductor the angles of incidence and transmission are related according to the well-known Snell's law in optics. As a consequence there is a critical angle...
Interaction of ultrasound with vortices in type-II superconductors
International Nuclear Information System (INIS)
Sonin, E.B.
1996-01-01
The theory of ultrasound in the mixed state of type-II superconductors is suggested which takes into account the Magnus force on vortices, the anti-Magnus force on ions, and diamagnetism of the mixed state. The acoustic Faraday effect (rotation of polarization of the transverse ultrasonic wave propagating along vortices) is linear in the Magnus force in any regime of the flux flow for wavelengths now used in the ultrasound experiments. Therefore, in contrast to previous predictions, the Faraday effect should be looked for only in clean superconductors with a strong Magnus force. copyright 1996 The American Physical Society
Role of Coulomb repulsion in multilayer cuprate superconductor
International Nuclear Information System (INIS)
Singh Chauhan, Ekta; Singh, Vipul; Masih, Piyush
2012-01-01
Although BCS theory completely neglects coulomb repulsion; Anderson and Morel showed very early that it plays a central role in superconductivity. Since all high T c superconductors are based on the structure of closely spaced square planner CuO 2 layers and role of interlayer interaction plays important role in enhancement of T c . Therefore the work has been dealt with 'Role of Coulomb repulsion in Multilayer Cuprate Superconductors'. An expression for transition temperature T c is obtained by using simple integration technique and is numerically solved. It has found that T c decreases with electronic repulsion. (author)
Development of superconducting cryo-electron microscope and its applications
International Nuclear Information System (INIS)
Iwatsuki, Masashi
1988-01-01
Recently, a superconducting cryo-electron microscope in which specimens are cooled to the liquid helium temperature (4.2 K) has been developed. The main components and functional features of this new microscope are reported together with application data on polyethylene, poly (4-methyl-1-pentene), valonia cellulose, rock salt, ice crystallites and ceramic superconductor. The resistance to electron radiation damage, of beam-sensitive specimens including polymers has been increased more than ten times. Thus, the microscope has made it possible to take high resolution images and to analyze the crystal-structure of micro-areas. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Tegel, Marcus Christian
2011-03-22
The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co{sub x}Fe{sub 1-x})PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr{sub 2}Si{sub 2}-type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, is unveiled. A detailed examination of the complete solid solution series (Ba{sub 1-x}K{sub x})Fe{sub 2}As{sub 2} is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe{sub 2}As{sub 2} and EuFe{sub 2}As{sub 2} are characterised and the superconductors Sr{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se{sub 1-x}Te{sub x}) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr{sub 3}Sc{sub 2}O{sub 5}Fe{sub 2}As{sub 2} are presented and Ba{sub 2}ScO{sub 3}FeAs and Sr{sub 2}CrO{sub 3}FeAs, the first two members of the new 21311-type are portrayed. Sr{sub 2}CrO{sub 3}FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound is
Energy Technology Data Exchange (ETDEWEB)
Tegel, Marcus Christian
2011-03-22
The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co{sub x}Fe{sub 1-x})PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr{sub 2}Si{sub 2}-type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, is unveiled. A detailed examination of the complete solid solution series (Ba{sub 1-x}K{sub x})Fe{sub 2}As{sub 2} is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe{sub 2}As{sub 2} and EuFe{sub 2}As{sub 2} are characterised and the superconductors Sr{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se{sub 1-x}Te{sub x}) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr{sub 3}Sc{sub 2}O{sub 5}Fe{sub 2}As{sub 2} are presented and Ba{sub 2}ScO{sub 3}FeAs and Sr{sub 2}CrO{sub 3}FeAs, the first two members of the new 21311-type are portrayed. Sr{sub 2}CrO{sub 3}FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound
International Nuclear Information System (INIS)
Singleton, John; Mielke, Charles
2002-01-01
Superconductors made from organic molecules are revealing fascinating new physics and could offer huge technological potential as well. Solid-state physicists are simple people. They believe that basic research is best carried out on chemically simple materials. Traditionally they have focused on inorganic elements, alloys, and other straightforward compounds. This approach has provided some notable successes. For example, any physicist over 35 will remember the huge fuss surrounding the discovery of high-temperature cuprate superconductors in 1986, which led to the infamous 'Woodstock of physics' meeting the following year. Just before the cuprates were discovered, however, an alternative view had begun to emerge. Physical chemists such as Klaus Bechgaard, Peter Day, Gunzi Saito, Viktor Schegolev and Jack Williams were suggesting that the 'simple-materials-are-best' assumption was misplaced. They argued that some of the most exciting studies in solid-state physics can - and should - be attempted on crystalline organic materials. Although chemically complex, such materials are beautifully simple in other ways, and they can, for example, provide much more information about basic phenomena like superconductivity and magnetism than supposedly simple materials. Physicists eventually embraced these materials with enthusiasm, and the number of papers on crystalline organic metals overtook those on the high-temperature cuprate superconductors three years ago. The gap has widened ever since, and the fact that God and a billion years of evolution have produced a processor based on three-dimensional arrays of molecules, rather than silicon or gallium-arsenide chips, is taken as a good omen by those working in the field. (U.K.)
Towards ferromagnet/superconductor junctions on graphene
International Nuclear Information System (INIS)
Pakkayil, Shijin Babu
2015-01-01
to contact graphene or any other semiconductor with a ferromagnet has to overcome one important problem known as ''Conductance mismatch''. To solve the conductance mismatch problem, which had stalled the injection of spin polarised electrons to a semiconductor for many years, in our fabrication method, a thin Al 2 O 3 layer is introduced between the ferromagnet and graphene. The insulating layer is grown using Atomic layer deposition (ALD) with the help of a thin Ti seed layer. Unlike the previously reported method, which treats the entire graphene flake with PTCA (3,4,9,10-perylene tetracarboxylic acid) prior to the ALD process, no such chemical treatment occurs in our fabrication process. Also, the yield of successful devices are higher than the highest yield reported so far (∝30%). The later part of the thesis discusses how this fabrication recipe is further developed to contact graphene with superconducting contacts to produce ferromagnet/superconductor junctions on graphene. The successful spin valve devices produced using the new fabrication process are discussed along with a simple theory of spin transport in graphene. Some of the spin valve devices discussed are fabricated with the help of Ti seed layer (for growing Al 2 O 3 ) and some of them are without. Also, measurement results on devices with varying number of ALD cycles are shown and discussed which helps to decide the optimum number of ALD cycles needed for the best yield and performance. The devices made using Ti seed layer shows better consistency in terms of contact resistances and device performance. Also, ferromagnetic contacts from one device showed perfect tunnel barrier behaviour. Chapter 5 mainly discusses the results of the measurements done on a device which has 4 ferromagnetic contacts and 4 superconducting contacts arranged in a fashion that it forms multiple ferromagnet/superconductor junctions on graphene. Lateral spin valves and Josephson junctions are also part of
Towards ferromagnet/superconductor junctions on graphene
Energy Technology Data Exchange (ETDEWEB)
Pakkayil, Shijin Babu
2015-07-01
to contact graphene or any other semiconductor with a ferromagnet has to overcome one important problem known as ''Conductance mismatch''. To solve the conductance mismatch problem, which had stalled the injection of spin polarised electrons to a semiconductor for many years, in our fabrication method, a thin Al{sub 2}O{sub 3} layer is introduced between the ferromagnet and graphene. The insulating layer is grown using Atomic layer deposition (ALD) with the help of a thin Ti seed layer. Unlike the previously reported method, which treats the entire graphene flake with PTCA (3,4,9,10-perylene tetracarboxylic acid) prior to the ALD process, no such chemical treatment occurs in our fabrication process. Also, the yield of successful devices are higher than the highest yield reported so far (∝30%). The later part of the thesis discusses how this fabrication recipe is further developed to contact graphene with superconducting contacts to produce ferromagnet/superconductor junctions on graphene. The successful spin valve devices produced using the new fabrication process are discussed along with a simple theory of spin transport in graphene. Some of the spin valve devices discussed are fabricated with the help of Ti seed layer (for growing Al{sub 2}O{sub 3}) and some of them are without. Also, measurement results on devices with varying number of ALD cycles are shown and discussed which helps to decide the optimum number of ALD cycles needed for the best yield and performance. The devices made using Ti seed layer shows better consistency in terms of contact resistances and device performance. Also, ferromagnetic contacts from one device showed perfect tunnel barrier behaviour. Chapter 5 mainly discusses the results of the measurements done on a device which has 4 ferromagnetic contacts and 4 superconducting contacts arranged in a fashion that it forms multiple ferromagnet/superconductor junctions on graphene. Lateral spin valves and Josephson junctions
High temperature superconductors
Paranthaman, Parans
2010-01-01
This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.
Calculation and analysis of thermodynamic relations for superconductors
International Nuclear Information System (INIS)
Nazarenko, A.B.
1989-01-01
The absorption coefficients of high-frequency and low-frequency sound have been calculated on the basis of the Ginzburg-Landau theory. This sound is a wave of periodic adiabatic bulk compressions and rarefactions of the frequency ω in an isotropic superconductor near the transition temperature. Thermodynamic relations have been obtained for abrupt changes in the physical quantities produced as a result of a transition from the normal state to the superconducting state. These relations are similar to the Ehrenfest relations. The above--mentioned thermodynamic quantities are compared with the published experimental results on YBa 2 Cu 3 O 7-δ . The experiments on the absorption of ultrasound in recently discovered superconductors mainformation on the phase transition type and thermodynamic relations for these superconductors, in particular, the T c -vs-dp curve. Similar calculations have been carried out for 2 He-transition experiments with ferromagnetic materials. The order parameter in the thermodynamic potential was assumed to be isotropic
Observation of magnetooptical effects in several high Tc superconductors
International Nuclear Information System (INIS)
Dillon, J.F. Jr; Lyons, K.B.
1992-01-01
Recent so called 'anyon' theories of high temperature superconductivity in layer structure materials suggested that at some temperature T TP ≥T c there is a symmetry breaking transition below which these materials may be in either of two distinct states related to each other by time reversal. The study of magneto-optical effects in superconductors reviewed here was undertaken to explore time reversal symmetry of these materials. Using novel technique with rotating λ/2 plate at 525 nm, 'circular dichroism' was observed on reflection from epitaxial films and single crystals of cuprate superconductor with layer structures. The onset of dichroism was at temperatures of ∼ 180K to ∼ 300K. These results appear to support the 'anyon' theories. However, circular dichroism was also seen in films and single crystals of bismuthate superconductors with cubic structure, to which the theories seem inapplicable. In sharp contrast, Spielman et al., at Stanford in a very sensitive experiment at 1060 nm have seen no evidence of non-reciprocal circular birefringence in epitaxial cuprate superconducting films. Weber et al. at Dortmund have recently reported the observation at 633 nm of non-reciprocal magneto-optical effects on single crystals of cuprate superconductors, but none on films. (author). 15 refs., 5 figs
AC losses in high Tc superconductors
International Nuclear Information System (INIS)
Campbell, A.M.
1998-01-01
Full text: Although in principle the AC losses in high Tc superconductors can be calculated from the critical current density, a number of complications make this difficult. The Jc is very field dependent, there are intergranular and intragranular critical currents, the material is anisotropic and there is usually a large demagnetising factor. Care must be taken in interpreting electrical measurements since the voltage depends on the position of the contacts. In spite of these complications the simple theory of Norris has proved surprisingly successful and arguments will be presented as to why this is the case. Results on a range of tapes will be compared with theory and numerical methods for predicting losses discussed. Finally a theory for coupling losses will be given for a composite conductor with high resistance barriers round the filaments
Models of color confinement based on dual superconductors
International Nuclear Information System (INIS)
Ripka, Georges; Hosek, Jiri
2003-01-01
Recently, the relatively old speculation that the physical QCD vacuum might be a kind of dual superconductor, in which color-magnetic monopoles have condensed, seems to have received some 'experimental' confirmation in lattice calculations. The lattice calculations do not dictate, however, the form of the effective low-energy theory. And indeed, a rather wide panoply of possible effective theories has been proposed. The purpose of this talk is to review them in order to contrast their properties
Plasmons in strong superconductors
International Nuclear Information System (INIS)
Baldo, M.; Ducoin, C.
2011-01-01
We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.
International Nuclear Information System (INIS)
Andronov, A.A.; Kurin, V.V.; Levichev, M.Yu.; Ryndyk, D.A.; Vostokov, V.I.
1993-01-01
In recent years there has been much interest in superconductor logical devices. Our paper is devoted to the analysis of some new possibilities in this field. The main problems here are: minimization of time of logical operations and reducing of device scale. Josephson systems are quite appropriate for this purpose because of small size, short characteristic time and also small energy losses. Two different types of Josephson logic have been investigated during last years. The first type is based on hysteretic V-A characteristic of a single Josephson junction. Superconducting and resistive (with nonzero voltage) states are considered as logical zero and logical unit. The second one - rapid single flux quantum logic, has been developed recently and is based on SQUID-like bistability. Different logical states are the states with different number of magnetic flux quanta inside closed superconducting contour. Information is represented by voltage pulses with fixed ''area'' (∫ V(t)/dt). This pulses are generated when logical state of SQUID-like elementary cell changes. The fundamental role of magnetic flux quantization in this type of logic leads to the necessity of large enough self-inductance of superconductor contour and thus to limitations on minimal device dimensions. (orig.)
Vortex cutting in superconductors
Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.
2015-03-01
Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.
Eight-fold quantum states blossom in a high-temperature superconductor
2003-01-01
"Researchers based at Lawrence Berkeley National Laboratory and the University of California at Berkeley have used a scanning tunneling microscope (STM) to reveal eight-fold patterns of quasiparticle interference in the high-temperature superconductor Bi-2212 (bismuth strontium calcium copper oxide)" (2 pages).
Ac losses of transposed superconductors
International Nuclear Information System (INIS)
Eckert, D.; Enderlein, G.; Lange, F.
1975-01-01
Eastham and Rhodes published results of loss measurements on transposed superconducting NbTi cables and concluded basing on an extrapolation to very large numbers of wires that transposed superconductors could be used favorably in cables for power transmission. There are some reasons to question the correctness of their extrapolation. Losses were calculated for transposed superconductors in self field and got results different from those of Eastham and Rhodes. Loss measurements were performed the results of which give evidence for the correctness of our calculations. The results lead to the conclusion that the use of transposed cables of irreversible type 2 superconductors for power transmission is not advantageous
Microscopic nuclear structure with sub-nucleonic degrees of freedom
International Nuclear Information System (INIS)
Sauer, P.U.
1986-01-01
The paper reviews microscopic theories of nuclear structure. The subject is discussed under the topic headings: microscopic nuclear structure with nucleons only; microscopic nuclear structure with nucleons, isobars and mesons; and microscopic nuclear structure with nucleons, mesons and dibaryons. (U.K.)
Investigation on the bisoliton mechanism of high-temperature superconductors
International Nuclear Information System (INIS)
Zhang Lingyun; Li Bozang; Pu Fucho; Lin Jiatih
1996-01-01
Microscopic parameters in the Davydov model are calculated on the basis of the bisoliton idea. The energy gap is obtained from combining the condition for the solution of Davydov's equation with the condensation energy of the superconductive state in zero field, and some characteristic parameters of high-temperature superconductors such as coherence length, penetration depth, and density of critical current for a thin film in weak magnetic field are given. It is also proved that lattice displacement in Davydov's equation satisfies the φ 4 field form. The critical temperature and the coefficient of linear specific heat of high-temperature superconductors are studied from the statistics of lattice kinks. The agreement between theoretical and experimental values for YBaCuO oxide ceramics suggests that the bisoliton model gives a reasonable explanation of high-temperature superconductivity. (orig.)
Nonlocal Free Energy of a Spatially Inhomogeneous Superconductor
International Nuclear Information System (INIS)
Grigorishin, K.V.; Lev, B.I.
2012-01-01
The microscopic approach is developed for obtaining of the free energy of a superconductor based on direct calculation of the vacuum amplitude. The free energy functional of the spatially inhomogeneous superconductor in a magnetic field is obtained with help of the developed approach. The obtained functional is generalization of Ginzburg-Landau functionals for any temperature, for arbitrary spatial variations of the order parameter and for the nonlocality of a magnetic response and the order parameter. Moreover, the nonlocality of the magnetic response is the consequence of order parameter's nonlocality. The extremals of this functional are considered in the explicit form in the low- and high-temperature limit at the condition of slowness of spatial variations of the order parameter. (condensed matter: electronic structure, electrical, magnetic, and optical properties)
Percolation effect in thick film superconductors
Energy Technology Data Exchange (ETDEWEB)
Sali, R.; Harsanyi, G. [Technical Univ. of Budapest (Hungary)
1994-12-31
A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.
Emergent Gauge Fields in Holographic Superconductors
Domènech, Oriol; Pomarol, Alex; Salvio, Alberto; Silva, Pedro J
2010-01-01
Holographic superconductors have been studied so far in the absence of dynamical electromagnetic fields, namely in the limit in which they coincide with holographic superfluids. It is possible, however, to introduce dynamical gauge fields if a Neumann-type boundary condition is imposed on the AdS-boundary. In 3+1 dimensions, the dual theory is a 2+1 dimensional CFT whose spectrum contains a massless gauge field, signaling the emergence of a gauge symmetry. We study the impact of a dynamical gauge field in vortex configurations where it is known to significantly affect the energetics and phase transitions. We calculate the critical magnetic fields H_c1 and H_c2, obtaining that holographic superconductors are of Type II (H_c1 < H_c2). We extend the study to 4+1 dimensions where the gauge field does not appear as an emergent phenomena, but can be introduced, by a proper renormalization, as an external dynamical field. We also compare our predictions with those arising from a Ginzburg-Landau theory and identif...
Percolation effect in thick film superconductors
International Nuclear Information System (INIS)
Sali, R.; Harsanyi, G.
1994-01-01
A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T c and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm 2 . The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed
Preparation of superconductor precursor powders
Bhattacharya, Raghunath
1998-01-01
A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.
Kinetic equations in dirty superconductors
International Nuclear Information System (INIS)
Kraehenbuehl, Y.
1981-01-01
Kinetic equations for superconductors in the dirty limit are derived using a method developed for superfluid systems, which allows a systematic expansion in small parameters; exact charge conservation is obeyed. (orig.)
Coherent and correlated spin transport in nanoscale superconductors
Energy Technology Data Exchange (ETDEWEB)
Morten, Jan Petter
2008-03-15
Motivated by the desire for better understanding of nano electronic systems, we theoretically study the conductance and noise characteristics of current flow between superconductors, ferromagnets, and normal-metals. Such nano structures can reveal information about superconductor proximity effects, spin-relaxation processes, and spintronic effects with potential applications for different areas of mesoscopic physics. We employ the quasiclassical theory of superconductivity in the Keldysh formalism, and calculate the nonequilibrium transport of spin and charge using various approaches like the circuit theory of quantum transport and full counting statistics. For two of the studied structures, we have been able to compare our theory to experimental data and obtain good agreement. Transport and relaxation of spin polarized current in superconductors is governed by energy-dependent transport coefficients and spin-flip rates which are determined by quantum interference effects. We calculate the resulting temperature-dependent spin flow in ferromagnet-superconductor devices. Experimental data for spin accumulation and spin relaxation in a superconducting nano wire is in agreement with the theory, and allows for a spin-flip spectroscopy that determines the dominant mechanism for spin-flip relaxation in the studied samples. A ferromagnet precessing under resonance conditions can give rise to pure spin current injection into superconductors. We find that the absorbed spin current is measurable as a temperature dependent Gilbert damping, which we calculate and compare to experimental data. Crossed Andreev reflection denotes superconducting pairing of electrons flowing from different normal-metal or ferromagnet terminals into a superconductor. We calculate the nonlocal currents resulting from this process in competition with direct electron transport between the normal-metal terminals. We take dephasing into account, and study the nonlocal current when the types of contact in
International Nuclear Information System (INIS)
Cavia Santos, S.; Garcia-Tabares, L.
1998-05-01
A new simple theory has been developed for the study of levitation forces between a permanent magnet and a HTc superconductor. This theory is based on the assumption that both, the magnet and the superconductor, can be modelled by an equivalent coil placed on their surface. While the current flowing through the permanent magnet is constant, the equivalent current through the superconductor can be iether corresponding to screen the overall flux or a constant current corresponding to critical current density when the superconductor is saturated. A test facility has been designed and built for measuring levitation forces at variable approaching speeds. Comparison between theoretical and experimental measurements are presented in the report as well as a general description of the test facility. (Author)
Polymeric conductors and superconductors
International Nuclear Information System (INIS)
Goodings, E.P.
1975-01-01
The production of electrically conductive polymers which are flexible ans capable of being shaped by normal processes, is discussed. The relation between the structure of the polymer and its ability to transport electric charge is considered. The main problem is to combine high conductivity with good processability and it is shown that stacked-planar systems are superior to conjugated polymers. Good mechanical properties have yet to be achieved. In some way the rigid pi-bonded systems must be combined with a conventional sigma-bonded polymer without destroying its flexibility and tensile properties. The structure will contain a radical ion system to provide charge carriers but it is not yet known how to design the polymer structure to give high carrier mobility. Further work is required on organic superconductors in unravelling the relationship between charge carrier mobility and the supermolecular structure of polymers. (UK)
Superconductor digital electronics
International Nuclear Information System (INIS)
Likharev, Konstantin K.
2012-01-01
The objective of these notes is to offer a brief review of the history of superconductor digital electronics, and discuss prospects of its future development. Due to length restrictions, many important technical contributions could not be mentioned at all - with sincere apologies to their authors. Though an attempt has been made to give an unbiased review of the most important work all over the world, a special emphasis on the efforts in the former Soviet Union, which had not been discussed much in literature, and in which the author of this text took an active part, seemed excusable. Another important qualification is that the author phased out his own research in the field about 10 years ago, so that the last parts of the notes, devoted to present-time and future work, should be viewed as not much more than remarks by an (interested) outsider.
Manufacturing of Superconductors
DEFF Research Database (Denmark)
Bech, Jakob Ilsted; Bay, Niels
Superconducting tapes based on the ceramic high temperature superconductor (HTS) is a new promising product for high current applications such as electro-magnets and current transmission cables. The tapes are made by the oxide powder in tube (OPIT) method implying drawing and rolling of silver...... tubes containing ceramic powder. The final product is a composite tape, where ceramic superconducting fibres are embedded in a silver matrix. The critical current density Je [kA/cm 2 ] is the primary quality parameter of the product. The quality of the superconducting tape depends very much...... in the individual fibres. · The stresses and strains in the deformation zone are analysed. It is concluded that more detailed mechanical tests and a more detailed constitutive plasticity model is desirable in order to improve the precision of the numerical modelling. New test equipment is designed implying the new...
High temperature superconductor current leads
International Nuclear Information System (INIS)
Zeimetz, B.; Liu, H.K.; Dou, S.X.
1996-01-01
Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions
Hybrid molecule/superconductor assemblies
International Nuclear Information System (INIS)
McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Zhou, J.P., Jones, C.
1993-01-01
The fabrication of electronic devices from molecular materials has attracted much attention recently. Schottky diodes, molecular transistors, metal-insulator-semiconductor diodes, MIS field effect transistors and light emitting diodes have all been prepared utilizing such substances. The active elements in these devices have been constructed by depositing the molecular phase onto the surface of a metal, semiconductor or insulating substrate. With the recent discovery of high temperature superconductivity, new opportunities now exist for the study of molecule/superconductor interactions as well as for the construction of novel hybrid molecule/superconductor devices. In this paper, methods for preparing the initial two composite molecule/semiconductor devices will be reported. Consequently, light sensors based on dye-coated superconductor junctions as well as molecular switches fashioned from conductive polymer coated superconductor junctions as well as molecular switches fashioned from conductive polymer coated superconductor microbridges will be discussed. Moreover, molecule/superconductor energy and electron transfer phenomena will be illustrated also for the first time
Condensation energy density in Bi-2212 superconductors
International Nuclear Information System (INIS)
Matsushita, Teruo; Kiuchi, Masaru; Haraguchi, Teruhisa; Imada, Takeki; Okamura, Kazunori; Okayasu, Satoru; Uchida, Satoshi; Shimoyama, Jun-ichi; Kishio, Kohji
2006-01-01
The relationship between the condensation energy density and the anisotropy parameter, γ a , has been derived for Bi-2212 superconductors in various anisotropic states by analysing the critical current density due to columnar defects introduced by heavy ion irradiation. The critical current density depended on the size of the defects, determined by the kind and irradiation energy of the ions. A significantly large critical current density of 17.0 MA cm -2 was obtained at 5 K and 0.1 T even for the defect density of a matching field of 1 T in a specimen irradiated with iodine ions. The dependence of the critical current density on the size of the defects agreed well with the prediction from the summation theory of pinning forces, and the condensation energy density could be obtained consistently from specimens irradiated with different ions. The condensation energy density obtained increased with decreasing γ a over the entire range of measurement temperature, and reached about 60% of the value for the most three-dimensional Y-123 observed by Civale et al at 5 K. This gives the reason for the very strong pinning in Bi-2212 superconductors at low temperatures. The thermodynamic critical field obtained decreased linearly with increasing temperature and extrapolated to zero at a certain characteristic temperature, T * , lower than the critical temperature, T c . T * , which seems to be associated with the superconductivity in the block layers, was highest for the optimally doped specimen. This shows that the superconductivity becomes more inhomogeneous as the doped state of a superconductor deviates from the optimum condition
Interaction of gravitational waves with superconductors
Energy Technology Data Exchange (ETDEWEB)
Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)
2017-06-15
Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Zeeman effects in heavy electron superconductors
International Nuclear Information System (INIS)
Michal, Vincent
2012-01-01
Understanding the properties of newly discovered strongly correlated electron compounds is a considerable challenge for both fundamental matters and long-term industrial impact. Experimental activity on heavy electron metals and superconductors has lead to highlighting effects that depart from current knowledge. The thesis is aimed at modelling effects that have been observed in response to magnetic field in the heavy electron superconductor CeCoIn 5 . This consists of two parts. In the first time we deal with the vortex lattice state anomalous local magnetic field space variations as highlighted by small angle neutron scattering and muon spin rotation experiment. On the basis of the Ginzburg-Landau theory with account of spin effect, we analyse the local field inhomogeneity in the vortex lattice and derive expressions for the neutron scattering form factors and muon spin rotation static linewidth. The anomalous experimental data are shown to be result of spin driven supercurrents which circulate around the vortex cores and lead to an increase with external field in the internal field inhomogeneity on a distance of the order of the superconducting coherence length from the vortex axis. The importance of the effect is controlled by a single quantity (the Maki parameter). The second part is on nearly commensurate spin density wave transition in a quasi two-dimensional superconductor. It is motivated by observation of the confinement of spin density wave ordering inside the superconducting state of CeCoIn 5 in magnetic field. In the frame of the spin-fermion formulation we propose a mechanism for the ground state transition consisting in the field-induced slowing down of a collective spin density fluctuation mode (spin-exciton) to static ordering. This represents a scenario by which the transition to spin ordering is intrinsically related to superconductivity. (author) [fr
Microscopic approaches to quantum nonequilibriumthermodynamics and information
2018-02-09
perspective on quantum thermalization for Science [8]. Wrote a joint experiment- theory paper on studying connections between quantum and classical chaos in...on the random matrix theory (eigenstate thermalization) and macroscopic phenomena (both equilibrium and non-equilibrium). Understanding thermodynamics...information. Specific questions to be addressed: connections of microscopic description of quantum chaotic systems based on the random matrix theory
Modelling of bulk superconductor magnetization
International Nuclear Information System (INIS)
Ainslie, M D; Fujishiro, H
2015-01-01
This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB 2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet–superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed. (topical review)
Ferromagnet / superconductor oxide superlattices
Santamaria, Jacobo
2006-03-01
The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic
Topological Insulators and Superconductors for Innovative Devices
2015-03-20
Final 3. DATES COVERED (From - To) 20120321 - 20150320 4. TITLE AND SUBTITLE Topological insulators and superconductors for innovative...locking, which hold promise for various innovative devices. Similarly, topological superconductors are associated with exotic surface states, which...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Final Report Title: Topological Insulators and Superconductors for Innovative Devices
Critical fields in high temperature superconductors
International Nuclear Information System (INIS)
Finnemore, D.K.
1991-01-01
An analysis of various methods to obtain the critical fields of the high temperature superconductors from experimental data is undertaken in order to find definitions of these variables that are consistent with the models used to define them. Characteristic critical fields of H c1 , H c2 and H c that occur in the Ginsburg-Landau theory are difficult to determine experimentally in the high temperature superconductors because there are additional physical phenomena that obscure the results. The lower critical field is difficult to measure because there are flux pinning and surface barrier effects to flux entry; the upper critical field is difficult because fluctuation effects are large at this phase boundary; the thermodynamic critical field is difficult because fluctuations make it difficult to know the field where the magnetization integral should be terminated. In addition to these critical fields there are at least two other cross-over fields. There is the so called irreversibility line where the vortices transform from a rigid flux line lattice to a fluid lattice and there is a second cross-over field associated with the transition from the fluctuation to the Abrikosov vortex regime. The presence of these new physical effects may require new vocabulary
Dual superconductor models of color confinement
Ripka, Georges
2004-01-01
The lectures, delivered at ECT (European Centre for Theoretical Studies in Nuclear Physics and Related Areas) in Trento (Italy) in 2002 and 2003, are addressed to physicists who wish to acquire a minimal background to understand present day attempts to model the confinement of quantum chromo-dynamics (QCD) in terms of dual superconductors. The lectures focus more on the models than on attempts to derive them from QCD. They discuss the Dirac theory of magnetic monopoles, the world sheet swept out by Dirac strings, deformations of Dirac strings and charge quantization, gauge fields associated to the field tensor and to the dual field tensor, the Landau-Ginzburg (Abelian Higgs) model of a dual superconductor, the flux tube joining two equal and opposite color-electric charges, the Abrikosov-Nielsen-Olesen vortex, the divergencies of the London limit, the comparison of the calculated flux tube and string tension with lattice data, duality transformations and the use of Kalb-Ramond fields, the two-potential Zwanzi...
Holographic p-wave superconductor models with Weyl corrections
Directory of Open Access Journals (Sweden)
Lu Zhang
2015-04-01
Full Text Available We study the effect of the Weyl corrections on the holographic p-wave dual models in the backgrounds of AdS soliton and AdS black hole via a Maxwell complex vector field model by using the numerical and analytical methods. We find that, in the soliton background, the Weyl corrections do not influence the properties of the holographic p-wave insulator/superconductor phase transition, which is different from that of the Yang–Mills theory. However, in the black hole background, we observe that similarly to the Weyl correction effects in the Yang–Mills theory, the higher Weyl corrections make it easier for the p-wave metal/superconductor phase transition to be triggered, which shows that these two p-wave models with Weyl corrections share some similar features for the condensation of the vector operator.
Instability in the magnetic field penetration in type II superconductors
International Nuclear Information System (INIS)
Oliveira, Isaías G. de
2015-01-01
Under the view of the time-dependent Ginzburg–Landau theory we have investigated the penetration of the magnetic field in the type II superconductors. We show that the single vortices, situated along the borderline, between the normal region channel and the superconducting region, can escape to regions still empty of vortices. We show that the origin of this process is the repulsive nature of vortex–vortex interaction, in addition to the non-homogeneous distribution of the vortices along the normal region channel. Using London theory we explain the extra gain of kinetic energy by the vortices situated along this borderline. - Highlights: • TDGL is used to study the magnetic field penetration in type II superconductors. • Instability process is found during the magnetic field penetration. • Vortices along the front of the normal region escape to superconducting region. • We explain the extra-gain of kinetic energy by vortices along the borderline
Proceedings, phenomenology and applications of high temperature superconductors
International Nuclear Information System (INIS)
Bedell, K.S.
1991-01-01
Phenomenology and Applications of High Temperature Superconductors, The Los Alamos Symposium: 1991, was sponsored by the Los Alamos National Laboratory, Center for Materials Science, the Advanced Studies Program on High Temperature Superconductivity Theory (ASP) and the Exploratory Research and Development Center. This is the second symposium in the series. High Temperature Superconductivity, The Los Alamos Symposium: 1989, also published by Addison Wesley, focused on the cutting-edge theoretical and experimental issues in high temperature superconductors. This symposium, with its focus on the phenomenology and applications of high temperature superconductors, gives a complementary review of the aspects of the field closely related to the impact of high temperature superconductors on technology. The objective of ASP is to advance the field on a broad front with no specific point of view by bringing a team of leading academic theorists into a joint effort with the theoretical and experimental scientists of a major DOE national laboratory. The ASP consisted of fellows led by Robert Schrieffer (UCSB and now FSU) joined by David Pines (University of illinois), Elihu Abrahams (Rutgers), Sebastian Doniach (Stanford), and Maurice Rice (ETH, Zurich) and theoretical and experimental staff of Los Alamos National Laboratory. This synergism of academic, laboratory, theoretical and experimental research produced a level of interaction and excitement that would not be possible otherwise. This publication and the previous one in the series are just examples of how this approach to advancing science can achieve significant contributions
Studies on ceramic superconductors
International Nuclear Information System (INIS)
Chaklader, A.C.D.; Roemer, G.; Hardy, W.N.; Brewer, J.H.; Carolan, J.F.; Parsons, R.R.
1987-01-01
The superconducting properties of both bulk specimens and sputtered thin films of the YBa 2 Cu 3 O x compound have been studied. The bulk specimens were fabricated by cold pressing and sintering, and also by hot-pressing (subsequent reheating). The dc resistivity measurements showed a sharp drop in the temperature range 92-87K in this material. Muon spin relaxation (μSR) measurements of sintered discs in 3.4 kOe revealed the formation of a mixed state with an effective magnetic penetration depth λ ∼ 1365 angstrom at 6K, implying an effective charge carrier density of 6 x 10 21 cm -3 . The temperature dependence λ(T) is that of an ordinary s-wave superconductor. The resistivity of the thin film prepared from the compound by dc planar magnetron sputtering, showed a sharp drop to a very low value near 80K. The compound YBa 2 Cu 3 O x loses its superconducting properties, when either hot-pressed (in air) or oxidized at 500 degree C in high O 2 pressure, but this property can be restored when reheated in one atmosphere of O 2 above 900 degree C
Microscopic collective models of nuclei
International Nuclear Information System (INIS)
Lovas, Rezsoe
1985-01-01
Microscopic Rosensteel-Rowe theory of the nuclear collective motion is described. The theoretical insufficiency of the usual microscopic establishment of the collective model is pointed. The new model treating exactly the degrees of freedom separates the coordinates describing the collective motion and the internal coordinates by a consistent way. Group theoretical methods analyzing the symmetry properties of the total Hamiltonian are used defining the collective subspaces transforming as irreducible representations of the group formed by the collective operators. Recent calculations show that although the results of the usual collective model are approximately correct and similar to those of the new microscopic collective model, the underlying philosophy of the old model is essentially erroneous. (D.Gy.)
Time dependence of magnetization of high temperature superconductors
International Nuclear Information System (INIS)
Larkin, A.I.; Geshkenbein, V.B.
1988-10-01
Magnetization of high T c superconductors logarithmically decreases with time. There is a maximum in the temperature dependence of the coefficient at this logarithm. If one assumes that there do exist two kinds of pinning centers, then this dependence can be described in the Anderson theory of thermal creeps of Abrikosov's vortices. The temperature dependence of the critical current is also discussed. (author). 23 refs
Pairing-bag excitations in small-coherence-length superconductors
International Nuclear Information System (INIS)
Bishop, A.R.; Lomdahl, P.S.; Schrieffer, J.R.; Trugman, S.A.
1988-01-01
Localized baglike solutions in the pairing theory of superconductivity are studied. Starting from the Bogoliubov--de Gennes equations on a two-dimensional square lattice for half-filled negative-U Hubbard model, cigar- and star-shaped bags are numerically obtained, inside of which the order parameter is reduced, self-consistently trapping an added quasiparticle. These nonlinear excitations are important when the coherence length is small as for the new high-temperature superconductors. Several experimental consequences are discussed
A universal explanation of tunneling conductance in exotic superconductors
Hong, Jongbae; Abergel, D. S. L.
2016-01-01
A longstanding mystery in understanding cuprate superconductors is the inconsistency between the experimental data measured by scanning tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES). In particular, the gap between prominent side peaks observed in STS is much bigger than the superconducting gap observed by ARPES measurements. Here, we reconcile the two experimental techniques by generalising a theory which was previously applied to zero-dimensional mesoscop...
Energy Technology Data Exchange (ETDEWEB)
Ruoss, Stephen; Stahl, Claudia; Weigand, Markus; Schuetz, Gisela [Max-Planck-Institut fuer Intelligente Systeme, Stuttgart (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University (Germany)
2015-07-01
The penetration of magnetic flux into the high-temperature superconductor YBCO has been observed using a new high-resolution technique based on X-ray magnetic circular dichroism (XMCD). Superconductors coated with thin soft magnetic layers of CoFeB are observed in a scanning x-ray microscope providing cooling of the sample down to 83 K under the influence of external magnetic fields. Resulting electrical currents create an inhomogeneous magnetic field distribution above the superconductor which leads to a local reorientation of the ferromagnetic layer. X-ray absorption measurements with circular polarized radiation allows the analysis of the magnetic flux distribution in the superconductor via the ferromagnetic layer. In this work we present first images taken at 83K with high spatial resolution in the nanoscale.
International Nuclear Information System (INIS)
Chakravarty, Sudip
2011-01-01
High temperature superconductivity in cuprate superconductors remains an unsolved problem in theoretical physics. The same statement can also be made about a number of other superconductors that have been dubbed novel. What makes these superconductors so elusive is an interesting question in itself. This paper focuses on the recent magnetic oscillation experiments and how they fit into the broader picture. Many aspects of these experiments can be explained by Fermi liquid theory; the key issue is the extent to which this is true. If true, the entire paradigm developed over the past three decades must be reexamined. A critical analysis of this issue has necessitated a broader analysis of questions about distinct ground states of matter, which may be useful in understanding other novel superconductors.
International Nuclear Information System (INIS)
Mikitik, G.P.
1992-01-01
Fluctuations of the order parameter are taken into consideration in an analysis of the temperature dependence of the upper critical field of a type II superconductor with a three-dimensional superconductivity. This temperature dependence is of universal applicability, to all type II superconductors, if the magnetic fields and temperatures are expressed in appropriate units. This dependence is derived explicitly for the regions of strong and weak magnetic fields. The results are applied to high T c superconductors, for which fluctuation effects are important. For these superconductors, the H c2 (T) dependence is quite different from the linear dependence characteristic of the mean-field theory, over a broad range of magnetic fields
Scanning X-ray microscopy of superconductor/ferromagnet bilayers
Energy Technology Data Exchange (ETDEWEB)
Stahl, Claudia; Ruoss, Stephen; Weigand, Markus; Schuetz, Gisela [Max Planck Institute for Intelligent Systems, Stuttgart (Germany); Zahn, Patrick; Bayer, Jonas [Max Planck Institute for Intelligent Systems, Stuttgart (Germany); Research Institute for Innovative Surfaces, FINO, Aalen University (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University (Germany)
2016-07-01
The magnetic flux distribution arising from a high-T{sub c} superconductor is detected and visualized with high spatial resolution using scanning x-ray microscopy (SXM). Therefore, we introduce a sensor layer, namely, an amorphous, soft-magnetic CoFeB cover layer. The magnetic stray fields of the supercurrents lead to a local reorientation of the magnetic moments in the ferromagnet, which is visualized using the large x-ray magnetic circular dichroism (XMCD) effect of the Co and Fe L3-edge. We show that the XMCD contrast in the sensor layer corresponds to the in-plane magnetic flux distribution of the superconductor and can hence be used to image magnetic structures in superconductors with high spatial resolution. Using the total electron yield (TEY) mode the surface structure and the magnetic domains can be imaged simultaneously and can be correlated. The measurements are carried out at our scanning x-ray microscope MAXYMUS at Bessy II, Berlin with the new low temperature setup.
Edge instabilities of topological superconductors
Energy Technology Data Exchange (ETDEWEB)
Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher F. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)
2016-07-01
Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground state degeneracy and a diverging density of states. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry broken phases, which lift the ground-state degeneracy. Here, we employ Monte Carlo simulations combined with mean-field considerations to examine the instabilities of the flat-band edge states of d{sub xy}-wave superconductors. We find that attractive interactions induce a complex s-wave pairing instability together with a density wave instability. Repulsive interactions, on the other hand, lead to ferromagnetism mixed with spin-triplet pairing at the edge. We discuss the implications of our findings for experiments on cuprate high-temperature superconductors.
Superconductor stability, 1983: a review
International Nuclear Information System (INIS)
Dresner, L.
1983-01-01
Three main topics have been discussed in this paper, namely, internally cooled superconductors, cooling by superfluid helium, and metastable magnets. The discussion of each has centered around a dominant idea, and it is fitting to highlight these ideas by way of conclusion. With regard to internally cooled superconductors, most of what we have learned in the last few years centers on the strong motion caused by the thermal expansion of helium. How naive were our early calculations that treated the helium as though it were incompressible. Our discussion of He-II was organized around the Gorter-Mellink relation and the solutions of the nonlinear diffusion equation it gives rise to. And our discussion of metastable magnets revolved around the fruitful concept of the MPZ. These three ideas are sturdy trunks that support much of the thought about superconductor stability that has flowered in the past several years
Topological surface states in nodal superconductors.
Schnyder, Andreas P; Brydon, Philip M R
2015-06-24
Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.
Gravitational Field Shielding by Scalar Field and Type II Superconductors
Directory of Open Access Journals (Sweden)
Zhang B. J.
2013-01-01
Full Text Available The gravitational field shielding by scalar field and type II superconductors are theoret- ically investigated. In accord with the well-developed five-dimensional fully covariant Kaluza-Klein theory with a scalar field, which unifies the Einsteinian general relativity and Maxwellian electromagnetic theory, the scalar field cannot only polarize the space as shown previously, but also flatten the space as indicated recently. The polariza- tion of space decreases the electromagnetic field by increasing the equivalent vacuum permittivity constant, while the flattening of space decreases the gravitational field by decreasing the equivalent gravitational constant. In other words, the scalar field can be also employed to shield the gravitational field. A strong scalar field significantly shield the gravitational field by largely decreasing the equivalent gravitational constant. According to the theory of gravitational field shielding by scalar field, the weight loss experimentally detected for a sample near a rotating ceramic disk at very low tempera- ture can be explained as the shielding of the Earth gravitational field by the Ginzburg- Landau scalar field, which is produced by the type II superconductors. The significant shielding of gravitational field by scalar field produced by superconductors may lead to a new spaceflight technology in future.
Experimental consequences of predicted charge rigidity of superconductors
Energy Technology Data Exchange (ETDEWEB)
Hirsch, J.E., E-mail: jhirsch@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)
2012-08-15
The theory of hole superconductivity predicts that in superconductors the charged superfluid is about a million times more rigid than the normal electron fluid. We point out that this physics should give rise to large changes in the bulk and surface plasmon dispersion relations of metals entering the superconducting state, that have not yet been experimentally detected and would be in stark contradiction with the expected behavior within conventional BCS-London theory. We also propose that this explains the puzzling experimental observations of Avramenko et al. on electron sound propagation in superconductors and the puzzling experiments of de Heer et al. detecting large electric dipole moments in small metal clusters, as well as the Tao effect on aggregation of superconducting microparticles in an electric field. Associated with the enhanced charge rigidity is a large increase in the electric screening length of superconductors at low temperatures that has not yet been experimentally detected. The physical origin of the enhanced charge rigidity and its relation to other aspects of the theory of hole superconductivity is discussed.
Scanning Quantum Cryogenic Atom Microscope
Yang, Fan; Kollár, Alicia J.; Taylor, Stephen F.; Turner, Richard W.; Lev, Benjamin L.
2017-03-01
Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed-matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity high-resolution scanning probe magnetometers. We introduce a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented dc-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. The SQCRAMscope has a field sensitivity of 1.4 nT per resolution-limited point (approximately 2 μ m ) or 6 nT /√{Hz } per point at its duty cycle. Compared to point-by-point sensors, the long length of the BEC provides a naturally parallel measurement, allowing one to measure nearly 100 points with an effective field sensitivity of 600 pT /√{Hz } for each point during the same time as a point-by-point scanner measures these points sequentially. Moreover, it has a noise floor of 300 pT and provides nearly 2 orders of magnitude improvement in magnetic flux sensitivity (down to 10-6 Φ0/√{Hz } ) over previous atomic probe magnetometers capable of scanning near samples. These capabilities are carefully benchmarked by imaging magnetic fields arising from microfabricated wire patterns in a system where samples may be scanned, cryogenically cooled, and easily exchanged. We anticipate the SQCRAMscope will provide charge-transport images at temperatures from room temperature to 4 K in unconventional superconductors and topologically nontrivial materials.
Oxygen diffusion in cuprate superconductors
International Nuclear Information System (INIS)
Routbort, J.L.; Rothman, S.J.
1995-01-01
Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La 2-x Sr x CuO 4 , YBa 2 Cu 3 O 7- δ, YBa 2 Cu 4 O 8 , and the Bi 2 Sr 2 Ca n-1 Cu n O 2+4 (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible
Method of fabricating composite superconductors
International Nuclear Information System (INIS)
Koike, Y.; Shiraki, H.; Suzuki, E.; Yoshida, M.
1977-01-01
A method of making stabilized superconductors of a composition such as Nb 3 Sn is disclosed. The method includes forming a stock product comprising a tin base alloy as a core with a copper jacket and having a niobium tube clad thereon. The stock product is then embedded in a good thermally and electrically conducting matrix which is then coreduced until the desired size is obtained. This cold worked product is then submitted to a heat treatment to form superconductors of Nb 3 Sn
Tc, 2Δ0/KBTc and parameters of phonon spectrum for amorphous superconductors
International Nuclear Information System (INIS)
Cao Xiaowen
1987-04-01
After the correlations between superconducting parameters T C and 2Δ 0 , the parameters of the phonon spectrum, λ, , 2 > and Hall coefficient R H and between the superconducting T C and the parameters of the phonon spectrum ω 0 and /ω 0 were researched analytically. It had been found that there is a maximum of the above-mentioned both superconducting and the phonon spectrum parameters in the region of R H = -3.5 to -4.0 x 10 -11 m 3 /AS and that the materials having high ω 0 is favourable to obtain amorphous superconductors with high T C as well as that the relation between T C and the degree of the lattice disorder (i.e. /ω 0 value) is linear. On the basis of the above-mentioned results, a formula of T C and 2Δ 0 /k B T C of amorphous superconductors had been given. According to both proposed formula, it is noted for the first time that amorphous superconductor of the non-transition metals and their alloys is either a typical strong coupling superconductor which has a much larger 2 Δ 0 /k B T C than BCS theory or a extreme weak coupling superconductor which has a much smaller 2 Δ 0 /k B T C than BCS theory. Of coures, they can be also a weak coupling superconductor whose 2 Δ 0 /k B T C is consistent with BCS theory or approximate to one. The reason that the measurement value of 2 Δ 0 /k BTC of the weak coupling superconductors in the crystal state deviates obviously from BCS theory has been explained
Energy Technology Data Exchange (ETDEWEB)
Zahn, Patrick; Bayer, Jonas [Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Institute for Innovative Surfaces FINO, Aalen University, Beethovenstrasse 1, 73430 Aalen (Germany); Stahl, Claudia; Ruoss, Stephen; Graefe, Joachim; Schuetz, Gisela [Max Planck Institute for Intelligent Systems, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Albrecht, Joachim [Institute for Innovative Surfaces FINO, Aalen University, Beethovenstrasse 1, 73430 Aalen (Germany)
2016-07-01
With XMCD microscopy it is possible to visualize the critical current density of the superconductor YBCO with high spatial resolution. Therefore, soft magnetic CoFeB is introduced as sensor layer. The magnetic stray fields of the supercurrents lead to a local reorientation of the magnetic moments in the ferromagnet, which are then imaged via X-ray microscopy. These experiments have to be carried out at the scanning X-ray microscope MAXYMUS at the synchrotron Bessy II in Berlin. For that purpose pre-characterization of the sensor is highly desirable: Magnetic interactions between the superconductor and the ferromagnetic sensor layer have been investigated at low temperatures using Kerr-effect measurements. Therefore hysteresis loops are obtained by a sophisticated magnet and field ramping setup within the NanoMOKE3 system. The results are used to optimize the ferromagnetic sensor layer for XMCD microscopy of superconductors.
Transmission positron microscopes
International Nuclear Information System (INIS)
Doyama, Masao; Kogure, Yoshiaki; Inoue, Miyoshi; Kurihara, Toshikazu; Yoshiie, Toshimasa; Oshima, Ryuichiro; Matsuya, Miyuki
2006-01-01
Immediate and near-future plans for transmission positron microscopes being built at KEK, Tsukuba, Japan, are described. The characteristic feature of this project is remolding a commercial electron microscope to a positron microscope. A point source of electrons kept at a negative high voltage is changed to a point source of positrons kept at a high positive voltage. Positional resolution of transmission microscopes should be theoretically the same as electron microscopes. Positron microscopes utilizing trapping of positrons have always positional ambiguity due to the diffusion of positrons
International Nuclear Information System (INIS)
Wada, Hitoshi; Takeuchi, Takao; Kuroda, Tsuneo
2000-01-01
To evaluate the stability of superconductors, we constructed a measurement system of the critical current density Jr property as function of temperature, magnetic strength, azimuth of magnetic field and distortion. LabView program automatically controlled the magnetic field, temperature, rotational displacement, load, multimeter and sample source in the system. The superconducting critical surface of Nb 3 Al wire was prepared by two methods: a low temperature diffusion method and a phase transformation method. Nb 3 Al prepared by two methods proved the temperature scaling law of magnetic pinning force density and parameters for fitting the pinning model were introduced. The tailing of Jc-T curve at the high temperature side was generated by pinning property of magnetic flux line. On measurement of AC magnetic susceptibility, a primary stack (JR filament) of RIT Nb 3 Al wire prepared by phase transformation connected electrically and the size corresponded to the effective core size, so that, large n value was shown in spite of high temperature treatment and it showed good distortion resistance. Nb 3 Al wire prepared by low temperature diffusion method indicated large anisotropy of Bc 2 and Jc in the rectangular wire. On V 3 Ga, the temperature scaling law of magnetic field was not established and it was observed the effective grain boundary pinning at the low magnetic field and the other pinning mechanism of which magnetic flux line synchronized in the high temperature field. The specific magnetic azimuth dependency showed in the neighborhood of the parallel magnetic field. Jc indicated the positive dependence of temperature in the peak magnetic field. Jc of Bi oxides tape conductor was measured and the results showed the magnetic field was governed by magnetic field dependence on the c axis direction. (S.Y.)
Properties of amorphous and microcrystalline superconductors
International Nuclear Information System (INIS)
Johnson, W.L.; Poon, S.J.
1975-01-01
Results of x-ray diffraction, electrical resistivity, critical field(H/sub c2/) and transport measurements are presented and discussed for bulk amorphous and microcrystalline transition metal alloys (Au--La, Nb--Rh, Nb--Ni--Rh, and Pd--Zr) obtained by liquid quenching. The transition temperature of the alloys is in the range 1.5 to 4.7 0 K. The J/sub c/--H/sub c2/--T/sub c/ relations are rather simple for this class of material and are compared with the theories of type II superconductors. The high resistance of bulk metallic glass to radiation damage might render them suitable for magnetic field applications in high radiation environments
Quantized vortices in superfluids and superconductors
International Nuclear Information System (INIS)
Thoulessi, D.J.; Wexler, C.; Ping Ao, Ping; Niu, Qian; Geller, M.R.
1998-01-01
We give a general review of recent developments in the theory of vortices in superfluids and superconductors, discussing why the dynamics of vortices is important, and why some key results are still controversial. We discuss work that we have done on the dynamics of quantized vortices in a superfluid. Despite the fact that this problem has been recognized as important for forty years, there is still a lot of controversy about the forces on and masses of quantized vortices. We think that one can get unambiguous answers by considering a broken symmetry state that consists of one vortex in an infinite ideal system. We argue for a Magnus force that is proportional to the superfluid density, and we find that the effective mass density of a vortex in a neutral superfluid is divergent at low frequencies. We have generalized some of the results for a neutral superfluid to a charged system. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)
Raman scattering of light off a superconductor
International Nuclear Information System (INIS)
Cuden, C.B.
1976-01-01
Raman scattering off a superconducting surface is formulated using Kubo's nonlinear response theory in a form suitable for systematic diagrammatic expansion. The effects of the sample surface are correctly taken into account. It is shown that in the presence of vacuum polarization processes, the contribution to the scattering efficiency from the density-density correlation function considered in the literature, is reduced. The relevant four-vertex parts, describing inelastic scattering of light by electronic excitations via intermediate interband states in a superconductor, are calculated. Frequency and temperature dependence of the relative scattering efficiency for the large momentum transfer (Pippard limit), and constant transition matrix elements, are obtained. The estimated magnitude of the total scattering efficiency is of the order of 10 -11
SQCRAMscope imaging of transport in an iron-pnictide superconductor
Yang, Fan; Kollar, Alicia; Taylor, Stephen; Palmstrom, Johanna; Chu, Jiun-Haw; Fisher, Ian; Lev, Benjamin
2017-04-01
Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We have recently introduced a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. We will report on the first use of the SQCRAMscope for imaging a strongly correlated material. Specifically, we will present measurements of electron transport in iron-pnictide superconductors across the electron nematic phase transition at T = 135 K.
Magnetic properties of thin Ni films measured by a dc SQUID-based magnetic microscope
DEFF Research Database (Denmark)
Snigirev, O.V.; Andreev, K.E.; Tishin, A.M.
1997-01-01
We have applied a scanning HTS (high-temperature superconductor) de SQUID (superconducting quantum interference device) -based magnetic microscope to study the magnetic properties of Au/Ni/Si(100) films in the thickness range from 8 to 200 Angstrom at T = 77 K. A one-domain structure with in...
The Scanning Optical Microscope.
Sheppard, C. J. R.
1978-01-01
Describes the principle of the scanning optical microscope and explains its advantages over the conventional microscope in the improvement of resolution and contrast, as well as the possibility of producing a picture from optical harmonies generated within the specimen.
Development of superconductor application technology
Energy Technology Data Exchange (ETDEWEB)
Hong, G W; Kim, C J; Lee, H G; Lee, H J; Kim, K B; Won, D Y; Jang, K I; Kwon, S C; Kim, W J; Ji, Y A; Yang, S W; Kim, W K; Park, S D; Lee, M H; Lee, D M; Park, H W; Yu, J K; Lee, I S; Kim, J J; Choi, H S; Chu, Y; Kim, Y S; Kim, D H
1997-09-01
Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs.
Superconductor with improved persistence characteristics
International Nuclear Information System (INIS)
Stekly, Z. J. J.; Strauss, B. P.
1984-01-01
In a multifilamentary superconductor, plural filaments are separated from one another by a ductile nonsuperconducting copper matrix. The niobium titanium filaments are arrayed through the copper, with one filament being substantially larger than the others, and preferably, centrally located in the wire. Preferably also, the other filaments are arrayed in an annular configuration about the periphery of the wire
Ceramic high-temperature superconductors
International Nuclear Information System (INIS)
Marquart, R.
1989-01-01
The contribution presents an overview treatment of the structure of the new superconductors (YBa 2 Cu 3 O 7-x ). Methods of powder production and processing technology are described, with current development projects by Dornier being taken into consideration. (orig.) [de
Testing Superconductor Logic Integrated Circuits
Arun, A.J.; Kerkhoff, Hans G.
2005-01-01
Superconductor logic has the potential of extremely low-power consumption and ultra-fast digital signal processing. Unfortunately, the obtained yield of the present processes is low and specific faults occur. This paper deals with fault-modelling, Design-for-Test structures, and ATPG for these
High Temperature Superconductor Machine Prototype
DEFF Research Database (Denmark)
Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten
2011-01-01
A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...
Vortex lattices in layered superconductors
International Nuclear Information System (INIS)
Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.
1995-01-01
We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear
Superconductors by powder metallurgy techniques
International Nuclear Information System (INIS)
Pickus, M.R.; Wang, J.L.F.
1976-05-01
Fabrication methods for Nb 3 Sn type compounds are described. Information is included on the Bell Telephone process, the General Electric tape process, superconductor stability, the bronze process, powder metallurgy multifilamentary tapes and wires, and current assessment of powder metallurgy superconducting wire
Dynamics of vortices in superconductors
International Nuclear Information System (INIS)
Weinan, E.
1992-01-01
We study the dynamics of vortices in type-II superconductors from the point of view of time-dependent Ginzburg-Landau equations. We outline a proof of existence, uniqueness and regularity of strong solutions for these equations. We then derive reduced systems of ODEs governing the motion of the vortices in the asymptotic limit of large Ginzburg-Landau parameter
Development of superconductor application technology
International Nuclear Information System (INIS)
Hong, G. W.; Kim, C. J.; Lee, H. G.; Lee, H. J.; Kim, K. B.; Won, D. Y.; Jang, K. I.; Kwon, S. C.; Kim, W. J.; Ji, Y. A.; Yang, S. W.; Kim, W. K.; Park, S. D.; Lee, M. H.; Lee, D. M.; Park, H. W.; Yu, J. K.; Lee, I. S.; Kim, J. J.; Choi, H. S.; Chu, Y.; Kim, Y. S.; Kim, D. H.
1997-09-01
Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm 2 was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm 2 was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs
Chemistry of high temperature superconductors
1991-01-01
This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.
Strain effects in oxide superconductors
International Nuclear Information System (INIS)
Wada, H.; Kuroda, T.; Sekine, H.; Yuyama, M.; Itoh, K.
1991-01-01
Strain sensitivities of superconducting properties are critical to high magnetic field applications of superconductors, since critical temperature, T c , upper critical field, H c2 , and critical current (density), I c (J c ), are all degraded under strains. Oxide superconductors so far known are all very fragile, thus requiring to be fabricated in the form of composite. In the case of practical metallic superconductors, such as Nb 3 Sn and V 3 Ga, the so-called bronze method has been developed where these superconducting intermetallics are enveloped in a ductile metallic sheath. Recently, a fabrication method similar to the bronze method has been developed for the Bi 2 Sr 2 Ca 2 Cu 3 O x superconductors using Ag tubes as sheath. In the present study mono- and multicore BiPbSrCaCuO tape conductors were prepared by means of this Ag-sheath composite method, and examined in terms of strain sensitivity by measuring their T c and I c (J c ) under bending or tensile strains. (orig.)
International Nuclear Information System (INIS)
Adler, S.L.; Wilczek, F.
1993-11-01
Areas of emphasis include acceleration algorithms for the Monte Carlo analysis of lattice field and gauge theories, quaternionic generalizations of complex quantum mechanics and field theory, application of the renormalization group to the QCD phase transition, the quantum Hall effect, and black holes. Other work involved string theory, statistical properties of energy levels in integrable quantum systems, baryon asymmetry and the electroweak phase transition, anisotropies of the cosmic microwave background, and theory of superconductors
Dual Symmetry in Bent-Core Liquid Crystals and Unconventional Superconductors
Directory of Open Access Journals (Sweden)
Vladimir Lorman
2010-01-01
Full Text Available We extend the Landau theory of bent-core mesophases and d-wave high-Tc superconductors by considering additional secondary pseudo-proper order parameters. These systems exhibit a remarkable analogy relating their symmetry groups, lists of phases, and an infinite set of physical tensors. This analogy lies upon an internal dual structure shared by the two theories. We study the dual operator transforming rotations into translations in liquid crystals, and gauge symmetries into rotations in superconductors. It is used to classify the bent-core line defects, and to analyze the electronic gap structure of lamellar d-wave superfluids.
Fluctuoscopy of Superconductors
Varlamov, Andrey
2012-02-01
The study of superconducting fluctuations (SF) is a subject of fundamental and practical importance. Since the moment of discovery SF became a noticeable part of research in the field of superconductivity (SC) and a variety of fluctuation effects have been detected. The interest to SF in SC was regenerated by the discovery of HTS, where, due to extremely short coherence length and low effective dimensionality of the electron system, SF manifest themselves in a wide range of temperatures. The characteristic feature of SF is their strong dependence on temperature and magnetic field. This allows to separate SFs from other contributions and to use them as a tool for characterization of SC systems (``fluctuoscopy'') for example to extract the values of Tc, Hc2(T) and phase-breaking time from experimental data. We present the complete results for fluctuation magneto-conductivity (FMC) and Nernst signal (FNS) of impure 2D superconductor in the whole phase diagram above the transition line Hc2(T), including the domain of quantum fluctuations. Along some line H0(T), in agreement with experimental findings, FMC becomes zero and beyond it remains small and negative. The corresponding surface in coordinates (T,H) becomes in particular non-trivial at low temperatures and close to Hc2(0), where it is trough-shaped. The observation of large FNS in HTS and conventional SC above Tc(H), has attracted much attention recently. The idea to attribute it to the entropy transport by analogy to vortices was proposed. On the other hand this giant effect, close to Tc(0), was explained in terms of SF. Our general results allow to successfully fit the available experimental data in a wide range of magnetic fields and temperatures, to extract the value of the ``ghost'' field and other parameters of SC. We offer also a qualitative consideration, which gives a natural explanation for the giant value of FNS attributing it to a strong dependence of the fluctuation Cooper pair (FCP) chemical
Tunneling processes into localized subgap states in superconductors
Energy Technology Data Exchange (ETDEWEB)
Ruby, Michael; Heinrich, Benjamin W.; Franke, Katharina J. [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Pientka, Falko; Peng, Yang; Oppen, Felix von [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Dahlem Center for Complex Quantum Systems, Freie Universitaet Berlin, 14195 Berlin (Germany)
2016-07-01
The Yu-Shiba-Rusinov states bound by magnetic impurities in conventional s-wave superconductors are a simple model system for probing the competition between superconducting and magnetic correlations. Shiba states can be observed in scanning tunneling spectroscopy (STS) as a pair of resonances at positive and negative bias voltages in the superconducting gap. These resonances have been interpreted in terms of single-electron tunneling into the localized sub-gap states. This requires relaxation mechanisms that depopulate the state after an initial tunneling event. Recently, theory suggests that the current can also be carried by Andreev processes which resonantly transfer a Cooper pair into the superconductor. We performed high-resolution STS experiments on single adatom Shiba states on the superconductor Pb, and provide evidence for the existence of two transport regimes. The single-electron processes dominate at large tip-sample distances and small tunneling currents, whereas Andreev processes become important at stronger tunneling. Our conclusions are based on a careful comparison of experiment and theory.
Energy Technology Data Exchange (ETDEWEB)
Cavia Santos, S; Garcia-Tabares, L
1998-05-01
A new simple theory has been developed for the study of levitation forces between a permanent magnet and a HTc superconductor. This theory is based on the assumption that both, the magnet and the superconductor, can be modelled by an equivalent coil placed on their surface. While the current flowing through the permanent magnet is constant, the equivalent current through the superconductor can be iether corresponding to screen the overall flux or a constant current corresponding to critical current density when the superconductor is saturated. A test facility has been designed and built for measuring levitation forces at variable approaching speeds. Comparison between theoretical and experimental measurements are presented in the report as well as a general description of the test facility. (Author)
Prospects of Anderson's theorem for disordered cuprate superconductors
Ghosal, Amit; Chakraborty, Debmalya; Kaushal, Nitin
2018-05-01
We develop a simple pairing theory of superconductivity in strongly correlated d-wave superconductors for up to a moderate strength of disorder. Our description implements the key ideas of Anderson, originally proposed for disordered s-wave superconductors, but in addition takes care of the inherent strong electronic repulsion in these compounds, as well as the inhomogeneities. We first obtain the self-consistent one-particle states, that capture the effects of disorder exactly, and strong correlations using Gutzwiller approximation. These 'normal states' (at zero temperature) when coupled through BCS-type pairing attractions, produces results which are nearly identical to those from a more sophisticated Gutzwiller augmented Bogoliubov-de Gennes analysis.
Intrinsic pinning in superconductors with extremely small coherence lengths
International Nuclear Information System (INIS)
Schimmele, L.; Kronmueller, H.; Teichler, H.
1988-01-01
By means of a Ginsburg-Landau-type theory which takes into account the discrete lattice structure the variation of the energy ('Peierls potential') of an isolated flux line is calculated when shifted relatively to the crystal lattice. In particular, a primitive cubic lattice is considered with a straight flux line, aligned parallel to a cubic axis. The resulting Peierls potential may lead to intrinsic pinning if the coherence length is smaller than about two nearest neighbour distances. The coherence lengths at low temperatures determined for the recently discovered high T c superconductors of the YBa 2 Cu 3 O 7 class come very close to this value so that intrinsic pinning might possibly be relevant for these superconductors. (author)
Inverse isotope effect in iron-based superconductor
International Nuclear Information System (INIS)
Shirage, Parasharam M.; Kihou, Kunihiro; Miyazawa, Kiichi; Lee, Chul-Ho; Kito, Hijiri; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Tanaka, Yasumoto; Iyo, Akira
2010-01-01
We have found that (Ba, K)Fe 2 As 2 superconductor (a transition temperature, T c ∼ 38 K) shows an inverse Iron isotope effect (α Fe = -0.18 ± 0.03, where T c ∼ M -αFe and M is the iron isotope mass), i.e. the sample containing the larger iron mass depicts higher T c . Systematic studies using three types of Fe-isotopes ( 54 Fe, natural Fe and 57 Fe) reveal a clear inverse shift on T c by measurements of temperature dependent magnetization and resistivity. The inverse isotope effect that is the first case in high-T c superconductors strongly suggests that superconducting mechanism of the iron-based system is not explained by conventional BCS theory mediated by phonons.
Transport behavior in superconductors at extreme dissipation levels
International Nuclear Information System (INIS)
Kunchur, M.N.
1996-09-01
A number of fundamental physical phenomena unfold in the mixed state of superconductor, when subjected to enormous current and power-dissipation levels. A sufficiently large current can destroy the superconducting state itself--the so-called pair-breaking effect. At intermediate current densities, below the onset of pair-breaking, one expects to see the free viscous flow of flux vortices. In the present work a pulsed-current technique was used to explore this dissipative regime of high-T c superconductors, verifying both free flux flow and the pair-breaking effect, as predicted by traditional theories. This paper concentrates on the dissipation and Hall behavior in the free flux flow state
Proximity coupling in superconductor-graphene heterostructures
Lee, Gil-Ho; Lee, Hu-Jong
2018-05-01
This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene Josephson junctions are examined, together with their advantages and limitations, followed by a discussion on the advances in device fabrication and the relevant length scales. The phase-sensitive properties and phase-particle dynamics of graphene Josephson junctions are examined to provide an understanding of the underlying mechanisms of Josephson coupling via graphene. Thereafter, microscopic transport of correlated quasiparticles produced by Andreev reflections at superconducting interfaces and their phase-coherent behaviors are discussed. Quantum phase transitions studied with graphene as an electrostatically tunable 2D platform are reviewed. The interplay between proximity-induced superconductivity and the quantum-Hall phase is discussed as a possible route to study topological superconductivity and non-Abelian physics. Finally, a brief summary on the prospective future research directions is given.
Optical properties of high-Tc superconductors
International Nuclear Information System (INIS)
Aspnes, D.E.; Kelly, M.K.
1989-01-01
The authors summarize the present status of optical spectroscopy of high-T c superconductors. The optical properties of these materials resemble those of the more common transition metal oxides except for being highly anisotropic in the infrared (IR). This large IR anisotrophy and a need to rely solely on reflectance techniques has hindered progress in obtaining accurate IR data and interpreting these data in terms of microscopic mechanisms. However, experimental consistency is now being approached with single-crystal samples, although interpretations of these data remain controversial and an unequivocal demonstration of a superconducting gap structure has not yet been achieved. The mid IR exhibits an absorption band whose systematics are neither well established nor understood. The situation in the visible-near-ultraviolet (V-NUV) is better, partly because of greatly reduced optical anisotropy and the availability of alternative measurement techniques that are not strongly affected by the lower optical quality of sintered material. As polycrystalline, sintered samples can be prepared relatively easily over wide ranges of composition, doping, and chemical substitution, most work on studying the chemical systematics of these materials has been done in this spectral range and some of the structure that appears here has been positively identified
Photoexcitation in superconductors
International Nuclear Information System (INIS)
Schuller, I.
1976-06-01
A measurement has been made for the first time of the relaxation time of the superconducting order parameter and the equilibrium energy gap close to T/sub c/. The results indicate that the relaxation time of the magnitude of the order parameter diverges as 1/Δ/sub eq/ for T/T/sub c/ greater than or equal to 0.99, in agreement with theory. The inelastic collision time for electrons determined from this experiment is consistent with surface-Landau-level-resonance experiments and theory
International Nuclear Information System (INIS)
Balatsky, A.V.; Scalapino, D.; Wilkins, J.; Pines, D.; Bedell, K.; Schrieffer, J.R.; Fisk, Z.
1998-01-01
This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have obtained a description of symmetry of the order parameter and pairing state in high-Tc superconductors. They developed a theory of ferromagnetic instability of Fermi-liquid. They have conducted an experimental investigation of the intermetallic compounds and Zintl-type compound. They investigated the properties of Cu-0 ladders. They have developed the theory of liftshitz tails in superconductors. They have conducted a number of summer workshops
Iron-Based Superconductors as Odd-Parity Superconductors
Directory of Open Access Journals (Sweden)
Jiangping Hu
2013-07-01
Full Text Available Parity is a fundamental quantum number used to classify a state of matter. Materials rarely possess ground states with odd parity. We show that the superconducting state in iron-based superconductors is classified as an odd-parity s-wave spin-singlet pairing state in a single trilayer FeAs/Se, the building block of the materials. In a low-energy effective model constructed on the Fe square bipartite lattice, the superconducting order parameter in this state is a combination of an s-wave normal pairing between two sublattices and an s-wave η pairing within the sublattices. The state has a fingerprint with a real-space sign inversion between the top and bottom As/Se layers. The results suggest that iron-based superconductors are a new quantum state of matter, and the measurement of the odd parity can help to establish high-temperature superconducting mechanisms.
Energy Technology Data Exchange (ETDEWEB)
Zhou, X.J.
2010-04-30
In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not
International Nuclear Information System (INIS)
Zhou, X.J.
2010-01-01
In addition to the record high superconducting transition temperature (T c ), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T c , and anomalous normal state properties above T c . In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T c . As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T c superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not thought possible
NSSEFF Designing New Higher Temperature Superconductors
2017-04-13
AFRL-AFOSR-VA-TR-2017-0083 NSSEFF - DESIGINING NEW HIGHER TEMPERATURE SUPERCONDUCTORS Meigan Aronson THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF...2015 4. TITLE AND SUBTITLE NSSEFF - DESIGINING NEW HIGHER TEMPERATURE SUPERCONDUCTORS 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-10-1-0191 5c...materials, identifying the most promising candidates. 15. SUBJECT TERMS TEMPERATURE, SUPERCONDUCTOR 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
Passivation Of High-Temperature Superconductors
Vasquez, Richard P.
1991-01-01
Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.
Applications of superconductors to electric motors
International Nuclear Information System (INIS)
McConnell, B.W.
1988-01-01
This paper reviews previous experience in applying superconductors to electric motors and examines the difficulties encountered. While motors and generators have a common basis, several significant differences exist. The application of high temperature superconductors to the major electric motor types is discussed and expected difficulties are presented. The limitations imposed by various motor designs are reflected in a statement of the desired material properties for high temperature superconductor electric motor applications
Holographic complexity in gauge/string superconductors
Directory of Open Access Journals (Sweden)
Davood Momeni
2016-05-01
Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T
Strong-coupling interaction in high-Tc superconductors
International Nuclear Information System (INIS)
Ray, D.K.
1991-01-01
Extensive experimental and theoretical work have been done to understand the mechanisms of superconductivity. Until 1986 when Bednorz and Muller discovered superconductivity in the copper oxide perovskite, the principal mechanism was found to be electron-phonon interaction and the characteristics of superconductivity vary depending on the strength of the electron-phonon interaction and the electronic structure. The essential characteristic of these conventional superconductors could be divided into two groups: wide band metals with low density of states N(E F ) at the Fermi energy E F and a rather weak electron-phonon coupling V obeying the universal characteristics of the BCS theory and narrow d band metals, compounds, and alloys with high values of N(E F ), electron-phonon coupling V and non negligible Coulomb interaction between the electrons. In this paper a short summary and the important results of these theories are discussed. The inherent limitations of these theories based on electron-phonon interaction will be discussed. The authors indicate the major characteristics of the new superconductors. These characteristics are difficult to explain on the basis of either the conventional electron-phonon theory or theories based on magnetic interactions alone
Energy Technology Data Exchange (ETDEWEB)
Chernenkaya, A., E-mail: chernenk@uni-mainz.de [Graduate School Materials Science in Mainz, 55128 Mainz (Germany); Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Morherr, A.; Witt, S.; Krellner, C. [Physikalisches Institut, Goethe-Universität, 60438 Frankfurt am Main (Germany); Backes, S.; Popp, W.; Jeschke, H. O.; Valentí, R. [Institut für Theoretische Physik, Goethe-Universität, 60438 Frankfurt am Main (Germany); Kozina, X.; Nepijko, S. A.; Elmers, H. J.; Schönhense, G. [Institut für Physik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Bolte, M. [Institut für Anorganische Chemie, Goethe-Universität, 60438 Frankfurt am Main (Germany); Medjanik, K.; Öhrwall, G. [MAX-IV Laboratory, Lund University, 22100 Lund (Sweden); Baumgarten, M. [Max-Planck-Institut für Polymerforschung, 55021 Mainz (Germany)
2016-07-21
We have investigated the charge transfer mechanism in single crystals of DTBDT-TCNQ and DTBDT-F{sub 4}TCNQ (where DTBDT is dithieno[2,3-d;2′,3′-d′] benzo[1,2-b;4,5-b′]dithiophene) using a combination of near-edge X-ray absorption spectroscopy (NEXAFS) and density functional theory calculations (DFT) including final state effects beyond the sudden state approximation. In particular, we find that a description that considers the partial screening of the electron-hole Coulomb correlation on a static level as well as the rearrangement of electronic density shows excellent agreement with experiment and allows to uncover the details of the charge transfer mechanism in DTBDT-TCNQ and DTBDT-F{sub 4} TCNQ, as well as a reinterpretation of previous NEXAFS data on pure TCNQ. Finally, we further show that almost the same quality of agreement between theoretical results and experiment is obtained by the much faster Z+1/2 approximation, where the core hole effects are simulated by replacing N or F with atomic number Z with the neighboring atom with atomic number Z+1/2.
Melt processed high-temperature superconductors
1993-01-01
The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti
Recent status of superconductors for accelerator magnets
International Nuclear Information System (INIS)
Greene, A.F.
1992-01-01
A survey is given of superconductor wire and cable which has been or will be used for construction of dipole magnets for all of the large European and US superconducting accelerator rings. Included is a simplified view of the construction methods and operating requirements of an accelerator dipole magnet, with emphasis on required superconductor performance. The methods of fabricating Nb-Ti superconductors are described, including the critical parameters and materials requirements. The superconductor performance requirements are summarized in an effort to relate why these are important to accelerator designers. Some of the recently observed time dependent effects are covered briefly
Vortex and characteristics of prestrained type-II deformable superconductors under magnetic fields
International Nuclear Information System (INIS)
Ma, Zeling; Wang, Xingzhe; Zhou, Youhe
2016-01-01
Highlights: • A numerical investigation of magnetic vortex dynamics of a deformable superconductor with prestrains is presented. • The prestrain has a remarkable influence on the magnetic vortex distribution and dynamics. • The different prestrains, i.e., pre-given compression and tension strains, result in dissimilar characteristics. • The energy density and spectrum in the deformable superconductor are demonstrated. - Abstract: Based on the time-dependent Ginzburg–Landau (TDGL) theory and the linear deformation theory, we present a numerical investigation of magnetic vortex characteristics of a type-II deformable superconductor with prestrain. The effect of prestrain on the wave function, vortex dynamics and energy density of a superconducting film is analyzed by solving the nonlinear TDGL equations in the presence of magnetic field. The results show that the prestrain has a remarkable influence on the magnetic vortex distribution and the vortex dynamics, as well as value of wave function of the superconductor. The different prestrains, i.e., pre-given compression and tension strains, result in dissimilar characteristics on a half-plane of deformable superconductor in an applied magnetic field, and the vortex distribution and entrance in a two dimensional superconducting film. The studies demonstrated that the compression prestrain may speed up the vortexes entering into the region of the superconducting film and increases the vortex number in comparison with those of free-prestrain case, while the tension prestrain shows the reversal features. The energy density and spectrum in the superconductor are further demonstrated numerically and discussed. The present investigation is an attempt to give insight into the superconductivity and electromagnetic characteristics taking into account the elastic deformation in superconductors.
Photographing magnetic fields in superconductors
International Nuclear Information System (INIS)
Harrison, R.B.; Wright, L.S.
Magneto-optic techniques coupled with high-speed photography are being used to study the destruction of superconductivity by a magnetic field. The phenomenon of superconductivity will be introduced with emphasis placed on the properties of type I and type II superconductors in a magnetic field. The Faraday effect and its application to the study of the penetration of magnetic fields into these superconductors will be described; the relative effectiveness of some types of paramagnetic glass will be demonstrated. A number of cinefilms will be shown to illustrate the versatility of the magneto-optic method for observing flux motion and patterns. The analysis of data obtained from a high speed film (10,200 fps) of a flux jump in Nb-Zr will be presented and discussed
Oxygen diffusion in cuprate superconductors
Energy Technology Data Exchange (ETDEWEB)
Routbort, J.L.; Rothman, S.J.
1995-01-01
Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La{sub 2}{sub {minus}}{sub {times}}Sr{sub {times}}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7}{sub {minus}}{delta}, YBa{sub 2}Cu{sub 4}O{sub 8}, and the Bi{sub 2}Sr{sub 2}Ca{sub n}{sub {minus}}{sub 1}Cu{sub n}O{sub 2}{sub +}{sub 4} (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible.
Theoretical studies of unconventional superconductors
Energy Technology Data Exchange (ETDEWEB)
Groensleth, Martin Sigurd
2008-07-01
This thesis presents four research papers. In the first three papers we have derived analytical results for the transport properties in unconventional superconductors and ferromagnetic systems with multiple broken symmetries. In Paper I and parts of Paper II we have studied tunneling transport between two non-unitary ferromagnetic spin-triplet superconductors, and found a novel interplay between ferromagnetism and superconductivity manifested in the Josephson effect as a spin- and charge-current in the absence of an applied voltage across the junction. The critical amplitudes of these currents can be adjusted by the relative magnetization direction on each side of the junction. Furthermore, in Paper II, we have found a way of controlling a spin-current between two ferromagnets with spin-orbit coupling. Paper III considers a junction consisting of a ferromagnet and a non-unitary ferromagnetic superconductor, and we show that the conductance spectra contains detailed information about the superconducting gaps and pairing symmetry of the Cooper-pairs. In the last paper we present a Monte Carlo study of an effective Hamiltonian describing orbital currents in the CuO2 layers of high-temperature superconductive cuprates. The model features two intrinsically anisotropic Ising models, coupled through an anisotropic next-nearest neighbor interaction, and an Ashkin-Teller nearest neighbor fourth order coupling. We have studied the specific heat anomaly, as well as the anomaly in the staggered magnetization associated with the orbital currents and its susceptibility. We have found that in a limited parameter regime, the specific heat anomaly is substantially suppressed, while the susceptibility has a non-analytical peak across the order-disorder transition. The model is therefore a candidate for describing the breakup of hidden order when crossing the pseudo-gap line on the under-doped side in the phase diagram of high-temperature superconductors. (Author) 64 refs., figs
Interaction between light and superconductors
Gilabert, Alain
In the first part of this review article we resume briefly the fundamental aspect of the photon-superconductor interaction. The emphase is focused on the characteristic times and on the phenomenological models (the T*, the μ* models and the model of the kinetics equations) describing the out of equilibrium superconductivity. The experiments made on classical illuminated superconductors especially on tunnel junctions are then reported. In the second part we present the applied aspect of the photon-superconductor interaction. The interaction of the light with the high Tc superconductors is reviewed in the last part. Dans la première partie de cet article de revue, on résume brièvement 1'aspect fondamental de l'action des photons sur les supraconducteurs en s'attachant surtout à rappeler les différents temps caractéristiques de cette interaction et les modèles phénoménologiques (le modèle T*, le modèle μ*, le modèle des équations cinétiques) décrivant la supraconductivité hors équilibre. La seconde partie rappelle les expériences réalisées sur les supraconducteurs classiques illuminés et spécialement les jonctions tunnel ainsi que certaines applications de la supraconductivité hors équilibre comme les liens faibles controllables par des moyens optiques. La dernière partie est consacrée aux nouvelles expériences qui démarrent concernant l'action de la lumière sur les supraconducteurs à hautes températures critiques.
Negative magnetic relaxation in superconductors
Directory of Open Access Journals (Sweden)
Krasnoperov E.P.
2013-01-01
Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.
Energy Technology Data Exchange (ETDEWEB)
Maillard, J M; Rammal, R; Vittorge, M C
1989-01-01
Progress concerning the theory of high temperature superconductors and activity of laboratories of the CNRS (France) are reviewed and news on strategy, budgets, theoretical research, materials characterization, fabrication process technology transfers, commercialisation, uses and data bases are given.
Cryogenic immersion microscope
Le Gros, Mark; Larabell, Carolyn A.
2010-12-14
A cryogenic immersion microscope whose objective lens is at least partially in contact with a liquid reservoir of a cryogenic liquid, in which reservoir a sample of interest is immersed is disclosed. When the cryogenic liquid has an index of refraction that reduces refraction at interfaces between the lens and the sample, overall resolution and image quality are improved. A combination of an immersion microscope and x-ray microscope, suitable for imaging at cryogenic temperatures is also disclosed.
Analytical Electron Microscope
Federal Laboratory Consortium — The Titan 80-300 is a transmission electron microscope (TEM) equipped with spectroscopic detectors to allow chemical, elemental, and other analytical measurements to...
Scanning Color Laser Microscope
Awamura, D.; Ode, T.; Yonezawa, M.
1988-01-01
A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.
Electronic properties of high Tc superconductors
International Nuclear Information System (INIS)
Rojo, A.G.
1989-01-01
Using analytical and numerical methods, the electronic properties of the copper-oxygen plane in the normal phase of high Tc superconductors are described. Using the slave-boson technique in the saddle point, a theory of the metal insulator transition which generalizes the notions of a Mott insulator to the case of more than a single band for those planes is presented. A phase-diagram is obtained in the parameter space and effective masses, optical gaps and metallization are calculated as a function of the number of carriers. Based on the experimental evidence, the theory permits classification of superconducting compounds as charge transfer insulators in the stoichiometric case. The insulator state is characterized by a non-zero optical gap and a divergent effective mass which corresponds to the breakage of a Fermi-liquid scheme. The results obtained are applicable to metal-transition-oxides whose behaviour has been traditionally controversial and it is concluded that it is necessary to broaden the meaning of a Mott insulator to the case of more than a single band to better understand them. Based on the ideas of group renormalization in a real space, a lattice approximation is presented, which allows: a) To complement the treatment of slave-bosons in phase diagrams and optical gaps; b) Identification of an attraction mechanism between carriers originating from purely repulsive interactions. Numerical calculations in small clusters show the existence of a pairing mechanism showing a superconducting instability from a charge transfer insulator. (Author) [es
Magnetic flux periodicities and finite momentum pairing in unconventional superconductors
Energy Technology Data Exchange (ETDEWEB)
Loder, Florian
2009-12-22
This work contains a thorough study of the magnetic flux periodicity of loops of conventional and unconventional, especially d-wave, superconductors. Although already in 1961, several independent works showed that the flux period of a conventional superconducting loop is the superconducting flux quantum hc/2e, this question has never been investigated deeply for unconventional superconductors. And indeed, we show here that d-wave superconducting loops show a basic flux period of the normal flux quantum hc/e, a property originating from the nodal quasi-particle states. This doubling of the flux periodicity is best visible in the persistent current circulating in the loop, and it affects other properties of the superconductor such as the periodicity of d-wave Josephson junctions. In the second part of this work, the theory of electron pairing with finite center-of-mass momentum, necessary for the description of superconducting loops, is extended to systems in zero magnetic field. We show that even in the field free case, an unconventional pairing symmetry can lead to a superconducting ground state with finite-momentum electron pairs. Such a state has an inhomogeneous charge density and therefore is a basis for the description of coexistence of superconductivity and stripe order. (orig.)
Doping dependence of Meissner effect in cuprate superconductors
International Nuclear Information System (INIS)
Feng Shiping; Huang Zheyu; Zhao Huaisong
2010-01-01
Within the t-t'-J model, the doping dependence of the Meissner effect in cuprate superconductors is studied based on the kinetic energy driven superconducting mechanism. Following the linear response theory, it is shown that the electromagnetic response consists of two parts, the diamagnetic current and the paramagnetic current, which exactly cancels the diamagnetic term in the normal state, and then the Meissner effect is obtained for all the temperature T ≤ T c throughout the superconducting dome. By considering the two-dimensional geometry of cuprate superconductors within the specular reflection model, the main features of the doping and temperature dependence of the local magnetic field profile, the magnetic field penetration depth, and the superfluid density observed on cuprate superconductors are well reproduced. In particular, it is shown that in analogy to the domelike shape of the doping dependent superconducting transition temperature, the maximal superfluid density occurs around the critical doping δ ∼ 0.195, and then decreases in both lower doped and higher doped regimes.
John Bardeen and the theory of superconductivity
International Nuclear Information System (INIS)
Schrieffer, J.R.
1992-01-01
Bardeen's knowledge of the experimental data had bounded the theory of superconductivity quite tightly before B, C and S developed their theory. When one speaks with John Bardeen's friends about him, one frequently hears words such as brilliant, quiet, persistent, generous, visionary, athletic, kind, thoughtful and remarkable. It is the author's good fortune to have the chance to recount some incidents from his life that are connected with the theory of superconductivity. This article draws on the author's personal memories; his many other friends and colleagues will set down their own recollections elsewhere. The evolution of the microscopic theory of superconductivity closely parallels the scientific life of Joh Bardeen. Starting with his PhD dissertation, done under the guidance of Eugene Wigner, he spent much of his life developing an understanding of electron interaction effects and transport properties of metals, semiconductors and superconductors. His fascination with the remarkable phenomenon of superconductivity goes back to his graduate student days at Princeton. Although interrupted during the war years and in the late 1940's at Bell Labs, he returned to this perplexing topic when he moved to the University of Illinois in 1951. 20 refs., 7 figs
About the investigation of the ultrasonic absorption in intermediate states of superconductors
International Nuclear Information System (INIS)
Shepelev, A.G.
2003-01-01
Investigation of intermediate state in the bulk of superconductors are surveyed. Consideration is given to a previous attempt of eliminating edge effects in the ultrasonic investigation of intermediate states of pure gallium and molybdenum;it is demonstrated that those results are in strong contradiction with Landau's intermediate-state theory
Baker, Roger C., Jr.
1991-01-01
Directions for the building of a pocket microscope that will make visible the details of insect structure and living bacteria are described. Background information on the history of microscopes and lenses is provided. The procedures for producing various types of lenses are included. (KR)
Many insects feed agriculturally important crops, trees, and ornamental plants and cause millions of dollars of damage annually. Identification for some of these require the preparation of a microscope slide for examination. There are times when a microscope slide may need to be sent away to a speci...
Enhancement of mechanical properties of 123 superconductors
Balachandran, U.
1995-04-25
A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.
Enhancement of mechanical properties of 123 superconductors
Balachandran, Uthamalingam
1995-01-01
A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.
Superconductors in the High School Classroom
Lincoln, James
2017-01-01
In this article, we discuss the behavior of high-temperature superconductors and how to demonstrate them safely and effectively in the high school or introductory physics classroom. Included here is a discussion of the most relevant physics topics that can be demonstrated, some safety tips, and a bit of the history of superconductors. In an effort…
Hexatic vortex glass in disordered superconductors
International Nuclear Information System (INIS)
Chudnovsky, E.M.
1989-01-01
It is shown that interaction of the flux-line lattice with randomly arranged pinning centers should destroy the long-range positional order in the lattice, but not the long-range orientational order. A new phase: hexatic vortex glass, is suggested for the mixed state of disordered, type-II superconductors. Relevance to amorphous and high-T c superconductors is discussed
Method of production multifilamentary intermetallic superconductors
International Nuclear Information System (INIS)
Marancik, W.G.; Young, M.S.
1980-01-01
A method of making A-15 type intermetallic superconductors is disclosed which features elimination of numerous annealing steps. Nb or V filaments are embedded in Cu matrices; annular layers of Sn or Ga, respectively, separated from each other by Cu layers, provide the other component of the intermetallic superconductors Nb3Sn and V3Ga
Neutron-scattering studies of magnetic superconductors
International Nuclear Information System (INIS)
Sinha, S.K.; Crabtree, G.W.; Hinks, D.G.; Mook, H.A.; Pringle, O.A.
1982-01-01
Results obtained in the last few years obtained by neutron diffraction on the nature of the magnetic ordering in magnetic superconductors are reviewed. Emphasis is given to studies of the complex intermediate phase in ferromagnetic superconductors where both superconductivity and ferromagnetism appear to coexist
The critical current of granular superconductor
International Nuclear Information System (INIS)
Ignat'ev, V.K.
1998-01-01
A mechanism of hyper vortex pinning in granular superconductors is proposed to describe the field dependence of the critical current density and pinning potential. The results are in a good agreement with the experiment. The model represents the peak effect and the percolation mechanism of conductivity in ceramic superconductors
Microscopically Based Nuclear Energy Functionals
International Nuclear Information System (INIS)
Bogner, S. K.
2009-01-01
A major goal of the SciDAC project 'Building a Universal Nuclear Energy Density Functional' is to develop next-generation nuclear energy density functionals that give controlled extrapolations away from stability with improved performance across the mass table. One strategy is to identify missing physics in phenomenological Skyrme functionals based on our understanding of the underlying internucleon interactions and microscopic many-body theory. In this contribution, I describe ongoing efforts to use the density matrix expansion of Negele and Vautherin to incorporate missing finite-range effects from the underlying two- and three-nucleon interactions into phenomenological Skyrme functionals.
Topological surface states in nodal superconductors
International Nuclear Information System (INIS)
Schnyder, Andreas P; Brydon, Philip M R
2015-01-01
Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states. (topical review)
Future applications of superconductors for industrial use
International Nuclear Information System (INIS)
Reddy, S.P.
1988-01-01
Superconductors have been in existence for many years. Recent developments in superconductivity at higher temperatures are directed towards the potential use of superconductors at ambient temperatures. The diligent efforts of the scientific, engineering, and political agencies in researching and developing superconducting materials have resulted in encouraging accomplishments. Although superconductors could be used in every branch of electrical engineering, the authors focuses on a few areas in this paper. The power distribution and utilization in a typical industry is compared to that of a system using superconductors. Brief discussions of various machines with superconductors at ambient temperatures, based on developments made so far on large superconducting machines, for potential industrial applications are included in this paper
Force balance on two-dimensional superconductors with a single moving vortex
Chung, Chun Kit; Arahata, Emiko; Kato, Yusuke
2014-03-01
We study forces on two-dimensional superconductors with a single moving vortex based on a recent fully self-consistent calculation of DC conductivity in an s-wave superconductor (E. Arahata and Y. Kato, arXiv:1310.0566). By considering momentum balance of the whole liquid, we attempt to identify various contributions to the total transverse force on the vortex. This provides an estimation of the effective Magnus force based on the quasiclassical theory generalized by Kita [T. Kita, Phys. Rev. B, 64, 054503 (2001)], which allows for the Hall effect in vortex states.
The disappearing momentum of the supercurrent in the superconductor-to-normal phase transformation
Hirsch, J. E.
2016-06-01
A superconductor in a magnetic field has surface currents that prevent the magnetic field from penetrating its interior. These currents carry kinetic energy and mechanical momentum. When the temperature is raised and the system becomes normal the currents disappear. Where do the kinetic energy and mechanical momentum of the currents go, and how? Here we propose that the answer to this question reveals a key necessary condition for materials to be superconductors, that is not part of conventional BCS-London theory: superconducting materials need to have hole carriers.
Ikegaya, Satoshi; Kobayashi, Shingo; Asano, Yasuhiro
2018-05-01
We discuss the symmetry property of a nodal superconductor that hosts robust flat-band zero-energy states at its surface under potential disorder. Such robust zero-energy states are known to induce the anomalous proximity effect in a dirty normal metal attached to a superconductor. A recent study has shown that a topological index NZES describes the number of zero-energy states at the dirty surface of a p -wave superconductor. We generalize the theory to clarify the conditions required for a superconductor that enables NZES≠0 . Our results show that NZES≠0 is realized in a topological material that belongs to either the BDI or CII class. We also present two realistic Hamiltonians that result in NZES≠0 .
Refractive index in generalized superconductors with Born-Infeld electrodynamics
Cheng, Jun; Pan, Qiyuan; Yu, Hongwei; Jing, Jiliang
2018-03-01
We investigate, in the probe limit, the negative refraction in the generalized superconductors with the Born-Infeld electrodynamics. We observe that the system has a negative Depine-Lakhtakia index in the superconducting phase at small frequencies and the greater the Born-Infeld corrections the larger the range of frequencies or the range of temperatures for which the negative refraction occurs. Furthermore, we find that the tunable Born-Infeld parameter can be used to improve the propagation of light in the holographic setup. Our analysis indicates that the Born-Infeld electrodynamics plays an important role in determining the optical properties of the boundary theory.
Melted flux liquids in high-Tc superconductors
International Nuclear Information System (INIS)
Nelson, D.R.
1989-01-01
A theory of the entangles flux liquids which arise in the new high-T c superconductors is reviewed. New physics appears because of the weak interplanar couplings and high critical temperatures in these materials. Flux line wandering melts the conventional Abrikosov flux lattice over large portions of the phase diagram and leads to a novel entangled vortex state. The authors suggest that a heavily entangled flux liquid could exhibit glassy behavior on experimental time scales, in analogy with viscoelastic behavior in dense polymer melts
International Nuclear Information System (INIS)
Inoue, K.; Takayanagi, H.
1991-01-01
Local tunneling spectroscopy for a Nb/In/As/Nb superconducting proximity system was demonstrated with a low-temperature scanning tunneling microscope. It is found that the local electron density of states in the InAs region is spatially modulated by the neighboring superconductor Nb
A pragmatic guide to multiphoton microscope design
Young, Michael D.; Field, Jeffrey J.; Sheetz, Kraig E.; Bartels, Randy A.; Squier, Jeff
2016-01-01
Multiphoton microscopy has emerged as a ubiquitous tool for studying microscopic structure and function across a broad range of disciplines. As such, the intent of this paper is to present a comprehensive resource for the construction and performance evaluation of a multiphoton microscope that will be understandable to the broad range of scientific fields that presently exploit, or wish to begin exploiting, this powerful technology. With this in mind, we have developed a guide to aid in the design of a multiphoton microscope. We discuss source selection, optical management of dispersion, image-relay systems with scan optics, objective-lens selection, single-element light-collection theory, photon-counting detection, image rendering, and finally, an illustrated guide for building an example microscope. PMID:27182429
Common phase diagram for low-dimensional superconductors
International Nuclear Information System (INIS)
Michalak, Rudi
2003-01-01
A phenomenological phase diagram which has been derived for high-temperature superconductors from NMR Knight-shift measurements of the pseudogap is compared to the phase diagram that is obtained for organic superconductors and spin-ladder superconductors, both low-dimensional systems. This is contrasted to the phase diagram of some Heavy Fermion superconductors, i.e. superconductors not constrained to a low dimensionality
Passivation of high temperature superconductors
Vasquez, Richard P. (Inventor)
1991-01-01
The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.
Microgravity Processing of Oxide Superconductors
Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus; McCallum, William; Peters, Palmer (Technical Monitor)
2000-01-01
The primary goal is to understand the microstructures which develop under the nonequilibrium solidification conditions achieved by melt processing in copper oxide superconductor systems. More specifically, to define the liquidus at the Y- 1:2:3 composition, the Nd-1:2:3 composition, and several intermediate partial substitution points between pure Y-1:2:3 and Nd-1:2:3. A secondary goal has been to understand resultant solidification morphologies and pathways under a variety of experimental conditions and to use this knowledge to better characterize solidification phenomena in these systems.
Intrinsic stability of technical superconductors
International Nuclear Information System (INIS)
Veringa, H.J.
1981-10-01
For the operation of technical superconductors under high current density conditions, the superconducting wires composing high current cables should be intrinsically stabilized. In this report the various important stability criteria are derived and investigated on their validity. An experimental set up is made to check the occurrence of magnetic instabilities if the different applicable criteria are violated. It is found that the observed instabilities can be predicted on the basis of the model given in this report. Production of high current cables based upon composites made by the ECN technique seems to be possible. (Auth.)
Vortex ice in nanostructured superconductors
Energy Technology Data Exchange (ETDEWEB)
Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory
2008-01-01
We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.
Renormalized modes in cuprate superconductors
Gupta, Anushri; Kumari, Anita; Verma, Sanjeev K.; Indu, B. D.
2018-04-01
The renormalized mode frequencies are obtained with the help of quantum dynamical approach of many body phonon Green's function technique via a general Hamiltonian (excluding BCS Hamiltonian) including the effects of phonons and electrons, anharmonicities and electron-phonon interactions. The numerical estimates have been carried out to study the renormalized mode frequency of high temperature cuprate superconductor (HTS) YBa2Cu3O7-δ using modified Born-Mayer-Huggins interaction potential (MBMHP) best applicable to study the dynamical properties of all HTS.
Peak effect in twinned superconductors
International Nuclear Information System (INIS)
Larkin, A.I.; Marchetti, M.C.; Vinokur, V.M.
1995-01-01
A sharp maximum in the critical current J c as a function of temperature just below the melting point of the Abrikosov flux lattice has recently been observed in both low- and high-temperature superconductors. This peak effect is strongest in twinned crystals for fields aligned with the twin planes. We propose that this peak signals the breakdown of the collective pinning regime and the crossover to strong pinning of single vortices on the twin boundaries. This crossover is very sharp and can account for the steep drop of the differential resistivity observed in experiments. copyright 1995 The American Physical Society
Hall viscosity of a chiral two-orbital superconductor at finite temperatures
Yazdani-Hamid, Meghdad; Shahzamanian, Mohammad Ali
2018-06-01
The Hall viscosity known as the anti-symmetric part of the viscosity fourth-rank tensor. Such dissipationless response which appears for systems with broken time reversal symmetry. We calculate this non-dissipative quantity for a chiral two-orbital superconductor placed in a viscoelastic magnetic field using the linear response theory and apply our calculations to the putative multiband chiral superconductor Sr2RuO4. The chirality origin of a multiband superconductor arises from the interorbital coupling of the superconducting state. This feature leads to the robustness of the Hall viscosity against temperature and impurity effects. We study the temperature effect on the Hall viscosity at the one-loop approximation.
Phase transitions and transport in anisotropic superconductors with large thermal fluctuations
International Nuclear Information System (INIS)
Fisher, D.S.
1991-01-01
Fluctuation effects in conventional superconductors such as broadening of phase transitions and flux creep tend to be very small primarily because of the large coherence lengths. Thus mean field theory, with only small fluctuation corrections, usually provides an adequate description of these systems. Regimes in which fluctuation effects cause qualitatively different physics are very difficult to study as they typically occur in very small regions of the phase diagram or, in transport, require measuring extremely small voltages. In striking contrast, in the high temperature cuprate superconductors a combination of factors - short coherence lengths, anisotropy and higher temperatures - make fluctuation effects many orders of magnitude larger. The current understanding of transport and phase transitions in the cuprate superconductors-particularly YBCO and BSCCO-is reviewed. New results are presented on the two-dimensional regimes and 2D-3D crossover in the strongly anisotropic case of BSCCO. The emphasis is on pinning and vortex glass behavior
Directory of Open Access Journals (Sweden)
Hamidreza Emamipour
2013-01-01
Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.
Energy Technology Data Exchange (ETDEWEB)
Ortenzi, Luciano
2013-10-17
In this thesis I study the interplay between magnetism and superconductivity in itinerant magnets and superconductors. I do this by applying a semiphenomenological method to four representative compounds. In particular I use the discrepancies (whenever present) between density functional theory (DFT) calculations and the experiments in order to construct phenomenological models which explain the magnetic, superconducting and optical properties of four representative systems. I focus my attention on the superconducting and normal state properties of the recently discovered APt3P superconductors, on superconducting hole-doped CuBiSO, on the optical properties of LaFePO and finally on the ferromagnetic-paramagnetic transition of Ni3Al under pressure. At the end I present a new method which aims to describe the effect of spin fluctuations in itinerant magnets and superconductors that can be used to monitor the evolution of the electronic structure from non magnetic to magnetic in systems close to a quantum critical point.
Nonlinear thermoelectric effects in high-field superconductor-ferromagnet tunnel junctions
Directory of Open Access Journals (Sweden)
Stefan Kolenda
2016-11-01
Full Text Available Background: Thermoelectric effects result from the coupling of charge and heat transport and can be used for thermometry, cooling and harvesting of thermal energy. The microscopic origin of thermoelectric effects is a broken electron–hole symmetry, which is usually quite small in metal structures. In addition, thermoelectric effects decrease towards low temperatures, which usually makes them vanishingly small in metal nanostructures in the sub-Kelvin regime.Results: We report on a combined experimental and theoretical investigation of thermoelectric effects in superconductor/ferromagnet hybrid structures. We investigate the dependence of thermoelectric currents on the thermal excitation, as well as on the presence of a dc bias voltage across the junction.Conclusion: Large thermoelectric effects are observed in superconductor/ferromagnet and superconductor/normal-metal hybrid structures. The spin-independent signals observed under finite voltage bias are shown to be reciprocal to the physics of superconductor/normal-metal microrefrigerators. The spin-dependent thermoelectric signals in the linear regime are due to the coupling of spin and heat transport, and can be used to design more efficient refrigerators.
Microscopic theory of normal liquid 3He
International Nuclear Information System (INIS)
Nafari, N.; Doroudi, A.
1994-03-01
We have used the self-consistent scheme proposed by Singwi, Tosi, Land and Sjoelander (STLS) to study the properties of normal liquid 3 He. By employing the Aziz potential (HFD-B) and some other realistic pairwise interactions, we have calculated the static structure factor, the pair-correlation function, the zero sound frequencies as a function of wave-vector, and the Landau parameter F s 0 for different densities. Our results show considerable improvement over the Ng-Singwi's model potential of a hard core plus an attractive tail. Agreement between our results and the experimental data for the static structure factor and the zero sound frequencies is fairly good. (author). 30 refs, 6 figs, 2 tabs
Microscopic theory of nuclear collective rotation
International Nuclear Information System (INIS)
Wunner, G.; Ruder, H.; Herold, H.; Reinecke, M.
1980-01-01
Various methods for calculating nuclear moments of inertia have been investigated, from the point of view of their possible connection with special choices of collective variables, using the method of specific decoupling (SD), which introduces a body-fixed frame in such a way that, for a given internal state, the best possible decoupling of internal and collective motion is obtained, and which for any definition of the body-fixed frame provides a well defined expression for the moment of inertia. The internal degrees of freedom are described using (1) intrinsic densities and (2) intrinsic wavefunctions. It is shown that several frequently used formulae for calculating the moment of inertia can be traced back to specific definitions of the internal frame and the extremum principle of SD makes possible a lucid evaluation of the magnitudes of these moments of inertia relative to each other as well as with respect to the corresponding values of the rigid and the irrotational moments of inertia. (author)
The electronic structure of normal metal-superconductor bilayers
Energy Technology Data Exchange (ETDEWEB)
Halterman, Klaus; Elson, J Merle [Sensor and Signal Sciences Division, Naval Air Warfare Center, China Lake, CA 93355 (United States)
2003-09-03
We study the electronic properties of ballistic thin normal metal-bulk superconductor heterojunctions by solving the Bogoliubov-de Gennes equations in the quasiclassical and microscopic 'exact' regimes. In particular, the significance of the proximity effect is examined through a series of self-consistent calculations of the space-dependent pair potential {delta}(r). It is found that self-consistency cannot be neglected for normal metal layer widths smaller than the superconducting coherence length {xi}{sub 0}, revealing its importance through discernible features in the subgap density of states. Furthermore, the exact self-consistent treatment yields a proximity-induced gap in the normal metal spectrum, which vanishes monotonically when the normal metal length exceeds {xi}{sub 0}. Through a careful analysis of the excitation spectra, we find that quasiparticle trajectories with wavevectors oriented mainly along the interface play a critical role in the destruction of the energy gap.
Study of nano-scale friction using vortices in superconductors
International Nuclear Information System (INIS)
Maeda, A.; Nakamura, D.; Kitano, H.; Matsumura, H.
2007-01-01
Toward the microscopic understanding of physics of friction at the solid interface, we use the dynamics of driven vortices of superconductor as a new model system. We measured the static friction as a function of the aging time, and compared with the kinetic friction as a function of velocity for the driven vortex lattice of La 1.85 Sr 0.15 CuO 4 . No definite relationship, such as the one proposed for the friction of thick papers, was observed. This supports our previous proposal of the critical phenomena view that the non-Amontons-Coulomb-like behavior of the kinetic friction is a broadened dynamic transition between the static and kinetic regimes
What is new in the world of superconductors?
International Nuclear Information System (INIS)
Das, M.P.
2002-01-01
Full text: Ever since its discovery in 1911 by Heike Kamerlingh-Onnes in Leiden, superconductivity has promised tantalising possibilities of widespread applications. After 1986 its occurrence in cuprates above the liquid nitrogen temperature reaffirmed its capabilities for very many practical uses. More recently a number of novel materials namely intercalated fullerenes (C-60) and n-cenes (anthra-cene, tetra-cene and penta-cenes), a simple bimetallic alloy (MgB2), and ferromagnetic materials under high pressure including Fe, ZrZn2, and UGe2 have surprised us with their peculiar superconducting properties. In this talk I shall give a pedagogic survey of some of our current understanding- how these novel materials superconduct. I shall highlight a host of observable anomalies associated with these superconductors and discuss if their occurrence throws any light on the microscopic understanding of the superconducting phenomenon. I shall illustrate with a number of practical applications accomplished to date
International Nuclear Information System (INIS)
Golubov, A.A.; Houwman, E.P.; Gijsbertsen, J.G.; Flokstra, J.; Rogalla, H.; le Grand, J.B.; de Korte, P.A.J.
1994-01-01
The low-energy quasiparticle scattering and recombination lifetimes for a proximity sandwich of two superconductors S and S' with different bulk energy gaps, are calculated as a function of the spatial coordinate and temperature. The spatial dependence of the order parameter and density of states are calculated on the basis of a microscopic model of the proximity effect, based on the Usadel equations, for dirty superconductors in thermal equilibrium. A zero boundary resistance between S and S' and a Boltzmann-like energy distribution of the excess quasiparticles are assumed. In the case of a small diffusion time constant an effective quasiparticle relaxation rate into and excitation rate out of the reduced gap region in the SS' sandwich are obtained as a function of (finite, but low) temperature and strength of the proximity effect, determined by the parameter γ m , by averaging over the energies and positions of the quasiparticles. In the same way effective tunneling times for electrons and holes tunneling out of the trap in the SS' sandwich to the other electrode of an SS'IS''S junction are determined as a function of temperature, voltage, and γ m
EDITORIAL: Focus on Iron-Based Superconductors FOCUS ON IRON-BASED SUPERCONDUCTORS
Hosono, Hideo; Ren, Zhi-An
2009-02-01
pace of research within the last year, iron-based superconductors have revealed several unique properties such as a high upper critical field and a robustness to impurities. Participation of five 3d-orbitals in the Fermi levels also means that the electronic structure is complex compared with the cuprates. So, we now have a new family of superconductors and it is worth stressing that we have only just begun looking at the many varieties of candidate materials containing an iron square lattice. At this time we do not know whether a material with a critical temperature greater than 100 K exists, or if completely new properties are to be found. However, as a research community we should go ahead with hope and 'strike while the iron is hot'—this saying is always true! This focus issue of New Journal of Physics was put together to provide a broad-based, free-to-read snapshot of the current state of research in this rapidly emerging field. The papers included cover many aspects related to material exploration, physical analysis, and the theory of these materials, and, as editors, we thank the authors for their fine contributions, and the many referees for their considerable efforts that have ensured fast publication. As an aside, the first special issue on this SUBject was published in November 2008 in the Journal of the Physical Society of Japan (vol 77, supplement c) as the proceedings of the International Symposium on Iron-Pnictide Superconductors held in Tokyo on 29-30 June 2008. We would like to encourage the community to read both issues. On a final note we would like to acknowledge the staff of New Journal of Physics for all of their efficient work in bringing this collection to fruition. Focus on Iron-Based Superconductors Contents Microwave response of superconducting pnictides: extended s+/- scenario O V Dolgov, A A Golubov and D Parker Orbital and spin effects for the upper critical field in As-deficient disordered Fe pnictide superconductors G Fuchs, S
Scanning Auger Electron Microscope
Federal Laboratory Consortium — A JEOL model 7830F field emission source, scanning Auger microscope.Specifications / Capabilities:Ultra-high vacuum (UHV), electron gun range from 0.1 kV to 25 kV,...
Microscopic approach to polaritons
DEFF Research Database (Denmark)
Skettrup, Torben
1981-01-01
contrary to experimental experience. In order to remove this absurdity the semiclassical approach must be abandoned and the electromagnetic field quantized. A simple microscopic polariton model is then derived. From this the wave function for the interacting exciton-photon complex is obtained...... of light of the crystal. The introduction of damping smears out the excitonic spectra. The wave function of the polariton, however, turns out to be very independent of damping up to large damping values. Finally, this simplified microscopic polariton model is compared with the exact solutions obtained...... for the macroscopic polariton model by Hopfield. It is seen that standing photon and exciton waves must be included in an exact microscopic polariton model. However, it is concluded that for practical purposes, only the propagating waves are of importance and the simple microscopic polariton wave function derived...
Two-band superconductor magnesium diboride
International Nuclear Information System (INIS)
Xi, X X
2008-01-01
This review focuses on the most important features of the 40 K superconductor MgB 2 -the weakly interacting multiple bands (the σ and π bands) and the distinct multiple superconducting energy gaps (the σ and π gaps). Even though the pairing mechanism of superconductor MgB 2 is the conventional electron-phonon coupling, the prominent influence of the two bands and two gaps on its properties sets it apart from other superconductors. It leads to markedly different behaviors in upper critical field, vortex structure, magnetoresistance and many other superconducting and normal-state properties in MgB 2 from single-band superconductors. Further, it gives rise to new physics that does not exist in single-band superconductors, such as the internal Josephson effects between the two order parameters. These unique phenomena depend sensitively on scattering inside and between the two bands, and the intraband and interband scattering can be modified by chemical substitution and irradiation. MgB 2 has brought unprecedented attention to two-band superconductivity, which has been found to exist in other old and new superconductors. The legacy of MgB 2 will be long lasting because of this, as well as the lessons it teaches in terms of the search for new phonon-mediated higher T c superconductors
Infrared microscope inspection apparatus
Forman, Steven E.; Caunt, James W.
1985-02-26
Apparatus and system for inspecting infrared transparents, such as an array of photovoltaic modules containing silicon solar cells, includes an infrared microscope, at least three sources of infrared light placed around and having their axes intersect the center of the object field and means for sending the reflected light through the microscope. The apparatus is adapted to be mounted on an X-Y translator positioned adjacent the object surface.
Crecimiento y caracterización de monocristales superconductores de alta temperatura crítica
Directory of Open Access Journals (Sweden)
L. T. Corredor
2003-07-01
Full Text Available En este trabajo se presenta, detalladamente, el procedimiento para la implementación de la técnica de auto-flujo para el crecimiento de monocristales superconductores de alta temperatura crítica. Fueron producidos monocristales de las familias YBa2Cu3O7-δ y CaLaBaCu3O7-δ mediante dicha técnica. El carácter superconductor de los mismo se corroboró a través de mediciones de resistividad eléctrica y susceptibilidad magnética AC. Las características cristalográficas y morfológicas se estudiaron por medio de difracción de rayos X y microscopía electrónica de barrido (SEM, microscopía metalográfica y análisis de rayos X por dispersión de energía (EDX respectivamente. Los resultados de estas caracterizaciones muestran que todos los monocristales superconductores de YBa2Cu3O7-δ son de excelente calidad. Adicionalmente, se obtuvo una muestra de la composición de CaLaBaCu3O7-δ con buenas propiedades morfolóficas, lo cual evidenció crecimiento orientado en los planos (h k 0.
Studies of high temperature superconductors
International Nuclear Information System (INIS)
Narlikar, A.
1989-01-01
The high temperature superconductors (HTSCs) discovered are from the family of ceramic oxides. Their large scale utilization in electrical utilities and in microelectronic devices are the frontal challenges which can perhaps be effectively met only through consolidated efforts and expertise of a multidisciplinary nature. During the last two years the growth of the new field has occurred on an international scale and perhaps has been more rapid than in most other fields. There has been an extraordinary rush of data and results which are continually being published as short texts dispersed in many excellent journals, some of which were started to ensure rapid publication exclusively in this field. As a result, the literature on HTSCs has indeed become so massive and so diffuse that it is becoming increasingly difficult to keep abreast with the important and reliable facets of this fast-growing field. This provided the motivation to evolve a process whereby both professional investigators and students can have ready access to up-to- date in-depth accounts of major technical advances happening in this field. The present series Studies of High Temperature Superconductors has been launched to, at least in part, fulfill this need
Superconductors made of niobium germanide
International Nuclear Information System (INIS)
Newkirk, L.R.; Valencia, F.A.
1976-01-01
This invention concerns the superconductors and particularly the mass coatings of niobium germanide (Nb 3 Ge) exhibiting superconductor properties, as well as the compositions enabling them to be obtained, having transition temperatures of around 20 0 K or more. The invention proposes a composition of a material of the general formula Nb 3 Ge, containing from around 1 to around 10 at. % oxygen. Preferably, the material contains around 5 at. % of oxygen. The invention also proposes fabricated articles in which the compositions described above are associated with and joined to a metallic substrate. Hence, for instance, the present studies involving a superconducting power transmission line for direct current make it possible to envisage the use of conductors placed in a double envelope, enabling the superconducting element transmitting the current to be carried, whilst containing the cryogenic coolant. In this type of design, the coat of superconducting material surrounds a tube containing liquid helium or possibly liquid hydrogen if a sufficiently high superconduction transition temperature can be reached. The tube must be a good heat and electricity conductor in order to achieve good stability of the superconducting coating [fr