WorldWideScience

Sample records for superconductors htsc levitates

  1. Improvement of the propulsion force for HTSC-permanent magnet hybrid magnetically levitated carrying system by using the pinned flux of HTSC

    Science.gov (United States)

    Ikeda, M.; Sasaki, R.; Ueno, T.; Ohashi, S.

    Magnetically levitated carrying system has been developed. In this system, pinning force of high temperature bulk superconductor (HTSC) is used for the levitation and guidance. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. For the propulsion system, electromagnets are installed on the surface of the magnetic rail. Improvement of the propulsion force is studied. In the previous system, only flux of the permanent magnet of the carrier is used for propulsion. To increase propulsion force, that of the HTSC of the carrier is also used. Using this excitation method, the propulsion force is improved even though total number of the excited coil is the same.

  2. Levitation and Guidance Characteristics of the Permanent magnet-HTSC Hybrid Magnetic Conveyance System

    Science.gov (United States)

    Ohashi, Shunsuke; Dodo, Daiki

    Hybrid magnetically levitated transportation system has been developed. The magnetic rail is set on the ground, and the carrier with permanent magnets and high-Tc superconductors (HTSC) levitates on the rail. In this system, pinning force of HTSC and repulsive force of permanent magnet is combined. Repulsive force of permanent magnet is introduced to support weight. Pinning force is used to support weight of the frame of the carrier and to achieve lateral stability of the carrier. To decrease influence of weight on the levitation gap of the carrier, the weight stage is fixed to the carrier frame by linear sliders, and moves freely for vertical direction. As a result, there is little influence on levitation gap of the carrier. Basic levitation and guidance characteristics of the system are shown. Repulsive force generates very large levitation force. It also generates unstable lateral force. Weight added to the carrier has some influence on lateral stability. Although lateral position recovery force by pinning effect decreases at a heavier weight, the carrier shows enough force to keep lateral stability.

  3. Interaction between propulsion and levitation system in the HTSC-permanent magnet conveyance system

    Science.gov (United States)

    Ohashi, S.; Nishio, R.; Hashikawa, T.

    2010-11-01

    The magnetically levitated conveyance system has been developed. Pinning force of high temperature bulk superconductors (HTSC) are used for the levitation and the guidance of the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs on the carrier body. To increase the load weight, the repulsive force of the permanent magnet is introduced. The hybrid levitation system is composed. The repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. As the load stage is connected to the carrier body by the linear sliders, the mass of the load weight does not act on the carrier body. The interaction between the electromagnet and the permanent magnet under the load stage generates the propulsion force. The electromagnet is constructed by the air core coils, and excited only when the load stage passes. The interaction between the propulsion and the levitation system is investigated. Disturbance of the propulsion system on the levitation and the guidance force is measured. The results show the influence of the propulsion electromagnet on the pinning force is little, and this propulsion system works effectively.

  4. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Energy Technology Data Exchange (ETDEWEB)

    Sun, R.X.; Zheng, J.; Liao, X.L.; Che, T.; Gou, Y.F.; He, D.B.; Deng, Z.G., E-mail: zgdeng@gmail.com

    2014-10-15

    Highlights: • Thickness optimization of double-layer bulk HTSC arrangement is studied. • The new bulk HTSC arrangement makes better use of the flux distribution of the magnetic rails. • Levitation performance can be enhanced with the optimization. • The optimization can meet large levitation force requirements for HTS Maglev system. - Abstract: A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  5. Thickness dependence of the levitation performance of double-layer high-temperature superconductor bulks above a magnetic rail

    Science.gov (United States)

    Sun, R. X.; Zheng, J.; Liao, X. L.; Che, T.; Gou, Y. F.; He, D. B.; Deng, Z. G.

    2014-10-01

    A double-layer high-temperature superconductor (HTSC) arrangement was proposed and proved to be able to bring improvements to both levitation force and guidance force compared with present single-layer HTSC arrangement. To fully exploit the applied magnetic field by a magnetic rail, the thickness dependence of a double-layer HTSC arrangement on the levitation performance was further investigated in the paper. In this study, the lower-layer bulk was polished step by step to different thicknesses, and the upper-layer bulk with constant thickness was directly superimposed on the lower-layer one. The levitation force and the force relaxation of the double-layer HTSC arrangement were measured above a Halbach magnetic rail. Experimental result shows that a bigger levitation force and a less levitation force decay could be achieved by optimizing the thickness of the lower-layer bulk HTSC. This thickness optimization method could be applied together with former reported double-layer HTSC arrangement method with aligned growth sector boundaries pattern. This series of study on the optimized combination method do bring a significant improvement on the levitation performance of present HTS maglev systems.

  6. Improvement of the levitation stability of the HTSC-permanent magnet hybrid bearing by using the new arrangement of the permanent magnet

    Science.gov (United States)

    Sukedaia, M.; Emoto, K.; Sugiyama, R.; Ohashi, S.

    The hybrid magnetic bearing using permanent magnets and the high temperature superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. Although the previous configuration improves the load weight of the rotor, levitation and guidance stability has been decreased because of the repulsive force of the permanent magnet. Three-dimensional numerical analysis of the system has been undertaken to reduce lateral force which decreases lateral stability of the rotor. From the results, effective arrangement of the hybrid system is given. Increment of the load weight is confirmed. Influence of the hybrid system on the pinning force between the HTSC and the permanent magnet is shown to be smaller than previous one.

  7. Anisotropy Effect on Levitation Performance of Bulk High-Tc Superconductors Above a Permanent Magnet Guideway

    Science.gov (United States)

    Zheng, Jun; Liao, Xinglin; Jing, Hailian; Lin, Qunxu; Ma, Guangtong; Yen, Fei; Wang, Suyu; Wang, Jiasu

    The anisotropy properties of bulk high-temperature superconductors (HTSCs) are taken into consideration for the application of high-temperature superconducting (HTS) Maglev systems, which are especially based on the different flux-trapping capabilities as well as critical current density, Jc, values between the growth section boundary (GSB) and the growth sections (GS) in bulk superconductors. By adjusting the angle between the GSB of bulk HTSCs and the strongest magnetic field position of a permanent magnet guideway (PMG), the levitation force and its relaxation processes are compared at different field-cooling conditions. Experimental results show that the levitation capability and the suppression of levitation force decay can be enhanced by optimizing the GS/GSB alignment of every bulk HTSC above the PMG. Meanwhile, our conclusions may provide references to other HTS maglev systems with small levitation gaps, i.e., superconducting magnetic bearings.

  8. Measurement and calculation of levitation forces between magnets and granular superconductors

    Science.gov (United States)

    Johansen, T. H.; Bratsberg, H.; Baziljevich, M.; Hetland, P. O.; Riise, A. B.

    1995-01-01

    Recent developments indicate that exploitation of the phenomenon of magnetic levitation may become one of the most important near-term applications of high-T(sub c) superconductivity. Because of this, the interaction between a strong permanent magnet(PM) and bulk high-T(sub c) superconductor (HTSC) is currently a subject of much interest. We have studied central features of the mechanics of PM-HTSC systems of simple geometries. Here we report experimental results for the components of the levitation force, their associated stiffness and mechanical ac-loss. To analyze the observed behavior a theoretical framework based on critical-state considerations is developed. It will be shown that all the mechanical properties can be explained consistently at a quantitative level wing a minimum of model parameters.

  9. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    Energy Technology Data Exchange (ETDEWEB)

    Ohashi, S., E-mail: ohashi@ipcku.kansai-u.ac.j [Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan); Kobayashi, S. [Kansai University, 3-3-35, Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2009-10-15

    Magnetic levitation using the pinning force of the YBaCuO high-T{sub c} bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  10. Effect of the repulsive force in the HTSC-permanent magnet hybrid bearing system

    Science.gov (United States)

    Ohashi, S.; Kobayashi, S.

    2009-10-01

    Magnetic levitation using the pinning force of the YBaCuO high- Tc bulk superconductor (HTSC) materials has an advantage to achieve stable levitation without control. To increase levitation force, the HTSC-permanent magnet hybrid magnetic bearing system is introduced. A circular shaped three phase Nd-Fe-B permanent magnet is installed on the rotor, and HTSC bulk superconductor is set on the stator. The additional permanent magnet is installed under the HTSC. Repulsive force of the permanent magnet is used for levitation, and pinning force between the HTSC and permanent magnet is used for guidance force of the bearing. In this system, relationship between permanent magnet and the HTSC is important. When repulsive force of the permanent magnet is large, pinning force of superconductor is used to keep the rotor position. As a result, stability for the lateral direction is decreased with hybrid system. For levitation force, effect of the hybrid system is not observed with column HTSC. Compared with the ring HTSC results, the following thing is considered. Because there is no space that flux of one permanent magnet acts on the other one with the column HTSC configuration, interaction between two permanent magnets becomes small.

  11. New Developments in the Theory of HTSC [High Temperature Superconductors

    Science.gov (United States)

    Abrikosov, A.A.

    1994-09-01

    The superconductor is supposed to consist of alternating layers of two kinds: (1) layers with an attractive electron interaction and an effective mass of usual magnitude, (2) layers without interaction and with a large effective mass. The overlap between the layers is assumed to be small, its energy, t, being much less than {Delta}. It is shown, that such a model explains the most peculiar property found in experiments on electronic Raman light scattering in BSCCO 2212: different threshold values for the Raman satellite measured at two different polarizations of the incident and scattered light. The tunneling conductance G(V)= dJ/dV is analyzed for the same model. In order to fit the qualitative features of experimental data, it is assumed that the tunneling probability to the normal layers is much less, than to the superconducting layers. The conductance is calculated for the case t{much_lt}{Delta}. A brief analysis is given for the case t{approximately}{Delta}, which proves that such an assumption definitely contradicts the experimental data for BSCCO. The possible nature of the electronic states in the normal layers is discussed. In connection with the experimental discovery (angle resolved photoemission spectroscopy, ARPES) of the extended saddle point singularities in the electron spectrum of a variety of HTSC consequences are derived for T{sub c} and {Delta} in a simple model. A large enhancement of superconductivity is possible if the singularity has a sufficient extension and is located close to the Fermi energy. In order to explain the anisotropy of the energy gap, observed in ARPES experiments, on the basis of the "extended saddle point singularities" an assumption is done that the Coulomb interactions are weakly screened, i.e. the Debye screening radius is much larger than the lattice period; this makes the electron interaction long ranged (E-L model).

  12. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    Science.gov (United States)

    Nishio, R.; Ikeda, M.; Sasaki, R.; Ohashi, S.

    2011-11-01

    We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  13. Improvement of the Levitation Characteristics in the Magnetic Bearing System Using HTSC-Permanent Magnet Hybrid Structure

    Science.gov (United States)

    Ohashi, Shunsuke

    Magnetic bearing using pining force of a permanent magnet and a high-temperature superconductor has been developed. Additional permanent magnet is introduced to increase the levitation force of the magnetic bearing. In this hybrid magnetic bearing system, levitation force is mainly given by the repulsive force of the permanent magnets, and stability for the lateral direction is given by pining force of the superconductor. The experimental device is developed. A ring type superconductor and a bulk one are examined. Levitation characteristics of the hybrid magnetic bearing are measured. A bulk superconductor shows better characteristics both levitation and lateral stability than ring one. Levitation force of the hybrid system becomes about twice as large as that of the no-hybrid one. Although repulsive force of the permanent magnet decreases lateral stability of the system, its influence becomes small by choosing adequate position of the permanent magnets and the superconductor.

  14. Growth anisotropy effect of bulk high temperature superconductors on the levitation performance in the applied magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, J., E-mail: jzheng@swjtu.edu.cn; Liao, X.L.; Jing, H.L.; Deng, Z.G.; Yen, F.; Wang, S.Y.; Wang, J.S.

    2013-10-15

    Highlights: • The single-layer bulk HTSC with AGSBP obtains better levitation performance than that of MGSBP. • The double-layer bulk with AGSBP obtains better levitation performance than that of MGSBP too. • The double-layer bulk finding is contrast to MGSBP if pursuing high trapped field. • The optimization is highlighted by simple and easy operation, thus economical in the practice. -- Abstract: Growth anisotropies of bulk high temperature superconductors (HTSCs) fabricated by a top-seeded melt texture growth process, that is, different pinning effect in the growth sectors (GSs) and growth sector boundaries (GSBs), possess effect on the macro flux trapping and levitation performance of bulk HTSCs. Previous work (Physics Procedia, 36 (2012) 1043) has found that the bulk HTSC array with aligned GSB pattern (AGSBP) exhibits better capability for levitation and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP). In this paper, we further examine this growth anisotropy effect on the maglev performance of a double-layer bulk HTSC. In contrast to reported trapped flux cases (Supercond. Sci. Technol. 19 (2006) S466), the two superposed bulk HTSCs with same AGSBP with PMG are found to show better maglev performance. These series of results are helpful and support a new way for the performance optimization of present HTS maglev systems.

  15. Study on control method of running velocity for the permanent magnet-HTSC hybrid magnetically levitated conveyance system

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, R.; Ikeda, M.; Sasaki, R. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetically levitated carrying system is developed. Control method of running velocity of the carrier is studied. Running velocity is controlled by current of the propulsion coils. Propulsion characteristcs are improved. We have developed the magnetically levitated carrying system. In this system, pinning force of high temperature bulk super conductor (HTSC) is used for the levitation and guidance. Four HTSCs are installed on the carrier. The magnetic rail is set on the ground, and flux from the magnetic rail is pinned by HTSCs. To increase levitation force, repulsive force of the permanent magnet is used. The hybrid levitation system is composed. The permanent magnet is installed under the load stage of the carrier. Repulsive force by the permanent magnet between the load stage on the carrier and the magnetic rail on the ground is used to support the load weight. Levitation and guidance one by pinning effect of the YBaCuO HTSC in the carrier is used to levitate the carrier body. The load stage is separated from the carrier flame and can move freely for vertical direction levitation. For the propulsion system, electromagnet is installed on the surface of the magnetic rail. In this paper, control method of running velocity of the carrier is studied. Propulsion force is given as follows; Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Running velocity is controlled by current of the propulsion coils. It is also changed by position of the carrier and the load weight. From the results, stability of the propulsion system is given, and propulsion characteristics are improved.

  16. Vibrations in Magnet/Superconductor Levitation Systems

    Institute of Scientific and Technical Information of China (English)

    F. Y. Alzoubi; H. M. Al-khateeb; M. K. Alqadi; N. Y. Ayoub

    2006-01-01

    The problem of a small magnet levitating above a very thin superconducting disc in the Meissner state is analysed. The dipole-dipole interaction model is employed to derive analytical expressions for the interaction energy, levitation force, magnetic stiffness and frequency of small vibrations about the equilibrium position in two different configurations, i.e. with the magnetic moment parallel and perpendicular to the superconductor. The results show that the frequency of small vibrations decreases with the increasing levitation height for a particular radius of the superconducting disc, which is in good agreement with the experimental results. However, the frequency increases monotomcally up to saturation by increasing the radius of the disc for a particular height of the magnet. In addition, the frequency of vibrations is higher when the system is in the vertical configuration than that when the system is in the horizontal configuration.

  17. Stop of magnetic flux movement in levitating superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Smolyak, B.M., E-mail: b-smolyak@yandex.ru; Zakharov, M.S., E-mail: maksim.s.zakharov@gmail.com

    2017-01-15

    Highlights: • A direct experimental study of magnetic flux creep in the levitating superconductor. • When a levitating object is in a fixed position, magnetic flux movement is observed. • Levitation stops flux creep process. - Abstract: A phenomenon of magnetic relaxation stopping in a levitating superconductor was studied. It was experimentally shown that magnetic flux creep (diffusion of flux lines to regions with lower vortex density) is absent in magnetic suspension of the superconductor. Magnetic relaxation arises, when a rigid constraint that fixes a position of the superconductor relative to a magnet is imposed on a levitating object. It is assumed that oscillations of magnetic structure, which is due to free oscillations of the levitating superconductor, stop magnetic relaxation.

  18. Using high-temperature superconductors for levitation applications

    Science.gov (United States)

    Hull, John R.

    1999-07-01

    Melt-textured, bulk high-temperature superconductors are finding increasing uses in superconducting bearings, flywheel energy storage, and other levitational applications. This article reviews the use of these materials in magnetic-levitation applications. The behavior of levitational force, stiffness, damping, and rotational losses is discussed.

  19. Levitation effects involving high Tc thallium based superconductors

    Science.gov (United States)

    Harter, William G.; Hermann, A. M.; Sheng, Z. Z.

    1988-09-01

    The thallium based superconductor Tl2Ca2Ba2Cu3O(10 + y) has been shown to exhibit very stable and unusual levitation equilibria in various arrangements involving this material and permanent magnets. Attractive and repulsive forces are evident in experiments in which samples are levitated above and below magnets. Photographs of these experiments and approximate quantitative discussions of the results are given.

  20. To Construct the World's First High-temperature & Superconductor Maglev Line for the 2008 Olympic Games in BeiJing

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ A high-temperature & superconductor (HT-SC) magnetic levitation train has its merits shared by the conventional conductor type and the lowertemperature type of the maglev trains but hasn't the latter two's demerits.

  1. A Double-Decker Levitation Experiment Using a Sandwich of Superconductors.

    Science.gov (United States)

    Jacob, Anthony T.; And Others

    1988-01-01

    Shows that the mutual repulsion that enables a superconductor to levitate a magnet and a magnet to levitate a superconductor can be combined into a single demonstration. Uses an overhead projector, two pellets of "1-2-3" superconductor, Nd-Fe-B magnets, liquid nitrogen, and paraffin. Offers superconductor preparation, hazards, and disposal…

  2. Lateral restoring force on a magnet levitated above a superconductor

    Science.gov (United States)

    Davis, L. C.

    1990-01-01

    The lateral restoring force on a magnet levitated above a superconductor is calculated as a function of displacement from its original position at rest using Bean's critical-state model to describe flux pinning. The force is linear for small displacements and saturates at large displacements. In the absence of edge effects the force always attracts the magnet to its original position. Thus it is a restoring force that contributes to the stability of the levitated magnet. In the case of a thick superconductor slab, the origin of the force is a magnetic dipole layer consisting of positive and negative supercurrents induced on the trailing side of the magnet. The qualitative behavior is consistent with experiments reported to date. Effects due to the finite thickness of the superconductor slab and the granular nature of high-Tc materials are also considered.

  3. High levitation pressures with cage-cooled superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL (United States); Komori, Mochimitsu [Department of Mechanical Systems Engineering, Kyushu Institute of Technology, Iizuka, Fukuoka (Japan)

    2002-05-01

    We present an analysis of and experimental results from a levitational system comprising a stationary, bulk high-temperature superconductor (HTS) and a levitated component (rotor) that consists of a cylindrical permanent magnet surrounded by an annular HTS. The rotor is cooled below the critical temperature of the HTS while surrounded by a ferromagnetic cage. When the ferromagnetic cage is removed, the flux from the permanent magnet is essentially excluded from the interior of the HTS. When brought into proximity with the HTS stator, the cage-cooled rotor experiences a levitational force. The levitational force may be calculated by applying magnetic circuit theory. Such calculations indicate that for a sufficiently high critical current density, the levitational pressure may exceed that between the permanent magnet and its mirror image. We constructed a rotor from an NdFeB permanent magnet and YBCO bulk HTS with a critical current density of {approx}5 kA cm{sup -2}. A soft ferromagnetic steel cage was constructed in segments. The critical current density of the stator HTS was also {approx}5 kA cm{sup -2}. Experimental results obtained with the cage-cooled rotor and stationary HTS show a significant increase in force over that of an equivalent PM rotor and stationary HTS. (author)

  4. High levitation pressures with cage-cooled superconductors

    Science.gov (United States)

    Hull, John R.; Komori, Mochimitsu

    2002-05-01

    We present an analysis of and experimental results from a levitational system comprising a stationary, bulk high-temperature superconductor (HTS) and a levitated component (rotor) that consists of a cylindrical permanent magnet surrounded by an annular HTS. The rotor is cooled below the critical temperature of the HTS while surrounded by a ferromagnetic cage. When the ferromagnetic cage is removed, the flux from the permanent magnet is essentially excluded from the interior of the HTS. When brought into proximity with the HTS stator, the cage-cooled rotor experiences a levitational force. The levitational force may be calculated by applying magnetic circuit theory. Such calculations indicate that for a sufficiently high critical current density, the levitational pressure may exceed that between the permanent magnet and its mirror image. We constructed a rotor from an NdFeB permanent magnet and YBCO bulk HTS with a critical current density of ≈5 kA cm-2. A soft ferromagnetic steel cage was constructed in segments. The critical current density of the stator HTS was also ≈5 kA cm-2. Experimental results obtained with the cage-cooled rotor and stationary HTS show a significant increase in force over that of an equivalent PM rotor and stationary HTS.

  5. Stable levitation of steel rotors using permanent magnets and high-temperature superconductors

    Science.gov (United States)

    Hull, J. R.; Passmore, J. L.; Mulcahy, T. M.; Rossing, T. D.

    1994-07-01

    Individual freely spinning magnetic steel rotors were levitated by combining the attractive force between permanent magnets and the rotor with the repulsive force between high-temperature superconductors and the steel. The levitation force and stiffness of several configurations are presented, and the application of this levitation method to high-speed bearings is discussed.

  6. Calculating levitation forces in the magnet-high-temperature superconductor systems

    NARCIS (Netherlands)

    Ermolaev, YS; Rudnev, IA

    2005-01-01

    A new method of calculation of the magnetic levitation force in the permanent magnet-high-temperature superconductor systems is proposed based on the Maxwell equations and the Bean model. The dependences of the levitation force on the gap width calculated for various regimes of superconductor coolin

  7. Calculating levitation forces in the magnet-high-temperature superconductor systems

    NARCIS (Netherlands)

    Ermolaev, YS; Rudnev, IA

    2005-01-01

    A new method of calculation of the magnetic levitation force in the permanent magnet-high-temperature superconductor systems is proposed based on the Maxwell equations and the Bean model. The dependences of the levitation force on the gap width calculated for various regimes of superconductor coolin

  8. Dependence of levitation force on frequency of an oscillating magnetic levitation field in a bulk YBCO superconductor

    Science.gov (United States)

    Carter, Hamilton; Pate, Stephen; Goedecke, George

    2013-02-01

    The dependence of the magnetic field strength required for levitation of a melt textured, single domain YBCO superconductor disk on the frequency of the current generating the levitating magnetic field has been investigated. The magnetic field strength is found to be independent of frequency between 10 and 300 Hz. This required field strength is found to be in good experimental and theoretical agreement with the field strength required to levitate the same superconductor with a non-oscillating magnetic field. Hysteretic losses within the superconductor predicted by Bean’s critical-state model were also calculated. The measured data rules out any significant Bean’s model effects on the required levitation field strength within the measured frequency range.

  9. Dependence of levitation force on frequency of an oscillating magnetic levitation field in a bulk YBCO superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Hamilton, E-mail: hcarter3@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Pate, Stephen, E-mail: pate@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States); Goedecke, George, E-mail: ggoedeck@nmsu.edu [Department of Physics, New Mexico State University, Las Cruces, NM 88003 (United States)

    2013-02-14

    Highlights: ► AC magnetic field strength required for levitation is independent of frequency. ► RMS magnetic field strength is in good agreement with DC magnetic field strength. ► Dependence of YBCO levitation force on AC magnetic field frequency is investigated. -- Abstract: The dependence of the magnetic field strength required for levitation of a melt textured, single domain YBCO superconductor disk on the frequency of the current generating the levitating magnetic field has been investigated. The magnetic field strength is found to be independent of frequency between 10 and 300 Hz. This required field strength is found to be in good experimental and theoretical agreement with the field strength required to levitate the same superconductor with a non-oscillating magnetic field. Hysteretic losses within the superconductor predicted by Bean’s critical-state model were also calculated. The measured data rules out any significant Bean’s model effects on the required levitation field strength within the measured frequency range.

  10. Levitation performance of the magnetized bulk high-T{sub c} superconducting magnet with different trapped fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Wang, J.S., E-mail: tonny@mars.swjtu.edu.c [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Liao, X.L.; Zheng, S.J.; Ma, G.T.; Zheng, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China); Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University (ASCLab), Chengdu, Sichuan 610031 (China); National Laboratory of Rail Transit, Chengdu, Sichuan 610031 (China)

    2011-03-15

    Research highlights: {yields} The different trapped fields bring entirely different levitation performance. {yields} The force relaxation characters is directly bound up with the trapped field. {yields} The higher trapped field not means better levitation performance. {yields} An profitable internal induced current configuration will benefit to suppress flux motion. - Abstract: To a high-T{sub c} superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high-T{sub c} superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

  11. Influence of maglev force relaxation on the forces of bulk HTSC subjected to different lateral displacements above the NdFeB guideway

    Energy Technology Data Exchange (ETDEWEB)

    Qin Yujie, E-mail: qyjswjtu@vip.sohu.co [Department of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China); Hou Xiaojing [Department of Computer and Information Engineering, Luoyang Institute of Science and Technology, Luoyang, Henan 471023 (China)

    2011-02-15

    Research highlights: {yields} The relaxation properties of maglev forces have been investigated simultaneously. {yields} Influence of relaxation on forces of HTSC subjected to different LDs above PMG is different. {yields} The influence is explained based on motion of flux lines, re/demagnetization of HTSC during LD. {yields} The work provide a scientific analysis for the practical application of the bulk HTSC. - Abstract: This paper studied the influence of maglev force relaxation on the force (both levitation and guidance forces) of bulk high-temperature superconductor (HTSC) subjected to different lateral displacements above a NdFeB guideway. Firstly, the maglev forces relaxation property of bulk HTSC above the permanent-magnet guideway (PMG) was studied experimentally, then the levitation and guidance forces were measured by SCML-2 measurement system synchronously at different lateral displacements, some times later(after relaxation), the forces were measured again as the same way. Compared to the two measured results, it was found that the change of the levitation force was larger compared to the case without relaxation, while the change of the guidance force was smaller. In addition, the rate of change of levitation force and guidance force was different for different maximum lateral displacements. This work provided a scientific analysis for the practical application of the bulk HTS.

  12. Influence of maglev force relaxation on the forces of bulk HTSC subjected to different lateral displacements above the NdFeB guideway

    Science.gov (United States)

    Qin, Yujie; Hou, Xiaojing

    2011-02-01

    This paper studied the influence of maglev force relaxation on the force (both levitation and guidance forces) of bulk high-temperature superconductor (HTSC) subjected to different lateral displacements above a NdFeB guideway. Firstly, the maglev forces relaxation property of bulk HTSC above the permanent-magnet guideway (PMG) was studied experimentally, then the levitation and guidance forces were measured by SCML-2 measurement system synchronously at different lateral displacements, some times later(after relaxation), the forces were measured again as the same way. Compared to the two measured results, it was found that the change of the levitation force was larger compared to the case without relaxation, while the change of the guidance force was smaller. In addition, the rate of change of levitation force and guidance force was different for different maximum lateral displacements. This work provided a scientific analysis for the practical application of the bulk HTS.

  13. Eddy damping effect of additional conductors in superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Zhao-Fei; Gou, Xiao-Fan, E-mail: xfgou@hhu.edu.cn

    2015-12-15

    Highlights: • In this article, for the eddy current damper attached to the HTSC, we • quantitatively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. • presented four different arrangements of the copper damper, and comparatively studied their damping effects and Joule heating, and finally proposed the most advisable arrangement. - Abstract: Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC–PM levitation system, the HTSC with higher critical current density J{sub c} can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC–PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/V{sub Cu}, in which V{sub Cu} is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.

  14. Levitation performance of the magnetized bulk high- Tc superconducting magnet with different trapped fields

    Science.gov (United States)

    Liu, W.; Wang, J. S.; Liao, X. L.; Zheng, S. J.; Ma, G. T.; Zheng, J.; Wang, S. Y.

    2011-03-01

    To a high- Tc superconducting (HTS) maglev system which needs large levitation force density, the magnetized bulk high- Tc superconductor (HTSC) magnet is a good candidate because it can supply additional repulsive or attractive force above a permanent magnet guideway (PMG). Because the induced supercurrent within a magnetized bulk HTSC is the key parameter for the levitation performance, and it is sensitive to the magnetizing process and field, so the magnetized bulk HTSC magnets with different magnetizing processes had various levitation performances, not only the force magnitude, but also its force relaxation characteristics. Furthermore, the distribution and configuration of the induced supercurrent are also important factor to decide the levitation performance, especially the force relaxation characteristics. This article experimentally investigates the influences of different magnetizing processes and trapped fields on the levitation performance of a magnetized bulk HTSC magnet with smaller size than the magnetic inter-pole distance of PMG, and the obtained results are qualitatively analyzed by the Critical State Model. The test results and analyses of this article are useful for the suitable choice and optimal design of magnetized bulk HTSC magnets.

  15. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  16. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-02-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  17. Amplitude and frequency dependence of hysteresis loss in a magnet-superconductor levitation system

    Science.gov (United States)

    Yang, Z. J.; Hull, J. R.; Mulcahy, T. M.; Rossing, T. D.

    1995-08-01

    Using an electromagnetically controlled mechanical pendulum, we measured the energy loss for different amplitudes in a magnetic levitation system that contained high temperature superconductors (HTSs). Two procedures were followed to measure losses at 77 K for frequencies of 93.8 mHz to 80 Hz. In the first procedure, the distance between the permanent magnet and the HTS levitator was the same as that during (field) cooling. In the second procedure, the magnet was lowered (after cooling) closer to the HTS levitator before the measurements were performed. The experimental data show that these two procedures give essentially the same results at the same distance despite different cooling (and magnetization) histories for melt-textured YBaCuO levitators, and the frequency-independent energy loss is a power-law function of amplitude. We attribute the energy loss to magnetic hysteresis in the superconductor.

  18. A new 3D levitation force measuring device for REBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S.L. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Yang, W.M., E-mail: yangwm@snnu.edu.cn [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Li, J.W.; Yuan, X.C. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Ma, J. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China); Department of Physics, Qinghai Normal University, Xining 810008 (China); Wang, M. [School of Physics, Shaanxi Normal University, Xi’an 710062 (China)

    2014-01-15

    Highlights: •A new 3D levitation force measuring device has been designed and constructed. •It can measure the 3D real-time interaction force simultaneously and directly. •Performance, accuracy and effectiveness has been demonstrate by tests. -- Abstract: A new 3D levitation force measuring device for ReBa{sub 2}Cu{sub 3}O{sub 7−x} (REBCO) bulk superconductors has been designed and constructed. Three pull pressure load cells are orthogonally set on a fixing bracket to test the interaction force between a bulk superconductor and a magnet in three dimensions. To realize the simple, rapid and accurate measurement of the levitation force, a non-magnetic hollow cylinder flange, three pull pressure load cells, a piece of iron plate, a NbFeB permanent magnet (PM) and some steel balls are elaborately constructed with the fixing bracket, thus the magnet or REBCO bulk superconductor can be well and rigidly connected with the load cells, and the mutual interference from the three pull pressure load cells can be effectively avoided during the levitation force measuring processes. This device can be used to measure the interaction (or levitation) force between a superconductor and a magnet, that between a magnet and a magnet, or the magnetic force among magnetic materials in three dimensions.

  19. Levitation forces of a bulk YBCO superconductor in gradient varying magnetic fields

    Science.gov (United States)

    Jiang, J.; Gong, Y. M.; Wang, G.; Zhou, D. J.; Zhao, L. F.; Zhang, Y.; Zhao, Y.

    2015-09-01

    The levitation forces of a bulk YBCO superconductor in gradient varying high and low magnetic fields generated from a superconducting magnet were investigated. The magnetic field intensity of the superconducting magnet was measured when the exciting current was 90 A. The magnetic field gradient and magnetic force field were both calculated. The YBCO bulk was cooled by liquid nitrogen in field-cooling (FC) and zero-field-cooling (ZFC) condition. The results showed that the levitation forces increased with increasing the magnetic field intensity. Moreover, the levitation forces were more dependent on magnetic field gradient and magnetic force field than magnetic field intensity.

  20. Levitation force of small clearance superconductor-magnet system under non-coaxial condition

    Science.gov (United States)

    Xu, Jimin; Jin, Yingze; Yuan, Xiaoyang; Miao, Xusheng

    2017-03-01

    A novel superconducting tilting-pad bearing was proposed for the advanced research of reusable liquid hydrogen turbopump in liquid rocket. The bearing is a combination of superconducting magnetic bearing and hydrodynamic fluid-film bearing. Since the viscosity of cryogenic fuel to activate superconducting state and form hydrodynamic fluid-film is very low, bearing clearance will be very small. This study focuses on the investigation of superconducting levitation force in this kind of small clearance superconductor-magnet system. Based on Bean critical state model and three-dimensional finite element method, an analysis method is presented to obtain the levitation force under such situation. Since the complicated operational conditions and structural arrangement for application in liquid rocket, center lines of bulk superconductor and magnet rotor will usually be in non-coaxial state. Superconducting levitation forces in axial direction and radial direction under non-coaxial situation are also analyzed by the presented method.

  1. The size effect on the magnetic levitation force of MgB2 bulk superconductors

    Science.gov (United States)

    Savaskan, B.; Koparan, E. T.; Güner, S. B.; Celik, S.; Yanmaz, E.

    2016-12-01

    In this study, the size effect on the magnetic levitation performance of disk-shaped MgB2 bulk superconductors and permanent magnets was investigated. MgB2 samples with varying diameters of 13 mm, 15 mm and 18 mm, each of which were 2 g in mass, were prepared by two-step solid state reaction method. Vertical levitation force measurements under both zero-field-cooled (ZFC) and field-cooled (FC) regimes were carried out at different temperatures of 20, 24 and 28 K. It was determined that the levitation force of the MgB2 strongly depends on both the diameters of the sample and the permanent magnet. In ZFC regime, the maximum levitation force value for the permanent magnet and the sample 18 mm in diameters reached to the 8.41 N at 20 K. In addition, in FC regime, attractive and repulsive force increased with increasing diameters of the sample and the permanent magnet. In that, the sample with 18 mm in diameter showed the highest attractive force value -3.46 N at 20 K and FC regime. The results obtained in this study are very useful in magnetic levitation devices as there is no detailed study on the size of superconductors and permanent magnets.

  2. Effect of reciprocating motions around working points on levitation force of superconductor-magnet system

    Science.gov (United States)

    Xu, Jimin; Zhang, Fei; Sun, Tao; Yuan, Xiaoyang; Zhang, Cuiping

    2016-09-01

    In order to simulate vibration around working points in practical operation of superconducting levitation system, magnet in a simple superconductor-magnet system are conducted reciprocating motions around static height in this study. Two YBCO cylindrical samples with different grain orientations are used to investigate the effect of reciprocating motions of magnet on superconducting magnetic force. The c-axis of sample S1 is perpendicular to the top surface while sample S2 is parallel to the top surface. The initial cooling processes for the superconductors include zero-field-cooled (ZFC) and filed-cooled (FC). Compared to the levitation force before reciprocating motions, the ZFC levitation force at static height becomes smaller after reciprocating while the FC force presents opposite phenomenon. It is found that levitation force at static height tends to be stable after several times of reciprocating under ZFC and FC conditions and its time-decay phenomenon is suppressed in some extent, which is meaningful for the practical application of superconducting levitation system. Based on vortex dynamic, some physical discussions are presented to the experimental results.

  3. Basic Characteristics of the Propulsion System in the Permanent Magnet-HTSC Hybrid Magnetic Conveyance System

    Science.gov (United States)

    Ohashi, Shunsuke; Kumano, Daiki; Goto, Yasuyuki

    The Hybrid magnetically levitated transportation system has been developed. The magnetic rail is set on the ground, and the carrier with permanent magnets and high-Tc superconductors (HTSC) levitates on the rail. Repulsive force of permanent magnet is introduced to support load weight. Pinning force of the HTSC is used to support weight of the frame of the carrier and to achieve lateral stability of the carrier. In this paper, propulsion system of the conveyance system is studied. Propulsion function is installed on the carrier body. Magnetic gradient is used to get propulsion force. Propulsion force of the system is little. So propulsion rail system is introduced. Air core copper coils are installed on the magnetic rail. Interaction between current of these coils and permanent magnets on the carrier generates propulsion force. Enough propulsion force is given. Influence of the propulsion system on the levitation and guidance system is measured. Stability of levitation and guidance system is enough even when propulsion system is operated.

  4. Effect of size on levitation force in a magnet/superconductor system

    Science.gov (United States)

    Yang, Z. J.; Hull, J. R.

    1996-03-01

    We consider a model system consisting of an infinitely long magnetic dipole line placed symmetrically above an infinitely long superconducting strip. Using the Meissner effect of superconductors, we derive analytical expressions of the levitation forces acting on the dipole line. At lowest-order approximation, we discuss the possible application of our model system to estimate the upper limit of the levitation forces in some magnetic bearing systems. In one example, the model correctly calculated the vertical vibration frequency of an experimental superconducting bearing.

  5. Influence of the lateral movement on the levitation and guidance force in the high-temperature superconductor maglev system

    Science.gov (United States)

    Song, Honghai; de Haas, Oliver; Beyer, Christoph; Krabbes, Gernot; Verges, Peter; Schultz, Ludwig

    2005-05-01

    After the levitation force relaxation was studied for different field-cooling height and working-levitation height, the high-temperature superconductor (HTS) bulk was horizontally moved in the lateral direction above the permanent magnet guideway. Both levitation and guidance force were collected by the measurement system at the same time. It was found that the decay of levitation force is dependent on both the maximum lateral displacement and the movement cycle times, while the guidance force hysteresis curve does not change after the first cycle. This work provided scientific analysis for the HTS maglev system design.

  6. Stability of magnetic tip/superconductor levitation systems

    Institute of Scientific and Technical Information of China (English)

    M. K. Alqadi

    2015-01-01

    The vertical stability of a magnetic tip over a superconducting material is investigated by using the critical state and the frozen image models. The analytical expressions of the stiffness and the vibration frequency about the equilibrium position are derived in term of the geometrical parameters of the magnet/superconductor system. It is found that the stability of the system depends on the shape of the superconductor as well as its thickness.

  7. Levitation force and magnetization in bulk and thin film high T{sub c} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Riise, A.B

    1998-04-01

    The authors present high-resolution measurements of the repulsive vertical force and its associated stiffness between a Nd-B-Fe magnet and a YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconductor in cylindrical geometry. The results are compared with theoretical predictions. The calculations are based on a model in which the superconductor is assumed to be either a sintered granular material or consisting of grains embedded in a nonactive matrix so that only intragranular currents are important. The critical state model is applied to each grain individually and closed form expressions for both vertical force F{sub z} and stiffness are obtained in a configuration with cylindrical symmetry. The model explains all features of the experimental results in a consistent way. A good quantitative agreement has been obtained using only three adjustable parameters. Several central aspects of the phenomenon of magnetic levitation with high-T{sub c} superconductors are presented. High-resolution measurements are made of the repulsive vertical force and its associated stiffness as well as the horizontal stabilizing force and the stiffness governing lateral vibrations. The results obtained at 77 K using a granular YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} sample and Nd-Fe-B magnet in a rectangular levitation configuration are compared with theoretical predictions. The calculations, which are based on the critical state model with the assumption that it applies to the grins individually, give closed-form expressions for all the measured quantities. It is concluded that the present model explains all features of the observations in a consistent way. Using only three adjustable parameters a good agreement exists also at a quantitative level. Experimental studies and theoretical modelling of the levitation force on a permanent magnet placed above a superconducting thin film are offered. It is shown that measurements of the levitation force is a simple and precise method to determine the

  8. Evidence for an Anti-polar Phase in Normal and Superconducting States in all HTSC

    OpenAIRE

    2010-01-01

    It is strongly argued that high temperature superconductors (HTSC) exhibit an anti-polar phase with a long range order in both normal and superconducting states. This anti-polar phase is directly related to the onset of superconductivity in all HTSC and it is responsible for strong coupling and of two dimensionality aspect of HTSC, as it is described below.

  9. Magnetic coupling by using levitation characteristics of YBCO superconductors

    Science.gov (United States)

    Ishigaki, H.; Ito, H.; Itoh, M.; Hida, A.; Takahata, R.

    1993-03-01

    A mechanical system which uses high lateral restoring forces of high-Tc materials as the driving force for a magnetic coupling is proposed. As the basic study of the superconducting magnetic coupling, the relationship between the lateral restoring force and levitation force, transmitted torque characteristics as a function of a twisting angle and clearance, and damping characteristics of the coupling were examined. Superiorities of the coupling such as high damping coefficients and high stability against time and twisting angle were revealed. A magnetic force sensor system was used to evaluate the superconducting characteristics of materials, and nonuniform distribution of repulsive force was observed for the YBCO pellet fabricated by the melt-powder-melt-growth process. The improvement of the homogeneity was achieved by compensating for the composition rate which had changed during the quenching process.

  10. Comparison of simulation and experiment on levitation force between GdBCO bulk superconductor and superconducting magnet

    Energy Technology Data Exchange (ETDEWEB)

    Araki, S., E-mail: satoshi@sum.sd.keio.ac.j [Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan); Nagashima, K.; Seino, H. [Railway Technical Research Institute, 2-8-38 Hikari-cho, Kokubunji, Tokyo 185-8540 (Japan); Murakami, T.; Sawa, K. [Department of System Design Engineering, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522 (Japan)

    2009-10-15

    High temperature bulk superconductors have significant potential for various engineering applications such as a flywheel energy storage system. This system is expected to decrease the energy loss by using bulk superconductors for the bearing. Recently, the authors have developed a new superconducting magnet to realize large levitation force. In this system, the axial component of magnetic field is canceled each other but the radial component of magnetic field expects to be enhanced. Thus, it was expected that the large levitation force can be realized and its time relaxation will be decreased. And in the previous paper, the levitation force and its time relaxation were measured under the various conditions by using this new magnet. But it is difficult to consider what phenomenon has happened in the bulk from only experimental results. In addition the quantitative evaluation cannot be done only by the experimental results, for example, the influence of the magnetic field penetration and magnetic distribution around a bulk superconductor on the maximum force and so on. Thus, in this paper, the authors simulated the levitation force of bulk superconductor by using ELF/MAGIC, which is a three-dimensional electromagnetic analytical software. In the simulation the bulk was considered as a rigid body and the simulation was executed under the same conditions and model with the experiment. The distribution of magnetic field and the levitation force were obtained and discussed.

  11. Flux line depinning in a magnet-superconductor levitation system

    Science.gov (United States)

    Terentiev, A. N.; Hull, J. R.; De Long, L. E.

    The AC loss characteristics of a magnet-superconductor system were studied with the magnet fixed to the free end of an oscillating cantilever located near a stationary melt-textured YBCO pellet. Below a threshold AC field amplitude ≈2 Oe, the dissipation of the oscillator is amplitude-independent, characteristic of a linear, non-hysteretic regime. Above threshold, dissipation increases with amplitude, reflecting the depinning and hysteretic motion of flux lines. The threshold AC field is an order of magnitude higher than that measured for the same YBCO material via AC susceptometry in a uniform DC magnetic field. A partial lock-in of flux lines between YBCO ab planes is proposed as the mechanism for the substantial increase of the depinning threshold.

  12. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.M., E-mail: yangwm@snnu.edu.cn; Chao, X.X.; Guo, F.X.; Li, J.W.; Chen, S.L.

    2013-10-15

    Highlights: • A small superconducting maglev propeller system has been designed and constructed based on YBCO bulk superconductors. • Several small maglev vehicle models have been designed and constructed based on YBCO bulk superconductors. • The models can be used as experimental or demonstration devices for the magnetic levitation applications. -- Abstract: A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN{sub 2} temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  13. Levitation Force of Melt-Textured Single-and Multi-Domain YBaCuO Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.S.; Park, H.S. [Sung Kyun Kwan University, Seoul (Korea, Republic of); Kuk, I.K.; Hong, G.W.; Kim, C.J. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-02-01

    Parameters affecting the magnetic levitation force of the melt-textured YBCO superconductors were studied. The levitation force was dependent on the cooling method, the crystal orientation and the sample thickness of the superconductors and the polarity of the used permanent magnet. (i) the force-distance curves showed a hysteresis behavior depending on the cooling method of the superconductors (field cooling(FC) and zero field cooling(ZFC)), which is due to the different amounts of the magnetic fields trapped in the samples and the interaction to an external field, (i i) the repulsive force single domain sample grown to the c-axis (H//c-axis) is much larger than that of the sample grown to the a-b direction(H//ab-axis), (iii) the repulsive and the attractive force of the single domain sample have thickness dependence. It increases with increasing sample thickness and then reaches the saturation point. (author). 21 refs., 13 figs.

  14. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    Science.gov (United States)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke

    2013-11-01

    We have developed the hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one.

  15. Finite-size-induced stability of a permanent magnet levitating over a superconductor in the Meissner state

    Science.gov (United States)

    Perez-Diaz, Jose Luis; Garcia-Prada, Juan Carlos

    2007-10-01

    The force between a magnetic dipole and a finite superconductor in the Meissner state (Hsuperconductor therefore suffices to explain a stability for the levitation of a magnet over it or even the suspension of one of them under the other one. This does not contradict the existence of flux penetration. However, this makes the flux penetration not necessary to explain both stability and attractiveness, as has been assumed until now.

  16. Improvement of the rotational characteristics in the HTSC-permanent magnet hybrid bearing using ring shaped magnet

    Energy Technology Data Exchange (ETDEWEB)

    Emoto, Kozo; Sugiyama, Ryo; Takagi, Shogo; Ohashi, Shunsuke, E-mail: k145676@kansai-u.ac.jp

    2013-11-15

    Highlights: •We have developed the HTS-permanent magnet hybrid bearing system. •Three dimensional numerical analysis is undertaken to get the effective hybrid configuration. •Repulsive force and pinning force are combined effectively. •The hybrid system shows better levitation characteristics than the non-hybrid one. •In the mechanical resonance state, vibration of the rotor in the hybrid system is small. -- Abstract: We have developed the hybrid magnetic bearing using permanent magnets and the high-T{sub c} bulk superconductor (HTSC). Pinning force of the HTSC is used for the levitation and the guidance. Repulsive force of the permanent magnets is introduced to increase the load weight of the magnetic bearing. In this system, the stator side permanent magnet has the ring type structure so that both pinning force and repulsive force are used effectively. In this paper, influence of the hybrid system on dynamic characteristics of the rotor is studied. The rotor which is supported by the hybrid magnetic bearing is rotated. Then, vibration and the gradient angle of the rotor are measured until the rotor reaches to the end of the resonance state. Three dimensional numerical analysis of the flux which penetrates on the surface of the HTSC is undertaken. The relation between the dynamic characteristics and the flux is considered, and that of the hybrid system is compared with the non-hybrid one. In the hybrid system, the flux is changed by the influences of the stator side permanent magnet. Vibration and the gradient angle of the hybrid system are shown to be smaller than that of the non-hybrid one.

  17. A Basic Experiment on Two-Dimensional Force of HTSC-Bulk in DC Magnetic-Field

    OpenAIRE

    吉田, 欣二郎; 松田, 茂雄; 松本, 洋和

    2000-01-01

    High temperature superconducting (HTSC) bulk can levitate stably on a track which consists of permanent magnets of the same polarity. This is because HTSC-bulk has a pinning force which keeps from vertical displacement due to the weight. We have proposed a new LSM theory which is based on an idea of considering the pinning force as synchronizing force in using armature travelling-magnetic-field instead of permanent magnets. However, the lift force enough to levitate the vehicle on the ground ...

  18. Influence of lateral displacement on the levitation performance of a magnetized bulk high-T{sub c} superconductor magnet

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W., E-mail: tonny-violet@163.com [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China) and Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J.S.; Ma, G.T.; Zheng, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China); Tuo, X.G.; Li, L.L. [College of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu 610059 (China); Ye, C.Q.; Liao, X.L. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China); Wang, S.Y. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031 (China); National Laboratory of Rail Transit, Chengdu, 610031 (China)

    2012-03-15

    Compared with the permanent magnet, the magnetized bulk high-T{sub c} superconductor magnet (MBSCM) can trap higher magnetic field due to its strong flux pinning ability, so it is a good candidate to improve the levitation performance of high-T{sub c} superconductive (HTS) maglev system. The trapped magnetic flux of a MBSCM is sustained by the inductive superconducting current produced by the magnetizing process and is susceptible to the current intensity as well as configuration. In the HTS maglev system, the lateral displacement is an important process to change the superconducting current within a MBSCM and then affects its levitation performance, which is essential for the traffic ability in curve-way, the loading capacity of lateral impact and so on. The research about influence of lateral displacement on the levitation performance of MBSCM is necessary when MBSCM is applied on the HTS maglev vehicle. The experimental investigations about the influence of lateral displacement on the levitation performance of a MBSCM with different trapped fluxes and applied fields are processed in this article. The analyses and conclusions of this article are useful for the practical application of MBSCM in HTS maglev system.

  19. Magnetic properties of high-T(sub c) superconductors: Rigid levitation, flux pinning, thermal depinning, and fluctuation

    Science.gov (United States)

    Brandt, E. H.

    1990-01-01

    The levitation of high-T(sub c) superconductors is quite conspicuous: Above magnets of low symmetry a disk of these ceramics floats motionless, without vibration or rotation; it has a continuous range of stable positions and orientations as if it were stuck in sand. Some specimens may even be suspended above or below the same magnet. This fascinating stability, inherent to no other type of levitation, is caused by the pinning of magnetic flux lines by inhomogeneities inside these extreme type-2 superconductors. The talk deals with pinning of magnetic flux in these materials, with flux flow, flux creep, thermally activated depinning, and the thermal fluctuation of the vortex positions in the flux line lattice (often called flux lattice melting). Also discussed are the fluctuations of the (nearly periodic) magnetic field inside these superconductors which are caused by random pinning sites and by the finite temperature. These fluctuations broaden the van-Hove singularities observed in the density of the magnetic field by nuclear magnetic resonance and by muon spin rotation.

  20. Effect of induced shielding current transmission in longitudinal direction on levitation force of melt grown single-domain YBa2Cu3O7-x cylindrical superconductor

    Institute of Scientific and Technical Information of China (English)

    YANG Wanmin; ZHOU Lian; FENG Yong; ZHANG Pingxiang; R.Nicolsky; R.de Andrade Jr

    2004-01-01

    A novel layer deletion method is used to experimentally investigate the effect of induced shielding current transmission (ISCT) in the longitudinal direction on the levitation force of a single-domain YBa2Cu3O7-x (YBCO) cylindrical superconductor (φ30x7 mm). In the experiment the sample was gradually sliced into two equal sheets, at the middle height along a diameter with 5 mm every step. The experimental results show that the levitation force is closely related with the ISCT in the longitudinal direction. Any layer deletion, even a small piece of layer deletion can reduce the levitation force of the sample. After the whole layer was deleted the levitation force can diminish about 50%. It is also found that the levitation force is directly proportional to the effective factor of surface area, which is equal to the top surface area divided by the total surface area parallel to the top surface of the sample.

  1. Relaxation properties of magnetic force between a magnet and superconductor in an unsymmetrical levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xingyi; Zhou Jun; Zhou Youhe [Key Laboratory of Mechanics on Western Disaster and Environment, Ministry of Education (China); Liang Xinwen [Department of Finance, School of Economics of Sichuan University, Sichuan University, Chengdu, Sichuan 610064 (China)

    2009-02-15

    We present an experimental study of the relaxation of vertical and horizontal force components in an unsymmetrical high-temperature superconducting levitation system, with different initial cooling processes, after fixing the levitated body statically in a given position. It was found that the values of the relaxation measurements of the levitation force and lateral force remained constant or increased with time after vertical and horizontal traverses. The phenomenon has been theoretically described based on the Bean model and the thermally activated flux creep theory. The criterion developed in the present work is considered to be suitable for providing qualitative predictions of the relaxation properties in the levitation force and lateral force.

  2. Relaxation properties of magnetic force between a magnet and superconductor in an unsymmetrical levitation system

    Science.gov (United States)

    Zhang, Xing-Yi; Zhou, Jun; Zhou, You-He; Liang, Xin-Wen

    2009-02-01

    We present an experimental study of the relaxation of vertical and horizontal force components in an unsymmetrical high-temperature superconducting levitation system, with different initial cooling processes, after fixing the levitated body statically in a given position. It was found that the values of the relaxation measurements of the levitation force and lateral force remained constant or increased with time after vertical and horizontal traverses. The phenomenon has been theoretically described based on the Bean model and the thermally activated flux creep theory. The criterion developed in the present work is considered to be suitable for providing qualitative predictions of the relaxation properties in the levitation force and lateral force.

  3. Measurement of Levitation Forces of High-"T[subscript c] Superconductors

    Science.gov (United States)

    Becker, M.; Koblischka, M. R.; Hartmann, U.

    2010-01-01

    We show the construction of a so-called levitation balance which is capable of measuring the levitation forces between a permanent magnet and a superconducting high-T[subscript c] thin film sample. The underlying theoretical basis is discussed in detail. The experiment is performed as an introductory physics experiment for school students as well…

  4. Measurement of Levitation Forces of High-"T[subscript c] Superconductors

    Science.gov (United States)

    Becker, M.; Koblischka, M. R.; Hartmann, U.

    2010-01-01

    We show the construction of a so-called levitation balance which is capable of measuring the levitation forces between a permanent magnet and a superconducting high-T[subscript c] thin film sample. The underlying theoretical basis is discussed in detail. The experiment is performed as an introductory physics experiment for school students as well…

  5. Vibrational Properties of High- Superconductors Levitated Above a Bipolar Permanent Magnetic Guideway

    Science.gov (United States)

    Liu, Lu; Wang, Jiasu

    2014-05-01

    A bipolar permanent magnetic guideway (PMG) has a unique magnetic field distribution profile which may introduce a better levitation performance and stability to the high- superconducting (HTS) maglev system. The dynamic vibration properties of multiple YBCO bulks arranged into different arrays positioned above a bipolar PMG and free to levitate were investigated. The acceleration and resonance frequencies were experimentally measured, and the stiffness and damping coefficients were evaluated for dynamic stability. Results indicate that the levitation stiffness is closely related to the field-cooling-height and sample positioning. The damping ratio was found to be low and nonlinear for the Halbach bipolar HTS-PMG system.

  6. Applications of HTSC films in hybrid optoelectronic devices

    Science.gov (United States)

    Pavuna, Davor

    1992-03-01

    An overview is given of potential applications of high-Tc superconductors (HTSC) in the context of hybrid optoelectronic technology. The main requirements are described for the in situ growth of epitaxial YBa2Cu3O(7-delta) (YBCO) films on SrTiO3 and discuss the properties of YBCO layers grown on Si and GaAs substrates with intermediate, conducting indium-tin-oxide buffer layers. The performances of the microbridge and the meander type of HTSC bolometer are compared, and several concepts are discussed that may become relevant for future hybrid optoelectronic technology.

  7. Effect of the characteristics of a superconductor on the levitation properties of the magnet-superconductor system

    NARCIS (Netherlands)

    Rudnev, I. A.; Ermolaev, Yu. S.

    2007-01-01

    The results of the experimental and theoretical investigations of the magnetic levitation force appearing at the interaction of the multilayer superconducting block of the YBa2Cu3O7-x melted textured ceramic and a permanent magnet are presented. The maximum repulsive force and maximum attractive for

  8. Effect of the characteristics of a superconductor on the levitation properties of the magnet-superconductor system

    NARCIS (Netherlands)

    Rudnev, I. A.; Ermolaev, Yu. S.

    2007-01-01

    The results of the experimental and theoretical investigations of the magnetic levitation force appearing at the interaction of the multilayer superconducting block of the YBa2Cu3O7-x melted textured ceramic and a permanent magnet are presented. The maximum repulsive force and maximum attractive for

  9. Magnetic levitation performance of high-temperature superconductor over three magnetic hills of permanent magnet guideway with iron shims of different thicknesses

    Institute of Scientific and Technical Information of China (English)

    Yuming Gong; Gang Liang; Lifeng Zhao; Yong Zhang; Yong Zhao; Xuyong Chen

    2014-01-01

    Superconducting magnetic levitation perfor-mance, including levitation force and guidance force, is important for the application of high-temperature super-conducting maglev. Both of them are not only affected by different arrays of superconductors and magnets, but also by the thickness of the iron shim between permanent magnets. In order to obtain the best levitation performance, the magnetic field distribution, levitation force, and guid-ance force of a new type of three magnetic hills of per-manent magnet guideway with iron shim of different thicknesses (4, 6, and 8 mm) are discussed in this paper. Simulation analysis and experiment results show that the guideway with iron shim of 8 mm thickness possesses the strongest magnetic field and levitation performance when the suspension gap is larger than 10 mm. However, with the decreasing of suspension gap, the guideway with iron shim of 4 mm thickness possesses the best levitation per-formance. The phenomena can be attributed to the density distribution of flux and magnetization of iron shim.

  10. Suppression of magnetic levitation force in melt-textured YBa{sub 2}Cu{sub 3}O{sub 7-x} superconductors by a transverse AC magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rudnev, I A; Ermolaev, Yu S [Department of Superconductivity and Physics of Nanostructures, Moscow Engineering Physics Institute (State University), 31 Kashirskoe Shosse, Moscow 115409 (Russian Federation)], E-mail: iarudnev@mephi.ru

    2008-02-01

    We have studied experimentally the influence of transverse ac magnetic fields on the levitation force arising between a permanent NdFeB magnet and a bulk melt-textured HTSC YBCO superconducting sample. The axes of superconducting disc and cylindrical magnet were coinciding while the transverse ac magnetic field generated by resistive coil was directed parallel to surface of a disc i.e., perpendicular to the disc axis. We found that application of both impulse and alternative transverse magnetic fields results in suppression of the value of levitation force and its relaxation rate. Namely, the variable magnetic field with amplitude 12 mT, that approximately in 20 times is less than field of a constant magnet, causes suppression of force more than twice. Monotonous behavior of value of levitation force reduction with the increase in transverse magnetic field amplitude was observed. The possible origin of observed phenomenon is discussed.

  11. 永磁轨道上方高温超导块材各向异性对悬浮力弛豫特性的影响%INFLUENCE OF ANISOTROPY PROPERTY OF BULK HIGH TEMPERATURE SUPERCONDUCTOR ON LEVITATION RELAXATION PERFORMANCE ABOVE PERMANENT MAGNET GUIDEWAY

    Institute of Scientific and Technical Information of China (English)

    荆海莲; 郑珺; 廖兴林; 蒋冬辉; 林群煦; 王家素; 王素玉

    2012-01-01

    The melt-texturing processed bulk high temperature superconductor (HTSC) YBCO has five growth sections in each of the sample generally. By the trapped field experiments, it was known that the bulk HTSC shows the obvious anisotropy property. The capability of trapping fields of the bulk HTSC YBCO is different at each growth section and each boundary. Considering the application of the high temperature superconducting Maglev, the levitation relaxation performances of the different three-bulk HTSC arrays above the permanent magnet guideway (PMG) are discussed. According to the experimental results, the relaxation rate of levitation force show smaller if the crystal growth section boundary obeys the aligned growth section boundary arrangement (AGSBA) pattern rath- er than the misaligned growth section boundary arrangement (MGSBA) pattern, no matter at field cooling (FC) condition or zero field cooling (ZFC) condition. It implies the former levitation relaxation performance is better. The further study shows the relaxation rate of levitation force is smaller with the same pattern at the FC condition than that at the ZFC condition. The relaxation performance is better at the FC condition for the HTS Maglev application. It can be a good improvement option to arrange reasonably each onboard YBCO bulk position and the field cooling height for the better relaxation performance of the Maglev system as well as its better stability performance.%采用顶部熔融织构生长法制备的高温超导块材YBCO通常有5个生长区域.通过捕获磁通实验研究,人们发现高温超导块材内部生长区域及边界的捕获磁通能力不同,存在明显的各向异性.面向高温超导磁悬浮应用,本文比较研究了3块不同的高温超导块材YBCO组合在永磁轨道上方悬浮力弛豫特性.实验结果表明,无论场冷还是零场冷情况,块材籽晶生长线对齐排列方式的悬浮力衰减率均小于块材

  12. Processing of Bulk YBa2Cu3O(7-x) High Temperature Superconductor Materials for Gravity Modification Experiments and Performance Under AC Levitation

    Science.gov (United States)

    Koczor, Ronald; Noever, David; Hiser, Robert

    1999-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of bulk-processed high temperature superconductor disks. Others have indicated that large annular disks (on the order of 25cm diameter) and AC levitation fields play an essential role in their observed experiments. We report experiments in processing such large bulk superconductors. Successful results depend on material mechanical characteristics, and pressure and heat treat protocols. Annular disks having rough dimensions of 30cm O.D., 7cm I.D. and 1 cm thickness have been routinely fabricated and tested under AC levitation fields ranging from 45 to 300OHz. Implications for space transportation initiatives and power storage flywheel technology will be discussed.

  13. Simulation of magnetization and levitation properties of arrays of ring-shaped type-II superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun, E-mail: linxj8686@163.com; Huang, Chenguang; Yong, Huadong; Zhou, Youhe, E-mail: zhouyh@lzu.edu.cn

    2017-03-15

    Highlights: • A strong magnetic coupling appears if the gap between the superconducting rings is small. • The saturation magnetization of superconducting rings is related to the radial gap but independent of the vertical gap. • The array of rings in a non-uniform field experiences a levitation force, which increases with increasing height or thickness of the rings. - Abstract: This paper presents an analysis of the magnetic and mechanical properties of arrays of superconducting rings arranged in axial, radial, and matrix configurations under different magnetic fields. In terms of the Bean's critical state model and the minimum magnetic energy method, the dependences of the magnetization and levitation behaviors on the geometry, number, and gap of the superconducting rings are obtained. The results show that when the applied field is spatially uniform, the magnetic property of the superconducting array is associated with the gaps between the rings. For the case of small gaps, the entire array becomes not easy to be fully penetrated by the induced currents, and the magnetic field profiles of which are almost the same as ones in a single large ring. If the superconducting array is fully penetrated, its saturation magnetization value is affected by the radial interval and, however, is almost independent of the vertical separation. When the applied field produced by a cylindrical permanent magnet is nonuniform, the superconducting array will be subjected to a levitation force. The levitation force increases monotonically and finally reaches a saturation value with increasing height or thickness of the rings, and such saturation value is closely related to the inner radius of the array.

  14. Simulation of magnetization and levitation properties of arrays of ring-shaped type-II superconductors

    Science.gov (United States)

    Liu, Jun; Huang, Chenguang; Yong, Huadong; Zhou, Youhe

    2017-03-01

    This paper presents an analysis of the magnetic and mechanical properties of arrays of superconducting rings arranged in axial, radial, and matrix configurations under different magnetic fields. In terms of the Bean's critical state model and the minimum magnetic energy method, the dependences of the magnetization and levitation behaviors on the geometry, number, and gap of the superconducting rings are obtained. The results show that when the applied field is spatially uniform, the magnetic property of the superconducting array is associated with the gaps between the rings. For the case of small gaps, the entire array becomes not easy to be fully penetrated by the induced currents, and the magnetic field profiles of which are almost the same as ones in a single large ring. If the superconducting array is fully penetrated, its saturation magnetization value is affected by the radial interval and, however, is almost independent of the vertical separation. When the applied field produced by a cylindrical permanent magnet is nonuniform, the superconducting array will be subjected to a levitation force. The levitation force increases monotonically and finally reaches a saturation value with increasing height or thickness of the rings, and such saturation value is closely related to the inner radius of the array.

  15. Analysis of the levitation force of pure and starch/polystyrene/MWCNT added bulk MgB2 superconductors using frozen image model under zero field cooling condition

    Science.gov (United States)

    Tripathi, D.; Dey, T. K.

    2016-04-01

    The measurement of superconducting levitation force between permanent magnet and polycrystalline samples of pure and MgB2 added with starch, polystyrene (PS) and multiwall carbon nanotube (MWCNT) have been performed under zero field cooling (ZFC) condition at 20 K in both descending and ascending modes. For this, the bulk pellets were synthesized by conventional solid state sintering technique. The XRD data indicate well developed MgB2 phase. However, a decrease in lattice parameter 'a = b' have been observed for doped MgB2 samples. Superconducting transition temperature of MgB2 also decreases with starch/PS/MWCNT addition. Unlike MWCNT, the addition of starch/polystyrene is found to enhance the levitation force of MgB2 superconductor. The levitation force between PM and investigated pellets in ZFC condition is explained well in terms of the updated version of modified frozen image model and the magnetic moment originated due to vertical motion of the superconductors have been estimated. It may be noted that except for MWCNT, addition of starch/PS in MgB2 improves the magnetic moment generated by vertical movement of pure MgB2. However, this improvement is more pronounced for 1 wt.% of PS added MgB2, which indicates more flux trapping and hence better levitation properties in 1 wt.% of PS added MgB2. The vertical stiffness estimated for pure and starch/PS/MWCNT doped MgB2 samples indicate that the levitation force are more sensitive in the region close to the PM.

  16. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Energy Technology Data Exchange (ETDEWEB)

    Morii, Y.; Sukedai, M. [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan); Ohashi, S., E-mail: ohashi@kansai-u.ac.jp [Kansai University, 3-3-35 Yamate-cho, Suita, Osaka 564-8680 (Japan)

    2011-11-15

    The hybrid magnetic bearing has been developed. In the hybrid system, effect of the pinning force becomes smaller. Influence of the vibration and the gradient angle in the resonance state is large. The resonance frequency becomes small in the hybrid bearing system. The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  17. Rotational characteristics in the resonance state of the HTSC-permanent magnet hybrid magnetic bearing

    Science.gov (United States)

    Morii, Y.; Sukedai, M.; Ohashi, S.

    2011-11-01

    The hybrid magnetic bearing using permanent magnets and the high-Tc bulk superconductor (HTSC) has been developed. Repulsive force of the permanent magnet is introduced to increase the load weight of the magnetic bearing. Effect of the hybrid system has been shown. In this paper, influence of the hybrid system on the dynamic characteristics of the rotor is studied. The rotational characteristics in the mechanical resonance state are studied, and the equivalent magnetic spring coefficient is estimated from the experimental results of the load weight. The resonance frequency is measured by the rotation experiments. The rotor achieves stable levitation even in the resonance state. In the hybrid system, effect of the pinning force becomes smaller than that of the lateral force generated by the repulsive force between the two permanent magnets at the smaller air gap. Thus influence of the lateral vibration and the gradient angle in the resonance state becomes larger at a smaller air gap. The equivalent magnetic spring coefficient becomes also small, and the resonance frequency becomes small in the hybrid bearing system.

  18. Magnetic levitation and its application for education devices based on YBCO bulk superconductors

    Science.gov (United States)

    Yang, W. M.; Chao, X. X.; Guo, F. X.; Li, J. W.; Chen, S. L.

    2013-10-01

    A small superconducting maglev propeller system, a small spacecraft model suspending and moving around a terrestrial globe, several small maglev vehicle models and a magnetic circuit converter have been designed and constructed. The track was paved by NdFeB magnets, the arrangement of the magnets made us easy to get a uniform distribution of magnetic field along the length direction of the track and a high magnetic field gradient in the lateral direction. When the YBCO bulks mounted inside the vehicle models or spacecraft model was field cooled to LN2 temperature at a certain distance away from the track, they could be automatically floating over and moving along the track without any obvious friction. The models can be used as experimental or demonstration devices for the magnetic levitation applications.

  19. Modeling of hysteretic behavior of the levitation force between superconductor and permanent magnet

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xing-da, E-mail: shuxdw@gmail.com [School of Information Engineering, Guangdong Medical College, No. 2, Eastern Wenming Road, Zhanjiang 524023 (China); Xu, Ke-Xi, E-mail: kxxu@staff.shu.edu.cn [Department of Physics, Shanghai University, Shanghai 200444 (China); Cao, Yue; Hu, Shun-bo; Zuo, Peng-xiang; Li, Guan-dong [Department of Physics, Shanghai University, Shanghai 200444 (China)

    2013-03-15

    Highlights: ► Experimental results on hysteretic behavior of the levitaion force are presented. ► Hysteresis loop for the first descent/ascent cycle of magnet is largest. ► Hysteresis loop for the second and subsequent cycles almost overlap each other. ► Yang’s frozen-image model cannot describe this characteristic of levitation force. ► An updated frozen-image model is developed to describe these experimental results. -- Abstract: The hysteretic behavior of the levitation force between a permanent magnet and a melt-textured-growth YBCO bulk has been investigated under both zero-field cooling (ZFC) and field cooling (FC) processes. It is found that both in ZFC and FC measurements, the hysteresis loop for the first descent/ascent cycle of magnet is relatively larger than that for the second or third cycle, and the hysteresis loops for Cycle 2–4 have the same area. These results can be qualitatively understood in terms of the critical state model. To describe these experimental results, we develop an updated frozen-image model, which is obtained by modifying the change rules of the vertical movement image in the advanced frozen-image model proposed by Yang et al. Comparing with the advanced frozen-image model proposed by Yang et al., our model cannot only give the hysteretic characteristic in the first descent–ascent cycle of magnet, but also show the hysteresis loops with the same area for the second and subsequent cycles.

  20. Modeling of hysteretic behavior of the levitation force between superconductor and permanent magnet

    Science.gov (United States)

    Wu, Xing-da; Xu, Ke-Xi; Cao, Yue; Hu, Shun-bo; Zuo, Peng-xiang; Li, Guan-dong

    2013-03-01

    The hysteretic behavior of the levitation force between a permanent magnet and a melt-textured-growth YBCO bulk has been investigated under both zero-field cooling (ZFC) and field cooling (FC) processes. It is found that both in ZFC and FC measurements, the hysteresis loop for the first descent/ascent cycle of magnet is relatively larger than that for the second or third cycle, and the hysteresis loops for Cycle 2-4 have the same area. These results can be qualitatively understood in terms of the critical state model. To describe these experimental results, we develop an updated frozen-image model, which is obtained by modifying the change rules of the vertical movement image in the advanced frozen-image model proposed by Yang et al. Comparing with the advanced frozen-image model proposed by Yang et al., our model cannot only give the hysteretic characteristic in the first descent-ascent cycle of magnet, but also show the hysteresis loops with the same area for the second and subsequent cycles.

  1. Development of miniature HTSC wide-band filter with open-loop resonators

    Institute of Scientific and Technical Information of China (English)

    ZHANG TianLiang; YANG Kai; NING JunSong; BU ShiRong; LIU JuanXiu; LUO ZhengXiang

    2008-01-01

    The strong electric and magnetic coupled novel HTSC (high temperature superconductor) open-loop mierostrip resonators are studied in this report and the traditional structure of open-loop resonators is improved. A miniature wide-band HTSC bandpass filter is developed by the novel structure, which is fabricated on YBCO/LaAIO3/BCO substrate with dimensions of 14.8×9.6 mm2. This filter is tested at 77K, and the specifications are that the center frequency is 2230 MHz, the bandwidth is 455 MHz, and the best insertion loss is 0.14 dB in passband.

  2. Superconducting bulk magnet for maglev vehicle: Stable levitation performance above permanent magnet guideway

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Z.; Zheng, J.; Li, J.; Ma, G.; Lu, Y.; Zhang, Y.; Wang, S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China); Wang, J. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: jsywang@home.swjtu.edu.cn

    2008-06-15

    High-temperature superconducting (HTS) maglev vehicle is well known as one of the most potential applications of bulk high-temperature superconductors (HTSCs) in transported levitation system. Many efforts have promoted the practice of the HTS maglev vehicle in people's life by enhancing the load capability and stability. Besides improving the material performance of bulk HTSC and optimizing permanent magnet guideway (PMG), magnetization method of bulk HTSC is also very effective for more stable levitation. Up to now, applied onboard bulk HTSCs are directly magnetized by field cooling above the PMG for the present HTS maglev test vehicles or prototypes in China, Germany, Russia, Brazil, and Japan. By the direct-field-cooling-magnetization (DFCM) over PMG, maglev performances of the bulk HTSCs are mainly depended on the PMG's magnetic field. However, introducing HTS bulk magnet into the HTS maglev system breaks this dependence, which is magnetized by other non-PMG magnetic field. The feasibility of this HTS bulk magnet for maglev vehicle is investigated in the paper. The HTS bulk magnet is field-cooling magnetized by a Field Control Electromagnets Workbench (FCEW), which produces a constant magnetic field up to 1 T. The levitation and guidance forces of the HTS bulk magnet over PMG with different trapped flux at 15 mm working height (WH) were measured and compared with that by DFCM in the same applied PMG magnetic field at optimal field-cooling height (FCH) 30 mm, WH 15 mm. It is found that HTS bulk magnet can also realize a stable levitation above PMG. The trapped flux of HTS bulk magnet is easily controllable by the charging current of FCEW, which implies the maglev performances of HTS bulk magnet above PMG will be adjustable according to the practical requirement. The more trapped flux HTS bulk magnet will lead to bigger guidance force and smaller repulsion levitation force above PMG. In the case of saturated trapped flux for experimental HTS bulk

  3. Investigation on the levitation force behaviour of malic acid added bulk MgB{sub 2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Savaskan, B., E-mail: burcusavaskan@hotmail.com [Energy Systems Engineering, Faculty of Technology, Karadeniz Technical University, 61830 Of, Trabzon (Turkey); Taylan Koparan, E. [Department of Primary Education, Eregli Faculty of Education, Bulent Ecevit University, TR-67300 Zonguldak (Turkey); Celik, S. [Department of Physics, Faculty of Arts and Sciences, Recep Tayyip Erdogan University, 53100 Rize (Turkey); Ozturk, K.; Yanmaz, E. [Department of Physics, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2014-07-15

    Highlights: • The effects of malic acid addition on the levitation force properties of bulk MgB{sub 2} has been first time investigated and reported. • The malic acid adding has a positive impact on the levitation properties. • 4 wt% and 6 wt% malic acid added samples exhibited a higher vertical and lateral force than pure sample. - Abstract: The effects of malic acid addition (from 0 to 15 wt% of the total MgB{sub 2}) on the levitation force properties of bulk MgB{sub 2} have been investigated. All samples were prepared from magnesium powder, amorphous boron powder, malic acid (C{sub 4}H{sub 6}O{sub 5}) and toluene (C{sub 7}H{sub 8}) by using two-step solid state reaction method. Vertical and lateral levitation force measurements that are under both zero-field-cooled (ZFC) and field-cooled (FC) regimes were carried out at different temperatures of 24, 28 and 32 K for samples with various adding level. It was found that the reasonable malic acid adding has a positive impact on the levitation properties. At 24 K and 28 K, the 4 wt% and 6 wt% malic acid added samples exhibits a higher levitation force than pure sample. In the case of the optimally additive 4 wt% sample, the maximum levitation force corresponds to 18.60 N, whereas the pure sample shows 16.95 N at 24 K for ZFC regime. In this study the enhancing effect of malic acid adding on the levitation force properties of MgB{sub 2} has been first time investigated and reported.

  4. High temperature superconductors in satellite communications. High power microwave resonators and filters in planar HTSC technology. Final report; Hochtemperatur-Supraleiter-Systeme in der Satellitenkommunikation. Leistungstaugliche Hochfrequenz-Resonatoren und -Filter in planarer HTSL-Technologie. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Baumfalk, A.; Kaiser, T.; Kolesov, S.; Chaloupka, H.; Piel, H.; Hein, M.

    1999-07-31

    Goal of the R and D project was the development of miniaturized HTSC resonators and filters. The work was divided into two main packages: ({alpha}) Systematic investigations of thin film samples, manufactured by partners of the common project as well as the development of characterization methods. ({beta}) Considerations of all relevant topics related to the design and manufacturing of high power filters with given specifications. The power handling capability of thin films is the most challenging issue in film production. A large variation in film quality could be observed that can cause problems in the realization of HTSC components. Employing the introduced concept of edge current free disk and ring resonators, high power HTSC filters can be realized with an improvement of 400 in power handling capability compared to other HTSC resonator types. During optimization of the unloaded quality factor, dielectric losses were identified to be the limiting factor. Two-pole, four-pole Chebyshev and four pole elliptic filters were developed and characterized and showed low loss and high power handling capability. (orig.) [German] Die Zielsetzung des F und E-Vorhabens war es, stark miniaturisierte leistungstaugliche Resonatoren und Filter auf der Basis von Hochtemperatur-supraleitenden Duennfilmen zu entwickeln. Die Arbeiten gliederten sich in zwei Teilbereiche: Einerseits wurden Methoden zur Hochfrequenz-Charakterisierung der zugrundeliegenden HTSL-Schichten entwickelt und systematische Untersuchungen an Proben schichtherstellender Verbundpartner durchgefuehrt. Andererseits wurden alle relevanten Teilprobleme zur Entwicklung hochleistungstauglicher Filter bearbeitet und entsprechende Problemloesungen entwickelt. Bei der Schichtherstellung stellte sich die geforderte Leistungstragfaehigkeit der HTSL-Schichten als besondere Herausforderung dar. Es wurde eine grosse Streuung der Filmqualitaet beobachtet, wodurch die Realisierung von Bauelementen erschwert werden kann. Die

  5. About the Influence of the Magnetic Field Configuration on the Levitation Characteristics of the System Superconductor - Array of Magnets

    Science.gov (United States)

    Ermolaev, Yu. S.; Rudnev, I. A.

    2014-07-01

    Interaction of a superconductor with an array of magnets having different orientations of the magnetization vector is theoretically investigated. Based on a critical state model, the interaction force arising in the system superconductor - array of magnets is calculated by the method of finite elements. Optimal configurations of the magnetic system are established in which maximum values of both attractive and repulsive forces are created.

  6. Effects of Bi-2212 addition on the levitation force properties of bulk MgB2 superconductors

    Science.gov (United States)

    Taylan Koparan, E.; Savaskan, B.; Guner, S. B.; Celik, S.

    2016-02-01

    We present a detailed investigation of the effects of Bi2Sr2Ca1Cu2O8+κ (Bi-2212) adding on the levitation force and magnetic properties of bulk MgB2 obtained by hot press method. The amount of Bi-2212 was varied between 0 and 10 wt% (0, 2, 4, 6, 10 wt%) of the total MgB2. Moreover, we present MgB2 bulk samples fabricated by using different production methods including hot pressing method to our knowledge. All samples were prepared by using elemental magnesium (Mg) powder, amorphous nano-boron (B) powder and Bi-2212 powder which are produced by hot press method. As a result of hot press process, compact pellet samples were manufactured. The vertical and lateral levitation force measurements were executed at the temperatures of 20, 24 and 28 K under zero-field-cooled (ZFC) and field-cooled (FC) regimes for samples with various adding levels. At 24 K and 28 K under ZFC regime, the 2 wt% Bi-2212 added sample exhibits a higher vertical levitation force than the pure sample. Bi-2212 added MgB2 samples compared to the pure sample have lower attractive force values in FC regime. The magnetic field dependence of the critical current density J c was calculated from the M-H loops for Bi-2212 added MgB2 samples. The 2 wt% Bi-2212 added sample has the best levitation and critical current density performance compared to other samples. The critical temperature ( T c ) has slightly dropped from 37.8 K for the pure MgB2 sample to 36.7 K for the 10 wt% of Bi-2212 added sample. The transition temperature slightly decreases when Bi-2212 adding level is increased.

  7. Effects of Bi-2212 addition on the levitation force properties of bulk MgB{sub 2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Taylan Koparan, E. [Bulent Ecevit University, Department of Science Education, Eregli Faculty of Education, Zonguldak (Turkey); Savaskan, B. [Karadeniz Technical University, Energy Systems Engineering, Faculty of Technology, Trabzon (Turkey); Guner, S.B. [Recep Tayyip Erdogan University, Department of Physics, Faculty of Arts and Sciences, Rize (Turkey); Celik, S. [Sinop University, Energy Systems Engineering, Faculty of Engineering and Architecture, Sinop (Turkey)

    2016-02-15

    We present a detailed investigation of the effects of Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub 8+κ} (Bi-2212) adding on the levitation force and magnetic properties of bulk MgB{sub 2} obtained by hot press method. The amount of Bi-2212 was varied between 0 and 10 wt% (0, 2, 4, 6, 10 wt%) of the total MgB{sub 2}. Moreover, we present MgB{sub 2} bulk samples fabricated by using different production methods including hot pressing method to our knowledge. All samples were prepared by using elemental magnesium (Mg) powder, amorphous nano-boron (B) powder and Bi-2212 powder which are produced by hot press method. As a result of hot press process, compact pellet samples were manufactured. The vertical and lateral levitation force measurements were executed at the temperatures of 20, 24 and 28 K under zero-field-cooled (ZFC) and field-cooled (FC) regimes for samples with various adding levels. At 24 K and 28 K under ZFC regime, the 2 wt% Bi-2212 added sample exhibits a higher vertical levitation force than the pure sample. Bi-2212 added MgB{sub 2} samples compared to the pure sample have lower attractive force values in FC regime. The magnetic field dependence of the critical current density J{sub c} was calculated from the M-H loops for Bi-2212 added MgB{sub 2} samples. The 2 wt% Bi-2212 added sample has the best levitation and critical current density performance compared to other samples. The critical temperature (T{sub c}) has slightly dropped from 37.8 K for the pure MgB{sub 2} sample to 36.7 K for the 10 wt% of Bi-2212 added sample. The transition temperature slightly decreases when Bi-2212 adding level is increased. (orig.)

  8. Superconductors

    CERN Document Server

    Narlikar, A V

    2014-01-01

    Superconductors is neither about basic aspects of superconductivity nor about its applications, but its mainstay is superconducting materials. Unusual and unconventional features of a large variety of novel superconductors are presented and their technological potential as practical superconductors assessed. The book begins with an introduction to basic aspects of superconductivity. The presentation is readily accessible to readers from a diverse range of scientific and technical disciplines, such as metallurgy, materials science, materials engineering, electronic and device engineering, and chemistry. The derivation of mathematical formulas and equations has been kept to a minimum and, wherever necessary, short appendices with essential mathematics have been added at the end of the text. The book is not meant to serve as an encyclopaedia, describing each and every superconductor that exists, but focuses on important milestones in their exciting development.

  9. Magnetic Levitation.

    Science.gov (United States)

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  10. Magnetic Levitation.

    Science.gov (United States)

    Rossing, Thomas D.; Hull, John R.

    1991-01-01

    Discusses the principles of magnetic levitation presented in the physics classroom and applied to transportation systems. Topics discussed include three classroom demonstrations to illustrate magnetic levitation, the concept of eddy currents, lift and drag forces on a moving magnet, magnetic levitation vehicles, levitation with permanent magnets…

  11. Hacia el motor superconductor: estudio de las interacciones entre un rotor superconductor y un estator convencional

    OpenAIRE

    Pallarès Viña, Miquel Joan

    2002-01-01

    de la tesis:Hacia el motor superconductor: estudio de las interacciones entre un estator convencional y un rotor superconductorEl desarrollo de superconductores de alta temperatura (HTSC) de gran corriente crítica ha permitido la fabricación de dispositivos en varias áreas de la ingeniería electromecánica. En particular, los HTSC pueden mejorar el rendimiento de los motores eléctricos, ya sea sustituyendo el cobre en el rotor de los mismos o con la realización de nuevos diseños.El particular...

  12. Superconductivity-induced phononic effects in high-temperature superconductors: Raman study

    Energy Technology Data Exchange (ETDEWEB)

    Limonov, M. [Ioffe Physico-Technical Institute, Politekhnicheskaya 26, 194021 St. Petersburg (Russian Federation); Superconductivity Research Laboratory, International Superconductivity Technology Center, 10-13, Shinonome 1-Chome, Koto-ku, Tokyo 135-0062 (Japan); Lee, S.; Masui, T.; Uchiyama, H.; Tajima, S. [Superconductivity Research Laboratory, International Superconductivity Technology Center, 10-13, Shinonome 1-Chome, Koto-ku, Tokyo 135-0062 (Japan); Yamanaka, A. [Chitose Institute of Science and Technology, Chitose, Hokkaido 066-8655 (Japan)

    2004-11-01

    Raman scattering spectra of (123) and Bi-based high-temperature superconductors (HTSC) with different doping levels have been investigated. It is demonstrated that phonons in HTSC can provide unique information on energy, symmetry, temperature- and doping-dependencies of the superconducting gap and pseudogap. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Trial Application of Pulse-Field Magnetization to Magnetically Levitated Conveyor System

    Directory of Open Access Journals (Sweden)

    Yoshihito Miyatake

    2012-01-01

    Full Text Available Magnetically levitated conveyor system using superconductors is discussed. The system is composed of a levitated conveyor, magnetic rails, a linear induction motor, and some power supplies. In the paper, pulse-field magnetization is applied to the system. Then, the levitation height and the dynamics of the conveyor are controlled. The static and dynamic characteristics of the levitated conveyor are discussed.

  14. Temperature dependence of levitation force and its relaxation in a HTS levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Jun; Zhang Xingyi [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China); Zhou Youhe, E-mail: zhouyh@lzu.edu.c [Key Laboratory of Mechanics on Western Disaster and Environment, Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2010-03-01

    Using a modified Gifford-McMahon refrigerator to cool the cylindrical bulk YBaCuO superconductor within the region of 100-10 K, and using an updated high-temperature superconductor (HTS) maglev measurement system, the levitation force and its time relaxation at different temperatures between a YBaCuO bulk superconductor and a permanent magnet (PM) have been measured under zero-field cooling. It is found that decrease the cooling temperature of HTS can decrease the hysteresis of magnetization and increase the maximum levitation force of each hysteresis loop. For the relaxation of levitation force, if the temperature is continually lowered to 10 K after the relaxation measurement at given cooling temperature is performed for 600 s, the levitation force will continue to decrease sharply with the lowering of temperature even though it will get stable if the temperature is not lowered. Our results shown in this work are a benefit to the understanding of levitation systems.

  15. Orientation and thickness dependence of magnetic levitation force and trapped magnetic field of single grain YBa{sub 2}Cu{sub 3}O{sub 7-y} bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Y.; Go, S. J.; Joo, H. T. [Korea Science Academy of Korea Advanced Institute of Science and Technology, Pusan (Korea, Republic of); Lee, Y. J.; Park, S. D.; Jun, B. H.; KIm, C. J. [Neutron Utilization Technology Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2017-03-15

    The effects of the crystallographic orientation and sample thickness on the magnetic levitation forces (F) and trapped magnetic field (B) of single grain YBCO bulk superconductors were examined. Single grain YBCO samples with a (001), (110) or (100) surface were used as the test samples. The samples used for the force-distance (F-d) measurement were cooled at 77 K without a magnetic field (zero field cooling, ZFC), whereas the samples used for the B measurement were cooled under the external magnetic field of a Nd-B-Fe permanent magnet (field cooling, FC). It was found that F and B of the (001) surface were higher than those of the (110) or (100) surface, which is attributed to the higher critical current density (J{sub c}) of the (001) surface. For the (001) samples with t=5–18 mm, the maximum magnetic levitation forces (F{sub max}s) of the ZFC samples were larger than 40 N. About 80% of the applied magnetic field was trapped in the FC samples. However, the F and B decreased rapidly as t decreased below 5 mm. There exists a critical sample thickness (t=5 mm for the experimental condition of this study) for maintaining the large levitation/trapping properties, which is dependent on the material properties and magnitude of the external magnetic fields.

  16. The effect of additional permanent magnet magnetizing methods on magnetic field distribution and the levitation force of single domain GdBCO bulk superconductor%辅助永磁体磁化方式对单畴GdBCO超导块材捕获磁场分布及其磁悬浮力的影响

    Institute of Scientific and Technical Information of China (English)

    马俊; 杨万民; 王妙; 陈森林; 冯忠岭

    2013-01-01

    It has been investigated that the interaction force between a cubic permanent magnet PM1 and a GdBCO bulk (HTSC) super-conducting permanent magnet (SCPM) magnetized by a cubic permanent magnet PM2 under different configurations at 77 K. Two configurations were used for the magnetization of the GdBCO bulk, one is that the North pole of the PM2 is in upward direction, the other is in downward direction, so that the North pole of the SCPM is in two states SCPM↑and SCPM↓;the vertical distance between the bottom surface of PM1 and the top surface of SCPM is kept as a constant value, but the PM2 can be fixed at any positions (x) along a diameter of the GdBCO bulk during the magnetization process. It is found that:for the PM1↓-SCPM↑configuration, the maximum levitation force is increasing from 16.7 N to 23.1 N when x increases from−15 mm to 0, and then decreases to 16.6 N when x further increases to 15 mm;but for the PM1↓-SCPM↓configuration, the maximum levitation force is decreasing from 17.7 N to 7 N when x increases from−15 mm to 0, and then increases to 17.6 N when x further increases to 15 mm. These results are not only much different in the two configurations, but also much different from the maximum levitation force 17.1 N of the sample under zero field cooled condition, which is closely related with the trapped field distribution of the SCPM at different x values. These results indicate that the levitation force of high temperature bulk superconductors can be effectively improved by introducing additional permanent magnet based on scientific and reasonable designing of the system configurations, which is very important during the practical design and applications of superconducting magnetic levitation systems.%通过对方形永磁体和方形辅助永磁体在液氮温度下对GdBCO超导体磁化后超导磁悬浮力的测量,研究了两种组态中方形辅助永磁体对超导体的磁化方式对单畴GdBCO超导块材

  17. Effects of Magnet Size and Geometry on Magnetic Levitation Force

    Institute of Scientific and Technical Information of China (English)

    M. K. Alqadi; H. M. Al-khateeb; F. Y. Alzoubi; N. Y. Ayoub

    2007-01-01

    We obtain analytical relations for the levitation force as a function of dimensions of the superconductor-magnet system. The force has been calculated on the basis of the dipole-dipole interaction model.The effect of thickness of the superconductor on the levitation force is investigated. The results show that the influence of geometry and thickness of the magnet becomes significantly large at small levitation distances. Furthermore, approximating the permanent magnet as a point dipole results in an inaccurate estimation of the levitation force.

  18. Large levitation force due to flux pinning in YBaCuO superconductors fabricated by Melt-Powder-Melt-Growth process

    Science.gov (United States)

    Murakami, Masato; Oyama, Terutugu; Fujimoto, Hiroyuki; Taguchi, Takahiro; Gotoh, Satoshi

    1990-11-01

    An extremely large levitation force of as high as 30 N at a height of 1 mm was achieved in Ag-doped YBaCuO fabricated by the Melt-Powder-Melt-Growth process using a repulsive force against a 0.4 T rare-earth magnet at 77 K. The combination of a large Jc value and large shielding current loop is the source of such a large levitation force.

  19. Interaction of Mutually Perpendicular Magnetic Fields in HTSC

    Directory of Open Access Journals (Sweden)

    Vasilyev Aleksandr Fedorovich

    2015-11-01

    Full Text Available In this article a problem of interaction of the crossed magnetic fields in superconductors is considered. Superconducting materials have nonlinear magnetic properties. It allows using a non-linear magnetic susceptibility for measurement of feeble magnetic fields. We place a wire of superconducting material in a constant parallel uniform magnetic field. Then we let through a wire the alternating current leak. Interaction of mutual and perpendicular variation magnetic fields, with adequate accuracy is described by Ginzburg-Landau's equations. Approximate solution of the written equations is received. The component of a magnetic field parallel to a wire contains a variable component. Frequency of a variable component of the magnetic field is equal to the doubled current frequency. Amplitude of the variable component of the magnetic field is proportional to strength of the constant magnetic field. The experimental installation for research of interaction of mutually perpendicular magnetic fields is created. The cylinder from HTSC of ceramics of the YBa2Cu3O7-x was used as a sensor. Dependence of amplitude of the second harmonica of a variation magnetic field on strength of a constant magnetic field is received.

  20. Levitation characteristics of HTS tape stacks

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovskiy, S. V.; Ermolaev, Y. S.; Rudnev, I. A. [National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2015-03-15

    Due to the considerable development of the technology of second generation high-temperature superconductors and a significant improvement in their mechanical and transport properties in the last few years it is possible to use HTS tapes in the magnetic levitation systems. The advantages of tapes on a metal substrate as compared with bulk YBCO material primarily in the strength, and the possibility of optimizing the convenience of manufacturing elements of levitation systems. In the present report presents the results of the magnetic levitation force measurements between the stack of HTS tapes containing of tapes and NdFeB permanent magnet in the FC and ZFC regimes. It was found a non- linear dependence of the levitation force from the height of the array of stack in both modes: linear growth at small thickness gives way to flattening and constant at large number of tapes in the stack. Established that the levitation force of stacks comparable to that of bulk samples. The numerical calculations using finite element method showed that without the screening of the applied field the levitation force of the bulk superconductor and the layered superconductor stack with a critical current of tapes increased by the filling factor is exactly the same, and taking into account the screening force slightly different.

  1. Electric Levitation Using Epsilon-Near-Zero Metamaterials

    OpenAIRE

    Rodríguez-Fortuño, Francisco J.; Vakil, Ashkan; Engheta, Nader

    2013-01-01

    Levitation of objects with action at a distance has always been intriguing to humans. Several ways to achieve this, such as aerodynamic, acoustic, or electromagnetic methods, including radiation pressure, stable potential wells, and quantum Casimir-Lifshitz forces, exist. A fascinating approach for levitation is that of magnets over superconductors based on the Meissner effect -the expulsion of the magnetic field by a superconductor. With the advent of metamaterials -designed structures with ...

  2. Effect of field cooling heights on the levitation force of pure and starch/polystyrene/MWCNT added bulk MgB{sub 2} superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tripathi, D.; Dey, T.K., E-mail: tapasdey@hijli.iitkgp.ernet.in

    2014-12-15

    Highlights: • Levitation force between PM and starch/PS/MWCNT added MgB{sub 2} are studied in FC mode. • MgB{sub 2} added with 1 wt.% PS gives best result. • Levitation forces do not display hysteresis during ascending and descending mode. • Exponential variation in Max. Levitation (F{sub MLF}) and attractive forces (F{sub MAF}). • The gap between PM and SC for F{sub MAF} and F{sub 0AF} varies linearly with FC height. - Abstract: A series of MgB{sub 2} pellets with and without addition of carbon from different sources (viz. starch, polystyrene and carbon nanotubes) have been synthesized by solid state reaction under argon atmosphere. XRD analysis indicates a decrease in lattice parameters of MgB{sub 2} with addition of starch, polystyrene (PS) and MWCNT and confirms substitution of carbon in boron sites. The presence of nanosized carbon inclusions between the grain boundaries in the present set of samples is evident in TEM photographs. Resistivity data confirms a decrease in superconducting transition temperature (T{sub c0}) for MgB{sub 2} doped with starch/PS/MWCNT. The effect of different field cooling heights (H{sub IFC}) at 20 K on maximum levitation force (F{sub MLF}) and maximum attractive force (F{sub MAF}) of pure MgB{sub 2} and MgB{sub 2} doped with starch/PS/MWCNT have been investigated. Except for MWCNT, doping of starch and PS in MgB{sub 2} is found to improve F{sub MLF} and F{sub MAF} and the best result is obtained for MgB{sub 2} doped with 1 wt.% PS. Levitation force measured as a function of decreasing initial field cooling height indicates exponential dependence of both maximum levitation force (F{sub MLF}) and maximum attractive force (F{sub MAF}). However, the gap distance between PM and the sample (H{sub 0AF} and H{sub MAF}) corresponding to maximum attractive force (F{sub MAF}) and zero attractive force (F{sub 0AF}) varies linearly and their difference remains constant. This constancy in (H{sub MAF} − H{sub 0AF}) is understood in

  3. Microstructure change during oxygen annealing and the effect on the levitation force of melt-textured Y-Ba-Cu -O superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chan-Joong Kim; Ki-Baik Kim; Il-Hyun Kuk; Gye-Won Hong [Superconductivity Research Laboratory, Korea Atomic Energy Research Institute, Yusung, Taejon (Korea, Republic of); Yi-Sung Lee; Hyun-Soon Park [Department of Metallurgical Engineering, Sungkyunkwan University, Soowon, Kyounggi-do (Korea, Republic of)

    1997-12-01

    The influence of oxygen annealing on the levitation force was studied for melt-textured multidomain YBCO samples cooled with and without magnetic field (field cooled (FC) and zero-field cooled (ZFC)). For both the FC and ZFC samples the repulsive force rapidly increased with increasing oxygen annealing time, reaching a maximum value at a certain annealing time and then slightly decreasing when the sampleswere further annealed. The attractive force of the FC samples followed a similar pattern to that of the repulsive force while the attractive force of the ZFC samples was small and nearly constant regardless of annealing time. The variation of the levitation force with oxygen annealing time is explained in terms of the microstructure developed during oxygen annealing. (author)

  4. Microstructure change during oxygen annealing and the effect on the levitation force of melt-textured Y - Ba - Cu - O superconductors

    Science.gov (United States)

    Kim, Chan-Joong; Kim, Ki-Baik; Kuk, Il-Hyun; Hong, Gye-Won; Lee, Yi-Sung; Park, Hyun-Soon

    1997-12-01

    The influence of oxygen annealing on the levitation force was studied for melt-textured multidomain YBCO samples cooled with and without magnetic field (field cooled (FC) and zero-field cooled (ZFC)). For both the FC and ZFC samples the repulsive force rapidly increased with increasing oxygen annealing time, reaching a maximum value at a certain annealing time and then slightly decreasing when the samples were further annealed. The attractive force of the FC samples followed a similar pattern to that of the repulsive force while the attractive force of the ZFC samples was small and nearly constant regardless of annealing time. The variation of the levitation force with oxygen annealing time is explained in terms of the microstructure developed during oxygen annealing.

  5. HTSC cuprate phase diagram using a modified Boson-Fermion-Gossamer model describing competing orders, a quantum critical point and possible resonance complex

    Science.gov (United States)

    Squire, Richard H.; March, Norman H.; Booth, Michael L.

    There has been considerable effort expended toward understanding high temperature superconductors (HTSC), and more specifically the cuprate phase diagram as a function of doping level. Yet, the only agreement seems to be that HTSC is an example of a strongly correlated material where Coulomb repulsion plays a major role. This manuscript proposes a model based on a Feshbach resonance pairing mechanism and competing orders. An initial BCS-type superconductivity at high doping is suppressed in the two particle channel by a localized preformed pair (PP) (Nozieres and Schmitt-Rink, J Low Temp Phys, 1985, 59, 980) (circular density wave) creating a quantum critical point. As doping continues to diminish, the PP then participates in a Feshbach resonance complex that creates a new electron (hole) pair that delocalizes and constitutes HTSC and the characteristic dome (Squire and March, Int J Quantum Chem, 2007, 107, 3013; 2008, 108, 2819). The resonant nature of the new pair contributes to its short coherence length. The model we propose also suggests an explanation (and necessity) for an experimentally observed correlated lattice that could restrict energy dissipation to enable the resonant Cooper pair to move over several correlation lengths, or essentially free. The PP density wave is responsible for the pseudogap as it appears as a "localized superconductor" since its density of states and quasiparticle spectrum are similar to those of a superconductor (Peierls-Fröhlich theory), but with no phase coherence between the PP.

  6. Microwave absorption and resistively shunted Josephson junctions in high temperature CuO superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ramachandran, J.S.; Huang, M.X.; Bhagat, S.M. (Dept. of Physics, Univ. of Maryland, College Park, MD (United States)); Kish, K.; Tyagi, S. (Dept. of Physics and Atmospheric Science, Drexel Univ., Philadelphia, PA (United States))

    1992-11-01

    We report that the field dependence of the magnetoabsorption (virgin curve) in all pristine granular CuO type (HTSC) superconductors follows a one-parameter expression. This ''universal'' result is combined with previous measurements on field and temperature dependences of microwave absorption in HTSC to demonstrate that a simple model based on resistively shunted Josehpson junctions is adequate to qualitatively account for almost all the observations on powders, pellets, thin films and single crystals. (orig.).

  7. Effect of assembled bar magnet configuration on levitation force of single domain GdBCO bulk superconductor%条状永磁体的组合形式及间距对单畴GdBCO超导体磁悬浮力的影响

    Institute of Scientific and Technical Information of China (English)

    马俊; 杨万民

    2011-01-01

    By measuring the levitation forces between a single domain GdBCO bulk superconductor and assembled bar magnets (ABM) in different configurations at liquid nitrogen temperature, the effects of ABM configurations on the levitation force of single domain GdBCO bulk superconductor are investigated. The maximum levitation force is obtained at the same vertical gap distance Z = 5 mm between the superconductor and the ABM for configurations with different lateral gap distance(D)between the magnets of the ABM. It is found that 1) for the ABM consisting of 3 bar magnet, the levitation force of the GdBCO bulk decreases from 22.8N to 9.7N with the D value increasing from 0 to 30 mm, when the magnetic pole N of the middle magnet is pointed upwards and the directions of magnetic pole N of two side magnets are pointed to the middle magnet in horizontal direction; the levitation force of the GdBCO bulk increases first from 9.2N to 13.9N and then decreases tol0.4 N with D value increasing from 0 to 30ram, if the magnetic pole N of the middle magnet is pointed upwards and the directions of magnetic pole N of two side magnets are pointed downwards;2)for the ABM consisting of 2 bar magnets, the levitation force of the GdBCO bulk decreases from l 1.2N to 1.2N with D value increasing from 0 to 30mm, when the directions of magnetic pole N of two side magnets are pointed upwards ; the levitation force of the GdBCO bulk increases first from 6. ON to 6.8N and then decreases to 2.9N with D value increasing from 0 to 30mm, if the directions of magnetic pole N of two magnets are anti-parallel in horizontal direction; 3) for the ABM consisting of only 1 bar magnets, D = 0, and the levitation force of the GdBCO bulk is about 9.5N. The results indicate that the magnet configuration and its detailed parameters of ABM are very important for improving the levitation force of a superconductor and helpful for designing and application based on the superconducting magnetic levitation

  8. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  9. 零场冷和场冷方式下高温超导块材最大悬浮力关系%RELATIONSHIP OF THE MAXIMUM LEVITATION FORCE OF BULK HIGH TEMPERATURE SUPERCONDUCTOR IN ZERO-FIELD-COOLING AND FIELD-COOLING CASE

    Institute of Scientific and Technical Information of China (English)

    邓自刚; 王家素; 郑珺; 刘伟; 林群煦; 马光同; 王为; 王素玉; 张娅

    2009-01-01

    文章通过对15块高温超导块材与永磁轨道相互作用的悬浮力测试,比较了零场冷和场冷两种冷却方式下块材的最大悬浮力关系.实验结果显示零场冷时悬浮力大的块材在场冷时悬浮力不一定就大,反之亦然,两者并无直接的对应关系.在实际的场冷应用中,推荐以场冷下的悬浮力数据为参考.%The paper compares the relationship of maximum levitation force of bulk high temperature superconductor in zero-field-cooling (ZFC) and field-cooling (FC) cases by the levitation measurement of 15 bulks interacting with permanent magnet guideway. The experimental results show that the maximum forces in the two cooling cases are not corresponding to each other. The bulk with large levitation force in ZFC case will not always obtain a large one in the FC case, and vice ver-sa. So, the levitation force data in FC case is recommended to the practical FC applications.

  10. Factors affecting characterization of bulk high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J.R. [Argonne National Lab., IL (United States). Energy Technology Div.

    1997-11-01

    Three major factors affect the characterization of bulk high-temperature superconductors in terms of their levitation properties during interaction with permanent magnets. First, the appropriate parameter for the permanent magnet is internal magnetization, not the value of the magnetic field measured at the magnet`s surface. Second, although levitation force grows with superconductor thickness and surface area, for a given permanent magnet size, comparison of levitation force between samples is meaningful when minimum values are assigned to the superconductor size parameters. Finally, the effect of force creep must be considered when time-averaging the force measurements. In addition to levitational force, the coefficient of friction of a levitated rotating permanent magnet may be used to characterize the superconductor.

  11. Homopolar dc motor and trapped flux brushless dc motor using high temperature superconductor materials

    Science.gov (United States)

    Crapo, Alan D.; Lloyd, Jerry D.

    1991-03-01

    Two motors have been designed and built for use with high-temperature superconductor (HTSC) materials. They are a homopolar dc motor that uses HTSC field windings and a brushless dc motor that uses bulk HTSC materials to trap flux in steel rotor poles. The HTSC field windings of the homopolar dc motor are designed to operate at 1000 A/sq cm in a 0.010-T field. In order to maximize torque in the homopolar dc motor, an iron magnetic circuit with small air gaps gives maximum flux for minimum Ampere turns in the field. A copper field winding version of the homopolar dc motor has been tested while waiting for 575 A turn HTSC coils. The trapped flux brushless dc motor has been built and is ready to test melt textured bulk HTSC rings that are currently being prepared. The stator of the trapped flux motor will impress a magnetic field in the steel rotor poles with warm HTSC bulk rings. The rings are then cooled to 77 K to trap the flux in the rotor. The motor can then operate as a brushless dc motor.

  12. Study of High-Temperature Superconductor Diplexers for Satellite Communications

    Institute of Scientific and Technical Information of China (English)

    LIU Juan-xiu; YANG Kai; LUO Zheng-xiang; BU Shi-rong; NING Jun-song; ZHANG Tian-liang

    2005-01-01

    The high-temperature superconductor (HTSC) resonator and diplexer are simulated by full-wave tools.A newly developed miniature HTSC diplexer is designed and fabricated on double sided YBa2Cu3O7 (YBCO) film (YBCO/LaAlO3/YBCO), the thickness of which is 400 nm for YBCO and 0.5 mm for the LaAlO3. The measured results show a good agreement with the simulation. The volume and mass of the diplexers are greatly reduced by miniaturized configuration.

  13. High temperature superconductors: A technological revolution

    Science.gov (United States)

    1990-01-01

    The objectives are to demonstrate the Meissner effect through magnetic levitation, to demonstrate one application of the Meissner effect, the low friction magnetic rotation bearing, and to demonstrate magnetic flux penetration and the Type II nature of ceramic superconductors via the stacking of the superconductor disks. Experimental equipment and procedures are described.

  14. Stability and quench development study in small HTSC magnet

    NARCIS (Netherlands)

    Ilyin, Yu. A.; Vysotski, V.S.; Kiss, T.; Takeo, M.; Okamoto, H.; Irie, F.

    2001-01-01

    Stability and quench development in a HTSC magnet have been experimentally studied with the transport current in the magnet being below or above the “thermal quench current” level. The magnet was tested at both cryocooler cooling and liquid nitrogen cooling, with and without background magnetic fiel

  15. Stability and quench development study in small HTSC magnet

    NARCIS (Netherlands)

    Ilyin, Y.; Vysotski, V.S.; Kiss, T.; Takeo, M.; Okamoto, H.; Irie, F.

    2001-01-01

    Stability and quench development in a HTSC magnet have been experimentally studied with the transport current in the magnet being below or above the “thermal quench current” level. The magnet was tested at both cryocooler cooling and liquid nitrogen cooling, with and without background magnetic

  16. Microstructure and Properties of High-Temperature Superconductors

    CERN Document Server

    Parinov, Ivan A

    2007-01-01

    The main features of high-temperature superconductors (HTSC) that define their properties are intrinsic brittleness of oxide cuprates, the layered anisotropic structure and the supershort coherence length. Taking into account these features, this treatise presents research into HTSC microstructure and properties, and also explores the possibilities of optimization of the preparation techniques and superconducting compositions. The "composition-technique-experiment-theory-model," employed here, assumes considerable HTSC defectiveness and structure heterogeneity and helps to draw a comprehensive picture of modern representations of the microstructure, strength and the related structure-sensitive properties of the materials considered. Special attention is devoted to the Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O families, which currently offer the most promising applications. Including a great number of illustrations and references, this monograph addresses students, post-graduate students and specialists, taking part in the ...

  17. Microstructure and Properties of High-Temperature Superconductors

    CERN Document Server

    Parinov, I A

    2012-01-01

    The main features of high-temperature superconductors (HTSC) that define their properties are intrinsic brittleness of oxide cuprates, the layered anisotropic structure and the supershort coherence length. Taking into account these features, this treatise presents research into HTSC microstructure and properties, and also explores the possibilities of optimization of the preparation techniques and superconducting compositions. The "composition-technique-experiment-theory-model," employed here, assumes considerable HTSC defectiveness and structure heterogeneity and helps to draw a comprehensive picture of modern representations of the microstructure, strength and the related structure-sensitive properties of the materials considered. Special attention is devoted to the Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O families, which currently offer the most promising applications. Including a great number of illustrations and references, this monograph addresses students, post-graduate students and specialists, taking part in the ...

  18. Comprehensive comparison of the levitation performance of bulk YBaCuO arrays above two different types of magnetic guideways

    Science.gov (United States)

    Deng, Zigang; Qian, Nan; Che, Tong; Jin, Liwei; Si, Shuaishuai; Zhang, Ya; Zheng, Jun

    2016-12-01

    The permanent magnet guideway (PMG) is an important part of high temperature superconducting (HTS) maglev systems. So far, two types of PMG, the normal PMG and Halbach-type PMG, are widely applied in present maglev transportation systems. In this paper, the levitation performance of high temperature superconductor bulks above the two PMGs was synthetically compared. Both static levitation performance and dynamic response characteristics were investigated. Benefiting from the reasonable magnetic field distribution, the Halbach-type PMG is able to gain larger levitation force, greater levitation force decay during the same relaxation time, bigger resonance frequency and dynamic stiffness for the bulk superconductor levitation unit compared with the normal PMG. Another finding is that the Halbach-type PMG is not sensitive to the levitation performance of the bulk levitation unit with different arrays. These results are helpful for the practical application of HTS maglev systems.

  19. Stable magnetic levitation with adjustable ratio of levitation force to restoring force using rings of zero-field cooled YBa{sub 2}Cu{sub 3}O{sub y} samples

    Energy Technology Data Exchange (ETDEWEB)

    Hennig, W.; Parks, D.; Weinstein, R.; Sawh, R.-P.; Ren, Y. [Beam Particles Dynamics Laboratories and TCSUH, University of Houston, Houston, TX 77204-5506 (United States)

    2000-10-01

    Both high levitation pressures (up to 22 N cm{sup -2}) and high restoring pressures (up to 11 N cm{sup -2}) are obtained for a superconducting trapped field magnet of 1.5 T levitating above the centre of a ring of zero-field cooled high-temperature superconductors. The ratio of levitation force to restoring force can be varied between 2.9 and 0.3 by changing the quality of the superconductors. This significantly improves the stability of levitation compared to commonly used single sample configurations. (author)

  20. Magnet levitation at your fingertips

    Science.gov (United States)

    Geim, A. K.; Simon, M. D.; Boamfa, M. I.; Heflinger, L. O.

    1999-07-01

    The stable levitation of magnets is forbidden by Earnshaw's theorem, which states that no stationary object made of magnets in a fixed configuration can be held in stable equilibrium by any combination of static magnetic or gravitational forces. Earnshaw's theorem can be viewed as a consequence of the Maxwell equations, which do not allow the magnitude of a magnetic field in a free space to possess a maximum, as required for stable equilibrium. Diamagnets (which respond to magnetic fields with mild repulsion) are known to flout the theorem, as their negative susceptibility results in the requirement of a minimum rather than a maximum in the field's magnitude. Nevertheless, levitation of a magnet without using superconductors is widely thought to be impossible. We find that the stable levitation of a magnet can be achieved using the feeble diamagnetism of materials that are normally perceived as being non-magnetic, so that even human fingers can keep a magnet hovering in mid-air without touching it.

  1. Lattice dynamical studies of HTSC materials

    Energy Technology Data Exchange (ETDEWEB)

    Pintschovius, L.; Pyka, N.; Reichardt, W. (Kernforschungszentrum Karlsruhe, INFP (Germany)); Rumiantsev, A.Yu.; Mitrofanov, N.L.; Ivanov, A.S. (I.V. Kurchatov-Inst. of Atomic Energy, Moscow (USSR)); Collin, G.; Bourges, P. (Lab. Leon Brillouin, CEA-CNRS, CEN Saclay, 91 - Gif-sur-Yvette (France))

    1991-12-01

    A survey is presented on recent progress in the understanding of the lattice dynamics in Nd{sub 2}CuO{sub 4}, (La,Sr){sub 2}CuO{sub 4} and YBa{sub 2}Cu{sub 3}O{sub 6/7}. Classical anharmonicity and twinning were found to be major complications for the interpretation of the data. The lattice vibrations of the cuprates can now largely be described within the framework of shell models for strongly ionic compounds. Phonon anomalies inferred from a comparison of doped and undoped compounds resemble those found in classical superconductors. (orig.).

  2. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  3. Interpretation of the method of images in estimating superconducting levitation

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Diaz, Jose Luis [Departamento de Ingenieria Mecanica, Universidad Carlos III de Madrid, Butarque 15, E28911 Leganes (Spain)], E-mail: jlperez@ing.uc3m.es; Garcia-Prada, Juan Carlos [Departamento de Ingenieria Mecanica, Universidad Carlos III de Madrid, Butarque 15, E28911 Leganes (Spain)

    2007-12-01

    Among different papers devoted to superconducting levitation of a permanent magnet over a superconductor using the method of images, there is a discrepancy of a factor of two when estimating the lift force. This is not a minor matter but an interesting fundamental question that contributes to understanding the physical phenomena of 'imaging' on a superconductor surface. We solve it, make clear the physical behavior underlying it, and suggest the reinterpretation of some previous experiments.

  4. Interpretation of the method of images in estimating superconducting levitation

    Science.gov (United States)

    Perez-Diaz, Jose Luis; Garcia-Prada, Juan Carlos

    2007-12-01

    Among different papers devoted to superconducting levitation of a permanent magnet over a superconductor using the method of images, there is a discrepancy of a factor of two when estimating the lift force. This is not a minor matter but an interesting fundamental question that contributes to understanding the physical phenomena of "imaging" on a superconductor surface. We solve it, make clear the physical behavior underlying it, and suggest the reinterpretation of some previous experiments.

  5. The Wonders of Levitation

    Science.gov (United States)

    French, M. M. J.

    2010-01-01

    I discuss some interesting classroom demonstrations of diamagnetism and how this effect can produce levitation. The possibilities for hands-on demonstrations of diamagnetic and superconducting levitation are discussed. To conclude I discuss some practical uses for levitation in daily life. (Contains 6 figures.)

  6. Optimization of a superconducting linear levitation system using a soft ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Agramunt-Puig, Sebastia; Del-Valle, Nuria; Navau, Carles, E-mail: carles.navau@uab.cat; Sanchez, Alvaro

    2013-04-15

    Highlights: ► Study of the levitation of a superconducting bar over different magnetic guideways. ► A soft ferromagnet within permanent magnets improves levitation stability. ► We study the best geometry for large levitation force with full stability. -- Abstract: The use of guideways that combine permanent magnets and soft ferromagnetic materials is a common practice in magnetic levitation transport systems (maglevs) with bulk high-temperature superconductors. Theoretical tools to simulate in a realistic way both the behavior of all elements (permanent magnets, soft ferromagnet and superconductor) and their mutual effects are helpful to optimize the designs of real systems. Here we present a systematic study of the levitation of a maglev with translational symmetry consisting of a superconducting bar and a guideway with two identic permanent magnets and a soft ferromagnetic material between them. The system is simulated with a numerical model based on the energy minimization method that allows to analyze the mutual interaction of the superconductor, assumed to be in the critical state, and a soft ferromagnet with infinite susceptibility. Results indicate that introducing a soft ferromagnet within the permanent magnets not only increases the levitation force but also improves the stability. Besides, an estimation of the relative sizes and shapes of the soft ferromagnet, permanent magnets and the superconductor in order to obtain large levitation force with full stability is provided.

  7. The effects of magnetization process on levitation characteristics of a superconducting bulk magnet

    Science.gov (United States)

    Jiang, J.; Gong, Y. M.; Li, Y. H.; Liang, G.; Yang, X. S.; Cheng, C. H.; Zhao, Y.

    2015-09-01

    In this paper, a bulk YBCO superconductor was magnetized in a chosen magnetic field generated from a superconducting magnet (SM) after field cooling process. The effects of magnetization process with different magnetization intensities on levitation forces and relaxation characteristics were investigated. From the results, it can be confirmed that the superconducting bulk magnet (SBM) magnetized with proper magnetization intensity was beneficial to improve the levitation characteristics of the magnetic levitation system. Nevertheless, when the magnetization intensity exceeded 0.85T, the levitation forces and the relaxation characteristics of the SBM attained saturation.

  8. 辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响%The effects of magnetization methods with additional permanent magnet on the magnetic field distribution and levitation force of single domain GdBCO bulk superconductor

    Institute of Scientific and Technical Information of China (English)

    马俊; 杨万民; 李佳伟; 王妙; 陈森林

    2012-01-01

    通过对永磁体辅助下单畴GdBCO超导体和方形永磁体在液氮温度、零场冷、轴对称情况下磁悬浮力的测量,研究了三种不同组态中辅助永磁体的引入方式对单畴GdBCO超导块材磁场分布及其磁悬浮力的影响.实验结果表明,如果处在超导体上方的测量用方形永磁体N极向下,则在轴对称情况下,当方形辅助永磁体N极向上与超导体下表面贴在一起时,超导体的最大磁悬浮力从没有引入辅助永磁体磁化的14.3 N增加到31.8 N,提高到222%;当方形辅助永磁体放置在超导体上表面、N极垂直向上且场冷后去掉辅助永磁体时,超导体的最大磁悬浮力从没有引入辅助永磁体磁化的14.3 N增加到21.6N,增加到151%;当方形辅助永磁体放置在超导体上表面、N极垂直向下且场冷后去掉方形辅助永磁体时,超导体的最大磁悬浮力从没有引入辅助永磁体磁化的14.3 N减小到8.6 N,减小为无辅助永磁体时的60%.这些结果说明,只有通过科学合理地设计超导体和永磁体的组合方式,才能获得较高的磁场强度,有效地提高超导体的磁悬浮力特性,该结果对促进超导体的应用具有重要的指导意义.%The effects of magnetization methods with additional permanent magnet on the magnetic field distribution and the levitation force of single domain GdBCO bulk superconductor are investigated with a cubic permanent magnet in their coaxial configuration in zero field cooled state at liquid nitrogen temperature in three different ways. It is found that when the N pole of the cubic permanent magnet, for the levitation force measurement, is placed above the GdBCO bulk superconductor and in the downward direction, the maximal levitation force can be improved to 31.8 N, and that when the N pole of the additional cubic permanent magnet points to upward and sticks to the bottom of the GdBCO bulk, the maximal levitation force is increased up to about 222% of the

  9. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  10. Relaxation time of the Cooper pairs near Tc in cuprate superconductors

    Science.gov (United States)

    Ramallo, M. V.; Carballeira, C.; Viña, J.; Veira, J. A.; Mishonov, T.; Pavuna, D.; Vidal, F.

    1999-10-01

    It is first shown that the thermal fluctuation effects on the transport and on the thermodynamic observables above the superconducting transition may provide, when they are analyzed simultaneously and consistently, a powerful tool to access the relaxation time, τ0, of the Cooper pairs with wave vector k = 0 in high-temperature cuprate superconductors (HTSC). Then, we apply this procedure to optimally doped YBa2Cu3O7 - δ (Y-123) crystals. It is found that in this HTSC τ0 follows, within 20% accuracy, the BCS temperature behaviour and amplitude given by τ0 = πhbar/[8kB(T - Tc0)].

  11. Superconductors in plasmonics and metamaterials: some experimental data

    Science.gov (United States)

    Gombos, M.; Romano, S.; Rendina, I.; Ciancio, R.; Carapella, G.; Mocella, V.

    2013-05-01

    High frequencies (visible and near infrared) applications of metamaterials and plasmonic structures are strongly limited by dissipative losses in structures, due to poor conductivity of most used metals in this frequency range. The use of high temperature superconductors (HTSC) is a possible approach to this problem, being HTSC plasmonic materials at nonzero temperature. Negative dielectic constant and variety of charge carriers (electrons or holes) are further very attractive features for plasmonic applications. Characterization of the high frequency response of these materials is then necessary in order to correctly understand the optical parameters of HTSC. We report on FTIR and ellipsometry measurements on NdBa2Cu3O7-δ (Nd123) and the ruthenocuprate superconductor GdSr2RuCu2O8-δ (Gd1212) in optical and near infrared regime. Among YBCO-like cuprate superconductors, Nd123 presents the highest Tc (96K), and the most interesting magnetic response properties. Even more interesting, in view of use for metamaterial, is Gd1212, whose main characteristic is the coexistence, in the same cell, of superconductivity and magnetic order below Tc: Ru ions intrinsic magnetic moments order themselves below 135K, whereas superconductivity onset is at about 40K, depending on fabrication details. We performed measurements on Melt-Textured bulk samples, which present the best superconducting properties. Results confirm the promising feature of the considered materials; further analyses, also on powders and films, are in progress.

  12. Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Zheng, Botian; Qian, Nan; Li, Haitao; Li, Jipeng; Deng, Zigang

    2017-06-01

    In order to clarify the correlations between magnetic flux and levitation force of the high-temperature superconducting (HTS) bulk, we measured the magnetic flux density on bottom and top surfaces of a bulk superconductor while vertically moving above a permanent magnet guideway (PMG). The levitation force of the bulk superconductor was measured simultaneously. In this study, the HTS bulk was moved down and up for three times between field-cooling position and working position above the PMG, followed by a relaxation measurement of 300 s at the minimum height position. During the whole processes, the magnetic flux density and levitation force of the bulk superconductor were recorded and collected by a multipoint magnetic field measurement platform and a self-developed maglev measurement system, respectively. The magnetic flux density on the bottom surface reflected the induced field in the superconductor bulk, while on the top, it reveals the penetrated magnetic flux. The results show that the magnetic flux density and levitation force of the bulk superconductor are in direct correlation from the viewpoint of inner supercurrent. In general, this work is instructive for understanding the connection of the magnetic flux density, the inner current density and the levitation behavior of HTS bulk employed in a maglev system. Meanwhile, this magnetic flux density measurement method has enriched present experimental evaluation methods of maglev system.

  13. Argument for E~j relation of hightemperature superconductors

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In high temperature superconductors (HTSC), when magnetic relaxation approaches the equilibrium state and the superconductor is applied with current, the E~j relation is calculated by considering both forward and backward hopping of thermally activated flux (where backward hopping means hopping from the barriers with low energy to the ones with high energy). It is pointed out that the lnE~lnj curve shows positive curvature. And the results are compared with other models. The discussion on the topic that whether ρ approaches zero as j →0 is carried out.

  14. Argument for E - j relation of high temperature superconductors

    Institute of Scientific and Technical Information of China (English)

    金灏; 陈林; 许小军; 张裕恒

    2000-01-01

    In high temperature superconductors (HTSC), when magnetic relaxation approaches the equilibrium state and the superconductor is applied with current, the E - j relation is calculated by considering both forward and backward hopping of thermally activated flux (where backward hopping means hopping from the barriers with low energy to the ones with high energy). It is pointed out that the ln E- Inj curve shows positive curvature. And the results are compared with other models. The discussion on the topic that whether p approaches zero as j → 0 is carried out.

  15. Possible field-tuned superconductor-insulator transition in high-Tc superconductors: implications for pairing at high magnetic fields.

    Science.gov (United States)

    Steiner, M A; Boebinger, G; Kapitulnik, A

    2005-03-18

    The behavior of some high temperature superconductors (HTSC), such as La(2-x)Sr(x)CuO(4) and Bi(2)Sr(2-x)La(x)CuO(6 + delta), at very high magnetic fields, is similar to that of thin films of amorphous InOx near the magnetic-field-tuned superconductor-insulator transition. Analyzing the InOx data at high fields in terms of persisting local pairing amplitude, we argue by analogy that the local pairing amplitude also persists well into the dissipative state of the HTSCs, the regime commonly denoted as the "normal state" in very high magnetic field experiments.

  16. Effect of permanent-magnet irregularities in levitation force measurements.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1999-10-14

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a nonnegligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analog of Earnshaw's theorem, in which at the field-cooling position the vertical stiffness is equal to the sum of the horizontal stiffnesses, independent of angular distribution of magnetic moments within the PM.

  17. Effect of permanent-magnet irregularities in levitation force measurements

    Science.gov (United States)

    Hull, John R.

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM.

  18. Effect of permanent-magnet irregularities in levitation force measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2000-06-01

    In the measurement of the levitation force between a vertically magnetized permanent magnet (PM) and a bulk high-temperature superconductor (HTS), PM domains with horizontal components of magnetization are shown to produce a non-negligible contribution to the levitation force in most systems. Such domains are typically found in all PMs, even in those that exhibit zero net horizontal magnetic moment. Extension of this analysis leads to an HTS analogue of Earnshaw's theorem, in which the vertical stiffness is equal to the sum of the horizontal stiffness at the field-cooling position, independent of the angular distribution of magnetic moments within the PM. (author)

  19. Leidenfrost levitation: beyond droplets.

    Science.gov (United States)

    Hashmi, Ali; Xu, Yuhao; Coder, Benjamin; Osborne, Paul A; Spafford, Jonathon; Michael, Grant E; Yu, Gan; Xu, Jie

    2012-01-01

    Friction is a major inhibitor in almost every mechanical system. Enlightened by the Leidenfrost effect - a droplet can be levitated by its own vapor layer on a sufficiently hot surface - we demonstrate for the first time that a small cart can also be levitated by Leidenfrost vapor. The levitated cart can carry certain amount of load and move frictionlessly over the hot surface. The maximum load that the cart can carry is experimentally tested over a range of surface temperatures. We show that the levitated cart can be propelled not only by gravitational force over a slanted flat surface, but also self-propelled over a ratchet shaped horizontal surface. In the end, we experimentally tested water consumption rate for sustaining the levitated cart, and compared the results to theoretical calculations. If perfected, this frictionless Leidenfrost cart could be used in numerous engineering applications where relative motion exists between surfaces.

  20. An Ultrasonic Levitator

    Directory of Open Access Journals (Sweden)

    R.R. Boullosa

    2013-12-01

    Full Text Available We report the development of an ultrasonic levitation system. Liquid drops or solid samples of diameter less than one half wavelength of the excitation frequency are levitated without contact just below the pressure nodes. The piezo transducer is excited by an ultrasonic signal of around 29 kHz through a voltage amplifier. The choice of the number of half-waves of the acoustic field in the space between the reflector and radiator is made by means of a micrometer. A lamp, an amplifier and a frequency generator are integrated to the levitator. The diameters of the droplets of liquid that can levitate are of the order of tenths of mm to 3 or 4 mm, depending on the liquid properties (density, surface tension, etc.. Solid objects can also be levitated. The maximum voltage of the system is 20 Vrms.

  1. High-temperature superconductors, as seen through the eyes of neutrons

    Directory of Open Access Journals (Sweden)

    Z. Yamani

    2006-09-01

    Full Text Available   Neutron scattering is proved to be a vital probe in unveiling the magnetic properties of high temperature superconductors (HTSC. Detailed information about the energy and momentum dependence of the magnetic dynamics of HTSC have been obtained directly by this technique. Over the past decade by improving the crystal growth methods, large and high quality single crystals of HTSC, which are essential for a neutron scattering experiment, have become available. The results of neutron scattering measurements on such crystals have considerably enhanced our understanding of the magnetism in HTSC both in the superconducting (SC and normal states. In this review, the neutron scattering results on two main HTSC families, La2-xSrxCuO4 (LSCOx and YBa2CuO3O6+x (YBCO6+x, are considered with an emphasis on the most prominent properties of these materials that are now widely accepted. These include the presence of strong antiferromagnetic (AF fluctuations even in optimally doped region of the phase diagram, neutron resonance peak that scales with SC transition temperature, Tc, incommensurate magnetic fluctuations (stripes, and a pseudogap in the normal state of underdoped materials.

  2. Grain misorientation and properties of HTSC thin films

    Energy Technology Data Exchange (ETDEWEB)

    Linker, G. (Kernforschungszentrum Karlsruhe, INFP und ITP (Germany)); Brecht, E. (Kernforschungszentrum Karlsruhe, INFP und ITP (Germany)); Geerk, J. (Kernforschungszentrum Karlsruhe, INFP und ITP (Germany)); Henn, R. (Kernforschungszentrum Karlsruhe, INFP und ITP (Germany)); Meyer, O. (Kernforschungszentrum Karlsruhe, INFP und ITP (Germany)); Ratzel, F. (Kernforschungszentrum Karlsruhe, INFP und ITP (Germany)); Reiner, J. (Kernforschungszentrum Karlsruhe, INFP und ITP (Germany)); Remmel, J. (Kernforschungszentrum Karlsruhe, INFP und ITP (Germany)); Smithey, R. (Kernforschungszentrum Karlsruhe, INFP und ITP (Germany)); Strikovsky, M. (Kernforschungszentrum Karlsruhe, INFP und ITP (Germany))

    1993-05-10

    The transport properties of high-temperature surconductor (HTSC) thin films are closely related to the crystallographic growth quality. Three examples are presented for such relationships. In YBaCuO films on SrTiO[sub 3] the critical current density decreases exponentially with increasing mosaic spread. For BiSrCaCuO-films (2212-phase) it is shown that the superior inplane growth quality on SrTiO[sub 3] results in higher j[sub c]-values. (7.10[sup 5] A/cm[sup 2]) as compared to those on MgO (6.10[sup 4] A/cm[sup 2]). In films of different growth orientation (e.g. a-axis films) the specially needed deposition conditions also influence the properties. (orig.)

  3. The role of oxygen in quinternary superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, D.R.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The oxygen composition of the new generation of high temperature superconductors (HTSC) has been found to play a crucial role in determining the superconductivity of these materials. However, measurement of the oxygen stoichiometry in such samples has proven difficult due to the small scattering cross section of oxygen, a light element, which has caused the oxygen scattering signal to be overwhelmed by the far larger signals generated off the heavier elements present in the HTSC samples. It is for this reason that previous ion beam analysis of oxide crystals has often either made no attempt to determine the oxygen content or has used O({alpha},{alpha})O resonances such as that at {approx} 3.05 MeV to probe the crystal. This work continues tests of a new technique for probing oxygen which overcomes the problem of an insignificant O BS signal by exploiting the large nuclear resonance found to occur in the O(p,p)O cross-section near an energy of 3.5 MeV in order to produce a significant oxygen edge in the H{sup +} BS spectrum obtained for the HTSC sample. The use of a H{sup +} beam is preferable to a He{sup 2+} beam for such work due to its enhanced sensitivity to light elements. The quinternary superconductor used for this investigation was a good quality pure Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} (BISCO, 2212) crystal. The size of this crystal was 5x5xl mm{sup 3} with the [001] face perpendicular to the surface. Measurements were performed using the University of Melbourne nuclear microprobe. The sample was mounted on an aluminium target holder using a carbon base adhesive which provided good electrical contact and it was oriented inside the target chamber by means of a four axis precision eucentric goniometer. 6 refs., 3 figs.

  4. Electric Levitation Using Epsilon-Near-Zero Metamaterials

    CERN Document Server

    Fortuño, Francisco J Rodríguez; Engheta, Nader

    2013-01-01

    Levitation of objects with action at a distance has always been intriguing to humans. Several ways to achieve this, such as aerodynamic, acoustic, or electromagnetic methods, including radiation pressure, stable potential wells, and quantum Casimir-Lifshitz forces, exist. A fascinating approach for levitation is that of magnets over superconductors based on the Meissner effect -the expulsion of the magnetic field by a superconductor. With the advent of metamaterials -designed structures with electromagnetic properties that may not be found in nature- we ask whether a material may be conceived exhibiting similar field expulsion, but involving the electric field. We show how a special subcategory of metamaterials, called epsilon-near-zero materials, exhibits such electric classic analog to the Meissner effect, exerting a repulsion on nearby sources. Repulsive forces using anisotropic and chiral metamaterials have been investigated, but our proposal uses a different mechanism based on field expulsion, and is ver...

  5. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  6. Near-oscillatory relaxation behavior of levitation force in infiltration and growth processed bulk YBCO/Ag superconducting composites

    Energy Technology Data Exchange (ETDEWEB)

    Parthasarathy, R.; Lakshmi, M.M. [School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Seshubai, V., E-mail: drseshubai@yahoo.co.in [School of Physics, University of Hyderabad, Hyderabad 500 046 (India)

    2011-07-15

    Magnetic relaxation of superconductor using levitation force measurements. Observed oscillatory behavior of relaxation rate. Bistable equilibrium theory and model proposed for the current structure in the superconductor. Experimental verification of magnetization of permanent magnet by the superconductor. Time relaxation behavior of levitation force has been studied in IGP bulk YBCO/Ag superconductor using levitation force measurements as these measurements throw light on the magnetic relaxation in superconductors and the underlying vortex dynamics, pinning mechanisms and the nature of pinning forces. The measurements have revealed a hitherto unknown near-oscillatory relaxation of the levitation force with varying magnetic field. This kind of behavior is found to be more pronounced at smaller gap distances between the permanent magnet and the superconductor. A switch-type polarity bistable equilibrium model for the supercurrent structure has been proposed based on the understanding that even the permanent magnet gets magnetized in the presence of the superconductor, which has also been verified and reported here. This model satisfactorily explains the observed oscillatory behavior of relaxation rates.

  7. Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films

    Science.gov (United States)

    Schoenhuber, P.; Moon, F. C.

    1995-01-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation

  8. Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films

    Science.gov (United States)

    Schoenhuber, P.; Moon, F. C.

    1995-04-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation

  9. Magnetically levitated space elevator to low-earth orbit

    Science.gov (United States)

    Hull, John R.; Mulcahy, Thomas M.; Niemann, Ralph C.

    2002-05-01

    The properties of currently available NbTi superconductors and carbon-fiber structural materials enable the possibility of constructing a magnetically levitated space elevator from the earth's surface up to an altitude of ≈200 km. The magnetic part of the elevator consists of a long loop of current-carrying NbTi, composed of one length that is attached to the earth's surface in an east-west direction and a levitated-arch portion. The critical current density of NbTi is sufficiently high that these conductors will stably levitate in the earth's magnetic field. The 200-km maximum height of the levitated arch is limited by the allowable stresses of the structural material. The loop is cryogenically cooled with helium, and the system utilizes intermediate pumping and cooling stations along both the ground and the levitated portion of the loop, similar to other large terrestrial cryogenic systems. A preliminary economic analysis estimates the cost to orbit at <30/kg when amortized over ten years with a large volume of traffic; estimated construction cost is well within the ability of many industrial nations.

  10. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  11. Magnetic levitation of single cells

    National Research Council Canada - National Science Library

    Naside Gozde Durmus; H. Cumhur Tekin; Sinan Guven; Kaushik Sridhar; Ahu Arslan Yildiz; Gizem Calibasi; Ionita Ghiran; Ronald W. Davis; Lars M. Steinmetz; Utkan Demirci

    2015-01-01

    .... Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal...

  12. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

    Science.gov (United States)

    Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su

    2016-08-01

    The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

  13. Observation of the Field, Current and Force Distributions in an Optimized Superconducting Levitation with Translational Symmetry

    Science.gov (United States)

    Ye, Chang-Qing; Ma, Guang-Tong; Liu, Kun; Wang, Jia-Su

    2017-01-01

    The superconducting levitation realized by immersing the high-temperature superconductors (HTSs) into nonuniform magnetic field is deemed promising in a wide range of industrial applications such as maglev transportation and kinetic energy storage. Using a well-established electromagnetic model to mathematically describe the HTS, we have developed an efficient scheme that is capable of intelligently and globally optimizing the permanent magnet guideway (PMG) with single or multiple HTSs levitated above for the maglev transportation applications. With maximizing the levitation force as the principal objective, we optimized the dimensions of a Halbach-derived PMG to observe how the field, current and force distribute inside the HTSs when the optimized situation is achieved. Using a pristine PMG as a reference, we have analyzed the critical issues for enhancing the levitation force through comparing the field, current and force distributions between the optimized and pristine PMGs. It was also found that the optimized dimensions of the PMG are highly dependent upon the levitated HTS. Moreover, the guidance force is not always contradictory to the levitation force and may also be enhanced when the levitation force is prescribed to be the principle objective, depending on the configuration of levitation system and lateral displacement.

  14. Potential impact of high temperature superconductors on MAGLEV transportation

    Science.gov (United States)

    Hull, J. R.

    1992-02-01

    This report describes the potential impact that high-temperature superconductors (HTS's) may have on transportation by magnetically levitated vehicles. It is not intended as a planning document, but rather as an overview of potential HTS applications to magnetic-levitation (maglev) transportation. The present maglev program in the United States is summarized, and the present status of development of HTS's is described. Areas identified for possible impact on maglev technology are: (1) liquid-nitrogen-cooled levitation magnets; (2) magnetic-field shielding of the passenger compartment; (3) superconducting magnetic energy storage for wayside power; (4) superconducting bearings for flywheel energy storage for wayside power; (5) downleads to continuously powered liquid-helium-cooled levitation magnets; and (6) liquid-hydrogen-cooled levitation magnets and linear motor propulsion windings. Major technical issues that remain to be resolved for the use of HTS's in maglev applications include thermal magnetic stability, mechanical properties, and critical current density at liquid-nitrogen temperatures.

  15. Potential impact of high temperature superconductors on maglev transportation

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J.R.

    1992-02-01

    This report describes the potential impact that high-temperature superconductors (HTSs) may have on transportation by magnetically levitated vehicles. It is not intended as a planning document, but rather as an overview of potential HTS applications to magnetic-levitation (maglev) transportation. The present maglev program in the United States is summarized, and the present status of development of HTSs is described. Areas identified for possible impact on maglev technology are (1) liquid-nitrogen-cooled levitation magnets, (2) magnetic-field shielding of the passenger compartment, (3) superconducting magnetic energy storage for wayside power, (4) superconducting bearings for flywheel energy storage for wayside power, (5) downleads to continuously powered liquid-helium-cooled levitation magnets, and (6) liquid-hydrogen-cooled levitation magnets and linear motor propulsion windings. Major technical issues that remain to be resolved for the use of HTSs in maglev applications include thermal magnetic stability, mechanical properties, and critical current density at liquid-nitrogen temperatures.

  16. Oxide perovskite crystals for HTSC film substrates microwave applications

    Science.gov (United States)

    Bhalla, A. S.; Guo, Ruyan

    1995-01-01

    The research focused upon generating new substrate materials for the deposition of superconducting yttrium barium cuprate (YBCO) has yielded several new hosts in complex perovskites, modified perovskites, and other structure families. New substrate candidates such as Sr(Al(1/2)Ta(1/2))O3 and Sr(Al(1/2)Nb(1/2))O3, Ba(Mg(1/3)Ta(2/3))O3 in complex oxide perovskite structure family and their solid solutions with ternary perovskite LaAlO3 and NdGaO3 are reported. Conventional ceramic processing techniques were used to fabricate dense ceramic samples. A laser heated molten zone growth system was utilized for the test-growth of these candidate materials in single crystal fiber form to determine crystallographic structure, melting point, thermal, and dielectric properties as well as to make positive identification of twin free systems. Some of those candidate materials present an excellent combination of properties suitable for microwave HTSC substrate applications.

  17. Angular Dependence of Lateral and Levitation Forces in Asymmetric Small Magnet/Superconducting Systems

    Institute of Scientific and Technical Information of China (English)

    H. M. Al-Khateeb; M. K. Alqadi; F. Y. Alzoubi; N. Y. Ayoub

    2007-01-01

    The dipole-dipole interaction model is used to calculate the angular dependence of lateral and levitation forces on a small permanent magnet and a cylindrical superconductor in the Meissner state lying laterally offthe symmetric axis of the cylinder. Under the assumption that the lateral displacement of the magnet is small compared with the physical dimensions of the system, we obtain analytical expressions for the lateral and levitation forces as functions of geometrical parameters of the superconductor as well as the height, the lateral displacement and the orientation of magnetic moment of the magnet. The effect of thickness and radius of the superconductor on the levitation force is similar to that for a symmetric magnet/superconducting cylinder system, but within the range of lateral displacement. The splitting in the levitation force increases with the increasing angle of orientation of the magnetic moment of the magnet. For a given lateral displacement of the magnet, the lateral force vanishes when the magnetic moment is perpendicular to the surface of the superconductor and has a maximum value when the moment is parallel to the surface. For a given orientation of the magnetic moment, the lateral force has a linear relationship with the lateral displacement. The stability of the magnet above the superconducting cylinder is discussed in detail.

  18. The effect of oxide Bi2O3 doping on the levitation force of single domain YBCO bulk superconductors%Bi2O3氧化物掺杂对单畴YBCO超导块材磁悬浮力的影响

    Institute of Scientific and Technical Information of China (English)

    王妙; 杨万民; 马俊; 唐艳妮; 张晓菊; 王高峰

    2012-01-01

    In this paper, single domain YBCO superconductors, with compositions of Bi2O3:Y5BaCuO5=x:(1 -x), (x=0.1; 0.3; 0,5; 0.7; 0.9; 2, units: wt%), have been successfully fabricated by the top-seeding infiltration and growth process (TS1G). The effect of the different doping amounts of Bi2O3 particles on the growth morphology, the magnetic levitation force properties and microstruclure of single domain YBCO bulk superconductors has been investigated. The results show that the nanoscale Y2Ba4CuBiOx(YBi2411) particles which were formatted by oxide Bi2Oi doping can work as effective flux pinning centers to improve the properties of YBCO bulk samples. It is found that the levitation force is increasing from 7 N to 25 N with the increasing of Bi2O3 addition from 0.1wt% to 0.7wt%, and decreasing from 25 N to 6 N with the increasing of Bi2O3 addition from 0.7wt% to 2wt%. The results are very important for further study in flux pinning of oxide Bi2O3 doping and improvement in the properties of YBCO bulk superconductors.%采用顶部籽晶熔渗工艺(TSIG)制备出了配比为Bi2O3∶Y2BaCuO5=x∶(1-x)的系列单畴YBCO超导块材(其中x=0.1,0.3,0.5,0.7,0.9,2,单位为wt%),并且研究了不同比例的氧化物Bi2O3掺杂对样品的生长形貌、磁悬浮力以及其微观结构的影响.实验结果表明了,Bi2O3粒子的掺杂在样品中生成Y2Ba4CuBiOx(YBi2411)纳米粒子从而可以有效地提高样品的磁悬浮性能.当Bi2O3粒子掺杂量x从0.1wt%(质量分数,下同)增加到0.7wt%时,样品的磁悬浮力从7N增加到25N;当其掺杂量从0.7wt%增加到2wt%时,样品的磁悬浮力从25N降低到6N.该实验结果对于我们进一步研究氧化物掺杂对磁通钉扎作用的影响以及提高YBCO超导块材的性能有着重要的影响.

  19. A Superconducting Levitation Transport Model System for Dynamical and Didactical Studies

    Science.gov (United States)

    Rosenzweig, St.; Reich, E.; Neu, V.; Berger, D.; Peukert, K.; Holzapfel, B.; Schultz, L.; Pospiech, G.

    Superconducting levitation transport systems might become very attractive in the near future due to various reasons. The realisation of contactless systems allows e.g. extended maintenance-free operation with high efficiency since such a system only needs energy for cooling and propulsion. We established a small superconducting levitation transport model system called "SupraTrans Min" consisting of permanent magnetic rails and a levitated vehicle including four YBCO-bulk samples in a cryostat. The rail system consists of an oval shaped loop (2.90 m x 1.44 m), which was build up from individual linear and curved track modules. Inside the vehicle position variations of the superconductors are possible. By means of velocity, acceleration and temperature measurements different dynamical aspects of our complex levitation system can be investigated. We also show the broad applicability of the experimental setup for didactical studies in physics.

  20. Relaxation transition due to different cooling processes in a superconducting levitation system

    Science.gov (United States)

    Zhou, You-He; Zhang, Xing-Yi; Zhou, Jun

    2008-06-01

    We present an experimental study of relaxation of vertical and horizontal force components in a high-temperature superconducting levitation system, with different initial cooling process after fixing the levitated body in an expected position statically. In the experiment, the bulk YBaCuO cylinder superconductor and the permanent magnet disk are employed. For a selected levitation height (LH) and a lateral displacement (LD) of the system, the experimental results show that the relaxations of the vertical and horizontal forces are strongly dependent on the initial cooling height (CH). With CH decreasing, the transition of the lateral force from repulsion to attraction is found as well as the changing characteristics with time from decrease to increase. Additionally, when LH is fixed at the CH, the transition phenomenon is also observed in the levitation force behavior and their relaxation under different LDs.

  1. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  2. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  3. A new type of superconducting journal bearing using high Tc superconductors

    Science.gov (United States)

    Komori, M.; Kitamura, T.

    The characteristics between a set of alternating-polarity ring magnets and a superconductor are studied. The magnets have strong repulsion and attraction forces with the superconductor owing to the pinning effect. Using these characteristics a prototype of a superconducting journal bearing with a magnet shaft supported by a cylindrical housing has been developed. The superconductors (type-II superconductors) and a magnet shaft as the rotor of alternating-polarity ring magnets of the same size. The magnet shaft can be levitated in the center of the housing without contact. Levitation and drag forces of the superconducting journal bearing are investigated. The levitation force shows circular hysteresis loops depending on the displacement because of the flux pinning effect. Owing to the simple and useful structure of the superconducting journal bearing it is applicable to practical devices in the industrial field.

  4. Levitation force from high-Tc superconducting thin-film disks

    Science.gov (United States)

    Riise, Anjali B.; Johansen, T. H.; Bratsberg, H.; Koblischka, M. R.; Shen, Y. Q.

    1999-10-01

    Experimental studies and theoretical modeling of the levitation force between a permanent magnet and superconducting thin film are reported. Measurements of the force Fz and magnetic stiffness κz=\\|δFz/δz\\| as functions of the magnet-superconductor separation z, show several features contrasting all previous levitation force data for bulk superconductors. In particular, the Fz(z) curves measured for decreasing and increasing separation form hysteresis loops of nearly symmetrical shape, also displaying a peak in the repulsive force branch. Recent theories for flux penetration in thin type-II superconductors in transverse magnetic fields are invoked to explain the results, which were obtained using a cylindrical Nd-Fe-B magnet and a YBa2Cu3O7-δ circular disk made by laser ablation. We derive explicit formulas for both Fz and κz, reproducing quantitatively all the features seen experimentally.

  5. High temperature superconductors for magnetic suspension applications

    Science.gov (United States)

    Mcmichael, C. K.; Cooley, R. S.; Chen, Q. Y.; Ma, K. B.; Lamb, M. A.; Meng, R. L.; Chu, C. W.; Chu, W. K.

    1994-01-01

    High temperature superconductors (HTS) hold the promise for applications in magnetic levitation bearings, vibration damping, and torque coupling. Traditional magnetic suspension systems require active feedback and vibration controls in which power consumption and low frequency vibration are among the major engineering concerns. HTS materials have been demonstrated to be an enabling approach towards such problems due to their flux trapping properties. In our laboratory at TCSUH, we have been conducting a series of experiments to explore various mechanical applications using HTS. We have constructed a 30 lb. model flywheel levitated by a hybrid superconducting magnetic bearing (HSMB). We are also developing a levitated and vibration-dampled platform for high precision instrumentation. These applications would be ideal for space usages where ambient temperature is adequate for HTS to operate properly under greatly reduced cryogenic requirements. We will give a general overview of these potential applications and discuss the operating principles of the HTS devices we have developed.

  6. Spray-Deposited Superconductor/Polymer Coatings

    Science.gov (United States)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  7. Levitation performance of YBCO bulk in different applied magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)], E-mail: asclab@asclab.cn; Wang, S.Y.; Jing, H.; Zheng, J.; Jiang, M.; Wang, J.S. [Applied Superconductivity Laboratory, Southwest Jiaotong University, Chengdu 610031 (China)

    2008-07-01

    The maglev performance of bulk high-T{sub c} superconductor (HTS) is investigated above three different types of permanent magnet guideways (PMGs). The main difference among these PMGs is the method used to concentrate the magnetic flux. The experimental results indicate that the levitation force depends only in part on the peak value of the magnetic field. The variation of the vertical component of the magnetic field (B{sub z}), and the structure of the magnetic field are also responsible for the levitation force. These results imply that the permanent magnet with high coercive force is better at concentrating flux th an iron. The conclusions contribute in a very helpful way to the design and optimization of PMGs for HTS maglev systems.

  8. Sound Waves Levitate Substrates

    Science.gov (United States)

    Lee, M. C.; Wang, T. G.

    1982-01-01

    System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.

  9. Quantum levitation using metamaterials

    Science.gov (United States)

    Pappakrishnan, Venkatesh K.

    The emergence of an attractive vacuum force (Casimir force) between two purely dielectric materials can lead to an increase in the friction and the stiction effects in nanoscale devices, resulting in degradation or decreased performance. Thus, it is of high practical importance that the conditions for the reversal of the Casimir force from attractive to repulsive are identified. Although the repulsive Casimir force has been considered for high dielectric materials as an intermediate (between the plates) medium, so far no realistic system has been proposed that can demonstrate quantum levitation with air/vacuum as a host medium. Since air is the natural environment for almost all nano- and microscopic devices, it is therefore imperative to seek a better understanding of the nature of the Casimir force under such ambient conditions. In this thesis, the conditions for achieving quantum levitation at an arbitrary temperature are investigated by considering a simple configuration consisting of two parallel plates separated by air. The proposed parallel-plate designs are based on artificial nano-engineered electromagnetic materials commonly referred to as the electromagnetic metamaterials. In the case of an ideal system consisting of non-dispersive plates, we have uncovered the existence of six universal Casimir force types. We have also derived an explicit necessary condition for Casimir force reversal as a function of the non-retarded specular functions of the plates. By introducing a modification of the Lifshitz theory, we have performed an extensive investigation of the Casimir force for general dispersive magneto-dielectric plates. Simple necessary and sufficient conditions for force reversal have been derived that can serve as a useful tool in designing quantum levitation systems. Based on the sufficient condition, the complete parametric domain for the Casimir force repulsion has been identified. A strongly magnetic response for at least one of the plates is

  10. Electromagnetic Levitation of a Disc

    Science.gov (United States)

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  11. Electromagnetic Levitation of a Disc

    Science.gov (United States)

    Valle, R.; Neves, F.; de Andrade, R., Jr.; Stephan, R. M.

    2012-01-01

    This paper presents a teaching experiment that explores the levitation of a disc of ferromagnetic material in the presence of the magnetic field produced by a single electromagnet. In comparison to the classical experiment of the levitation of a sphere, the main advantage of the proposed laboratory bench is that the uniform magnetic field…

  12. Magnetic levitation technology and its applications in exploration projects

    Science.gov (United States)

    Shu, Quan-Sheng; Cheng, Guangfeng; Susta, Joseph T.; Hull, John R.; Fesmire, James E.; Augustanowicz, Stan D.; Demko, Jonathan A.; Werfel, Frank N.

    2006-02-01

    An energy efficient cryogenic transfer line with magnetic suspension has been prototyped and cryogenically tested. The prototype transfer line exhibits cryogen saving potential of 30-35% in its suspension state as compared to its solid support state. Key technologies developed include novel magnetic levitation using multiple-pole high temperature superconductor (HTS) and rare earth permanent-magnet (PM) elements and a smart cryogenic actuator as the warm support structure. These technologies have vast applications in extremely low thermal leak cryogenic storage/delivery containers, superconducting magnetic bearings, smart thermal switches, etc. This paper reviews the development work and discusses future applications of established technologies.

  13. Damping and support in high-temperature superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Sammamish, WA); McIver, Carl R. (Everett, WA); Mittleider, John A. (Kent, WA)

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  14. Damping and support in high-temperature superconducting levitation systems

    Science.gov (United States)

    Hull, John R.; McIver, Carl R.; Mittleider, John A.

    2009-12-15

    Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.

  15. Relaxation time of the Cooper pairs near T{sub c} in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ramallo, M.V.; Carballeira, C.; Vina, J.; Veira, J.A.; Mishonov, T.; Pavuna, D.; Vidal, F. [Santiago de Compostela Univ. (Spain). Lab. de Bajas Temperaturas y Superconductividad

    1999-10-01

    It is first shown that the thermal fluctuation effects on the transport and on the thermodynamic observables above the superconducting transition may provide, when they are analyzed simultaneously and consistently, a powerful tool to access the relaxation time, {tau}{sub 0}, of the Cooper pairs with wave vector k = 0 in high-temperature cuprate superconductors (HTSC). Then, we apply this procedure to optimally doped YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (Y-123) crystals. It is found that in this HTSC {tau}{sub 0} follows, within 20% accuracy, the BCS temperature behaviour and amplitude given by {tau}{sub 0} = {pi}{Dirac_h}[8k{sub B}(T-T{sub c0})]. (orig.)

  16. Theoretical investigation of formation of impurity bipolaronic states in covalent semiconductors and high temperature superconductors

    CERN Document Server

    Yavidov, B Y

    2001-01-01

    superconducting properties of doped HTSC compounds have been accounted for with framework of lattice and impurity bipolarons concepts. The theoretical results obtained are in satisfactory agreement with experiment. A theory has been developed of carrier localization around an impurity which takes account of correlation effect between carriers, short- and long range interaction in 'carrier-impurity-lattice' system within the framework of the continuum model in the adiabatic approximation. Possibility of impurity (bi)polaron formation in covalent semiconductors (Si) and high temperature superconductors (HTSC) (La sub 2 sub - sub x Sr sub x Cu sub 4) has been studied theoretically. The impurity bi polaron formation has been analyzed by two scenarios: paring and sequential localization of carriers in the vicinity of impurity atom. It is shown that the impurity bi polaron of large radius does not form in Si while its formation is possible in crystals with x<0.186, where x is the ratio of high frequency dielectr...

  17. Development of superconductor application technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G. W.; Kim, C. J.; Lee, H. G.; Lee, H. J.; Kim, K. B.; Won, D. Y.; Jang, K. I.; Kwon, S. C.; Kim, W. J.; Ji, Y. A.; Yang, S. W.; Kim, W. K.; Park, S. D.; Lee, M. H.; Lee, D. M.; Park, H. W.; Yu, J. K.; Lee, I. S.; Kim, J. J.; Choi, H. S.; Chu, Y.; Kim, Y. S.; Kim, D. H.

    1997-09-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs.

  18. Development of fabrication technique of bulk high superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Won; Kim, Chang Joong; Kim, Ki Baik; Lee, Ho Jin; Lee, Hee Gyoun; Kwon, Sun Chil

    1997-05-01

    In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBCO bulk superconductor with high mechanical strength and critical current density. In this project, plastic extrusion and melt process techniques were studied. The components materials for the current lead and the flywheel application were fabricated and their characteristics were investigated from the view point of microstructure and phase formation during heat treatment process. (author). 64 refs., 59 figs.

  19. Superconductor bearings, flywheels and transportation

    Science.gov (United States)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  20. Collective Dynamics of Intrinsic Josephson Junctions in HTSC

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu M [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980 (Russian Federation); Mahfouzi, F [Institute for Advanced Studies in Basic Sciences, PO Box 45195-1159, Zanjan (Iran, Islamic Republic of)

    2006-06-01

    The dynamics of a stack of intrinsic Josephson junctions (IJJ) in the high-T{sub c} superconductors is theoretically investigated with both the quasineutrality breakdown effect and quasiparticle charge imbalance effect taken into account. The current-voltage characteristics (IVC) of IJJ are numerically calculated in the framework of capacitively coupled Josephson junctions model and charge imbalance model including set of differential equations for phase differences, kinetic equations and generalized Josephson relations. We obtain the branch structure in IVC and investigate it as a function of model parameters such as coupling constant, McCumber parameter and number of junctions in the stack. The dependence of branch slopes and branch endpoints on the coupling and disequilibrium parameters are found. We study the nonequilibrium effects created by current injection and show that the increase in the disequilibrium parameter changes essentially the character of IVC. The new features of the hysteresis behavior of IVC of IJJ are obtained.

  1. Collective Dynamics of Intrinsic Josephson Junctions in HTSC

    Science.gov (United States)

    Shukrinov, Yu M.; Mahfouzi, F.

    2006-06-01

    The dynamics of a stack of intrinsic Josephson junctions (IJJ) in the high-Tc superconductors is theoretically investigated with both the quasineutrality breakdown effect and quasiparticle charge imbalance effect taken into account. The current-voltage characteristics (IVC) of IJJ are numerically calculated in the framework of capacitively coupled Josephson junctions model and charge imbalance model including set of differential equations for phase differences, kinetic equations and generalized Josephson relations. We obtain the branch structure in IVC and investigate it as a function of model parameters such as coupling constant, McCumber parameter and number of junctions in the stack. The dependence of branch slopes and branch endpoints on the coupling and disequilibrium parameters are found. We study the nonequilibrium effects created by current injection and show that the increase in the disequilibrium parameter changes essentially the character of IVC. The new features of the hysteresis behavior of IVC of IJJ are obtained.

  2. Magnetic levitation of single cells.

    Science.gov (United States)

    Durmus, Naside Gozde; Tekin, H Cumhur; Guven, Sinan; Sridhar, Kaushik; Arslan Yildiz, Ahu; Calibasi, Gizem; Ghiran, Ionita; Davis, Ronald W; Steinmetz, Lars M; Demirci, Utkan

    2015-07-14

    Several cellular events cause permanent or transient changes in inherent magnetic and density properties of cells. Characterizing these changes in cell populations is crucial to understand cellular heterogeneity in cancer, immune response, infectious diseases, drug resistance, and evolution. Although magnetic levitation has previously been used for macroscale objects, its use in life sciences has been hindered by the inability to levitate microscale objects and by the toxicity of metal salts previously applied for levitation. Here, we use magnetic levitation principles for biological characterization and monitoring of cells and cellular events. We demonstrate that each cell type (i.e., cancer, blood, bacteria, and yeast) has a characteristic levitation profile, which we distinguish at an unprecedented resolution of 1 × 10(-4) g ⋅ mL(-1). We have identified unique differences in levitation and density blueprints between breast, esophageal, colorectal, and nonsmall cell lung cancer cell lines, as well as heterogeneity within these seemingly homogenous cell populations. Furthermore, we demonstrate that changes in cellular density and levitation profiles can be monitored in real time at single-cell resolution, allowing quantification of heterogeneous temporal responses of each cell to environmental stressors. These data establish density as a powerful biomarker for investigating living systems and their responses. Thereby, our method enables rapid, density-based imaging and profiling of single cells with intriguing applications, such as label-free identification and monitoring of heterogeneous biological changes under various physiological conditions, including antibiotic or cancer treatment in personalized medicine.

  3. Levitation force between a small magnet and a superconducting sample of finite size in the Meissner state

    Science.gov (United States)

    Lugo, Jorge; Sosa, Victor

    1999-10-01

    The repulsion force between a cylindrical superconductor in the Meissner state and a small permanent magnet was calculated under the assumption that the superconductor was formed by a continuous array of dipoles distributed in the finite volume of the sample. After summing up the dipole-dipole interactions with the magnet, we obtained analytical expressions for the levitation force as a function of the superconductor-magnet distance, radius and thickness of the sample. We analyzed two configurations, with the magnet in a horizontal or vertical orientation.

  4. Levitated micro-accelerometer.

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Schmidt, Carrie Frances; Peterson, Kenneth Allen; Kravitz, Stanley H.; Renn, Rosemarie A.; Peter, Frank J.; Kinney, Ragon D.; Gilkey, Jeffrey C.

    2004-06-01

    The objective is a significant advancement in the state-of-the-art of accelerometer design for tactical grade (or better) applications. The design goals are <1 milli-G bias stability across environments and $200 cost. This quantum leap in performance improvement and cost reduction can only be achieved by a radical new approach, not incremental improvements to existing concepts. This novel levitated closed-loop accelerometer is implemented as a hybrid micromachine. The hybrid approach frees the designer from the limitations of any given monolithic process and dramatically expands the available design space. The design can be tailored to the dynamic range, resolution, bandwidth, and environmental requirements of the application while still preserving all of the benefits of monolithic MEMS fabrication - extreme precision, small size, low cost, and low power. An accelerometer was designed and prototype hardware was built, driving the successful development and refinement of several 'never been done before' fabrication processes. Many of these process developments are commercially valuable and are key enablers for the realization of a wide variety of useful micro-devices. While controlled levitation of a proof mass has yet to be realized, the overall design concept remains sound. This was clearly demonstrated by the stable and reliable closed-loop control of a proof mass at the test structure level. Furthermore, the hybrid MEMS implementation is the most promising approach for achieving the ambitious cost and performance targets. It is strongly recommended that Sandia remain committed to the original goal.

  5. Quasiparticle and Josephson Current in the Intrinsic Josephson Junctions in Htsc

    Science.gov (United States)

    Shukrinov, Yu. M.; Namiranian, A.; Najafi, A.

    2000-09-01

    The tunneling properties of the model structure consisting of HTSC and normal metal are studied. The influence of the impurity concentration in CuO2 layers on the high energy features is investigated, taking into account tight binding band structure, d-wave gap symmetry, group velocity and tunneling directionality. The increasing of the impurity lifetime broadening factor changes the degree of tunneling conductance peaks asymmetry, leads to nonequal shifting of the quasiparticle peaks and their width. We consider that the underlying asymmetry of the conductance peaks is primarily due to the features of quasiparticle energy spectrum and the d-wave symmetry enhances the degree of the peaks asymmetry. The analysis of c-axis transport of quasiparticles and Cooper pairs of stacked intrinsic junctions in HTSC is done.

  6. Translational and rotational dynamic analysis of a superconducting levitation system

    Science.gov (United States)

    Cansiz, A.; Hull, J. R.; Gundogdu, Ö.

    2005-07-01

    The rotational dynamics of a disc-shaped permanent magnet rotor levitated over a high temperature superconductor was studied experimentally and theoretically. The interaction between the rotor magnet and the superconductor was modelled by assuming the magnet to be a magnetic dipole and the superconductor a diamagnet. In the magnetomechanical analysis of the superconductor part, the frozen image concept was combined with the diamagnetic image, and the damping in the system was neglected. The interaction potential of the system is the combination of magnetic and gravitational potentials. From the dynamical analysis the equations of motion of the permanent magnet were stated as a function of lateral, vertical, tilt, precision and rotating angles. The vibration behaviour and correlation of the vibration of one direction with that of another were determined with a numerical calculation based on the Runge-Kutta method. The various vibrational frequencies identified were vertical, radial, tilt, precession and rotation. The tests performed for experimental verifications were translational and rotational. The permanent magnet was 'spun up' under vacuum conditions to analyse the dynamics of the free 'spin down' behaviour of the permanent magnet.

  7. The performance of induction levitators

    Science.gov (United States)

    Eastham, J. F.; Rodger, D.

    1984-09-01

    The present investigation is concerned with the performance of induction levitators, which are employed in vehicles for contactless transport systems, utilizing magnetic levitation (Maglev). A small model (38 cm long) of an induction levitator is shown. The armature consists of a laminated 'u' shaped iron yoke. Around the limbs of the yoke are wound two primary excitation coils carrying single phase 50 Hz current. Eddy currents, induced in the conducting secondary, produce a force of repulsion between secondary and yoke. A lateral stabilizing force can also be obtained. A description is presented of a study of the characteristics of these forces. Attention is given of a finite element model and the application of the Galerkin weighted residual technique, experimental and calculated results, and a design study of two single phase levitators for a 50 tonne Maglev vehicle.

  8. Superconductor Composite

    Science.gov (United States)

    Dorris, Stephen E.; Burlone, Dominick A.; Morgan; Carol W.

    1999-02-02

    A superconducting conductor fabricated from a plurality of wires, e.g., fine silver wires, coated with a superconducting powder. A process of applying superconducting powders to such wires, to the resulting coated wires and superconductors produced therefrom.

  9. Self-ordering of random intercalates in thin films of cuprate superconductors: Growth model and x-ray diffraction diagnosis

    Science.gov (United States)

    Ariosa, D.; Cancellieri, C.; Lin, P. H.; Pavuna, D.

    2007-05-01

    We propose a simple model for the nucleation of random intercalates during the growth of high-temperature superconductor (HTSC) films by pulsed laser deposition (PLD). The model predicts a very particular spatial distribution of defects: a Markovian-like sequence of displacements along the growth direction ( c axis), as well as a two-component in-plane correlation function, characteristic of self-organized intercalates. A model for x-ray diffraction (XRD) on such structures is also developed and accounts for both c -axis and in-plane anomalies observed in XRD experiments. The method presented in this work constitutes a useful characterization tool in the optimization of deposition parameters for the growth of HTSC films.

  10. A magnetic levitation rotating plate model based on high-Tc superconducting technology

    Science.gov (United States)

    Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang

    2017-09-01

    With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.

  11. Nonlinear resonances of three modes in a high-T{sub c} superconducting magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Masahiko, E-mail: galian@z2.keio.jp; Sakaguchi, Ryunosuke; Sugiura, Toshihiko, E-mail: sugiura@mach.keio.ac.jp

    2013-11-15

    Highlights: •We studied two nonlinear vibrations of a levitated beam supported by superconductors. •One of the vibrations is combination resonance of the 1st mode and the 3rd mode. •The other vibration is autoparametric resonance of the 2nd mode. •When the amplitude of the 2nd mode is small, the combination resonance is suppressed. •Otherwise, the two resonances can be resonated simultaneously. -- Abstract: In a high-T{sub c} superconducting magnetic levitation system, an object can levitate without control and contact. So it is expected to be applied to magnetically levitated transportation. To use it safely, lightening the levitated object is necessary. But this reduces the bending stiffness of the object. Besides, the system has nonlinearity. Therefore nonlinear elastic vibration can occur. This study focused on how plural nonlinear elastic vibrations of the 1st, 2nd and 3rd modes simultaneously occur. Our numerical calculation and experiment found out that the three modes simultaneously resonate when the amplitude of the 2nd mode is large enough whereas only the 2nd mode resonates when it is small.

  12. Bearing design for flywheel energy storage using high-TC superconductors

    Science.gov (United States)

    Hull, John R.; Mulcahy, Thomas M.

    2000-01-01

    A high temperature superconductor material bearing system (38) This system (38) includes a rotor (50) having a ring permanent magnet (60), a plurality of permanent magnets (16, 20 and 70) for interacting to generate levitation forces for the system (38). This group of magnets are a push/pull bearing (75). A high temperature superconductor structure (30) interacts with the ting permanent magnet (60) to provide stabilizing forces for the system (38).

  13. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    Science.gov (United States)

    Coffey, H.T.

    1993-10-19

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  14. High Tc Superconductor Theoretical Models and Electromagnetic Flux Characteristics

    Institute of Scientific and Technical Information of China (English)

    JIN Jian-xun

    2006-01-01

    High Tc Superconductors (HTS) have special electromagnetic characteristics and phenomena. Effort has been made in order to theoretically understand the applied HTS superconductivity and HTS behaviors for practical applications, various theoretical models related to the HTS electromagnetic properties have been developed. The theoretical models and analytic methods are summarized with regard to understanding the HTS magnetic flux characteristic which is one of the most critical issues related to HTS applications such as for HTS magnetic levitation application.

  15. "School Adopts an Experiment": The Magnetic Levitation of Superconductors

    Science.gov (United States)

    Gallitto, Aurelio Agliolo

    2010-01-01

    The event "School adopts an experiment" is an event targeted at high schools and secondary schools. It is based on a tight and direct collaboration between researchers and school students and teachers. Several schools were involved in the event by "adopting" an experiment in physics research laboratories. Groups of selected students were first…

  16. "School Adopts an Experiment": The Magnetic Levitation of Superconductors

    Science.gov (United States)

    Gallitto, Aurelio Agliolo

    2010-01-01

    The event "School adopts an experiment" is an event targeted at high schools and secondary schools. It is based on a tight and direct collaboration between researchers and school students and teachers. Several schools were involved in the event by "adopting" an experiment in physics research laboratories. Groups of selected students were first…

  17. 'School adopts an experiment': the magnetic levitation of superconductors

    Science.gov (United States)

    Agliolo Gallitto, Aurelio

    2010-09-01

    The event 'School adopts an experiment' is an event targeted at high schools and secondary schools. It is based on a tight and direct collaboration between researchers and school students and teachers. Several schools were involved in the event by 'adopting' an experiment in physics research laboratories. Groups of selected students were first trained by university researchers, then they demonstrated the experiments to other students and teachers during the event. Students who adopted an experiment acquired knowledge of the subjects connected with the experiment in a most impressive way compared with the usual didactics at school. Further positive points were: (i) to establish a close and direct collaboration between university researchers and high-school students and teachers; (ii) to give school students the opportunity to visit physics research laboratories.

  18. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  19. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Science.gov (United States)

    Wu, J. F.; Li, Y.

    2014-10-01

    High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  20. Investigation of the levitation force of field-cooled YBCO and MgB2 disks as functions of temperature

    Science.gov (United States)

    Bernstein, P.; Colson, L.; Dupont, L.; Noudem, J.

    2017-06-01

    We report levitation force cycles resulting from measurements carried out on a YBCO and a MgB2 disk cooled down in the field of a permanent magnet. In both cases the amplitude of the levitation force tends toward maximum values as the temperature decreases. Otherwise, the cycles are almost closed at low temperature and strongly hysteretic in the high temperature range. The hysteresis of the force cycles is attributed to the distribution of the currents induced in the sample by the field of the magnet. The saturation of the levitation forces at low temperature is related to that of the magnetic moment of the disks. We show that this type of measurement allows for the determination of the critical current density of superconductors in a restricted domain of temperatures.

  1. Study on improving levitation stability from high frequency vibration for the application of a seismic isolation device

    Energy Technology Data Exchange (ETDEWEB)

    Jang, H.K.; Song, D.; Kim, S.B. [Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of); Han, S.C.; Lee, J.P. [Korea Electric Power Research Institute, 103-16, Munji-Ro, Yuseong-Gu, Daejon 305-760 (Korea, Republic of); Kim, S.J. [Korea Institute of Science and Technology, 39-1 Hawolgok-Dong, Seongbuk-Gu, Seoul 136-791 (Korea, Republic of); Sung, T.H., E-mail: sungth@hanyang.ac.kr [Hanyang University, 17 Haengdang-Dong, Seongdong-Gu, Seoul 133-791 (Korea, Republic of)

    2011-11-15

    We model arrangement of permanent magnet (PM) and copper plate with superconductor levitation. We examine effect of eddy current based on different arrangement of PM and copper plate. Increasing thickness and area of copper plate will increase eddy current effect until the saturation point. Greater eddy current will be occurred when polarity of PM will be changed. Eddy current effects depend on copper plate dimension and changing PM polarity. The stability of superconductor levitation is depending on the pinning force. However, when an external force such as the earthquake with a high magnitude higher than the pinning force is exerted, the levitated permanent magnet (PM) can become unstable and destroyed. In order to improve the stability of the levitation, a copper plate was inserted in between the HTS (high temperature superconductor) bulk and the PM. And the more stabilized levitation can be achieved by applying eddy current that is caused by PM and the copper plate. In this study, various arrangements of PM, the thickness of copper plate, the area and gap length between PM and the copper plate were carried out. The eddy current was greater in the arrangement where polarity was changed with parallel to a moving shaker than the arrangement where polarity was not changed. And also, the eddy current became greater as the gap length between the PM and copper plate decreased. The highest value of the eddy current was measured at a copper plate thickness of 5 mm and a size of 80 mm x 80 mm. From the eddy current experiments, a copper plate (80 mm x 80 mm x 5 mm) inserted between the 7 mm gap length of the HTS bulk and the PM was resulted in a higher stiffness value of 65% compared to no copper plate stiffness value.

  2. Analytical model for the levitation force between a small magnet and a superconducting cylinder in the critical state

    Science.gov (United States)

    de la Cruz, Artorix; Badía, Antonio

    2002-08-01

    In this work a simple analytical model is presented, which allows to obtain closed-form expressions for the maximum magnetic field trapped by a cylindrical superconductor as well as the levitation force between the sample and a small magnet. Previous models of this kind could not properly account for the behaviour of the repulsion force with the variation of the sample dimensions. In particular, the so-called Js+ Jv model (J. Appl. Phys. 72 (1992) 1013) incorporates size effects by means of a surface current density ( Js) which tends to zero for disc-shaped samples. However, we show that the features encountered both in experimental works and numerical models reported in the literature can be reproduced by a suitable modification of the Js+ Jv model. Analytical expressions of the levitation force are obtained as a function of length and radius of the sample and as well the superconductor-magnet distance.

  3. Ultrasensitive Inertial and Force Sensors with Diamagnetically Levitated Magnets

    Science.gov (United States)

    Prat-Camps, J.; Teo, C.; Rusconi, C. C.; Wieczorek, W.; Romero-Isart, O.

    2017-09-01

    We theoretically show that a magnet can be stably levitated on top of a punctured superconductor sheet in the Meissner state without applying any external field. The trapping potential created by such induced-only superconducting currents is characterized for magnetic spheres ranging from tens of nanometers to tens of millimeters. Such a diamagnetically levitated magnet is predicted to be extremely well isolated from the environment. We propose to use it as an ultrasensitive force and inertial sensor. A magnetomechanical readout of its displacement can be performed by using superconducting quantum interference devices. An analysis using current technology shows that force and acceleration sensitivities on the order of 10-23 N /√{Hz } (for a 100-nm magnet) and 10-14 g /√{Hz } (for a 10-mm magnet) might be within reach in a cryogenic environment. Such remarkable sensitivities, both in force and acceleration, can be used for a variety of purposes, from designing ultrasensitive inertial sensors for technological applications (e.g., gravimetry, avionics, and space industry), to scientific investigations on measuring Casimir forces of magnetic origin and gravitational physics.

  4. Dust levitation about Itokawa's equator

    Science.gov (United States)

    Hartzell, C.; Zimmerman, M.; Takahashi, Y.

    2014-07-01

    Introduction: Electrostatic dust motion has been hypothesized to occur on the asteroids, due to the observations of the Eros dust ponds [1] and the potential presence of such a phenomenon on the Moon [2]. There are two phases of electrostatic dust motion: lofting and the subsequent trajectories. The feasibility of electrostatic dust lofting can be assessed by comparing the strength of the electrostatic force to the gravity and cohesion which hold the grain on to the surface [3--5]. The motion of the dust grains after they detach from the surface can be described as either ballistic, escaping, or levitating. We are interested in dust levitation because it could potentially redistribute grains on the surface of an asteroid (for instance, producing the Eros dust ponds) and it could also be hazardous to spacecraft. Specifically, levitating dust could obscure the observations of surface-based spacecraft or possibly trigger obstacle avoidance routines during landing. Dust Levitation: Dust levitation is defined as the altitude oscillation of grains prior to their redeposition on the surface of an asteroid. Levitation occurs about equilibria where the electrostatic and gravity forces on the grain are equal and opposite. An equilibrium state is defined as a position and charge for a specific grain size. We have previously identified equilibria using a 1D plasma model and a simple gravity model for Itokawa [6]. In this simple model, the largest grain that was capable of stable levitation above Itokawa was 3 microns (in radius) [6]. Additionally, we have shown that levitating dust grains follow the variation in the equilibria for a rotating asteroid (i.e., the grain continues to oscillate about an equilibrium state that approaches the surface) [7]. Due to the nonspherical shape of Itokawa, both the gravity and plasma environments are much more complicated than the 1D approximations made in our previous work. Thus, in order to accurately assess the feasibility of dust

  5. Magnetic levitation using a stack of high temperature superconducting tape annuli

    Science.gov (United States)

    Patel, A.; Hahn, S.; Voccio, J.; Baskys, A.; Hopkins, S. C.; Glowacki, B. A.

    2017-02-01

    Stacks of large width superconducting tape can carry persistent currents over similar length scales to bulk superconductors, therefore giving them potential for trapped field magnets and magnetic levitation. 46 mm wide high temperature superconducting tape has previously been cut into square annuli to create a 3.5 T persistent mode magnet. The same tape pieces were used here to form a composite bulk hollow cylinder with an inner bore of 26 mm. Magnetic levitation was achieved by field cooling with a pair of rare-earth magnets. This paper reports the axial levitation force properties of the stack of annuli, showing that the same axial forces expected for a uniform bulk cylinder of infinite J c can be generated at 20 K. Levitation forces up to 550 N were measured between the rare-earth magnets and stack. Finite element modelling in COMSOL Multiphysics using the H-formulation was also performed including a full critical state model for induced currents, with temperature and field dependent properties as well as the influence of the ferromagnetic substrate which enhances the force. Spark erosion was used for the first time to machine the stack of tapes proving that large stacks can be easily machined to high geometric tolerance. The stack geometry tested is a possible candidate for a rotary superconducting bearing.

  6. Superconductor Dynamics

    CERN Document Server

    Gömöry, F

    2014-01-01

    Superconductors used in magnet technology could carry extreme currents because of their ability to keep the magnetic flux motionless. The dynamics of the magnetic flux interaction with superconductors is controlled by this property. The cases of electrical transport in a round wire and the magnetization of wires of various shapes (circular, elliptical, plate) in an external magnetic field are analysed. Resistance to the magnetic field penetration means that the field produced by the superconducting magnet is no longer proportional to the supplied current. It also leads to a dissipation of electromagnetic energy. In conductors with unequal transverse dimensions, such as flat cables, the orientation with respect to the magnetic field plays an essential role. A reduction of magnetization currents can be achieved by splitting the core of a superconducting wire into fine filaments; however, new kinds of electrical currents that couple the filaments consequently appear. Basic formulas allowing qualitative analyses ...

  7. Levitation in an "almost" electrostatic field

    CERN Document Server

    Miranda, E N

    2012-01-01

    It is well known that a charged particle cannot be in stable equilibrium in a purely electrostatic field. The situation is different in a magnetostatic field; consequently, magnetic levitation is possible while electrostatic levitation is not. In this paper, motivated by an analogy with a mechanical system, we show that the addition of a small oscillating electrical field to an otherwise electrostatic configuration leads to the stabilisation of unstable equilibrium points. Therefore, levitation becomes possible in an "almost electrostatic" field.

  8. Velocity damper for electromagnetically levitated materials

    Science.gov (United States)

    Fox, Richard J.

    1994-01-01

    A system for damping oscillatory and spinning motions induced in an electromagnetically levitated material. Two opposed field magnets are located orthogonally to the existing levitation coils for providing a DC quadrupole field (cusp field) around the material. The material used for generating the DC quadrupole field must be nonconducting to avoid eddy-current heating and of low magnetic permeability to avoid distorting the induction fields providing the levitation.

  9. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  10. Static Test for a Gravitational Force Coupled to Type 2 YBCO Superconductors

    Science.gov (United States)

    Li, Ning; Noever, David; Robertson, Tony; Koczor, Ron; Brantley, Whitt

    1997-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cc. Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating type II, YBCO superconductor, with the percentage change (0.05 - 2.1 %) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10' was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field. Changes in acceleration were measured to be less than 2 parts in 108 of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between static superconductors and gravity.

  11. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay [Massachusetts Institute of Technology, Cambridge, MA (United States); Mauel, Michael [Columbia Univ., New York, NY (United States)

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier et al., Physics of Plasmas, 13 (2006) 056111]. High- beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability made LDX the longest pulse fusion confinement experiment operating in the U.S. fusion program. A significant measure of progress in the LDX research program was the routine investigation of plasma confinement with a magnetically-levitated dipole and the resulting observations of confinement improvement. In both supported and levitated configurations, detailed measurements were made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma was created by multi frequency electron cyclotron resonance heating at 2.45 GHz, 6.4 GHz, 10.5 GHz and 28 GHz allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole was levitated or supported, the peak thermal electron temperature was estimated to exceed 500 eV and peak densities to approach 1e18 m-3. We have found that levitation causes a strong inwards density pinch [Boxer et al., Nature Physics, 6 (2010) 207] and we have observed the central plasma density increase dramatically indicating a significant improvement in the confinement of a thermal plasma species.

  12. Giant electric conductivity in CuO-Cu interface and its HTSC-like temperature changes

    CERN Document Server

    Osipov, V V; Naumov, S V

    2001-01-01

    The temperature dependences of the electric conductivity and volt-ampere characteristics (VAC) of the samples, representing the CuO monocrystals, the natural facets whereof are coated with the Cu film, are studied. It is shown that the electric conductivity, related to the Cu films, after electro-chemical or thermal annealing grows multiply up to 1.5 x 10 sup 5 times as compared to the Cu control films on the devitrified glass. The obtained results are explained by formation of the high-conductivity interface layer between CuO and Cu. It is supposed that the giant electric conductivity, its HTSC-like change with the temperature and VAC nonlinearity may be conditioned by formation of superconducting areas with critical temperatures, essentially exceeding 400 K

  13. YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer

    Science.gov (United States)

    Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.

    1993-03-01

    Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.

  14. Photoemission spectroscopy of single crystal HTSC materials: A Fermi liquid electronic structure

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; List, R.S.; Bartlett, R.J.; Cheong, S.W.; Olson, C.G.; Yang, A.B.; Liu, R.; Gu, C.; Veal, B.W.; Liu, J.Z.

    1989-01-01

    Photoemission spectra from HTSC materials (primarily 123-type), cleaved and measured at 20K, reveal a rich DOS structure which compares favorably with a calculated band structure, except for a residual 0.5 eV shift which may reflect some correlation effects. Band dispersion is observed throughout the valence bands, with clear evidence for a 0.2 eV wide band dispersing through E/sub F/. The orbital character at E/sub F/ is a mix of Cu-3d and O-2p. There is unambiguous evidence for a large BCS-like gap (2..delta.. greater than or equal to 4kT/sub c/). 25 refs., 5 figs.

  15. Orientation, temperature, and frequency dependence of nonresonant microwave absorption in HTSC powders

    Energy Technology Data Exchange (ETDEWEB)

    Gould, A.; Huang, M.; Bhagat, S.M. (Department of Physics, University of Maryland, College Park, Maryland 20742-4111 (USA) Center for Superconductivity Research, University of Maryland, College Park, Maryland 20742-4111 (USA)); Tyagi, S. (Department of Physics and Atmospheric Science, Drexel University, Philadelphia, Pennsylvania 11004 (USA))

    1991-04-15

    Hysteresis in the microwave-power absorption of HTSC powders was studied as a function of temperature ({ital T}), field-sweep amplitude ({ital H}{sub max}), and orientation between the dc field ({bold H}{sub dc}) and the wave vector of the microwaves ({bold k}). It was found that (i) the sizable low-temperature hysteresis effects occur only if {bold H}{sub dc}{parallel}{bold k}, (ii) the temperature and frequency dependence of the hysteresis is strongly affected by {ital H}{sub max}, (iii) the high- and low-temperature virgin curves are quite different, and (iv) the minimum of the absorption signal increases with {ital H}{sub max} and {ital T}. The low-temperature hysteresis loops were found to be similar to loops obtained from nonlinear equations describing cusp catastrophes.

  16. Investigations of levitated helium drops

    Science.gov (United States)

    Whitaker, Dwight Lawrence

    1999-11-01

    We report on the development of two systems capable of levitating drops of liquid helium. Helium drops of ˜20 mum have been levitated with the radiation pressure from two counter-propagating Nd:YAG laser beams. Drops are produced with a submerged piezoelectric transducer, and could be held for up to three minutes in our optical trap. Calculations show that Brillouin and Raman scattering of the laser light in the liquid helium produces a negligible rate of evaporation of the drop. Evaporation caused by the enhanced vapor pressure of the curved drop surfaces appears to be a significant effect limiting the drop lifetimes. Helium drops as large as 2 cm in diameter have been suspended in the earth's gravitational field with a magnetic field. A commercial superconducting solenoid provides the necessary field, field-gradient product required to levitate the drops. Drops are cooled to 0.5 K with a helium-3 refrigerator, and can be held in the trap indefinitely. We have found that when two or more drops are levitated in the same magnetic trap, the drops often remain in a state of apparent contact without coalescing. This effect is a result of the evaporation of liquid from between the two drops, and is found to occur only for normal fluid drops. We can induce shape oscillations in charged, levitated drops with an applied ac electric field. We have measured the resonance frequencies and damping rates for the l = 2 mode of oscillation as function of temperature. We have also developed a theory to describe the small amplitude shape oscillations of a He II drop surrounded by its saturated vapor. In our theory, we have considered two sets of boundary conditions---one where the drop does not evaporate and another in which the liquid and vapor are in thermodynamic equilibrium. We have found that both solutions give a frequency that agrees well with experiment, but that the data for the damping rate agree better with the solution without evaporation.

  17. Final Report: Levitated Dipole Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kesner, Jay; Mauel, Michael

    2013-03-10

    Since the very first experiments with the LDX, research progress was rapid and significant. Initial experiments were conducted with the high-field superconducting coil suspended by three thin rods. These experiments produced long-pulse, quasi-steady-state microwave discharges, lasting more than 10 s, having peak beta values of 20% [Garnier, Phys. Plasmas, v13, p. 056111, 2006]. High-beta, near steady-state discharges have been maintained in LDX for more than 20 seconds, and this capability makes LDX the longest pulse fusion confinement experiment now operating in the U.S. fusion program. In both supported and levitated configurations, detailed measurements are made of discharge evolution, plasma dynamics and instability, and the roles of gas fueling, microwave power deposition profiles, and plasma boundary shape. High-temperature plasma is created by multifrequency electron cyclotron resonance heating allowing control of heating profiles. Depending upon neutral fueling rates, the LDX discharges contain a fraction of energetic electrons, with mean energies above 50 keV. Depending on whether or not the superconducting dipole is levitated or supported, the peak thermal electron temperature is estimated to exceed 500 eV and peak densities reach 1.0E18 (1/m3). Several significant discoveries resulted from the routine investigation of plasma confinement with a magnetically-levitated dipole. For the first time, toroidal plasma with pressure approaching the pressure of the confining magnetic field was well-confined in steady-state without a toroidal magnetic field. Magnetic levitation proved to be reliable and is now routine. The dipole's cryostat allows up to three hours of "float time" between re-cooling with liquid helium and providing scientists unprecedented access to the physics of magnetizd plasma. Levitation eliminates field-aligned particle sources and sinks and results in a toroidal, magnetically-confined plasma where profiles are determined by cross

  18. A Simple, Inexpensive Acoustic Levitation Apparatus

    Science.gov (United States)

    Schappe, R. Scott; Barbosa, Cinthya

    2017-01-01

    Acoustic levitation uses a resonant ultrasonic standing wave to suspend small objects; it is used in a variety of research disciplines, particularly in the study of phase transitions and materials susceptible to contamination, or as a stabilization mechanism in microgravity environments. The levitation equipment used for such research is quite…

  19. Passive levitation in alternating magnetic fields

    Science.gov (United States)

    Romero, Louis; Christenson, Todd; Aronson, Eugene A.

    2010-09-14

    Stable levitation of an object in an alternating magnetic field can be achieved by eliminating coupling between the rotational and translational forces acting on the object. Stable levitation can also be achieved by varying the coupling between the rotational and translational forces acting on the object, while maintaining one or more of the rotational and translational forces steady in time.

  20. Variable geometry two mode levitation trap

    Science.gov (United States)

    Babič, D.; Čadež, A.

    1999-11-01

    Construction and operation of the electrodynamic levitation trap which can be operated in a passive and an active mode is described. This combination together with variable electrode geometry simplifies the trap's design and simultaneously gives more flexibility with respect to different kinds of measurements. Sample measurements of mechanocaloric effect caused by nonuniform heating of a single levitated particle are presented and discussed.

  1. Acoustical-Levitation Chamber for Metallurgy

    Science.gov (United States)

    Barmatz, M. B.; Trinh, E.; Wang, T. G.; Elleman, D. D.; Jacobi, N.

    1983-01-01

    Sample moved to different positions for heating and quenching. Acoustical levitation chamber selectively excited in fundamental and second-harmonic longitudinal modes to hold sample at one of three stable postions: A, B, or C. Levitated object quickly moved from one of these positions to another by changing modes. Object rapidly quenched at A or C after heating in furnace region at B.

  2. An ionization chamber with magnetic levitated electrodes

    CERN Document Server

    Kawaguchi, T

    1999-01-01

    A new type of ionization chamber which has magnetically levitated electrodes has been developed. The electrodes are supplied voltages for the repelling of ions by a battery which is also levitated with the electrodes. The characteristics of this ionization chamber are investigated in this paper.

  3. Topology optimization of magnetic source distributions for diamagnetic and superconducting levitation

    Science.gov (United States)

    Kuznetsov, Sergey; Guest, James K.

    2017-09-01

    Topology optimization is used to obtain a magnetic source distribution providing levitation of a diamagnetic body or type I superconductor with maximized thrust force. We show that this technique identifies non-trivial source distributions and may be useful to design devices based on non-contact magnetic suspension and other magnetic devices, such as micro-magneto-mechanical devices, high field magnets etc. Diamagnetic and superconducting suspensions are often used in physical experiments and thus we believe this approach will be interesting to physics community as it may generate non-trivial and often unexpected topologies and may be useful to create new experiments and devices.

  4. Ferromagnetic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Huxley, Andrew D.

    2015-07-15

    Highlights: • Review of ferromagnetic superconductors. • Covers UGe{sub 2}, URhGe and UCoGe and briefly other materials. • The focus is on experimental data and the pairing mechanism. - Abstract: The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a ‘standard’ theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the ‘standard’ model and from each other.

  5. A superconducting conveyer system using multiple bulk Y-Ba-Cu-O superconductors and permanent magnets

    Science.gov (United States)

    Kinoshita, T.; Koshizuka, N.; Nagashima, K.; Murakami, M.

    Developments of non-contact superconducting devices like superconducting magnetic levitation transfer and superconducting flywheel energy storage system have been performed based on the interactions between bulk Y-Ba-Cu-O superconductors and permanent magnets, in that the superconductors can stably be levitated without any active control. The performances of noncontact superconducting devices are dependent on the interaction forces like attractive forces and stiffness. In the present study, we constructed a non-contact conveyer for which the guide rails were prepared by attaching many Fe-Nd-B magnets onto an iron base plate. Along the translational direction, all the magnets were arranged as to face the same pole, and furthermore their inter-distance was made as small as possible. The guide rail has three magnet rows, for which the magnets were glued on the iron plate such that adjacent magnet rows have opposite poles like NSN. At the center row, the magnetic field at zero gap reached 0.61T, while the field strengths of two rows on the side edges were only 0.48T due to magnetic interactions among permanent magnets. We then prepared a cryogenic box made with FRP that can store several bulk Y-Ba-Cu-O superconductors 25 mm in diameter cooled by liquid nitrogen. It was found that the levitation forces and stiffness increased with increasing the number of bulk superconductors installed in the box, although the levitation force per unit bulk were almost the same. We also confirmed that these forces are dependent on the configuration of bulk superconductors.

  6. Structural, electronic and flux dynamics of Gd(Ba2-xPrxCu3O7+& delta superconductor

    Directory of Open Access Journals (Sweden)

    M. R. Mohammadizadeh and M Akhavan

    2004-06-01

    Full Text Available   The Gd(Ba2-xPrxCu3O single phase polycrystalline samples with 0.00 ≤ x ≤ 1.00 were investigated for structural, electronic and flux dynamic properties. An unusual hump on the resistivity vs. temperature curve of the samples has been observed for particular values of Pr doping. We have found that the Ba atom substitution at the rare earth site could lead to superconductivity in some parts of the grains at Tm~80-90K, which appears as a hump on the (T curve. For all the samples, the two-dimensional variable range hopping (VRH is a dominant conduction mechanism in the normal state. The Pr doping strongly localizes the carriers in the normal state, and finally causes the suppression of superconductivity. The effect of Pr substitution in 123 structure of HTSC at R or Ba site is to increase the pseudo gap temperature Ts, although, Pr at Ba site has a stronger effect on the increase of Ts and suppression of superconductivity. We have also extracted the two dimensionality aspects of HTSC through the similarities between superconductors, two-dimensional electron gas (2D-EG i.e., MOSFETs, and the ultra thin films of conventional superconductors. The magneto resistance of the samples have been studied within thermally activated flux creep and the Ambegaokar and Halperin phase slip models. The derived critical current density, Hc2(T, Hc2(0, and superconducting coherence length show that the Pr- doping, like weak links, decreases the vortex flux pinning energy. Our results imply that understanding the real suppression mechanism of superconductivity by Pr doping in HTSC is connected unavoidably to determination of the exact position of Pr in the structure.

  7. Contactless Calorimetry for Levitated Samples

    Science.gov (United States)

    Lee, M. C.; Dokko, W.

    1986-01-01

    Temperature and specific heat of hot sample measured with pyrometer in proposed experimental technique. Technique intended expecially for contactless calorimetry of such materials as undercooled molten alloys, samples of which must be levitated to prevent contamination and premature crystallization. Contactless calorimetry technique enables data to be taken over entire undercooling temperature range with only one sample. Technique proves valuable in study of undercooling because difference in specific heat between undercooled-liquid and crystalline phases at same temperature provides driving force to convert metastable undercooled phase to stable crystalline phase.

  8. Ferromagnetic superconductors

    Science.gov (United States)

    Huxley, Andrew D.

    2015-07-01

    The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a 'standard' theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the 'standard' model and from each other.

  9. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank (Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  10. The thermopower in the temperature range T(sub c)-1000K and the bank spectrum of Bi-based superconductors

    Science.gov (United States)

    Gasumyants, V. E.; Vladimirskaya, E. V.; Smirnov, V. I.; Kazanskiy, S. V.

    1995-01-01

    The temperature dependencies of thermopower, S, in the range T = T(sub c)-1000K as well as of resistivity and Hall coefficient in the range T = T(sub c)-300K for the single-phase ceramic samples Bi2Sr2Ca(1-x)Nd(x)Cu2O(y) have been measured. It was found that the S(T) dependencies in normal phase have three characteristic regions. Despite the fact that the S(T) dependencies in Bi-based high-T(sub c) superconductors (HTSC) differ essentially from ones in Y-based HTSC at T = T(sub c)-300K, the main feature of theirs (S(T) = const at high temperatures) retains in samples investigated at T is greater than 620K. The results obtained have been analyzed on the basis of the narrow-band model with the use of assumption of slight asymmetry of the conductive band. The band spectrum parameters of the samples studied have been calculated. An analysis of the tendencies in these parameters changes with samples composition varying enables to make the conclusion about the similarity of the main features of the conductive band structure in Y- and Bi-based HTSC.

  11. Levitated Optomechanics for Fundamental Physics

    Science.gov (United States)

    Rashid, Muddassar; Bateman, James; Vovrosh, Jamie; Hempston, David; Ulbricht, Hendrik

    2015-05-01

    Optomechanics with levitated nano- and microparticles is believed to form a platform for testing fundamental principles of quantum physics, as well as find applications in sensing. We will report on a new scheme to trap nanoparticles, which is based on a parabolic mirror with a numerical aperture of 1. Combined with achromatic focussing, the setup is a cheap and readily straightforward solution to trapping nanoparticles for further study. Here, we report on the latest progress made in experimentation with levitated nanoparticles; these include the trapping of 100 nm nanodiamonds (with NV-centres) down to 1 mbar as well as the trapping of 50 nm Silica spheres down to 10?4 mbar without any form of feedback cooling. We will also report on the progress to implement feedback stabilisation of the centre of mass motion of the trapped particle using digital electronics. Finally, we argue that such a stabilised particle trap can be the particle source for a nanoparticle matterwave interferometer. We will present our Talbot interferometer scheme, which holds promise to test the quantum superposition principle in the new mass range of 106 amu. EPSRC, John Templeton Foundation.

  12. Fabrication and examination of epitaxial HTSC/isolator thin films on sapphire substrates for application in high frequency devices; Herstellung und Untersuchung von epitaktischen HTSL/Isolator-Schichten auf Saphirsubstraten zur Anwendung in HF-Bauelementen

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, H.

    1995-10-01

    The use of high temperature superconductors (HTSC) like YBCO with distinct lower surface resistance compared to normal conductors allows miniaturisation of high frequency (HF) circuits. The object of this work was the fabrication of YBCO thin films on low loss sapphire substrates applicable for stripline devices. To induce epitaxial growth and to avoid chemical reaction at the film-substrate boundary buffer layers were investigated. The examination of the growth properties and especially of the surface impedance has been allotted particular importance. In contrast to CaTiO{sub 3} it was possible to deposit CeO{sub 2}-buffer layers in direct growth up to a thickness of about 30 nm without cracks. The films show all growth properties required and even Laue-oscillations being a feature of high quality growth enabling the determination of film thickness distribution without destruction. The YBCO growth-, transport- and HF-properties meet the ones of YBCO films on standard substrates. A remarkable result is that the mosaic distribution of the CEO film, itself strongly dependend on film thickness, does not influence that of the YBCO film considerably. Rather it changes its shape subsequently due to YBCO deposition. A further particularity in contrast to deposition on standard substrates is the need to adjust the substrate heater tempeature for deposition of YBCO films with thicknesses {>=}300 nm needed for HF application. To demonstrate their usefullness some stripline devices like planar coils and side coupled filters have been fabricated and characterised. (orig.)

  13. Electromyographic investigation of hypnotic arm levitation: differences between voluntary arm elevation and involuntary arm levitation.

    Science.gov (United States)

    Peter, Burkhard; Schiebler, Philipp; Piesbergen, Christoph; Hagl, Maria

    2012-01-01

    Thirty-three volunteers were randomly exposed to 3 conditions: hypnotic arm levitation, holding up the arm voluntarily without hypnosis, and imagined arm lifting without hypnosis. Trapezius, deltoid, extensor digitorum, flexor digitorum profundus, biceps brachii, and triceps brachii muscles were measured. Strain and muscle activity during lifting and holding up the right arm for 3 minutes were used as dependent variables. During hypnotic arm levitation, the total muscle activity was lower than during holding it up voluntarily (p levitation.

  14. Effect of sample radius on stability of electromagnetic levitation melting

    Institute of Scientific and Technical Information of China (English)

    马伟增; 郑红星; 季诚昌; 李建国

    2004-01-01

    Based on the power dissipating model of spherical sample in free convection gas medium and the expression of input power, the model of temperature calculation for electromagnetic levitation melting sample was established. Considering the limitation of levitation force and levitation sample temperature,the principle of stability levitation zone computation was determined. A spherical sample (ThDy)Fe2 under the protection of argon gas was examined, and the effect of radius of levitation sample and perturbation on the stable levitation zone was investigated.The results show that longitudinal perturbation and transverse perturbation can shorten the length of stable levitation zone and the range of levitation sample radius. By increasing the sample radius and weakening the perturbation the electromagnetic levitation melting stability of sample can be improved.

  15. Vibration reduction using autoparametric resonance in a high-Tc superconducting levitation system

    Science.gov (United States)

    Yamasaki, Hiroshi; Takazakura, Toyoki; Sakaguchi, Ryunosuke; Sugiura, Toshihiko

    2014-05-01

    High-Tc superconducting levitation systems have very small damping and enable stable levitation without control. Therefore, they can be applied to various kinds of application. However, there are some problems that small damping produces large vibration and nonlinearity of magnetic force can generate complicated phenomena. Accordingly, analysis of these phenomena and reduction of vibration occurring in the system are important. In this study, we examined reduction of vibration without using any absorbers, but utilizing autoparametric resonance caused by nonlinear coupling between vertical oscillation and horizontal oscillation. We conducted numerical analysis and experiments in order to investigate motions of a rigid bar levitated by the electromagnetic force from high-Tc superconductors. As a result, if the ratio of the natural frequency of vertical oscillation and that of horizontal oscillation is two to one, the vertical oscillation decreases while the horizontal oscillation is excited. Thus, it was confirmed that the amplitude of a primary resonance can be reduced by occurrence of autoparametric resonance without using any absorbers.

  16. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  17. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    Science.gov (United States)

    Valenzuela, S. O.; Jorge, G. A.; Rodríguez, E.

    1999-11-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give rise to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction, which represents a promising field with regard to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.

  18. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2010-01-01

    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  19. Gravimeter using high-temperature superconductor bearing.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.

    1998-09-11

    We have developed a sensitive gravimeter concept that uses an extremely low-friction bearing based on a permanent magnet (PM) levitated over a high-temperature superconductor (HTS). A mass is attached to the PM by means of a cantilevered beam, and the combination of PM and HTS forms a bearing platform that has low resistance to rotational motion but high resistance to horizontal, vertical, or tilting motion. The combination acts as a low-loss torsional pendulum that can be operated in any orientation. Gravity acts on the cantilevered beam and attached mass, accelerating them. Variations in gravity can be detected by time-of-flight acceleration, or by a control coil or electrode that would keep the mass stationary. Calculations suggest that the HTS gravimeter would be as sensitive as present-day superconducting gravimeters that need cooling to liquid helium temperatures, but the HTS gravimeter needs cooling only to liquid nitrogen temperatures.

  20. Studies of High-T$_{c}$ Superconductors Doped with Radioactive Isotopes

    CERN Multimedia

    Alves, E J; Goncalves marques, J; Cardoso, S; Lourenco, A A; Sousa, J B

    2002-01-01

    %title\\\\ \\\\We propose to study High T$_{c} $ Superconductors~(HTSc) doped with radioactive elements at ISOLDE, in order to investigate some of the problems that persist after use of conventional characterization techniques. Three main topics are proposed: \\begin{enumerate} \\item Characterization of the order/disorder of Hg in the Hg-planes of the HTSc family Hg$_{1}$Ba$_{2}$R$_{(n-1)}$Cu$_{n}$O$_{(2n+2+\\delta)}$ (T$_{c}$ > 130 K) due to defects or impurities such as C and Au. \\item Studies of the doping of Infinite Layers Cuprates (RCuO$_{2}$)$_{n}$, R=Ca, Sr or Ba, using unstable nuclei of the alkaline-earth (IIA) group which decay to the alkaline nuclei (IA) group. The purpose is to introduce charge carriers in these materials by changing the valence of the cations during the nuclear transmutation. The possibility of using ion implantation to introduce directly an alkaline dopant will also be studied. \\item Studies of the Hg/Au doping of high quality YBa$_{2}$Cu$_{3}$O$_{6+x}$ thin films. We intend to chara...

  1. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    OpenAIRE

    Valenzuela, S. O.; Jorge, G. A.; Rodriguez, E.

    1999-01-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give place to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction which represents a promising field regarding to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt...

  2. Effective method to control the levitation force and levitation height in a superconducting maglev system

    Institute of Scientific and Technical Information of China (English)

    杨芃焘; 杨万民; 王妙; 李佳伟; 郭玉霞

    2015-01-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications.

  3. Interaction between ring permanent magnets and bulk Dy-Ba-Cu-O superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kurabayashi, H., E-mail: m208501@sic.shibaura-it.ac.j [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Horikoshi, S.; Suzuki, A.; Ikeda, M.; Wongsatanawarid, A.; Seki, H. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan); Akiyama, S. [Magneo-Giken, 1-4-23, Suwa, Iwatsuki-Ku, Saitama-Shi, Saitama-Ken (Japan); Hiragushi, M. [SEIKOW Chemical Engineering, 4-1-31, Suidou-Cho, Amagasaki-Shi, Hyougo-Ken (Japan); Murakami, M. [Superconducting Materials Laboratory, Shibaura Institute of Technology, 3-7-5, Toyosu, Koto-Ku, Tokyo 135-8548 (Japan)

    2010-11-01

    A combination of bulk Dy-Ba-Cu-O superconductors and permanent magnets can be used for various rotational applications such as flywheel energy storage and magnetic bearings. For practical applications, there are two important parameters: the levitation force and the stiffness. Since the superconductor and magnets are installed in a closed space, the attractive force is another important parameter that we should take care. In this study, we measured the levitation force and the stiffness by changing the thickness of a ring permanent magnet. We used ring Fe-Nd-B magnets 120 mm in outer diameter and 70 mm in inner diameter with the thicknesses of 5-40 mm. For superconductors, we used single-domain bulk Dy-Ba-Cu-O 47 mm in diameter and 10 mm in thickness. Six pellets of Dy-Ba-Cu-O were placed concentrically such that the inner diameter becomes 70 mm. The levitation forces increased with increasing the thickness of the permanent magnet but tended to saturate.

  4. How to Simply Demonstrate Diamagnetic Levitation with Pencil Lead

    Science.gov (United States)

    Koudelkova, Vera

    2016-01-01

    A new simple arrangement how to demonstrate diamagnetic levitation is presented. It uses pencil lead levitating in a track built from neodymium magnets. This arrangement can also be used as a classroom experiment.

  5. Electrostatic levitation under the single-axis feedback control condition

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An electrostatic levitator with a single-axis feedback control system was developed on the basis of electric field analysis and optimum design for levitation electrodes. In order to realize the stable levitation of various types of materials such as metals, inorganic materials and polymers, we made both experimental and theoretical investigations to solve the four key problems of electric field optimization, sample position detecting, sample charging control and levitation voltage minimization. Under the capacitive induction charging condition, a sample with the size of 2.6–4.5 mm usually bears positive charges amounting to 10-9 Coulomb. Because the single-axis feedback control system responds quickly, it takes the levitated sample only 0.1 s from leaving the bottom electrode until attaining a stable levitation in the upright direction. The levitated sample displays satisfactory levitation stability in both the upright and the horizontal directions owing to the constraining force produced by spherical electrodes.

  6. Velocity and rotation measurements in acoustically levitated droplets

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Abhishek [University of Central Florida, Orlando, FL 32816 (United States); Basu, Saptarshi [Indian Institute of Science, Bangalore 560012 (India); Kumar, Ranganathan, E-mail: ranganathan.kumar@ucf.edu [University of Central Florida, Orlando, FL 32816 (United States)

    2012-10-01

    The velocity scale inside an acoustically levitated droplet depends on the levitator and liquid properties. Using Particle Imaging Velocimetry (PIV), detailed velocity measurements have been made in a levitated droplet of different diameters and viscosity. The maximum velocity and rotation are normalized using frequency and amplitude of acoustic levitator, and droplet viscosity. The non-dimensional data are fitted for micrometer- and millimeter-sized droplets levitated in different levitators for different viscosity fluids. It is also shown that the rotational speed of nanosilica droplets at an advanced stage of vaporization compares well with that predicted by exponentially fitted parameters. -- Highlights: ► Demonstrates the importance of rotation in a levitated droplet that leads to controlled morphology. ► Provides detailed measurements of Particle Image Velocimetry inside levitated droplets. ► Shows variation of vortex strength with the droplet diameter and viscosity of the liquid.

  7. Repulsive Magnetic Levitation Systems Using Motion Control of Magnets

    OpenAIRE

    水野, 毅; 石野, 裕二; 荒木, 獻次; 大内, 泰平

    1995-01-01

    Repulsive magnetic levitation systems with magnets driven by actuators were studied in this paper. In one system, a levitation magnet was driven in the direction of repulsive force to control the position and vibration of the levitated object. In another, a levitation magnet was moved in the lateral directions to stabilize the system in the manner of an inverted pendulum. The first type was studied experimentally with an experimental setup using a magnetostrictive actuator. The damping charac...

  8. New method for introducing nanometer flux pinning centers into single domain YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Yang, W.M., E-mail: yangwm@snnu.edu.cn; Wang, Miao

    2013-10-15

    Highlights: • Single domain YBCO bulks with Bi{sub 2}O{sub 3} additions fabricated by TSIG process. • Nanoscale Y{sub 2}Ba{sub 4}CuBiOx(YBi2411) particles introduced by Bi{sub 2}O{sub 3} additions. • The YBi2411 particles are about 150 nm, can act as effective flux pinning centers. • The optimal addition of Bi{sub 2}O{sub 3} is 0.7wt% to achieve higher levitation force. • The result is helpful to improve the quality of REBCO bulk superconductors. -- Abstract: Single domain YBCO superconductors with different additions of Bi{sub 2}O{sub 3} have been fabricated by top seeded infiltration and growth process (TSIG). The effect of Bi{sub 2}O{sub 3} additions on the growth morphology, microstructure and levitation force of the YBCO bulk superconductor has been investigated. The results indicate that single domain YBCO superconductors can be fabricated with the additions of Bi{sub 2}O{sub 3} less than 2 wt%; Bi{sub 2}O{sub 3} can be reacted with Y{sub 2}BaCuO{sub 5} and liquid phase and finally form Y{sub 2}Ba{sub 4}CuBiO{sub x}(YBi2411) nanoscale particles; the size of the YBi2411 particles is about 100 nm, which can act as effective flux pinning centers. It is also found that the levitation force of single domain YBCO bulks is increasing from 13 N to 34 N and decreasing to 11 N with the increasing of Bi{sub 2}O{sub 3} addition from 0.1 wt% to 0.7 wt% and 2 wt%. This result is helpful for us to improve the physical properties of REBCO bulk superconductors.

  9. Magnetic levitation and MHD propulsion

    Science.gov (United States)

    Tixador, P.

    1994-04-01

    Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d

  10. Levitation Technology in International Space Station Research

    Science.gov (United States)

    Guinart-Ramirez, Y.; Cooley, V. M.; Love, J. E.

    2016-01-01

    The International Space Station (ISS) is a unique multidisciplinary orbiting laboratory for science and technology research, enabling discoveries that benefit life on Earth and exploration of the universe. ISS facilities for containerless sample processing in Materials Science experiments include levitation devices with specimen positioning control while reducing containment vessel contamination. For example, ESA's EML (ElectroMagnetic Levitator), is used for melting and solidification of conductive metals, alloys, or semiconductors in ultra-high vacuum, or in high-purity gaseous atmospheres. Sample heating and positioning are accomplished through electromagnetic fields generated by a coil system. EML applications cover investigation of solidification and microstructural formation, evaluation of thermophysical properties of highly reactive metals (whose properties can be very sensitive to contamination), and examination of undercooled liquid metals to understand metastable phase convection and influence convection on structural changes. MSL utilization includes development of novel light-weight, high-performance materials. Another facility, JAXA's ELF (Electrostatic Levitation Furnace), is used to perform high temperature melting while avoiding chemical reactions with crucibles by levitating a sample through Coulomb force. ELF is capable of measuring density, surface tension, and viscosity of samples at high temperatures. One of the initial ELF investigations, Interfacial Energy-1, is aimed at clarification of interfacial phenomena between molten steels and oxide melts with industrial applications in control processes for liquid mixing. In addition to these Materials Science facilities, other ISS investigations that involve levitation employ it for biological research. For example, NASA's "Magnetic 3D Culturing and Bioprinting" investigation uses magnetic levitation for three-dimensional culturing and positioning of magnetized cells to generate spheroid assemblies

  11. Dynamics of acoustically levitated disk samples.

    Science.gov (United States)

    Xie, W J; Wei, B

    2004-10-01

    The acoustic levitation force on disk samples and the dynamics of large water drops in a planar standing wave are studied by solving the acoustic scattering problem through incorporating the boundary element method. The dependence of levitation force amplitude on the equivalent radius R of disks deviates seriously from the R3 law predicted by King's theory, and a larger force can be obtained for thin disks. When the disk aspect ratio gamma is larger than a critical value gamma(*) ( approximately 1.9 ) and the disk radius a is smaller than the critical value a(*) (gamma) , the levitation force per unit volume of the sample will increase with the enlargement of the disk. The acoustic levitation force on thin-disk samples ( gammafield for stable levitation of a large water drop is to adjust the reflector-emitter interval H slightly above the resonant interval H(n) . The simulation shows that the drop is flattened and the central parts of its top and bottom surface become concave with the increase of sound pressure level, which agrees with the experimental observation. The main frequencies of the shape oscillation under different sound pressures are slightly larger than the Rayleigh frequency because of the large shape deformation. The simulated translational frequencies of the vertical vibration under normal gravity condition agree with the theoretical analysis.

  12. Self-arraying of charged levitating droplets.

    Science.gov (United States)

    Kauffmann, Paul; Nussbaumer, Jérémie; Masse, Alain; Jeandey, Christian; Grateau, Henri; Pham, Pascale; Reyne, Gilbert; Haguet, Vincent

    2011-06-01

    Diamagnetic levitation of water droplets in air is a promising phenomenon to achieve contactless manipulation of chemical or biochemical samples. This noncontact handling technique prevents contaminations of samples as well as provides measurements of interaction forces between levitating reactors. Under a nonuniform magnetic field, diamagnetic bodies such as water droplets experience a repulsive force which may lead to diamagnetic levitation of a single or few micro-objects. The levitation of several repulsively charged picoliter droplets was successfully performed in a ~1 mm(2) adjustable flat magnetic well provided by a centimeter-sized cylindrical permanent magnet structure. Each droplet position results from the balance between the centripetal diamagnetic force and the repulsive Coulombian forces. Levitating water droplets self-organize into satellite patterns or thin clouds, according to their charge and size. Small triangular lattices of identical droplets reproduce magneto-Wigner crystals. Repulsive forces and inner charges can be measured in the piconewton and the femtocoulomb ranges, respectively. Evolution of interaction forces is accurately followed up over time during droplet evaporation.

  13. A Simple, Inexpensive Acoustic Levitation Apparatus

    Science.gov (United States)

    Schappe, R. Scott; Barbosa, Cinthya

    2017-01-01

    Acoustic levitation uses a resonant ultrasonic standing wave to suspend small objects; it is used in a variety of research disciplines, particularly in the study of phase transitions and materials susceptible to contamination, or as a stabilization mechanism in microgravity environments. The levitation equipment used for such research is quite costly; we wanted to develop a simple, inexpensive system to demonstrate this visually striking example of standing waves. A search of the literature produced only one article relevant to creating such an apparatus, but the authors' approach uses a test tube, which limits the access to the standing wave. Our apparatus, shown in Fig. 1, can levitate multiple small (1-2 mm) pieces of expanded polystyrene (Styrofoam) using components readily available to most instructors of introductory physics. Acoustic levitation occurs in small, stable equilibrium locations where the weight of the object is balanced by the acoustic radiation force created by an ultrasonic standing wave; these locations are slightly below the pressure nodes. The levitation process also creates a horizontal restoring force. Since the pressure nodes are also velocity antinodes, this transverse stability may be analogous to the effect of an upward air stream supporting a ball.

  14. The role of individual defects on the magnetic screening of HTSC films

    Science.gov (United States)

    Ruoß, Stephen; Stahl, Claudia; Weigand, Markus; Zahn, Patrick; Bayer, Jonas; Schütz, Gisela; Albrecht, Joachim

    2016-10-01

    The magnetic flux penetration into thin films of high-temperature superconducting YBCO is visualized with high spatial resolution via x-ray microscopy. Therefore superconductors are coated with soft-magnetic CoFeB layers that reproduce the magnetic flux density distribution in an adjacent superconducting film and exhibit at the same time a large XMCD effect. For the first time we present scanning x-ray microscopy in the total electron yield mode using polarized x-rays providing simultaneously structural and magnetic information of the surface with high spatial resolution. Correlating the images of structural and magnetic information the role of individual defects on the magnetic screening capability of the superconductor can be identified.

  15. Advanced nuclear materials development -Development of superconductor application technology-

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Kye Won; Lee, Heui Kyoon; Lee, Hoh Jin; Kim, Chan Joong; Jang, Kun Ik; Kim, Kee Baek; Kwon, Sun Chil; Park, Hae Woong; Yoo, Jae Keun; Kim, Jong Jin; Jang, Joong Chul; Yang, Suk Woo [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype fly wheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies on the method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting powder with good reactivity and fine particle size was obtained by emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Tc of 16,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with the Jc of approx. 10000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilament wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. 126 figs, 14 tabs, 214 refs. (Author).

  16. Hard-Wired Dopant Networks and the Prediction of High Transition Temperatures in Ceramic Superconductors

    Directory of Open Access Journals (Sweden)

    J. C. Phillips

    2010-01-01

    Full Text Available I review the multiple successes of the discrete hard-wired dopant network model ZZIP, and comment on the equally numerous failures of continuum models, in describing and predicting the properties of ceramic superconductors. The prediction of transition temperatures can be regarded in several ways, either as an exacting test of theory, or as a tool for identifying theoretical rules for defining new homology models. Popular “first principle” methods for predicting transition temperatures in conventional crystalline superconductors have failed for cuprate HTSC, as have parameterized models based on CuO2 planes (with or without apical oxygen. Following a path suggested by Bayesian probability, it was found that the glassy, self-organized dopant network percolative model is so successful that it defines a new homology class appropriate to ceramic superconductors. The reasons for this success in an exponentially complex (non-polynomial complete, NPC problem are discussed, and a critical comparison is made with previous polynomial (PC theories. The predictions are successful for the superfamily of all ceramics, including new non-cuprates based on FeAs in place of CuO2.

  17. Electrical machines, in particular generators: superconductor technology in competition with improved conventional technology; Elektrische Maschinen, insbesondere Generatoren: Supraleiter-Technologie im Wettbewerb mit verbesserter konventioneller Technologie

    Energy Technology Data Exchange (ETDEWEB)

    Joho, R.; Ginet, C.; Schleussinger, A.

    2006-07-01

    This final report for the Swiss Federal Office of Energy (SFOE) summarises work done within the framework of a second project on the use of superconductor technology and conventional technology in electrical machines. The two variants, a generator using second-generation high-temperature superconductors (HTSC) and one using improved conventional technology are described and compared. The use of various coolants for the windings of generators of various types and usage is described and the optimisation of winding-geometry is discussed. The refrigeration equipment used to provide low-temperature coolant is looked at and the energy balance for the combination of generator and cooling system is discussed. The conclusions drawn by the project are presented and the advantages offered by both variants are discussed.

  18. Fine uniform filament superconductors

    Science.gov (United States)

    Riley, Jr., Gilbert N.; Li, Qi; Roberts, Peter R.; Antaya, Peter D.; Seuntjens, Jeffrey M.; Hancock, Steven; DeMoranville, Kenneth L.; Christopherson, Craig J.; Garrant, Jennifer H.; Craven, Christopher A.

    2002-01-01

    A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.

  19. Torsional optomechanics of a levitated nonspherical nanoparticle

    CERN Document Server

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Robicheaux, F; Yin, Zhang-Qi; Li, Tongcang

    2016-01-01

    An optically levitated nanoparticle in vacuum is a paradigm optomechanical system for sensing and studying macroscopic quantum mechanics. While its center-of-mass motion has been investigated intensively, its torsional vibration has only been studied theoretically in limited cases. Here we report the first experimental observation of the torsional vibration of an optically levitated nonspherical nanoparticle in vacuum. We achieve this by utilizing the coupling between the spin angular momentum of photons and the torsional vibration of a nonspherical nanoparticle whose polarizability is a tensor. The torsional vibration frequency can be one order of magnitude higher than its center-of-mass motion frequency, which is promising for ground state cooling. With an ellipsoidal model, we propose a simple yet novel scheme to achieve ground state cooling of its torsional vibration with a linearly-polarized Gaussian cavity mode. A levitated nonspherical nanoparticle in vacuum will also be an ultrasensitive nanoscale tor...

  20. Acoustic levitation of a large solid sphere

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Bernassau, Anne L. [School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo 05508-030 (Brazil)

    2016-07-25

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  1. Acoustic levitation of a large solid sphere

    Science.gov (United States)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  2. Superconductor rotor cooling system

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  3. Photothermal measurements of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kino, G.S.; Studenmund, W.R.; Fishman, I.M. [Stanford Univ., Stanford, CA (United States)

    1996-12-31

    A photothermal technique has been used to measure diffusion and critical temperature in high temperature superconductors. The technique is particularly suitable for determining material quality and inhomogeneity.

  4. Particle manipulation by a non-resonant acoustic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marco A. B., E-mail: marcobrizzotti@gmail.com [Institute of Physics, University of São Paulo, CP 66318, 05314-970 São Paulo (Brazil); Pérez, Nicolás [Centro Universitario de Paysandú, Universidad de la República, Ruta 3 km 363, 60000 Paysandú (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, Av. Mello Moraes, 2231, 05508-030 São Paulo (Brazil)

    2015-01-05

    We present the analysis of a non-resonant acoustic levitator, formed by an ultrasonic transducer and a concave reflector. In contrast to traditional levitators, the geometry presented herein does not require the separation distance between the transducer and the reflector to be a multiple of half wavelength. The levitator behavior is numerically predicted by applying a numerical model to calculate the acoustic pressure distribution and the Gor'kov theory to obtain the potential of the acoustic radiation force that acts on a levitated particle. We also demonstrate that levitating particles can be manipulated by controlling the reflector position while maintaining the transducer in a fixed position.

  5. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  6. Vibrations of a diamagnetically levitated water droplet

    CERN Document Server

    Hill, R J A

    2010-01-01

    We measure the frequencies of small-amplitude shape oscillations of a magnetically-levitated water droplet. The drop levitates in a magnetogravitational potential trap. The restoring forces of the trap, acting on the droplet's surface in addition to the surface tension, increase the frequency of the oscillations. We derive the eigenfrequencies of the normal mode vibrations of a spherical droplet in the trap and compare it with our experimental measurements. We also consider the effect of the shape of the potential trap on the eigenfrequencies.

  7. Low Complex System for Levitating Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Dahiru Sani Shu'aibu

    2010-06-01

    Full Text Available This paper primarily presents detailed design and implementation of a low complex magnetic levitation system which can be used in laboratory for levitation experiments. The system transfer function was derived from the coenergy and the mathematical model of the state space representation was obtained. The mathematical model showed that, the system is highly non-linear and inherently unstable. Based on simulation, a low complex circuit was designed and implemented to stabilize the system, using MATLAB control tool-box. The developed controller was simple, cheap and effective, capable of controlling weights of different masses at various distances as compared to some controllers in literature.

  8. Improved Position Sensor for Feedback Control of Levitation

    Science.gov (United States)

    Hyers, Robert; Savage, Larry; Rogers, Jan

    2004-01-01

    An improved optoelectronic apparatus has been developed to provide the position feedback needed for controlling the levitation subsystem of a containerless-processing system. As explained, the advantage of this apparatus over prior optoelectronic apparatuses that have served this purpose stems from the use of an incandescent lamp, instead of a laser, to illuminate the levitated object. In containerless processing, a small object to be processed is levitated (e.g., by use of a microwave, low-frequency electromagnetic, electrostatic, or acoustic field) so that it is not in contact with the wall of the processing chamber or with any other solid object during processing. In the case of electrostatic or low-frequency electromagnetic levitation, real-time measurement of the displacement of the levitated object from its nominal levitation position along the vertical axis (and, in some cases, along one or two horizontal axes) is needed for feedback control of the levitating field.

  9. Levitation force relaxation under reloading in a HTS Maglev system

    Science.gov (United States)

    He, Qingyong; Wang, Jiasu; Wang, Suyu; Wang, Jiansi; Dong, Hao; Wang, Yuxin; Shao, Senhao

    2009-02-01

    The loading capacity of the high-temperature superconducting (HTS) Maglev vehicle is an important parameter in the practical application. It is closely related to the levitation force of the HTS bulk. Many papers reported that the levitation force showed the relaxation characteristic. Because different loads cause different levitation gaps and different applied magnetic fields, the levitation force relaxations under the different loads are not the same. In terms of cylindrical YBCO bulk levitated over the permanent magnetic guideway, the relationship between the levitation force relaxation and the reloading is investigated experimentally in this paper. The decrement, the decrement rate and the relaxation rate of the levitation force are calculated, respectively. This work might be helpful for studying the loading capacity of the HTS Maglev vehicle.

  10. Effective method to control the levitation force and levitation height in a superconducting maglev system

    Science.gov (United States)

    Yang, Peng-Tao; Yang, Wan-Min; Wang, Miao; Li, Jia-Wei; Guo, Yu-Xia

    2015-11-01

    The influence of the width of the middle magnet in the permanent magnet guideways (PMGs) on the levitation force and the levitation height of single-domain yttrium barium copper oxide (YBCO) bulks has been investigated at 77 K under the zero field cooled (ZFC) state. It is found that the largest levitation force can be obtained in the system with the width of the middle magnet of the PMG equal to the size of the YBCO bulk when the gap between the YBCO bulk and PMG is small. Both larger levitation force and higher levitation height can be obtained in the system with the width of the middle magnet of the PMG larger than the size of the YBCO bulk. The stiffness of the levitation force between the PMG and the YBCO bulk is higher in the system with a smaller width of the middle magnet in the PMG. These results provide an effective way to control the levitation force and the levitation height for the superconducting maglev design and applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 51342001 and 50872079), the Key-grant Project of Chinese Ministry of Education (Grant No. 311033), the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120202110003), the Innovation Team in Shaanxi Province, China (Grant No. 2014KTC-18), and the Fundamental Research Funds for the Central Universities, China (Grant Nos. GK201101001 and GK201305014), and the Outstanding Doctoral Thesis Foundation Project of Shaanxi Normal University, China (Grant Nos. X2011YB08 and X2012YB05).

  11. Posterior assisted levitation (PAL) by using Akahoshi/Wahab irrigating pars plana levitator.

    Science.gov (United States)

    Wahab, Shahid; Ahmed, Jamshed; Das Hargun, Lakhani

    2012-11-01

    To assess the outcome of irrigating Akahoshi/Wahab pars plana levitator for posterior assisted levitation in dropped nucleus during phacoemulsification. A case series. Ophthalmology Unit-III, Dow University of Health Sciences at Sindh Government Lyari General Hospital and Al-Noor Eye Hospital, Karachi, from January 2008 to December 2009. Cases of dropped nucleus during phacoemulsification were recruited. Predisposing factors and stage of phacoemulsification at which dropped nucleus were recognized. Levitator was inserted through pars plana after vitrectomy around nucleus and levitation was carried out. Follow-up was done till 6 months. Thirty two patients including 18 males (56.3%) and 14 females (43.8%) underwent pars plana levitation. Predisposing factors were pupillary miosis in 9 cases, Brunescent cataract in 7 cases, pseudoexfoliation in another 7 cases, hypermature cataract in 5 cases and extended capsulorrhexis in 4 cases. Posterior capsular rent occurred in 22 (68.8%) cases while zonular dehiscence / rupture were found in 10 cases (31.3%). Nuclei were dropped during quadrant aspiration in 10 cases (31.3%) and during chopping in 8 cases (25%). Another 5 cases (15.6%) occurred during each hydrodissection and chopping while 4 cases (12.5%) were found during sculpting of nuclei. Final best corrected visual acuity was 6/12 and better in 22 cases (68.8%) while in 10 cases (31.3%) it was 6/18 to 6/36. No complication related to pars plana levitator was observed. Posterior assisted levitation of dropped nucleus during phacoemulsification by irrigating Akahoshi/Wahab pars plana levitator is a fast and safe surgical technique.

  12. Present status of bulk high temperature superconductors; Baruku koonchodendotai kaihatsu no genjo

    Energy Technology Data Exchange (ETDEWEB)

    Murakami, Masato [Superconductivity Research Laboratory, Tokyo (Japan). Division 3

    1999-03-25

    Recent advancement in materials processing enabled us to grow large single-grain bulk RE-Ba-Cu-O superconductors (RE: rate earth elements) with high critical current densities. These superconductors can exhibit a large electromagnetic force with the interaction of external magnetic fields. Various devices have been developed by utilizing such a force: magnetic bearings, flywheels for energy storage, load transport, hysteresis motors, and several levitation devices. A large magnetic field can also be trapped by bulk superconductors, which can function as a quasi-permanent magnet. Trapped field values have already reached 10 T, thus leading to many novel applications of high trapped field magnets. The final target will be a second-generation Maglev train. (author)

  13. Sub-Tc electron transfer at the Hg-HTSC/liquid-electrolyte interface.

    Science.gov (United States)

    Green, Stephen J; Le-Poul, Nicolas; Edwards, Peter P; Peacock, Graeme

    2003-04-02

    The cyclic voltammetry of ferrocene (CpFeCp) adsorbed as a monolayer of CpFeCpCO2(CH2)8SH, self-assembled onto the Hg-based high-temperature superconductor Hg0.8Re0.2Ba2Ca2Cu3O10 (Tc = 134 K), via an ultrathin (3.1 nm) Ag film, has been performed in liquid electrolyte (16:7:1 EtCl/THF/2-MeTHF; 0.2 M LiBF4) at a range of temperatures spanning the superconducting transition. Kinetic analysis based on the Marcus density-of-states theory affords standard heterogeneous rate constants, k degrees , for the ferrocene/ferricinium electron-transfer reaction. Casting these data in Arrhenius form yields a value of k degrees (273 K) = 357 s-1, which is 10-fold lower than that previously reported for the same reaction at a metal electrode in a similar electrolyte, while the reorganizational energy of 0.92 eV for the superconductor interface is very close to that for the related metal interface of 0.95 eV. There is, however, no effect of the onset of superconductivity on the electron-transfer rate for this system; the Arrhenius plot is linear through Tc. This is the first sub-Tc electrochemistry of any kind on a Hg-based superconductor and demonstrates the ease with which kinetic data can be obtained for these very high-Tc materials, opening the way for the routine study of a range of electron-transfer reactions as novel probes of the superconducting state.

  14. Hiding levitating objects above a ground plane

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Luo, Yu; Mortensen, Asger

    2010-01-01

    An approach to hiding objects levitating above a conducting sheet is suggested in this paper. The proposed device makes use of isotropic negative-refractive-index materials without extreme material parameters, and creates an illusion of a remote conducting sheet. Numerical simulations are perform...

  15. Levitated crystals and quasicrystals of metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhehui [Los Alamos National Laboratory; Morris, Christopher [Los Alamos National Laboratory; Goree, John A [Dept Phys and Astron., University of Iowa

    2012-07-25

    New scientific and technological opportunities exist by marrying dusty plasma research with metamaterials. Specifically, by balancing control and self-assembly, certain laboratory plasmas can become a generic levitation platform for novel structure formation and nanomaterial synthesis. We propose to experimentally investigate two dimensional (2D) and three dimensional (3D) levitated structures of metamaterials and their properties. Such structures can self assemble in laboratory plasmas, similar to levitated dust crystals which were discovered in the mid 1990's. Laboratory plasma platform for metamaterial formation eliminates substrates upon which most metamaterials have to be supported. Three types of experiments, with similar setups, are discussed here. Levitated crystal structures of metamaterials using anisotropic microparticles are the most basic of the three. The second experiment examines whether quasicrystals of metamaterials are possible. Quasicrystals, discovered in the 1980's, possess so-called forbidden symmetries according to the conventional crystallography. The proposed experiment could answer many fundamental questions about structural, thermal and dynamical properties of quasicrystals. And finally, how to use nanoparticle coated microparticles to synthesize very long carbon nanotubes is also described. All of the experiments can fit inside a standard International Space Station locker with dimensions of 8-inch x 17-inch X 18-inch. Microgravity environment is deemed essential in particular for large 3D structures and very long carbon nanotube synthesis.

  16. Electro-magnetic properties and engineering applications of single-domain high temperature superconductor yttrium barium copper oxide

    Science.gov (United States)

    Qu, Dehui

    High temperature superconductors (HTS) exhibit a commonly known Meissner effect, which can cause a unusually strong magnetic repulsion. Using this effect, magnetic bearings have been constructed with 1000 times less friction than that of conventional bearings. The commercialization of the flywheel energy storage device (FESD) could mean cost-savings for the electric power industry. For instance, using a flywheel device, the energy can be generated most efficiently at a steady rate, and meet the high demand in peak daytime hours. Since the magnetic levitation using HTS involves very little friction, only about 0.1 percent of stored energy is lost per hour making electricity consumption most economic. As FESD is to be commercialized in the future, need for more expensive fossil fuel generating plants would be reduced or eliminated. In magnetic levitation using an anisotropic HTS such as YBa2Cu 3Ox, it has been reported that the levitation force is determined by sample geometry and flux pinning strength. Previous studies on critical current density and flux creep have indicated that crystal orientation should have a significant effect on levitation force due to superconducting anisotropy. The underline mechanisms governing the levitation force associated with superconducting anisotropy have not, however, been identified. Finding the crystal orientation dependence of the levitation force is not only of great interest to fundamental studies, but also important for industrial applications. For instance, the levitation force has been found to be one of the key parameters influencing the energy loss in flywheel energy storage. Enhancement of the levitation force has been the main goal in HTS materials development for magnetic bearings. The study of the relationship between levitation force and various materials parameters including crystal orientation, flux pinning strength, and geometry provide valuable information in further optimizing the materials performance in

  17. Fabrication of high temperature superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya

    2003-06-17

    A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.

  18. The Inductrack Approach to Magnetic Levitation

    Energy Technology Data Exchange (ETDEWEB)

    Post, R.F.; Ryutov, D.D.

    2000-04-19

    Concepts developed during research on passive magnetic bearing systems at the Lawrence Livermore National Laboratory gave rise to a new approach to magnetic levitation, the Inductrack. A passive induced-current system employing permanent magnets on the moving vehicle, the Inductrack maximizes levitation forces by a combination of two elements. First, the permanent magnets on the vehicle are arranged in a ''Halbach array,'' a magnet configuration that optimally produces a periodic magnetic field below the array, while canceling the field above the array. Second, the track is made up of close-packed shorted electrical circuits. These circuits couple optimally to the magnetic field of the Halbach array. As a result, levitating forces of order 40 metric tonnes per square meter of Halbach array can be generated, using NdFeB magnets whose weight is a few percent of the levitated weight. Being an induced-current system, the levitation requires motion of the vehicle above a low transition speed. For maglev applications this speed is a few kilometers per hour, walking speed. At rest or in the station auxiliary wheels are needed. The Inductrack is thus fail-safe, that is, drive system failure would only result in the vehicle slowing down and finally settling on its auxiliary wheels. On the basis of theoretical analyses a small model vehicle and a 20-meter-long track was built and tested at speeds of order 12 meters per second. A second model, designed to achieve 10-g acceleration levels and much higher speeds, is under construction under NASA sponsorship, en route to the design of maglev-based launchers for rockets. Some of the presently perceived practical problems of implementing full-scale maglev systems based on the Inductrack concept will be discussed.

  19. S -wave pairing: A study of low-field dc magnetization in micrometer-sized HTSC powders

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, G.; Bhagat, S.M. (Department of Physics and Astronomy, University of Maryland, College Park, Maryland 20742-4111 (USA))

    1991-04-15

    An extensive study of the low-field ({mu}{sub 0}{ital H} {le} 8 mT) dc initial susceptibility {chi}{sub in} has been performed using micrometer-sized HTSC powders of varying sizes and methods of preparation. It is found, as before, that {chi}{sub in}({ital T}) is essentially constant for {ital T} {approx lt} 0.4{ital T}{sub {ital c}}. This supports {ital s}-wave pairing and implies no zeros of the gap on the fermi surface. Additionally, {chi}{sub in}({ital T}) finds reasonable description in a London model for superconducting spheres and a two-fluid model {lambda}({ital T}).

  20. Numerical Modeling of the Thomson Ring in Stationary Levitation Using FEM-Electrical Network and Newton-Raphson

    Directory of Open Access Journals (Sweden)

    Guzmán Juan

    2015-07-01

    Full Text Available There are a lot of applications of the Thomson ring: levitation of superconductor materials, power interrupters (used as actuator and elimination of electric arcs. Therefore, it is important the numerical modeling of Thomson ring. The aim of this work is to model the stationary levitation of the Thomson ring. This Thomson ring consists of a copper coil with ferromagnetic core and an aluminum ring threaded in the core. The coil is fed by a cosine voltage to ensure that the aluminum ring is in a stationary levitated position. In this situation, the state of the electromagnetic field is stable and can be used the phasor equations of the electromagnetic field. These equations are discretized using the Galerkin method in the Lagrange base space (finite element method, FEM. These equations are solved using the COMSOL software. A methodology is also described (which uses the Newton-Raphson method that obtains the separation between coil and aluminum ring. The numerical solutions of this separation are compared with experimental data. The conclusion is that the magnetic coupling of the aluminum ring on the coil can be neglected if the source voltage is high.

  1. H-formulation for simulating levitation forces acting on HTS bulks and stacks of 2G coated conductors

    Science.gov (United States)

    Sass, F.; Sotelo, G. G.; Junior, R. de Andrade; Sirois, Frédéric

    2015-12-01

    Several techniques to model high temperature superconductors (HTSs) are used throughout the world. At the same time, the use of superconductors in transportation and magnetic bearings promises an increase in energy efficiency. However, the most widespread simulation technique in the literature, the H-formulation, has not yet been used to simulate superconducting levitation. The goal of this work is to present solutions for the challenges concerning the use of the H-formulation to predict the behavior of superconducting levitators built either with YBCO bulks or stacks of 2G wires. It is worth mentioning the originality of replacing bulks with HTS stacks in this application. In our simulation methodology, the movement between the HTS and the permanent magnet was avoided by restricting the simulation domain to the HTS itself, which can be done by applying appropriate boundary conditions and analytical expressions for the source field. Commercial finite element software was used for the sake of ease of implementation. Simulation results were compared with experimental data, showing good agreement. We conclude that the H-formulation is suitable for problems involving moving objects and is a good alternative to other approaches for simulating superconducting magnetic bearings.

  2. Improvement of levitation force characteristics in magnetic levitation type seismic isolation device composed of HTS bulk and permanent magnet

    Science.gov (United States)

    Tsuda, M.; Kawasaki, T.; Yagai, T.; Hamajima, T.

    2008-02-01

    Magnetic levitation type seismic isolation device composed of HTS bulks and permanent magnets can theoretically remove horizontal vibration completely. It is, however, not easy to generate the large levitation force by using only the levitation system composed of HTS bulk and permanent magnet (HTS-PM system). We focused on a hybrid levitation system composed of the HTS-PM system and the PM-PM system composed of only permanent magnets and investigated the suitable arranging method of the hybrid system for improving levitation force and obtaining stable levitation. In order to clarify the most suitable permanent magnet arrangement in the PM-PM system for the levitation force improvement, repulsive force between permanent magnets was measured in various kinds of the PM-PM system. The maximum repulsive force per unit area in the PM-PM system was at least three times larger than the levitation force per unit area in the HTS-PM system, so that the levitation force in the hybrid system was larger than that of the HTS-PM system. Stable levitation was also achieved in the hybrid system. This is because repulsive force in the PM-PM system against horizontal displacement was much smaller than restoring force in the HTS-PM system.

  3. Magnetic Properties of GdBa{sub 2}Cu{sub 3}O{sub 7-y} Bulk Superconductors Fabricated by a Top-seeded Melt Growth Process

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. M.; Park, S. D.; Jun, B. H.; Kim, C. J. [Neutron Science Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, T. K. [Dept. of Electrical and Eletronic Engineering, Yonsei University, Seoul (Korea, Republic of)

    2012-08-15

    The fabrications condition and superconducting properties of top-seeded melt growth (TSMG) processed GdBa{sub 2}Cu{sub 3}O{sub 7-y} (Gd123) bulk superconductors were studied. Processing parameters (a maximum temperature (T{sub max}), a temperature for crystal growth (T{sub G}) and a cooling rate (R{sub G}) through a peritectic temperature (T{sub P}) for the fabrication of single grain Gd123 superconductors were optimized. The magnetic levitation forces, trapped magnetic fields, superconducting transition temperature (Tc) and critical current density (Jc) of the Gd123 bulks superconductors were estimated. Single grain Gd123 bulk superconductors were successfully fabricated at the optimized processing condition. The Tc of a TSMG processed Gd123 sample was 92.5 K and the Jc at 77 K and 0 T was approximately 50{kappa}A/cm{sup 2}. The trapped magnetic field contour and magnetic levitation forces were dependent on the top surface morphology of TSMG processed Gd123 samples. The single grain Gd123 samples, field-cooled at 77 K using a Nd-B-Fe permanent magnet with 5.27 kG and 30 mm dia., showed the trapped magnetic field contour of a single grain with a maximum of 4 kG at the sample center. The maximum magnetic levitation forces of the single grain Gd123 sample, field-cooled or zero field-cooled, were 40 N and 107 N, respectively.

  4. Evaluation of oxygenation time in SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconductors ceramics in air and ozone atmospheres; Avaliacao do tempo de oxigenacao nas ceramicas supercondutoras de SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}} em atmosferas de ar e ozonio

    Energy Technology Data Exchange (ETDEWEB)

    Viana, P.R.P; Cunha, A.G., E-mail: pedrorupf@gmail.co [Instituto Federal do Espirito Santo (IFES), Vitoria, ES (Brazil)

    2010-07-01

    High temperature superconductors (HTSC) represent a major milestone in science. During the preparation of superconductors, oxygenation plays a key role, because oxygenation determines the distribution of charge carriers in these plans through the superconducting Cu-O and hence superconductivity. This paper proposes the preparation of polycrystalline superconductors using the ceramic method, and the step of oxygenation made with ozone gas (O{sub 3}). Ozone exerts chemical pressure on the compound, which has oxygen vacancies in its structure after the step of synthesis. The work was performed by varying the time between oxygenation 20, 40, 80 and 160 hours, with samples going through a process of oxygenation at 350 deg C after the step of synthesis. This study evaluates the time effect as oxygen can improve the superconducting properties such as resistivity and magnetic susceptibility. (author)

  5. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  6. Superconducting bulk magnets for magnetic levitation systems

    Science.gov (United States)

    Fujimoto, H.; Kamijo, H.

    2000-06-01

    The major applications of high-temperature superconductors have mostly been confined to products in the form of wires and thin films. However, recent developments show that rare-earth REBa 2Cu 3O 7- x and light rare-earth LREBa 2Cu 3O 7- x superconductors prepared by melt processes have a high critical-current density at 77 K and high magnetic fields. These superconductors will promote the application of bulk high-temperature superconductors in high magnetic fields; the superconducting bulk magnet for the Maglev train is one possible application. We investigated the possibility of using bulk magnets in the Maglev system, and examined flux-trapping characteristics of multi-superconducting bulks arranged in array.

  7. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  8. Superconductor terahertz metamaterial

    CERN Document Server

    Gu, Jianqiang; Tian, Zhen; Cao, Wei; Xing, Qirong; Han, Jiaguang; Zhang, Weili

    2010-01-01

    We characterize the behaviour of split ring resonators made up of high-transition temperature YBCO superconductor using terahertz time domain spectroscopy. The superconductor metamaterial shows sharp change in the transmission spectrum at the fundamental inductive-capacitive resonance and the dipole resonance as the temperature dips below the transition temperature. Our results reveal that the high performance of such a metamaterial is limited by material imperfections and defects such as cracks, voids and secondary phases which play dominant role in partially impeding the flow of current causing dissipation of energy and electrical resistance to appear in the superconductor film.

  9. Controlled Levitation of Colloids through Direct Current Electric Fields.

    Science.gov (United States)

    Silvera Batista, Carlos A; Rezvantalab, Hossein; Larson, Ronald G; Solomon, Michael J

    2017-07-07

    We report the controlled levitation of surface-modified colloids in direct current (dc) electric fields at distances as far as 75 μm from an electrode surface. Instead of experiencing electrophoretic deposition, colloids modified through metallic deposition or the covalent bonding of poly(ethylene glycol) (PEG) undergo migration and focusing that results in levitation at these large distances. The levitation is a sensitive function of the surface chemistry and magnitude of the field, thus providing the means to achieve control over the levitation height. Experiments with particles of different surface charge show that levitation occurs only when the absolute zeta potential is below a threshold value. An electrodiffusiophoretic mechanism is proposed to explain the observed large-scale levitation.

  10. Thermal levitation of 10 um size particles in low vacuum

    Science.gov (United States)

    Fung, Long Fung Frankie; Kowalski, Nicholas; Parker, Colin; Chin, Cheng

    2016-05-01

    We report on experimental methods for trapping 10 micron-sized ice, glass, ceramic and polyethylene particles with thermophoresis in medium vacuum, at pressures between 5 Torr and 25 Torr. Under appropriate conditions particles can launch and levitate robustly for up to an hour. We describe the experimental setup used to produce the temperature gradient necessary for the levitation, as well as our procedure for generating and introducing ice into the experimental setup. In addition to analyzing the conditions necessary for levitation, and the dependence of levitation on the experimental parameters, we report on the behavior of particles during levitation and ejection, including position and stability, under different pressures and temperatures. We also note a significant discrepancy between theory and data, suggesting the presence of other levitating forces.

  11. Containerless Processing Studies in the MSFC Electrostatic Levitator

    Science.gov (United States)

    Rogers, J. R.; SanSoucie, M. P.

    2012-01-01

    Levitation or containerless processing represents an important tool in materials research. Levitated specimens are free from contact with a container, which permits studies of deeply undercooled melts, and high-temperature, highly reactive materials. Containerless processing provides data for studies of thermophysical properties, phase equilibria, metastable state formation, microstructure formation, undercooling, and nucleation. Levitation techniques include: acoustic, aero-acoustic, electromagnetic, and electrostatic. In microgravity, levitation can be achieved with greatly reduced positioning forces. Microgravity also reduces the effects of buoyancy and sedimentation in melts. The European Space Agency (ESA) and the German Aerospace Center (DLR) jointly developed an electromagnetic levitator facility (MSL-EML) for containerless materials processing in space. The MSL-EML will be accommodated in the European Columbus Facility on the International Space Station (ISS). The electrostatic levitator (ESL) facility at the Marshall Space Flight Center provides support for the development of containerless processing studies for the ISS. The capabilities of the facility and recent results will be discussed.

  12. The role of tactile support in arm levitation.

    Science.gov (United States)

    Peter, Burkhard; Piesbergen, Christoph; Lucic, Kristina; Staudacher, Melina; Hagl, Maria

    2013-10-01

    How many persons need tactile support à la Milton H. Erickson to achieve arm levitation during hypnosis? How do these differ from those who do not need it? Hypnotic arm levitation was suggested three times consecutively to 30 medium suggestible students. Sixteen succeeded without any tactile support; 7 needed it one or two times; 5 needed it every time; and 2 achieved no arm levitation at all. Participants without any tactile support went more quickly into deeper hypnosis, experienced more involuntariness, less effort, and had higher electrodermal activity. This greater physiological activity seems necessary for hypnotic arm levitation as a form of "attentive hypnosis" in contrast to "relaxation hypnosis." A change in verbal suggestion from "imagine a helium balloon" to "leave levitation to your unconscious mind" revealed no differences. Several issues resulting from this exploratory arm levitation study are discussed. The idea of different proprioceptive-kinesthetic abilities is introduced and the profound need of co-creating an individual suggestion is emphasized.

  13. Coasting characteristic of the flywheel system under anisotropy effect of bulk high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J.F., E-mail: wujf@ciomp.ac.cn; Li, Y.

    2014-10-15

    Highlights: • Coasting time was investigated from the point-view of HTS flywheel applications. • The coasting time of aligned growth section boundary pattern (AGSBP) is shorter than that of MGSBP. • The electric magnetic drag force with AGSBP is larger than that of MGSBP. • This result may also exist in the maglev guideline when the maglev train stops freely. - Abstract: High-temperature superconductors (HTSCs) array with aligned growth section boundary (GSB) pattern (AGSBP) exhibits larger levitation force and suppression of levitation force decay above a permanent magnet guideway (PMG) compared with misaligned GSB pattern (MGSBP) has been studied in maglev train application (Zheng et al., 2013). This result maybe helpful and support a new way for the HTS bearing design for flywheel systems. So, in this paper, we further examine this growth anisotropy effect on the maglev performance of flywheel system. Levitation force and coasting time were investigated from the point-view of HTS flywheel applications. The GS/GSB alignment of AGSBP bulk HTSCs produces larger levitation force than that of MGSBP, but the coasting time is shorter than that of MGSBP, that is to say, the electric magnetic drag force with AGSBP is larger than that of MGSBP. This result may also exist in the maglev guideline when the maglev train stops freely.

  14. Optical levitation of a microdroplet containing a single quantum dot.

    Science.gov (United States)

    Minowa, Yosuke; Kawai, Ryoichi; Ashida, Masaaki

    2015-03-15

    We demonstrate the optical levitation or trapping in helium gas of a single quantum dot (QD) within a liquid droplet. Bright single photon emission from the levitated QD in the droplet was observed for more than 200 s. The observed photon count rates are consistent with the value theoretically estimated from the two-photon-action cross section. This Letter presents the realization of an optically levitated solid-state quantum emitter.

  15. Livermore's 2004 R&D 100 Awards: Magnetically Levitated Train Takes Flight

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2005-09-20

    , must be maintained to within {+-}1 millimeter. Position sensors and electronic feedback systems are required to control the magnetic current and to compensate for the inherent instability. This requirement, plus the onboard source of emergency power required to ensure operational safety during a sudden power loss, increases the complexity of EMS trains. In contrast, in electrodynamic systems (EDS), large superconducting magnet coils mounted on the sides of the train generate high-intensity magnetic field poles. Interaction of the current between the coils and the track levitates the train. At operating speeds (above a liftoff speed of about 100 kilometers per hour), the magnetic levitation force balances the weight of the car at a stable position. EDS trains do not require the feedback control systems that EMS trains use to stabilize levitation. However, the superconducting magnetic coils must be kept at temperatures of only 5 kelvins, so costly electrically powered cryogenic equipment is required. Also, passengers, especially those with pacemakers, must be shielded from the high magnetic fields generated by the superconductors.

  16. The Inductrack concept: A new approach to magnetic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Post, R.F.; Ryutov, D.

    1996-05-01

    This report describes theoretical and experimental investigations of a new approach to the problem of the magnetic levitation of a moving object. By contrast with previously studied levitation approaches, the Inductrack concept concept represents a simpler, potentially less expensive, and totally passive means of levitating a high-speed train. It may also be applicable to other areas where simpler magnetic levitation systems are needed, for example, high-speed test sleds for crash testing applications, or low-friction conveyer systems for industrial use.

  17. Electrodynamics of Metallic Superconductors

    Directory of Open Access Journals (Sweden)

    M. Dressel

    2013-01-01

    Full Text Available The theoretical and experimental aspects of the microwave, terahertz, and infrared properties of superconductors are discussed. Electrodynamics can provide information about the superconducting condensate as well as about the quasiparticles. The aim is to understand the frequency dependence of the complex conductivity, the change with temperature and time, and its dependence on material parameters. We confine ourselves to conventional metallic superconductors, in particular, Nb and related nitrides and review the seminal papers but also highlight latest developments and recent experimental achievements. The possibility to produce well-defined thin films of metallic superconductors that can be tuned in their properties allows the exploration of fundamental issues, such as the superconductor-insulator transition; furthermore it provides the basis for the development of novel and advanced applications, for instance, superconducting single-photon detectors.

  18. Anomalous transport properties of a two-phase system of HTSC + NiTiO sub 3 paramagnetics, forming the net of random Josephson junctions

    CERN Document Server

    Petrov, M I; Shajkhutdinov, K A; Popkov, S I

    2002-01-01

    The magnetoresistive properties of the 92.5 at % Y sub 3 sub / sub 4 Lu sub 1 sub / sub 4 Ba sub 2 Cu sub 3 O sub 7 + 7.5 at % NiTiO sub 3 composites, representing the net of random tunnel transitions of the Josephson type, are synthesized and studied. The area, whereon R does not depend on the j-current and slightly depends on the H magnetic field is identified on the temperature dependences of the electric resistance R(T) of the composites with the NiTiO sub 3 paramagnetic compound below the temperature of the HTSC T sub c transition. The anomalous behavior of the HTSC + NiTiO sub 3 composites is explained by the effect of the Ni atoms magnetic moments in the dielectric barriers on the current transport

  19. Aerodynamic levitation : an approach to microgravity.

    Energy Technology Data Exchange (ETDEWEB)

    Glorieux, B.; Saboungi, M.-L.; Millot, F.; Enderby, J.; Rifflet, J.-C.

    2000-12-05

    Measurements of the thermophysical and structural properties of liquid materials at high temperature have undergone considerable development in the past few years. Following improvements in electromagnetic levitation, aerodynamic levitation associated with laser heating has shown promise for assessing properties of different molten materials (metals, oxides, and semiconductors), preserving sample purity over a wide range of temperatures and under different gas environments. The density, surface tension and viscosity are measured with a high-speed video camera and an image analysis system. Results on nickel and alumina show that small droplets can be considered in the first approximation to be under microgravity conditions. Using a non-invasive contactless technique recently developed to measure electrical conductivity, results have been extended to variety of materials ranging from liquid metals and liquid semiconductors to ionically conducting materials. The advantage of this technique is the feasibility of monitoring changes in transport occurring during phase transitions and in deeply undercooled states.

  20. New laser power sensor using diamagnetic levitation.

    Science.gov (United States)

    Pinot, P; Silvestri, Z

    2017-08-01

    This paper presents a preliminary study of an elementary device consisting of a small plate made from pyrolytic carbon levitated above a magnet array which is sensitive to any irradiating laser power. This device might provide an interesting alternative to power meters based on thermal measurement techniques via the Stefan-Boltzmann law or the photon-electron interaction. We show that the photo-response of a pyrolytic carbon plate in terms of levitation height versus irradiation power in the range of 20 mW to 1 W is sufficiently linear, sensitive, and reproducible to be used as a laser power sensor. The elevation height change as a function of irradiance time appears to be a suitable measurement parameter for establishing a relation with the irradiating laser power. The influence of some quantities affecting the measurement results has been highlighted. The study demonstrates that such a device should prove useful for applications in metrology, industry, or emerging technologies.

  1. Magnetic levitation system for moving objects

    Science.gov (United States)

    Post, Richard F.

    1998-01-01

    Repelling magnetic forces are produced by the interaction of a flux-concentrated magnetic field (produced by permanent magnets or electromagnets) with an inductively loaded closed electric circuit. When one such element moves with respect to the other, a current is induced in the circuit. This current then interacts back on the field to produce a repelling force. These repelling magnetic forces are applied to magnetically levitate a moving object such as a train car. The power required to levitate a train of such cars is drawn from the motional energy of the train itself, and typically represents only a percent or two of the several megawatts of power required to overcome aerodynamic drag at high speeds.

  2. Magnetic Levitation Experiments with the Electrodynamic Wheel

    Science.gov (United States)

    Cordrey, Vincent; Gutarra-Leon, Angel; Gaul, Nathan; Majewski, Walerian

    Our experiments explored inductive magnetic levitation using circular Halbach arrays with the strong variable magnetic field on the outer rim of the ring. Such a system is usually called an Electrodynamic Wheel (EDW). Rotating this wheel around a horizontal axis above a flat conducting surface should induce eddy currents in said surface through the variable magnetic flux. The eddy currents produce, in turn, their own magnetic fields which interact with the magnets of the EDW. We constructed two Electrodynamic Wheels with different diameters and demonstrated that the magnetic interactions produce both lift and drag forces on the EDW which can be used for levitation and propulsion of the EDW. The focus of our experiments is the direct measurement of lift and drag forces to compare with theoretical models using wheels of two different radii. Supported by Grants from the Virginia Academy of Science, Society of Physics Students, Virginia Community College System, and the NVCC Educational Foundation.

  3. Aerodynamics of magnetic levitation (MAGLEV) trains

    Science.gov (United States)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  4. Use of acoustic vortices in acoustic levitation

    DEFF Research Database (Denmark)

    Cutanda Henriquez, Vicente; Santillan, Arturo Orozco; Juhl, Peter Møller

    2009-01-01

    Acoustic fields are known to exert forces on the surfaces of objects. These forces are noticeable if the sound pressure is sufficiently high. Two phenomena where acoustic forces are relevant are: i) acoustic levitation, where strong standing waves can hold small objects at certain positions......, counterbalancing their weight, and ii) acoustic vortices, spinning sound fields that can impinge angular momentum and cause rotation of objects. In this contribution, both force-creating sound fields are studied by means of numerical simulations. The Boundary Element Method is employed to this end. The simulation...... of acoustical vortices uses an efficient numerical implementation based on the superposition of two orthogonal sound fields with a delay of 90° between them. It is shown that acoustic levitation and the use of acoustic vortices can be combined to manipulate objects in an efficient and controlled manner without...

  5. Magnetic levitation from negative permeability materials

    Energy Technology Data Exchange (ETDEWEB)

    Coffey, Mark W., E-mail: mcoffey@mines.edu [Department of Physics, Colorado School of Mines, Golden, CO 80401 (United States)

    2012-09-03

    As left-handed materials and metamaterials are becoming more prevalent, we examine the effect of negative permeability upon levitation force. We first consider two half spaces of differing permeability and a point magnetic source, so that the method of images may be employed. We determine that the resulting force may be larger than for conventional magnetic materials. We then illustrate the inclusion of a finite sample thickness. -- Highlights: ► The effect of negative permeability upon levitation force is considered. ► Such an effect could be realized with metamaterials. ► The resulting force may be larger than with conventional materials. ► The analysis is extended to allow for a finite sample thickness. ► Representative numerical values are given.

  6. Topological superconductors: a review.

    Science.gov (United States)

    Sato, Masatoshi; Ando, Yoichi

    2017-04-03

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  7. Layered nickel based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Park, Tuson [Los Alamos National Laboratory; Kurita, Nobuyuki [Los Alamos National Laboratory; Klimczuk, T [Los Alamos National Laboratory; Movshovich, R [Los Alamos National Laboratory; Thompson, J D [Los Alamos National Laboratory; Sefat, A S [ORNL; Mandrus, D [ORNL

    2009-01-01

    We review the properties of Ni-based superconductors which contain Ni{sub 2}X{sub 2} (X=As, P, Bi, Si, Ge, B) planes, a common structural element to the recently discovered FeAs superconductors. We also compare the properties ofthe Ni-and Fe-based systems from a perspective ofelectronic structure as well as structure-property relations.

  8. Continuous lengths of oxide superconductors

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  9. Zero Power Levitation Control of Hybrid Electro-Magnetic Levitation System by Load Observer

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Youn Hyun; Lee, Ju [Hanyang University, Seoul (Korea)

    2001-06-01

    This paper introduces the scheme that improve the control performance of electromagnetic levitation system with zero power controller. Magnetic levitation is used widely, but the electromagnetic force has nonlinear characteristics because it is proportioned to a square of the magnetic flux density and it is in inverse proportion to a square of the air gap. So, it is complicate and difficult to control the electromagnetic force. Besides, it is more difficult to control if the equivalent gap is unknown in case of zero power control. Therefore, this paper proposed the hybrid electro-magnetic levitation control method in which the variable load is estimated by using a load observer and its system is controlled at a new zero power equilibrium air gap position. Also it is confirmed that the proposed control method improve the control performance through simulation and experiment. (author). 10 refs., 17 figs., 1 tab.

  10. Sputter coating of microspherical substrates by levitation

    Science.gov (United States)

    Lowe, A.T.; Hosford, C.D.

    Microspheres are substantially uniformly coated with metals or nonmetals by simltaneously levitating them and sputter coating them at total chamber pressures less than 1 torr. A collimated hole structure comprising a parallel array of upwardly projecting individual gas outlets is machined out to form a dimple. Glass microballoons,, which are particularly useful in laser fusion applications, can be substantially uniformly coated using the coating method and apparatus.

  11. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  12. Knolle Magnetrans: A magnetically levitated train system

    Science.gov (United States)

    Knolle, Ernst G.

    1992-05-01

    The Knolle Magnetrans is a continuous transportation system featuring small cars traveling in rapid succession, levitated by permanent magnets in repulsion, and propelled by stationary linear induction motors. The vehicles' headway, speed, acceleration, and deceleration are designed into the system and mechanically enforced. Passengers board dynamically and controls consist of a simple on-off relay. This paper summarizes the system design goals, describes the system components and discusses related environmental issues.

  13. Experimenting with a Superconducting Levitation Train

    Science.gov (United States)

    Miryala, Santosh; Koblischka, M. R.

    2014-01-01

    The construction and operation of a prototype high-"Tc" superconducting train model is presented. The train is levitated by a melt-processed GdBa[subscript 2]Cu[subscript 3]O[subscript x] (Gd-123) superconducting material over a magnetic rail (track). The oval shaped track is constructed in S-N-S or PM3N configuration arranged on an iron…

  14. Effects of oxide coating on the growth of single grain YBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.D.; Jun, B.-H. [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Park, B.J.; Jung, S.Y. [Superconductivity and Applications Group, Korea Electric Power Research Institute (KEPRI), Daejeon 305-380 (Korea, Republic of); Seong, B.S. [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of); Kim, C.-J., E-mail: cjkim2@kaeri.re.k [Neutron Science Division, Korea Atomic Energy Research Institute (KAERI), Daejeon 305-353 (Korea, Republic of)

    2009-10-15

    Surface oxide coating and bottom inserting of oxide plates have been conducted to top seeded melt growth (TSMG) processed YBa{sub 2}Cu{sub 3}O{sub 7-y} (Y123) bulk superconductors with an aim of controlling the Y123 nucleation and growth. The coating medium for surfaces was Yb{sub 2}O{sub 3} solution and the bottom inserts were Yb{sub 2}O{sub 3}/Y{sub 2}O{sub 3} powder compact. Many vertical cracks were found to develop at the compact/insert interfaces when an Yb{sub 2}O{sub 3} insert was used, but the crack evolution was greatly reduced when a (Yb{sub 2}O{sub 3} + Y{sub 2}O{sub 3}) insert was used. The formation of the vertical cracks is ascribed to the difference in thermal expansion between the YBCO compact and bottom insert. Presence of vertical cracks was found to be crucial to the trapped magnetic field and levitation forces of single grain YBCO bulk superconductors. The Y123 nucleation and growth in TSMG-processed YBCO bulk superconductors were successfully controlled by conducting surface coating and bottom plating using a (Yb{sub 2}O{sub 3} + Y{sub 2}O{sub 3}) insert and as a result, the levitation properties were much enhanced.

  15. MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.; Rogers, Jan R.

    2014-01-01

    The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) Laboratory is a unique facility for investigators studying high-temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified, all without the interference of a container or data-gathering instrument. The ESL main chamber has been upgraded with the addition of a rapid quench system. This system allows samples to be dropped into a quench vessel that can be filled with a low melting point material, such as a gallium or indium alloy. Thereby allowing rapid quenching of undercooled liquid metals. Up to 8 quench vessels can be loaded into the quench wheel, which is indexed with LabVIEW control software. This allows up to 8 samples to be rapidly quenched before having to open the chamber. The system has been tested successfully on several zirconium samples. Future work will be done with other materials using different quench mediums. Microstructural analysis will also be done on successfully quench samples.

  16. Material Specific Rational Design of A1B2C3O7 High-Tc Superconductors without Copper [A, B, C = Cations

    Science.gov (United States)

    Isikaku-Ironkwe, O'paul; Schaffer, Michael J.

    Soon after the discovery of YBa2Cu3O7 with Tc = 93K, a similar structured system with Ag replacing Cu was discovered with a Tc = 50K. Also, the discovery of Ba0 . 6 K0 . 4 BiO3 with Tc = 30K indicated that Cu was not indispensable for high temperature superconductivity (HTSC). Latter, the discoveries of the Pnictide and Chalcogenide high-Tc superconductors confirmed those earlier experimental indications. Using our recently developed Material Specific Characterization Dataset (MSCD) model for analysis and design of superconductors, we have computed many designs that satisfy the MSCD characteristics of YBa2Cu3O7 as a design model. Our design recognizes the valence state characteristics that make YBa2Cu3O6 a semiconductor, while YBa2Cu3O7is a superconductor. Here we present ten material specific rational design examples of potential A1B2C3O7 HTSCs without Cu, using the YBa2Cu3O7 design model. This MSCD design model opens the possibility for search and discovery of high-Tc oxide superconductor systems without copper.

  17. Test Status for Proposed Coupling of a Gravitational Force to Extreme Type II YBCO Ceramic Superconductors

    Science.gov (United States)

    Noever, David; Li, Ning; Robertson, Tony; Koczor, Ron; Brantley, Whitt

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair electron density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (about 10-6 g/cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with the percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10(exp 4) was reported above a stationary (non-rotating) superconductor. In the present experiments reported using a sensitive gravimeter (resolution superconductors were stably levitated in a DC magnetic field (0.6 Tesla) subject to lateral AC fields (60 Gauss at 60 Hz) and rotation. With magnetic shielding, thermal control and buoyancy compensation, changes in acceleration were measured to be less than 2 parts in 10(exp 8) of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between high-Tc superconductors and gravity. Latest test results will be reported, along with status for future improvements and prospects.

  18. Test Status for Proposed Coupling of a Gravitational Force to Extreme Type II YBCO Ceramic Superconductors

    Science.gov (United States)

    Noever, David; Li, Ning; Robertson, Tony; Koczor, Ron; Brantley, Whitt

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair electron density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (about 10-6 g/cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with the percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10(exp 4) was reported above a stationary (non-rotating) superconductor. In the present experiments reported using a sensitive gravimeter (resolution YBCO superconductors were stably levitated in a DC magnetic field (0.6 Tesla) subject to lateral AC fields (60 Gauss at 60 Hz) and rotation. With magnetic shielding, thermal control and buoyancy compensation, changes in acceleration were measured to be less than 2 parts in 10(exp 8) of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between high-Tc superconductors and gravity. Latest test results will be reported, along with status for future improvements and prospects.

  19. Counter magnetization of SmCo5 permanent magnet by YBCO/Ag composite bulk superconductor — A competing interaction picture

    Science.gov (United States)

    Parthasarathy, R.; Lakshmi, M. M.; Seshubai, V.

    2012-06-01

    We report here for the first time the counter magnetization of an SmCo5 permanent magnet in the presence of a YBCO/Ag composite bulk superconductor. This remarkable phenomenon has been observed during our experiments to measure the levitation force of the superconductor. The inclination to study the effects of the superconductor on the permanent magnet led us to observe this surprising and curious phenomenon for the first time. A complete M-H hysteresis loop of the SmCo5 permanent magnet has been recorded using the bulk superconductor itself as a magnet. We present some of the initial results which are interesting and we discuss the possible kind of interaction that could lead to our observations.

  20. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and dev

  1. Method for obtaining large levitation pressure in superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  2. Method for obtaining large levitation pressure in superconducting magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1997-01-01

    A method and apparatus for compressing magnetic flux to achieve high levitation pressures. Magnetic flux produced by a magnetic flux source travels through a gap between two high temperature superconducting material structures. The gap has a varying cross-sectional area to compress the magnetic flux, providing an increased magnetic field and correspondingly increased levitation force in the gap.

  3. Spin-stabilized magnetic levitation without vertical axis of rotation

    Science.gov (United States)

    Romero, Louis [Albuquerque, NM; Christenson, Todd [Albuquerque, NM; Aaronson, Gene [Albuquerque, NM

    2009-06-09

    The symmetry properties of a magnetic levitation arrangement are exploited to produce spin-stabilized magnetic levitation without aligning the rotational axis of the rotor with the direction of the force of gravity. The rotation of the rotor stabilizes perturbations directed parallel to the rotational axis.

  4. Development and Control of a Non Linear Magnetic Levitation System

    Directory of Open Access Journals (Sweden)

    A Sanjeevi Gandhi

    2013-06-01

    Full Text Available Nowadays, studies to develop and control non linear systems is of great significance. Magnetic Levitation System has gained considerable interests due to its great practical importance in different engineering fields In this paper an electromagnetic levitation system was developed and mathematical model for the system was derived. The developed system was controlled manually.

  5. Potential Development of Vehicle Traction Levitation Systems with Magnetic Suspension

    Directory of Open Access Journals (Sweden)

    A.V. Kireev

    2015-03-01

    Full Text Available Below is given the brief analysis of development trend for vehicle traction levitation systems with magnetic suspension. It is presented the assessment of potential development of traction levitation systems in terms of their simplicity. The examples are considered of technical solutions focused on reducing the complexity of transport systems. It is proposed the forecast of their further development.

  6. 3D modeling of forces between magnet and HTS in a levitation system using new approach of the control volume method based on an unstructured grid

    Energy Technology Data Exchange (ETDEWEB)

    Alloui, L., E-mail: lotfi.alloui@lgep.supelec.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Laboratoire de modelisation des systemes energetiques (LMSE), Universite de Biskra, 07000 Biskra (Algeria); Bouillault, F., E-mail: bouillault@lgep.supelec.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Bernard, L., E-mail: laurent.bernardl@lgep.supelc.fr [Laboratoire de Genie Electrique de Paris - LGEP, CNRS UMR 8507, Supelec, Universite Pierre et Marie Curie-Paris 6, Universite Paris Sud-Paris 11, Plateau de Moulon, 11 rue Joliot Curie, 91192 Gif-Sur-Yvette Cedex (France); Leveque, J., E-mail: jean.leveque@green.uhp-nancy.fr [Groupe de recherche en electronique et electrotechnique de Nancy, Universite Henry Poincare, BP 239, 54506 Vandoeuvre les Nancy (France)

    2012-05-15

    In this paper we present new 3D numerical model to calculate the vertical and the guidance forces in high temperature superconductors taking into account the influence of the flux creep phenomena. In the suggested numerical model, we adopt a new approach of the control volume method. This approach is based on the use of an unstructured grid which can be used to model more complex geometries. A comparison of the control volume method results with experiments verifies the validity of this approach and the proposed numerical model. Based on this model, the levitation force's relaxation at different temperatures was also studied.

  7. Space Environment Simulation for Material Processing by Acoustic Levitation

    Institute of Scientific and Technical Information of China (English)

    解文军; 魏炳波

    2001-01-01

    Single-axis acoustic levitation of four polymer samples has been realized in air under the ground-based laboratory conditions for the purpose of space environment simulation of containerless processing. The levitation capabilities are investigated by numerical calculations based on a model of the boundary element method corresponding to our levitator and following Gor'kov and Barmatz's method. The calculated results, such as the resonant distance between the reflector and the vibrating source and the positions of levitated samples, agree well with experimental observation, and the effect of gravity on the time-averaged potential for levitation force is also revealed. As an application, the containerless melting and solidification of a liquid crystal, 4-Pentylphenyl-4'-methybenzoate, is successfully accomplished, in which undercooling up to 16 K is obtained and the rotation and oscillation of the sample during solidification may result in fragmentation of the usual radiating surface growth morphology.

  8. Self-doping processes between planes and chains in the metal-to-superconductor transition of YBa2Cu3O6.9.

    Science.gov (United States)

    Magnuson, M; Schmitt, T; Strocov, V N; Schlappa, J; Kalabukhov, A S; Duda, L-C

    2014-11-12

    The interplay between the quasi 1-dimensional CuO-chains and the 2-dimensional CuO2 planes of YBa(2)Cu(3)O(6+x) (YBCO) has been in focus for a long time. Although the CuO-chains are known to be important as charge reservoirs that enable superconductivity for a range of oxygen doping levels in YBCO, the understanding of the dynamics of its temperature-driven metal-superconductor transition (MST) remains a challenge. We present a combined study using x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) revealing how a reconstruction of the apical O(4)-derived interplanar orbitals during the MST of optimally doped YBCO leads to substantial hole-transfer from the chains into the planes, i.e. self-doping. Our ionic model calculations show that localized divalent charge-transfer configurations are expected to be abundant in the chains of YBCO. While these indeed appear in the RIXS spectra from YBCO in the normal, metallic, state, they are largely suppressed in the superconducting state and, instead, signatures of Cu trivalent charge-transfer configurations in the planes become enhanced. In the quest for understanding the fundamental mechanism for high-Tc-superconductivity (HTSC) in perovskite cuprate materials, the observation of such an interplanar self-doping process in YBCO opens a unique novel channel for studying the dynamics of HTSC.

  9. Development of Y-Ba-Cu-O Superconductors for Magnetic Bearings

    Science.gov (United States)

    Selvamanickam, V.; Pfaffenbach, K.; Sokolowski, R. S.; Zhang, Y.; Salama, K.

    1996-01-01

    The material requirements, material manufacturing and magnetic properties that are relevant to fabrication of High Temperature Superconductor (HTS) magnetic bearings have been discussed. It is found that the seeded-melt-texturing method can be used to fabricate the single domain material that is required to achieve the best magnetic properties. Trapped-field mapping has been used as a non-destructive tool to determine the single-domain nature of the HTS material and quantity of the HTS disks. Both the trapped field and the levitation force of the Y-Ba-Cu-O disks are found to be strongly sensitive to the oxygen content.

  10. 373 K Superconductors

    CERN Document Server

    Kostadinov, Ivan Zahariev

    2016-01-01

    Experimental evidence of superconductors with critical temperatures above $373\\:K$ is presented. In a family of different compounds we demonstrate the superconductor state, the transition to normal state above $387\\:K$, an intermediate $242\\:K$ superconductor, susceptibility up to $350\\:K$, $I-V$ curves at $4.2\\:K$ in magnetic field of $12\\:T$ and current up to $60\\:A$, $300\\:K$ Josephson Junctions and Shapiro steps with radiation of $5\\:GHz$ to $21\\:THz$, $300\\:K$ tapes tests with high currents up to $3000\\:A$ and many $THz$ images of coins and washers. Due to a pending patent, the exact chemical characterization and technological processes for these materials are temporarily withheld and will be presented elsewhere.

  11. Lightning in superconductors.

    Science.gov (United States)

    Vestgården, J I; Shantsev, D V; Galperin, Y M; Johansen, T H

    2012-01-01

    Crucially important for application of type-II superconductor films is the stability of the vortex matter--magnetic flux lines penetrating the material. If some vortices get detached from pinning centres, the energy dissipated by their motion will facilitate further depinning, and may trigger a massive electromagnetic breakdown. Up to now, the time-resolved behaviour of these ultra-fast events was essentially unknown. We report numerical simulation results revealing the detailed dynamics during breakdown as within nanoseconds it develops branching structures in the electromagnetic fields and temperature, with striking resemblance of atmospheric lightning. During a dendritic avalanche the superconductor is locally heated above its critical temperature, while electrical fields rise to several kV/m as the front propagates at instant speeds near up to 100 km/s. The numerical approach provides an efficient framework for understanding the ultra-fast coupled non-local dynamics of electromagnetic fields and dissipation in superconductor films.

  12. Bi-based superconductor

    Directory of Open Access Journals (Sweden)

    S E Mousavi

    2009-08-01

    Full Text Available   In this paper, Bi-Sr-Ca-Cu-O (BCSCCO system superconductor is made by the solid state reaction method. The effect of doping Pb, Cd, Sb, Cu and annealing time on the critical temperature and critical current density have been investigated. The microstructure and morphology of the samples have been studied by X-ray diffraction, scanning electron microscope and energy dispersive X-ray. The results show that the fraction of Bi-2223 phase in the Bi- based superconductor, critical temperature and critical current density depend on the annealing temperature, annealing time and the kind and amount of doping .

  13. Physical Vacuum in Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2009-01-01

    Although experiments carried out by Jain et al. showed that the Cooper pairs obey the strong equivalence principle, The measurement of the Cooper pairs inertial mass by Tate et al. revealed an anomalous excess of mass. In the present paper we interpret these experimental results in the framework of an electromagnetic model of dark energy for the superconductors' vacuum. We argue that this physical vacuum is associated with a preferred frame. Ultimately from the conservation of energy for Cooper pairs we derive a model for a variable vacuum speed of light in the superconductors physical vacuum in relation with a possible breaking of the weak equivalence principle for Cooper pairs.

  14. Breakpoint phenomenon in layered superconductors

    Science.gov (United States)

    Shukrinov, Yu M.

    2008-10-01

    We study theoretically the multiple branch structure in the IV-characteristics of intrinsic Josephson junctions in HTSC and investigate in detailed its outermost branch at difierent values of the dissipation parameter. A difierent character of the IV-characteristics in the difierent intervals of the dissipation parameter β was observed. This feature follows from the fact of the creation of the longitudinal plasma wave with difierent wave number k. The possibility to observe experimentally the change of the wave vector of the longitudinal plasma wave by changing the temperature is analyzed.

  15. Breakpoint phenomenon in layered superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shukrinov, Yu M [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia and Photonics and Electronics Science and Engineering Center, Kyoto University, Kyoto 615-8510 (Japan)], E-mail: shukrinv@theor.jinr.ru

    2008-10-15

    We study theoretically the multiple branch structure in the IV-characteristics of intrinsic Josephson junctions in HTSC and investigate in detailed its outermost branch at different values of the dissipation parameter. A different character of the IV-characteristics in the different intervals of the dissipation parameter {beta} was observed. This feature follows from the fact of the creation of the longitudinal plasma wave with different wave number k. The possibility to observe experimentally the change of the wave vector of the longitudinal plasma wave by changing the temperature is analyzed.

  16. Superconductor-Magnet Bearings With Inherent Stability and Velocity-Independent Drag Torque

    Science.gov (United States)

    Lee, Eun-Jeong; Ma, Ki Bui; Wilson, Thomas L.; Chu, Wei-Kan

    1999-01-01

    A hybrid superconductor magnet bearing system has been developed based on passive magnetic levitation and the flux pinning effect of high-temperature superconductivity. The rationale lies in the unique capability of a high-temperature superconductor (HTS) to enhance system stability passively without power consumption. Characterization experiments have been conducted to understand its dynamic behavior and to estimate the required motor torque for its driving system design. These experiments show that the hybrid HTS-magnet bearing system has a periodic oscillation of drag torque due mainly to the nonuniform magnetic field density of permanent magnets. Furthermore, such a system also suffers from a small superimposed periodic oscillation introduced by the use of multiple HTS disks rather than a uniform annulus of HTS material. The magnitude of drag torque is velocity independent and very small. These results make this bearing system appealing for high-speed application. Finally, design guidelines for superconducting bearing systems are suggested based on these experimental results.

  17. Smart-Phone Based Magnetic Levitation for Measuring Densities.

    Science.gov (United States)

    Knowlton, Stephanie; Yu, Chu Hsiang; Jain, Nupur; Ghiran, Ionita Calin; Tasoglu, Savas

    2015-01-01

    Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary) and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary) relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform.

  18. Smart-Phone Based Magnetic Levitation for Measuring Densities.

    Directory of Open Access Journals (Sweden)

    Stephanie Knowlton

    Full Text Available Magnetic levitation, which uses a magnetic field to suspend objects in a fluid, is a powerful and versatile technology. We develop a compact magnetic levitation platform compatible with a smart-phone to separate micro-objects and estimate the density of the sample based on its levitation height. A 3D printed attachment is mechanically installed over the existing camera unit of a smart-phone. Micro-objects, which may be either spherical or irregular in shape, are suspended in a paramagnetic medium and loaded in a microcapillary tube which is then inserted between two permanent magnets. The micro-objects are levitated and confined in the microcapillary at an equilibrium height dependent on their volumetric mass densities (causing a buoyancy force toward the edge of the microcapillary and magnetic susceptibilities (causing a magnetic force toward the center of the microcapillary relative to the suspending medium. The smart-phone camera captures magnified images of the levitating micro-objects through an additional lens positioned between the sample and the camera lens cover. A custom-developed Android application then analyzes these images to determine the levitation height and estimate the density. Using this platform, we were able to separate microspheres with varying densities and calibrate their levitation heights to known densities to develop a technique for precise and accurate density estimation. We have also characterized the magnetic field, the optical imaging capabilities, and the thermal state over time of this platform.

  19. A levitation instrument for containerless study of molten materials.

    Science.gov (United States)

    Nordine, Paul C; Merkley, Dennis; Sickel, Jeffrey; Finkelman, Steve; Telle, Rainer; Kaiser, Arno; Prieler, Robert

    2012-12-01

    A new aero-acoustic levitation instrument (AAL) has been installed at the Institute for Mineral Engineering at RWTH University in Aachen, Germany. The AAL employs acoustically stabilized gas jet levitation with laser-beam heating and melting to create a contact-free containerless environment for high temperature materials research. Contamination-free study of liquids is possible at temperatures in excess of 3000 °C and of undercooled liquids at temperatures far below the melting point. Digital control technology advances the art of containerless experiments to obtain long-term levitation stability, allowing new experiments in extreme temperature materials research and to study operation of the levitation instrument itself. Experiments with liquid Al(2)O(3) at temperatures more than 3200 °C, 1200 °C above the melting point, and with liquid Y(3)Al(5)O(12) far below the melting point are reported. Fast pyrometry and video recording instruments yield crystallization rates in undercooled liquid Al(2)O(3) as a function of temperature. Levitation of dense liquid HfO(2) at temperatures above 2900 °C is demonstrated. Capabilities are described for resonant frequency matching in the three-axis acoustic positioning system, acoustic control of sample spin, and position control of standing wave nodes to stabilize levitation under changing experimental conditions. Further development and application of the levitation technology is discussed based on the results of experiments and modeling of instrument operations.

  20. Inverse Leidenfrost Effect: Levitating Drops on Liquid Nitrogen.

    Science.gov (United States)

    Adda-Bedia, M; Kumar, S; Lechenault, F; Moulinet, S; Schillaci, M; Vella, D

    2016-05-03

    We explore the interaction between a liquid drop (initially at room temperature) and a bath of liquid nitrogen. In this scenario, heat transfer occurs through film-boiling: a nitrogen vapor layer develops that may cause the drop to levitate at the bath surface. We report the phenomenology of this inverse Leidenfrost effect, investigating the effect of the drop size and density by using an aqueous solution of a tungsten salt to vary the drop density. We find that (depending on its size and density) a drop either levitates or instantaneously sinks into the bulk nitrogen. We begin by measuring the duration of the levitation as a function of the radius R and density ρd of the liquid drop. We find that the levitation time increases roughly linearly with drop radius but depends weakly on the drop density. However, for sufficiently large drops, R ≥ Rc(ρd), the drop sinks instantaneously; levitation does not occur. This sinking of a (relatively) hot droplet induces film-boiling, releasing a stream of vapor bubbles for a well-defined length of time. We study the duration of this immersed-drop bubbling finding similar scalings (but with different prefactors) to the levitating drop case. With these observations, we study the physical factors limiting the levitation and immersed-film-boiling times, proposing a simple model that explains the scalings observed for the duration of these phenomena, as well as the boundary of (R,ρd) parameter space that separates them.

  1. Manufacturing of Superconductors

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels

    Superconducting tapes based on the ceramic high temperature superconductor (HTS) is a new promising product for high current applications such as electro-magnets and current transmission cables. The tapes are made by the oxide powder in tube (OPIT) method implying drawing and rolling of silver tu...

  2. Amorphization of Molecular Liquids of Pharmaceutical Drugs by Acoustic Levitation

    Directory of Open Access Journals (Sweden)

    C. J. Benmore

    2011-08-01

    Full Text Available It is demonstrated that acoustic levitation is able to produce amorphous forms from a variety of organic molecular compounds with different glass forming abilities. This can lead to enhanced solubility for pharmaceutical applications. High-energy x-ray experiments show that several viscous gels form from saturated pharmaceutical drug solutions after 10–20 min of levitation at room temperature, most of which can be frozen in solid form. Laser heating of ultrasonically levitated drugs can also result in the vitrification of molecular liquids, which is not attainable using conventional amorphization methods.

  3. Studies of the Stability and Dynamics of Levitated Drops

    Science.gov (United States)

    Anikumar, A.; Lee, Chun Ping; Wang, T. G.

    1996-01-01

    This is a review of our experimental and theoretical studies relating to equilibrium and stability of liquid drops, typically of low viscosity, levitated in air by a sound field. The major emphasis here is on the physical principles and understanding behind the stability of levitated drops. A comparison with experimental data is also given, along with some fascinating pictures from high-speed photography. One of the aspects we shall deal with is how a drop can suddenly burst in an intense sound field; a phenomenon which can find applications in atomization technology. Also, we are currently investigating the phenomenon of suppression of coalescence between drops levitated in intense acoustic fields.

  4. Atomic fluorescence study of high temperature aerodynamic levitation

    Science.gov (United States)

    Nordine, P. C.; Schiffman, R. A.; Sethi, D. S.

    1982-01-01

    Ultraviolet laser induced atomic fluorescence has been used to characterize supersonic jet aerodynamic levitation experiments. The levitated specimen was a 0.4 cm sapphire sphere that was separately heated at temperatures up to 2327 K by an infrared laser. The supersonic jet expansion and thermal gradients in the specimen wake were studied by measuring spatial variations in the concentration of atomic Hg added to the levitating argon gas stream. Further applications of atomic fluorescence in containerless experiments, such as ideal gas fluorescence thermometry and containerless process control are discussed.

  5. Analysis of the particle stability in a new designed ultrasonic levitation device.

    Science.gov (United States)

    Baer, Sebastian; Andrade, Marco A B; Esen, Cemal; Adamowski, Julio Cezar; Schweiger, Gustav; Ostendorf, Andreas

    2011-10-01

    The use of acoustic levitation in the fields of analytical chemistry and in the containerless processing of materials requires a good stability of the levitated particle. However, spontaneous oscillations and rotation of the levitated particle have been reported in literature, which can reduce the applicability of the acoustic levitation technique. Aiming to reduce the particle oscillations, this paper presents the analysis of the particle stability in a new acoustic levitator device. The new acoustic levitator consists of a piezoelectric transducer with a concave radiating surface and a concave reflector. The analysis is conducted by determining numerically the axial and lateral forces that act on the levitated object and by measuring the oscillations of a sphere particle by a laser Doppler vibrometer. It is shown that the new levitator design allows to increase the lateral forces and reduce significantly the lateral oscillations of the levitated object.

  6. AMSAHTS 1990: Advances in Materials Science and Applications of High Temperature Superconductors

    Science.gov (United States)

    Bennett, Larry H. (Editor); Flom, Yury (Editor); Moorjani, Kishin (Editor)

    1991-01-01

    This publication is comprised of abstracts for oral and poster presentations scheduled for AMSAHTS '90. The conference focused on understanding high temperature superconductivity with special emphasis on materials issues and applications. AMSAHTS 90, highlighted the state of the art in fundamental understanding of the nature of high-Tc superconductivity (HTSC) as well as the chemistry, structure, properties, processing and stability of HTSC oxides. As a special feature of the conference, space applications of HTSC were discussed by NASA and Navy specialists.

  7. Convertible electrodynamic levitator trap to quasielectrostatic levitator for microparticle nucleation studies

    Science.gov (United States)

    Arnold, S.; Goddard, N. L.; Wotherspoon, N.

    1999-02-01

    This article describes an apparatus for obtaining nucleation data from a levitated solution microdroplet, automatically. A particularly novel feature is that it uses an electrodynamic levitator trap (ELT) which converts to a quasielectrostatic levitator (QEL), at any time during an experiment. The conversion is accomplished by using asymmetrically applied potentials on the ELT structure. With this modification one can trap a particle in the ELT mode and then convert to the QEL mode for automatic operation. By eliminating the need for the alternating gradient forces which are intrinsic to the ELT, the system in its QEL mode is shielded from unwanted noise and parametric instabilities associated with the ELT's alternating potential. To test the system theoretically, we calculate the effect which molecular collisions have on the positional variance in a spherical void QEL. Following this, we describe the components of our servosystem, and demonstrate the robustness of our design by following the nucleation of a solution droplet as the ambient relative humidity is reduced by evacuation.

  8. Plastic superconductor bearings any size-any shape: 77 K and up

    Science.gov (United States)

    Reick, Franklin G.

    1991-01-01

    'Friction free' bearings at 77 K or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape, and postforming machining. The material is hard and abrasive. It is possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas, and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feed for LN2 is used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material is molded with the internal surfaces shielded by the Meissner effect. It can be thought of as the DC magnetic analog of the Faraday cage and the inside is the 'Meissner space'. It is selective. The AC fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics.

  9. Plastic superconductor bearings any size, any shape, 77 k and up

    Science.gov (United States)

    Reick, Franklin G.

    1990-01-01

    Friction free bearings at 77 k or higher are possible using the high T(sub c) copper oxide ceramic superconductors. The conventional method for making such bearings is to use a sintered ceramic monolith. This puts great restraints on size, shape and postforming machining. The material is hard and abrasive. It's possible to grind up ceramic superconductors and suspend the granules in a suitable matrix. Mechanical properties improve and are largely dependent on the binder. The Meissner effect is confined to individual grains containing electron vortices. Tracks, rails, levitation areas and bearings can be made this way with conventional plastic molding and extruding machines or by painting. The parts are easily machined. The sacrifice is in bulk electrical conductivity. A percolating wick feel for LN2 can be used to cool remote superconductors and large areas quite effectively. A hollow spheroid or cylinder of superconductor material can be molded with the internal surfaces shielded by the Meissner effect. It might be thought of as the dc magnetic analogue of the Faraday cage and the inside can be called the Meissner space. It's selective. The ac fields are transmitted with minor attenuation. Particle size and distribution have a profound effect on final magnetic and electrical characteristics.

  10. Acoustic levitation: recent developments and emerging opportunities in biomaterials research.

    Science.gov (United States)

    Weber, Richard J K; Benmore, Chris J; Tumber, Sonia K; Tailor, Amit N; Rey, Charles A; Taylor, Lynne S; Byrn, Stephen R

    2012-04-01

    Containerless sample environments (levitation) are useful for study of nucleation, supercooling, and vitrification and for synthesis of new materials, often with non-equilibrium structures. Elimination of extrinsic nucleation by container walls extends access to supercooled and supersaturated liquids under high-purity conditions. Acoustic levitation is well suited to the study of liquids including aqueous solutions, organics, soft materials, polymers, and pharmaceuticals at around room temperature. This article briefly reviews recent developments and applications of acoustic levitation in materials R&D. Examples of experiments yielding amorphous pharmaceutical materials are presented. The implementation and results of experiments on supercooled and supersaturated liquids using an acoustic levitator at a high-energy X-ray beamline are described.

  11. Electron spin control of optically levitated nanodiamonds in vacuum

    Science.gov (United States)

    Hoang, Thai M.; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-07-01

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.

  12. Electron spin control of optically levitated nanodiamonds in vacuum.

    Science.gov (United States)

    Hoang, Thai M; Ahn, Jonghoon; Bang, Jaehoon; Li, Tongcang

    2016-07-19

    Electron spins of diamond nitrogen-vacancy (NV) centres are important quantum resources for nanoscale sensing and quantum information. Combining NV spins with levitated optomechanical resonators will provide a hybrid quantum system for novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centres in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this system, we investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. We also observe that oxygen and helium gases have different effects on both the photoluminescence and the ESR contrast of nanodiamond NV centres, indicating potential applications of NV centres in oxygen gas sensing. Our results pave the way towards a levitated spin-optomechanical system for studying macroscopic quantum mechanics.

  13. Holographic acoustic elements for manipulation of levitated objects

    Science.gov (United States)

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  14. Ambient-pressure organic superconductor

    Science.gov (United States)

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  15. Measurement and characterization of force dynamics in high T(sub c) superconductors

    Science.gov (United States)

    Higuchi, Toshiro; Kelley, Allan J.; Tsutsui, Yukio

    1994-01-01

    Magnetic bearing implementations using more exotic superconducting phenomena have been proliferating in recent years because they have important advantages over conventional implementations. For example, the stable suspension of a six degrees-of-freedom object by superconducting means can be achieved without a control system and with the use of only a single superconductor. It follows that the construction becomes much simpler with decreased need for position sensors and stabilizers. However, it is recognized that the design of superconducting systems can be difficult because important characteristics relating to the 6 degree-of-freedom dynamics of an object suspended magnetically are not readily available and the underlying principles of superconducting phenomena are not yet completely understood. To eliminate some of the guesswork in the design process, this paper proposes a system which can resolve the mechanical properties of suspension by superconductivity and provide position and orientation dependent data about the system's damping, stiffness, and frequency response characteristics. This system employs an actively-controlled magnetically-suspended fine-motion device that can also be used as a six degree-of-freedom force sensor. By attaching the force sensor to a permanent magnet that is being levitated above a superconducting magnet, mechanical characteristics of the superconductor levitation can be extracted. Such information would prove useful for checking the validity of theoretical models and may even give insights into superconducting phenomena.

  16. Bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump.

    Science.gov (United States)

    Kosaka, Ryo; Yoshida, Fumihiko; Nishida, Masahiro; Maruyama, Osamu; Kawaguchi, Yasuo; Yamane, Takashi

    2015-01-01

    The purpose of the present study is to investigate a bearing gap adjustment for improvement of levitation performance in a hydrodynamically levitated centrifugal blood pump to realize a blood pump with a low hemolysis level. The impeller levitates axially by balancing a gravitational force, buoyancy, a magnetic force, and hydrodynamic forces on the top and bottom sides of the impeller. To adjust the levitation position of the impeller, the balance of acting forces on the impeller was adjusted by changing the shroud area on the bottom impeller. Three pumps having various shroud area were prepared as tested models: 817 mm(2) (HH-S), 875 mm(2) (HH-M) and 931 mm(2) (HH-L). First, for evaluating the bearing gap adjustment, the bearing gap was estimated by calculating a balancing position of the acting forces on the impeller. We actually measured the gravitational force, buoyancy and the magnetic force, and numerically analyzed hydrodynamic forces on the top and bottom sides of the impeller. Second, to verify accuracy of the estimated bearing gap, the measurement test of the bearing gap was performed. Finally, an in-vitro hemolysis test was performed to evaluate a hemolysis level of the pump. As a result, bottom bearing gaps were estimated as 40 μm (HH-S), 60 μm (HH-M) and 238 μm (HH-L). In the measurement test, bottom bearing gaps were measured as 63 μm (HH-S), 219 μm (HH-M), and 231 μm (HH-L). The estimated bearing gaps had positively correlated with the measured bearing gaps in relation to the shroud area on the impeller. In the hemolysis test, hemolysis level in every model was almost equivalent to that of BPX-80, when the bearing gap was adjusted greater than 60 μm. We could adjust the bearing gap by changing the shroud area on the impeller for improvement of levitation performance to realize a blood pump with a low hemolysis level.

  17. Introduction to Holographic Superconductor Models

    CERN Document Server

    Cai, Rong-Gen; Li, Li-Fang; Yang, Run-Qiu

    2015-01-01

    In the last years it has been shown that some properties of strongly coupled superconductors can be potentially described by classical general relativity living in one higher dimension, which is known as holographic superconductors. This paper gives a quick and introductory overview of some holographic superconductor models with s-wave, p-wave and d-wave orders in the literature from point of view of bottom-up, and summarizes some basic properties of these holographic models in various regimes. The competition and coexistence of these superconductivity orders are also studied in these superconductor models.

  18. Photophoretic levitation of engineered aerosols for geoengineering

    Science.gov (United States)

    Keith, David W.

    2010-01-01

    Aerosols could be injected into the upper atmosphere to engineer the climate by scattering incident sunlight so as to produce a cooling tendency that may mitigate the risks posed by the accumulation of greenhouse gases. Analysis of climate engineering has focused on sulfate aerosols. Here I examine the possibility that engineered nanoparticles could exploit photophoretic forces, enabling more control over particle distribution and lifetime than is possible with sulfates, perhaps allowing climate engineering to be accomplished with fewer side effects. The use of electrostatic or magnetic materials enables a class of photophoretic forces not found in nature. Photophoretic levitation could loft particles above the stratosphere, reducing their capacity to interfere with ozone chemistry; and, by increasing particle lifetimes, it would reduce the need for continual replenishment of the aerosol. Moreover, particles might be engineered to drift poleward enabling albedo modification to be tailored to counter polar warming while minimizing the impact on equatorial climates. PMID:20823254

  19. Full Rotational Control of Levitated Silicon Nanorods

    CERN Document Server

    Kuhn, Stefan; Stickler, Benjamin A; Patolsky, Fernando; Hornberger, Klaus; Arndt, Markus; Millen, James

    2016-01-01

    We study a nanofabricated silicon rod levitated in an optical trap. By manipulating the polarization of the light we gain full control over the ro-translational dynamics of the rod. We are able to trap both its centre-of-mass and align it along the linear polarization of the laser field. The rod can be set into rotation at a tuned frequency by exploiting the radiation pressure exerted by elliptically polarized light. The rotational motion of the rod dynamically modifies the optical potential, which allows tuning of the rotational frequency over hundreds of Kilohertz. This ability to trap and control the motion and alignment of nanoparticles opens up the field of rotational optomechanics, rotational ground state cooling and the study of rotational thermodynamics in the underdamped regime.

  20. Photophoretic levitation of engineered aerosols for geoengineering.

    Science.gov (United States)

    Keith, David W

    2010-09-21

    Aerosols could be injected into the upper atmosphere to engineer the climate by scattering incident sunlight so as to produce a cooling tendency that may mitigate the risks posed by the accumulation of greenhouse gases. Analysis of climate engineering has focused on sulfate aerosols. Here I examine the possibility that engineered nanoparticles could exploit photophoretic forces, enabling more control over particle distribution and lifetime than is possible with sulfates, perhaps allowing climate engineering to be accomplished with fewer side effects. The use of electrostatic or magnetic materials enables a class of photophoretic forces not found in nature. Photophoretic levitation could loft particles above the stratosphere, reducing their capacity to interfere with ozone chemistry; and, by increasing particle lifetimes, it would reduce the need for continual replenishment of the aerosol. Moreover, particles might be engineered to drift poleward enabling albedo modification to be tailored to counter polar warming while minimizing the impact on equatorial climates.

  1. Magnetically levitated autoparametric broadband vibration energy harvesting

    Science.gov (United States)

    Kurmann, L.; Jia, Y.; Manoli, Y.; Woias, P.

    2016-11-01

    Some of the lingering challenges within the current paradigm of vibration energy harvesting (VEH) involve narrow operational frequency range and the inevitable non-resonant response from broadband noise excitations. Such VEHs are only suitable for limited applications with fixed sinusoidal vibration, and fail to capture a large spectrum of the real world vibration. Various arraying designs, frequency tuning schemes and nonlinear vibratory approaches have only yielded modest enhancements. To fundamentally address this, the paper proposes and explores the potentials in using highly nonlinear magnetic spring force to activate an autoparametric oscillator, in order to realize an inherently broadband resonant system. Analytical and numerical modelling illustrate that high spring nonlinearity derived from magnetic levitation helps to promote the 2:1 internal frequency matching required to activate parametric resonance. At the right internal parameters, the resulting system can intrinsically exhibit semi-resonant response regardless of the bandwidth of the input vibration, including broadband white noise excitation.

  2. Magnetic levitation Maglev technology and applications

    CERN Document Server

    Han, Hyung-Suk

    2016-01-01

    This book provides a comprehensive overview of magnetic levitation (Maglev) technologies, from fundamental principles through to the state-of-the-art, and describes applications both realised and under development. It includes a history of Maglev science and technology showing the various milestones in its advancement. The core concepts, operating principles and main challenges of Maglev applications attempted across various fields are introduced and discussed. The principle difficulties encountered when applying Maglev technology to different systems, namely air gap control and stabilization, are addressed in detail. The book describes how major advancements in linear motor and magnet technologies have enabled the development of the linear-motor-powered Maglev train, which has a high speed advantage over conventional wheeled trains and has the potential to reach speed levels achieved by aircraft. However, many expect that Maglev technology to be a green technology that is applied not only in rail transportat...

  3. Optical Levitation of Micro-Scale Particles in Air

    Science.gov (United States)

    Wrbanek, Susan Y.; Weiland, Kenneth E.

    2004-01-01

    Success has been achieved using a radiation pressure gradient to levitate microscale particles in air for as long as four hours. This work is performed as a precursor to the development of a vacuum based optical tweezers interrogation tool for nanotechnology research. It was decided to first proceed with solving the problem of achieving optical levitation of a micro-scale particle in air before trying the same in a vacuum environment. This successful optical levitation in air confirms the work of Ashkin and Dziedzic. Levitation of 10 and 13.8 microns diameter polystyrene spheres was achieved, as well as the levitation of 10 and 100 microns diameter glass spheres. Particles were raised and lowered. A modicum of success was achieved translating particles horizontally. Trapping of multiple particles in one laser beam has been photographed. Also, it has been observed that particles, that may be conglomerates or irregular in shape, can also be trapped by a focused laser beam. Levitated glass beads were photographed using laser light scattered from the beads. The fact that there is evidence of optical traps in air containing irregular and conglomerate particles provides hope that future tool particles need not be perfect spheres.

  4. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  5. Vortex cutting in superconductors

    Science.gov (United States)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  6. Superconductor-Mediated Modification of Gravity? AC Motor Experiments with Bulk YBCO Disks in Rotating Magnetic Fields

    Science.gov (United States)

    Noever, David A.; Koczor, Ronald J.; Roberson, Rick

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.

  7. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions

    Science.gov (United States)

    Kleinsasser, A. W.; Barner, J. B.

    1997-01-01

    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  8. Servo-Drive Amplifier for Micro-Satellite Superconductor-Levitated Flywheels Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new servo-drive technology is available to support energy storage and navigation for micro-satellites. Exploiting the ?pinning? effect of high-temperature...

  9. Testability issues in Superconductor Electronics

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Arun, A.J.

    2004-01-01

    An emerging technology for solutions in high-end applications in computing and telecommunication is superconductor electronics. A system-level study has been carried out to verify the feasibility of DfT in superconductor electronics. In this paper, we present how this can be realized to monitor

  10. Influence of critical current density on magnetic force of HTSC bulk above PMR with 3D-modeling numerical solutions

    Science.gov (United States)

    Lu, Yiyun; Qin, Yujie

    2015-09-01

    Numerical simulations of thermo-electromagnetic properties of a high temperature superconducting (HTS) bulk levitating over a permanent magnetic guideway (PMG) are performed by resorting to the quasistatic approximation of the H-method coupling with the classical description of the heat conduction equation. The numerical resolving codes are practiced with the help of the finite element program generation system (FEPG) platform using finite element method (FEM). The E-J power law is used to describe the electric current nonlinear characteristics of HTS bulk. The simulation results show that the heat conduction and the critical current density are tightly relative to the thermal effects of the HTS bulk over the PMG. The heat intensity which responds to the heat loss of the HTS bulk is mainly distributed at the two bottom-corners of the bulk sample.

  11. Research on typical topologies of a tubular horizontal-gap passive magnetic levitation vibration isolator

    Directory of Open Access Journals (Sweden)

    Zhou Yiheng

    2017-01-01

    Full Text Available Magnetic levitation vibration isolators have attracted more and more attention in the field of high-precision measuring and machining equipment. In this paper, we describe a tubular horizontal-gap passive magnetic levitation vibration isolator. Four typical topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are proposed. The analytical expression of magnetic force is derived. The relationship between levitation force, force density, force ripple and major structural parameters are analysed by finite element method, which is conductive to the design and optimization of the tubular horizontal-gap passive magnetic levitation vibration isolator. The force characteristics of different topologies of the tubular horizontal-gap passive magnetic levitation vibration isolator are compared and evaluated from the aspect of force density, force ripple and manufacturability. In comparison with conventional passive magnetic levitation vibration isolators, the proposed tubular horizontal-gap passive magnetic levitation vibration isolator shows advantage in higher force density.

  12. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  13. Superconducting-electromagnetic hybrid bearing using YBCO bulk locks for passive axial levitation

    Energy Technology Data Exchange (ETDEWEB)

    Nicolsky, R. [Instituto de Fisica, UFRJ, Cx. P. 68528, Rio de Janeiro 21945-970 (Brazil). E-mail: nicolsky at if.ufrj.br; Andrade, R. de Jr. [DEE/EE/UFRJ, Cx. P. 68515, Rio de Janeiro 21945-970 (Brazil); Ripper, A.; Stephan, R.M. [PEM/COPPE/UFRJ, Cx. P. 68504, Rio de Janeiro 21945-970 (Brazil); David, D.F.B.; Santisteban, J.A. [Engenharia/UFF, Rua Passo da Patria 156, Niteroi 24210-240 (Brazil); Gawalek, W.; Habisreuther, T.; Strasser, T. [Institut fuer Physikalische Hoch Technologie (IPHT), Helmhotzweg 4, D07743, Jena (Germany)

    2000-06-01

    A superconducting/electromagnetic hybrid bearing has been designed using active radial electromagnetic positioning and a superconducting passive axial levitator. This bearing has been tested for an induction machine with a vertical shaft. The prototype was conceived as a four-pole, two-phase induction machine using specially designed stator windings for delivering torque and radial positioning simultaneously. The radial bearing uses four eddy-current sensors, displaced 90 deg. from each other, for measuring the shaft position and a PID control system for feeding back the currents. The stator windings have been adapted from the ones of a standard induction motor. The superconducting axial bearing has been assembled with commercial NdFeB permanent magnets and a set of seven top-seeded-melt-textured YBCO large-grain cylindrical blocks. The bearing set-up was previously simulated by a finite element method for different permanent magnet-superconductor block configurations. The stiffness of the superconducting axial bearing has been investigated by measuring by a dynamic method the vertical and transversal elastic constants for different field cooling processes. The resulting elastic constants show a linear dependence on the air gap, i.e. the clearance between the permanent magnet assembly and the set of superconducting large-grain blocks, which is dependent on cooling distance. (author)

  14. Iron pnictide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tegel, Marcus Christian

    2011-03-22

    The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co{sub x}Fe{sub 1-x})PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr{sub 2}Si{sub 2}-type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, is unveiled. A detailed examination of the complete solid solution series (Ba{sub 1-x}K{sub x})Fe{sub 2}As{sub 2} is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe{sub 2}As{sub 2} and EuFe{sub 2}As{sub 2} are characterised and the superconductors Sr{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se{sub 1-x}Te{sub x}) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr{sub 3}Sc{sub 2}O{sub 5}Fe{sub 2}As{sub 2} are presented and Ba{sub 2}ScO{sub 3}FeAs and Sr{sub 2}CrO{sub 3}FeAs, the first two members of the new 21311-type are portrayed. Sr{sub 2}CrO{sub 3}FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound

  15. Design, implementation and control of a magnetic levitation device

    Science.gov (United States)

    Shameli, Ehsan

    Magnetic levitation technology has shown a great deal of promise for micromanipulation tasks. Due to the lack of mechanical contact, magnetic levitation systems are free of problems caused by friction, wear, sealing and lubrication. These advantages have made magnetic levitation systems a great candidate for clean room applications. In this thesis, a new large gap magnetic levitation system is designed, developed and successfully tested. The system is capable of levitating a 6.5(gr) permanent magnet in 3D space with an air gap of approximately 50(cm) with the traveling range of 20x20x30 mm3. The overall positioning accuracy of the system is 60mum. With the aid of finite elements method, an optimal geometry for the magnetic stator is proposed. Also, an energy optimization approach is utilized in the design of the electromagnets. In order to facilitate the design of various controllers for the system, a mathematical model of the magnetic force experienced by the levitated object is obtained. The dynamic magnetic force model is determined experimentally using frequency response system identification. The response of the system components including the power amplifiers, and position measurement system are also considered in the development of the force model. The force model is then employed in the controller design for the magnetic levitation device. Through a modular approach, the controller design for the 3D positioning system is started with the controller design for the vertical direction, i.e. z, and then followed by the controller design in the horizontal directions, i.e. x and y. For the vertical direction, several controllers such as PID, feed forward and feedback linearization are designed and their performances are compared. Also a control command conditioning method is introduced as a solution to increase the control performance and the results of the proposed controller are compared with the other designs. Experimental results showed that for the magnetic

  16. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  17. Antenna applications of superconductors

    Science.gov (United States)

    Hansen, R. C.

    1991-09-01

    The applicability of superconductors to antennas is examined. Potential implementations that are examined are superdirective arrays; electrically small antennas; tuning and matching of these two; high-gain millimeter-wavelength arrays; and kinetic inductance slow wave structures for array phasers and traveling wave array feeds. It is thought that superdirective arrays and small antennas will not benefit directly, but their tuning/matching networks will undergo major improvements. Miniaturization of antennas will not be aided, but much higher gain millimeter-wave arrays will be realizable. Kinetic inductance slow-wave lines appear advantageous for improved array phasers and time delay, as well as for traveling-wave array feeds.

  18. Coil optimization for electromagnetic levitation using a genetic like algorithm

    Science.gov (United States)

    Royer, Z. L.; Tackes, C.; LeSar, R.; Napolitano, R. E.

    2013-06-01

    The technique of electromagnetic levitation (EML) provides a means for thermally processing an electrically conductive specimen in a containerless manner. For the investigation of metallic liquids and related melting or freezing transformations, the elimination of substrate-induced nucleation affords access to much higher undercooling than otherwise attainable. With heating and levitation both arising from the currents induced by the coil, the performance of any EML system depends on controlling the balance between lifting forces and heating effects, as influenced by the levitation coil geometry. In this work, a genetic algorithm is developed and utilized to optimize the design of electromagnetic levitation coils. The optimization is targeted specifically to reduce the steady-state temperature of the stably levitated metallic specimen. Reductions in temperature of nominally 70 K relative to that obtained with the initial design are achieved through coil optimization, and the results are compared with experiments for aluminum. Additionally, the optimization method is shown to be robust, generating a small range of converged results from a variety of initial starting conditions. While our optimization criterion was set to achieve the lowest possible sample temperature, the method is general and can be used to optimize for other criteria as well.

  19. Nanomagnetic Levitation 3-D Cultures of Breast and Colorectal Cancers

    Science.gov (United States)

    Bumpers, Harvey L.; Janagama, Dasharatham G.; Manne, Upender; Basson, Marc D.; Katkoori, Venkat

    2014-01-01

    Background Innovative technologies for drug discovery and development, cancer models, stem cell research, tissue engineering, and drug testing in various cell-based platforms require an application similar to the in vivo system. Materials and Methods We developed for the first time nanomagnetically levitated three dimensional (3-D) cultures of breast cancer (BC) and colorectal cancer (CRC) cells using carbon encapsulated cobalt magnetic nanoparticles. BC and CRC xenografts grown in severe combined immunodeficient (SCID) mice were evaluated for N-cadherin and Epidermal growth factor receptor (EGFR) expressions. These phenotypes were compared with 2-D cultures and 3-D cultures grown in a gel matrix. Results The BC and CRC cells grown by magnetic levitation formed microtissues. The levitated cultures had high viability and were maintained in culture for long periods of time. It has been observed that N-cadherin and EGFR activities were highly expressed in the levitated 3-D tumor spheres and xenografts of CRC and BC cells. Conclusions Nanomagnetically levitated 3-D cultures tend to form stable microtissues of BC and CRC and may be more feasible for a range of applications in drug discovery or regenerative medicine. PMID:25617973

  20. Experimental determination of the dynamics of an acoustically levitated sphere

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Nicolás, E-mail: nico@fisica.edu.uy [Centro Universitario de Paysandú, Universidad de la República, Paysandú (Uruguay); Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Canetti, Rafael [Facultad de Ingeniería, Universidad de la República, Montevideo (Uruguay); Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-11-14

    Levitation of solids and liquids by ultrasonic standing waves is a promising technique to manipulate materials without contact. When a small particle is introduced in certain areas of a standing wave field, the acoustic radiation force pushes the particle to the pressure node. This movement is followed by oscillations of the levitated particle. Aiming to investigate the particle oscillations in acoustic levitation, this paper presents the experimental and numerical characterization of the dynamic behavior of a levitated sphere. To obtain the experimental response, a small sphere is lifted by the acoustic radiation force. After the sphere lift, it presents a damped oscillatory behavior, which is recorded by a high speed camera. To model this behavior, a mass-spring-damper system is proposed. In this model, the acoustic radiation force that acts on the sphere is theoretically predicted by the Gor'kov theory and the viscous forces are modeled by two damping terms, one term proportional to the square of the velocity and another term proportional to the particle velocity. The proposed model was experimentally verified by using different values of sound pressure amplitude. The comparison between numerical and experimental results shows that the model can accurately describe the oscillatory behavior of the sphere in an acoustic levitator.

  1. Partial squeeze film levitation modulates fingertip friction.

    Science.gov (United States)

    Wiertlewski, Michaël; Fenton Friesen, Rebecca; Colgate, J Edward

    2016-08-16

    When touched, a glass plate excited with ultrasonic transverse waves feels notably more slippery than it does at rest. To study this phenomenon, we use frustrated total internal reflection to image the asperities of the skin that are in intimate contact with a glass plate. We observed that the load at the interface is shared between the elastic compression of the asperities of the skin and a squeeze film of air. Stroboscopic investigation reveals that the time evolution of the interfacial gap is partially out of phase with the plate vibration. Taken together, these results suggest that the skin bounces against the vibrating plate but that the bounces are cushioned by a squeeze film of air that does not have time to escape the interfacial separation. This behavior results in dynamic levitation, in which the average number of asperities in intimate contact is reduced, thereby reducing friction. This improved understanding of the physics of friction reduction provides key guidelines for designing interfaces that can dynamically modulate friction with soft materials and biological tissues, such as human fingertips.

  2. The Lunar dusty plasmas -levitation and transport.

    Science.gov (United States)

    Atamaniuk, Barbara; Rothkaehl, Hanna

    Lunar dust can exhibit unusual behavior -due to electron photoemission via solar-UV radiation the lunar surface represents a complex plasma -"dusty plasma". The dust grains and lunar surface are electrostatically charged by the Moon's interaction with the local plasma environ-ment and the photoemission of electrons due to solar UV and X-rays. This effect causes the like-charged surface and dust particles to repel each other, and creates a near-surface electric field. Lunar dust must be treated as a dusty plasma. Using analytic (kinetic (Vlasov) and magnetohydrodynamic theory ) and numerical modeling we show physical processes related to levitation and transport dusty plasma on the Moon. These dust grains could affect the lunar environment for radio wave and plasma diagnostics and interfere with exploration activities. References: 1. Wilson T.L. (1992), in Analysis of Interplanetary Dust, M. Zolensky et al. AIP Conf.Proc. 310, 33-44 (AIP, NY), 2.Wilson T.L."LUNAR DUST AND DUSTY PLASMA PHYSICS".40th Lunar and Planetary Science Conference (2009), 3. Grün E., et al.(1993),Nature 363, 144. 4. Morfill G. and Grün E.(1979), Planet. Space Sci.. 27, 1269, 1283, 5. Manka R. and Michel F. (1971), Proc. 2nd Lun. Sci. Conf. 2, 1717 (MIT Press, Cambridge). 6. Manka R. et al.(1973), Lun. Sci.-III, 504. 7. Barbara Atamaniuk "Kinetic Description of Localized Plasma Structure in Dusty Plasmas". Czechoslovak Journal of Physics Vol.54 C 2004

  3. Cavity cooling of an optically levitated nanoparticle

    CERN Document Server

    Kiesel, Nikolai; Delic, Uros; Grass, David; Kaltenbaek, Rainer; Aspelmeyer, Markus

    2013-01-01

    The ability to trap and to manipulate individual atoms is at the heart of current implementations of quantum simulations, quantum computing, and long-distance quantum communication. Controlling the motion of larger particles opens up yet new avenues for quantum science, both for the study of fundamental quantum phenomena in the context of matter wave interference, and for new sensing and transduction applications in the context of quantum optomechanics. Specifically, it has been suggested that cavity cooling of a single nanoparticle in high vacuum allows for the generation of quantum states of motion in a room-temperature environment as well as for unprecedented force sensitivity. Here, we take the first steps into this regime. We demonstrate cavity cooling of an optically levitated nanoparticle consisting of approximately 10e9 atoms. The particle is trapped at modest vacuum levels of a few millibar in the standing-wave field of an optical cavity and is cooled through coherent scattering into the modes of the...

  4. Static shapes of levitated viscous drops

    Science.gov (United States)

    Duchemin, L.; Lister, J. R.; Lange, U.

    2005-06-01

    We consider the levitation of a drop of molten glass above a spherical porous mould, through which air is injected with constant velocity. The glass is assumed to be sufficiently viscous compared to air that motion in the drop is negligible. Thus static equilibrium shapes are determined by the coupling between the lubricating pressure in the supporting air cushion and the Young-Laplace equation. The upper surface of the drop is under constant atmospheric pressure; the static shape of the lower surface of the drop is computed using lubrication theory for the thin air film. Matching of the sessile curvature of the upper surface to the curvature of the mould gives rise to a series of capillary "brim" waves near the edge of the drop which scale with powers of a modified capillary number. Several branches of static solutions are found, such that there are multiple solutions for some drop volumes, but no physically reasonable solutions for other drop volumes. Comparison with experiments and full Navier-Stokes calculations suggests that the stability of the process can be predicted from the solution branches for the static shapes, and related to the persistence of brim waves to the centre of the drop. This suggestion remains to be confirmed by a formal stability analysis.

  5. Flux pinning in superconductors

    CERN Document Server

    Matsushita, Teruo

    2014-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  6. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  7. Hybrid superconductor magnet bearings

    Science.gov (United States)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  8. Materials design for new superconductors.

    Science.gov (United States)

    Norman, M R

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  9. Spin manipulation in nanoscale superconductors.

    Science.gov (United States)

    Beckmann, D

    2016-04-27

    The interplay of superconductivity and magnetism in nanoscale structures has attracted considerable attention in recent years due to the exciting new physics created by the competition of these antagonistic ordering phenomena, and the prospect of exploiting this competition for superconducting spintronics devices. While much of the attention is focused on spin-polarized supercurrents created by the triplet proximity effect, the recent discovery of long range quasiparticle spin transport in high-field superconductors has rekindled interest in spin-dependent nonequilibrium properties of superconductors. In this review, the experimental situation on nonequilibrium spin injection into superconductors is discussed, and open questions and possible future directions of the field are outlined.

  10. Materials design for new superconductors

    Science.gov (United States)

    Norman, M. R.

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  11. Damping in high-temperature superconducting levitation systems

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  12. Acoustic method for levitation of small living animals

    Science.gov (United States)

    Xie, W. J.; Cao, C. D.; Lü, Y. J.; Hong, Z. Y.; Wei, B.

    2006-11-01

    Ultrasonic levitation of some small living animals such as ant, ladybug, and young fish has been achieved with a single-axis acoustic levitator. The vitality of ant and ladybug is not evidently influenced during the acoustic levitation, whereas that of the young fish is reduced because of the inadequacy of water supply. Numerical analysis shows that the sound pressures on the ladybug's surface almost reach the incident pressure amplitude p0 due to sound scattering. It is estimated that 99.98% of the acoustic energy is reflected away from the ladybug. The acoustic radiation pressure pa on the ladybug's surface is only 1%-3% of p0, which plays a compression role on the central region and a suction role on the peripheral region.

  13. Advanced Measurement Devices for the Microgravity Electromagnetic Levitation Facility EML

    Science.gov (United States)

    Brillo, Jurgen; Fritze, Holger; Lohofer, Georg; Schulz, Michal; Stenzel, Christian

    2012-01-01

    This paper reports on two advanced measurement devices for the microgravity electromagnetic levitation facility (EML), which is currently under construction for the use onboard the "International Space Station (ISS)": the "Sample Coupling Electronics (SCE)" and the "Oxygen Sensing and Control Unit (OSC)". The SCE measures by a contactless, inductive method the electrical resistivity and the diameter of a spherical levitated metallic droplet by evaluating the voltage and electrical current applied to the levitation coil. The necessity of the OSC comes from the insight that properties like surface tension or, eventually, viscosity cannot seriously be determined by the oscillating drop method in the EML facility without knowing the conditions of the surrounding atmosphere. In the following both measurement devices are explained and laboratory test results are presented.

  14. Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions.

    Science.gov (United States)

    Zang, Duyang; Yu, Yinkai; Chen, Zhen; Li, Xiaoguang; Wu, Hongjing; Geng, Xingguo

    2017-05-01

    The technique of acoustic levitation normally produces a standing wave and the potential well of the sound field can be used to trap small objects. Since no solid surface is involved it has been widely applied for the study of fluid physics, nucleation, bio/chemical processes, and various forms of soft matter. In this article, we survey the works on drop dynamics in acoustic levitation, focus on how the dynamic behavior is related to the rheological properties and discuss the possibility to develop a novel rheometer based on this technique. We review the methods and applications of acoustic levitation for the manipulation of both liquid and solid samples and emphasize the important progress made in the study of phase transitions and bio-chemical analysis. We also highlight the possible open areas for future research. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Three-dimensional Tissue Culture Based on Magnetic Cell Levitation

    Science.gov (United States)

    Souza, Glauco R.; Molina, Jennifer R.; Raphael, Robert M.; Ozawa, Michael G.; Stark, Daniel J.; Levin, Carly S.; Bronk, Lawrence F.; Ananta, Jeyarama S.; Mandelin, Jami; Georgescu, Maria-Magdalena; Bankson, James A.; Gelovani, Juri G.

    2015-01-01

    Cell culture is an essential tool for drug discovery, tissue engineering, and stem cell research. Conventional tissue culture produces two-dimensional (2D) cell growth with gene expression, signaling, and morphology that can differ from those in vivo and thus compromise clinical relevancy1–5. Here we report a three-dimensional (3D) culture of cells based on magnetic levitation in the presence of hydrogels containing gold and magnetic iron oxide (MIO) nanoparticles plus filamentous bacteriophage. This methodology allows for control of cell mass geometry and guided, multicellular clustering of different cell types in co-culture through spatial variance of the magnetic field. Moreover, magnetic levitation of human glioblastoma cells demonstrates similar protein expression profiles to those observed in human tumor xenografts. Taken together, these results suggest levitated 3D culture with magnetized phage-based hydrogels more closely recapitulates in vivo protein expression and allows for long-term multi-cellular studies. PMID:20228788

  16. Damping in high-temperature superconducting levitation systems

    Science.gov (United States)

    Hull, John R.

    2009-12-15

    Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.

  17. Electrostatic Levitation: A Tool to Support Materials Research in Microgravity

    Science.gov (United States)

    Rogers, Jan; SanSoucie, Mike

    2012-01-01

    Containerless processing represents an important topic for materials research in microgravity. Levitated specimens are free from contact with a container, which permits studies of deeply undercooled melts, and high-temperature, highly reactive materials. Containerless processing provides data for studies of thermophysical properties, phase equilibria, metastable state formation, microstructure formation, undercooling, and nucleation. The European Space Agency (ESA) and the German Aerospace Center (DLR) jointly developed an electromagnetic levitator facility (MSL-EML) for containerless materials processing in space. The electrostatic levitator (ESL) facility at the Marshall Space Flight Center provides support for the development of containerless processing studies for the ISS. Apparatus and techniques have been developed to use the ESL to provide data for phase diagram determination, creep resistance, emissivity, specific heat, density/thermal expansion, viscosity, surface tension and triggered nucleation of melts. The capabilities and results from selected ESL-based characterization studies performed at NASA's Marshall Space Flight Center will be presented.

  18. Structure formation by nanosilica particles suspended in levitated droplet

    CERN Document Server

    Saha, Abhishek; Kumar, Ranganathan; Basu, Saptarshi

    2010-01-01

    Vaporization of liquid droplets containing particles has been studied extensively for its applications in combustion, thermal coating, ink-jet printing, spray cooling, drug delivery, and surface patterning. Droplets containing solid particles show a preferential solute-migration during drying process. Recently we carried out experiments with vaporizing droplet suspended in an acoustic levitator. In this work, we present detailed study of a laser irradiated droplet containing nanosilica particles. Infrared and High speed imaging of the heating process for different concentrations of nanosilica revealed an interesting solute migration pattern. Further investigation with Particle Image Velocimetry shows presence of strong recirculation within the levitated droplet. It also reveals that with increasing viscosity of the liquid the strength of this recirculation decreases. Due to the droplets rotation about the levitator axis, a centrifugal force also dominated the flow field within the droplet. High speed imaging ...

  19. Compound Droplet Levitation for Lab-on-a-Chip

    Science.gov (United States)

    Black, James; Neitzel, G. Paul

    2016-11-01

    A fluid transport mechanism utilizing thermocapillarity has been previously shown to successfully levitate and translate both microliter- and nanoliter-volume droplets of silicone oil. The surface flow required to drive levitation and transport has not been achieved for aqueous droplets, and encapsulation of samples within a layer of silicone oil is necessary. A droplet-on-demand generator capable of producing nanoliter-volume compound droplets has been developed and previously reported. The work presented here discusses efforts to demonstrate the applicability of this microfluidic transport mechanism to lab-on-a-chip systems. We elaborate on translation speeds of single-phase, nanoliter-volume, silicone-oil droplets. Compound droplets of varying compositions of oil and water are then generated, captured, levitated, and merged to explore the composition limits thereof. Work supported by NSF and NASA.

  20. Two-particle excitations in the Hubbard model for high-temperature superconductors. A quantum cluster study

    Energy Technology Data Exchange (ETDEWEB)

    Brehm, Sascha

    2009-02-26

    Two-particle excitations, such as spin and charge excitations, play a key role in high-T{sub c} cuprate superconductors (HTSC). Due to the antiferromagnetism of the parent compound the magnetic excitations are supposed to be directly related to the mechanism of superconductivity. In particular, the so-called resonance mode is a promising candidate for the pairing glue, a bosonic excitation mediating the electronic pairing. In addition, its interactions with itinerant electrons may be responsible for some of the observed properties of HTSC. Hence, getting to the bottom of the resonance mode is crucial for a deeper understanding of the cuprate materials. To analyze the corresponding two-particle correlation functions we develop in the present thesis a new, non-perturbative and parameter-free technique for T=0 which is based on the Variational Cluster Approach (VCA, an embedded cluster method for one-particle Green's functions). Guided by the spirit of the VCA we extract an effective electron-hole vertex from an isolated cluster and use a fully renormalized bubble susceptibility {chi}{sub 0} including the VCA one-particle propagators. Within our new approach, the magnetic excitations of HTSC are shown to be reproduced for the Hubbard model within the relevant strong-coupling regime. Exceptionally, the famous resonance mode occurring in the underdoped regime within the superconductivity-induced gap of spin-flip electron-hole excitations is obtained. Its intensity and hourglass dispersion are in good overall agreement with experiments. Furthermore, characteristic features such as the position in energy of the resonance mode and the difference of the imaginary part of the susceptibility in the superconducting and the normal states are in accord with Inelastic Neutron Scattering (INS) experiments. For the first time, a strongly-correlated parameter-free calculation revealed these salient magnetic properties supporting the S=1 magnetic exciton scenario for the

  1. Effect of annealing temperature on the structural–microstructural and electrical characteristics of thallium bearing HTSC films prepared by chemical spray pyrolysis technique

    Indian Academy of Sciences (India)

    K K Verma; R S Tiwari; O N Srivastava

    2005-04-01

    In order to get good quality reproducible films of Tl : HTSC system, we have studied the different annealing conditions to finally achieve the optimized annealing condition. In the present investigation, Tl–Ca–Ba–Cu–O superconducting films have been prepared on YSZ (100) and MgO (100) single crystal substrates via precursor route followed by thallination. The post deposition heat treatments of the precursor films were carried out for various annealing temperatures (870°C, 890°C) and durations (1 and 2 min). The optimized thallination procedure occurred at 870°C for 2 min into good quality films with c ( = 0) ∼ 103 K for YSZ and c ( = 0) ∼ 98 K for MgO substrates, respectively. Further we have correlated the structural/microstructural characteristics of the films.

  2. Microstructure and levitation properties of floating zone melted YBCO samples

    Energy Technology Data Exchange (ETDEWEB)

    Bashkirov, Yu.A.; Fleishman, L.S.; Vdovin, A.B.; Zubritsky, I.A.; Smirnov, V.V.; Vinogradov, A.V. [Krzhizhanovsky Power Engineering Inst., Moscow (Russian Federation)

    1994-07-01

    Radiation zone melting has been used to produce texture in sintered YBCO cylindrical samples. Microstructural analysis by electron microscopy and pole figure measurements reveals that the production process gives rise to a preferential orientation within large domains. D.C. transport measurements show that changes in alignment orientation can result in the inability to carry a transport current. Both a.c. magnetic field shielding and levitation properties are substantially improved by the floating zone melting, the levitation force being increased with the texture domain size growth.

  3. Search for Millicharged Particles Using Optically Levitated Microspheres

    CERN Document Server

    Moore, David C; Gratta, Giorgio

    2014-01-01

    We report results from a search for stable particles with charge > $10^{-5}$ e in bulk matter using levitated dielectric microspheres in high vacuum. No evidence for such particles was found in a total sample of 1.4 ng, providing an upper limit on the abundance per nucleon of 2.5 x $10^{-14}$ at the 95% confidence level for the material tested. These results provide the first direct search for single particles with charge < 0.1 e bound in macroscopic quantities of matter and demonstrate the ability to perform sensitive force measurements using optically levitated microspheres in vacuum.

  4. Levitation of heavy particles against gravity in asymptotically downward flows

    Science.gov (United States)

    Angilella, Jean-Régis; Case, Daniel J.; Motter, Adilson E.

    2017-03-01

    In the fluid transport of particles, it is generally expected that heavy particles carried by a laminar fluid flow moving downward will also move downward. We establish a theory to show, however, that particles can be dynamically levitated and lifted by interacting vortices in such flows, thereby moving against gravity and the asymptotic direction of the flow, even when they are orders of magnitude denser than the fluid. The particle levitation is rigorously demonstrated for potential flows and supported by simulations for viscous flows. We suggest that this counterintuitive effect has potential implications for the air-transport of water droplets and the lifting of sediments in water.

  5. Electric levitation using ϵ-near-zero metamaterials.

    Science.gov (United States)

    Rodríguez-Fortuño, Francisco J; Vakil, Ashkan; Engheta, Nader

    2014-01-24

    The ability to manufacture metamaterials with exotic electromagnetic properties has potential for surprising new applications. Here we report how a specific type of metamaterial--one whose permittivity is near zero--exerts a repulsive force on an electric dipole source, resulting in levitation of the dipole. The phenomenon relies on the expulsion of the time-varying electric field from the metamaterial interior, resembling the perfect diamagnetic expulsion of magnetostatic fields. Leveraging this concept, we study some realistic requirements for the levitation or repulsion of a polarized particle radiating at any frequency, from microwave to optics.

  6. Cascade Control of Magnetic Levitation with Sliding Modes

    Directory of Open Access Journals (Sweden)

    Eroğlu Yakup

    2016-01-01

    Full Text Available The effectiveness and applicability of magnetic levitation systems need precise feedback control designs. A cascade control approach consisting of sliding mode control plus sliding mode control (SMC plus SMC is designed to solve position control problem and to provide a high control performance and robustness to the magnetic levitation plant. It is shown that the SMC plus SMC cascade controller is able to eliminate the effects of the inductance related uncertainties of the electromagnetic coil of the plant and achieve a robust and precise position control. Experimental and numerical results are provided to validate the effectiveness and feasibility of the method.

  7. FPGA Fuzzy Controller Design for Magnetic Ball Levitation

    Directory of Open Access Journals (Sweden)

    Basil Hamed

    2012-09-01

    Full Text Available this paper presents a fuzzy controller design for nonlinear system using FPGA. A magnetic levitation system is considered as a case study and the fuzzy controller is designed to keep a magnetic object suspended in the air counteracting the weight of the object. Fuzzy controller will be implemented using FPGA chip. The design will use a high-level programming language HDL for implementing the fuzzy logic controller using the Xfuzzy tools to implement the fuzzy logic controller into HDL code. This paper, advocates a novel approach to implement the fuzzy logic controller for magnetic ball levitation system by using FPGA.

  8. Statics of levitated vehicle model with hybrid magnets

    Institute of Scientific and Technical Information of China (English)

    Desheng LI; Zhiyuan LU; Tianwu DONG

    2009-01-01

    By studying the special characteristics of permanent and electronic magnets, a levitated vehicle model with hybrid magnets is established. The mathematical model of the vehicle is built based on its dynamics equation by studying its machine structure and working principle. Based on the model, the basic characteristics and the effect between the excluding forces from permanent magnets in three different spatial directions are analyzed, statics characteristics of the interference forces in three different spatial directions are studied, and self-adjusting equilibrium characteristics and stabilization are analyzed. Based on the structure above, the vehicle can levitate steadily by control system adjustment.

  9. Simulation Model of Magnetic Levitation Based on NARX Neural Networks

    Directory of Open Access Journals (Sweden)

    Dragan Antić

    2013-04-01

    Full Text Available In this paper, we present analysis of different training types for nonlinear autoregressive neural network, used for simulation of magnetic levitation system. First, the model of this highly nonlinear system is described and after that the Nonlinear Auto Regressive eXogenous (NARX of neural network model is given. Also, numerical optimization techniques for improved network training are described. It is verified that NARX neural network can be successfully used to simulate real magnetic levitation system if suitable training procedure is chosen, and the best two training types, obtained from experimental results, are described in details.

  10. Design and Construction of 35 kWh Class Superconductor Flywheel Energy Storage System Main Frame

    Energy Technology Data Exchange (ETDEWEB)

    Jung, S. Y.; Han, Y. H.; Park, B. J.; Han, S. C. [KEPCO Research Institute, Daejeon (Korea, Republic of)

    2011-08-15

    A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. The 35 kWh class SFES is composed of a main frame, superconductor bearings, electro-magnetic dampers, a motor/generator, and a composite flywheel. The energy storing capacity of the SFES can be limited by the operational speed range of the system. The operational speed range is limited by many factors, especially the resonant frequency of the main frame and flywheel. In this study, a steel frame has been designed and constructed for a 35 kWh class SFES. All the main parts, their housings, and the flywheel are aligned and assembled on to the main frame. While in operation, the flywheel excites the main frame, as well as all the parts assembled to it, causing the system to vibrate at the rotating speed. If the main frame is excited at its resonant frequency, the system will resonate, which may lead to unstable levitation at the superconductor bearings and electro-magnetic dampers. The main frame for the 35 kWh class SFES has been designed and constructed to improve stiffness for the stable operation of the system within the operational speed range.

  11. Theoretical research and experimental study for a new measurement method of standing wave levitation force

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xinbo; Jiang, Hai; Jiao, Xiaoyang; Zhang, Kai; Liu, Guojun; Liu, Jianfang [Jilin University, Changchun (China)

    2015-05-15

    Based on the lever principle, a novel measurement method for the standing wave levitation force is investigated and the measurement device is developed. The relative levitation force was simulated by MATLAB software, from which the relative levitation force distribution and the curves of relative levitation force in vertical and horizontal directions were obtained. To verify the rationale of the measurement method, a series of experiments were carried out with the designed measurement device system. The levitation force distribution and the curves of levitation force in vertical and horizontal directions were also obtained from the experiment. Comparing the experimental results with the simulation, the levitation force distribution situation from the experimental results and the simulation is identical.

  12. A containerless levitation setup for liquid processing in a superconducting magnet.

    Science.gov (United States)

    Lu, Hui-Meng; Yin, Da-Chuan; Li, Hai-Sheng; Geng, Li-Qiang; Zhang, Chen-Yan; Lu, Qin-Qin; Guo, Yun-Zhu; Guo, Wei-Hong; Shang, Peng; Wakayama, Nobuko I

    2008-09-01

    Containerless processing of materials is considered beneficial for obtaining high quality products due to the elimination of the detrimental effects coming from the contact with container walls. Many containerless processing methods are realized by levitation techniques. This paper describes a containerless levitation setup that utilized the magnetization force generated in a gradient magnetic field. It comprises a levitation unit, a temperature control unit, and a real-time observation unit. Known volume of liquid diamagnetic samples can be levitated in the levitation chamber, the temperature of which is controlled using the temperature control unit. The evolution of the levitated sample is observed in real time using the observation unit. With this setup, containerless processing of liquid such as crystal growth from solution can be realized in a well-controlled manner. Since the levitation is achieved using a superconducting magnet, experiments requiring long duration time such as protein crystallization and simulation of space environment for living system can be easily succeeded.

  13. Manufacturing a Superconductor in School.

    Science.gov (United States)

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  14. Superconductor stripes move on

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, J. [Physics Department, Brookhaven National Laboratory, Upton, NY (United States)

    1999-11-01

    Differences in fundamental assumptions are behind much of the controversy among theorists over the cause of high-temperature superconductivity the absence of resistance to electrical current at temperatures as high as 130 K in layered copper-oxide compounds. One common assumption is that the charge carriers are distributed uniformly throughout the all-important CuO{sub 2} layers. However, there is growing experimental evidence that this is not the case and that 'stripes' of charge form in these puzzling materials. Now a significant step forward in the struggle to understand the behaviour of charge carriers in high-temperature superconductors has been made at the Oak Ridge National Laboratory in the US. (UK)

  15. Manufacturing of Superconductors

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels

    Superconducting tapes based on the ceramic high temperature superconductor (HTS) is a new promising product for high current applications such as electro-magnets and current transmission cables. The tapes are made by the oxide powder in tube (OPIT) method implying drawing and rolling of silver...... on the mechanical and thermal processes applied. One of the most crucial processes is probably the flat rolling process, where the round or square wire is rolled to form a thin tape (about 3 mm x 0.2 mm), while the density of the powder fibres increase and the fibres obtain their final geometry. For instance...... rolling a tape to a thickness of 250 µm may give a very high Je, whereas further reduction to 200 µm may be fatal. In the present work the flat rolling process is analysed systematically from a mechanical forming point of view. This work implies · Mechanical characterisation of the plastic parameters...

  16. Dexterous ultrasonic levitation of millimeter-sized objects in air.

    Science.gov (United States)

    Seah, Sue Ann; Drinkwater, Bruce W; Carter, Tom; Malkin, Rob; Subramanian, Sriram

    2014-07-01

    Acoustic levitation in air has applications in contactless handling and processing. Here a first-order Bessel function-shaped acoustic field, generated using an 8-element circular array operating at 40 kHz, traps millimeter-sized objects against gravity. The device can manipulate objects in a vertical plane over a few millimeters with an accuracy of ± 0.09 mm.

  17. Levitation of Superconductive Cable in Earth Magnetic Field

    Directory of Open Access Journals (Sweden)

    Bohus Ulrych

    2006-01-01

    Full Text Available The paper represents an introductory study about a superconductive cable levitating in Earth’s magnetic field. Built are two mathematical models of the problem providing both the shape of the arc of the cable and forces acting along it. The theoretical analysis is supplemented with an illustrative example.

  18. Annoyance caused by the sounds of a magnetic levitation train

    NARCIS (Netherlands)

    Vos, J.

    2004-01-01

    In a laboratory study, the annoyance caused by the passby sounds from a magnetic levitation (maglev) train was investigated. The listeners were presented with various sound fragments. The task of the listeners was to respond after each presentation to the question: "How annoying would you find the s

  19. Viscoacoustic model for near-field ultrasonic levitation.

    Science.gov (United States)

    Melikhov, Ivan; Chivilikhin, Sergey; Amosov, Alexey; Jeanson, Romain

    2016-11-01

    Ultrasonic near-field levitation allows for contactless support and transportation of an object over vibrating surface. We developed an accurate model predicting pressure distribution in the gap between the surface and levitating object. The formulation covers a wide range of the air flow regimes: from viscous squeezed flow dominating in small gap to acoustic wave propagation in larger gap. The paper explains derivation of the governing equations from the basic fluid dynamics. The nonreflective boundary conditions were developed to properly define air flow at the outlet. Comparing to direct computational fluid dynamics modeling our approach allows achieving good accuracy while keeping the computation cost low. Using the model we studied the levitation force as a function of gap distance. It was shown that there are three distinguished flow regimes: purely viscous, viscoacoustic, and acoustic. The regimes are defined by the balance of viscous and inertial forces. In the viscous regime the pressure in the gap is close to uniform while in the intermediate viscoacoustic and the acoustic regimes the pressure profile is wavy. The model was validated by a dedicated levitation experiment and compared to similar published results.

  20. Contact-free handling using actively controlled electrostatic levitating fields

    NARCIS (Netherlands)

    Woo, S.J.

    2012-01-01

    In general electric field forces have the distinctive property of being able to mediate forces to virtually any material in a fully non-invasive and contact-free fashion. Based on this property, electrostatic levitation holds great promise for the semiconductor, solar panel, and flat-panel display i

  1. A Novel Noncontact Ultrasonic Levitating Bearing Excited by Piezoelectric Ceramics

    Directory of Open Access Journals (Sweden)

    He Li

    2016-10-01

    Full Text Available A novel ultrasonic levitating bearing excited by three piezoelectric transducers is presented in this work. The transducers are circumferentially equispaced in a housing, with their center lines going through the rotation center of a spindle. This noncontact bearing has the ability to self-align and carry radical and axial loads simultaneously. A finite element model of the bearing is built in ANSYS, and modal analysis and harmonious response analysis are conducted to investigate its characteristics and driving parameters. Based on nonlinear acoustic theory and a thermodynamic theory of ideal gas, the radical and lateral load-carrying models are built to predict the bearing’s carrying capacity. In order to validate the bearing’s levitation force, a test system is established and levitating experiments are conducted. The experimental data match well with the theoretical results. The experiments reveal that the maximum radical and axial levitating loads of the proposed bearing are about 15 N and 6 N, respectively, when the piezoelectric transducers operate at a working frequency of 16.11 kHz and a voltage of 150 Vp-p.

  2. Burning and graphitization of optically levitated nanodiamonds in vacuum

    CERN Document Server

    Rahman, A T M A; Kim, M S; Bose, S; Morley, G W; Barker, P F

    2015-01-01

    A nitrogen-vacancy (NV$^-$) center in a nanodiamond, levitated in high vacuum, has recently been proposed as a probe for demonstrating mesoscopic center-of-mass superpositions \\cite{Scala2013, Zhang2013} and for testing quantum gravity \\cite{Albrecht2014}. Here, we study the behavior of optically levitated nanodiamonds containing NV$^-$ centers at sub-atmospheric pressures and show that while they burn in air, this can be prevented by replacing the air with nitrogen. However, in nitrogen the nanodiamonds graphitize below $\\approx 10$ mB. Exploiting the Brownian motion of a levitated nanodiamond, we extract its internal temperature ($T_i$) and find that it would be detrimental to the NV$^-$ center's spin coherence time \\cite{Toyli2012}. These values of $T_i$ make it clear that the diamond is not melting, contradicting a recent suggestion \\cite{Neukirch2015}. Additionally, using the measured damping rate of a levitated nanoparticle at a given pressure, we propose a new way of determining its size.

  3. Contact-free handling using actively controlled electrostatic levitating fields

    NARCIS (Netherlands)

    Woo, S.J.

    2012-01-01

    In general electric field forces have the distinctive property of being able to mediate forces to virtually any material in a fully non-invasive and contact-free fashion. Based on this property, electrostatic levitation holds great promise for the semiconductor, solar panel, and flat-panel display

  4. Annoyance caused by the sounds of a magnetic levitation train

    NARCIS (Netherlands)

    Vos, J.

    2004-01-01

    In a laboratory study, the annoyance caused by the passby sounds from a magnetic levitation (maglev) train was investigated. The listeners were presented with various sound fragments. The task of the listeners was to respond after each presentation to the question: "How annoying would you find the s

  5. NASA MSFC Electrostatic Levitator (ESL) Rapid Quench System

    Science.gov (United States)

    SanSoucie, Michael P.; Craven, Paul D.

    2014-01-01

    Electrostatic levitation, a form of containerless processing, is an important tool in materials research. Levitated specimens are free from contact with a container; therefore, heterogeneous nucleation on container walls is not possible. This allows studies of deeply undercooled melts. Furthermore, studies of high-temperature, highly reactive materials are also possible. Studies of the solidification and crystallization of undercooled melts is vital to the understanding of microstructure development, particularly the formation of alloys with unique properties by rapid solidification. The NASA Marshall Space Flight Center (MSFC) Electrostatic Levitator (ESL) lab has recently been upgraded to allow for rapid quenching of levitated materials. The ESL Rapid Quench System uses a small crucible-like vessel that can be partially filled with a low melting point material, such as a Gallium alloy, as a quench medium. An undercooled sample can be dropped into the vessel to rapidly quench the sample. A carousel with nine vessels sits below the bottom electrode assembly. This system allows up to nine rapid quenches before having to break vacuum and remove the vessels. This new Rapid Quench System will allow materials science studies of undercooled materials and new materials development. In this presentation, the system is described and initial results are presented.

  6. Two-dimensional inverted pendulum using repulsive magnetic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Eirich, Max; Ishino, Yuji; Takasaki, Masaya; Mizuno, Takeshi [Saitama Univ. (Japan). Dept. of Mechanical Engineering

    2010-07-01

    The active control of two-degree-of-freedom motion of the repulsive levitated object (floator) is studied. In this system of permanent magnets, the vertical motions of the rotor are passively supported by repulsive forces between the permanent magnets. The inclination angle is actively stabilized using the motion control of additional magnets. (orig.)

  7. Annoyance caused by the sounds of a magnetic levitation train

    NARCIS (Netherlands)

    Vos, J.

    2004-01-01

    In a laboratory study, the annoyance caused by the passby sounds from a magnetic levitation (maglev) train was investigated. The listeners were presented with various sound fragments. The task of the listeners was to respond after each presentation to the question: "How annoying would you find the

  8. Regolith Levitation on Small Fast Rotating Asteroids

    Science.gov (United States)

    Campo Bagatin, Adriano; Moreno, Fernando; Molina, Antonio

    2014-11-01

    A number of NEAs larger than few hundred meters are found with relatively high spin rates (from ~2.2 to less than 4 hr, depending on composition). On those bodies, local acceleration near their equator may be directed outwards, as in the case of the primaries of binary asteroids Didymos and 1996 FG3. They both are potential targets of future space missions. What are the effects of high spin states on regolith material at low asteroidal latitudes?NEAs come from the asteroid belt and are believed to be mostly gravitational aggregates at D > 0.5 - 1 km due to their former collisional evolution history (Campo Bagatin et al, 2001). Once in the inner Solar System, NEAs may undergo spin up evolution through YORP causing their components to disperse, shed mass or fission and eventually form binary, multiple systems or asteroid pairs (Walsh et al, 2008, Jacobson and Scheers, 2010, Pravec et al, 2009 and 2010). The end state of those events is often an object spinning above any Chandrasekhar stability limit, kept together by friction (Holsapple, 2007) and sometimes characterized by an equatorial “bulge”, as shown by radar images (Ostro et al, 2006).The centrifugal force acting on surface particles at equatorial latitudes may overcome the gravitational pull of the asteroid itself, and particles may leave its suface. Centrifugal is an apparent contact force, and as soon as particles lift off they mainly move under the gravitational field of the asteroid and the satellite, they may levitate for some time, land on the surface and repeat this cycle over and over. We are studying the motion of particles in the 1 μm to 10 cm range in the non-inertial reference frame of the rotating primary, accounting for centrifugal and Coriolis apparent forces as well as the gravitational fields of the primary, the secondary, the Sun and the radiation forces by the Sun itself. The main features of this effect are presented in the case of Didymos and 1996 FG3.

  9. Internal resonance of an elastic body levitated above high-Tc superconducting bulks

    Energy Technology Data Exchange (ETDEWEB)

    Kokuzawa, T; Toshihiko, S; Yoshizawa, M, E-mail: sugiura@mech.keio.ac.j [Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan)

    2010-06-01

    In high-Tc superconducting magnetic levitation systems, levitated bodies can keep stable levitation with no contact and no control and thus their damping is very small. Thanks to these features, their applications to various apparatus are expected. However, on account of their small damping, the nonlinearity of electromagnetic levitation force can give notable effects upon motion of the levitated bodies. Therefore this nonlinearity must be taken into account to accurately analyze the dynamical behavior of the levitated bodies. Structures of such a levitated body can show elastic deformation if the large electromagnetic force acts on it. Therefore, we need to deal with the model as an elastic body. As mentioned above, nonlinear characteristics easily appear in this elastic vibration on account of the small damping. Especially when the ratio of the natural frequencies of the eigenmodes is integer, internal resonance can occur. This nonlinear resonance is derived from nonlinear interactions among the eigenmodes of the elastic levitated body. This kind of internal resonance of an elastic body appearing in high-Tc superconducting levitation systems has not been studied so far. This research especially deals with internal resonance of a beam supported at both its ends by electromagnetic forces acting on permanent magnets. The governing equation with the nonlinear boundary conditions for the dynamics of a levitated beam has been derived. Numerical results show internal resonance of the 1st mode and the 3rd mode. Experimental results are qualitatively in good agreement with numerical ones.

  10. Process for fabricating continuous lengths of superconductor

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    1998-01-01

    A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.

  11. Melt processing of bulk high Tc superconductors and their application

    Science.gov (United States)

    Murakami, M.; Oyama, T.; Fujimoto, H.; Gotoh, S.; Yamaguchi, K.

    1991-03-01

    The authors report a melt-powder-melt-growth (MPMG) process which results in high Jc for bulk Y-Ba-Cu-O superconductors. The Y-Ba-Cu-O pellets or powders are melt quenched. The quenched plates are crushed into powder and mixed well. The powder is then compacted into desired shapes, remelted, and slowly cooled in a thermal gradient. When the starting composition is changed from the 1:2:3 stoichiometry toward the Y2BaCuO5(211) rich region, the 211 inclusions can be dispersed in the YBa2Cu3O(x) matrix, which contributes to increases in both flux pinning force and fracture toughness. A Jc value exceeding 3 x 108 A/sq m has been achieved at 77 K and 1 T. Another attractive feature of the MPMG process is that other components such as fine Ag powders can be added during solid-state mixing. Fine dispersion of Ag particles can effectively reduce the amount of cracking. MPMG-processed Y-Ba-Cu-O with Ag doping can levitate a mass of 3-kg at 1-mm height using a repulsive force against a 0.4-T magnet. A noncontacting rotation device such as a magnetic bearing can be made utilizing bulk high-Jc materials. A superconducting permanent magnet is also a promising candidate for future application. MPMG-processed Y-Ba-Cu-O can generate 0.25 T at 77 K.

  12. Ferromagnet / superconductor oxide superlattices

    Science.gov (United States)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  13. Gravitoelectromagnetism and Dark Energy in Superconductors

    CERN Document Server

    De Matos, C J

    2006-01-01

    A gravitomagnetic analogue of the London moment in superconductors can explain the anomalous Cooper pair mass excess reported by Janet Tate. Ultimately the gravitomagnetic London moment is attributed to the breaking of the principle of general covariance in superconductors. This naturally implies non-conservation of classical energy-momentum. Possible relation with the manifestation of dark energy in superconductors is questioned.

  14. Large bulk Y-Ba-Cu-O superconductors fabricated by multiseeding melt growth methods

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We have fabricated the large single domain YBaCuO bulk superconductors by using multiseeding technique combined with composition gradient in the precursor. Obviously, the growth time can be shortened by multiseeding method and the weak links between grain boundaries originated from different seeds can be also overcome with introducing the chemical component gradient and arranging the seeds exactly. For these YBCO disks, only single peak occurs in the distributions of trapped field, and the magnetic levitation force is equal to that of the same size sample fabricated with single seed. Although the arrangement of seeds is similar, the distribution of trapped field still shows four peaks for the sample without composition gradient.

  15. High-Tc superconductor/linear low density polyethylene (LLDPE) composite materials for diamagnetic applications

    Science.gov (United States)

    Bhadrakumari, S.; Predeep, P.

    2006-08-01

    A series of composite samples of YBa2Cu3O7-x and linear low density polyethylene (Y-123/LLDPE) with volume percentage ranging from 0 to 75% was prepared. The crystallinity of the composites was studied using x-ray diffraction (XRD) patterns. It is found that the percentage of crystallinity in the composite samples increases with increasing volume of the LLDPE. A four-phase system for the composite materials may be inferred from a combination of XRD and density data. Repulsive force measurements showed that the diamagnetic properties were preserved in the composites and the samples exhibited appreciable magnetic levitation forces and this force increases with increasing volume fraction of the superconductor filler.

  16. Multistrand superconductor cable

    Science.gov (United States)

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  17. Terahertz Detection with Twin Superconductor-Insulator-Superconductor Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Jing; WANG Ming-Jye; SHI Sheng-Cai; Hiroshi Mat-suo

    2007-01-01

    Terahertz detection with twin superconductor-insulator-superconductor (SIS) tunnel junctions, which are connected in parallel via an inductive thin-film superconducting microstrip line, is mainly studied. Firstly, we investigate the direct-detection response of a superconducting twin-junction device by means of a Fourier transform spectrometer. Secondly, we construct a direct-detection model of twin SIS tunnel junctions. The superconducting twin-junction device is then simulated in terms of the constructed model. The simulation result is found to be in good agreement with the measured one. In addition, we observe that the direct-detection response of the device is consistent with the noise temperature behaviour.

  18. Two decades on[Research into high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Durrani, M. [Physics World (United Kingdom)

    2006-04-15

    Research into high-temperature superconductors should focus on experiment, not theory. While the world looked on in horror at the events unfolding at the Chernobyl nuclear-power plant in the Soviet Union 20 years ago this month, another significant - but far less reported - development in the world of physics had just taken place. On 17 April 1986 a short paper by Georg Bednorz and Alexander Mueller arrived at the offices of Zeitschrift fuer Physik in Heidelberg, Germany. The two physicists, based at IBM's Zurich Research Laboratory in Switzerland, announced they had made a material from barium, lanthanum, copper and oxygen that could conduct electricity without resistance when cooled below a transition temperature, T{sub c}, of about 30 K. It was the world's first 'high-temperature' superconductor. Driven by the dream of materials that can superconduct at room temperature, experimentalists scurried back to their labs. Within a year, a T{sub c} of 90 K in another material had been reported and by October 1987 Bednorz and Mueller had been crowned with a Nobel prize. While papers on high-temperature superconductivity have continued to stream out since those heady days, progress has been slower than expected. Applications like levitating trains and resistance-free power cables are only now starting to come to market. Scientists have been unable to make superconducting wires that work much above 130 K, while a reliable theory of high-temperature superconductivity remains elusive. Even if we had such a theory, it is not clear that it would predict which materials might superconduct at room temperature. After all, the Bardeen-Cooper-Schrieffer theory, which explains the behaviour of low-temperature superconductors with admirable success, said nothing about the superconducting properties of Bednorz and Mueller's copper-oxide ceramics. What successes there have been over the last 20 years - such as the recent discoveries that iron, single crystals

  19. Interaction of bulk superconductors with flywheel rings made of multiple permanent magnets

    Science.gov (United States)

    Ikeda, M.; Wongsatanawarid, A.; Seki, H.; Murakami, M.

    2009-10-01

    Compared to conventional mechanical bearings, superconducting bearings have the advantage that there is no friction loss. Thus the superconducting bearings are employed for a flywheel energy storage device, and thereby one can construct the system that stores the energy for a long duration. Hence, superconducting flywheel energy storage system has attracted worldwide attention. For practical applications of the superconducting energy storage system, the stored energy must be maximized that can be achieved by either increasing the diameter of the levitated flywheel or the rotational velocity. Since the suspended flywheel in the superconducting flywheel energy storage system is made of permanent magnets, its size is limited by the size of permanent magnets. In addition, when the rotational speed is increased, there is possibility for the magnet ring to fracture due to a large centrifugal force. We therefore proposed the construction of the magnetic flywheel ring by simply arranging small permanent magnets pasted into machined grooves in Al disk 650 mm in diameter. Then we measured the force interaction between superconductor sample and a invented flywheel design. We have found that the field is almost uniform when the distance from the flywheel surface exceeded 15 mm, showing that frictionless rotation is possible at the gap larger than 15 mm. Furthermore, the repulsive force density was 0.48 N/cm 2 at 15 mm, which demonstrates that the mass of 161.32 kg can be levitated.

  20. Aerodynamic levitation and laser heating: Applications at synchrotron and neutron sources

    Energy Technology Data Exchange (ETDEWEB)

    Hennet, L.; Pozdnyakova, I.; Drewitt, J.W.E.; Leydier, M.; Brassamin, S.; Zanghi, D.; Magazu, S.; Price, D.L. [CEMHTI and University of Orleans, 45071 Orleans Cedex 02 (France); Cristiglio, V.; Kozaily, J.; Fischer, H.E.; Cuello, G.J.; Koza, M. [ILL, BP. 156, 38042 Grenoble Cedex 09 (France); Bytchkov, A. [ESRF, BP. 220, 38043 Grenoble Cedex 09 (France); Thiaudiere, D. [Synchrotron SOLEIL, BP. 48, 91192 Gif-sur-Yvette Cedex (France); Gruner, S. [Institute of Physics, Chemnitz UT, 09107 Chemnitz (Germany); Greaves, G.N. [IMAPS, University of Wales, Aberystwyth, SY23 3BZ (United Kingdom)

    2011-05-15

    Aerodynamic levitation is an effective way to suspend samples which can be heated with CO{sub 2} lasers. The advantages of this container-less technique are the simplicity and compactness of the device, making it possible to integrate it easily in different kinds of experiments. In addition, all types of materials can be used, including metals and oxides. The integration of aerodynamic levitation at synchrotron and neutron sources provides powerful tools to study the structure and dynamics of molten materials. We present here an overview of the existing techniques (electromagnetic levitation, electrostatic levitation, single-axis acoustic levitation, and aerodynamic levitation) and of the developments made at the CEMHTI in Orleans, as well as a few examples of experimental results already obtained. (authors)

  1. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  2. Modified Entropic Gravitation in Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2011-01-01

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde's derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor's quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravit...

  3. Superconductor stability, 1983: a review

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1983-01-01

    Three main topics have been discussed in this paper, namely, internally cooled superconductors, cooling by superfluid helium, and metastable magnets. The discussion of each has centered around a dominant idea, and it is fitting to highlight these ideas by way of conclusion. With regard to internally cooled superconductors, most of what we have learned in the last few years centers on the strong motion caused by the thermal expansion of helium. How naive were our early calculations that treated the helium as though it were incompressible. Our discussion of He-II was organized around the Gorter-Mellink relation and the solutions of the nonlinear diffusion equation it gives rise to. And our discussion of metastable magnets revolved around the fruitful concept of the MPZ. These three ideas are sturdy trunks that support much of the thought about superconductor stability that has flowered in the past several years.

  4. Topological surface states in nodal superconductors.

    Science.gov (United States)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  5. Apparatus for fabricating continuous lengths of superconductor

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2002-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  6. Holographic Multi-Band Superconductor

    CERN Document Server

    Huang, Ching-Yu; Maity, Debaprasad

    2011-01-01

    We propose a gravity dual for the holographic superconductor with multi-band carriers. Moreover, the currents of these carriers are unified under a global non-Abelian symmetry, which is dual to the bulk non-Abelian gauge symmetry. We study the phase diagram of our model, and find it qualitatively agrees with the one for the realistic 2-band superconductor, such as MgB2. We also evaluate the holographic conductivities and find the expected mean-field like behaviors in some cases. However, for a wide range of the parameter space, we also find the non-mean-field like behavior with negative conductivities.

  7. High temperature superconductor current leads

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  8. Terahertz Spectroscopy of Novel Superconductors

    Directory of Open Access Journals (Sweden)

    Stefano Lupi

    2011-01-01

    Full Text Available Through the coupling of Synchrotron Radiation and Michelson interferometry, one may obtain in the terahertz (THz range transmittance and reflectivity spectra with a signal-to-noise ratio (S/N up to 103. In this paper we review the application of this spectroscopic technique to novel superconductors with an increasing degree of complexity: the single-gap boron-doped diamond; the isotropic multiband V3Si, where superconductivity opens two gaps at the Fermi energy; the CaAlSi superconductor, isostructural to MgB2, with a single gap in the hexagonal ab plane and two gaps along the orthogonal c axis.

  9. Topological Aspects of Triplet Superconductors

    Institute of Scientific and Technical Information of China (English)

    REN Ji-Rong; XU Dong-Hui; ZHANG Xin-Hui; LI Ran

    2007-01-01

    In this paper, using the φ-mapping theory, it is shown that two kinds of topological defects, i.e., the vortex lines and the monopoles exist in the helical configuration of magnetic field in triplet superconductors. And the inner topological structure of these defects is studied. Because the knot solitons in the triplet superconductors are characterized by the Hopf invariant, we also establish a relationship between the Hopf invariant and the linking number of knots family,and reveal the inner topological structure of the Hopf invariant.

  10. Holographic superconductors without translational symmetry

    CERN Document Server

    Zeng, Hua Bi

    2014-01-01

    A holographic superconductor is constructed in the background of a massive gravity theory. In the normal state without condensation, the conductivity exhibits a Drude peak that approaches a delta function in the massless gravity limit as studied by David Vegh. In the superconducting state, besides the infinite DC conductivity, the AC conductivity has Drude behavior at low frequency followed by a power law-fall. These results are in agreement with that found earlier by Horowitz and Santos, who studied a holographic superconductor with an implicit periodic potential beyond the probe limit. The results also agree with measurements on some cuprates.

  11. Controlling the net charge on a nanoparticle optically levitated in vacuum

    Science.gov (United States)

    Frimmer, Martin; Luszcz, Karol; Ferreiro, Sandra; Jain, Vijay; Hebestreit, Erik; Novotny, Lukas

    2017-06-01

    Optically levitated nanoparticles in vacuum are a promising model system to test physics beyond our current understanding of quantum mechanics. Such experimental tests require extreme control over the dephasing of the levitated particle's motion. If the nanoparticle carries a finite net charge, it experiences a random Coulomb force due to fluctuating electric fields. This dephasing mechanism can be fully excluded by discharging the levitated particle. Here, we present a simple and reliable technique to control the charge on an optically levitated nanoparticle in vacuum. Our method is based on the generation of charges in an electric discharge and does not require additional optics or mechanics close to the optical trap.

  12. Characterization of Acousto-Electric Cluster and Array Levitation and its Application to Evaporation

    Science.gov (United States)

    Robert E. Apfel; Zheng, Yibing

    2000-01-01

    An acousto-electric levitator has been developed to study the behavior of liquid drop and solid particle clusters and arrays. Unlike an ordinary acoustic levitator that uses only a standing acoustic wave to levitate a single drop or particle, this device uses an extra electric static field and the acoustic field simultaneously to generate and levitate charged drops in two-dimensional arrays in air without any contact to a solid surface. This cluster and array generation (CAG) instrument enables us to steadily position drops and arrays to study the behavior of multiple drop and particle systems such as spray and aerosol systems relevant to the energy, environmental, and material sciences.

  13. Experimental Realisation of a Thermal Squeezed State of Levitated Optomechanics

    CERN Document Server

    Rashid, Muddassar; Bateman, James; Vovrosh, Jamie; Hempston, David; Kim, M S; Ulbricht, Hendrik

    2016-01-01

    We experimentally squeeze the thermal motional state of an optically levitated nanosphere, by fast switching between two trapping frequencies. The measured phase space distribution of our particle shows the typical shape of a squeezed thermal state, from which we infer up to 2.7dB of squeezing along one motional direction. The experiment features a large number of thermal excitations, therefore remaining in the classical regime. Nevertheless, we argue that the manipulation scheme described here could be used to achieve squeezing below the zero-point level, if preceded by ground state cooling of the levitated mechanical oscillator. Additionally, a higher degree of squeezing could in principle be achieved by repeating the frequency-switching protocol multiple times.

  14. Nonlinear characterization of a single-axis acoustic levitator

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil); Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  15. Measurement of Aqueous Foam Rheology by Acoustic Levitation

    Science.gov (United States)

    McDaniel, J. Gregory; Holt, R. Glynn; Rogers, Rich (Technical Monitor)

    2000-01-01

    An experimental technique is demonstrated for acoustically levitating aqueous foam drops and exciting their spheroidal modes. This allows fundamental studies of foam-drop dynamics that provide an alternative means of estimating the viscoelastic properties of the foam. One unique advantage of the technique is the lack of interactions between the foam and container surfaces, which must be accounted for in other techniques. Results are presented in which a foam drop with gas volume fraction phi = 0.77 is levitated at 30 kHz and excited into its first quadrupole resonance at 63 +/- 3 Hz. By modeling the drop as an elastic sphere, the shear modulus of the foam was estimated at 75 +/- 3 Pa.

  16. Nonlinear dynamics and millikelvin cavity-cooling of levitated nanoparticles

    CERN Document Server

    Fonseca, P Z G; Millen, J; Monteiro, T S; Barker, P F

    2015-01-01

    Optomechanical systems explore and exploit the coupling between light and the mechanical motion of matter. A nonlinear coupling offers access to rich new physics, in both the quantum and classical regimes. We investigate a dynamic, as opposed to the usually studied static, nonlinear optomechanical system, comprising of a nanosphere levitated and cooled in a hybrid electro-optical trap. An optical cavity offers readout of both linear-in-position and quadratic-in-position (nonlinear) light-matter coupling, whilst simultaneously cooling the nanosphere to millikelvin temperatures for indefinite periods of time in high vacuum. We observe cooling of the linear and non-linear motion, leading to a $10^5$ fold reduction in phonon number $n_p$, attaining final occupancies of $n_p = 100-1000$. This work puts cavity cooling of a levitated object to the quantum ground-state firmly within reach.

  17. Three-dimensional cell culturing by magnetic levitation.

    Science.gov (United States)

    Haisler, William L; Timm, David M; Gage, Jacob A; Tseng, Hubert; Killian, T C; Souza, Glauco R

    2013-10-01

    Recently, biomedical research has moved toward cell culture in three dimensions to better recapitulate native cellular environments. This protocol describes one method for 3D culture, the magnetic levitation method (MLM), in which cells bind with a magnetic nanoparticle assembly overnight to render them magnetic. When resuspended in medium, an external magnetic field levitates and concentrates cells at the air-liquid interface, where they aggregate to form larger 3D cultures. The resulting cultures are dense, can synthesize extracellular matrix (ECM) and can be analyzed similarly to the other culture systems using techniques such as immunohistochemical analysis (IHC), western blotting and other biochemical assays. This protocol details the MLM and other associated techniques (cell culture, imaging and IHC) adapted for the MLM. The MLM requires 45 min of working time over 2 d to create 3D cultures that can be cultured in the long term (>7 d).

  18. Time-optimal control of the magnetically levitated photolithography platen

    Energy Technology Data Exchange (ETDEWEB)

    Redmond, J.; Tucker, S.

    1995-01-01

    This report summarizes two approaches to time-optimal control of a nonlinear magnetically levitated platen. The system of interest is a candidate technology for next-generation photolithography machines used in the manufacture of integrated circuits. The dynamics and the variable peak control force of the electro-magnetic actuators preclude the direct application of classical time-optimal control methodologies for determining optimal rest-to-rest maneuver strategies. Therefore, this study explores alternate approaches using a previously developed computer simulation. In the first approach, conservative estimates of the available control forces are used to generate suboptimal switching curves. In the second approach, exact solutions are determined iteratively and used as a training set for an artificial neural network. The trained network provides optimal actuator switching times that incorporate the full nonlinearities of the magnetic levitation actuators. Sample problems illustrate the effectiveness of these techniques as compared to traditional proportional-derivative control.

  19. Heterogeneous Nucleation Induced by Capillary Wave During Acoustic Levitation

    Institute of Scientific and Technical Information of China (English)

    吕勇军; 解文军; 魏炳波

    2003-01-01

    The rapid solidification of acoustically levitated drops of Pb-61.9 wt. %Sn eutectic alloy is accomplished. A surface morphology of spreading ripples is observed on a sample undercooled by 15 K. The ripples originate from the centre of sample surface, which is also the heterogeneous nucleation site for eutectic growth. The Faraday instability excited by forced surface vibration has brought about these ripples. They are retained in the solidified sample if the sound pressure level exceeds the threshold pressure required for the appearance of capillary waves.Theoretical calculations indicate that both the pressure and displacement maxima exist in the central part of a levitated drop. The pressure near the sample centre can promote heterogeneous nucleation, which is in agreement qualitatively with the experimental results.

  20. Optical Levitation of Nanodiamonds by Doughnut Beams in Vacuum

    CERN Document Server

    Zhou, Lei-Ming; Chen, Jun; Zhao, Nan

    2016-01-01

    Optically levitated nanodiamonds with nitrogen-vacancy centers promise a high-quality hybrid spin-optomechanical system. However, the trapped nanodiamond absorbs energy form laser beams and causes thermal damage in vacuum. We propose to solve the problem by trapping a composite particle (a nanodiamond core coated with a less absorptive silica shell) at the center of strongly focused doughnut-shaped laser beams. Systematical study on the trapping stability, heat absorption, and oscillation frequency concludes that the azimuthally polarized Gaussian beam and the linearly polarized Laguerre-Gaussian beam ${\\rm LG}_{03}$ are the optimal choices. With our proposal, particles with strong absorption coefficients can be trapped without obvious heating and, thus, the spin-optomechanical system based on levitated nanodiamonds are made possible in high vacuum with the present experimental techniques.

  1. Reduction of characteristic RL time for fast, efficient magnetic levitation

    Science.gov (United States)

    Li, Yuqing; Feng, Guosheng; Wang, Xiaofeng; Wu, Jizhou; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2017-09-01

    We demonstrate the reduction of characteristic time in resistor-inductor (RL) circuit for fast, efficient magnetic levitation according to Kirchhoff's circuit laws. The loading time is reduced by a factor of ˜4 when a high-power resistor is added in series with the coils. By using the controllable output voltage of power supply and voltage of feedback circuit, the loading time is further reduced by ˜ 3 times. The overshoot loading in advance of the scheduled magnetic field gradient is equivalent to continuously adding a resistor without heating. The magnetic field gradient with the reduced loading time is used to form the upward magnetic force against to the gravity of the cooled Cs atoms, and we obtain an effectively levitated loading of the Cs atoms to a crossed optical dipole trap.

  2. Reduction of characteristic RL time for fast, efficient magnetic levitation

    Directory of Open Access Journals (Sweden)

    Yuqing Li

    2017-09-01

    Full Text Available We demonstrate the reduction of characteristic time in resistor-inductor (RL circuit for fast, efficient magnetic levitation according to Kirchhoff’s circuit laws. The loading time is reduced by a factor of ∼4 when a high-power resistor is added in series with the coils. By using the controllable output voltage of power supply and voltage of feedback circuit, the loading time is further reduced by ∼ 3 times. The overshoot loading in advance of the scheduled magnetic field gradient is equivalent to continuously adding a resistor without heating. The magnetic field gradient with the reduced loading time is used to form the upward magnetic force against to the gravity of the cooled Cs atoms, and we obtain an effectively levitated loading of the Cs atoms to a crossed optical dipole trap.

  3. Control of Nanomaterial Self-Assembly in Ultrasonically Levitated Droplets.

    Science.gov (United States)

    Seddon, Annela M; Richardson, Sam J; Rastogi, Kunal; Plivelic, Tomás S; Squires, Adam M; Pfrang, Christian

    2016-04-01

    We demonstrate that acoustic trapping can be used to levitate and manipulate droplets of soft matter, in particular, lyotropic mesophases formed from self-assembly of different surfactants and lipids, which can be analyzed in a contact-less manner by X-ray scattering in a controlled gas-phase environment. On the macroscopic length scale, the dimensions and the orientation of the particle are shaped by the ultrasonic field, while on the microscopic length scale the nanostructure can be controlled by varying the humidity of the atmosphere around the droplet. We demonstrate levitation and in situ phase transitions of micellar, hexagonal, bicontinuous cubic, and lamellar phases. The technique opens up a wide range of new experimental approaches of fundamental importance for environmental, biological, and chemical research.

  4. Experimental Realization of a Thermal Squeezed State of Levitated Optomechanics

    Science.gov (United States)

    Rashid, Muddassar; Tufarelli, Tommaso; Bateman, James; Vovrosh, Jamie; Hempston, David; Kim, M. S.; Ulbricht, Hendrik

    2016-12-01

    We experimentally squeeze the thermal motional state of an optically levitated nanosphere by fast switching between two trapping frequencies. The measured phase-space distribution of the center of mass of our particle shows the typical shape of a squeezed thermal state, from which we infer up to 2.7 dB of squeezing along one motional direction. In these experiments the average thermal occupancy is high and, even after squeezing, the motional state remains in the remit of classical statistical mechanics. Nevertheless, we argue that the manipulation scheme described here could be used to achieve squeezing in the quantum regime if preceded by cooling of the levitated mechanical oscillator. Additionally, a higher degree of squeezing could, in principle, be achieved by repeating the frequency-switching protocol multiple times.

  5. Low Frequency Vibration Energy Harvesting using Diamagnetically Stabilized Magnet Levitation

    Science.gov (United States)

    Palagummi, Sri Vikram

    Over the last decade, vibration-based energy harvesting has provided a technology push on the feasibility of self-powered portable small electronic devices and wireless sensor nodes. Vibration energy harvesters in general transduce energy by damping out the environmentally induced relative emotion through either a cantilever beam or an equivalent suspension mechanism with one of the transduction mechanisms, like, piezoelectric, electrostatic, electromagnetic or magnetostrictive. Two major challenges face the present harvesters in literature, one, they suffer from the unavoidable mechanical damping due to internal friction present in the systems, second, they cannot operate efficiently in the low frequency range (magnet levitation mechanisms which can work efficiently as a vibration energy harvester in the low frequency range are discussed in this work. First, a mono-stable vertical diamagnetic levitation (VDL) based vibration energy harvester (VEH) is discussed. The harvester consists of a lifting magnet (LM), a floating magnet (FM) and two diamagnetic plates (DPs). The LM balances out the weight of the FM and stability is brought about by the repulsive effect of the DPs, made of pyrolytic graphite. Two thick cylindrical coils, placed in grooves which are engraved in the DPs, are used to convert the mechanical energy into electrical energy. Experimental frequency response of the system is validated by the theoretical analysis which showed that the VEH works in a low frequency range but sufficient levitation gap was not achieved and the frequency response characteristic of the system was effectively linear. To overcome these challenges, the influence of the geometry of the FM, the LM, and the DP were parametrically studied to assess their effects on the levitation gap, size of the system and the natural frequency. For efficient vibration energy harvesting using the VDL system, ways to mitigate eddy current damping and a coil geometry for transduction were critically

  6. Turbine flowmeter for liquid helium with the rotor magnetically levitated

    Science.gov (United States)

    Rivetti, A.; Martini, G.; Goria, R.; Lorefice, S.

    A turbine flowmeter with no mechanical contact between rotor and body is described, to be used as a reference standard in our liquid helium flow rate calibration facility. The absence of contact, zeroing the bearings friction factor, ensures a good measurement repeatability, even at very low liquid helium flow rate values. The rotor is magnetically suspended by the Meissner effect: at liquid helium temperatures two magnetic fields generate sustaining forces against the surface of the two rotor ends, which are made of niobium. Due to the repulsive nature of the acting forces, the rotor equilibrium is intrinsically stable and no external electronics are required for its levitation. A particular configuration of the superconducting windings and of the rotor ends allow the rotor to levitate and hold good axial and radial stability. A detailed description of the solutions adopted for the realization of the prototype and the operation conditions are reported. The first results, made with the absolute liquid helium calibration facility, are shown.

  7. Nature of the superconductor-insulator transition in disordered superconductors.

    Science.gov (United States)

    Dubi, Yonatan; Meir, Yigal; Avishai, Yshai

    2007-10-18

    The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors.

  8. Sliding mode control of a magnetic levitation system

    Directory of Open Access Journals (Sweden)

    N. F. Al-Muthairi

    2004-01-01

    Full Text Available Sliding mode control schemes of the static and dynamic types are proposed for the control of a magnetic levitation system. The proposed controllers guarantee the asymptotic regulation of the statesof the system to their desired values. Simulation results of the proposed controllers are given to illustrate the effectiveness of them. Robustness of the control schemes to changes in the parameters of the system is also investigated.

  9. Comparison of Systems for Levitation Heating of Electrically Conductive Bodies

    Directory of Open Access Journals (Sweden)

    Bohus Ulrych

    2004-01-01

    Full Text Available Levitation heating of nonmagnetic electrically conductive bodies can be realized in various systems consisting of one of more inductors. The paper deals with compassion of the resultant. Lorentz lifts force acting on such a body (cylinder, sphere and velocity of its heating for different shapes of coils and parameters of the field currents (amplitudes, frequency. The tack is solved in quasi-coupled formulation. Theoretical considerations are supplemented with an illustrative example whose results are discussed.

  10. Sliding mode control of a magnetic levitation system

    OpenAIRE

    Al-Muthairi N. F.; Zribi M.

    2004-01-01

    Sliding mode control schemes of the static and dynamic types are proposed for the control of a magnetic levitation system. The proposed controllers guarantee the asymptotic regulation of the statesof the system to their desired values. Simulation results of the proposed controllers are given to illustrate the effectiveness of them. Robustness of the control schemes to changes in the parameters of the system is also investigated.

  11. The calculation of transport phenomena in electromagnetically levitated metal droplets

    Science.gov (United States)

    El-Kaddah, N.; Szekely, J.

    1982-01-01

    A mathematical representation has been developed for the electromagnetic force field, fluid flow field, and solute concentration field of levitation-melted metal specimens. The governing equations consist of the conventional transport equations combined with the appropriate expressions for the electromagnetic force field. The predictions obtained by solving the governing equations numerically on a digital computer are in good agreement with lifting force and average temperature measurements reported in the literature.

  12. Electrostatic Levitation for Studies of Additive Manufactured Materials

    Science.gov (United States)

    SanSoucie, Michael P.; Rogers, Jan R.; Tramel, Terri

    2014-01-01

    The electrostatic levitation (ESL) laboratory at NASA's Marshall Space Flight Center is a unique facility for investigators studying high temperature materials. The laboratory boasts two levitators in which samples can be levitated, heated, melted, undercooled, and resolidified. Electrostatic levitation minimizes gravitational effects and allows materials to be studied without contact with a container or instrumentation. The lab also has a high temperature emissivity measurement system, which provides normal spectral and normal total emissivity measurements at use temperature. The ESL lab has been instrumental in many pioneering materials investigations of thermophysical properties, e.g., creep measurements, solidification, triggered nucleation, and emissivity at high temperatures. Research in the ESL lab has already led to the development of advanced high temperature materials for aerospace applications, coatings for rocket nozzles, improved medical and industrial optics, metallic glasses, ablatives for reentry vehicles, and materials with memory. Modeling of additive manufacturing materials processing is necessary for the study of their resulting materials properties. In addition, the modeling of the selective laser melting processes and its materials property predictions are also underway. Unfortunately, there is very little data for the properties of these materials, especially of the materials in the liquid state. Some method to measure thermophysical properties of additive manufacturing materials is necessary. The ESL lab is ideal for these studies. The lab can provide surface tension and viscosity of molten materials, density measurements, emissivity measurements, and even creep strength measurements. The ESL lab can also determine melting temperature, surface temperatures, and phase transition temperatures of additive manufactured materials. This presentation will provide background on the ESL lab and its capabilities, provide an approach to using the ESL

  13. Normal state electronic structure and the superconducting energy gap in HTSC's as determined from photoemission spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Arko, A.J.; List, R.S.; Bartlett, R.J.; Cheong, S.W.; Fisk, Z.; Thompson, J.D. (Los Alamos National Lab., NM (USA)); Olson, C.G.; Yang, A.B.; Liu, R.; Gu, C. (Ames Lab., IA (USA)); Veal, B.W.; Liu, J.Z.; Paulikas, A.P.; Vandervoort, K.; Claus, H.; Campuzano, J.C. (Argonne National Lab., IL (USA))

    1989-01-01

    Photoemission spectroscopy has been utilized to determine the electronic structure of high-T{sub c} materials. The observation of dispersive bands at E{sub F} suggests a Fermi surface similar to that obtained from a band calculation. The results apparently are not inconsistent with the notion of a correlated Fermi liquid consisting of hybridized p-d bands. However, it is becoming more and more difficult to distinguish between Fermi liquid behavior in the new high-T{sub c} superconductors and behavior expected on the basis of the novel new non-Fermi liquid theories. The differences are now predicted to be on an energy scale smaller than our experimental resolution. We point out that, while deviations from simple band theory certainly do exist in the form of core and valence band satellites, band narrowing, and rapid photoemission peak broadening away from E{sub F}, there are sufficient agreements with the overall DOS that it should be considered a good starting point for the electronic structure. For example, the calculated Fermi surface for both the 123 and 2212 structures is reasonably well reproduced experimentally and the bands at E{sub F} consist of p-d hybridized orbitals just as predicted by local density functional theory. Our spectra clearly show that a BCS-like DOS is obtained at the Fermi energy as a gap opens up below T{sub c}. This is just one more indication that the old conventional models should be considered more seriously. 18 refs., 6 figs.

  14. Rotation of a metal gear disk in an ultrasonic levitator

    Science.gov (United States)

    Rendon, Pablo L.; Boullosa, Ricardo R.; Salazar, Laura

    2016-11-01

    The phenomenon known as acoustic radiation pressure is well-known to be associated with the time-averaged momentum flux of an acoustic wave, and precisely because it is a time-averaged effect, it is relatively easy to observe experimentally. An ultrasonic levitator makes use of this effect to levitate small particles. Although it is a less-well studied effect, the transfer of angular momentum using acoustic waves in air or liquids has nonetheless been the subject of some recent studies. This transfer depends on the scattering and absorbing properties of the object and is achieved, typically, through the generation of acoustic vortex beams. In the present study, we examine the manner in which the acoustic standing wave located between two disks of an ultrasonic levitator in air may transfer angular momentum to objects with different shapes. In this case, a non-spherical object is subjected to, in addition to the radiation force, a torque which induces rotation. Analytical solutions for the acoustic force and torque are available, but limited to a few simple cases. In general, a finite element model must be used to obtain solutions. Thus, we develop and validate a finite element simulation in order to calculate directly the torque and radiation force.

  15. Sleeveless-extrusion cannula for levitation of dislocated intraocular lens.

    Science.gov (United States)

    Agarwal, Ashvin; Narang, Priya; Agarwal, Amar; Kumar, Dhivya A

    2014-07-01

    To characterise a sleeveless-extrusion cannula-based suction technique to levitate dislocated intraocular lens (IOLs) and review the surgical outcome. This retrospective, non-comparative, single surgeon, interventional, consecutive case series examined 10 patients (10 eyes) who underwent the surgical procedure from October 2011 to December 2012. Reliability, reproducibility, and intraoperative and postoperative complications of the technique were analysed. The technique involved suction levitation of a 3-piece acrylic foldable IOL in six cases, 1-piece acrylic foldable IOL in three cases and a plate haptic IOL in one case. The IOL was exchanged in four eyes whereas the same IOL was repositioned in six eyes with sulcus repositioning in two eyes and glued intrascleral fixation in four eyes. Intraoperative suction loss and a subsequent IOL dislocation were reported in 1 (10%) eye. Early preoperative complications included pigment dispersion in 1 (10%) eye, grade 2 anterior chamber cellular reaction in 2 (20%) eyes and intraoperative corneal oedema in 1 (10%) eye which resolved with medical line of management. Intermediate and late complications included macular oedema in one patient (10%) which resolved considerably with medical line of management. No incidence of postoperative vitreous or retinal haemorrhage, retinal break or retinal detachment was reported. The early results demonstrate this surgical intervention as a reliable, reproducible and an effective alternative treatment option for levitation of dislocated IOLs with a low complication rate.

  16. Efficient Fuzzy Logic Controller for Magnetic Levitation Systems

    Directory of Open Access Journals (Sweden)

    D. S. Shu’aibu

    2016-12-01

    Full Text Available Magnetic levitation is a system of suspending a body or a complete system against gravity. Suspending a system in air against gravity without using fixed structure for supporting is highly unstable and complex. In the previous research many techniques of stabilizing magnetic levitation systems were discussed. In this paper magnetic levitation controller using fuzzy logic is proposed. The proposed Fuzzy logic controller (FLC is designed, and developed using triangular membership function with 7×7 rules. The system model was implemented in MATLAB/SIMULINK and the system responses to Fuzzy controller with different input signals were investigated. Using unit step input signal, the proposed controller has a settling time of 0.35 secs, percentage overshoot of 0% and there is no oscillation. The proposed controller is validated with a model of an existing practical conventional proportional plus derivatives (PD controller. The PD controller has a settling time of 0.45 secs, percentage overshoot of 7% and with oscillation. Similarly, with sinusoidal input, the FLC has a phase shift and peak response of 0^0 and 0.9967 respectively, while PD controller has a phase shift and peak response of 24.48o and 0.9616 respectively. A disturbance signal was applied to the input of the control system. Fuzzy controller succeeded in rejecting the disturbance signal without further turning of the parameters whereby PD controller failed.

  17. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  18. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  19. The Japanese magnetic levitation train is on the rails; Le train a levitation magnetique japonais est sur les rails

    Energy Technology Data Exchange (ETDEWEB)

    Patrick, Henry

    2003-09-01

    In December 2002 was inaugurated in Shanghai (China) the very first magnetic levitation train. This train, named Maglev, reaches the cruise speed of 430 km/h and is the result of a Chinese-German cooperation between Transrapid International and SMTDC companies. The Maglev technology should be used for the project of very high speed train between Tokyo and Osaka (Japan). The test railways and trains of Yamanashi are today at the validation stage (technically and economically) with the aim of reducing costs and managing the noise problems due to the high number of tunnels along the line. This paper describes the specific infrastructures of the magnetic levitation train, the propulsion system (superconducting magnets) and the different kinds of switching required. (J.S.)

  20. A new Maglev. Permanent magnets to make a train levitate; Un nouveau Maglev. Des aimants permanents pour faire leviter un train

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-02-01

    A new, more stable and economical magnetic levitation system has been developed at the Lawrence Livermore Laboratory (USA) which uses permanent magnets instead of expensive superconducting or electro-magnets. In this new type of levitated train, the skates of the wagons are made of series of permanent magnets organized as a Hallbach net while the levitating coils are included in the rails. The construction of such a train using this 'indutrack' system would be 3 times less expensive than the German Maglev. Short paper. (J.S.)

  1. Magnetic field expulsion in superconducting granular ceramics and in polymer/superconductor composites

    Energy Technology Data Exchange (ETDEWEB)

    Benlhachemi, A. [Univ. de Toulon et du Var, La Garde (France). Lab. des Materiaux Multiphases et Interfaces]|[Lab. de Chimie des Solides, Faculte des Sciences, Univ. Ibnou Zohr, Agadir (Morocco); Fremy, M.A.; Breandon, C.; Tatarenko, H.; Gavarri, J.R. [Univ. de Toulon et du Var, La Garde (France). Lab. des Materiaux Multiphases et Interfaces; Benyaich, H. [Lab. de Chimie des Solides, Faculte des Sciences, Univ. Ibnou Zohr, Agadir (Morocco)

    1998-05-01

    The magnetic interaction between a permanent magnet and superconducting ceramics such as YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} and Bi{sub 1.6}Pb{sub 0.4}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub (10+} {sub de} {sub lta)} depend on the superconducting state of each phase and on the junctions between grains. In the case of polymer/superconductor composites, screening effects depend on the volume fraction of superconductor. Measurements of the evolution of the levitation force (F=A/d{sup {gamma}}) as a function of the interaction distance d are used to characterize the effective response of the ceramics or composites to the magnetic flux penetration. Some of the abnormal variations of the exponent {gamma} and of the term A (in F=A/d{sup {gamma}}) could be reinterpreted in terms of a change in superconducting regime. Other observed variations of {gamma} should be due to the variation of the effective field from the cylindrical magnet. (orig.) 19 refs.

  2. Hysteresis force loss and damping properties in a practical magnet-superconductor maglev test vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Yang Wenjiang; Liu Yu; Wen Zheng; Chen Xiaodong; Duan Yi [School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100083 (China)

    2008-01-15

    In order to investigate the feasible application of a permanent magnet-high-temperature superconductor (PM-HTS) interaction maglev system to a maglev train or a space vehicle launcher, we have constructed a demonstration maglev test vehicle. The force dissipation and damping of the maglev vehicle against external disturbances are studied in a wide range of amplitudes and frequencies by using a sine vibration testing set-up. The dynamic levitation force shows a typical hysteresis behavior, and the force loss is regarded as the hysteresis loss, which is believed to be due to flux motions in superconductors. In this study, we find that the hysteresis loss has weak frequency dependence at small amplitudes and that the dependence increases as the amplitude grows. To analyze the damping properties of the maglev vehicle at different field cooling (FC) conditions, we also employ a transient vibration testing technique. The maglev vehicle shows a very weak damping behavior, and the damping is almost unaffected by the trapped flux of the HTSs in different FC conditions, which is believed to be attributed to the strong pinning in melt-textured HTSs.

  3. Hysteresis force loss and damping properties in a practical magnet superconductor maglev test vehicle

    Science.gov (United States)

    Yang, Wenjiang; Liu, Yu; Wen, Zheng; Chen, Xiaodong; Duan, Yi

    2008-01-01

    In order to investigate the feasible application of a permanent magnet-high-temperature superconductor (PM-HTS) interaction maglev system to a maglev train or a space vehicle launcher, we have constructed a demonstration maglev test vehicle. The force dissipation and damping of the maglev vehicle against external disturbances are studied in a wide range of amplitudes and frequencies by using a sine vibration testing set-up. The dynamic levitation force shows a typical hysteresis behavior, and the force loss is regarded as the hysteresis loss, which is believed to be due to flux motions in superconductors. In this study, we find that the hysteresis loss has weak frequency dependence at small amplitudes and that the dependence increases as the amplitude grows. To analyze the damping properties of the maglev vehicle at different field cooling (FC) conditions, we also employ a transient vibration testing technique. The maglev vehicle shows a very weak damping behavior, and the damping is almost unaffected by the trapped flux of the HTSs in different FC conditions, which is believed to be attributed to the strong pinning in melt-textured HTSs.

  4. Josephson Current in Superconductor-Ferromagnet/Insulator/d-Wave Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei; DONG Zheng-Chao

    2005-01-01

    Solving the Bogoliubov-de Gennes equation, the energy levels of bound states are obtained in the ferromagnetic superconductor. The Josephson currents in a ferromagnetic superconductor/Insulator/d-wave superconductor junction are calculated as a function of the exchange field, temperature, and insulating barrier strength. It is found that the Josephson critical current is always suppressed by the presence of exchange field h and depends on crystalline axis orientation of d-wave superconductor.

  5. A new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage.

    Science.gov (United States)

    Choi, Young-Man; Lee, Moon G; Gweon, Dae-Gab; Jeong, Jaehwa

    2009-04-01

    Next-generation lithography requires a high precision stage, which is compatible with a high vacuum condition. A magnetic levitation stage with six degrees-of-freedom is considered state-of-the-art technology for a high vacuum condition. The noncontact characteristic of magnetic levitation enables high precision positioning as well as no particle generation. To position the stage against gravity, z-directional electromagnetic levitation mechanisms are widely used. However, if electromagnetic actuators for levitation are used, heat is inevitably generated, which deforms the structures and degrades accuracy of the stage. Thus, a gravity compensator is required. In this paper, we propose a new magnetic bearing using Halbach magnet arrays for a magnetic levitation stage. The novel Halbach magnetic bearing exerts a force four times larger than a conventional magnetic bearing with the same volume. We also discuss the complementary characteristics of the two magnetic bearings. By modifying the height of the center magnet in a Halbach magnetic bearing, a performance compromise between levitating force density and force uniformity is obtained. The Halbach linear active magnetic bearing can be a good solution for magnetic levitation stages because of its large and uniform levitation force.

  6. Levitation and Oscillation of Dust Grains in Plasma Sheath with Wake Potential

    Institute of Scientific and Technical Information of China (English)

    练海俊; 谢柏松; 周宏余

    2002-01-01

    We investigate the equilibrium and levitation of dust grains in a plasma sheath with various forces, in particular the wake potential force. The vertical oscillation frequency of dust chains is also obtained by including the wake potential term. It is found that the wake potential has a significant role for the levitation and oscillation of dust grains.

  7. An electrostatic levitator for high-temperature containerless materials processing in 1-g

    Science.gov (United States)

    Rhim, Won-Kyu; Chung, Sang K.; Barber, Daniel; Man, Kin F.; Gutt, Gary; Rulison, Aaron; Spjut, R. Erik

    1993-10-01

    This article discusses recent developments in high-temperature electrostatic levitation technology for containerless processing of metals and alloys. Presented is the first demonstration of an electrostatic levitation technology which can levitate metals and alloys (2-4 mm diam spheres) in vacuum and of superheating-undercooling-recalescence cycles which can be repeated while maintaining good positioning stability. The electrostatic levitator (ESL) has several important advantages over the electromagnetic levitator. Most important is the wide range of sample temperature which can be achieved without affecting levitation. This article also describes the general architecture of the levitator, electrode design, position control hardware and software, sample heating, charging, and preparation methods, and operational procedures. Particular emphasis is given to sample charging by photoelectric and thermionic emission. While this ESL is more oriented toward ground-based operation, an extension to microgravity applications is also addressed briefly. The system performance was demonstrated by showing multiple superheating-undercooling-recalescence cycles in a zirconium sample (Tm=2128 K). This levitator, when fully matured, will be a valuable tool both in Earth-based and space-based laboratories for the study of thermophysical properties of undercooled liquids, nucleation kinetics, the creation of metastable phases, and access to a wide range of materials with novel properties.

  8. Effects of acoustic levitation on the development of zebrafish, Danio rerio, embryos.

    Science.gov (United States)

    Sundvik, Maria; Nieminen, Heikki J; Salmi, Ari; Panula, Pertti; Hæggström, Edward

    2015-09-04

    Acoustic levitation provides potential to characterize and manipulate material such as solid particles and fluid in a wall-less environment. While attempts to levitate small animals have been made, the biological effects of such levitation have been scarcely documented. Here, our goal was to explore if zebrafish embryos can be levitated (peak pressures at the pressure node and anti-node: 135 dB and 144 dB, respectively) with no effects on early development. We levitated the embryos (n = 94) at 2-14 hours post fertilization (hpf) for 1000 (n = 47) or 2000 seconds (n = 47). We compared the size and number of trunk neuromasts and otoliths in sonicated samples to controls (n = 94), and found no statistically significant differences (p > 0.05). While mortality rate was lower in the control group (22.3%) compared to that in the 1000 s (34.0%) and 2000 s (42.6%) levitation groups, the differences were statistically insignificant (p > 0.05). The results suggest that acoustic levitation for less than 2000 sec does not interfere with the development of zebrafish embryos, but may affect mortality rate. Acoustic levitation could potentially be used as a non-contacting wall-less platform for characterizing and manipulating vertebrae embryos without causing major adverse effects to their development.

  9. Stable diamagnetic self-levitation of a micro-magnet by improvement of its magnetic gradients

    NARCIS (Netherlands)

    Profijt, H.B.; Pigot, C.; Reyne, G.; Grechishkin, R.M.; Cugat, O.

    2009-01-01

    A disc-shaped SmCo magnet with a diameter of 0.85 mm is levitated above a graphite diamagnetic plate at a height of about 14 μm. The magnet is magnetised into a double dipole. The levitation of multipolar magnets above a diamagnetic material was suggested in 1956 by Boerdijk and patented in 1995 by

  10. Design, manufacture and performance evaluation of HTS electromagnets for the hybrid magnetic levitation system

    Energy Technology Data Exchange (ETDEWEB)

    Chu, S.Y.; Hwang, Y.J.; Choi, S.; Na, J.B.; Kim, Y.J.; Chang, K.S. [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Bae, D.K. [Chungju National University, Chungju 380-702 (Korea, Republic of); Lee, C.Y. [Ultra High-Speed Train Research Department, Korea Railroad Research Institute, Uiwang-Si 437-757 (Korea, Republic of); Ko, T.K., E-mail: tkko@yonsei.ac.kr [School of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2011-11-15

    A high speed electromagnetic suspension (EMS) maglev has emerged as the solution to speed limit problem that conventional high-speed railroad has. In the EMS maglev, small levitation gap needs uniform guide-way which leads to increase the construction cost. The large levitation gap can reduce the construction cost. However it is hard for normal conducting electromagnet to produce larger magneto-motive force (MMF) for generating levitation force as increased levitation gap. This is because normal conductors have limited rating current to their specific volume. Therefore, the superconducting electromagnet can be one of the solutions for producing both large levitation gap and sufficient MMF. The superconducting electromagnets have incomparably high allowable current density than what normal conductors have. In this paper, the prototype of high temperature superconducting (HTS) electromagnets were designed and manufactured applicable to hybrid electromagnetic suspension system (H-EMS). The H-EMS consists of control coils for levitation control and superconducting coils for producing MMF for levitation. The required MMF for generating given levitation force was calculated by both equations of ideal U-core magnet and magnetic field analysis using the finite element method (FEM). The HTS electromagnets were designed as double pancakes with Bi-2223/Ag tapes. Experiments to confirm its operating performance were performed in liquid nitrogen (LN{sub 2}).

  11. Influence of Brownian Diffusion on Levitation of Bodies in Magnetic Fluid

    Directory of Open Access Journals (Sweden)

    V. Bashtovoi

    2013-12-01

    Full Text Available The present work deals with experimental investigation of the levitation of magnetic and non-magnetic bodies in a magnetic fluid when essentially influenced by Brownian diffusion of magnetic particles in it. It is established that the point of levitation of bodies in a magnetic fluid varies with time.

  12. Stable diamagnetic self-levitation of a micro-magnet by improvement of its magnetic gradients

    NARCIS (Netherlands)

    Profijt, H.B.; Pigot, C.; Reyne, G.; Grechishkin, R.M.; Cugat, O.

    2009-01-01

    A disc-shaped SmCo magnet with a diameter of 0.85 mm is levitated above a graphite diamagnetic plate at a height of about 14 μm. The magnet is magnetised into a double dipole. The levitation of multipolar magnets above a diamagnetic material was suggested in 1956 by Boerdijk and patented in 1995 by

  13. Iron-Based Superconductors as Odd-Parity Superconductors

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-07-01

    Full Text Available Parity is a fundamental quantum number used to classify a state of matter. Materials rarely possess ground states with odd parity. We show that the superconducting state in iron-based superconductors is classified as an odd-parity s-wave spin-singlet pairing state in a single trilayer FeAs/Se, the building block of the materials. In a low-energy effective model constructed on the Fe square bipartite lattice, the superconducting order parameter in this state is a combination of an s-wave normal pairing between two sublattices and an s-wave η pairing within the sublattices. The state has a fingerprint with a real-space sign inversion between the top and bottom As/Se layers. The results suggest that iron-based superconductors are a new quantum state of matter, and the measurement of the odd parity can help to establish high-temperature superconducting mechanisms.

  14. Current status of iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kamihara, Yoichi, E-mail: kamihara_yoichi@appi.keio.ac.jp [Keio University, Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology (Japan)

    2012-03-15

    Current status of iron-based superconductors is summarized. Although short range magnetic ordering and magnetic phase separation of Fe are controversial, (long range) magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type. Antiferromagnetic ordering of itinerant Fe does not coexist with superconducting phase of SmFeAsO{sub 1 - x}F{sub x}. The very large H{sub c2} of iron-based superconductors attract us to attempts at applications.

  15. Current status of iron-based superconductors

    Science.gov (United States)

    Kamihara, Yoichi

    2012-03-01

    Current status of iron-based superconductors is summarized. Although short range magnetic ordering and magnetic phase separation of Fe are controversial, (long range) magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type. Antiferromagnetic ordering of itinerant Fe does not coexist with superconducting phase of SmFeAsO1 - xFx. The very large H c2 of iron-based superconductors attract us to attempts at applications.

  16. A Road Towards High Temperature Superconductors

    Science.gov (United States)

    2013-08-01

    AFRL-AFOSR-UK-TR-2013-0040 A Road Towards High Temperature Superconductors Guy Deutscher Tel Aviv University Research... Superconductors 5a. CONTRACT NUMBER FA8655-10-1-3011 5b. GRANT NUMBER Grant 10-3011 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...issue in trying to make useful high temperature superconductors is obviously to discover superconductivity at higher temperatures. But there is also

  17. Holographic complexity in gauge/string superconductors

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2016-05-01

    Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T

  18. Modeling and experimental study on near-field acoustic levitation by flexural mode.

    Science.gov (United States)

    Liu, Pinkuan; Li, Jin; Ding, Han; Cao, Wenwu

    2009-12-01

    Near-field acoustic levitation (NFAL) has been used in noncontact handling and transportation of small objects to avoid contamination. We have performed a theoretical analysis based on nonuniform vibrating surface to quantify the levitation force produced by the air film and also conducted experimental tests to verify our model. Modal analysis was performed using ANSYS on the flexural plate radiator to obtain its natural frequency of desired mode, which is used to design the measurement system. Then, the levitation force was calculated as a function of levitation distance based on squeeze gas film theory using measured amplitude and phase distributions on the vibrator surface. Compared with previous fluid-structural analyses using a uniform piston motion, our model based on the nonuniform radiating surface of the vibrator is more realistic and fits better with experimentally measured levitation force.

  19. Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound

    Science.gov (United States)

    Zang, Duyang; Lin, Kejun; Li, Lin; Chen, Zhen; Li, Xiaoguang; Geng, Xingguo

    2017-03-01

    We report on the behavior of levitated soap bubbles in a single-axis acoustic field. For a single bubble, its surface in the polar regions is under compression, but in the equatorial region, it is under suction. Levitation becomes unstable when the height of the bubble approaches half the wavelength of the sound wave because horizontal fluctuations lead to a negative recovery force and a negative levitation force. Vertically stacked double bubbles notably can be stable under levitation if their total vertical length is ˜5λ/6, significantly beyond λ/2 in consequence of the formation of a toroidal high-pressure region around the waist of the two bubbles. Our results provide a deeper insight into the stability of acoustic levitation and the coupling between bubbles and sound field.

  20. Observation of vacuum-enhanced electron spin resonance of levitated nanodiamonds

    CERN Document Server

    Hoang, Thai M; Bang, Jaehoon; Li, Tongcang

    2015-01-01

    Electron spins of diamond nitrogen-vacancy (NV) centers are important quantum resources for nanoscale sensing and quantum information. Combining such NV spin systems with levitated optomechanical resonators will provide a hybrid quantum system for many novel applications. Here we optically levitate a nanodiamond and demonstrate electron spin control of its built-in NV centers in low vacuum. We observe that the strength of electron spin resonance (ESR) is enhanced when the air pressure is reduced. To better understand this novel system, we also investigate the effects of trap power and measure the absolute internal temperature of levitated nanodiamonds with ESR after calibration of the strain effect. Our results show that optical levitation of nanodiamonds in vacuum not only can improve the mechanical quality of its oscillation, but also enhance the ESR contrast, which pave the way towards a novel levitated spin-optomechanical system for studying macroscopic quantum mechanics. The results also indicate potenti...