WorldWideScience

Sample records for superconductors evaluation consisted

  1. Towards a consistent picture for quasi-1D organic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Doiron-Leyraud, N. [Departement de physique and RQMP, Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1 (Canada); Auban-Senzier, P. [Laboratoire de Physique des Solides, UMR 8502, CNRS - Univ. Paris-Sud, Bat. 510, 91405 Orsay (France); Rene de Cotret, S. [Departement de physique and RQMP, Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1 (Canada); Bechgaard, K. [Department of Chemistry, H.C. Orsted Institute, Copenhagen (Denmark); Jerome, D., E-mail: jerome@lps.u-psud.f [Laboratoire de Physique des Solides, UMR 8502, CNRS - Univ. Paris-Sud, Bat. 510, 91405 Orsay (France); Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8 (Canada); Taillefer, L. [Departement de physique and RQMP, Universite de Sherbrooke, Sherbrooke, Quebec, J1K 2R1 (Canada); Canadian Institute for Advanced Research, Toronto, Ontario, M5G 1Z8 (Canada)

    2010-06-01

    The electrical resistivity of the quasi-1D organic superconductor (TMTSF){sub 2}PF{sub 6} was recently measured at low temperature from the critical pressure needed to suppress the spin-density-wave state up to a pressure where superconductivity has almost disappeared. This data revealed a direct correlation between the onset of superconductivity at T{sub c} and the strength of a non-Fermi-liquid linear term in the normal-state resistivity, going as {rho}(T)={rho}{sub 0}+AT+BT{sup 2} at low temperature, so that A{yields}0 as T{sub c{yields}}0. Here we show that the contribution of low-frequency antiferromagnetic fluctuations to the spin-lattice relaxation rate is also correlated with this non-Fermi-liquid term AT in the resistivity. These correlations suggest that anomalous scattering and pairing have a common origin, both rooted in the low-frequency antiferromagnetic fluctuations measured by NMR. A similar situation may also prevail in the recently discovered iron-pnictide superconductors.

  2. Superconductors

    CERN Document Server

    Narlikar, A V

    2014-01-01

    Superconductors is neither about basic aspects of superconductivity nor about its applications, but its mainstay is superconducting materials. Unusual and unconventional features of a large variety of novel superconductors are presented and their technological potential as practical superconductors assessed. The book begins with an introduction to basic aspects of superconductivity. The presentation is readily accessible to readers from a diverse range of scientific and technical disciplines, such as metallurgy, materials science, materials engineering, electronic and device engineering, and chemistry. The derivation of mathematical formulas and equations has been kept to a minimum and, wherever necessary, short appendices with essential mathematics have been added at the end of the text. The book is not meant to serve as an encyclopaedia, describing each and every superconductor that exists, but focuses on important milestones in their exciting development.

  3. Time-consistent and market-consistent evaluations

    NARCIS (Netherlands)

    Pelsser, A.; Stadje, M.A.

    2014-01-01

    We consider evaluation methods for payoffs with an inherent financial risk as encountered for instance for portfolios held by pension funds and insurance companies. Pricing such payoffs in a way consistent to market prices typically involves combining actuarial techniques with methods from mathemati

  4. Evaluating the hydrological consistency of evaporation products

    KAUST Repository

    López, Oliver

    2017-01-18

    Advances in space-based observations have provided the capacity to develop regional- to global-scale estimates of evaporation, offering insights into this key component of the hydrological cycle. However, the evaluation of large-scale evaporation retrievals is not a straightforward task. While a number of studies have intercompared a range of these evaporation products by examining the variance amongst them, or by comparison of pixel-scale retrievals against ground-based observations, there is a need to explore more appropriate techniques to comprehensively evaluate remote-sensing-based estimates. One possible approach is to establish the level of product agreement between related hydrological components: for instance, how well do evaporation patterns and response match with precipitation or water storage changes? To assess the suitability of this "consistency"-based approach for evaluating evaporation products, we focused our investigation on four globally distributed basins in arid and semi-arid environments, comprising the Colorado River basin, Niger River basin, Aral Sea basin, and Lake Eyre basin. In an effort to assess retrieval quality, three satellite-based global evaporation products based on different methodologies and input data, including CSIRO-PML, the MODIS Global Evapotranspiration product (MOD16), and Global Land Evaporation: the Amsterdam Methodology (GLEAM), were evaluated against rainfall data from the Global Precipitation Climatology Project (GPCP) along with Gravity Recovery and Climate Experiment (GRACE) water storage anomalies. To ensure a fair comparison, we evaluated consistency using a degree correlation approach after transforming both evaporation and precipitation data into spherical harmonics. Overall we found no persistent hydrological consistency in these dryland environments. Indeed, the degree correlation showed oscillating values between periods of low and high water storage changes, with a phase difference of about 2–3 months

  5. Evaluating Temporal Consistency in Marine Biodiversity Hotspots.

    Science.gov (United States)

    Piacenza, Susan E; Thurman, Lindsey L; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lindsley, Amy J; Nelson, Jake; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Heppell, Selina S

    2015-01-01

    With the ongoing crisis of biodiversity loss and limited resources for conservation, the concept of biodiversity hotspots has been useful in determining conservation priority areas. However, there has been limited research into how temporal variability in biodiversity may influence conservation area prioritization. To address this information gap, we present an approach to evaluate the temporal consistency of biodiversity hotspots in large marine ecosystems. Using a large scale, public monitoring dataset collected over an eight year period off the US Pacific Coast, we developed a methodological approach for avoiding biases associated with hotspot delineation. We aggregated benthic fish species data from research trawls and calculated mean hotspot thresholds for fish species richness and Shannon's diversity indices over the eight year dataset. We used a spatial frequency distribution method to assign hotspot designations to the grid cells annually. We found no areas containing consistently high biodiversity through the entire study period based on the mean thresholds, and no grid cell was designated as a hotspot for greater than 50% of the time-series. To test if our approach was sensitive to sampling effort and the geographic extent of the survey, we followed a similar routine for the northern region of the survey area. Our finding of low consistency in benthic fish biodiversity hotspots over time was upheld, regardless of biodiversity metric used, whether thresholds were calculated per year or across all years, or the spatial extent for which we calculated thresholds and identified hotspots. Our results suggest that static measures of benthic fish biodiversity off the US West Coast are insufficient for identification of hotspots and that long-term data are required to appropriately identify patterns of high temporal variability in biodiversity for these highly mobile taxa. Given that ecological communities are responding to a changing climate and other

  6. Self-consistent Ginzburg-Landau theory for transport currents in superconductors

    DEFF Research Database (Denmark)

    Ögren, Magnus; Sørensen, Mads Peter; Pedersen, Niels Falsig

    2012-01-01

    We elaborate on boundary conditions for Ginzburg-Landau (GL) theory in the case of external currents. We implement a self-consistent theory within the finite element method (FEM) and present numerical results for a two-dimensional rectangular geometry. We emphasize that our approach can in princi......We elaborate on boundary conditions for Ginzburg-Landau (GL) theory in the case of external currents. We implement a self-consistent theory within the finite element method (FEM) and present numerical results for a two-dimensional rectangular geometry. We emphasize that our approach can...

  7. Self-consistent Bogoliubov-de Gennes theory of the vortex lattice state in a two-dimensional strongly type-II superconductor at high magnetic fields

    Science.gov (United States)

    Zhuravlev, Vladimir; Duan, Wenye; Maniv, Tsofar

    2017-01-01

    A self-consistent Bogoliubov-de Gennes theory of the vortex lattice state in a 2D strong type-II superconductor at high magnetic fields reveals a novel quantum mixed state around the semiclassical Hc 2, characterized by a well-defined Landau-Bloch band structure in the quasiparticle spectrum and suppressed order-parameter amplitude, which sharply crossover into the well-known semiclassical (Helfand-Werthamer) results upon decreasing magnetic field. Application to the 2D superconducting state observed recently on the surface of the topological insulator Sb2Te3 accounts well for the experimental data, revealing a strong type-II superconductor, with unusually low carrier density and very small cyclotron mass, which can be realized only in the strong coupling superconductor limit.

  8. MHD-, ships-, jet engine unit consisting of electrochemical cells producing hydrogen, magneto-caloric hydrogen liquefier, liquid hydrogen-cooled high temperature superconductor-, MHD-, jet engine, liquid hydrogen internal combustion engine as high temperature-, superconductor-, generator-drive. High temperature superconductor coil and permanent magnet superconductor hollow cylinder as battery. MHD-Schiffs-Strahltriebwerks-Aggregat bestehend aus Wasserstoff-produzierenden elektrochemischen Solarzellen, magnetokalorischem Wasserstoffverfluessiger, Fluessigwasserstoff gekuehltem Hochtemperatur-Supraleiter-MHD-Strahltriebwerk, Fluessigwasserstoff-Verbrennungsmotor als Hochtemperatur-Supraleiter-Generator-Antrieb, Hochtemperatur-Supraleiter-Spule und permanentmagnetischem Supraleiter-Hohlzylinder als Akku

    Energy Technology Data Exchange (ETDEWEB)

    Berling, E.

    1991-05-02

    MHD-, ships-, jet engine-unit consisting of electrochemical cells producing hydrogen, magneto-caloric hydrogen liquifier, liquid hydrogen-cooled high temperature superconductor-, MHD-, jet engine, liquid hydrogen internal combustion engine as high temperature-, superconductor-, generator-drive. High temperature superconductor coil and permanent magnet superconductor hollow cylinder as battery. Ships water jet engines with magneto hydrodynamic (MHD) low temperature superconductor drive are known. The invention of the ceramic high temperature superconductor MHD drive, which is cooled with liquid hydrogen. The hydrogen is obtained electro-chemically directly from seawater, and is liquified magneto-calorically. The high temperature superconductor elements of the engine, liquifier, generator, storage coil, permanent magnet hollow cylinder store are coupled by a common liquid hydrogen cooling circuit. The internal combustion engine driving the generator is fuelled by the same liquid hydrogen by which the high temperature superconductor elements are cooled.

  9. Time-Consistent and Market-Consistent Evaluations (Revised version of 2012-086)

    NARCIS (Netherlands)

    Stadje, M.A.; Pelsser, A.

    2014-01-01

    Abstract: We consider evaluation methods for payoffs with an inherent financial risk as encountered for instance for portfolios held by pension funds and insurance companies. Pricing such payoffs in a way consistent to market prices typically involves combining actuarial techniques with methods from

  10. Dynamically Consistent Nonlinear Evaluations with Their Generating Functions in Lp

    Institute of Scientific and Technical Information of China (English)

    Feng HU

    2013-01-01

    In this paper,we study dynamically consistent nonlinear evaluations in Lp (1 < p < 2).One of our aim is to obtain the following result:under a domination condition,an Ft-consistent evaluation is an ∑g-evaluation in Lp.Furthermore,without the assumption that the generating function g(t,ω,y,z) is continuous with respect to t,we provide some useful characterizations of an εg-evaluation by g and give some applications.These results include and extend some existing results.

  11. Evaluating Reflective Writing for Appropriateness, Fairness, and Consistency.

    Science.gov (United States)

    Kennison, Monica Metrick; Misselwitz, Shirley

    2002-01-01

    Samples from 17 reflective journals of nursing students were evaluated by 6 faculty. Results indicate a lack of consistency in grading reflective writing, lack of consensus regarding evaluation, and differences among faculty regarding their view of such exercises. (Contains 26 references.) (JOW)

  12. A model of evaluating the pseudogap temperature for high-temperature superconductors

    Indian Academy of Sciences (India)

    Islam M R; Maruf H M A R; Chowdhury F-U-Z

    2016-04-01

    We have presented a model of evaluating the pseudogap temperature for high temperature superconductors using paraconductivity approach. The theoretical analysis is based on the crossing point technique of the conductivity expressions. The pseudogap temperature T $^∗$ is found to depend on dimension and is calculated for 2D and 3D superconducting samples. Numerical calculation is given in favour of the YBCO and doped SmFeAsO$_{1−x}$ samples.

  13. Improving consistency in student evaluation at affiliated family practice centers.

    Science.gov (United States)

    Rabinowitz, H K

    1986-01-01

    The Department of Family Medicine at Jefferson Medical College has since 1974 been successful in administering a required third-year family medicine clerkship, providing students with a structured, didactic, and experiential curriculum in six affiliated family practice centers. Prior analysis (1976-1981) had indicated, however, that variation existed in evaluating similar students, depending on the clerkship training site, i.e., three sites graded students in a significantly different fashion than the three other sites. Utilizing these data to focus on the evaluation process, a comprehensive and specific six-point plan was developed to improve consistency in evaluations at the different training sites. This plan consisted of a yearly meeting of affiliate faculty, assigning predoctoral training administrative responsibility to one faculty member at each training site, increased telephone communication, affiliate-faculty attendance at the university site evaluation session, faculty rotation to spend time at other training sites, and financial reimbursement to the affiliate training sites. After intervention, analysis (1981-1983) indicated that five of the six clerkship sites now grade students in a consistent fashion, with only one affiliate using different grading standards. The intervention was therefore judged to be successful for five of the six training sites, allowing for better communication and more critical and consistent evaluation of medical students.

  14. Evaluation of methods for application of epitaxial buffer and superconductor layers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-30

    The recent achievements of critical currents exceeding million amperes per square centimeter at 77K in YBCO deposited over suitably textured substrate have stimulated interest in the potential applications of coated conductors at high temperatures and in high magnetic fields. Currently, ion-beam assisted deposition (IBAD), and rolling assisted bi-axially textured substrate (RABiTS), represent two available options for obtaining textured substrates. For applying suitable coatings of buffer and high temperature superconductor (HTS) material over textured substrates, several options are available which include sputtering, electron-beam evaporation, laser ablation, electrophoresis, chemical vapor deposition (including metal organics chemical vapor deposition), sol-gel, metal organics decomposition, electrodeposition and aerosol/spray pyrolysis. A commercial continuous long-length wire/tape manufacturing scheme developed out of any suitable combination of the above techniques would consist of operations involving preparation of the substrate and application of buffer, HTS and passivation/insulation materials and special treatment steps such as post-annealing. These operations can be effected by various process parameters that can be classified into chemistry, materials, engineering and environmental related parameters. Under the DOE-sponsored program, to carry out an engineering evaluation, first, the process flow schemes were developed for various candidate options identifying the major operating steps, process conditions, and process streams. Next, to evaluate quantifiable parameters such as process severity (e.g. temperature and pressure), coating thickness and deposition rate for HTS material, achieved maximum J{sub c} value (for films >1{micro}m thick) and cost of chemical and material utilization efficiency, the multi-attribute method was used to determine attributes/merits for various parameters and candidate options. To determine similar attribute values for the

  15. Poor consistency in evaluating South African adults with neurogenic dysphagia.

    Science.gov (United States)

    Andrews, Mckinley; Pillay, Mershen

    2017-01-23

    Speech-language therapists are specifically trained in clinically evaluating swallowing in adults with acute stroke. Incidence of dysphagia following acute stroke is high in South Africa, and health implications can be fatal, making optimal management of this patient population crucial. However, despite training and guidelines for best practice in clinically evaluating swallowing in adults with acute stroke, there are low levels of consistency in these practice patterns. The aim was to explore the clinical practice activities of speech-language therapists in the clinical evaluation of swallowing in adults with acute stroke. Practice activities reviewed included the use and consistency of clinical components and resources utilised. Clinical components were the individual elements evaluated in the clinical evaluation of swallowing (e.g. lip seal, vocal quality, etc.)Methods: The questionnaire used in the study was replicated and adapted from a study increasing content- and criterion-related validity. A narrative literature review determined what practice patterns existed in the clinical evaluation of swallowing in adults. A pilot study was conducted to increase validity and reliability. Purposive sampling was used by sending a self-administered, electronic questionnaire to members of the South African Speech-Language-Hearing Association. Thirty-eight participants took part in the study. Descriptive statistics were used to analyse the data and the small qualitative component was subjected to textual analysis. There was high frequency of use of 41% of the clinical components in more than 90% of participants (n = 38). Less than 50% of participants frequently assessed sensory function and gag reflex and used pulse oximetry, cervical auscultation and indirect laryngoscopy. Approximately a third of participants showed high (30.8%), moderate (35.9%) and poor (33.3%) consistency of practice each. Nurses, food and liquids and medical consumables were used usually and

  16. Poor consistency in evaluating South African adults with neurogenic dysphagia

    Directory of Open Access Journals (Sweden)

    Mckinley Andrews

    2017-01-01

    Full Text Available Background: Speech-language therapists are specifically trained in clinically evaluating swallowing in adults with acute stroke. Incidence of dysphagia following acute stroke is high in South Africa, and health implications can be fatal, making optimal management of this patient population crucial. However, despite training and guidelines for best practice in clinically evaluating swallowing in adults with acute stroke, there are low levels of consistency in these practice patterns.Objective: The aim was to explore the clinical practice activities of speech-language therapists in the clinical evaluation of swallowing in adults with acute stroke. Practice activities reviewed included the use and consistency of clinical components and resources utilised. Clinical components were the individual elements evaluated in the clinical evaluation of swallowing (e.g. lip seal, vocal quality, etc.Methods: The questionnaire used in the study was replicated and adapted from a study increasing content- and criterion-related validity. A narrative literature review determined what practice patterns existed in the clinical evaluation of swallowing in adults. A pilot study was conducted to increase validity and reliability. Purposive sampling was used by sending a self-administered, electronic questionnaire to members of the South African Speech-Language-Hearing Association. Thirty-eight participants took part in the study. Descriptive statistics were used to analyse the data and the small qualitative component was subjected to textual analysis.Results: There was high frequency of use of 41% of the clinical components in more than 90% of participants (n = 38. Less than 50% of participants frequently assessed sensory function and gag reflex and used pulse oximetry, cervical auscultation and indirect laryngoscopy. Approximately a third of participants showed high (30.8%, moderate (35.9% and poor (33.3% consistency of practice each. Nurses, food and liquids and

  17. Self-consistent modeling of thermal and elastic properties of unconventional superconductor PuCoGa{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Filanovich, A.N., E-mail: a.n.filanovich@urfu.ru; Povzner, A.A., E-mail: a.a.povzner@urfu.ru

    2016-06-15

    A self-consistent thermodynamic model of PuCoGa{sub 5} is developed, which for the first time takes into account the anharmonicity of both acoustic phonons, described within a Debye model, and optical phonons, considered in an Einstein approximation. Within the framework of this model, we have calculated the temperature dependencies of lattice contributions to heat capacity, bulk modulus, volumetric coefficient of thermal expansion, Debye and Einstein temperatures and their Grüneisen parameters. The electronic heat capacity of PuCoGa{sub 5} is obtained, which demonstrates an unusual temperature dependence with two maxima. In addition, it is shown that an abnormal low temperature behavior of the bulk modulus of PuCoGa{sub 5} is not caused by the effects of lattice anharmonicity and is most likely due to the valence fluctuations, which is in agreement with previous studies.

  18. Filtration Consistent Nonlinear Expectations and Evaluations of Contingent Claims

    Institute of Scientific and Technical Information of China (English)

    Shige Peng

    2004-01-01

    We will study the following problem. Let Xt, t ∈ [0, T], be an Rd–valued process de.ned on atime interval t ∈ [0, T]. Let Y be a random value depending on the trajectory of X. Assume that, at each .xedtime t ≤ T, the information available to an agent (an individual, a .rm, or even a market) is the trajectory ofX before t. Thus at time T , the random value of Y (ω) will become known to this agent. The question is: howwill this agent evaluate Y at the time t?We will introduce an evaluation operator εt[Y] to deffine the value of Y given by this agent at time t. This operator εt[Y ]. Assigns an (Xs)0≤s≤T-dependent andom variable Y to an (Xs)0≤s≤T-dependent random variableεt[Y ]. We will mainly treat the situation in which the process X is a solution of a SDE (see equation (3.1)) withthe drift coe.cient b and di.usion coe.cient σ containing an unknown parameter θ = θt. We then consider theso called super evaluation when the agent is a seller of the asset Y . We will prove that such super evaluation is a.ltration consistent nonlinear expectation. In some typical situations, we will prove that a .ltration consistentnonlinear Markovian situation.

  19. Consistency in performance evaluation reports and medical records.

    Science.gov (United States)

    Lu, Mingshan; Ma, Ching-to Albert

    2002-12-01

    In the health care market managed care has become the latest innovation for the delivery of services. For efficient implementation, the managed care organization relies on accurate information. So clinicians are often asked to report on patients before referrals are approved, treatments authorized, or insurance claims processed. What are clinicians responses to solicitation for information by managed care organizations? The existing health literature has already pointed out the importance of provider gaming, sincere reporting, nudging, and dodging the rules. We assess the consistency of clinicians reports on clients across administrative data and clinical records. For about 1,000 alcohol abuse treatment episodes, we compare clinicians reports across two data sets. The first one, the Maine Addiction Treatment System (MATS), was an administrative data set; the state government used it for program performance monitoring and evaluation. The second was a set of medical record abstracts, taken directly from the clinical records of treatment episodes. A clinician s reporting practice exhibits an inconsistency if the information reported in MATS differs from the information reported in the medical record in a statistically significant way. We look for evidence of inconsistencies in five categories: admission alcohol use frequency, discharge alcohol use frequency, termination status, admission employment status, and discharge employment status. Chi-square tests, Kappa statistics, and sensitivity and specificity tests are used for hypothesis testing. Multiple imputation methods are employed to address the problem of missing values in the record abstract data set. For admission and discharge alcohol use frequency measures, we find, respectively, strong and supporting evidence for inconsistencies. We find equally strong evidence for consistency in reports of admission and discharge employment status, and mixed evidence on report consistency on termination status. Patterns of

  20. Evaluating the hydrological consistency of satellite based water cycle components

    KAUST Repository

    Lopez Valencia, Oliver M.

    2016-06-15

    Advances in multi-satellite based observations of the earth system have provided the capacity to retrieve information across a wide-range of land surface hydrological components and provided an opportunity to characterize terrestrial processes from a completely new perspective. Given the spatial advantage that space-based observations offer, several regional-to-global scale products have been developed, offering insights into the multi-scale behaviour and variability of hydrological states and fluxes. However, one of the key challenges in the use of satellite-based products is characterizing the degree to which they provide realistic and representative estimates of the underlying retrieval: that is, how accurate are the hydrological components derived from satellite observations? The challenge is intrinsically linked to issues of scale, since the availability of high-quality in-situ data is limited, and even where it does exist, is generally not commensurate to the resolution of the satellite observation. Basin-scale studies have shown considerable variability in achieving water budget closure with any degree of accuracy using satellite estimates of the water cycle. In order to assess the suitability of this type of approach for evaluating hydrological observations, it makes sense to first test it over environments with restricted hydrological inputs, before applying it to more hydrological complex basins. Here we explore the concept of hydrological consistency, i.e. the physical considerations that the water budget impose on the hydrologic fluxes and states to be temporally and spatially linked, to evaluate the reproduction of a set of large-scale evaporation (E) products by using a combination of satellite rainfall (P) and Gravity Recovery and Climate Experiment (GRACE) observations of storage change, focusing on arid and semi-arid environments, where the hydrological flows can be more realistically described. Our results indicate no persistent hydrological

  1. Towards consistent nuclear models and comprehensive nuclear data evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Bouland, O [Los Alamos National Laboratory; Hale, G M [Los Alamos National Laboratory; Lynn, J E [Los Alamos National Laboratory; Talou, P [Los Alamos National Laboratory; Bernard, D [FRANCE; Litaize, O [FRANCE; Noguere, G [FRANCE; De Saint Jean, C [FRANCE; Serot, O [FRANCE

    2010-01-01

    The essence of this paper is to enlighten the consistency achieved nowadays in nuclear data and uncertainties assessments in terms of compound nucleus reaction theory from neutron separation energy to continuum. Making the continuity of theories used in resolved (R-matrix theory), unresolved resonance (average R-matrix theory) and continuum (optical model) rangcs by the generalization of the so-called SPRT method, consistent average parameters are extracted from observed measurements and associated covariances are therefore calculated over the whole energy range. This paper recalls, in particular, recent advances on fission cross section calculations and is willing to suggest some hints for future developments.

  2. Consistent behaviour of AC susceptibility and transport properties in magnetic superconductor RuSr 2GdCu 2O 8

    Science.gov (United States)

    Očko, M.; Živkovic, I.; Prester, M.; Drobac, Dj.; Ariosa, D.; Berger, H.; Pavuna, D.

    2004-02-01

    We report on AC susceptibility, resistivity, thermopower and measurements of sintered magnetic superconductor RuSr 2GdCu 2O 8. The antiferromagnetic phase transition at 133 K is seen clearly in the AC susceptibility as well as in the derivative of resistivity and thermopower. Above the antiferromagnetic transition, we have found some new evidences of the similarity between HTC compounds and the magnetic superconductor. The onset of superconductivity is observed by both transport methods at 46 K, and an explanation why it is not seen in the AC susceptibility data is given. The end of the SC transition occurs at about 24 K in all measured properties. We discuss the steps of broad SC transition, especially the maximum in susceptibility at 34 K, and compare our results with related studies reported in the literature.

  3. Consistent behaviour of AC susceptibility and transport properties in magnetic superconductor RuSr{sub 2}GdCu{sub 2}O{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Ocko, M. E-mail: ocko@ifs.hr; Zivkovic, I.; Prester, M.; Drobac, Dj.; Ariosa, D.; Berger, H.; Pavuna, D

    2004-02-01

    We report on AC susceptibility, resistivity, thermopower and measurements of sintered magnetic superconductor RuSr{sub 2}GdCu{sub 2}O{sub 8}. The antiferromagnetic phase transition at 133 K is seen clearly in the AC susceptibility as well as in the derivative of resistivity and thermopower. Above the antiferromagnetic transition, we have found some new evidences of the similarity between HTC compounds and the magnetic superconductor. The onset of superconductivity is observed by both transport methods at 46 K, and an explanation why it is not seen in the AC susceptibility data is given. The end of the SC transition occurs at about 24 K in all measured properties. We discuss the steps of broad SC transition, especially the maximum in susceptibility at 34 K, and compare our results with related studies reported in the literature.

  4. Evaluation of magnetic loss in a YBa sub 2 Cu sub 3 O sub x superconductor

    CERN Document Server

    Konishi, H; Futamura, M

    2003-01-01

    We measured the magnetic force between a YBa sub 2 Cu sub 3 O sub x (YBCO) superconductor and a Nd-Fe-B magnet while reciprocating the superconductor under the magnet. The magnetic force showed a hysteretic characteristic against the displacement of the superconductor. Magnetic loss calculated from the hysteresis curve decreased as the drive frequency increased. A mechanical model was used to analyze the characteristics of the magnetic loss. By adding the contribution of viscous force and repined flux lines to the mechanical model, we obtained good agreement between the analytical and experimental results. (author)

  5. An Evaluation of Information Consistency in Grid Information Systems

    CERN Document Server

    Field, Laurence

    2016-01-01

    A Grid information system resolves queries that may need to consider all information sources (Grid services), which are widely distributed geographically, in order to enable efficient Grid functions that may utilise multiple cooperating services. Fundamentally this can be achieved by either moving the query to the data (query shipping) or moving the data to the query (data shipping). Existing Grid information system implementations have adopted one of the two approaches. This paper explores the two approaches in further detail by evaluating them to the best possible extent with respect to Grid information system benchmarking metrics. A Grid information system that follows the data shipping approach based on the replication of information that aims to improve the currency for highly-mutable information is presented. An implementation of this, based on an Enterprise Messaging System, is evaluated using the benchmarking method and the consequence of the results for the design of Grid information systems is discu...

  6. Time-Consistent and Market-Consistent Evaluations (Revised version of CentER DP 2011-063)

    NARCIS (Netherlands)

    Pelsser, A.; Stadje, M.A.

    2012-01-01

    Abstract: We consider evaluation methods for payoffs with an inherent financial risk as encountered for instance for portfolios held by pension funds and insurance companies. Pricing such payoffs in a way consistent to market prices typically involves combining actuarial techniques with methods from

  7. Time-Consistent and Market-Consistent Evaluations (replaced by CentER DP 2012-086)

    NARCIS (Netherlands)

    Pelsser, A.; Stadje, M.A.

    2011-01-01

    We consider evaluation methods for payoffs with an inherent financial risk as encountered for instance for portfolios held by pension funds and insurance companies. Pricing such payoffs in a way consistent to market prices typically involves combining actuarial techniques with methods from mathemati

  8. Evaluation of methods for application of epitaxial layers of superconductor and buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The recent achievements in a number of laboratories of critical currents in excess of 1.0x10{sup 6} amp/cm{sup 2} at 77K in YBCO deposited over suitably textured buffer/substrate composites have stimulated interest in the potential applications of coated conductors at high temperatures and high magnetic fields. As of today, two different approaches for obtaining the textured substrates have been identified. These are: Los Alamos National Laboratory`s (LANL) ion-beam assisted deposition called IBAD, to obtain a highly textured yttria-stabilized zirconia (YSZ) buffer on nickel alloy strips, and Oak Ridge National Laboratory`s (ORNL) rolling assisted, bi-axial texturized substrate option called RABiTS. Similarly, based on the published literature, the available options to form High Temperature Superconductor (HTS) films on metallic, semi-metallic or ceramic substrates can be divided into: physical methods, and non-physical or chemical methods. Under these two major groups, the schemes being proposed consist of: - Sputtering - Electron-Beam Evaporation - Flash Evaporation - Molecular Beam Epitaxy - Laser Ablation - Electrophoresis - Chemical Vapor Deposition (Including Metal-Organic Chemical Vapor Deposition) - Sol-Gel - Metal-Organic Decomposition - Electrodeposition, and - Aerosol/Spray Pyrolysis. In general, a spool- to-spool or reel-to-reel type of continuous manufacturing scheme developed out of any of the above techniques, would consist of: - Preparation of Substrate Material - Preparation and Application of the Buffer Layer(s) - Preparation and Application of the HTS Material and Required Post-Annealing, and - Preparation and Application of the External Protective Layer. These operations would be affected by various process parameters which can be classified into: Chemistry and Material Related Parameters; and Engineering and Environmental Based Parameters. Thus, one can see that for successful development of the coated conductors manufacturing process, an

  9. Superconductor Composite

    Science.gov (United States)

    Dorris, Stephen E.; Burlone, Dominick A.; Morgan; Carol W.

    1999-02-02

    A superconducting conductor fabricated from a plurality of wires, e.g., fine silver wires, coated with a superconducting powder. A process of applying superconducting powders to such wires, to the resulting coated wires and superconductors produced therefrom.

  10. Evaluacion de que consister y por que se lleva acabo? (Evaluation: What Does it Consist of, and for What Purpose?).

    Science.gov (United States)

    Austin Independent School District, TX. Office of Research and Evaluation.

    A guide is presented for the evaluation of the bilingual programs in the Austin, Texas, Independent School District. The reasons for an evaluation and a definition of program objectives and evaluation instruments are given. The program components, objectives and evaluation instruments for each grade level (K-4) are listed. The components involved…

  11. A 13 kA current lead, measuring 1.5 m in length. The lower part consists of a high-temperature superconductor (Bi-2223), operating at between 50 K and 4.5 K, while the heat-exchanger upper part allows the current to be brought from room temperature to 50 K.

    CERN Multimedia

    2004-01-01

    A 13 kA current lead, measuring 1.5 m in length. The lower part consists of a high-temperature superconductor (Bi-2223), operating at between 50 K and 4.5 K, while the heat-exchanger upper part allows the current to be brought from room temperature to 50 K.

  12. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  13. Evaluating performance over time: Is improving better than being consistently good?

    Science.gov (United States)

    Soliman, Monica; Buehler, Roger

    2017-06-21

    In many decision contexts, people evaluate others based on intertemporal performance records and commonly face a choice between two distinct profiles: performance that is consistently high versus performance that improves over time to that high level. We proposed that these two profiles could be appealing for different reasons, and thus evaluators' preferences will differ across decision contexts. In three studies, participants were presented with candidates (e.g., students, employees) displaying the two profiles, and evaluated each candidate in terms of performance, future expectations, and deservingness. The consistent candidate was rated higher on performance, but lower on future expectations, than the improved candidate. Consequently, in achievement-based decisions (e.g., selecting a student for a scholarship), the consistent candidate was viewed as most deserving, whereas in potential-based decisions (e.g., selecting an employee for promotion), the improved candidate was preferred. These effects were mediated by the relative weight that evaluators placed on performance and future expectations.

  14. Superconductor Dynamics

    CERN Document Server

    Gömöry, F

    2014-01-01

    Superconductors used in magnet technology could carry extreme currents because of their ability to keep the magnetic flux motionless. The dynamics of the magnetic flux interaction with superconductors is controlled by this property. The cases of electrical transport in a round wire and the magnetization of wires of various shapes (circular, elliptical, plate) in an external magnetic field are analysed. Resistance to the magnetic field penetration means that the field produced by the superconducting magnet is no longer proportional to the supplied current. It also leads to a dissipation of electromagnetic energy. In conductors with unequal transverse dimensions, such as flat cables, the orientation with respect to the magnetic field plays an essential role. A reduction of magnetization currents can be achieved by splitting the core of a superconducting wire into fine filaments; however, new kinds of electrical currents that couple the filaments consequently appear. Basic formulas allowing qualitative analyses ...

  15. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  16. Proximity-induced low-energy renormalization in hybrid semiconductor-superconductor Majorana structures

    Science.gov (United States)

    Stanescu, Tudor D.; Das Sarma, Sankar

    2017-07-01

    A minimal model for the hybrid superconductor-semiconductor nanowire Majorana platform is developed that fully captures the effects of the low-energy renormalization of the nanowire modes arising from the presence of the parent superconductor. In this model, the parent superconductor is an active component that participates explicitly in the low-energy physics, not just a passive partner that only provides proximity-induced Cooper pairs for the nanowire. This treatment on an equal footing of the superconductor and the semiconductor has become necessary in view of recent experiments, which do not allow a consistent interpretation based just on the bare semiconductor properties. The general theory involves the evaluation of the exact semiconductor Green's function that includes a dynamical self-energy correction arising from the tunnel-coupled superconductor. Using a tight-binding description, the nanowire Green's function is obtained in various relevant parameter regimes, with the parent superconductor being treated within the BCS-BdG prescription. General conditions for the emergence of topological superconductivity are worked out for single-band as well as multiband nanowires and detailed numerical results are given for both infinite and finite wire cases. The topological quantum phase diagrams are provided numerically and the Majorana bound states are obtained along with their oscillatory energy-splitting behaviors due to wave function overlap in finite wires. Renormalization effects are shown to be both qualitatively and quantitatively important in modifying the low-energy spectrum of the nanowire. The results of the theory are found to be in good qualitative agreement with Majorana nanowire experiments, leading to the conclusion that the proximity-induced low-energy renormalization of the nanowire modes by the parent superconductor is of fundamental importance in superconductor-semiconductor hybrid structures, except perhaps in the uninteresting limit of

  17. Establishing Interpretive Consistency When Mixing Approaches: Role of Sampling Designs in Evaluations

    Science.gov (United States)

    Collins, Kathleen M. T.; Onwuegbuzie, Anthony J.

    2013-01-01

    The goal of this chapter is to recommend quality criteria to guide evaluators' selections of sampling designs when mixing approaches. First, we contextualize our discussion of quality criteria and sampling designs by discussing the concept of interpretive consistency and how it impacts sampling decisions. Embedded in this discussion are…

  18. Sport fans: evaluating the consistency between implicit and explicit attitudes toward favorite and rival teams.

    Science.gov (United States)

    Wenger, Jay L; Brown, Roderick O

    2014-04-01

    Sport fans often foster very positive attitudes for their favorite teams and less favorable attitudes for opponents. The current research was designed to evaluate the consistency that might exist between implicit and explicit measures of those attitudes. College students (24 women, 16 men) performed a version of the Implicit Association Test related to their favorite and rival teams. Participants also reported their attitudes for these teams explicitly, via self-report instruments. When responding to the IAT, participants' responses were faster when they paired positive words with concepts related to favorite teams and negative words with rival teams, indicating implicit favorability for favorite teams and implicit negativity for rival teams. This pattern of implicit favorability and negativity was consistent with what participants reported explicitly via self-report. The importance of evaluating implicit attitudes and the corresponding consistency with explicit attitudes are discussed.

  19. Supervised feature evaluation by consistency analysis: application to measure sets used to characterise geographic objects

    CERN Document Server

    Taillandier, Patrick

    2012-01-01

    Nowadays, supervised learning is commonly used in many domains. Indeed, many works propose to learn new knowledge from examples that translate the expected behaviour of the considered system. A key issue of supervised learning concerns the description language used to represent the examples. In this paper, we propose a method to evaluate the feature set used to describe them. Our method is based on the computation of the consistency of the example base. We carried out a case study in the domain of geomatic in order to evaluate the sets of measures used to characterise geographic objects. The case study shows that our method allows to give relevant evaluations of measure sets.

  20. New geometric design consistency model based on operating speed profiles for road safety evaluation.

    Science.gov (United States)

    Camacho-Torregrosa, Francisco J; Pérez-Zuriaga, Ana M; Campoy-Ungría, J Manuel; García-García, Alfredo

    2013-12-01

    To assist in the on-going effort to reduce road fatalities as much as possible, this paper presents a new methodology to evaluate road safety in both the design and redesign stages of two-lane rural highways. This methodology is based on the analysis of road geometric design consistency, a value which will be a surrogate measure of the safety level of the two-lane rural road segment. The consistency model presented in this paper is based on the consideration of continuous operating speed profiles. The models used for their construction were obtained by using an innovative GPS-data collection method that is based on continuous operating speed profiles recorded from individual drivers. This new methodology allowed the researchers to observe the actual behavior of drivers and to develop more accurate operating speed models than was previously possible with spot-speed data collection, thereby enabling a more accurate approximation to the real phenomenon and thus a better consistency measurement. Operating speed profiles were built for 33 Spanish two-lane rural road segments, and several consistency measurements based on the global and local operating speed were checked. The final consistency model takes into account not only the global dispersion of the operating speed, but also some indexes that consider both local speed decelerations and speeds over posted speeds as well. For the development of the consistency model, the crash frequency for each study site was considered, which allowed estimating the number of crashes on a road segment by means of the calculation of its geometric design consistency. Consequently, the presented consistency evaluation method is a promising innovative tool that can be used as a surrogate measure to estimate the safety of a road segment.

  1. Assigning trait adjectives in an evaluative context: quicker, more consistent, and less equivocal.

    Science.gov (United States)

    Mollaret, Patrick; Nicol, David

    2008-06-01

    The objective was to examine the social conditions under which subjects could attribute trait adjectives to an unknown person, the paradigm of impression-formation at zero acquaintance. The situation on which the subject had to base his judgement was a 90-sec. film clip with sound of an individual reading a weather forecast. Analysis showed traits were attributed more quickly and consistently when instructions stipulated subject should evaluate the social utility of an individual (evaluator-recruiter type instructions) rather than describe personality (psychologist-type instructions). Traits were attributed more rapidly, with more consistency and greater certainty. Interpretation of results, which generally corroborate other research, is that the judgement of another person based on a first impression is an evaluation of the social utility of that person.

  2. Ferromagnetic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Huxley, Andrew D.

    2015-07-15

    Highlights: • Review of ferromagnetic superconductors. • Covers UGe{sub 2}, URhGe and UCoGe and briefly other materials. • The focus is on experimental data and the pairing mechanism. - Abstract: The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a ‘standard’ theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the ‘standard’ model and from each other.

  3. Terahertz Detection with Twin Superconductor-Insulator-Superconductor Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Jing; WANG Ming-Jye; SHI Sheng-Cai; Hiroshi Mat-suo

    2007-01-01

    Terahertz detection with twin superconductor-insulator-superconductor (SIS) tunnel junctions, which are connected in parallel via an inductive thin-film superconducting microstrip line, is mainly studied. Firstly, we investigate the direct-detection response of a superconducting twin-junction device by means of a Fourier transform spectrometer. Secondly, we construct a direct-detection model of twin SIS tunnel junctions. The superconducting twin-junction device is then simulated in terms of the constructed model. The simulation result is found to be in good agreement with the measured one. In addition, we observe that the direct-detection response of the device is consistent with the noise temperature behaviour.

  4. Evaluation of genetic and phenotypic consistency of Bacillus coagulans MTCC 5856: a commercial probiotic strain.

    Science.gov (United States)

    Majeed, Muhammed; Nagabhushanam, Kalyanam; Natarajan, Sankaran; Sivakumar, Arumugam; Eshuis-de Ruiter, Talitha; Booij-Veurink, Janine; de Vries, Ynte P; Ali, Furqan

    2016-04-01

    Commercial probiotics preparation containing Bacillus coagulans have been sold in the market for several decades. Due to its high intra-species genomic diversity, it is very likely that B. coagulans strain may alter in different ways over multiple years of production. Therefore, the present study focuses to evaluate the genetic consistency and probiotic potential of B. coagulans MTCC 5856. Phenotypic and genotypic techniques including biochemical profiling, 16S rRNA sequencing, GTG 5″, BOX PCR fingerprinting, and Multi-Locus-Sequence typing (MLST) were carried out to evaluate the identity and consistency of the B. coagulans MTCC 5856. Further, in vitro probiotic potential, safety and stability at ambient temperature conditions of B. coagulans MTCC 5856 were evaluated. All the samples were identified as B. coagulans by biochemical profiling and 16S rRNA sequencing. GTG 5″, BOX PCR fingerprints and MLST studies revealed that the same strain was present over 3 years of commercial production. B. coagulans MTCC 5856 showed resistance to gastric acid, bile salt and exhibited antimicrobial activity in in-vitro studies. Additionally, B. coagulans MTCC 5856 was found to be non-mutagenic, non-cytotoxic, negative for enterotoxin genes and stable at ambient temperature (25 ± 2 °C) for 36 months. The data of the study verified that the same strain of B. coagulans MTCC 5856 was present in commercial preparation over multiple years of production.

  5. Evaluating temporal consistency of long-term global NDVI datasets for trend analysis

    DEFF Research Database (Denmark)

    Tian, Feng; Fensholt, Rasmus; Verbesselt, Jan

    2015-01-01

    As a way to understand vegetation changes, trend analysis on NDVI (normalized difference vegetation index) time series data have been widely performed at regional to global scales. However, most long-term NDVI datasets are based upon multiple sensor systems and unsuccessful corrections related...... to sensor shifts potentially introduce substantial uncertainties and artifacts in the analysis of trends. The temporal consistency of NDVI datasets should therefore be evaluated before performing trend analysis to obtain reliable results. In this study we analyze the temporal consistency of multi......-sensor NDVI time series by analyzing the co-occurrence between breaks in the NDVI time series and sensor shifts from GIMMS3g (Global Inventory Modeling and Mapping Studies 3rd generation), VIP3 (Vegetation Index and Phenology version 3), LTDR4 (Long Term Data Record version 4) and SPOT-VGT (Système Pour l...

  6. Consistent evaluation of an ultrasound-guided surgical navigation system by utilizing an active validation platform

    Science.gov (United States)

    Kim, Younsu; Kim, Sungmin; Boctor, Emad M.

    2017-03-01

    An ultrasound image-guided needle tracking systems have been widely used due to their cost-effectiveness and nonionizing radiation properties. Various surgical navigation systems have been developed by utilizing state-of-the-art sensor technologies. However, ultrasound transmission beam thickness causes unfair initial evaluation conditions due to inconsistent placement of the target with respect to the ultrasound probe. This inconsistency also brings high uncertainty and results in large standard deviations for each measurement when we compare accuracy with and without the guidance. To resolve this problem, we designed a complete evaluation platform by utilizing our mid-plane detection and time of flight measurement systems. The evaluating system uses a PZT element target and an ultrasound transmitting needle. In this paper, we evaluated an optical tracker-based surgical ultrasound-guided navigation system whereby the optical tracker tracks marker frames attached on the ultrasound probe and the needle. We performed ten needle trials of guidance experiment with a mid-plane adjustment algorithm and with a B-mode segmentation method. With the midplane adjustment, the result showed a mean error of 1.62+/-0.72mm. The mean error increased to 3.58+/-2.07mm without the mid-plane adjustment. Our evaluation system can reduce the effect of the beam-thickness problem, and measure ultrasound image-guided technologies consistently with a minimal standard deviation. Using our novel evaluation system, ultrasound image-guided technologies can be compared under equal initial conditions. Therefore, the error can be evaluated more accurately, and the system provides better analysis on the error sources such as ultrasound beam thickness.

  7. Ferromagnetic superconductors

    Science.gov (United States)

    Huxley, Andrew D.

    2015-07-01

    The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a 'standard' theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the 'standard' model and from each other.

  8. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank (Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  9. Evaluating the consistency of gene sets used in the analysis of bacterial gene expression data

    Directory of Open Access Journals (Sweden)

    Tintle Nathan L

    2012-08-01

    Full Text Available Abstract Background Statistical analyses of whole genome expression data require functional information about genes in order to yield meaningful biological conclusions. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG are common sources of functionally grouped gene sets. For bacteria, the SEED and MicrobesOnline provide alternative, complementary sources of gene sets. To date, no comprehensive evaluation of the data obtained from these resources has been performed. Results We define a series of gene set consistency metrics directly related to the most common classes of statistical analyses for gene expression data, and then perform a comprehensive analysis of 3581 Affymetrix® gene expression arrays across 17 diverse bacteria. We find that gene sets obtained from GO and KEGG demonstrate lower consistency than those obtained from the SEED and MicrobesOnline, regardless of gene set size. Conclusions Despite the widespread use of GO and KEGG gene sets in bacterial gene expression data analysis, the SEED and MicrobesOnline provide more consistent sets for a wide variety of statistical analyses. Increased use of the SEED and MicrobesOnline gene sets in the analysis of bacterial gene expression data may improve statistical power and utility of expression data.

  10. Internal consistency & validity of Indian Disability Evaluation and Assessment Scale (IDEAS in patients with schizophrenia

    Directory of Open Access Journals (Sweden)

    Sandeep Grover

    2014-01-01

    Full Text Available Background & objectives: The Indian Disability Evaluation and Assessment Scale (IDEAS has been recommended for assessment and certification of disability by the Government of India (GOI. However, the psychometric properties of IDEAS as adopted by GOI remain understudied. Our aim, thus, was to study the internal consistency and validity of IDEAS in patients with schizophrenia. Methods: A total of 103 consenting patients with residual schizophrenia were assessed for disability, quality of life (QOL and psychopathology using the IDEAS, WHO QOL-100 and Positive and Negative symptom scale (PANSS respectively. Internal consistency was calculated using Cronbach′s alpha. For construct validity, relations between IDEAS, and psychopathology and QOL were studied. Results: The inter-item correlations for IDEAS were significant with a Cronbach′s alpha of 0.721. All item scores other than score on communication and understanding; total and global IDEAS scores correlated significantly with the positive, negative and general sub-scales, and total PANSS scores. Communication and understanding was significantly related to negative sub-scale score only. Total and global disability scores correlated negatively with all the domains of WHOQOL-100 (ρ<0.01. The individual IDEAS item scores correlated negatively with various WHOQOL-100 domains (ρ0< 0.01. Interpretation & conclusions: This study findings showed that the GOI-modified IDEAS had good internal consistency and construct validity as tested in patients with residual schizophrenia. Similar studies need to be done with other groups of patients.

  11. Evaluating the hydrological consistency of evaporation products using satellite-based gravity and rainfall data

    Science.gov (United States)

    López, Oliver; Houborg, Rasmus; McCabe, Matthew Francis

    2017-01-01

    Advances in space-based observations have provided the capacity to develop regional- to global-scale estimates of evaporation, offering insights into this key component of the hydrological cycle. However, the evaluation of large-scale evaporation retrievals is not a straightforward task. While a number of studies have intercompared a range of these evaporation products by examining the variance amongst them, or by comparison of pixel-scale retrievals against ground-based observations, there is a need to explore more appropriate techniques to comprehensively evaluate remote-sensing-based estimates. One possible approach is to establish the level of product agreement between related hydrological components: for instance, how well do evaporation patterns and response match with precipitation or water storage changes? To assess the suitability of this consistency-based approach for evaluating evaporation products, we focused our investigation on four globally distributed basins in arid and semi-arid environments, comprising the Colorado River basin, Niger River basin, Aral Sea basin, and Lake Eyre basin. In an effort to assess retrieval quality, three satellite-based global evaporation products based on different methodologies and input data, including CSIRO-PML, the MODIS Global Evapotranspiration product (MOD16), and Global Land Evaporation: the Amsterdam Methodology (GLEAM), were evaluated against rainfall data from the Global Precipitation Climatology Project (GPCP) along with Gravity Recovery and Climate Experiment (GRACE) water storage anomalies. To ensure a fair comparison, we evaluated consistency using a degree correlation approach after transforming both evaporation and precipitation data into spherical harmonics. Overall we found no persistent hydrological consistency in these dryland environments. Indeed, the degree correlation showed oscillating values between periods of low and high water storage changes, with a phase difference of about 2-3 months

  12. Holographic Multi-Band Superconductor

    CERN Document Server

    Huang, Ching-Yu; Maity, Debaprasad

    2011-01-01

    We propose a gravity dual for the holographic superconductor with multi-band carriers. Moreover, the currents of these carriers are unified under a global non-Abelian symmetry, which is dual to the bulk non-Abelian gauge symmetry. We study the phase diagram of our model, and find it qualitatively agrees with the one for the realistic 2-band superconductor, such as MgB2. We also evaluate the holographic conductivities and find the expected mean-field like behaviors in some cases. However, for a wide range of the parameter space, we also find the non-mean-field like behavior with negative conductivities.

  13. Evaluation of internal consistency of the epidermolysis bullosa oropharyngeal severity score (EBOS).

    Science.gov (United States)

    Fortuna, Giulio; Aria, Massimo; Cepeda-Valdes, Rodrigo; Salas-Alanís, Julio Cesar

    2015-02-01

    To evaluate the internal consistency of the epidermolysis bullosa oropharyngeal severity score (EBOS). Data from 92 patients of varying EB types/sub-types already described in a previous multi-center study were re-analyzed via the coefficient Cronbach's α (CR-α). Additionally, the corrected item total correlation between each item and the items' overall score with Pearson's product-moment correlation (ρ) was calculated. The alpha coefficient for the mean total score of 17 items is 0.941. The inter-observer reliability for disease severity score was excellent for oral medicine specialist (α = 0.924) and dermatologist (α = 0.916) and the intra-observer reliability was good at Time 1 (α = 0.895) and Time 2 (α = 0.897). The analysis of CR-α per single item revealed that alpha was greater than 0.904 for disease activity and 0.743 for structural damage, after the elimination of four items for oral medicine specialist and greater than 0.898 for disease activity and 0.769 for structural damage after the elimination of five items for dermatologist. Similarly the analysis of the corrected items-EBOS correlation showed that the same items do not correlate very well (ρ items were consistent with each other.

  14. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2010-01-01

    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  15. A four-step approach to evaluate mixtures for consistency with dose addition.

    Science.gov (United States)

    Hertzberg, Richard C; Pan, Yi; Li, Ruosha; Haber, Lynne T; Lyles, Robert H; Herr, David W; Moser, Virginia C; Simmons, Jane Ellen

    2013-11-16

    Mixture risk assessment is often hampered by the lack of dose-response information on the mixture being assessed, forcing reliance on component formulas such as dose addition. We present a four-step approach for evaluating chemical mixture data for consistency with dose addition for use in supporting a component based mixture risk assessment. Following the concepts in the U.S. EPA mixture risk guidance (U.S. EPA, 2000a,b), toxicological interaction for a defined mixture (all components known) is departure from a clearly articulated definition of component additivity. For the common approach of dose additivity, the EPA guidance identifies three desirable characteristics, foremost of which is that the component chemicals are toxicologically similar. The other two characteristics are empirical: the mixture components have toxic potencies that are fixed proportions of each other (throughout the dose range of interest), and the mixture dose term in the dose additive prediction formula, which we call the combined prediction model (CPM), can be represented by a linear combination of the component doses. A consequent property of the proportional toxic potencies is that the component chemicals must share a common dose-response model, where only the dose coefficients depend on the chemical components. A further consequence is that the mixture data must be described by the same mathematical function ("mixture model") as the components, but with a distinct coefficient for the total mixture dose. The mixture response is predicted from the component dose-response curves by using the dose additive CPM and the prediction is then compared with the observed mixture results. The four steps are to evaluate: (1) toxic proportionality by determining how well the CPM matches the single chemical models regarding mean and variance; (2) fit of the mixture model to the mixture data; (3) agreement between the mixture data and the CPM prediction; and (4) consistency between the CPM and the

  16. Nature of the superconductor-insulator transition in disordered superconductors.

    Science.gov (United States)

    Dubi, Yonatan; Meir, Yigal; Avishai, Yshai

    2007-10-18

    The interplay of superconductivity and disorder has intrigued scientists for several decades. Disorder is expected to enhance the electrical resistance of a system, whereas superconductivity is associated with a zero-resistance state. Although superconductivity has been predicted to persist even in the presence of disorder, experiments performed on thin films have demonstrated a transition from a superconducting to an insulating state with increasing disorder or magnetic field. The nature of this transition is still under debate, and the subject has become even more relevant with the realization that high-transition-temperature (high-T(c)) superconductors are intrinsically disordered. Here we present numerical simulations of the superconductor-insulator transition in two-dimensional disordered superconductors, starting from a microscopic description that includes thermal phase fluctuations. We demonstrate explicitly that disorder leads to the formation of islands where the superconducting order is high. For weak disorder, or high electron density, increasing the magnetic field results in the eventual vanishing of the amplitude of the superconducting order parameter, thereby forming an insulating state. On the other hand, at lower electron densities or higher disorder, increasing the magnetic field suppresses the correlations between the phases of the superconducting order parameter in different islands, giving rise to a different type of superconductor-insulator transition. One of the important predictions of this work is that in the regime of high disorder, there are still superconducting islands in the sample, even on the insulating side of the transition. This result, which is consistent with experiments, explains the recently observed huge magneto-resistance peak in disordered thin films and may be relevant to the observation of 'the pseudogap phenomenon' in underdoped high-T(c) superconductors.

  17. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  18. Fine uniform filament superconductors

    Science.gov (United States)

    Riley, Jr., Gilbert N.; Li, Qi; Roberts, Peter R.; Antaya, Peter D.; Seuntjens, Jeffrey M.; Hancock, Steven; DeMoranville, Kenneth L.; Christopherson, Craig J.; Garrant, Jennifer H.; Craven, Christopher A.

    2002-01-01

    A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.

  19. Superconductor rotor cooling system

    Science.gov (United States)

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  20. Photothermal measurements of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kino, G.S.; Studenmund, W.R.; Fishman, I.M. [Stanford Univ., Stanford, CA (United States)

    1996-12-31

    A photothermal technique has been used to measure diffusion and critical temperature in high temperature superconductors. The technique is particularly suitable for determining material quality and inhomogeneity.

  1. Consistent evaluation of GOSAT, SCIAMACHY, CarbonTracker, and MACC through comparisons to TCCON

    Science.gov (United States)

    Kulawik, S. S.; Wunch, D.; O'Dell, C.; Frankenberg, C.; Reuter, M.; Oda, T.; Chevallier, F.; Sherlock, V.; Buchwitz, M.; Osterman, G.; Miller, C.; Wennberg, P.; Griffith, D. W. T.; Morino, I.; Dubey, M.; Deutscher, N. M.; Notholt, J.; Hase, F.; Warneke, T.; Sussmann, R.; Robinson, J.; Strong, K.; Schneider, M.; Wolf, J.

    2015-06-01

    Consistent validation of satellite CO2 estimates is a prerequisite for using multiple satellite CO2 measurements for joint flux inversion, and for establishing an accurate long-term atmospheric CO2 data record. We focus on validating model and satellite observation attributes that impact flux estimates and CO2 assimilation, including accurate error estimates, correlated and random errors, overall biases, biases by season and latitude, the impact of coincidence criteria, validation of seasonal cycle phase and amplitude, yearly growth, and daily variability. We evaluate dry air mole fraction (XCO2) for GOSAT (ACOS b3.5) and SCIAMACHY (BESD v2.00.08) as well as the CarbonTracker (CT2013b) simulated CO2 mole fraction fields and the MACC CO2 inversion system (v13.1) and compare these to TCCON observations (GGG2014). We find standard deviations of 0.9 ppm, 0.9, 1.7, and 2.1 ppm versus TCCON for CT2013b, MACC, GOSAT, and SCIAMACHY, respectively, with the single target errors 1.9 and 0.9 times the predicted errors for GOSAT and SCIAMACHY, respectively. When satellite data are averaged and interpreted according to error2 = a2+ b2 /n (where n are the number of observations averaged, a are the systematic (correlated) errors, and b are the random (uncorrelated) errors), we find that the correlated error term a = 0.6 ppm and the uncorrelated error term b = 1.7 ppm for GOSAT and a = 1.0 ppm, b = 1.4 ppm for SCIAMACHY regional averages. Biases at individual stations have year-to-year variability of ~ 0.3 ppm, with biases larger than the TCCON predicted bias uncertainty of 0.4 ppm at many stations. Using fitting software, we find that GOSAT underpredicts the seasonal cycle amplitude in the Northern Hemisphere (NH) between 46-53° N. In the Southern Hemisphere (SH), CT2013b underestimates the seasonal cycle amplitude. Biases are calculated for 3-month intervals and indicate the months that contribute to the observed amplitude differences. The seasonal cycle phase indicates

  2. The Hierarchy Consistency Index: Evaluating Person Fit for Cognitive Diagnostic Assessment

    Science.gov (United States)

    Cui, Ying; Leighton, Jacqueline P.

    2009-01-01

    In this article, we introduce a person-fit statistic called the hierarchy consistency index (HCI) to help detect misfitting item response vectors for tests developed and analyzed based on a cognitive model. The HCI ranges from -1.0 to 1.0, with values close to -1.0 indicating that students respond unexpectedly or differently from the responses…

  3. Coherent diffusive transport mediated by Andreev reflections at V=Delta/e in a mesoscopic superconductor/semiconductor/superconductor junction

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Kuhn, Oliver

    1997-01-01

    We present experiments revealing a singularity in the coherent current across a superconductor/semiconductor/superconductor (SSmS) junction at the bias voltage corresponding to the superconducting energy gap V=Delta/e. The SSmS structure consists of highly doped GaAs with superconducting electrodes...

  4. Evaluation of experimental factors that influence the application and discrimination capability of the product consistency test

    Energy Technology Data Exchange (ETDEWEB)

    Shade, J.W.; Piepel, G.F.

    1991-06-01

    It is desirable to have a means of monitoring possible changes in waste glass durability during protection so that the product remains within acceptable limits. A leach test called the Product Consistency test (PCT) was developed by Savannah River Laboratory (SRL) as such a production test for the Defense Waste Processing Facility (DWPF). This report examines some of the experimental factors that may be used in the PCT that could influence test precision and its ability to function as intended. An experiment was performed to investigate the effects (on pH and elemental releases of Al, Fe, K, Na, Si, B, Li, and Mn) of modifications to the test conditions of the Product Consistency Test (PCT). The experiment was replicated three times; each replicate involved leach testing two glasses with each of 24 different sets of PCT conditions. 6 refs., 1 fig., 12 tabs.

  5. A review of consumer involvement in evaluations of case management: consistency with a recovery paradigm.

    Science.gov (United States)

    Marshall, Sarah L; Crowe, Trevor P; Oades, Lindsay G; Deane, Frank F; Kavanagh, David J

    2007-03-01

    This Open Forum examines research on case management that draws on consumer perspectives. It clarifies the extent of consumer involvement and whether evaluations were informed by recovery perspectives. Searches of three databases revealed 13 studies that sought to investigate consumer perspectives. Only one study asked consumers about experiences of recovery. Most evaluations did not adequately assess consumers' views, and active consumer participation in research was rare. Supporting an individual's recovery requires commitment to a recovery paradigm that incorporates traditional symptom reduction and improved functioning, with broader recovery principles, and a shift in focus from illness to well-being. It also requires greater involvement of consumers in the implementation of case management and ownership of their own recovery process, not just in research that evaluates the practice.

  6. Application of φ-IASI to IASI: retrieval products evaluation and radiative transfer consistency

    Directory of Open Access Journals (Sweden)

    M. Matricardi

    2009-11-01

    Full Text Available Retrieval products for temperature, water vapour and ozone have been obtained from spectral radiances measured by the Infrared Atmospheric Sounding Interferometer flying onboard the first European Meteorological Operational satellite. These products have been used to check the consistency of the forward model and its accuracy and the expected retrieval performance. The study has been carried out using a research-oriented forward-inverse methodology, called φ-IASI, that the authors have specifically developed for the new sounding interferometer. The performance of the forward-inversion strategy has been assessed by comparing the retrieved profiles to profiles of temperature, water vapour and ozone obtained by co-locating in space and time profiles from radiosonde observations and from the European Centre for Medium-Range Weather Forecasts analysis. Spectral residuals have also been computed and analyzed to assess the quality of the forward model. Two versions of the high-resolution transmission molecular absorption database have been used, which mostly differ for ozone absorption line parameters, line and continuum absorption of both CO2 and H2O molecules. Their performance has been assessed by inter-comparing the results, and a consistent improvement in the spectral residual has been found when using the most updated release.

  7. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  8. Genome scale models of yeast: towards standardized evaluation and consistent omic integration

    DEFF Research Database (Denmark)

    Sanchez, Benjamin J.; Nielsen, Jens

    2015-01-01

    Genome scale models (GEMs) have enabled remarkable advances in systems biology, acting as functional databases of metabolism, and as scaffolds for the contextualization of high-throughput data. In the case of Saccharomyces cerevisiae (budding yeast), several GEMs have been published...... and are currently used for metabolic engineering and elucidating biological interactions. Here we review the history of yeast's GEMs, focusing on recent developments. We study how these models are typically evaluated, using both descriptive and predictive metrics. Additionally, we analyze the different ways...... in which all levels of omics data (from gene expression to flux) have been integrated in yeast GEMs. Relevant conclusions and current challenges for both GEM evaluation and omic integration are highlighted....

  9. Fabrication of high temperature superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya

    2003-06-17

    A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.

  10. Theoretical studies of unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Groensleth, Martin Sigurd

    2008-07-01

    This thesis presents four research papers. In the first three papers we have derived analytical results for the transport properties in unconventional superconductors and ferromagnetic systems with multiple broken symmetries. In Paper I and parts of Paper II we have studied tunneling transport between two non-unitary ferromagnetic spin-triplet superconductors, and found a novel interplay between ferromagnetism and superconductivity manifested in the Josephson effect as a spin- and charge-current in the absence of an applied voltage across the junction. The critical amplitudes of these currents can be adjusted by the relative magnetization direction on each side of the junction. Furthermore, in Paper II, we have found a way of controlling a spin-current between two ferromagnets with spin-orbit coupling. Paper III considers a junction consisting of a ferromagnet and a non-unitary ferromagnetic superconductor, and we show that the conductance spectra contains detailed information about the superconducting gaps and pairing symmetry of the Cooper-pairs. In the last paper we present a Monte Carlo study of an effective Hamiltonian describing orbital currents in the CuO2 layers of high-temperature superconductive cuprates. The model features two intrinsically anisotropic Ising models, coupled through an anisotropic next-nearest neighbor interaction, and an Ashkin-Teller nearest neighbor fourth order coupling. We have studied the specific heat anomaly, as well as the anomaly in the staggered magnetization associated with the orbital currents and its susceptibility. We have found that in a limited parameter regime, the specific heat anomaly is substantially suppressed, while the susceptibility has a non-analytical peak across the order-disorder transition. The model is therefore a candidate for describing the breakup of hidden order when crossing the pseudo-gap line on the under-doped side in the phase diagram of high-temperature superconductors. (Author) 64 refs., figs

  11. Consistency evaluation between EGSnrc and Geant4 charged particle transport in an equilibrium magnetic field

    Science.gov (United States)

    Yang, Y. M.; Bednarz, B.

    2013-02-01

    Following the proposal by several groups to integrate magnetic resonance imaging (MRI) with radiation therapy, much attention has been afforded to examining the impact of strong (on the order of a Tesla) transverse magnetic fields on photon dose distributions. The effect of the magnetic field on dose distributions must be considered in order to take full advantage of the benefits of real-time intra-fraction imaging. In this investigation, we compared the handling of particle transport in magnetic fields between two Monte Carlo codes, EGSnrc and Geant4, to analyze various aspects of their electromagnetic transport algorithms; both codes are well-benchmarked for medical physics applications in the absence of magnetic fields. A water-air-water slab phantom and a water-lung-water slab phantom were used to highlight dose perturbations near high- and low-density interfaces. We have implemented a method of calculating the Lorentz force in EGSnrc based on theoretical models in literature, and show very good consistency between the two Monte Carlo codes. This investigation further demonstrates the importance of accurate dosimetry for MRI-guided radiation therapy (MRIgRT), and facilitates the integration of a ViewRay MRIgRT system in the University of Wisconsin-Madison's Radiation Oncology Department.

  12. Evaluating consistency of deterministic streamline tractography in non-linearly warped DTI data

    CERN Document Server

    Adluru, Nagesh; Tromp, Do P M; Davidson, Richard J; Zhang, Hui; Alexander, Andrew L

    2016-01-01

    Tractography is typically performed for each subject using the diffusion tensor imaging (DTI) data in its native subject space rather than in some space common to the entire study cohort. Despite performing tractography on a population average in a normalized space, the latter is considered less favorably at the \\emph{individual} subject level because it requires spatial transformations of DTI data that involve non-linear warping and reorientation of the tensors. Although the commonly used reorientation strategies such as finite strain and preservation of principle direction are expected to result in adequate accuracy for voxel based analyses of DTI measures such as fractional anisotropy (FA), mean diffusivity (MD), the reorientations are not always exact except in the case of rigid transformations. Small imperfections in reorientation at individual voxel level accumulate and could potentially affect the tractography results adversely. This study aims to evaluate and compare deterministic white matter fiber t...

  13. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  14. Superconductor terahertz metamaterial

    CERN Document Server

    Gu, Jianqiang; Tian, Zhen; Cao, Wei; Xing, Qirong; Han, Jiaguang; Zhang, Weili

    2010-01-01

    We characterize the behaviour of split ring resonators made up of high-transition temperature YBCO superconductor using terahertz time domain spectroscopy. The superconductor metamaterial shows sharp change in the transmission spectrum at the fundamental inductive-capacitive resonance and the dipole resonance as the temperature dips below the transition temperature. Our results reveal that the high performance of such a metamaterial is limited by material imperfections and defects such as cracks, voids and secondary phases which play dominant role in partially impeding the flow of current causing dissipation of energy and electrical resistance to appear in the superconductor film.

  15. The Science Consistency Review A Tool To Evaluate the Use of Scientific Information in Land Management Decisionmaking

    Science.gov (United States)

    James M. Guldin; David Cawrse; Russell Graham; Miles Hemstrom; Linda Joyce; Steve Kessler; Ranotta McNair; George Peterson; Charles G. Shaw; Peter Stine; Mark Twery; Jeffrey Walter

    2003-01-01

    The paper outlines a process called the science consistency review, which can be used to evaluate the use of scientific information in land management decisions. Developed with specific reference to land management decisions in the U.S. Department of Agriculture Forest Service, the process involves assembling a team of reviewers under a review administrator to...

  16. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  17. Electrodynamics of Metallic Superconductors

    Directory of Open Access Journals (Sweden)

    M. Dressel

    2013-01-01

    Full Text Available The theoretical and experimental aspects of the microwave, terahertz, and infrared properties of superconductors are discussed. Electrodynamics can provide information about the superconducting condensate as well as about the quasiparticles. The aim is to understand the frequency dependence of the complex conductivity, the change with temperature and time, and its dependence on material parameters. We confine ourselves to conventional metallic superconductors, in particular, Nb and related nitrides and review the seminal papers but also highlight latest developments and recent experimental achievements. The possibility to produce well-defined thin films of metallic superconductors that can be tuned in their properties allows the exploration of fundamental issues, such as the superconductor-insulator transition; furthermore it provides the basis for the development of novel and advanced applications, for instance, superconducting single-photon detectors.

  18. Topological superconductors: a review.

    Science.gov (United States)

    Sato, Masatoshi; Ando, Yoichi

    2017-04-03

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  19. Layered nickel based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ronning, Filip [Los Alamos National Laboratory; Bauer, Eric D [Los Alamos National Laboratory; Park, Tuson [Los Alamos National Laboratory; Kurita, Nobuyuki [Los Alamos National Laboratory; Klimczuk, T [Los Alamos National Laboratory; Movshovich, R [Los Alamos National Laboratory; Thompson, J D [Los Alamos National Laboratory; Sefat, A S [ORNL; Mandrus, D [ORNL

    2009-01-01

    We review the properties of Ni-based superconductors which contain Ni{sub 2}X{sub 2} (X=As, P, Bi, Si, Ge, B) planes, a common structural element to the recently discovered FeAs superconductors. We also compare the properties ofthe Ni-and Fe-based systems from a perspective ofelectronic structure as well as structure-property relations.

  20. Continuous lengths of oxide superconductors

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  1. Using Trait-State Models to Evaluate the Longitudinal Consistency of Global Self-Esteem From Adolescence to Adulthood

    OpenAIRE

    Donnellan, M. Brent; Kenny, David A.; Trzesniewski, Kali H.; Lucas, Richard E.; Conger, Rand D.

    2012-01-01

    The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-est...

  2. Validity and consistency analysis of a social transformation scale for the impact evaluation of the ViraVida program

    Directory of Open Access Journals (Sweden)

    Rodrigo Campos Crivelaro

    2014-12-01

    Full Text Available According to estimates by the United Nations Children's Fund (UNICEF, about one million children worldwide are directly affected by sexual violence and nearly a third of all cases occur in Brazil. The Program ViraVida acts to reduce the problem in the country, rescuing teenagers and youngsters in this situation, providing psychological, educational, and vocational assistance, including support for monitoring the placement and labor market. In this context, the main goal of the study is to analyze the validity and consistency of the Social Transformation Scale of the ViraVida Program. The study represents the second stage of the impact evaluation of the Program to measure possible impacts to strengthen employability, autonomy, self-esteem, community and family ties of young people from 16 to 24 years in situation of sexual exploitation. The methodology is based on the Factor Analysis procedures, including a verification of internal consistency of the full scale and their specific domains. Both proved to be consistent with Cronbach’s Alpha greater than 0.7. The results provide security for the performance of the later stage due to the ViraVida evaluation: evaluative research on adolescents and youngsters in the 11 states and 14 cities where ViraVida is ongoing.

  3. A Useful Strategy to Evaluate the Quality Consistency of Traditional Chinese Medicines Based on Liquid Chromatography and Chemometrics

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2015-01-01

    Full Text Available Evaluation of the batch consistency of traditional Chinese medicines (TCMs is essential for the promotion of the development and quality control of TCMs. The aim of the present work was to develop a useful strategy via liquid chromatography and chemometrics to evaluate the batch consistency of TCM preparations. Xin-Ke-Shu (XKS tablet was chosen as a model for this method development. Four types of chromatographic fingerprint approaches were compared by using similarity analysis based on cosine of angel or correlation coefficient. Differences in the fingerprints of 71 batches of XKS tablet were illustrated by hierarchical cluster analysis. Then, Mahalanobis distance was employed for estimating the probability level (P<0.05 of the differences mentioned above. Additionally, t-test was applied to find out the chromatographic peaks which had significant differences. For XKS tablet, the maximum wavelength fingerprint had the largest range and dispersion degree of similarity as compared with the other three ones. There were two clear clusters in all the batches of samples. And we clearly arrived at the conclusion that higher similarity does not exactly indicate small Mahalanobis distance, while lower similarity indicated larger Mahalanobis distance. Finally, a useful strategy was proposed for evaluation of the batch consistency of XKS tablet.

  4. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and dev

  5. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  6. Consistency of the French white certificates evaluation system with the framework proposed for the European energy services

    Energy Technology Data Exchange (ETDEWEB)

    Broc, J.S.; Bourges, B. [GEPEA UMR CNRS, 6144, Ecole des Mines de Nantes, Nantes (France); Osso, D.; Baudry, P. [Electricite de France - R and D, Ecuelles (France); Adnot, J. [Centre for Energy and Processes, Mines ParisTech, Paris (France); Bodineau, L. [Climate Department, ADEME, Angers (France)

    2011-06-15

    According to the directive on energy end-use efficiency and energy services (ESD), the European Member States shall adopt a national indicative energy savings target of 9% (or beyond) in 2016. The issue of the energy savings evaluation is crucial for its implementation. The French White Certificates (FWC) scheme is one of the important measures for France to fulfill its ESD target. However, the accountings of energy savings in the FWC scheme and in the ESD are different. Therefore, an analysis of the consistency of the two systems is needed. A concrete example of actions on residential buildings is used to illustrate the challenges for policy marker and stakeholders to set harmonized evaluation rules. The FWC and ESD calculations appear to be consistent from a physics point of view, as long as calculations are well-documented. But due to differences in the policy objectives, calculation routines may be necessary to convert national energy savings unit (e.g., kWh cumac) into supranational energy savings unit (e.g., ESD kWh). Finally, the work done to establish a transparent evaluation system brings additional benefits (e.g., increased visibility and quality of the actions), which will improve the results of the energy efficiency policies on long term.

  7. Using a sharp instrument to parse apart strategy and consistency: an evaluation of PPT and its assumptions.

    Science.gov (United States)

    Trafimow, David; Rice, Stephen

    2011-01-01

    Potential Performance Theory (PPT) is a general theory for parsing observed performance into the underlying strategy and the consistency with which it is used. Although empirical research has supported that PPT is useful, it is desirable to have more information about the bias and standard errors of PPT findings. It also is beneficial to know the effects of violations of PPT assumptions. The authors present computer simulations that evaluate bias and standard errors at varying levels of strategy, consistency, and number of trials per participant. The simulations show that, when the assumptions are true, there is very little bias and the standard errors are low when there are moderate or large numbers of trials per participant (e.g., N=50 or N=100). But when the independence assumption is violated, PPT provides biased findings, although the bias is quite small unless the violations are large.

  8. Using Trait-State Models to Evaluate the Longitudinal Consistency of Global Self-Esteem From Adolescence to Adulthood

    Science.gov (United States)

    Donnellan, M. Brent; Kenny, David A.; Trzesniewski, Kali H.; Lucas, Richard E.; Conger, Rand D.

    2012-01-01

    The present research used a latent variable trait-state model to evaluate the longitudinal consistency of self-esteem during the transition from adolescence to adulthood. Analyses were based on ten administrations of the Rosenberg Self-Esteem scale (Rosenberg, 1965) spanning the ages of approximately 13 to 32 for a sample of 451 participants. Results indicated that a completely stable trait factor and an autoregressive trait factor accounted for the majority of the variance in latent self-esteem assessments, whereas state factors accounted for about 16% of the variance in repeated assessments of latent self-esteem. The stability of individual differences in self-esteem increased with age consistent with the cumulative continuity principle of personality development. PMID:23180899

  9. 373 K Superconductors

    CERN Document Server

    Kostadinov, Ivan Zahariev

    2016-01-01

    Experimental evidence of superconductors with critical temperatures above $373\\:K$ is presented. In a family of different compounds we demonstrate the superconductor state, the transition to normal state above $387\\:K$, an intermediate $242\\:K$ superconductor, susceptibility up to $350\\:K$, $I-V$ curves at $4.2\\:K$ in magnetic field of $12\\:T$ and current up to $60\\:A$, $300\\:K$ Josephson Junctions and Shapiro steps with radiation of $5\\:GHz$ to $21\\:THz$, $300\\:K$ tapes tests with high currents up to $3000\\:A$ and many $THz$ images of coins and washers. Due to a pending patent, the exact chemical characterization and technological processes for these materials are temporarily withheld and will be presented elsewhere.

  10. Lightning in superconductors.

    Science.gov (United States)

    Vestgården, J I; Shantsev, D V; Galperin, Y M; Johansen, T H

    2012-01-01

    Crucially important for application of type-II superconductor films is the stability of the vortex matter--magnetic flux lines penetrating the material. If some vortices get detached from pinning centres, the energy dissipated by their motion will facilitate further depinning, and may trigger a massive electromagnetic breakdown. Up to now, the time-resolved behaviour of these ultra-fast events was essentially unknown. We report numerical simulation results revealing the detailed dynamics during breakdown as within nanoseconds it develops branching structures in the electromagnetic fields and temperature, with striking resemblance of atmospheric lightning. During a dendritic avalanche the superconductor is locally heated above its critical temperature, while electrical fields rise to several kV/m as the front propagates at instant speeds near up to 100 km/s. The numerical approach provides an efficient framework for understanding the ultra-fast coupled non-local dynamics of electromagnetic fields and dissipation in superconductor films.

  11. Bi-based superconductor

    Directory of Open Access Journals (Sweden)

    S E Mousavi

    2009-08-01

    Full Text Available   In this paper, Bi-Sr-Ca-Cu-O (BCSCCO system superconductor is made by the solid state reaction method. The effect of doping Pb, Cd, Sb, Cu and annealing time on the critical temperature and critical current density have been investigated. The microstructure and morphology of the samples have been studied by X-ray diffraction, scanning electron microscope and energy dispersive X-ray. The results show that the fraction of Bi-2223 phase in the Bi- based superconductor, critical temperature and critical current density depend on the annealing temperature, annealing time and the kind and amount of doping .

  12. Physical Vacuum in Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2009-01-01

    Although experiments carried out by Jain et al. showed that the Cooper pairs obey the strong equivalence principle, The measurement of the Cooper pairs inertial mass by Tate et al. revealed an anomalous excess of mass. In the present paper we interpret these experimental results in the framework of an electromagnetic model of dark energy for the superconductors' vacuum. We argue that this physical vacuum is associated with a preferred frame. Ultimately from the conservation of energy for Cooper pairs we derive a model for a variable vacuum speed of light in the superconductors physical vacuum in relation with a possible breaking of the weak equivalence principle for Cooper pairs.

  13. An Approach Based on HPLC-Fingerprint and Chemometrics to Quality Consistency Evaluation of Matricaria chamomilla L. Commercial Samples.

    Science.gov (United States)

    Viapiana, Agnieszka; Struck-Lewicka, Wiktoria; Konieczynski, Pawel; Wesolowski, Marek; Kaliszan, Roman

    2016-01-01

    Chamomile has been used as an herbal medication since ancient times and is still popular because it contains various bioactive phytochemicals that could provide therapeutic effects. In this study, a simple and reliable HPLC method was developed to evaluate the quality consistency of nineteen chamomile samples through establishing a chromatographic fingerprint, quantification of phenolic compounds and determination of antioxidant activity. For fingerprint analysis, 12 peaks were selected as the common peaks to evaluate the similarities of commercial samples of chamomile obtained from different manufacturers. A similarity analysis was performed to assess the similarity/dissimilarity of chamomile samples where values varied from 0.868 to 0.990 what indicating that samples from different manufacturers were consistent. Additionally, simultaneous quantification of five phenolic acids (gallic, caffeic, syringic, p-coumaric, ferulic) and four flavonoids (rutin, myricetin, quercetin and keampferol) was performed to interpret the quality consistency. In quantitative analysis, the nine individual phenolic compounds showed good regression (r > 0.9975). Inter- and intra-day precisions for all analyzed compounds expressed as relative standard deviation (CV) ranged from 0.05% to 3.12%. Since flavonoids and other polyphenols are commonly recognized as natural antioxidants, the antioxidant activity of chamomile samples was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and ferric reducing/antioxidant power (FRAP) assay. Correlation analysis was used to assess the relationship between antioxidant activity and phenolic composition, and multivariate analysis (PCA and HCA) were applied to distinguish chamomile samples. Results shown in the study indicate high similarity of chamomile samples among them, widely spread in the market and commonly used by people as infusions or teas, as well as that there were no statistically significant differences among

  14. An Approach Based on HPLC-Fingerprint and Chemometrics to Quality Consistency Evaluation of Matricaria chamomilla L. Commercial Samples

    Science.gov (United States)

    Viapiana, Agnieszka; Struck-Lewicka, Wiktoria; Konieczynski, Pawel; Wesolowski, Marek; Kaliszan, Roman

    2016-01-01

    Chamomile has been used as an herbal medication since ancient times and is still popular because it contains various bioactive phytochemicals that could provide therapeutic effects. In this study, a simple and reliable HPLC method was developed to evaluate the quality consistency of nineteen chamomile samples through establishing a chromatographic fingerprint, quantification of phenolic compounds and determination of antioxidant activity. For fingerprint analysis, 12 peaks were selected as the common peaks to evaluate the similarities of commercial samples of chamomile obtained from different manufacturers. A similarity analysis was performed to assess the similarity/dissimilarity of chamomile samples where values varied from 0.868 to 0.990 what indicating that samples from different manufacturers were consistent. Additionally, simultaneous quantification of five phenolic acids (gallic, caffeic, syringic, p-coumaric, ferulic) and four flavonoids (rutin, myricetin, quercetin and keampferol) was performed to interpret the quality consistency. In quantitative analysis, the nine individual phenolic compounds showed good regression (r > 0.9975). Inter- and intra-day precisions for all analyzed compounds expressed as relative standard deviation (CV) ranged from 0.05% to 3.12%. Since flavonoids and other polyphenols are commonly recognized as natural antioxidants, the antioxidant activity of chamomile samples was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity and ferric reducing/antioxidant power (FRAP) assay. Correlation analysis was used to assess the relationship between antioxidant activity and phenolic composition, and multivariate analysis (PCA and HCA) were applied to distinguish chamomile samples. Results shown in the study indicate high similarity of chamomile samples among them, widely spread in the market and commonly used by people as infusions or teas, as well as that there were no statistically significant differences among

  15. An approach based on HPLC-fingerprint and chemometrics to quality consistency evaluation of Matricaria chamomilla L. commercial samples

    Directory of Open Access Journals (Sweden)

    Agnieszka Viapiana

    2016-10-01

    Full Text Available Chamomile has been used as an herbal medication since ancient times and is still popular because it contains various bioactive phytochemicals that could provide therapeutic effects. In this study, a simple and reliable HPLC method was developed to evaluate the quality consistency of nineteen chamomile samples through establishing a chromatographic fingerprint, quantification of phenolic compounds and determination of antioxidant activity. For fingerprint analysis, 12 peaks were selected as the common peaks to evaluate the similarities of commercial samples of chamomile obtained from different manufacturers. A similarity analysis was performed to assess the similarity/dissimilarity of chamomile samples where values varied from 0.868 to 0.990 what indicating that samples from different manufacturers were consistent. Additionally, simultaneous quantification of five phenolic acids (gallic, caffeic, syringic, p-coumaric, ferulic and four flavonoids (rutin, myricetin, quercetin and keampferol was performed to interpret the quality consistency. In quantitative analysis, the nine individual phenolic compounds showed good regression (r > 0.9975. Inter- and intra-day precisions for all analysed compounds expressed as relative standard deviation (CV ranged from 0.05% to 3.12%. Since flavonoids and other polyphenols are commonly recognised as natural antioxidants, the antioxidant activity of chamomile samples was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH radical scavenging activity and ferric reducing/antioxidant power (FRAP assay. Correlation analysis was used to assess the relationship between antioxidant activity and phenolic composition, and multivariate analysis (PCA and HCA were applied to distinguish chamomile samples. Results shown in the study indicate high similarity of chamomile samples among them, widely spread in the market and commonly used by people as infusions or teas, as well as that there were no statistically significant

  16. Experimental evaluation of a control system for active mass dampers consisting of a position controller and neural oscillator

    Science.gov (United States)

    Sasaki, T.; Iba, D.; Hongu, J.; Nakamura, M.; Moriwaki, I.

    2016-09-01

    This paper shows experimental performance evaluation of a new control system for active mass dampers (AMDs). The proposed control system consists of a position controller and neural oscillator, and is designed for the solution of a stroke limitation problem of an auxiliary mass of the AMDs. The neural oscillator synchronizing with the response of a structure generates a signal, which is utilized for switching of motion direction of the auxiliary mass and for travel distances of the auxiliary mass. According to the generated signal, the position controller drives the auxiliary mass to the target values, and the reaction force resulting from the movement of the auxiliary mass is transmitted to the structure, and reduces the vibration amplitude of the structure. Our previous research results showed that the proposed system could reduce the vibration of the structure while the motion of auxiliary mass was suppressed within the restriction; however the control performance was evaluated numerically. In order to put the proposed system to practical use, the system should be evaluated experimentally. This paper starts by illustrating the relation among subsystems of the proposed system, and then, shows experimental responses of a structure model with the AMD excited by earthquakes on a shaker to confirm the validity of the system.

  17. EDITORIAL: Focus on Superconductors with Exotic Symmetries FOCUS ON SUPERCONDUCTORS WITH EXOTIC SYMMETRIES

    Science.gov (United States)

    Rice, T. Maurice; Sigrist, Manfred; Maeno, Yoshiteru

    2009-05-01

    here and a consistent theoretical description of all aspects of their superconductivity remains a formidable challenge. While the discovery of the BCS theory led, in only a few years, to the complete and consistent theoretical description of all aspects of conventional superconductivity, we are far from this goal for the exotic superconductors. Hence these superconductors continue to be the focus of most research activity in the field of superconductivity today. The papers in this special issue represent a cross section of current activity in both experiment and theory on these fascinating materials. Focus on Superconductors with Exotic Symmetries Contents Phase-sensitive-measurement determination of odd-parity, spin-triplet superconductivity in Sr2RuO4 Ying Liu Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates Erez Berg, Eduardo Fradkin, Steven A Kivelson and John M Tranquada A twisted ladder: relating the Fe superconductors to the high-Tc cuprates E Berg, S A Kivelson and D J Scalapino Fractional vortex lattice structures in spin-triplet superconductors Suk Bum Chung, Daniel F Agterberg and Eun-A Kim Momentum dependence of pseudo-gap and superconducting gap in variation theory T Watanabe, H Yokoyama, K Shigeta and M Ogata Variational ground states of the two-dimensional Hubbard model D Baeriswyl, D Eichenberger and M Menteshashvili Charge dynamics of vortex cores in layered chiral triplet superconductors M Eschrig and J A Sauls Vortices in chiral, spin-triplet superconductors and superfluids J A Sauls and M Eschrig Flux periodicities in loops of nodal superconductors Florian Loder, Arno P Kampf, Thilo Kopp and Jochen Mannhart Evidence of magnetic mechanism for cuprate superconductivity Amit Keren Wave function for odd-frequency superconductors Hari P Dahal, E Abrahams, D Mozyrsky, Y Tanaka and A V Balatsky Nernst effect as a probe of superconducting fluctuations in disordered thin films A Pourret, P Spathis, H Aubin and K

  18. Manufacturing of Superconductors

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels

    Superconducting tapes based on the ceramic high temperature superconductor (HTS) is a new promising product for high current applications such as electro-magnets and current transmission cables. The tapes are made by the oxide powder in tube (OPIT) method implying drawing and rolling of silver tu...

  19. Quality consistency evaluation of Melissa officinalis L. commercial herbs by HPLC fingerprint and quantitation of selected phenolic acids.

    Science.gov (United States)

    Arceusz, Agnieszka; Wesolowski, Marek

    2013-09-01

    To evaluate the quality consistency of commercial medicinal herbs, a simple and reliable HPLC method with UV-vis detector was developed, both for fingerprint analysis and quantitation of some pharmacologically active constituents (marker compounds). Melissa officinalis L. (lemon balm) was chosen for this study because it is widely used as an aromatic, culinary and medicine remedy. About fifty peaks were found in each chromatogram of a lemon balm extract, including twelve satisfactorily resolved characteristic peaks. A reference chromatographic fingerprint for the studied medicinal herb was calculated using Matlab 9.1 software as a result of analysing all the 19 lemon balm samples obtained from 12 Polish manufacturers. The similarity values and the results of principal component analysis revealed that all the samples were highly correlated with the reference fingerprint and could be accurately classified in relation to their quality consistency. Next, a quantitation of selected phenolic acids in the studied samples was performed. The results have shown that the levels of phenolic acids, i.e. gallic, chlorogenic, syringic, caffeic, ferulic and rosmarinic were as follows (mg/g of dry weight): 0.001-0.067, 0.010-0.333, 0.007-0.553, 0.047-0.705, 0.006-1.589 and 0.158-48.608, respectively. Statistical analysis indicated that rosmarinic acid occurs in M. officinalis at the highest level, whereas gallic acid in the lowest. A detailed inspection of these data has also revealed that reference chromatographic fingerprints combined with quantitation of pharmacologically active constituents of the plant could be used as an efficient strategy for monitoring of the lemon balm quality consistency. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Evaluation of the HFACS-ADF safety classification system: inter-coder consensus and intra-coder consistency.

    Science.gov (United States)

    Olsen, Nikki S; Shorrock, Steven T

    2010-03-01

    This article evaluates an adaptation of the human factors analysis and classification system (HFACS) adopted by the Australian Defence Force (ADF) to classify factors that contribute to incidents. Three field studies were undertaken to assess the reliability of HFACS-ADF in the context of a particular ADF air traffic control (ATC) unit. Study one was designed to assess inter-coder consensus between many coders for two incident reports. Study two was designed to assess inter-coder consensus between one participant and the previous original analysts for a large set of incident reports. Study three was designed to test intra-coder consistency for four participants over many months. For all studies, agreement was low at the level of both fine-level HFACS-ADF descriptors and high-level HFACS-type categories. A survey of participants suggested that they were not confident that HFACS-ADF could be used consistently. The three field studies reported suggest that the ADF adaptation of HFACS is unreliable for incident analysis at the ATC unit level, and may therefore be invalid in this context. Several reasons for the results are proposed, associated with the underlying HFACS model and categories, the HFACS-ADF adaptations, the context of use, and the conduct of the studies.

  1. Ambient-pressure organic superconductor

    Science.gov (United States)

    Williams, Jack M.; Wang, Hsien-Hau; Beno, Mark A.

    1986-01-01

    A new class of organic superconductors having the formula (ET).sub.2 MX.sub.2 wherein ET represents bis(ethylenedithio)-tetrathiafulvalene, M is a metal such as Au, Ag, In, Tl, Rb, Pd and the like and X is a halide. The superconductor (ET).sub.2 AuI.sub.2 exhibits a transition temperature of 5 K which is high for organic superconductors.

  2. Scaling rules for critical current density in anisotropic biaxial superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingxu, E-mail: yingxuli@swjtu.edu.cn [Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Kang, Guozheng [Applied Mechanics and Structure Safety Key Laboratory of Sichuan Province, School of Mechanics and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Gao, Yuanwen, E-mail: ywgao@lzu.edu.cn [Key Laboratory of Mechanics on Environment and Disaster in Western China, The Ministry of Education of China, Lanzhou, Gansu 730000 (China); Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2016-06-15

    Recent researches highlight the additional anisotropic crystallographic axis within the superconducting plane of high temperature superconductors (HTS), demonstrating the superconducting anisotropy of HTS is better understood in the biaxial frame than the previous uniaxial coordinates within the superconducting layer. To quantitatively evaluate the anisotropy of flux pinning and critical current density in HTS, we extend the scaling rule for single-vortex collective pinning in uniaxial superconductors to account for flux-bundle collective pinning in biaxial superconductors. The scaling results show that in a system of random uncorrected point defects, the field dependence of the critical current density is described by a unified function with the scaled magnetic field of the isotropic superconductor. The obtained angular dependence of the critical current density depicts the main features of experimental observations, considering possible corrections due to the strong-pinning interaction.

  3. Interface Consistency

    DEFF Research Database (Denmark)

    Staunstrup, Jørgen

    1998-01-01

    This paper proposes that Interface Consistency is an important issue for the development of modular designs. Byproviding a precise specification of component interfaces it becomes possible to check that separately developedcomponents use a common interface in a coherent matter thus avoiding a very...... significant source of design errors. Awide range of interface specifications are possible, the simplest form is a syntactical check of parameter types.However, today it is possible to do more sophisticated forms involving semantic checks....

  4. Introduction to Holographic Superconductor Models

    CERN Document Server

    Cai, Rong-Gen; Li, Li-Fang; Yang, Run-Qiu

    2015-01-01

    In the last years it has been shown that some properties of strongly coupled superconductors can be potentially described by classical general relativity living in one higher dimension, which is known as holographic superconductors. This paper gives a quick and introductory overview of some holographic superconductor models with s-wave, p-wave and d-wave orders in the literature from point of view of bottom-up, and summarizes some basic properties of these holographic models in various regimes. The competition and coexistence of these superconductivity orders are also studied in these superconductor models.

  5. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  6. Vortex cutting in superconductors

    Science.gov (United States)

    Glatz, A.; Vlasko-Vlasov, V. K.; Kwok, W. K.; Crabtree, G. W.

    2016-08-01

    Vortex cutting and reconnection is an intriguing and still-unsolved problem central to many areas of classical and quantum physics, including hydrodynamics, astrophysics, and superconductivity. Here, we describe a comprehensive investigation of the crossing of magnetic vortices in superconductors using time dependent Ginsburg-Landau modeling. Within a macroscopic volume, we simulate initial magnetization of an anisotropic high temperature superconductor followed by subsequent remagnetization with perpendicular magnetic fields, creating the crossing of the initial and newly generated vortices. The time resolved evolution of vortex lines as they approach each other, contort, locally conjoin, and detach, elucidates the fine details of the vortex-crossing scenario under practical situations with many interacting vortices in the presence of weak pinning. Our simulations also reveal left-handed helical vortex instabilities that accompany the remagnetization process and participate in the vortex crossing events.

  7. Using Procedure Based on Item Response Theory to Evaluate Classification Consistency Indices in the Practice of Large-Scale Assessment

    Directory of Open Access Journals (Sweden)

    Shanshan Zhang

    2017-09-01

    Full Text Available In spite of the growing interest in the methods of evaluating the classification consistency (CC indices, only few researches are available in the field of applying these methods in the practice of large-scale educational assessment. In addition, only few studies considered the influence of practical factors, for example, the examinee ability distribution, the cut score location and the score scale, on the performance of CC indices. Using the newly developed Lee's procedure based on the item response theory (IRT, the main purpose of this study is to investigate the performance of CC indices when practical factors are taken into consideration. A simulation study and an empirical study were conducted under comprehensive conditions. Results suggested that with negatively skewed distribution, the CC indices were larger than with other distributions. Interactions occurred among ability distribution, cut score location, and score scale. Consequently, Lee's IRT procedure is reliable to be used in the field of large-scale educational assessment, and when reporting the indices, it should be treated with caution as testing conditions may vary a lot.

  8. Evaluating views of lecturers on the consistency of teaching content with teaching approach: traditional versus reform calculus

    Science.gov (United States)

    Sevimli, Eyup

    2016-08-01

    This study aims to evaluate the consistency of teaching content with teaching approaches in calculus on the basis of lecturers' views. In this sense, the structures of the examples given in two commonly used calculus textbooks, both in traditional and reform classrooms, are compared. The content analysis findings show that the examples in both textbooks are presented in a rather formal language and generally highlight procedural knowledge. And, even though the examples in the reform book chosen are structured using multiple representations, only a small number of them incorporated the usage of instructional technology. The lecturers' views which were gathered indicated that, although, on the one hand, the example structures of the traditional textbook largely overlapped with the characteristics of the traditional approach, the example structures of the reform textbook, on the other hand, were found to be inconsistent with the characteristics of the reform approach, especially with regard to its environment and knowledge components. At the end of the paper, some suggestions for further studies are provided for book authors and researchers.

  9. Solid consistency

    Science.gov (United States)

    Bordin, Lorenzo; Creminelli, Paolo; Mirbabayi, Mehrdad; Noreña, Jorge

    2017-03-01

    We argue that isotropic scalar fluctuations in solid inflation are adiabatic in the super-horizon limit. During the solid phase this adiabatic mode has peculiar features: constant energy-density slices and comoving slices do not coincide, and their curvatures, parameterized respectively by ζ and Script R, both evolve in time. The existence of this adiabatic mode implies that Maldacena's squeezed limit consistency relation holds after angular average over the long mode. The correlation functions of a long-wavelength spherical scalar mode with several short scalar or tensor modes is fixed by the scaling behavior of the correlators of short modes, independently of the solid inflation action or dynamics of reheating.

  10. Current fluctuations in unconventional superconductor junctions with impurity scattering

    Science.gov (United States)

    Burset, Pablo; Lu, Bo; Tamura, Shun; Tanaka, Yukio

    2017-06-01

    The order parameter of bulk two-dimensional superconductors is classified as nodal if it vanishes for a direction in momentum space, or gapful if it does not. Each class can be topologically nontrivial if Andreev bound states are formed at the edges of the superconductor. Nonmagnetic impurities in the superconductor affect the formation of Andreev bound states and can drastically change the tunneling spectra for small voltages. Here, we investigate the mean current and its fluctuations for two-dimensional tunnel junctions between normal-metal and unconventional superconductors by solving the quasiclassical Eilenberger equation self-consistently, including the presence of nonmagnetic impurities in the superconductor. As the impurity strength increases, we find that superconductivity is suppressed for almost all order parameters since (i) at zero applied bias, the effective transferred charge calculated from the noise-current ratio tends to the electron charge e , and (ii) for finite bias, the current-voltage characteristics follows that of a normal-state junction. There are notable exceptions to this trend. First, gapful nontrivial (chiral) superconductors are very robust against impurity scattering due to the linear dispersion relation of their surface Andreev bound states. Second, for nodal nontrivial superconductors, only px-wave pairing is almost immune to the presence of impurities due to the emergence of odd-frequency s -wave Cooper pairs near the interface. Due to their anisotropic dependence on the wave vector, impurity scattering is an effective pair-breaking mechanism for the remaining nodal superconductors. All these behaviors are neatly captured by the noise-current ratio, providing a useful guide to find experimental signatures for unconventional superconductivity.

  11. Processing of Superconductor-Normal-Superconductor Josephson Edge Junctions

    Science.gov (United States)

    Kleinsasser, A. W.; Barner, J. B.

    1997-01-01

    The electrical behavior of epitaxial superconductor-normal-superconductor (SNS) Josephson edge junctions is strongly affected by processing conditions. Ex-situ processes, utilizing photoresist and polyimide/photoresist mask layers, are employed for ion milling edges for junctions with Yttrium-Barium-Copper-Oxide (YBCO) electrodes and primarily Co-doped YBCO interlayers.

  12. Comparative evaluation of different approaches to environmental protection against ionising radiation in view of practicability and consistency

    Energy Technology Data Exchange (ETDEWEB)

    Steiner, M.; Hornung, L.; Mundigl, S.; Kirchner, G. [Federal Office for Radiation Protection, Salzgitter, (Germany)

    2006-07-01

    International organisations, including ICRP, IAEA and UNSCEAR, and the international scientific community are currently engaged in work on the protection of non-human species against ionising radiation as a complement to the existing framework centred on humans. The basic ideas and conceptual approaches developed during the last decade substantially agree with each other. The EC funded FASSET project (Framework for Assessment of Environmental Impact) summarizes and reviews the current knowledge of radiation effects on biota, provides basic dosimetric models for fauna and flora and suggests an assessment framework. Protection of the environment against ionising radiation, on the one hand, aims to close a conceptual gap in radiation protection. Therefore, current frameworks for environmental protection conceptually follow radiation protection of man. On the other hand, preservation of natural resources, habitats and the biological diversity are common objectives of environmental protection against radioactive as well as chemical pollutants, suggesting an integrated approach based on the fundamental ideas of conventional environmental protection. In essence, a conceptual framework encompassing protection of man as well as of fauna and flora against chemical and radioactive pollutants would be highly desirable in view of coherence, consistency and transparency. Such an umbrella concept communicates the positive message that similar issues are treated in a conceptually similar manner, thus facilitating scientific justification and public communication and increasing acceptance. This paper discusses different concepts and approaches to radiation protection of man, radiation protection of non-human biota and environmental protection against chemical pollutants, identifies common principles and differences, addresses conflicting requirements and evaluates the feasibility and limitations of such an encompassing framework. (authors)

  13. Testability issues in Superconductor Electronics

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Arun, A.J.

    2004-01-01

    An emerging technology for solutions in high-end applications in computing and telecommunication is superconductor electronics. A system-level study has been carried out to verify the feasibility of DfT in superconductor electronics. In this paper, we present how this can be realized to monitor

  14. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  15. Evaluation of oxygenation time in SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconductors ceramics in air and ozone atmospheres; Avaliacao do tempo de oxigenacao nas ceramicas supercondutoras de SmBa{sub 2}Cu{sub 3}O{sub 7-{delta}} em atmosferas de ar e ozonio

    Energy Technology Data Exchange (ETDEWEB)

    Viana, P.R.P; Cunha, A.G., E-mail: pedrorupf@gmail.co [Instituto Federal do Espirito Santo (IFES), Vitoria, ES (Brazil)

    2010-07-01

    High temperature superconductors (HTSC) represent a major milestone in science. During the preparation of superconductors, oxygenation plays a key role, because oxygenation determines the distribution of charge carriers in these plans through the superconducting Cu-O and hence superconductivity. This paper proposes the preparation of polycrystalline superconductors using the ceramic method, and the step of oxygenation made with ozone gas (O{sub 3}). Ozone exerts chemical pressure on the compound, which has oxygen vacancies in its structure after the step of synthesis. The work was performed by varying the time between oxygenation 20, 40, 80 and 160 hours, with samples going through a process of oxygenation at 350 deg C after the step of synthesis. This study evaluates the time effect as oxygen can improve the superconducting properties such as resistivity and magnetic susceptibility. (author)

  16. Lateral restoring force on a magnet levitated above a superconductor

    Science.gov (United States)

    Davis, L. C.

    1990-01-01

    The lateral restoring force on a magnet levitated above a superconductor is calculated as a function of displacement from its original position at rest using Bean's critical-state model to describe flux pinning. The force is linear for small displacements and saturates at large displacements. In the absence of edge effects the force always attracts the magnet to its original position. Thus it is a restoring force that contributes to the stability of the levitated magnet. In the case of a thick superconductor slab, the origin of the force is a magnetic dipole layer consisting of positive and negative supercurrents induced on the trailing side of the magnet. The qualitative behavior is consistent with experiments reported to date. Effects due to the finite thickness of the superconductor slab and the granular nature of high-Tc materials are also considered.

  17. Iron pnictide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tegel, Marcus Christian

    2011-03-22

    The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co{sub x}Fe{sub 1-x})PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr{sub 2}Si{sub 2}-type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, is unveiled. A detailed examination of the complete solid solution series (Ba{sub 1-x}K{sub x})Fe{sub 2}As{sub 2} is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe{sub 2}As{sub 2} and EuFe{sub 2}As{sub 2} are characterised and the superconductors Sr{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se{sub 1-x}Te{sub x}) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr{sub 3}Sc{sub 2}O{sub 5}Fe{sub 2}As{sub 2} are presented and Ba{sub 2}ScO{sub 3}FeAs and Sr{sub 2}CrO{sub 3}FeAs, the first two members of the new 21311-type are portrayed. Sr{sub 2}CrO{sub 3}FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound

  18. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  19. Antenna applications of superconductors

    Science.gov (United States)

    Hansen, R. C.

    1991-09-01

    The applicability of superconductors to antennas is examined. Potential implementations that are examined are superdirective arrays; electrically small antennas; tuning and matching of these two; high-gain millimeter-wavelength arrays; and kinetic inductance slow wave structures for array phasers and traveling wave array feeds. It is thought that superdirective arrays and small antennas will not benefit directly, but their tuning/matching networks will undergo major improvements. Miniaturization of antennas will not be aided, but much higher gain millimeter-wave arrays will be realizable. Kinetic inductance slow-wave lines appear advantageous for improved array phasers and time delay, as well as for traveling-wave array feeds.

  20. Report of the State-of-the-Science Workshop: Evaluation of Epidemiological Data Consistency for Application in Regulatory Risk Assessment (Final Report)

    Science.gov (United States)

    EPA announced the availability of the independent workshop proceedings, Report of the State-of-the-Science Workshop: Evaluation of Epidemiological Data Consistency for Application in Regulatory Risk Assessment. This report provides a summary of selected epidemiology meth...

  1. Flux pinning in superconductors

    CERN Document Server

    Matsushita, Teruo

    2014-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  2. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  3. Hybrid superconductor magnet bearings

    Science.gov (United States)

    Chu, Wei-Kan

    1995-01-01

    Hybrid superconductor magnet bearings (HSMB's) utilize high temperature superconductors (HTS's) together with permanent magnets to form a frictionless interface between relatively rotating parts. They are low mass, stable, and do not incur expenditure of energy during normal operation. There is no direct physical contact between rotor and stator, and hence there is no wear and tear. However, just as any other applications of HTS's, it requires a very cold temperature to function. Whereas this might be perceived as a disadvantage on earth, it is of no great concern in space or on the moon. To astronomers, the moon is an excellent site for an observatory, but the cold and dusty vacuum environment on the moon precludes the use of mechanical bearings on the telescope mounts. Furthermore, drive mechanisms with very fine steps, and hence bearings with extremely low friction are needed to track a star from the moon, because the moon rotates very slowly. All aspects considered, the HSMB is about the only candidate that fits in naturally. Here, we present a design for one such bearing, capable of supporting a telescope that weighs about 3 lbs on Earth.

  4. [Validity and consistency of a new scale (Faces Pain Scale) and of the Spanish version of the CHEOPS scale to evaluate postoperative pain in children].

    Science.gov (United States)

    García-Galicia, Arturo; Lara-Muñoz, María del Carmen; Arechiga-Santamaría, Alejandra; Montiel-Jarquín, Álvaro José; López-Colombo, Aurelio

    2012-01-01

    one of the most used scales for the evaluation of children's pain is the CHEOPS. This is complex, reliable but not commonly used in spanish. We decided to create a new Pain Facial Scale to be considered to be used in spanish. to compare the validity and consistency of two different scales for the evaluation of post-operative pain in children. process, comparative, longitudinal, homodemic, and prolective study. It was elaborated a simple and easy scale, to evaluate the post-operative pain in children. 5 experts evaluated their appearance and content. The original version of CHEOPS was translated to the Spanish by an expert; later this version was corrected and re-translated by a native Anglo-Saxon speaker, the result submitted for evaluation by 5 experts. The validity and consistency of both scales were evaluated by two investigators in a blind way. We used Cronbach's α for the internal consistency of CHEOPS, coefficient of intraclass correlation for the external consistency (inter observer's variability), effect size for sensitivity to the change of category, change of status for internal validity and Spearman's correlation for the convergent analysis. there was great external consistency, and a good and high internal validity, for the Spanish version of the CHEOPS scale, and an excellent internal validity for the Facial Pain Scale, as well as an excellent internal validity for both scales. two scales can be used to evaluate the post-operative pain in children between 4 and 8 years old.

  5. Materials design for new superconductors.

    Science.gov (United States)

    Norman, M R

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  6. Spin manipulation in nanoscale superconductors.

    Science.gov (United States)

    Beckmann, D

    2016-04-27

    The interplay of superconductivity and magnetism in nanoscale structures has attracted considerable attention in recent years due to the exciting new physics created by the competition of these antagonistic ordering phenomena, and the prospect of exploiting this competition for superconducting spintronics devices. While much of the attention is focused on spin-polarized supercurrents created by the triplet proximity effect, the recent discovery of long range quasiparticle spin transport in high-field superconductors has rekindled interest in spin-dependent nonequilibrium properties of superconductors. In this review, the experimental situation on nonequilibrium spin injection into superconductors is discussed, and open questions and possible future directions of the field are outlined.

  7. Materials design for new superconductors

    Science.gov (United States)

    Norman, M. R.

    2016-07-01

    Since the announcement in 2011 of the Materials Genome Initiative by the Obama administration, much attention has been given to the subject of materials design to accelerate the discovery of new materials that could have technological implications. Although having its biggest impact for more applied materials like batteries, there is increasing interest in applying these ideas to predict new superconductors. This is obviously a challenge, given that superconductivity is a many body phenomenon, with whole classes of known superconductors lacking a quantitative theory. Given this caveat, various efforts to formulate materials design principles for superconductors are reviewed here, with a focus on surveying the periodic table in an attempt to identify cuprate analogues.

  8. Critical field enhancement near a superconductor-insulator transition.

    Science.gov (United States)

    Lee, I J; Chaikin, P M; Naughton, M J

    2002-05-20

    We have discovered a phenomenon where the orbital pair breaking effect is reduced, if not eliminated. It appears as a striking enhancement in the upper critical field H(c2) for (TMTSF)2PF6 and a strong upward curvature in the critical field versus temperature in the region of pressure-temperature phase space near the superconductor-spin density wave insulator boundary. A simple model based on self-consistently dividing the superconductor into layers explains the observations remarkably well and provides a unique way around orbital frustration and toward higher critical fields.

  9. Symmetry analysis of transport properties in helical superconductor junctions

    Science.gov (United States)

    Cheng, Qiang; Zhang, Yinhan; Zhang, Kunhua; Jin, Biao; Zhang, Changlian

    2017-03-01

    We study the discrete symmetries satisfied by helical p-wave superconductors with the d-vectors {{k}x}\\hat{x}+/- {{k}y}\\hat{y} or {{k}y}\\hat{x}+/- {{k}x}\\hat{y} and the transformations brought by symmetry operations to ferromagnet and spin-singlet superconductors, which show intimate associations with the transport properties in heterojunctions, including helical superconductors. In particular, the partial symmetries of the Hamiltonian under spin-rotation and gauge-rotation operations are responsible for the novel invariances of the conductance in tunnel junctions and the new selection rules for the lowest current and peculiar phase diagrams in Josephson junctions, which were reported recently. The symmetries of constructed free energies for Josephson junctions are also analyzed, and are consistent with the results from the Hamiltonian.

  10. Evaluating the Consistency of Current Mainstream Wearable Devices in Health Monitoring: A Comparison Under Free-Living Conditions

    Science.gov (United States)

    Wen, Dong; Zhang, Xingting; Liu, Xingyu

    2017-01-01

    Background Wearable devices are gaining increasing market attention; however, the monitoring accuracy and consistency of the devices remains unknown. Objective The purpose of this study was to assess the consistency of the monitoring measurements of the latest wearable devices in the state of normal activities to provide advice to the industry and support to consumers in making purchasing choices. Methods Ten pieces of representative wearable devices (2 smart watches, 4 smart bracelets of Chinese brands or foreign brands, and 4 mobile phone apps) were selected, and 5 subjects were employed to simultaneously use all the devices and the apps. From these devices, intact health monitoring data were acquired for 5 consecutive days and analyzed on the degree of differences and the relationships of the monitoring measurements ​​by the different devices. Results The daily measurements by the different devices fluctuated greatly, and the coefficient of variation (CV) fluctuated in the range of 2-38% for the number of steps, 5-30% for distance, 19-112% for activity duration, .1-17% for total energy expenditure (EE), 22-100% for activity EE, 2-44% for sleep duration, and 35-117% for deep sleep duration. After integrating the measurement data of 25 days among the devices, the measurements of the number of steps (intraclass correlation coefficient, ICC=.89) and distance (ICC=.84) displayed excellent consistencies, followed by those of activity duration (ICC=.59) and the total EE (ICC=.59) and activity EE (ICC=.57). However, the measurements for sleep duration (ICC=.30) and deep sleep duration (ICC=.27) were poor. For most devices, there was a strong correlation between the number of steps and distance measurements (R2>.95), and for some devices, there was a strong correlation between activity duration measurements and EE measurements (R2>.7). A strong correlation was observed in the measurements of steps, distance and EE from smart watches and mobile phones of the same

  11. Using Students' Weekly Diaries to Evaluate Positive Youth Development Programs: Are Findings Based on Multiple Studies Consistent?

    Science.gov (United States)

    Shek, Daniel T. L.

    2010-01-01

    Asking clients to document their perceived quality of life during and after intervention is a popular approach employed by helping professionals to evaluate intervention programs. In the Project Positive Adolescent Training through Holistic Social Programmes (P.A.T.H.S.), students participating in the Experimental Implementation Phase and Full…

  12. Using Students' Weekly Diaries to Evaluate Positive Youth Development Programs: Are Findings Based on Multiple Studies Consistent?

    Science.gov (United States)

    Shek, Daniel T. L.

    2010-01-01

    Asking clients to document their perceived quality of life during and after intervention is a popular approach employed by helping professionals to evaluate intervention programs. In the Project Positive Adolescent Training through Holistic Social Programmes (P.A.T.H.S.), students participating in the Experimental Implementation Phase and Full…

  13. Manufacturing a Superconductor in School.

    Science.gov (United States)

    Barrow, John

    1989-01-01

    Described is the manufacture of a superconductor from a commercially available kit using equipment usually available in schools or easily obtainable. The construction is described in detail including equipment, materials, safety procedures, tolerances, and manufacture. (Author/CW)

  14. The consistency evaluation of the climate version of the Eta regional forecast model developed for regional climate downscaling

    CERN Document Server

    Pisnichenko, I A

    2007-01-01

    The regional climate model prepared from Eta WS (workstation) forecast model has been integrated over South America with the horizontal resolution of 40 km for the period of 1961-1977. The model was forced at its lateral boundaries by the outputs of HadAMP. The data of HadAMP represent the simulation of modern climate with the resolution about150 km. In order to prepare climate regional model from the Eta forecast model was added new blocks and multiple modifications and corrections was made in the original model. The running of climate Eta model was made on the supercomputer SX-6. The detailed analysis of the results of dynamical downscaling experiment includes an investigation of a consistency between the regional and AGCM models as well as of ability of the regional model to resolve important features of climate fields on the finer scale than that resolved by AGCM. In this work we show the results of our investigation of the consistency of the output fields of the Eta model and HadAMP. We have analysed geo...

  15. Participants’ Evaluation of the Project P.A.T.H.S.: Are Findings Based on Different Datasets Consistent?

    Directory of Open Access Journals (Sweden)

    Daniel T. L. Shek

    2012-01-01

    Full Text Available Subjective outcome evaluation findings based on the perspective of the participants of the Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes in nine datasets collected from 2005 to 2009 (n=206,313 program participants were examined in this paper. Based on the consolidated data with schools as units, results showed that the participants generally had positive perceptions of the program, implementers, and benefits of the program. More than four-fifths of the participants regarded the program as beneficial to their holistic development. Multiple regression analysis revealed that the perceived qualities of the program and the program implementers predicted perceived effectiveness of the program. Based on the subjective outcome evaluation findings, the present study provides support for the effectiveness of the Tier 1 Program of the Project P.A.T.H.S. in Hong Kong.

  16. Participants' evaluation of the project P.A.T.H.S.: are findings based on different datasets consistent?

    Science.gov (United States)

    Shek, Daniel T L; Sun, Rachel C F

    2012-01-01

    Subjective outcome evaluation findings based on the perspective of the participants of the Project P.A.T.H.S. (Positive Adolescent Training through Holistic Social Programmes) in nine datasets collected from 2005 to 2009 (n = 206, 313 program participants) were examined in this paper. Based on the consolidated data with schools as units, results showed that the participants generally had positive perceptions of the program, implementers, and benefits of the program. More than four-fifths of the participants regarded the program as beneficial to their holistic development. Multiple regression analysis revealed that the perceived qualities of the program and the program implementers predicted perceived effectiveness of the program. Based on the subjective outcome evaluation findings, the present study provides support for the effectiveness of the Tier 1 Program of the Project P.A.T.H.S. in Hong Kong.

  17. Superconductor stripes move on

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, J. [Physics Department, Brookhaven National Laboratory, Upton, NY (United States)

    1999-11-01

    Differences in fundamental assumptions are behind much of the controversy among theorists over the cause of high-temperature superconductivity the absence of resistance to electrical current at temperatures as high as 130 K in layered copper-oxide compounds. One common assumption is that the charge carriers are distributed uniformly throughout the all-important CuO{sub 2} layers. However, there is growing experimental evidence that this is not the case and that 'stripes' of charge form in these puzzling materials. Now a significant step forward in the struggle to understand the behaviour of charge carriers in high-temperature superconductors has been made at the Oak Ridge National Laboratory in the US. (UK)

  18. Manufacturing of Superconductors

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels

    Superconducting tapes based on the ceramic high temperature superconductor (HTS) is a new promising product for high current applications such as electro-magnets and current transmission cables. The tapes are made by the oxide powder in tube (OPIT) method implying drawing and rolling of silver...... on the mechanical and thermal processes applied. One of the most crucial processes is probably the flat rolling process, where the round or square wire is rolled to form a thin tape (about 3 mm x 0.2 mm), while the density of the powder fibres increase and the fibres obtain their final geometry. For instance...... rolling a tape to a thickness of 250 µm may give a very high Je, whereas further reduction to 200 µm may be fatal. In the present work the flat rolling process is analysed systematically from a mechanical forming point of view. This work implies · Mechanical characterisation of the plastic parameters...

  19. In vitro evaluation of novel inhalable dry powders consisting of thioridazine and rifapentine for rapid tuberculosis treatment.

    Science.gov (United States)

    Parumasivam, T; Chan, J G Y; Pang, A; Quan, D H; Triccas, J A; Britton, W J; Chan, H K

    2016-10-01

    Thioridazine is an orally administered antipsychotic drug with potential for treatment of drug-resistant tuberculosis (TB). However, drug-induced adverse cardiac effects have been reported when thioridazine was used at an efficacious oral dose of 200mg/day to treat TB. Pulmonary delivery of thioridazine could be a rational approach to reduce dose-related side effects while enabling high drug concentrations at the primary site of infection. The present study compares in vitro aerosol performance, storage stability, and in vitro antimicrobial activity and cytotoxicity of two inhalable powders composed of thioridazine and a first-line anti-TB drug, rifapentine. Formulation 1 is a combination of amorphous thioridazine and crystalline rifapentine, while Formulation 2 consisted of both drugs as amorphous forms. Both thioridazine-rifapentine formulations were found suitable for inhalation with a total fine particle fraction (tuberculosis H37Ra and M. tuberculosis H37Rv, respectively. In contrast, thioridazine alone had a MIC90 of 12.5μg/mL and 500μg/mL, against M. tuberculosis H37Ra and M. tuberculosis H37Rv, respectively, demonstrating no synergistic anti-TB activity. However, thioridazine and rifapentine in a ratio of 1:3 enhanced the killing of M. tuberculosis H37Ra within the human monocyte-derived macrophages (THP-1) compared to the single drug treatments. Both powders showed an acceptable half maximal inhibitory concentration (IC50) of 31.25μg/mL on both THP-1 and human lung epithelial (A549) cells. However, Formulation 1 showed greater chemical stability than Formulation 2 after three months of storage under low humidity (vacuum) at 20±3°C. In conclusion, we have demonstrated a novel inhalable powder consisted of amorphous thioridazine and crystalline rifapentine (Formulation 1) with a good aerosol performance, potent anti-TB activity and storage stability, which deserves further in vivo investigations.

  20. Stroke and aphasia quality of life scale in Kannada-evaluation of reliability, validity and internal consistency

    Directory of Open Access Journals (Sweden)

    S Kiran

    2013-01-01

    Full Text Available Background: Quality of life (QoL dwells in a person′s overall well-being. Recently, QoL measures have become critical and relevant in stroke survivors. Instruments measuring QoL of individuals with aphasia are apparently rare in the Indian context. The present study aimed to develop a Kannada instrument to measure the QoL of people with aphasia. Study objectives were to validate Stroke and aphasia quality of life-39 (SAQOL-39 into Kannada, to measure test-retest reliability and internal consistency. Materials and Methods: The original English instrument was modified considering socio-cultural differences among native English and Kannada speakers. Cross-linguistic adaptation of SAQOL-39 into Kannada was carried out through forward-backward translation scheme. The scale was administered on 32 people from Karnataka (a state in India having aphasia. For a direct understanding of the subject′s QoL, scores were categorized into QoL severity levels. Item reliability of the Kannada version was examined by measuring Cronbach′s alpha. Test-retest reliability was examined by calculating the intraclass correlation coefficient (ICC. Results: Kannada SAQOL-39 showed good acceptability with minimum missing data and excellent test-retest reliability (ICC = 0.8. Value of Cronbach′s α observed for four items modified in the original version was 0.9 each and the mean α of all Kannada items was 0.9, demonstrating high internal consistency. Conclusions: The present study offers a valid, reliable tool to measure QoL in Kannada-speaking individuals with aphasia. This tool is useful in a cross-center, cross-national comparison of QoL data from people with aphasia. This instrument also permits direct translation into other Indian languages as the items are culturally validated to the Indian population. This study promotes future research using the Kannada SAQOL-39.

  1. Superconductor digital electronics: Scalability and energy efficiency issues (Review Article)

    Science.gov (United States)

    Tolpygo, Sergey K.

    2016-05-01

    Superconductor digital electronics using Josephson junctions as ultrafast switches and magnetic-flux encoding of information was proposed over 30 years ago as a sub-terahertz clock frequency alternative to semiconductor electronics based on complementary metal-oxide-semiconductor (CMOS) transistors. Recently, interest in developing superconductor electronics has been renewed due to a search for energy saving solutions in applications related to high-performance computing. The current state of superconductor electronics and fabrication processes are reviewed in order to evaluate whether this electronics is scalable to a very large scale integration (VLSI) required to achieve computation complexities comparable to CMOS processors. A fully planarized process at MIT Lincoln Laboratory, perhaps the most advanced process developed so far for superconductor electronics, is used as an example. The process has nine superconducting layers: eight Nb wiring layers with the minimum feature size of 350 nm, and a thin superconducting layer for making compact high-kinetic-inductance bias inductors. All circuit layers are fully planarized using chemical mechanical planarization (CMP) of SiO2 interlayer dielectric. The physical limitations imposed on the circuit density by Josephson junctions, circuit inductors, shunt and bias resistors, etc., are discussed. Energy dissipation in superconducting circuits is also reviewed in order to estimate whether this technology, which requires cryogenic refrigeration, can be energy efficient. Fabrication process development required for increasing the density of superconductor digital circuits by a factor of ten and achieving densities above 107 Josephson junctions per cm2 is described.

  2. Evaluation of an Airborne Remote Sensing Platform Consisting of Two Consumer-Grade Cameras for Crop Identification

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2016-03-01

    Full Text Available Remote sensing systems based on consumer-grade cameras have been increasingly used in scientific research and remote sensing applications because of their low cost and ease of use. However, the performance of consumer-grade cameras for practical applications has not been well documented in related studies. The objective of this research was to apply three commonly-used classification methods (unsupervised, supervised, and object-based to three-band imagery with RGB (red, green, and blue bands and four-band imagery with RGB and near-infrared (NIR bands to evaluate the performance of a dual-camera imaging system for crop identification. Airborne images were acquired from a cropping area in Texas and mosaicked and georeferenced. The mosaicked imagery was classified using the three classification methods to assess the usefulness of NIR imagery for crop identification and to evaluate performance differences between the object-based and pixel-based methods. Image classification and accuracy assessment showed that the additional NIR band imagery improved crop classification accuracy over the RGB imagery and that the object-based method achieved better results with additional non-spectral image features. The results from this study indicate that the airborne imaging system based on two consumer-grade cameras used in this study can be useful for crop identification and other agricultural applications.

  3. Evaluation of internally consistent parameters for the triple-layer model by the systematic analysis of oxide surface titration data

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, N.; Sverjensky, D.A. [Johns Hopkins Univ., Baltimore, MD (United States)

    1997-07-01

    Systematic analysis of surface titration data from the literature has been performed for ten oxides (anatase, hematite, goethite, rutile, amorphous silica, quartz, magnetite, {delta}-MnO{sub 2}, corundum, and {gamma}-alumina) in ten electrolytes (LiNO{sub 3}, NaNO{sub 3}, KNO{sub 3}, CsNO{sub 3}, LiCl, NaCl, KCl, CsCl, Nal, and NaClO{sub 4}) over a wide range of ionic strengths (0.001 M-2.9 M) to establish adsorption equilibrium constants and capacitances consistent with the triple-layer model of surface complexation. Experimental data for the same mineral in different electrolytes and data for a given mineral/electrolyte system from various investigators have been compared. In this analysis, the surface protonation constants (K{sub s,1} and K{sub s,2}) were calculated by combining predicted values of {Delta}pK(log K{sub s,2} - log K{sub s,1}) with experimental points of zero charge; site-densities were obtained from tritium-exchange experiments reported in the literature, and the outer-layer capacitance (C{sub 2}) was set at 0.2 F {center_dot} m{sup -2}. 98 refs., 8 figs., 27 tabs.

  4. An evaluation of the procedures required to ensure consistent material supply in the Eastern Cape automotive industry

    Directory of Open Access Journals (Sweden)

    GS Horn

    2014-07-01

    Full Text Available There is a common perception that logistics practice and supply chain management have not yet reached the required international standards among all the supply chain members in the South African automotive industry. This article is based on a research study that investigated possible reasons for the inconsistent supply of materials in the Eastern Cape automotive industry specifically. Problems identified include the fact that suppliers are not evaluated on a regular basis and do not receive sufficient logistics training, while a commitment and will to development local suppliers is lacking. Recommendations made to the South African automotive industry include the improvement of development programmes to assist local suppliers in becoming world-class suppliers, better logistics training, more regular supplier assessments, as well as improved mutual communication among suppliers and motor vehicle assemblers.

  5. HPLC Fingerprint with Multi-components Analysis for Quality Consistency Evaluation of Traditional Chinese Medicine Si-Mo-Tang Oral Liquid Preparation

    Institute of Scientific and Technical Information of China (English)

    YI Yue-neng; CHENG Xue-mei; LIU Ling-an; HU Gao-yun; CAI Guang-xian; DENG Yi-de; HUANG Ke-long; WANG Chang-hong

    2011-01-01

    Si-Mo-Tang(SMT) oral liquid preparation,a traditional Chinese medicine,was prepared from four crude herbal drugs,Fructus Aurantii Submaturus,Radix Aucklandiae,Semen Arecae and Radix Linderae Aggregatae.A combinative method using HPLC fingerprint and quantitative analysis was developed and validated for quality consistency evaluation of SMT.Individual HPLC chromatograms were evaluated against the mean chromatogram generated via a similarity evaluation computer program.Data from chromatographic fingerprints were also processed with principal component analysis(PCA) and hierarchical cluster analysis(HCA).Additionally,six components (naringin,isonaringin,hesperidin,neohesperidin,norisoboldine and potassium sorbate) in SMT were simultaneously determined to interpret the quality consistency.For fingerprint analysis,20 peaks were selected as the characteristic peaks to evaluate the similarities of 26 SMT collected from different manufacturers.Among the 20 characteristic peaks,10 peaks were assigned to be naringin,hesperidin,neohesperidin,isonaringin,neoeriocitrin,tangeretin,nobiletin,norisoboldine,5-(ethoxymethyl)furan-2-carbaldehyde and potassium sorbate,respectively.The results of similarity analysis,PCA and HCA,indicate that the samples from different manufacturers were consistent with each other in composition.The results from the quantitative data show that the contents of six compounds were significantly different in SMT oral liquid preparations from different manufacturers.The combinative method of chromatographic fingerprint with quantitative analysis developed here offered an efficient way for the quality consistency evaluation of the traditional Chinese medicine SMT.

  6. The ground state in a spin-one color superconductor

    CERN Document Server

    Schmitt, A

    2004-01-01

    Color superconductors in which quarks of the same flavor form Cooper pairs are investigated. These Cooper pairs carry total spin one. A systematic group-theoretical classification of possible phases in a spin-one color superconductor is presented, revealing parallels and differences to the theory of superfluid $^3$He. General expressions for the gap parameter, the critical temperature, and the pressure are derived and evaluated for several spin-one phases, with special emphasis on the angular structure of the gap equation. It is shown that, in a spin-one color superconductor, the (transverse) A phase is expected to be the ground state. This is in contrast to $^3$He, where the ground state is in the B phase.

  7. A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    Science.gov (United States)

    Sarofim, M. C.; Martinich, J.; Waldhoff, S.; DeAngelo, B. J.; McFarland, J.; Jantarasami, L.; Shouse, K.; Crimmins, A.; Li, J.

    2014-12-01

    The Climate Change Impacts and Risk Analysis (CIRA) project establishes a new multi-model framework to systematically assess the physical impacts, economic damages, and risks from climate change. The primary goal of this framework is to estimate the degree to which climate change impacts and damages in the United States are avoided or reduced in the 21st century under multiple greenhouse gas (GHG) emissions mitigation scenarios. The first phase of the CIRA project is a modeling exercise that included two integrated assessment models and 15 sectoral models encompassing five broad impacts sectors: water resources, electric power, infrastructure, human health, and ecosystems. Three consistent socioeconomic and climate scenarios are used to analyze the benefits of global GHG mitigation targets: a reference scenario and two policy scenarios with total radiative forcing targets in 2100 of 4.5 W/m2 and 3.7 W/m2. In this exercise, the implications of key uncertainties are explored, including climate sensitivity, climate model, natural variability, and model structures and parameters. This presentation describes the motivations and goals of the CIRA project; the design and academic contribution of the first CIRA modeling exercise; and briefly summarizes several papers published in a special issue of Climatic Change. The results across impact sectors show that GHG mitigation provides benefits to the United States that increase over time, the effects of climate change can be strongly influenced by near-term policy choices, adaptation can reduce net damages, and impacts exhibit spatial and temporal patterns that may inform mitigation and adaptation policy discussions.

  8. Development and in vivo evaluation of silver sulfadiazine loaded hydrogel consisting polyvinyl alcohol and chitosan for severe burns

    Directory of Open Access Journals (Sweden)

    S R Chakavala

    2012-01-01

    Full Text Available A new Hydrogel containing silver Sulfadiazine (SSD was developed for enhanced burns wound healing. The hydrogel was prepared by cross-linking of PVA and Chitosan by freeze thawing method. Their gel properties, moisture retaining capacity, fluid uptake capacity, in vitro release study, in vivo burn healing effect were evaluated. Chitosan and PVA cross linking decreased gel fraction upto 70% determined the good gel properties. This cross linked hydrogel increased the Swelling ratio and Water vapour transmission rate (WVTR which provides the sustained release of drug and moist environment for healing respectively. The hydrogel containing 7.5% of PVA, 0.75% of chitosan found to have increased gel strength, higher water vapour transmission rate and fluid uptake capacity suitable for faster healing of burns. This hydrogel also sustained the release of 1% SSD required for longer antimicrobial activity and found better in vivo burn healing capacity as compared to marketed preparation. Thus hydrogel containing 7.5% of PVA, 0.75% of chitosan and 1% SSD is a potential burns dressing with better gel properties and excellent burns healing capacity.

  9. Process for fabricating continuous lengths of superconductor

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    1998-01-01

    A process for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor precursor between said first substrate ribbon and said second substrates ribbon. The layered superconductor precursor is then heat treated to form a super conductor layer.

  10. Ferromagnet / superconductor oxide superlattices

    Science.gov (United States)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  11. Gravitoelectromagnetism and Dark Energy in Superconductors

    CERN Document Server

    De Matos, C J

    2006-01-01

    A gravitomagnetic analogue of the London moment in superconductors can explain the anomalous Cooper pair mass excess reported by Janet Tate. Ultimately the gravitomagnetic London moment is attributed to the breaking of the principle of general covariance in superconductors. This naturally implies non-conservation of classical energy-momentum. Possible relation with the manifestation of dark energy in superconductors is questioned.

  12. Holistic Evaluation of Quality Consistency of Ixeris sonchifolia (Bunge) Hance Injectables by Quantitative Fingerprinting in Combination with Antioxidant Activity and Chemometric Methods.

    Science.gov (United States)

    Yang, Lanping; Sun, Guoxiang; Guo, Yong; Hou, Zhifei; Chen, Shuai

    2016-01-01

    A widely used herbal medicine, Ixeris sonchifolia (Bge.) Hance Injectable (ISHI) was investigated for quality consistency. Characteristic fingerprints of 23 batches of the ISHI samples were generated at five wavelengths and evaluated by the systematic quantitative fingerprint method (SQFM) as well as simultaneous analysis of the content of seven marker compounds. Chemometric methods, i.e., support vector machine (SVM) and principal component analysis (PCA) were performed to assist in fingerprint evaluation of the ISHI samples. Qualitative classification of the ISHI samples by SVM was consistent with PCA, and in agreement with the quantitative evaluation by SQFM. In addition, the antioxidant activities of the ISHI samples were determined by both the off-line and on-line DPPH (2, 2-diphenyl-1-picryldrazyl) radical scavenging assays. A fingerprint-efficacy relationship linking the chemical components and in vitro antioxidant activity was established and validated using the partial least squares (PLS) and orthogonal projection to latent structures (OPLS) models; and the online DPPH assay further revealed those components that had position contribution to the total antioxidant activity. Therefore, the combined use of the chemometric methods, quantitative fingerprint evaluation by SQFM, and multiple marker compound analysis in conjunction with the assay of antioxidant activity provides a powerful and holistic approach to evaluate quality consistency of herbal medicines and their preparations.

  13. Multistrand superconductor cable

    Science.gov (United States)

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  14. 开展仿制药质量一致性评价的探讨%Discussion on developing generics quality consistency evaluation

    Institute of Scientific and Technical Information of China (English)

    郁庆华; 谢冉行

    2014-01-01

    It is required to carry out generics quality consistency evaluation in the notice of the Twelfth Five-Year Plan of the national drug safety issued by the State Council on Jan 20, 2012. In this paper, we summarized the existing problems and causes of generic drug quality in China, and proposed that the key point of quality consistency evaluation is the consistency of multiple dissolution proifle between generics and brand-name drugs so as to provide some suggestions for further developing a work of generics quality consistency evaluation.%2012年1月20日,国务院下发的《关于印发国家药品安全“十二五”规划的通知》中要求开展仿制药一致性评价工作。本文概述我国仿制药质量存在的问题及其原因,提出开展一致性评价重点在于多条溶出曲线都要与原研药一致,旨在为进一步开展仿制药一致性评价工作提供建议。

  15. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  16. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  17. Modified Entropic Gravitation in Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2011-01-01

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde's derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor's quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravit...

  18. Superconductor stability, 1983: a review

    Energy Technology Data Exchange (ETDEWEB)

    Dresner, L.

    1983-01-01

    Three main topics have been discussed in this paper, namely, internally cooled superconductors, cooling by superfluid helium, and metastable magnets. The discussion of each has centered around a dominant idea, and it is fitting to highlight these ideas by way of conclusion. With regard to internally cooled superconductors, most of what we have learned in the last few years centers on the strong motion caused by the thermal expansion of helium. How naive were our early calculations that treated the helium as though it were incompressible. Our discussion of He-II was organized around the Gorter-Mellink relation and the solutions of the nonlinear diffusion equation it gives rise to. And our discussion of metastable magnets revolved around the fruitful concept of the MPZ. These three ideas are sturdy trunks that support much of the thought about superconductor stability that has flowered in the past several years.

  19. Topological surface states in nodal superconductors.

    Science.gov (United States)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  20. Apparatus for fabricating continuous lengths of superconductor

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2002-01-01

    A process and apparatus for manufacturing a superconductor. The process is accomplished by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon, overlaying a continuous length of a second substrate ribbon on said first substrate ribbon, and applying sufficient pressure to form a bound layered superconductor comprising a layer of said superconducting precursor powder between said first substrate ribbon and said second substrates ribbon. The layered superconductor is then heat treated to establish the superconducting phase of said superconductor precursor powder.

  1. High temperature superconductor current leads

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Poeppel, Roger B. (Glen Ellyn, IL)

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  2. Terahertz Spectroscopy of Novel Superconductors

    Directory of Open Access Journals (Sweden)

    Stefano Lupi

    2011-01-01

    Full Text Available Through the coupling of Synchrotron Radiation and Michelson interferometry, one may obtain in the terahertz (THz range transmittance and reflectivity spectra with a signal-to-noise ratio (S/N up to 103. In this paper we review the application of this spectroscopic technique to novel superconductors with an increasing degree of complexity: the single-gap boron-doped diamond; the isotropic multiband V3Si, where superconductivity opens two gaps at the Fermi energy; the CaAlSi superconductor, isostructural to MgB2, with a single gap in the hexagonal ab plane and two gaps along the orthogonal c axis.

  3. Topological Aspects of Triplet Superconductors

    Institute of Scientific and Technical Information of China (English)

    REN Ji-Rong; XU Dong-Hui; ZHANG Xin-Hui; LI Ran

    2007-01-01

    In this paper, using the φ-mapping theory, it is shown that two kinds of topological defects, i.e., the vortex lines and the monopoles exist in the helical configuration of magnetic field in triplet superconductors. And the inner topological structure of these defects is studied. Because the knot solitons in the triplet superconductors are characterized by the Hopf invariant, we also establish a relationship between the Hopf invariant and the linking number of knots family,and reveal the inner topological structure of the Hopf invariant.

  4. Holographic superconductors without translational symmetry

    CERN Document Server

    Zeng, Hua Bi

    2014-01-01

    A holographic superconductor is constructed in the background of a massive gravity theory. In the normal state without condensation, the conductivity exhibits a Drude peak that approaches a delta function in the massless gravity limit as studied by David Vegh. In the superconducting state, besides the infinite DC conductivity, the AC conductivity has Drude behavior at low frequency followed by a power law-fall. These results are in agreement with that found earlier by Horowitz and Santos, who studied a holographic superconductor with an implicit periodic potential beyond the probe limit. The results also agree with measurements on some cuprates.

  5. Glass formability of high T(sub c) Bi-Sr-Ca-Cu-O superconductors

    Science.gov (United States)

    Kaukler, William F.

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were evaluated for their glass formation ability by means of rapid thermal analysis during quenching, optical and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass, then with subsequent devitrification it was formed into bulk crystalline superconductor by a series of processing methods.

  6. Energy-Efficient Wide Datapath Integer Arithmetic Logic Units Using Superconductor Logic

    Science.gov (United States)

    Ayala, Christopher Lawrence

    Complementary Metal-Oxide-Semiconductor (CMOS) technology is currently the most widely used integrated circuit technology today. As CMOS approaches the physical limitations of scaling, it is unclear whether or not it can provide long-term support for niche areas such as high-performance computing and telecommunication infrastructure, particularly with the emergence of cloud computing. Alternatively, superconductor technologies based on Josephson junction (JJ) switching elements such as Rapid Single Flux Quantum (RSFQ) logic and especially its new variant, Energy-Efficient Rapid Single Flux Quantum (ERSFQ) logic have the capability to provide an ultra-high-speed, low power platform for digital systems. The objective of this research is to design and evaluate energy-efficient, high-speed 32-bit integer Arithmetic Logic Units (ALUs) implemented using RSFQ and ERSFQ logic as the first steps towards achieving practical Very-Large-Scale-Integration (VLSI) complexity in digital superconductor electronics. First, a tunable VHDL superconductor cell library is created to provide a mechanism to conduct design exploration and evaluation of superconductor digital circuits from the perspectives of functionality, complexity, performance, and energy-efficiency. Second, hybrid wave-pipelining techniques developed earlier for wide datapath RSFQ designs have been used for efficient arithmetic and logic circuit implementations. To develop the core foundation of the ALU, the ripple-carry adder and the Kogge-Stone parallel prefix carry look-ahead adder are studied as representative candidates on opposite ends of the design spectrum. By combining the high-performance features of the Kogge-Stone structure and the low complexity of the ripple-carry adder, a 32-bit asynchronous wave-pipelined hybrid sparse-tree ALU has been designed and evaluated using the VHDL cell library tuned to HYPRES' gate-level characteristics. The designs and techniques from this research have been implemented using

  7. Measurement of AC loss of superconductors by vaporizing method

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, Hiroshi; Isono, Takaaki; Matsui, Kunihiro; Fujisaki, Reishi; Nunoya, Yoshihiko; Koizumi, Norikiyo; Takahashi, Yoshikazu; Tsuji, Hiroshi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1995-07-01

    In Japan Atomic Energy Research Institute, the development of superconducting pulse conductors for next period nuclear fusion reactors has been carried out. For these conductors, the rated current of 46 kA and the rated magnetic field of 13T are demanded. When the pulse excitation of superconductors is carried out, AC loss arises, and the temperature of the superconductors rises, and when it exceeds a certain value, the superconducting state cannot be maintained. Therefore, the AC loss of pulse conductors must be limited to a low value. It is difficult to evaluate the AC loss of superconductors by calculation, therefore, it is evaluated by actual measurement. There are magnetizing method and vaporizing method for measuring the AC loss. This time, the equipment for measuring the AC loss of 40 kA class superconductors by vaporizing method which measures the helium gas quantity vaporizing at the time of AC loss occurrence was designed and manufactured for the first time. The method of measuring the AC loss, the structure of the measuring equipment, the helium gas recovering part and the measuring part, the countermeasures for preventing helium gas leakage, the resistance heater for calibration, and the results of measurement are reported. (K.I.)

  8. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  9. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  10. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  11. Development of superconductor application technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G. W.; Kim, C. J.; Lee, H. G.; Lee, H. J.; Kim, K. B.; Won, D. Y.; Jang, K. I.; Kwon, S. C.; Kim, W. J.; Ji, Y. A.; Yang, S. W.; Kim, W. K.; Park, S. D.; Lee, M. H.; Lee, D. M.; Park, H. W.; Yu, J. K.; Lee, I. S.; Kim, J. J.; Choi, H. S.; Chu, Y.; Kim, Y. S.; Kim, D. H.

    1997-09-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs.

  12. Microemulsion Electrokinetic Chromatography in Combination with Chemometric Methods to Evaluate the Holistic Quality Consistency and Predict the Antioxidant Activity of Ixeris sonchifolia (Bunge Hance Injection.

    Directory of Open Access Journals (Sweden)

    Lanping Yang

    Full Text Available In this paper, microemulsion electrokinetic chromatography (MEEKC fingerprints combined with quantification were successfully developed to monitor the holistic quality consistency of Ixeris sonchifolia (Bge. Hance Injection (ISHI. ISHI is a Chinese traditional patent medicine used for its anti-inflammatory and hemostatic effects. The effects of five crucial experimental variables on MEEKC were optimized by the central composite design. Under the optimized conditions, the MEEKC fingerprints of 28 ISHIs were developed. Quantitative determination of seven marker compounds was employed simultaneously, then 28 batches of samples from two manufacturers were clearly divided into two clusters by the principal component analysis. In fingerprint assessments, a systematic quantitative fingerprint method was established for the holistic quality consistency evaluation of ISHI from qualitative and quantitative perspectives, by which the qualities of 28 samples were well differentiated. In addition, the fingerprint-efficacy relationship between the fingerprints and the antioxidant activities was established utilizing orthogonal projection to latent structures, which provided important medicinal efficacy information for quality control. The present study offered a powerful and holistic approach to evaluating the quality consistency of herbal medicines and their preparations.

  13. Josephson Current in Superconductor-Ferromagnet/Insulator/d-Wave Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei; DONG Zheng-Chao

    2005-01-01

    Solving the Bogoliubov-de Gennes equation, the energy levels of bound states are obtained in the ferromagnetic superconductor. The Josephson currents in a ferromagnetic superconductor/Insulator/d-wave superconductor junction are calculated as a function of the exchange field, temperature, and insulating barrier strength. It is found that the Josephson critical current is always suppressed by the presence of exchange field h and depends on crystalline axis orientation of d-wave superconductor.

  14. Iron-Based Superconductors as Odd-Parity Superconductors

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-07-01

    Full Text Available Parity is a fundamental quantum number used to classify a state of matter. Materials rarely possess ground states with odd parity. We show that the superconducting state in iron-based superconductors is classified as an odd-parity s-wave spin-singlet pairing state in a single trilayer FeAs/Se, the building block of the materials. In a low-energy effective model constructed on the Fe square bipartite lattice, the superconducting order parameter in this state is a combination of an s-wave normal pairing between two sublattices and an s-wave η pairing within the sublattices. The state has a fingerprint with a real-space sign inversion between the top and bottom As/Se layers. The results suggest that iron-based superconductors are a new quantum state of matter, and the measurement of the odd parity can help to establish high-temperature superconducting mechanisms.

  15. Consistent evaluations of (n,2n) and (n,np) reaction excitation functions for some even-even isotopes using empirical systematics

    Energy Technology Data Exchange (ETDEWEB)

    Manokhin, Vassily N. [Russian Nuclear Data Center, Institute of Physics and Power Engineering, Obninsk (Russian Federation); Odano, Naoteru; Hasegawa, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-03-01

    An approach for consistent evaluation of (n,2n) and (n,np) reaction excitation functions for some even-even isotopes with the (n,np) reaction thresholds lower than (n,2n) reaction ones is described. For determination of cross sections in the maximum of the (n,2n) and (n,np) reaction excitation functions some empirical systematics developed by Manokhin were used together with trends in dependence of gaps between the (n,2n) and (n,np) thresholds on atomic mass number A. The shapes of the (n,2n) and (n,np) reaction excitation functions were calculated using the normalized functions from the Manokhin's systematics. Excitation functions of (n,2n) and (n,np) reactions were evaluated for several nuclei by using the systematics and it was found that the approach used for the present study gives reasonable results. (author)

  16. Current status of iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kamihara, Yoichi, E-mail: kamihara_yoichi@appi.keio.ac.jp [Keio University, Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology (Japan)

    2012-03-15

    Current status of iron-based superconductors is summarized. Although short range magnetic ordering and magnetic phase separation of Fe are controversial, (long range) magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type. Antiferromagnetic ordering of itinerant Fe does not coexist with superconducting phase of SmFeAsO{sub 1 - x}F{sub x}. The very large H{sub c2} of iron-based superconductors attract us to attempts at applications.

  17. Current status of iron-based superconductors

    Science.gov (United States)

    Kamihara, Yoichi

    2012-03-01

    Current status of iron-based superconductors is summarized. Although short range magnetic ordering and magnetic phase separation of Fe are controversial, (long range) magnetic and electronic phase diagrams of iron based superconductors can be classified into two-type. Antiferromagnetic ordering of itinerant Fe does not coexist with superconducting phase of SmFeAsO1 - xFx. The very large H c2 of iron-based superconductors attract us to attempts at applications.

  18. A Road Towards High Temperature Superconductors

    Science.gov (United States)

    2013-08-01

    AFRL-AFOSR-UK-TR-2013-0040 A Road Towards High Temperature Superconductors Guy Deutscher Tel Aviv University Research... Superconductors 5a. CONTRACT NUMBER FA8655-10-1-3011 5b. GRANT NUMBER Grant 10-3011 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...issue in trying to make useful high temperature superconductors is obviously to discover superconductivity at higher temperatures. But there is also

  19. Holographic complexity in gauge/string superconductors

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2016-05-01

    Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T

  20. Coherent and correlated spin transport in nanoscale superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morten, Jan Petter

    2008-03-15

    the system varies from e.g. ballistic conductors or tunnel barriers. In the tunneling case, we calculate the magnetization-dependent full counting statistics, which determines all noise properties including the cross-correlations that can resolve the contributions due to crossed Andreev reflection and direct electron transport. We evaluate the magnetization-dependent two-particle probability that the constituents of spin-entangled pairs from crossed Andreev reflection flow into different ferromagnetic contacts. This probability implies violation of a Bell inequality, and determines the performance of a superconductor-ferromagnet entangler. (author). 105 refs., 13 figs

  1. Evaluating the consistency of location of the most severe acute skin reaction and highest skin dose measured by thermoluminescent dosimeter during radiotherapy for breast cancer.

    Science.gov (United States)

    Sun, Li-Min; Huang, Chih-Jen; Chen, Hsiao-Yun; Chang, Gia-Hsin; Tsao, Min-Jen

    2016-01-01

    We conducted this prospective study to evaluate whether the location of the most severe acute skin reaction matches the highest skin dose measured by thermoluminescent dosimeter (TLD) during adjuvant radiotherapy (RT) for patients with breast cancer after breast conservative surgery. To determine whether TLD measurement can reflect the location of the most severe acute skin reaction, 80 consecutive patients were enrolled in this prospective study. We divided the irradiated field into breast, axillary, inframammary fold, and areola/nipple areas. In 1 treatment session when obvious skin reaction occurred, we placed the TLD chips onto the 4 areas and measured the skin dose. We determined whether the highest measured skin dose area is consistent with the location of the most severe skin reaction. The McNemar test revealed that the clinical skin reaction and TLD measurement are more consistent when the most severe skin reaction occurred at the axillary area, and the p = 0.0108. On the contrary, TLD measurement of skin dose is less likely consistent with clinical observation when the most severe skin reaction occurred at the inframammary fold, breast, and areola/nipple areas (all the p > 0.05). Considering the common site of severe skin reaction over the axillary area, TLD measurement may be an appropriate way to predict skin reaction during RT. Copyright © 2016 American Association of Medical Dosimetrists. Published by Elsevier Inc. All rights reserved.

  2. Evaluating statistical consistency in the ocean model component of the Community Earth System Model (pyCECT v2.0)

    Science.gov (United States)

    Baker, Allison H.; Hu, Yong; Hammerling, Dorit M.; Tseng, Yu-heng; Xu, Haiying; Huang, Xiaomeng; Bryan, Frank O.; Yang, Guangwen

    2016-07-01

    The Parallel Ocean Program (POP), the ocean model component of the Community Earth System Model (CESM), is widely used in climate research. Most current work in CESM-POP focuses on improving the model's efficiency or accuracy, such as improving numerical methods, advancing parameterization, porting to new architectures, or increasing parallelism. Since ocean dynamics are chaotic in nature, achieving bit-for-bit (BFB) identical results in ocean solutions cannot be guaranteed for even tiny code modifications, and determining whether modifications are admissible (i.e., statistically consistent with the original results) is non-trivial. In recent work, an ensemble-based statistical approach was shown to work well for software verification (i.e., quality assurance) on atmospheric model data. The general idea of the ensemble-based statistical consistency testing is to use a qualitative measurement of the variability of the ensemble of simulations as a metric with which to compare future simulations and make a determination of statistical distinguishability. The capability to determine consistency without BFB results boosts model confidence and provides the flexibility needed, for example, for more aggressive code optimizations and the use of heterogeneous execution environments. Since ocean and atmosphere models have differing characteristics in term of dynamics, spatial variability, and timescales, we present a new statistical method to evaluate ocean model simulation data that requires the evaluation of ensemble means and deviations in a spatial manner. In particular, the statistical distribution from an ensemble of CESM-POP simulations is used to determine the standard score of any new model solution at each grid point. Then the percentage of points that have scores greater than a specified threshold indicates whether the new model simulation is statistically distinguishable from the ensemble simulations. Both ensemble size and composition are important. Our

  3. Recent progress on carbon-based superconductors.

    Science.gov (United States)

    Kubozono, Yoshihiro; Eguchi, Ritsuko; Goto, Hidenori; Hamao, Shino; Kambe, Takashi; Terao, Takahiro; Nishiyama, Saki; Zheng, Lu; Miao, Xiao; Okamoto, Hideki

    2016-08-24

    This article reviews new superconducting phases of carbon-based materials. During the past decade, new carbon-based superconductors have been extensively developed through the use of intercalation chemistry, electrostatic carrier doping, and surface-proving techniques. The superconducting transition temperature T c of these materials has been rapidly elevated, and the variety of superconductors has been increased. This review fully introduces graphite, graphene, and hydrocarbon superconductors and future perspectives of high-T c superconductors based on these materials, including present problems. Carbon-based superconductors show various types of interesting behavior, such as a positive pressure dependence of T c. At present, experimental information on superconductors is still insufficient, and theoretical treatment is also incomplete. In particular, experimental results are still lacking for graphene and hydrocarbon superconductors. Therefore, it is very important to review experimental results in detail and introduce theoretical approaches, for the sake of advances in condensed matter physics. Furthermore, the recent experimental results on hydrocarbon superconductors obtained by our group are also included in this article. Consequently, this review article may provide a hint to designing new carbon-based superconductors exhibiting higher T c and interesting physical features.

  4. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  5. Negative magnetic relaxation in superconductors

    Directory of Open Access Journals (Sweden)

    Krasnoperov E.P.

    2013-01-01

    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  6. Generalized Superconductors and Holographic Optics

    CERN Document Server

    Mahapatra, Subhash; Sarkar, Tapobrata

    2013-01-01

    We study generalized holographic s-wave superconductors in four dimensional R-charged black hole backgrounds, in the probe limit. We first establish the superconducting nature of the boundary theory, and then study its optical properties. Numerical analysis indicates that a negative index of refraction appears at low frequencies in the theory, for certain temperature ranges, for specific values of the charge parameter. The corresponding cut-off values for these are numerically established in several cases.

  7. Holographic superconductors with Weyl corrections

    Science.gov (United States)

    Momeni, Davood; Raza, Muhammad; Myrzakulov, Ratbay

    2016-10-01

    A quick review on the analytical aspects of holographic superconductors (HSCs) with Weyl corrections has been presented. Mainly, we focus on matching method and variational approaches. Different types of such HSC have been investigated — s-wave, p-wave and Stúckelberg ones. We also review the fundamental construction of a p-wave type, in which the non-Abelian gauge field is coupled to the Weyl tensor. The results are compared from numerics to analytical results.

  8. Magnetic proximity effect at the interface between a cuprate superconductor and an oxide spin valve

    Science.gov (United States)

    Ovsyannikov, G. A.; Demidov, V. V.; Khaydukov, Yu. N.; Mustafa, L.; Constantinian, K. Y.; Kalabukhov, A. V.; Winkler, D.

    2016-04-01

    A heterostructure that consists of the YBa2Cu3O7-δ cuprate superconductor and the SrRuO3/La0.7Sr0.3MnO3 ruthenate/manganite spin valve is investigated using SQUID magnetometry, ferromagnetic resonance, and neutron reflectometry. It is shown that a magnetic moment is induced due to the magnetic proximity effect in the superconducting part of the heterostructure, while the magnetic moment in the composite ferromagnetic interlayer is suppressed. The magnetization emerging in the superconductor coincides in order of magnitude with the results of calculations taking into account the induced magnetic moment of Cu atoms because of orbital reconstruction at the interface between the superconductor and the ferromagnet, as well as with the results of the model taking into account the variations in the density of states at a distance on the order of the coherence length in the superconductor. The experimentally obtained characteristic penetration depth of the magnetic moment in the superconductor considerably exceeds the coherence length of the cuprate superconductor, which indicates the predominance of the mechanism of induced magnetic moment of Cu atoms.

  9. A hidden pseudogap under the 'dome' of superconductivity in electron-doped high-temperature superconductors.

    Science.gov (United States)

    Alff, L; Krockenberger, Y; Welter, B; Schonecke, M; Gross, R; Manske, D; Naito, M

    2003-04-17

    The ground state of superconductors is characterized by the long-range order of condensed Cooper pairs: this is the only order present in conventional superconductors. The high-transition-temperature (high-T(c)) superconductors, in contrast, exhibit more complex phase behaviour, which might indicate the presence of other competing ground states. For example, the pseudogap--a suppression of the accessible electronic states at the Fermi level in the normal state of high-T(c) superconductors-has been interpreted as either a precursor to superconductivity or as tracer of a nearby ground state that can be separated from the superconducting state by a quantum critical point. Here we report the existence of a second order parameter hidden within the superconducting phase of the underdoped (electron-doped) high-T(c) superconductor Pr2-xCe(x)CuO4-y and the newly synthesized electron-doped material La2-xCe(x)CuO4-y (ref. 8). The existence of a pseudogap when superconductivity is suppressed excludes precursor superconductivity as its origin. Our observation is consistent with the presence of a (quantum) phase transition at T = 0, which may be a key to understanding high-T(c) superconductivity. This supports the picture that the physics of high-T(c) superconductors is determined by the interplay between competing and coexisting ground states.

  10. THERMOELECTRIC GENERATION OF CHARGE IMBALANCE AT A SUPERCONDUCTOR-NORMAL METAL INTERFACE

    Energy Technology Data Exchange (ETDEWEB)

    Van Harlingen, D. J.

    1981-01-01

    The thermoelectric voltage produced across a superconductor-normal metal-superconductor (SNS) sandwich by an applied heat current has been measured in Pb-Cu-PbBi and In-Al-Sn as a function of temperature. The observed divergence of the thermoelectric voltage near T{sub c} is attributed to a charge imbalance region decaying into the superconductor from the NS interface over the quasiparticle diffusion length {lambda}{sub Q*}. The charge imbalance is generated by thermoelectrically driven quasiparticle currents in the superconductor. It contributes a voltage per unit heat power given by V{sub s}/P = {lambda}{sub Q*}S/{kappa}A, where A is the sample cross-sectional area, and S and {kappa} are the thermopower and the thermal conductivity of quasiparticles in the superconductor. For Pb and In, we find the measured thermopower in the superconducting state to be slowly-varying with temperature near T{sub c} and consistent in magnitude with normal state values. This result is in agreement with theoretical predictions of thermoelectric effects in superconductors but contrary to previous experimental results obtained by other methods.

  11. Tantalum Sheet for Superconductor Diffusion Barrier Applications

    Science.gov (United States)

    Mathaudhu, S. N.; Hartwig, K. T.; Barber, R. E.; Pyon, T.

    2006-03-01

    This report presents preliminary results of a project with the aim to fabricate fine-grained tantalum sheet having a uniform microstructure that co-deforms well with pure copper for superconductor diffusion barrier applications. Multi-pass equal channel angular extrusion (ECAE) was used to refine the microstructure of 25 mm square cross-section bars of Ta; rolling was used to convert the bars to 0.38 mm thick sheet. Cu-Ta co-deformation characteristics were evaluated by assembling and drawing experimental Cu-Ta composite wires, containing the ECAE processed sheets, to 0.83 mm diameter and metallographically examining the thinned 2-4 micron Ta layer. The ECAE processed Ta sheet co-deformed well with Cu, and was found to have a smaller recrystallized grain size, a narrower grain size distribution and a slightly higher hardness compared to commercial diffusion barrier grade Ta sheet. The favorable results encourage further work.

  12. Edge instabilities of topological superconductors

    Science.gov (United States)

    Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.

    2016-05-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.

  13. Is a color superconductor topological?

    CERN Document Server

    Nishida, Yusuke

    2010-01-01

    A fully gapped state of matter, whether insulator or superconductor, can be asked if it is topologically trivial or nontrivial. Here we investigate topological properties of superconducting Dirac fermions in 3D having a color superconductor as an application. In the chiral limit, when the pairing gap is parity even, the right-handed and left-handed sectors of the free space Hamiltonian have nontrivial topological charges with opposite signs. Accordingly, a vortex line in the superconductor supports localized gapless right-handed and left-handed fermions with the dispersion relations E=+/-vp_z (v is a parameter dependent velocity) and thus propagating in opposite directions along the vortex line. However, the presence of the fermion mass immediately opens up a mass gap for such localized fermions and the dispersion relations become E=+/-v(m^2+p_z^2)^(1/2). When the pairing gap is parity odd, the situation is qualitatively different. The right-handed and left-handed sectors of the free space Hamiltonian in the ...

  14. Modified entropic gravitation in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Clovis Jacinto de, E-mail: clovis.de.matos@esa.int [European Space Agency, 8-10 rue Mario Nikis, 75015 Paris (France)

    2012-01-15

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde's derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor's quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.

  15. Fault current limiters using superconductors

    Science.gov (United States)

    Norris, W. T.; Power, A.

    Fault current limiters on power systems are to reduce damage by heating and electromechanical forces, to alleviate duty on switchgear used to clear the fault, and to mitigate disturbance to unfaulted parts of the system. A basic scheme involves a super-resistor which is a superconductor being driven to high resistance when fault current flows either when current is high during a cycle of a.c. or, if the temperature of the superconductive material rises, for the full cycle. Current may be commuted from superconductor to an impedance in parallel, thus reducing the energy dispersed at low temperature and saving refrigeration. In a super-shorted transformer the ambient temperature primary carries the power system current; the superconductive secondary goes to a resistive condition when excessive currents flow in the primary. A super-transformer has the advantage of not needing current leads from high temperature to low temperature; it behaves as a parallel super-resistor and inductor. The supertransductor with a superconductive d.c. bias winding is large and has small effect on the rate of fall of current at current zero; it does little to alleviate duty on switchgear but does reduce heating and electromechanical forces. It is fully active after a fault has been cleared. Other schemes depend on rapid recooling of the superconductor to achieve this.

  16. Analytical Studies on Holographic Insulator/Superconductor Phase Transitions

    CERN Document Server

    Cai, Rong-Gen; Zhang, Hai-Qing

    2011-01-01

    We investigate the analytical properties of the s-wave and p-wave holographic insulator/superconductor phase transitions at zero temperature. In the probe limit, we analytically calculate the critical chemical potentials at which the insulator/superconductor phase transition occurs. Those resulting analytical values perfectly match the previous numerical values. We also study the relations between the condensation values and the chemical potentials near the critical point. We find that the critical exponent for condensation operator is 1/2 for both models. The linear relations between the charge density and the chemical potential near the critical point are also deduced in this paper, which are qualitatively consistent with the previous numerical results.

  17. A superconductor material model for hysteresis losses computation

    Energy Technology Data Exchange (ETDEWEB)

    Satiramatekul, Thitipong [Faculty of Engineering at Kamphaengsaen, Kasetsart University, Nakhon Pathom 73140 (Thailand); Bouillault, Frederic [Electrical Engineering Laboratory of Paris, Plateau de Moulon, Gif-sur-Yvette Cedex 91192 (France)

    2007-12-15

    The aim of this work was to calculate the hysteresis losses in the superconductor materials. For that, we used one macroscopic model which obtained by altering Bean's model. We propose the finite element method for the numerical modeling. Our problem consists of an infinitely long superconducting line plunged in a uniform field varying periodically in time. In this paper, we present the influence of the shape and the amplitude of the applied magnetic field to the instantaneous losses. We also present two various methods for calculating the average losses. Moreover, we could in particular obtain the quantities such as the current density or the magnetization in order to know the phenomenon of superconductivity in superconductor materials. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Superconductors Enable Lower Cost MRI Systems

    Science.gov (United States)

    2013-01-01

    The future looks bright, light, and green, especially where aircraft are concerned. The division of NASA s Fundamental Aeronautics Program called the Subsonic Fixed Wing Project is aiming to reach new heights by 2025-2035, improving the efficiency and environmental impact of air travel by developing new capabilities for cleaner, quieter, and more fuel efficient aircraft. One of the many ways NASA plans to reach its aviation goals is by combining new aircraft configurations with an advanced turboelectric distributed propulsion (TeDP) system. Jeff Trudell, an engineer at Glenn Research Center, says, "The TeDP system consists of gas turbines generating electricity to power a large number of distributed motor-driven fans embedded into the airframe." The combined effect increases the effective bypass ratio and reduces drag to meet future goals. "While room temperature components may help reduce emissions and noise in a TeDP system, cryogenic superconducting electric motors and generators are essential to reduce fuel burn," says Trudell. Superconductors provide significantly higher current densities and smaller and lighter designs than room temperature equivalents. Superconductors are also able to conduct direct current without resistance (loss of energy) below a critical temperature and applied field. Unfortunately, alternating current (AC) losses represent the major part of the heat load and depend on the frequency of the current and applied field. A refrigeration system is necessary to remove the losses and its weight increases with decreasing temperature. In 2001, a material called magnesium diboride (MgB2) was discovered to be superconducting. The challenge, however, has been learning to manufacture MgB2 inexpensively and in long lengths to wind into large coils while meeting the application requirements.

  19. Consistent surgeon evaluations of three-dimensional rendering of PET/CT scans of the abdomen of a patient with a ductal pancreatic mass.

    Directory of Open Access Journals (Sweden)

    Matthew E Wampole

    Full Text Available Two-dimensional (2D positron emission tomography (PET and computed tomography (CT are used for diagnosis and evaluation of cancer patients, requiring surgeons to look through multiple planar images to comprehend the tumor and surrounding tissues. We hypothesized that experienced surgeons would consistently evaluate three-dimensional (3D presentation of CT images overlaid with PET images when preparing for a procedure. We recruited six Jefferson surgeons to evaluate the accuracy, usefulness, and applicability of 3D renderings of the organs surrounding a malignant pancreas prior to surgery. PET/CT and contrast-enhanced CT abdominal scans of a patient with a ductal pancreatic mass were segmented into 3D surface renderings, followed by co-registration. Version A used only the PET/CT image, while version B used the contrast-enhanced CT scans co-registered with the PET images. The six surgeons answered 15 questions covering a the ease of use and accuracy of models, b how these models, with/without PET, changed their understanding of the tumor, and c what are the best applications of the 3D visualization, on a scale of 1 to 5. The six evaluations revealed a statistically significant improvement from version A (score 3.6±0.5 to version B (score 4.4±0.4. A paired-samples t-test yielded t(14 = -8.964, p<0.001. Across the surgeon cohort, contrast-enhanced CT fused with PET provided a more lifelike presentation than standard CT, increasing the usefulness of the presentation. The experienced surgeons consistently reported positive reactions to 3D surface renderings of fused PET and contrast-enhanced CT scans of a pancreatic cancer and surrounding organs. Thus, the 3D presentation could be a useful preparative tool for surgeons prior to making the first incision. This result supports proceeding to a larger surgeon cohort, viewing prospective 3D images from multiple types of cancer.

  20. Overview of the Special Issue: A Multi-Model Framework to Achieve Consistent Evaluation of Climate Change Impacts in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Waldhoff, Stephanie T.; Martinich, Jeremy; Sarofim, Marcus; DeAngelo, B. J.; McFarland, Jim; Jantarasami, Lesley; Shouse, Kate C.; Crimmins, Allison; Ohrel, Sara; Li, Jia

    2015-07-01

    The Climate Change Impacts and Risk Analysis (CIRA) modeling exercise is a unique contribution to the scientific literature on climate change impacts, economic damages, and risk analysis that brings together multiple, national-scale models of impacts and damages in an integrated and consistent fashion to estimate climate change impacts, damages, and the benefits of greenhouse gas (GHG) mitigation actions in the United States. The CIRA project uses three consistent socioeconomic, emissions, and climate scenarios across all models to estimate the benefits of GHG mitigation policies: a Business As Usual (BAU) and two policy scenarios with radiative forcing (RF) stabilization targets of 4.5 W/m2 and 3.7 W/m2 in 2100. CIRA was also designed to specifically examine the sensitivity of results to uncertainties around climate sensitivity and differences in model structure. The goals of CIRA project are to 1) build a multi-model framework to produce estimates of multiple risks and impacts in the U.S., 2) determine to what degree risks and damages across sectors may be lowered from a BAU to policy scenarios, 3) evaluate key sources of uncertainty along the causal chain, and 4) provide information for multiple audiences and clearly communicate the risks and damages of climate change and the potential benefits of mitigation. This paper describes the motivations, goals, and design of the CIRA modeling exercise and introduces the subsequent papers in this special issue.

  1. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  2. Electromagnetic Dark Energy and Gravitoelectrodynamics of Superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2007-01-01

    It is shown that Beck's electromagnetic model of dark energy in superconductors can account for the gravitomagnetic London moment, which has been conjectured by the author to explain the Cooper pair's mass excess reported by Cabrera and Tate. A new Einstein-Planck regime for gravitation in condensed matter is proposed as a natural scale to host the gravitoelectrodynamic properties of superconductors.

  3. Gravitational force between two electrons in superconductors

    CERN Document Server

    de Matos, Clovis Jacinto

    2007-01-01

    The attractive gravitational force between two electrons in superconductors is deduced from the Eddington-Dirac large number relation, together with Beck and Mackey electromagnetic model of vacuum energy in superconductors. This force is estimated to be weaker than the gravitational attraction between two electrons in the vacuum.

  4. High temperature superconductors: A technological revolution

    Science.gov (United States)

    1990-01-01

    The objectives are to demonstrate the Meissner effect through magnetic levitation, to demonstrate one application of the Meissner effect, the low friction magnetic rotation bearing, and to demonstrate magnetic flux penetration and the Type II nature of ceramic superconductors via the stacking of the superconductor disks. Experimental equipment and procedures are described.

  5. Self-consistent parametrization of DFT + U framework using linear response approach: Application to evaluation of redox potentials of battery cathodes

    Science.gov (United States)

    Shishkin, Maxim; Sato, Hirofumi

    2016-02-01

    The accuracy of DFT +U calculations, applied to the study of electronic structure and energetics of strongly correlated materials, heavily depends on U parameters, chosen for adequate treatment of d and f states. Computational evaluation of U parameters, which does not require fitting to experimental measurements or results of computationally expensive schemes, is highly desirable for the study of novel materials and even more so for materials not yet synthesized to date. Within this work, we show that the linear response method could provide U parameters which can yield redox potentials of battery cathode materials in much better agreement with experiment than conventional density functional theory (DFT). In our approach, we evaluate U values self-consistently, ensuring agreement between U calculated using linear response with the value used for DFT +U calculations. We find that such self-consistency is necessary for determination of adequate values of U . We also studied the impact of using various PAW (projector augmented wave) potentials for transition-metal ions, that differ by the number of electrons treated as valence. We find that redox potentials are reasonably well reproduced for all cases, although a slightly higher degree of accuracy corresponds to PAW potentials with semicore electrons treated as valence. Importantly, we find that converged values of U are substantially different for various PAW potentials of transition-metal ions of the same material. Overall, we find that self-consistent DFT +U /linear response calculations provide quite accurate values of redox potentials for materials with purely ionic bonding (e.g., LiFePO4, LiCoPO4, LiCoO2, LiMnPO4, NaFePO4), whereas for materials with covalent p d hybridization (e.g., LiNiO2) or conducting materials (e.g., LiTiS2) the agreement with experimental redox voltage is lower. This emphasizes the need for application of more advanced techniques (e.g., DFT +U +V method) for accurate study of partially

  6. Development of manufacturing capability for the fabrication of the Nb/sub 3/Sn superconductor for the High Field Test Facility. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, C R

    1981-01-01

    Construction of High Field Test Facility (HFTF) at Lawrence Livermore Laboratory (LLNL) requires an extended surface Nb/sub 3/Sn superconductor cable of carrying currents in excess of 7500 amperes in a 12 Tesla magnetic field. This conductor consists of a 5.4 mm x 11.0 mm superconducting core onto whose broad surfaces are soldered embossed oxygen free copper strips. Two different core designs have been developed and the feasibility of each design evaluated. Equipment necessary to produce the conductor were developed and techniques of production were explored.

  7. Superconductor-insulator transition in long MoGe nanowires.

    Science.gov (United States)

    Kim, Hyunjeong; Jamali, Shirin; Rogachev, A

    2012-07-13

    The properties of one-dimensional superconducting wires depend on physical processes with different characteristic lengths. To identify the process dominant in the critical regime we have studied the transport properties of very narrow (9-20 nm) MoGe wires fabricated by advanced electron-beam lithography in a wide range of lengths, 1-25  μm. We observed that the wires undergo a superconductor-insulator transition (SIT) that is controlled by cross sectional area of a wire and possibly also by the width-to-thickness ratio. The mean-field critical temperature decreases exponentially with the inverse of the wire cross section. We observed that a qualitatively similar superconductor-insulator transition can be induced by an external magnetic field. Our results are not consistent with any currently known theory of the SIT. Some long superconducting MoGe nanowires can be identified as localized superconductors; namely, in these wires the one-electron localization length is much smaller than the length of a wire.

  8. Spin excitations in hole-overdoped iron-based superconductors.

    Science.gov (United States)

    Horigane, K; Kihou, K; Fujita, K; Kajimoto, R; Ikeuchi, K; Ji, S; Akimitsu, J; Lee, C H

    2016-09-12

    Understanding the overall features of magnetic excitation is essential for clarifying the mechanism of Cooper pair formation in iron-based superconductors. In particular, clarifying the relationship between magnetism and superconductivity is a central challenge because magnetism may play a key role in their exotic superconductivity. BaFe2As2 is one of ideal systems for such investigation because its superconductivity can be induced in several ways, allowing a comparative examination. Here we report a study on the spin fluctuations of the hole-overdoped iron-based superconductors Ba1-xKxFe2As2 (x = 0.5 and 1.0; Tc = 36 K and 3.4 K, respectively) over the entire Brillouin zone using inelastic neutron scattering. We find that their spin spectra consist of spin wave and chimney-like dispersions. The chimney-like dispersion can be attributed to the itinerant character of magnetism. The band width of the spin wave-like dispersion is almost constant from the non-doped to optimum-doped region, which is followed by a large reduction in the overdoped region. This suggests that the superconductivity is suppressed by the reduction of magnetic exchange couplings, indicating a strong relationship between magnetism and superconductivity in iron-based superconductors.

  9. A universal explanation of tunneling conductance in exotic superconductors

    Science.gov (United States)

    Hong, Jongbae; Abergel, D. S. L.

    2016-01-01

    A longstanding mystery in understanding cuprate superconductors is the inconsistency between the experimental data measured by scanning tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES). In particular, the gap between prominent side peaks observed in STS is much bigger than the superconducting gap observed by ARPES measurements. Here, we reconcile the two experimental techniques by generalising a theory which was previously applied to zero-dimensional mesoscopic Kondo systems to strongly correlated two-dimensional (2D) exotic superconductors. We show that the side peaks observed in tunneling conductance measurements in all these materials have a universal origin: They are formed by coherence-mediated tunneling under bias and do not directly reflect the underlying density of states (DOS) of the sample. We obtain theoretical predictions of the tunneling conductance and the density of states of the sample simultaneously and show that for cuprate and pnictide superconductors, the extracted sample DOS is consistent with the superconducting gap measured by ARPES. PMID:27511315

  10. Spin excitations in hole-overdoped iron-based superconductors

    Science.gov (United States)

    Horigane, K.; Kihou, K.; Fujita, K.; Kajimoto, R.; Ikeuchi, K.; Ji, S.; Akimitsu, J.; Lee, C. H.

    2016-01-01

    Understanding the overall features of magnetic excitation is essential for clarifying the mechanism of Cooper pair formation in iron-based superconductors. In particular, clarifying the relationship between magnetism and superconductivity is a central challenge because magnetism may play a key role in their exotic superconductivity. BaFe2As2 is one of ideal systems for such investigation because its superconductivity can be induced in several ways, allowing a comparative examination. Here we report a study on the spin fluctuations of the hole-overdoped iron-based superconductors Ba1-xKxFe2As2 (x = 0.5 and 1.0; Tc = 36 K and 3.4 K, respectively) over the entire Brillouin zone using inelastic neutron scattering. We find that their spin spectra consist of spin wave and chimney-like dispersions. The chimney-like dispersion can be attributed to the itinerant character of magnetism. The band width of the spin wave-like dispersion is almost constant from the non-doped to optimum-doped region, which is followed by a large reduction in the overdoped region. This suggests that the superconductivity is suppressed by the reduction of magnetic exchange couplings, indicating a strong relationship between magnetism and superconductivity in iron-based superconductors. PMID:27615691

  11. Kramer Pesch Effect in Chiral p-Wave Superconductors

    Science.gov (United States)

    Kato, Yusuke; Hayashi, Nobuhiko

    2001-11-01

    The pair-potential and current density around a single vortex of the two-dimensional chiral p-wave superconductor with \\mbi{d}=\\hat{\\mbi{z}}(px ± i py) are determined self-consistently within the quasiclassical theory of superconductivity. Shrinking of the vortex core at low temperatures are considered numerically and analytically. Temperature-dependences of the spatial variation of pair-potential and circular current around the core and density of states at zero energy are the same as those in the isotropic s-wave case. When the senses of vorticity and chirality are opposite, however, we find two novel results; 1) the scattering rate due to non-magnetic impurities is considerably suppressed, compared to that in the s-wave vortex. From this observation, we expect that the chiral p-wave superconductors provide the best chance to observe the shrinking of the vortex (“Kramer Pesch effect”) experimentally. 2) The pair-potential of chiral p-wave superconductors inside vortex core recovers a combined time-reversal-Gauge symmetry, although this symmetry is broken in the region far from the vortex core. This local recovery of symmetry leads to the suppression of the impurity effect inside vortex core.

  12. Charge Neutral Fermionic States and Current Oscillation in a Graphene-Superconductor Hybrid Structure

    Science.gov (United States)

    Duan, Wenye; Wang, Wei; Zhang, Chao; Jin, Kuijuan; Ma, Zhongshui

    2016-10-01

    The proximity properties of edge currents in the vicinity of the interface between the graphene and superconductor in the presence of magnetic field are investigated. It is shown that the edge states introduced by Andreev reflection at the graphene-superconductor (G/S) interface give rise to the charge neutral states in all Landau levels. We note that in a topological insulator-superconductor (TI/S) hybrid structure, only N = 0 Landau level can support this type of charge neutral states. The different interface states of a G/S hybrid and a TI/S hybrid is due to that graphene consists of two distinct sublattices. The armchair edge consists of two inequivalent atoms. This gives rise to unique electronic properties of edge states when connected to a superconductor. A direct consequence of zero charge states in all Landau levels is that the current density approaches zero at interface. The proximity effect leads to quantum magnetic oscillation of the current density in the superconductor region. The interface current density can also be tuned with a finite interface potential. For sharp δ-type interface potential, the derivative of the wavefunction is discontinuous. As a result, we found that there is current density discontinuity at the interface. The step of the current discontinuity is proportional to the strength of the interface potential.

  13. Noncentrosymmetric superconductors in one dimension

    Science.gov (United States)

    Samokhin, K. V.

    2017-02-01

    We study the fermionic boundary modes (Andreev bound states) in a time-reversal invariant one-dimensional superconductor. In the presence of a substrate, spatial inversion symmetry is broken and the electronic properties are strongly affected by an antisymmetric spin-orbit coupling. We assume an arbitrary even number of nondegenerate bands crossing the Fermi level. We show that there is only one possible pairing symmetry in one dimension, an analog of s -wave pairing. The zero-energy Andreev bound states are present if the sign of the gap function in an odd number of the bands is different from all other bands.

  14. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  15. Microgravity Processing of Oxide Superconductors

    Science.gov (United States)

    Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus; McCallum, William; Peters, Palmer (Technical Monitor)

    2000-01-01

    The primary goal is to understand the microstructures which develop under the nonequilibrium solidification conditions achieved by melt processing in copper oxide superconductor systems. More specifically, to define the liquidus at the Y- 1:2:3 composition, the Nd-1:2:3 composition, and several intermediate partial substitution points between pure Y-1:2:3 and Nd-1:2:3. A secondary goal has been to understand resultant solidification morphologies and pathways under a variety of experimental conditions and to use this knowledge to better characterize solidification phenomena in these systems.

  16. Holographic superconductors with hyperscaling violation

    CERN Document Server

    Fan, ZhongYing

    2013-01-01

    We investigate holographic superconductors in asympototically geometries with hyperscaling violation. The mass of the scalar field decouples from the UV dimension of the dual scalar operator and can be chosen as negative as we want, without disturbing the Breitenlohner-Freedman bound. We first numerically find that the scalar condenses below a critical temperature and a gap opens in the real part of the conductivity, indicating the onset of superconductivity. We further analytically explore the effects of the hyperscaling violation on the superconducting transition temperature. We find that the critical temperature increases with the increasing of hyperscaling violation.

  17. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  18. Superconductor lunar telescopes --Abstract only

    Science.gov (United States)

    Chen, P. C.; Pitts, R.; Shore, S.; Oliversen, R.; Stolarik, J.; Segal, K.; Hojaji, H.

    1994-01-01

    We propose a new type of telescope designed specifically for the lunar environment of high vacuum and low temperature. Large area UV-Visible-IR telescope arrays can be built with ultra-light-weight replica optics. High T(sub c) superconductors provide support, steering, and positioning. Advantages of this approach are light-weight payload compatible with existing launch vehicles, configurable large area optical arrays, no excavation or heavy construction, and frictionless electronically controlled mechanisms. We have built a prototype and will be demonstarting some of its working characteristics.

  19. Generalized superconductors and holographic optics

    Energy Technology Data Exchange (ETDEWEB)

    Mahapatra, Subhash; Phukon, Prabwal; Sarkar, Tapobrata [Department of Physics, Indian Institute of Technology,Kanpur 208016 (India)

    2014-01-24

    We study generalized holographic s-wave superconductors in four dimensional R-charged black hole and Lifshitz black hole backgrounds, in the probe limit. We first establish the superconducting nature of the boundary theories, and then study their optical properties. Numerical analysis indicates that a negative Depine-Lakhtakia index may appear at low frequencies in the theory dual to the R-charged black hole, for certain temperature ranges, for specific values of the charge parameter. The corresponding cut-off values for these are numerically established in several cases. Such effects are seen to be absent in the Lifshitz background where this index is always positive.

  20. Nanoengineering of Flux Pinning Sites in High-Tc Superconductors

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Volume pinning forces were determined for a variety of bulk high-Tcsuperconductors of the 123-type from magnetization measurements. By means of scaling of the pinning forces, the acting pinning mechanisms in various temperature ranges were identified. The Nd-based superconductors and some YBCO crystalsexhibited a dominating pinning of the δTc-type (i.e., small, superconducting pinning sites). In contrast to this, the addition of insulating 211 particles provided pinning of the δl-type; providing effective pinning in the entire temperature range acting as a "background" pinning mechanism for the peak effect. Due to the small coherence lengths of the high-Tc compounds, effective pinning sites are defects or particles of nanometer size relative to ξ3. Integral magnetic measurements of the magnetization as a function of temperature in large applied magnetic fields (up to 7 T) revealed that practically all high-Tc compounds were spatially inhomogeneous, which could be caused byoxygen deficiency (YBCO), solid solutions of Nd/Ba (NdBCO and other light rare earth compounds), intergrowths (Bi-based superconductors), and doping by pair-breaking dopants like Zn, Pr. This implies that the superconducting sample consists of stronger and weaker superconducting areas, coupled together. In large appliedfields, this coupling gets broken and the magnetization versus temperature curves revealed more than one superconducting transition. In contrast, irradiation experiments by neutrons, protons, and heavy-ions enabled the artificial introduction of very effective pinning sites into the high-Tc superconductors, thus creating a large variety of different observations using magnetic data. From all these observations, we construct a pinning diagram for bulk high-Tc superconductors explaining many features observed in high-Tc samples.

  1. Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field

    Science.gov (United States)

    Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi

    High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their magnets cooled by LH2. As the first step of the study, an experimental setup which can be used for investigating heat transfer characteristics of LH2 in a pool and also in forced flow (circulation loop with a pump), and also for evaluation of electro-magnetic properties of LH2 cooled superconductors under external magnetic field (up to 7 T). In this paper, we will show a short sketch of the experimental set-up, practical experiences in safety operation of liquid hydrogen cooling system and example test results of critical current evaluation of HTC superconductors cooled by LH2.

  2. 水飞蓟素胶囊溶出度一致性评价研究%Evaluation of the dissolution consistency of silymarin capsules

    Institute of Scientific and Technical Information of China (English)

    花逾冬; 刘延龙; 刘娟

    2013-01-01

    考察试制品水飞蓟素胶囊在四种不同溶出介质中的溶出状况,对比参比药物作一致性评价研究,同时与原料药作比较,分别考察不同制剂在不同溶出介质中六种组份的溶出度改善与变化情况。结果显示,试制品与参比药物对比,各试验条件下,各组份f2因子均大于50,显示二者溶出度具有相似性。%As compared with the reference drug, dissolution behavior of trial product silymarin capsules was observed in four different dissolution media for the study of consistency evaluation. Furthermore,control bulk drugs, the dissolution rate and dissolution improvement of six groups of different preparations were investigated in different media, respectively. The results showed that f2 factors of each component in trial product are greater than 50 compared with the reference drug, indicating their similarities in dissolution behavior.

  3. Capillary electrophoresis fingerprinting coupled with chemometrics to evaluate the quality consistency and predict the antioxidant activity of Sanhuang tablet as part of its quality control.

    Science.gov (United States)

    Wang, Yan; Sun, Guoxiang; Liu, Zhongbo; Liu, Yingchun; Gao, Yaning; Zhang, Jianqing; Ji, Zhengchao; Chen, Xinxin

    2014-12-01

    A capillary electrophoresis fingerprint was constructed for Sanhuang tablet, a Chinese traditional patent medicine, that was commonly used in clinical practice, where the isosceles trapezoid method was first applied for the optimization of background electrolyte solution, and the resolution index was performed to assess the experimental conditions; furthermore, a novel linear quantitative fingerprint method was established for accurate qualitative and quantitative discrimination of the test samples from diverse commercial brands. The fingerprint analysis coupled with quantitative determination of two components was employed to elucidate that the quality consistency of the products was relatively good within one manufactory, but poor among different companies for the 30 batches of samples. In addition, the fingerprint-efficacy relationship between chemical components and antioxidant activity in vitro was investigated using partial least squares analysis, and the calibration and prediction of the antioxidant activity of the selected samples via fingerprint data were presented with the desired results. This work illustrates that the proposed fingerprint analysis based on linear quantitative fingerprint method can be applied for the quality evaluation of traditional Chinese medicine and herbal preparations as part of their quality control, and the constructed mathematical model is particularly suitable for depicting the fingerprint-efficacy relationship.

  4. Status of the R-matrix Code AMUR toward a consistent cross-section evaluation and covariance analysis for the light nuclei

    Science.gov (United States)

    Kunieda, Satoshi

    2017-09-01

    We report the status of the R-matrix code AMUR toward consistent cross-section evaluation and covariance analysis for the light-mass nuclei. The applicable limit of the code is extended by including computational capability for the charged-particle elastic scattering cross-sections and the neutron capture cross-sections as example results are shown in the main texts. A simultaneous analysis is performed on the 17O compound system including the 16O(n,tot) and 13C(α,n)16O reactions together with the 16O(n,n) and 13C(α,α) scattering cross-sections. It is found that a large theoretical background is required for each reaction process to obtain a simultaneous fit with all the experimental cross-sections we analyzed. Also, the hard-sphere radii should be assumed to be different from the channel radii. Although these are technical approaches, we could learn roles and sources of the theoretical background in the standard R-matrix.

  5. UPLC-QTOF-MS with chemical profiling approach for rapidly evaluating chemical consistency between traditional and dispensing granule decoctions of Tao-Hong-Si-Wu decoction

    Directory of Open Access Journals (Sweden)

    Shang Erxin

    2012-11-01

    Full Text Available Abstract Background In the present study, chemical consistency between traditional and dispensing granule decoctions of Tao-Hong-Si-Wu decoction was rapidly evaluated by UPLC-QTOF-MS coupled with the MarkerLynx software. Two different kinds of decoctions, namely traditional decoction: water extract of mixed six constituent herbs of Tao-Hong-Si-Wu decoction, and dispensing granules decoction: mixed water extract of each individual herbs of Tao-Hong-Si-Wu decoction, were prepared. Results Chemical difference was found between traditional and dispensing granule decoctions, and albiflorin, paeoniflorin, gallic acid, amygdalin, and hydroxysafflor yellow A were identified as the significantly changed components during decocting Tao-Hong-Si-Wu decoction. All the peaks of mass spectrum from Tao-Hong-Si-Wu decoction and each herb were extracted and integration by using QuanLynx™. And the optimized data was used for linear regression analysis. The contribution of each herb in Tao-Hong-Si-Wu decoction, and the optimal compatibility proportion of dispensing granule decoction were derived from the linear regression equation. Conclusions The optimal dosage proportionality of Tao-Hong-Si-Wu dispensing granule decoction was obtained as 2.5:0.2:1:0.5:0.6:0.1 (DG : CX : BS : SD : TR : HH, which guided better clinic application of Tao-Hong-Si-Wu decoction as dispensing granule decoctions usage, and it also provided some experimental data to reveal the compatibility rule of the relative TCM formulae.

  6. Losses of Superconductor Journal Bearing

    Science.gov (United States)

    Han, Y. H.; Hull, J. R.; Han, S. C.; Jeong, N. H.; Oh, J. M.; Sung, T. H.

    2004-06-01

    A high-temperature superconductor (HTS) journal bearing was studied for rotational loss. Two HTS bearings support the rotor at top and bottom. The rotor weight is 4 kg and the length is about 300 mm. Both the top and bottom bearings have two permanent magnet (PM) rings with an iron pole piece separating them. Each HTS journal bearing is composed of six pieces of superconductor blocks of size 35×25×10 mm. The HTS blocks are encased in a cryochamber through which liquid nitrogen flows. The inner spool of the cryochamber is made from G-10 to reduce eddy current loss, and the rest of the cryochamber is stainless steel. The magnetic field from the PM rings is < 10 mT on the stainless part. The rotational drag was measured over the same speed range at several chamber pressures. Results indicate that a chamber pressure of 0.4 mtorr is sufficiently low to minimize windage loss, and the 10 mT design criterion for the magnetic field on the stainless part of the cryochamber is too high.

  7. Superconductor bearings, flywheels and transportation

    Science.gov (United States)

    Werfel, F. N.; Floegel-Delor, U.; Rothfeld, R.; Riedel, T.; Goebel, B.; Wippich, D.; Schirrmeister, P.

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS-FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN2. More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  8. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  9. Electronic transport in unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Graf, M.J.

    1998-12-31

    The author investigates the electron transport coefficients in unconventional superconductors at low temperatures, where charge and heat transport are dominated by electron scattering from random lattice defects. He discusses the features of the pairing symmetry, Fermi surface, and excitation spectrum which are reflected in the low temperature heat transport. For temperatures {kappa}{sub B}T {approx_lt} {gamma} {much_lt} {Delta}{sub 0}, where {gamma} is the bandwidth of impurity induced Andreev states, certain eigenvalues become universal, i.e., independent of the impurity concentration and phase shift. Deep in the superconducting phase ({kappa}{sub B}T {approx_lt} {gamma}) the Wiedemann-Franz law, with Sommerfeld`s value of the Lorenz number, is recovered. He compares the results for theoretical models of unconventional superconductivity in high-{Tc} and heavy fermion superconductors with experiment. The findings show that impurities are a sensitive probe of the low-energy excitation spectrum, and that the zero-temperature limit of the transport coefficients provides an important test of the order parameter symmetry.

  10. Method to improve superconductor cable

    Science.gov (United States)

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  11. Position-sensitive superconductor detectors

    Science.gov (United States)

    Kurakado, M.; Taniguchi, K.

    2016-12-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  12. Theoretical study of magnetoelectric effects in noncentrosymmetric and cuprate superconductors

    Science.gov (United States)

    Kashyap, Manoj K.

    A century after the discovery of superconductivity at the lab of Kamerlingh Onnes in 1911, it is noticeable that the phenomenon is quite ubiquitous in nature. In addition to a long list of superconducting alloys and compounds, almost half the elements in the periodic table superconduct. By the late seventies, superconductivity was thought to be well understood. This turned out to be a myth, with the discovery of unconventional superconductors that defied Bardeen-Cooper-Schrieffer (BCS) theory. Cuprates have been the most prominent example among them ever since their discovery in 1986 by Bednorz and Muller. Another example of non-compliance with BCS theory lie among noncentrosymmetric superconductors. In this dissertation, magnetoelectric (ME) effects in these two classes of superconductors have been studied from different perspectives, utilizing Ginzburg-Landau (GL) theory. Even though GL theory was proposed before the BCS theory, it was not given much importance due to its phenomenological nature until Gor'kov proved that it is a limiting form of the microscopic BCS theory. However today, in the absence of any complete microscopic theory to explain superconductivity in unconventional superconductors, Ginzburg-Landau theory is an important tool to move ahead and qualitatively understand the behavior of varied superconducting systems. Noncentrosymmetric superconductors have generated much theoretical interest since 2004 despite been known for long. The absence of inversion symmetry in non- centrosymmetric superconductors allows for extra terms called Lifshitz invariants in the Ginzburg-Landau functional. This leads to magnetoelectric effects that do not exist in centrosymmetric superconductors. One manifestation of this is in the vortex structure in materials with a cubic point group O. In particular, a current is predicted to flow parallel to the applied magnetic field in such a vortex in addition to the usual vortex supercurrents. In this work, we present both

  13. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 k) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  14. Synthesis of highly phase pure BSCCO superconductors

    Science.gov (United States)

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1995-11-21

    An article and method of manufacture (Bi, Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  15. Aeronautical applications of high-temperature superconductors

    Science.gov (United States)

    Turney, George E.; Luidens, Roger W.; Uherka, Kenneth; Hull, John

    1989-01-01

    The successful development of high-temperature superconductors (HTS) could have a major impact on future aeronautical propulsion and aeronautical flight vehicle systems. A preliminary examination of the potential application of HTS for aeronautics indicates that significant benefits may be realized through the development and implementation of these newly discovered materials. Applications of high-temperature superconductors (currently substantiated at 95 K) were envisioned for several classes of aeronautical systems, including subsonic and supersonic transports, hypersonic aircraft, V/STOL aircraft, rotorcraft, and solar, microwave and laser powered aircraft. Introduced and described are the particular applications and potential benefits of high-temperature superconductors as related to aeronautics and/or aeronautical systems.

  16. Tuning non-equilibrium superconductors with lasers

    Energy Technology Data Exchange (ETDEWEB)

    Sentef, Michael A.; Kollath, Corinna [HISKP, University of Bonn, Nussallee 14-16, D-53115 Bonn (Germany); Kemper, Alexander F. [LBL Berkeley (United States); Georges, Antoine [Ecole Polytechnique and College de France, Paris (France)

    2015-07-01

    The study of the real-time dynamics dynamics of solids perturbed by short laser pulses is an intriguing opportunity of ultrafast materials science. Previous theoretical work on pump-probe photoemission spectroscopy revealed spectroscopic signatures of electron-boson coupling, which are reminiscent of features observed in recent pump-probe photoemission experiments on cuprate superconductors. Here we investigate the ordered state of electron-boson mediated superconductors subject to laser driving using Migdal-Eliashberg theory on the Kadanoff-Baym-Keldysh contour. We extract the characteristic time scales on which the non-equilibrium superconductor reacts to the perturbation, and their relation to the coupling boson and the underlying order.

  17. dc-magnetic-field dependence of the surface impedance of a multilayer superconductor system in the mixed state

    Science.gov (United States)

    Tagantsev, A. K.; Traito, K. B.

    1993-10-01

    We study the electrodynamics of a superlattice that consists of two kinds of layers: the layers of a type-II superconductor and the layers of a normal metal in a perpendicular magnetic field. The problem is treated in the framework of London electrodynamics taking into account simultaneously the nonlocality of the intervortex interaction and the Abrikosov vortex elasticity. The dependence of the surface impedance Z on the dc-magnetic-field induction BCB1/2 for large fields, the coefficients A and C being nonequal, with the crossover AB1/2-->CB1/2 at B~=Hc1. The type-(i) dependence characteristic of a uniform superconductor converts into a type-(ii) dependence as one diminishes the thickness of the superconductor layers. The physical origin of this conversion is explained. It is suggested that observed dependence in multilayer superconductor systems Z~B1/2 is due to the effect discussed in the paper.

  18. Performance evaluation of a PET detector consisting of an LYSO array coupled to a 4 x 4 array of large-size GAPD for MR compatible imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Key Jo; Choi, Yong; Kang, Jihoon; Hu, Wei; Jung, Jin Ho; Min, Byung Jun [Department of Electronic Engineering, Sogang University, 1 Shinsu-Dong, Mapo-Gu, Seoul 121-742 (Korea, Republic of); Chung, Yong Hyun [Department of Radiological Science, Yonsei University, College of Health Science, 234 Meaji, Heungup Wonju, Kangwon-Do, 220-710 (Korea, Republic of); Jackson, Carl, E-mail: ychoi@sogang.ac.kr [SensL, Blackrock, Cork (Ireland)

    2011-05-01

    We examined a PET detector consisting of an LYSO array coupled to a 4 x 4 array of large-size Geiger-mode avalanche photodiode (GAPD). The GAPD coupled to 3 mm x 3 mm x 20 mm LYSO pixel crystal has been investigated for possible use as an MR-compatible PET photosensor. Primary characteristics of a PET detector, such as energy resolution and coincidence timing resolution were measured. Gain variation, count uniformity, and count estimation error of 4 x 4 array of LYSO-GAPD were measured to evaluate the performance parameters relevant for PET imaging. The energy resolution and coincidence timing resolution with 511 keV gamma rays were 18.5 {+-} 0.7% and 1.6 ns, respectively. The gain variation, count uniformity for all 16 channels were 1.3:1 and 1.3:1, respectively. The count estimation error between adjacent channels measured with an LYSO connected to a GAPD pixel was negligible (0.24 {+-} 0.04%). Long-term stability results show that there was no significant change in the photopeak position, energy resolution and count rate for 20 days. Cable lengths up to 300 cm, used between the GAPD and preamplifier, did not affect photopeak position and energy resolution. The performance of the LYSO-GAPD detector inside the MRI exhibited no significant change compared to that measured outside the MRI. The MR images acquired with and without the operating LYSO-GAPD detector located on top of the RF coil showed no considerable degradation in image quality. These results demonstrate the feasibility of using the LYSO-GAPD detector as PET photosensors, which could be used for MR compatible PET development.

  19. Development of superconducting magnetic bearing with superconducting coil and bulk superconductor for flywheel energy storage system

    Science.gov (United States)

    Arai, Y.; Seino, H.; Yoshizawa, K.; Nagashima, K.

    2013-11-01

    We have been developing superconducting magnetic bearing for flywheel energy storage system to be applied to the railway system. The bearing consists of a superconducting coil as a stator and bulk superconductors as a rotor. A flywheel disk connected to the bulk superconductors is suspended contactless by superconducting magnetic bearings (SMBs). We have manufactured a small scale device equipped with the SMB. The flywheel was rotated contactless over 2000 rpm which was a frequency between its rigid body mode and elastic mode. The feasibility of this SMB structure was demonstrated.

  20. Superconductivity with two-fold symmetry in topological superconductor Sr x Bi2Se3

    Science.gov (United States)

    Du, Guan; Li, YuFeng; Schneeloch, J.; Zhong, R. D.; Gu, GenDa; Yang, Huan; Lin, Hai; Wen, Hai-Hu

    2017-03-01

    Topological superconductivity is the quantum condensate of paired electrons with an odd parity of the pairing function. By using a Corbino-shape like electrode configuration, we measure the c-axis resistivity of the recently discovered superconductor Sr x Bi2Se3 with the magnetic field rotating within the basal planes, and find clear evidence of two-fold superconductivity. The Laue diffraction measurements on these samples show that the maximum gap direction is either parallel or perpendicular to the main crystallographic axis. This observation is consistent with the theoretical prediction and strongly suggests that Sr x Bi2Se3 is a topological superconductor.

  1. Quantized conductance doubling and hard gap in a two-dimensional semiconductor-superconductor heterostructure

    DEFF Research Database (Denmark)

    Kjærgaard, Morten; Nichele, F; Suominen, Henri Juhani

    2016-01-01

    topological matter is by coupling a 2D electron gas with strong spin-orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al......, consistent with theory. The hard-gap semiconductor-superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems....

  2. Force balance on two-dimensional superconductors with a single moving vortex

    Science.gov (United States)

    Chung, Chun Kit; Arahata, Emiko; Kato, Yusuke

    2014-03-01

    We study forces on two-dimensional superconductors with a single moving vortex based on a recent fully self-consistent calculation of DC conductivity in an s-wave superconductor (E. Arahata and Y. Kato, arXiv:1310.0566). By considering momentum balance of the whole liquid, we attempt to identify various contributions to the total transverse force on the vortex. This provides an estimation of the effective Magnus force based on the quasiclassical theory generalized by Kita [T. Kita, Phys. Rev. B, 64, 054503 (2001)], which allows for the Hall effect in vortex states.

  3. Quantum resistor-capacitor circuit with Majorana fermion modes in a chiral topological superconductor.

    Science.gov (United States)

    Lee, Minchul; Choi, Mahn-Soo

    2014-08-15

    We investigate the mesoscopic resistor-capacitor circuit consisting of a quantum dot coupled to spatially separated Majorana fermion modes in a chiral topological superconductor. We find substantially enhanced relaxation resistance due to the nature of Majorana fermions, which are their own antiparticles and are composed of particle and hole excitations in the same abundance. Further, if only a single Majorana mode is involved, the zero-frequency relaxation resistance is completely suppressed due to a destructive interference. As a result, the Majorana mode opens an exotic dissipative channel on a superconductor which is typically regarded as dissipationless due to its finite superconducting gap.

  4. Theory of specific heat of vortex liquid of high T c superconductors

    Science.gov (United States)

    Bai, Chen; Chi, Cheng; Wang, Jiangfan

    2016-10-01

    Superconducting thermal fluctuation (STF) plays an important role in both thermodynamic and transport properties in the vortex liquid phase of high T c superconductors. It was widely observed in the vicinity of the critical transition temperature. In the framework of Ginzburg-Landau-Lawrence-Doniach theory in magnetic field, a self-consistent analysis of STF including all Landau levels is given. Besides that, we calculate the contribution of STF to specific heat in vortex liquid phase for high T c cuprate superconductors, and the fitting results are in good agreement with experimental data. Project supported by the National Natural Science Foundation of China (Grant No. 11274018).

  5. Dephasing in semiconductor-superconductor structures by coupling to a voltage probe

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Jauho, Antti-Pekka; Flensberg, Karsten

    2000-01-01

    We study dephasing in semiconductor-superconductor structures caused by coupling to a voltage probe. We consider structures where the semiconductor consists of two scattering regions between which partial dephasing is possible. As a particular example we consider a situation with a double barrier...... of the conductance when a finite coupling to the voltage probe is taken into account....

  6. Bistability in voltage-biased normal-metal/insulator/superconductor/insulator/normal-metal structures

    NARCIS (Netherlands)

    Snyman, I.; Nazarov, Y.V.

    2009-01-01

    As a generic example of a voltage-driven superconducting structure, we study a short superconductor connected to normal leads by means of low transparency tunnel junctions with a voltage bias V between the leads. The superconducting order parameter Δ is to be determined self-consistently. We study t

  7. Combining process indicators to evaluate quality of care for surgical patients with colorectal cancer: are scores consistent with short-term outcome?

    NARCIS (Netherlands)

    Kolfschoten, N.E.; Gooiker, G.A.; Bastiaannet, E.; Leersum, N.J. van; Velde, C.J. van de; Eddes, E.H.; Marang-van de Mheen, P.J.; Kievit, J.; Harst, E. van der; Wiggers, T.; Wouters, M.W.; Tollenaar, R.A.E.M.; Krieken, J.H. van

    2012-01-01

    OBJECTIVE: To determine if composite measures based on process indicators are consistent with short-term outcome indicators in surgical colorectal cancer care. DESIGN: Longitudinal analysis of consistency between composite measures based on process indicators and outcome indicators for 85 Dutch hosp

  8. Combining process indicators to evaluate quality of care for surgical patients with colorectal cancer : are scores consistent with short-term outcome?

    NARCIS (Netherlands)

    Kolfschoten, N. E.; Gooiker, G. A.; Bastiaannet, E.; van Leersum, N. J.; van de Velde, C. J. H.; Eddes, E. H.; Marang-van de Mheen, P. J.; Kievit, J.; van der Harst, E.; Wiggers, T.; Wouters, M. W. J. M.; Tollenaar, R. A. E. M.

    2012-01-01

    Objective: To determine if composite measures based on process indicators are consistent with short-term outcome indicators in surgical colorectal cancer care. Design: Longitudinal analysis of consistency between composite measures based on process indicators and outcome indicators for 85 Dutch hosp

  9. On analytical study of holographic superconductors with Born–Infeld electrodynamics

    Directory of Open Access Journals (Sweden)

    Chuyu Lai

    2015-10-01

    Full Text Available Based on the Sturm–Liouville eigenvalue problem, Banerjee et al. proposed a perturbative approach to analytically investigate the properties of the (2+1-dimensional superconductor with Born–Infeld electrodynamics (Banerjee et al., 2013 [29]. By introducing an iterative procedure, we will further improve the analytical results and the consistency with the numerical findings, and can easily extend the analytical study to the higher-dimensional superconductor with Born–Infeld electrodynamics. We observe that the higher Born–Infeld corrections make it harder for the condensation to form but do not affect the critical phenomena of the system. Our analytical results can be used to back up the numerical computations for the holographic superconductors with various condensates in Born–Infeld electrodynamics.

  10. On analytical study of holographic superconductors with Born-Infeld electrodynamics

    CERN Document Server

    Lai, Chuyu; Jing, Jiliang; Wang, Yongjiu

    2015-01-01

    Based on the Sturm-Liouville eigenvalue problem, Banerjee \\emph{et al.} proposed a perturbative approach to analytically investigate the properties of the ($2+1$)-dimensional superconductor with Born-Infeld electrodynamics [Phys. Rev. D {\\bf 87}, 104001 (2013)]. By introducing an iterative procedure, we will further improve the analytical results and the consistency with the numerical findings, and can easily extend the analytical study to the higher-dimensional superconductor with Born-Infeld electrodynamics. We observe that the higher Born-Infeld corrections make it harder for the condensation to form but do not affect the critical phenomena of the system. Our analytical results can be used to back up the numerical computations for the holographic superconductors with various condensates in Born-Infeld electrodynamics.

  11. Electronic structure Fermi liquid theory of high Tc superconductors: Comparison of predictions with experiments

    Science.gov (United States)

    Yu, Jaejun; Freeman, A. J.

    1991-01-01

    Predictions of local density functional (LDF) calculations of the electronic structure and transport properties of high T(sub c) superconductors are presented. As evidenced by the excellent agreement with both photoemission and positron annihilation experiments, a Fermi liquid nature of the 'normal' state of the high T(sub c) superconductors become clear for the metallic phase of these oxides. In addition, LDF predictions on the normal state transport properties are qualitatively in agreement with experiments on single crystals. It is emphasized that the signs of the Hall coefficients for the high T(sub c) superconductors are not consistent with the types of dopants (e.g., electron-doped or hole-doped) but are determined by the topology of the Fermi surfaces obtained from the LDF calculations.

  12. Application Fields of High-Temperature Superconductors

    OpenAIRE

    Hott, Roland

    2003-01-01

    Potential application fields for cuprate high-temperature superconductors (HTS) and the status of respective projects are reviewed. The availability of a reliable and inexpensive cooling technique will be essential for a future broad acceptance of HTS applications.

  13. Progress of metallic superconductors in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji, E-mail: tacsuper@keyaki.cc.u-tokai.ac.jp [Faculty of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2013-01-15

    Highlights: ► Japanese contributions on the R and D of different metallic superconductors are summarized. ► Nb–Ti wires have been developed for MRI, accelerator, MAGLEV train and other applications. ► Multifilamentary Nb{sub 3}Sn wires with excellent performance have been developed for high-field use. ► Long-length Nb{sub 3}Al wires with promising strain tolerance have been fabricated by a new process. -- Abstract: This article overviews the development of metallic superconductors in Japan covering different kinds of alloys and intermetallic compounds. Metallic superconductors have opened many new application areas in science and technology. Japan has been one of the leading countries in the world, both in the research and development and in large-scale manufacturing of metallic superconductors.

  14. De-Sitter spacetime as a superconductor

    CERN Document Server

    Momeni, D

    2016-01-01

    A superconductor is a material with infinite electric conductivity. Superconductivity and magnetism are happening as two opposite phenomena: superconductors need weak external magnetic fields (the Meissner effect) while generally with a strong external magnetic field we loose superconductivity. In \\cite{ref:I}-\\cite{Chernodub:2011tv} , the author showed that a very strong magnetic field can turn an empty space into a superconductor. We extended this idea to the constant curvature spaces, de Sitter (dS) spacetime and by a careful analysis of the modes for a spinor with arbitrary spin, we show that in a very similar condensation scenario as was proposed for flat space, we could transform dS to a superconductor.

  15. Thermoelectric effect in a nonequilibrium superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Falco, C. M.

    1977-01-01

    Initial results are reported showing experimental evidence for a pair-quasiparticle electrochemical potential difference in a superconductor in a temperature gradient. This potential diverges at low temperature and, within the resolution of the data, seems to approach a constant value at T/sub c/. The data can be used to extract a value for the thermal transport current of normal excitations in the superconductor.

  16. Majorana Fermions and Topology in Superconductors

    OpenAIRE

    Sato, Masatoshi; Fujimoto, Satoshi

    2016-01-01

    Topological superconductors are novel classes of quantum condensed phases, characterized by topologically nontrivial structures of Cooper pairing states. On the surfaces of samples and in vortex cores of topological superconductors, Majorana fermions, which are particles identified with their own anti-particles, appear as Bogoliubov quasiparticles. The existence and stability of Majorana fermions are ensured by bulk topological invariants constrained by the symmetries of the systems. Majorana...

  17. Holographic entanglement entropy in imbalanced superconductors

    CERN Document Server

    Dutta, Arghya

    2014-01-01

    We study the behavior of holographic entanglement entropy (HEE) for imbalanced holographic superconductor. It is found that HEE for this imbalanced system decreases with the increase of imbalance in chemical potentials. Also for an arbitrary mismatch between two chemical potentials, below the critical temperature, superconducting phase has a lower HEE in comparison to the AdS-Reissner-Nordstrom black hole phase. This suggests entanglement entropy to be a useful physical probe for understanding the imbalanced holographic superconductors.

  18. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  19. Chip Multithreaded Consistency Model

    Institute of Scientific and Technical Information of China (English)

    Zu-Song Li; Dan-Dan Huan; Wei-Wu Hu; Zhi-Min Tang

    2008-01-01

    Multithreaded technique is the developing trend of high performance processor. Memory consistency model is essential to the correctness, performance and complexity of multithreaded processor. The chip multithreaded consistency model adapting to multithreaded processor is proposed in this paper. The restriction imposed on memory event ordering by chip multithreaded consistency is presented and formalized. With the idea of critical cycle built by Wei-Wu Hu, we prove that the proposed chip multithreaded consistency model satisfies the criterion of correct execution of sequential consistency model. Chip multithreaded consistency model provides a way of achieving high performance compared with sequential consistency model and ensures the compatibility of software that the execution result in multithreaded processor is the same as the execution result in uniprocessor. The implementation strategy of chip multithreaded consistency model in Godson-2 SMT processor is also proposed. Godson-2 SMT processor supports chip multithreaded consistency model correctly by exception scheme based on the sequential memory access queue of each thread.

  20. Quantum oscillations in organic metals and superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, N

    2000-12-01

    De Haas-van Alphen (dHvA) oscillations have been observed in the organic superconductor {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} at temperatures down to 30 mK, and the oscillations are found to suffer an additional attenuation, R{sub s}, in the mixed state. None of the theoretical models, coupled with the mean-field expression for the field-dependence of the superconducting energy gap, {delta}, offer a good fit to the data. By including the effects of thermal fluctuations in the field-dependence of {delta}, a reasonable fit to the data can be made at the lowest temperatures. However, the form of the damping does not change appreciably as the temperature is increased up to 560 mK, which is inconsistent with the thermal fluctuation model. Angle resolved dHvA measurements on {kappa}-(BEDT-TTF){sub 2}Cu(NCS){sub 2} have allowed R{sub s} curves to be measured as a function of the orientation of the applied magnetic field. These R{sub s}({theta}) curves may be scaled onto one another by taking the components of the magnetic fields perpendicular to the layers. The scale of the fluctuations is independent of angle within experimental errors. This, and an angle-independent normal state Dingle temperature, suggests that the quasiparticle orbits are confined to the two-dimensional layers for all angles of applied magnetic field. An angle resolved dHvA study has been performed on the organic metal {alpha}-(BEDT-TTF){sub 2}KHg(NCS){sub 4}. At low temperatures and low fields, the Fermi surface is reconstructed in this material, and the dHvA signal is dominated by an a frequency and its second harmonic, 2{alpha}. The amplitude of the 2{alpha} frequency is shown to deviate from the predictions of the Lifshitz-Kosevich expression, but is found to be consistent with a 'frequency doubling' mechanism. In this scheme, the 2{alpha} frequency arises from a new type of quantum oscillatory phenomenon, due to the susceptibility of the quasi one-dimensional sheets, driven by

  1. Antiferromagnetic phase diagram of the cuprate superconductors

    Science.gov (United States)

    Nunes, L. H. C. M.; Teixeira, A. W.; Marino, E. C.

    2017-02-01

    Taking the spin-fermion model as the starting point for describing the cuprate superconductors, we obtain an effective nonlinear sigma-field hamiltonian, which takes into account the effect of doping in the system. We obtain an expression for the spin-wave velocity as a function of the chemical potential. For appropriate values of the parameters we determine the antiferromagnetic phase diagram for the YBa2Cu3O6+x compound as a function of the dopant concentration in good agreement with the experimental data. Furthermore, our approach provides a unified description for the phase diagrams of the hole-doped and the electron doped compounds, which is consistent with the remarkable similarity between the phase diagrams of these compounds, since we have obtained the suppression of the antiferromagnetic phase as the modulus of the chemical potential increases. The aforementioned result then follows by considering positive values of the chemical potential related to the addition of holes to the system, while negative values correspond to the addition of electrons.

  2. Simultaneous constraint and phase conversion processing of oxide superconductors

    Science.gov (United States)

    Li, Qi; Thompson, Elliott D.; Riley, Jr., Gilbert N.; Hellstrom, Eric E.; Larbalestier, David C.; DeMoranville, Kenneth L.; Parrell, Jeffrey A.; Reeves, Jodi L.

    2003-04-29

    A method of making an oxide superconductor article includes subjecting an oxide superconductor precursor to a texturing operation to orient grains of the oxide superconductor precursor to obtain a highly textured precursor; and converting the textured oxide superconducting precursor into an oxide superconductor, while simultaneously applying a force to the precursor which at least matches the expansion force experienced by the precursor during phase conversion to the oxide superconductor. The density and the degree of texture of the oxide superconductor precursor are retained during phase conversion. The constraining force may be applied isostatically.

  3. Superconductors in the power grid materials and applications

    CERN Document Server

    2015-01-01

    Superconductors offer high throughput with low electric losses and have the potential to transform the electric power grid. Transmission networks incorporating cables of this type could, for example, deliver more power and enable substantial energy savings. Superconductors in the Power Grid: Materials and Applications provides an overview of superconductors and their applications in power grids. Sections address the design and engineering of cable systems and fault current limiters and other emerging applications for superconductors in the power grid, as well as case studies of industrial applications of superconductors in the power grid. Expert editor from highly respected US government-funded research centre Unique focus on superconductors in the power grid Comprehensive coverage

  4. A Generic Algorithm to Estimate LAI, FAPAR and FCOVER Variables from SPOT4_HRVIR and Landsat Sensors: Evaluation of the Consistency and Comparison with Ground Measurements

    Directory of Open Access Journals (Sweden)

    Wenjuan Li

    2015-11-01

    Full Text Available The leaf area index (LAI and the fraction of photosynthetically active radiation absorbed by green vegetation (FAPAR are essential climatic variables in surface process models. FCOVER is also important to separate vegetation and soil for energy balance processes. Currently, several LAI, FAPAR and FCOVER satellite products are derived moderate to coarse spatial resolution. The launch of Sentinel-2 in 2015 will provide data at decametric resolution with a high revisit frequency to allow quantifying the canopy functioning at the local to regional scales. The aim of this study is thus to evaluate the performances of a neural network based algorithm to derive LAI, FAPAR and FCOVER products at decametric spatial resolution and high temporal sampling. The algorithm is generic, i.e., it is applied without any knowledge of the landcover. A time series of high spatial resolution SPOT4_HRVIR (16 scenes and Landsat 8 (18 scenes images acquired in 2013 over the France southwestern site were used to generate the LAI, FAPAR and FCOVER products. For each sensor and each biophysical variable, a neural network was first trained over PROSPECT+SAIL radiative transfer model simulations of top of canopy reflectance data for green, red, near-infra red and short wave infra-red bands. Our results show a good spatial and temporal consistency between the variables derived from both sensors: almost half the pixels show an absolute difference between SPOT and LANDSAT estimates of lower that 0.5 unit for LAI, and 0.05 unit for FAPAR and FCOVER. Finally, downward-looking digital hemispherical cameras were completed over the main land cover types to validate the accuracy of the products. Results show that the derived products are strongly correlated with the field measurements (R2 > 0.79, corresponding to a RMSE = 0.49 for LAI, RMSE = 0.10 (RMSE = 0.12 for black-sky (white sky FAPAR and RMSE = 0.15 for FCOVER. It is concluded that the proposed generic algorithm provides a good

  5. Charge order in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bulut, Sinan; Kampf, Arno P. [Theoretical Physics III, Center for Electronic Correlations and Magnetism, Institute of Physics, University of Augsburg (Germany); Atkinson, Bill A. [Department of Physics and Astronomy, Trent University, Peterborough, Ontario (Canada)

    2015-07-01

    Motivated by widespread experimental evidence of charge orders in underdoped cuprate superconductors, we study a three band model of a cuprate plane. Our calculations start from a pseudogap-like normal system with a reconstructed Fermi surface, and we search for charge instabilities. From the charge susceptibilities, we identify a charge ordering instability with an ordering wavevector, q*, that matches experimental results not only with respect to the doping dependence but more importantly regarding its magnitude and direction. Namely, q* points along the Brillouin zone axes. Thus, our results clarify the discrepancy between many recent theoretical calculations and the experiments. We extend this calculation towards possible loop current instabilities and the charge ordering pattern in bilayer systems.

  6. Ultrasonic attenuation in cuprate superconductors

    Indian Academy of Sciences (India)

    T Gupta; D M Gaitonde

    2002-05-01

    We calculate the longitudinal ultrasonic attenuation rate (UAR) in clean d-wave superconductors in the Meissner and the mixed phases. In the Meissner phase we calculate the contribution of previously ignored processes involving the excitation of a pair of quasi-holes or quasi-particles. There is a contribution ∝ in the regime B ≪ F ≪ 0 and a contribution ∝ 1/ in the regime F ≪ B ≪ 0. We find that these contributions to the UAR are large and cannot be ignored. In the mixed phase, using a semi-classical description, we calculate the electronic quasi-particle contribution to the UAR which at very low , has a independent term proportional to $\\sqrt{H}$.

  7. Moessbauer studies of ternary superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kimball, C.W.; Van Landuyt, G.L.; Barnet, C.D.; Shenoy, G.K.; Dunlap, B.D.; Fradin, F.Y.

    1978-01-01

    Moessbauer studies of the ternary Chevrel phase and rare earth rhodium boride superconductors have been made. Anomalous phonon properties at the Sn site in SnMo/sub 6/S/sub 8/, SnMo/sub 6/Se/sub 8/, and La/sub 0/ /sub 98/Sn/sub 0/ /sub 02/Mo/sub 6/Se/sub 8/ have been investigated. Studies of polarization of conduction electrons at the site of the magnetic ion have been made by means of the /sup 151/Eu Moessbauer effect in Eu/sub x/Sn/sub 1-x/Mo/sub 6/S/sub 8/ and the effects of such polarization on superconducting properties discussed. The Moessbauer effect in /sup 166/Er has been used to investigate the electronic ground state in the ternary compound ErRh/sub 4/B/sub 4/ both in the superconducting and magnetically ordered states.

  8. Subgap states in disordered superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, M. A., E-mail: skvor@itp.ac.ru; Feigel' man, M. V., E-mail: feigel@landau.ac.ru [Russian Academy of Sciences, Landau Institute for Theoretical Physics (Russian Federation)

    2013-09-15

    We revise the problem of the density of states in disordered superconductors. Randomness of local sample characteristics translates to the quenched spatial inhomogeneity of the spectral gap, smearing the BCS coherence peak. We show that various microscopic models of potential and magnetic disorder can be reduced to a universal phenomenological random order parameter model, whereas the details of the microscopic description are encoded in the correlation function of the order parameter fluctuations. The resulting form of the density of states is generally described by two parameters: the width {Gamma} measuring the broadening of the BCS peak and the energy scale {Gamma}{sub tail} that controls the exponential decay of the density of subgap states. We refine the existing instanton approaches for determination of {Gamma}{sub tail} and show that they appear as limiting cases of a unified theory of optimal fluctuations in a nonlinear system. The application to various types of disorder is discussed.

  9. Search for Majorana fermions in topological superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shi, Xiaoyan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hawkins, Samuel D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John Frederick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

  10. Superconductors

    Science.gov (United States)

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1977-02-01

    The structural quality of niobium germanide as a high-transition-temperature superconducting material is substantially improved by the presence of about 5 at. % oxygen. Niobium germanide having this oxygen content may readily be prepared as a bulk coating bonded to a metallic substrate by chemical vapor deposition techniques.

  11. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan

    1997-01-01

    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  12. Geometric heat trapping in niobium superconductor-insulator-superconductor mixers due to niobium titanium nitride leads

    NARCIS (Netherlands)

    Leone, B; Jackson, BD; Gao, [No Value; Klapwijk, TM

    2000-01-01

    We analyze the current-voltage characteristics of a Nb superconductor-insulator-superconductor mixer with NbTiN leads to identify the heating processes in this device. We argue that the electron-electron interaction is much faster than the electron-phonon interaction, and show that the heat flow to

  13. Strong nonequilibrium coherent states in mesoscopic superconductor-semiconductor-superconductor junctions

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Wildt, Morten; Taboryski, Rafael Jozef;

    1999-01-01

    A biased superconductor-normal metal-superconductor junction is known to be a strong nonequilibrium system, where Andreev scattering at the interfaces creates a quasiparticle distribution function far from equilibrium, a manifestation of this is the well-known subgap structure in the I...

  14. Direct current heating in superconductor-insulator-superconductor tunnel devices for THz mixing applications

    NARCIS (Netherlands)

    Dieleman, P; Klapwijk, T.M; Kovtonyuk, S.; van de Stadt, H.

    1996-01-01

    DC heating effects in superconductor-insulator-superconductor (SIS) tunnel junctions are studied by comparing junctions sandwiched between niobium or aluminum layers. With niobium a temperature rise of several Kelvin is observed, which is reduced by an order of magnitude by using aluminum. A simple

  15. Niobium titanium nitride-based superconductor-insulator-superconductor mixers for low-noise terahertz receivers

    NARCIS (Netherlands)

    Jackson, B.D.; De Lange, G.; Zijlstra, T.; Kroug, M.; Klapwijk, T.M.; Stern, J.A.

    2005-01-01

    Integrating NbTiN-based microstrip tuning circuits with traditional Nb superconductor-insulator-superconductor (SIS) junctions enables the low-noise operation regime of SIS mixers to be extended from below 0.7 to 1.15 THz. In particular, mixers incorporating a NbTiN/SiO2/NbTiN microstrip tuning circ

  16. Josephson current in a normal-metal nanowire coupled to a superconductor/ferromagnet/superconductor junction

    NARCIS (Netherlands)

    Ebisu, H.; Lu, B.; Taguchi, K.; Golubov, Alexandre Avraamovitch; Tanaka, Y.

    2016-01-01

    We consider a superconducting nanowire proximity coupled to a superconductor/ferromagnet/superconductor (S/F/S) junction, where the magnetization penetrates into a superconducting segment in a nanowire decaying as ∼exp[−∣n∣ξ], where n is the site index and the ξ is the decay length. We tune chemical

  17. Development of resistive type superconducting fault current limiter using oxide superconductor; Sankabutsu chodendotai wo mochiita teikogata chodendo genryuki no kaihatsu -muyudo sorenoido koiru no shisaku shiken kekka

    Energy Technology Data Exchange (ETDEWEB)

    Yoneda, E.; Shimada, M.; Nomura, S. [Toshiba Corp., Tokyo (Japan); Okuma, T.; Sato, Y.; Iwata, Y. [Tokyo Electric Power Co., Inc., Tokyo (Japan)

    1999-11-10

    We have advanced the development of resistive superconductivity current limiter using the normal transition of the superconductor until now, and it has produced and tested 6.6kV/1kA single-phase current limiter using the metal system superconductor experimentally. As a result of these evaluations, in turning to the practical application of that the oxide superconductor was used from the metal system superconductor from the viewpoint of wire rod performance, refrigerating machine, insulation performance, it reached the advantageous conclusion. Here, it reports the result that it produced the mischievous prank non-induction coil model experimentally in the mind and tested coil resistance type current-limiting element using the oxide superconductor. (NEDO)

  18. Method for determining transport critical current densities and flux penetration depth in bulk superconductors

    Science.gov (United States)

    Israelsson, Ulf E. (Inventor); Strayer, Donald M. (Inventor)

    1992-01-01

    A contact-less method for determining transport critical current density and flux penetration depth in bulk superconductor material. A compressor having a hollow interior and a plunger for selectively reducing the free space area for distribution of the magnetic flux therein are formed of superconductor material. Analytical relationships, based upon the critical state model, Maxwell's equations and geometrical relationships define transport critical current density and flux penetration depth in terms of the initial trapped magnetic flux density and the ratio between initial and final magnetic flux densities whereby data may be reliably determined by means of the simple test apparatus for evaluating the current density and flux penetration depth.

  19. Assessing composition gradients in multifilamentary superconductors by means of magnetometry methods

    Science.gov (United States)

    Baumgartner, T.; Hecher, J.; Bernardi, J.; Pfeiffer, S.; Senatore, C.; Eisterer, M.

    2017-01-01

    We present two magnetometry-based methods suitable for assessing gradients in the critical temperature and hence the composition of multifilamentary superconductors: AC magnetometry and scanning Hall probe microscopy. The novelty of the former technique lies in the iterative evaluation procedure we developed, whereas the strength of the latter is the direct visualization of the temperature dependent penetration of a magnetic field into the superconductor. Using the example of a PIT Nb3Sn wire, we demonstrate the application of these techniques, and compare the respective results to each other and to EDX measurements of the Sn distribution within the sub-elements of the wire.

  20. Application of superconductor-semiconductor Schottky barrier for electron cooling

    Energy Technology Data Exchange (ETDEWEB)

    Savin, Alexander; Prunnila, Mika; Ahopelto, Jouni; Kivinen, Pasi; Toermae, Paeivi; Pekola, Jukka

    2003-05-01

    Electronic cooling in superconductor-semiconductor-superconductor structures at sub kelvin temperatures has been demonstrated. Effect of the carrier concentration in the semiconductor on performance of the micro-cooler has been investigated.

  1. Performance of ceramic superconductors in magnetic bearings

    Science.gov (United States)

    Kirtley, James L., Jr.; Downer, James R.

    1993-01-01

    Magnetic bearings are large-scale applications of magnet technology, quite similar in certain ways to synchronous machinery. They require substantial flux density over relatively large volumes of space. Large flux density is required to have satisfactory force density. Satisfactory dynamic response requires that magnetic circuit permeances not be too large, implying large air gaps. Superconductors, which offer large magnetomotive forces and high flux density in low permeance circuits, appear to be desirable in these situations. Flux densities substantially in excess of those possible with iron can be produced, and no ferromagnetic material is required. Thus the inductance of active coils can be made low, indicating good dynamic response of the bearing system. The principal difficulty in using superconductors is, of course, the deep cryogenic temperatures at which they must operate. Because of the difficulties in working with liquid helium, the possibility of superconductors which can be operated in liquid nitrogen is thought to extend the number and range of applications of superconductivity. Critical temperatures of about 98 degrees Kelvin were demonstrated in a class of materials which are, in fact, ceramics. Quite a bit of public attention was attracted to these new materials. There is a difficulty with the ceramic superconducting materials which were developed to date. Current densities sufficient for use in large-scale applications have not been demonstrated. In order to be useful, superconductors must be capable of carrying substantial currents in the presence of large magnetic fields. The possible use of ceramic superconductors in magnetic bearings is investigated and discussed and requirements that must be achieved by superconductors operating at liquid nitrogen temperatures to make their use comparable with niobium-titanium superconductors operating at liquid helium temperatures are identified.

  2. Consistent model driven architecture

    Science.gov (United States)

    Niepostyn, Stanisław J.

    2015-09-01

    The goal of the MDA is to produce software systems from abstract models in a way where human interaction is restricted to a minimum. These abstract models are based on the UML language. However, the semantics of UML models is defined in a natural language. Subsequently the verification of consistency of these diagrams is needed in order to identify errors in requirements at the early stage of the development process. The verification of consistency is difficult due to a semi-formal nature of UML diagrams. We propose automatic verification of consistency of the series of UML diagrams originating from abstract models implemented with our consistency rules. This Consistent Model Driven Architecture approach enables us to generate automatically complete workflow applications from consistent and complete models developed from abstract models (e.g. Business Context Diagram). Therefore, our method can be used to check practicability (feasibility) of software architecture models.

  3. Sealed glass coating of high temperature ceramic superconductors

    Science.gov (United States)

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  4. Electron tunneling and point contact Andreev reflection studies of superconductors

    Science.gov (United States)

    Dai, Wenqing

    The energy gap is the most fundamental property of a superconductor. Electron tunneling spectroscopy and point contact spectroscopy (PCS) are powerful techniques for studying the density of states and energy gap features of superconductors. Two different superconducting systems, multiband superconductor MgB2 and proximity induced topological superconductor NbSe2/Bi 2Se3 heterostructures were studied using either quasiparticle tunneling in planar tunnel junctions or PCS in this work. (Abstract shortened by ProQuest.).

  5. Studies on Magnetization Technique of High Temperature Superconductors

    OpenAIRE

    大橋, 忠巌; 荻原, 宏康

    1999-01-01

    It is known that permanent magnets produce magnetic fields up to 1T. On the other hand, magnetized high temperature superconductors can be used as "super"-permanent magnets which produce magnetic fields higher than 1T, because superconductors can trap higher magnetic fluxes than usual permanent magnets. In order to magnetize a YBCO bulk superconductor, there are two ways; a field cooling (FC) method and a zero field cooling (ZFC) method. FC is the way of magnetizing the superconductor by appl...

  6. Cutoff parameter and vortex core size in d-wave superconductors

    Directory of Open Access Journals (Sweden)

    Belova P.

    2014-07-01

    Full Text Available There is some evidence that the electron-phonon mechanism is not strong enough to produce observed high critical temperatures in unconventional superconductors; this is the case in both the cuprates and Fe-based superconductors. The d-wave pairing in strongly correlated systems is consistent with the observation of nodal quasiparticles in the heavily hole doped superconductor KFe2As2 with Tc = 3 K and high-Tc cuprates. In this work the Eilenberger equations are solved for anisotropic dx2−y2-wave superconductors. The cutoff parameter ξh and vortex core size ξ2 (the distance from the vortex center to the radius where the current density reaches its maximum value in the mixed state are investigated numerically. The cutoff parameter determines the field distribution in the generalized London equation obtained as a projection of the quasiclassical theory. It can be used for the fitting of the µSR and small-angle neutron scattering (SANS experimental data. Field and temperature dependences of ξh/ξc2 in dx2−y2-wave superconductors are similar to those in s-wave superconductors: ξh/ξc2(B/Bc2dependence has minimum at high temperatures and shows monotonously increasing behavior at low temperatures. Here, ξc2 is determined by the relation Bc2 =Φ0/2πξc22. The ξ2/ξc2(B/Bc2 dependence is monotonously decreasing function at intermediate and high temperatures.

  7. Interpretation of X-ray stress measurement and evaluation of internal residual stresses in rolled {alpha}-Ti40 using self-consistent models

    Energy Technology Data Exchange (ETDEWEB)

    Gloaguen, D.; Guillen, R. [Laboratoire d' Applications des Materiaux a la Mecanique (LAMM), C.R.T.T., Boulevard de l' Universite, B.P. 406, 44602 Saint-Nazaire cedex (France); Francois, M. [Laboratoire des Systemes Mecaniques et d' Ingenierie Simultanee (LASMIS), Universite de Technologie de Troyes, 11 rue Marie Curie, B.P. 2060, 10010 Troyes (France); Royer, J. [Laboratoire Mecanique et Materiaux (LMM), Ecole Centrale de Nantes, 1 rue de la Noe, B.P. 92101, 44321 Nantes cedex 03 (France)

    2002-09-16

    Internal stresses due to anisotropic thermal and plastic properties were investigated in rolled {alpha}-titanium. The thermal stresses induced by a cooling process were predicted using a self-consistent model and compared with experimental results obtained by X-ray diffraction. A study of the elastoplastic response after uniaxial loading was performed along the rolling and the transverse direction of the sheet. Using an elastoplastic self-consistent model, the predicted results were compared with X-ray diffraction and mechanical tests. Theoretical and experimental results agree in their tendencies. The comparison between {epsilon}{sub {phi}}{sub {psi}} versus sin{sup 2} {psi} and simulations confirms that prismatic slip is the main active deformation mode. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  8. No consistent bimetric gravity?

    CERN Document Server

    Deser, S; Waldron, A

    2013-01-01

    We discuss the prospects for a consistent, nonlinear, partially massless (PM), gauge symmetry of bimetric gravity (BMG). Just as for single metric massive gravity, ultimate consistency of both BMG and the putative PM BMG theory relies crucially on this gauge symmetry. We argue, however, that it does not exist.

  9. Rotating superconductor magnet for producing rotating lobed magnetic field lines

    Science.gov (United States)

    Hilal, Sadek K.; Sampson, William B.; Leonard, Edward F.

    1978-01-01

    This invention provides a rotating superconductor magnet for producing a rotating lobed magnetic field, comprising a cryostat; a superconducting magnet in the cryostat having a collar for producing a lobed magnetic field having oppositely directed adjacent field lines; rotatable support means for selectively rotating the superconductor magnet; and means for energizing the superconductor magnet.

  10. Inhomogeneous magnetic field in AdS/CFT superconductor

    OpenAIRE

    Wen, Wen-Yu

    2008-01-01

    We study the holographically dual description of superconductor in (2+1)-dimensions in the presence of inhomogeneous magnetic field and observe that there exists type I and type II superconductor. A new feature of type changing is observed for type I superconductor near critical temperature.

  11. Physics and chemistry review of layered chalcogenide superconductors

    OpenAIRE

    Deguchi, Keita; Takano, Yoshihiko; Mizuguchi, Yoshikazu

    2012-01-01

    Structural and physical properties of layered chalcogenide superconductors are summarized. In particular, we review the remarkable properties of the Fe-chalcogenide superconductors, FeSe and FeTe-based materials. Furthermore, we introduce the recently-discovered new BiS2-based layered superconductors and discuss its prospects.

  12. Consistency Checking of Fuzzy Evaluation Matrix for Web Quality%Web质量模糊评测矩阵的一致性判定

    Institute of Scientific and Technical Information of China (English)

    朱焱; 乔少杰

    2012-01-01

    Checking the consistency of the decision matrixes is essential but becomes very difficult in a Fuzzy Analytic Hierarchy Process(FAHP)-based Web quality assessment due to the fuzzy logic. Two approaches are analyzed in the paper, which are the value substitution with maximum degree of membership and the least-squares-method-based consistency checking. The fuzzy pair-wise comparison matrix meets the consistency requirements by applying the two methods based on key quality data. The study indicates that two techniques can simplify the discrimination of the consistency of fuzzy pair-wise comparison matrixes and ensure the rationality of the assessment and the soundness of decision result. The latter approach is more applicable.%利用模糊层次分析法(FAHP)评测Web资源质量时,模糊逻辑的引入使成对比较矩阵的一致性判别成为难点.为此,设计最大隶属度元素值替代法,分析并改进基于最小二乘法的一致性判定法.依据判别结果对不一致的模糊矩阵进行修正,直到所有模糊矩阵都满足一致性阈值.分析结果表明,2种方法均能保证Web资源质量评测过程的合理性和结果的可靠性,且后者适用性更高.

  13. Effect of external magnetic field on the coexistence of SC and AFM in iron based superconductors

    Science.gov (United States)

    Goi, S. K.; Pradhan, B.; Behera, Srikanta; Parida, P. K.; Mishra, R. N.

    2017-03-01

    We have studied the interplay of antiferromagnetism and superconductivity in presence of an applied external magnetic field for the iron based superconductors. For the purpose we have proposed a model Hamiltonian and solved it self-consistently by using the Zubarev's technique of double time Green's function technique. The self-consistent gap equations are solved numerically and interpreted the gap values from the of density of states plots.

  14. Quantum interference in an interfacial superconductor

    Science.gov (United States)

    Goswami, Srijit; Mulazimoglu, Emre; Monteiro, Ana M. R. V. L.; Wölbing, Roman; Koelle, Dieter; Kleiner, Reinhold; Blanter, Ya. M.; Vandersypen, Lieven M. K.; Caviglia, Andrea D.

    2016-10-01

    The two-dimensional superconductor that forms at the interface between the complex oxides lanthanum aluminate (LAO) and strontium titanate (STO) has several intriguing properties that set it apart from conventional superconductors. Most notably, an electric field can be used to tune its critical temperature (Tc; ref. 7), revealing a dome-shaped phase diagram reminiscent of high-Tc superconductors. So far, experiments with oxide interfaces have measured quantities that probe only the magnitude of the superconducting order parameter and are not sensitive to its phase. Here, we perform phase-sensitive measurements by realizing the first superconducting quantum interference devices (SQUIDs) at the LAO/STO interface. Furthermore, we develop a new paradigm for the creation of superconducting circuit elements, where local gates enable the in situ creation and control of Josephson junctions. These gate-defined SQUIDs are unique in that the entire device is made from a single superconductor with purely electrostatic interfaces between the superconducting reservoir and the weak link. We complement our experiments with numerical simulations and show that the low superfluid density of this interfacial superconductor results in a large, gate-controllable kinetic inductance of the SQUID. Our observation of robust quantum interference opens up a new pathway to understanding the nature of superconductivity at oxide interfaces.

  15. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  16. Hacia el motor superconductor: estudio de las interacciones entre un rotor superconductor y un estator convencional

    OpenAIRE

    Pallarès Viña, Miquel Joan

    2002-01-01

    de la tesis:Hacia el motor superconductor: estudio de las interacciones entre un estator convencional y un rotor superconductorEl desarrollo de superconductores de alta temperatura (HTSC) de gran corriente crítica ha permitido la fabricación de dispositivos en varias áreas de la ingeniería electromecánica. En particular, los HTSC pueden mejorar el rendimiento de los motores eléctricos, ya sea sustituyendo el cobre en el rotor de los mismos o con la realización de nuevos diseños.El particular...

  17. dc Josephson Effect in s-Wave Superconductor/Ferromagnet Insulator/p-Wave Superconductor Junctions

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Wei

    2007-01-01

    The Josephson currents in s-wave superconductor/ferromagnet insulator/p-wave superconductor(s/FI/p)junctions are calculated as a function of temperature and the phase taking into account the roughness scattering effect at interface.The phase dependence of the Josephson current I ( φ) between s-wave and px-wave superconductor is predicted to be sin(2φ).The ferromagnet scattering effect,the barrier strength,and the roughness strength at interface suppress the dc currents in s/FI/p junction.

  18. Prizes for consistency

    Energy Technology Data Exchange (ETDEWEB)

    Hiscock, S.

    1986-07-01

    The importance of consistency in coal quality has become of increasing significance recently, with the current trend towards using coal from a range of sources. A significant development has been the swing in responsibilities for coal quality. The increasing demand for consistency in quality has led to a re-examination of where in the trade and transport chain the quality should be assessed and where further upgrading of inspection and preparation facilities are required. Changes are in progress throughout the whole coal transport chain which will improve consistency of delivered coal quality. These include installation of beneficiation plant at coal mines, export terminals, and on the premises of end users. It is suggested that one of the keys to success for the coal industry will be the ability to provide coal of a consistent quality.

  19. Consistent sets contradict

    CERN Document Server

    Kent, A

    1996-01-01

    In the consistent histories formulation of quantum theory, the probabilistic predictions and retrodictions made from observed data depend on the choice of a consistent set. We show that this freedom allows the formalism to retrodict several contradictory propositions which correspond to orthogonal commuting projections and which all have probability one. We also show that the formalism makes contradictory probability one predictions when applied to generalised time-symmetric quantum mechanics.

  20. Shock compaction of high- Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Weir, S.T.; Nellis, W.J.; McCandless, P.C.; Brocious, W.F. (Lawrence Livermore National Lab., CA (USA)); Seaman, C.L.; Early, E.A.; Maple, M.B. (California Univ., San Diego, La Jolla, CA (USA). Dept. of Physics); Kramer, M.J. (Ames Lab., IA (USA)); Syono, Y.; Kikuchi, M. (Tohoku Univ., Sendai (Japan))

    1990-09-01

    We present the results of shock compaction experiments on high-{Tc} superconductors and describe the way in which shock consolidation addresses critical problems concerning the fabrication of high J{sub c} bulk superconductors. In particular, shock compaction experiments on YBa{sub 2}Cu{sub 3}O{sub 7} show that shock-induced defects can greatly increase intragranular critical current densities. The fabrication of crystallographically aligned Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} samples by shock-compaction is also described. These experiments demonstrate the potential of the shock consolidation method as a means for fabricating bulk high-{Tc} superconductors having high critical current densities.

  1. Radiation shielding effectiveness of newly developed superconductors

    Science.gov (United States)

    Singh, Vishwanath P.; Medhat, M. E.; Badiger, N. M.; Saliqur Rahman, Abu Zayed Mohammad

    2015-01-01

    Gamma ray shielding effectiveness of superconductors with a high mass density has been investigated. We calculated the mass attenuation coefficients, the mean free path (mfp) and the exposure buildup factor (EBF). The gamma ray EBF was computed using the Geometric Progression (G-P) fitting method at energies 0.015-15 MeV, and for penetration depths up to 40 mfp. The fast-neutron shielding effectiveness has been characterized by the effective neutron removal cross-section of the superconductors. It is shown that CaPtSi3, CaIrSi3, and Bi2Sr2Ca1Cu2O8.2 are superior shielding materials for gamma rays and Tl0.6Rb0.4Fe1.67Se2 for fast neutrons. The present work should be useful in various applications of superconductors in fusion engineering and design.

  2. Fracture toughness for copper oxide superconductors

    Science.gov (United States)

    Goretta, Kenneth C.; Kullberg, Marc L.

    1993-01-01

    An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.

  3. High-temperature superconductor antenna investigations

    Science.gov (United States)

    Karasack, Vincent G.

    1990-10-01

    The use of superconductors to increase antenna radiation efficiency and gain is examined. Although the gain of all normal-metal antennas can be increased through the use of superconductors, some structures have greater potential for practical improvement than others. Some structures suffer a great degradation in bandwidth when replaced with superconductors, while for others the improvement in efficiency is trivial due to the minimal contribution of the conductor loss mechanism to the total losses, or the already high efficiency of the structure. The following antennas and related structures are discussed: electrically small antennas, impedance matching of antennas, microstrip antennas, microwave and millimeter-wave antenna arrays, and superdirective arrays. The greatest potential practical improvements occur for large microwave and millimeter-wave arrays and the impedance matching of antennas.

  4. Practical superconductor development for electrical power applications

    Energy Technology Data Exchange (ETDEWEB)

    Goretta, K.C. (comp.)

    1992-10-01

    Development of useful high-critical-temperature (high-[Tc]) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes the technical progress of research and development efforts aimed at producing superconducting components that are based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and (TI,Pb)-(Ba,Sr)-Ca-Cu oxide systems. Topics discussed are synthesis and heat treatment of high-[Tc] superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, fabrication and properties of thin films, and development of prototype components. Collaborations with industry and academia are documented.

  5. On n-quantum vortices in superconductors

    CERN Document Server

    Marchenko, V I

    2002-01-01

    The conditions of the n-quantum vortices observation in the superconductors are discussed. It is established in the course of calculating the coefficient by the |psi| sup 6 (psi - the order parameter) in the Ginzburg-Landau theory for the BCS standard model that the sign of this coefficient is negative. This favours the possibility of observing the n-quantum vortices in the superconductors, wherein the vortex lattice with gravitation is formed. The existence of gravitation is manifested in the magnetization finite jump in the H sub 0 = H sub c sub sup 1 field. When by the temperature change the superconductor behavior changes in such a way, that its magnetization in the H sub 0 = H sub c field reduces to the zero, than the observation of the n-quantum vortices near this transition is possible

  6. Charge and spin transport in mesoscopic superconductors

    Directory of Open Access Journals (Sweden)

    M. J. Wolf

    2014-02-01

    Full Text Available Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin.Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models.Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.

  7. AC susceptibilities of grain-textured superconductors

    Science.gov (United States)

    Sakamoto, N.; Fukuda, Y.; Koga, M.; Akune, T.; Khan, H. R.; Lüders, K.

    2008-09-01

    In-phase χ n‧ and out-phase χ n″ components of nth harmonics of AC susceptibility with measuring parameters of a DC magnetic field Bdc, an amplitude Ba and a frequency f of the superimposed AC magnetic fields give substantial information of the superconducting properties. In low- Tc metallic superconductors, χ1‧ shows smooth transition and χ1″ does single peak. High- Tc oxide superconductors with anisotropic and grain-textured structures show deformed complex characteristics. Double peaks in χ1″ and shoulders in χ1‧ appear in AC susceptibility of Hg-1223 superconductors. Instead of simple Bean model, a grained model, where the superconducting grains are immersed in weak superconducting matrix, are proposed. The susceptibilities numerically analyzed using the model show varied and deformed curves and are successfully compared with the measured results.

  8. Crack problem in a long cylindrical superconductor

    Science.gov (United States)

    Yong, Hua-Dong; Zhou, You-He; Zeng, Jun

    2008-12-01

    In this work, the general problem of a center crack in a long cylindrical superconductor is studied. The dependence of the stress intensity factor on the parameters, including the crack length and the applied field, is investigated. We presented a simple model in which the effect of the crack on the critical current is taken into account. It is assumed that the crack forms a perfect barrier to the flow of current. The Bean model and the Kim model are considered for the critical state. Based on the complex potential and boundary collocation methods, the stress intensity factor under the magnetic field is obtained for a long cylindrical superconductor containing a central crack. The results show that the crack length and the applied field have significant effects on the fracture behavior of the superconductor.

  9. Characterizing the insulator adjacent to the superconductor in Bi$_2$Sr$_{2-x}$La$_{x}$CuO$_{6+\\delta}$ ($x=0.3$)

    OpenAIRE

    Fruchter, L.; Li, Z.Z.; Raffy, H.

    2008-01-01

    The time-averaged and low--frequency noise transport properties were investigated in the vicinity of the superconductor--insulator transition for a Bi$_2$Sr$_{2-x}$La$_{x}$CuO$_{6+\\delta}$ ($x=0.3$) thin film. The results are consistent with a superconductor (metal) embedded in a strong insulator, the latter showing two-dimensional variable range hopping properties. The weak insulator behavior -- if any -- is attributed to the metallic inclusions only.

  10. Thermomagnetic phenomena in the mixed state of high temperature superconductors

    Science.gov (United States)

    Meilikhov, E. Z.

    1995-01-01

    Galvano- and thermomagnetic-phenomena in high temperature superconductors, based on kinetic coefficients, are discussed, along with a connection between the electric field and the heat flow in superconductor mixed state. The relationship that determines the transport coefficients of high temperature superconductors in the mixed state based on Seebeck and Nernst effects is developed. It is shown that this relationship is true for a whole transition region of the resistive mixed state of a superconductor. Peltier, Ettingshausen and Righi-Leduc effects associated with heat conductivity as related to high temperature superconductors are also addressed.

  11. Surface texturing of superconductors by controlled oxygen pressure

    Science.gov (United States)

    Chen, N.; Goretta, K.C.; Dorris, S.E.

    1999-01-05

    A method of manufacture of a textured layer of a high temperature superconductor on a substrate is disclosed. The method involves providing an untextured high temperature superconductor material having a characteristic ambient pressure peritectic melting point, heating the superconductor to a temperature below the peritectic temperature, establishing a reduced pO{sub 2} atmosphere below ambient pressure causing reduction of the peritectic melting point to a reduced temperature which causes melting from an exposed surface of the superconductor and raising pressure of the reduced pO{sub 2} atmosphere to cause solidification of the molten superconductor in a textured surface layer. 8 figs.

  12. Superfluid response in heavy fermion superconductors

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  13. An Evaluation of the Romanian Fruits and Vegetables Producers Access to Different Types of Common Agricultural Policy Instruments. Is there Any Real Consistency with the Policy Objectives?

    Directory of Open Access Journals (Sweden)

    Nicu MARCU

    2015-04-01

    Full Text Available Fruits and vegetables sectors are considered to be strategic in the European Union due to their contribution to a better human health. Among others positive effects, their intake increase reduce mortality and obesity, assuring in the same time harmonised development for young children. The present study thus focused to reveal the consistency of the measure implemented in the Common Agricultural Policy to support fruits and vegetables production in Romania in liaison with the policy objectives. The country is one of the main ten important European producers of horticultural products in terms of production volumes and acreage. Results showed that over the last seven years (2007-2014, the sectorial production drawbacks have not been ameliorated very much. Both sectors are dominated by small-size farms that can produce only seasonally and mainly for short-market chains. In the same time, the greenhouses area shrink to levels that made the country extremely dependent to imports especially for tomatoes. The analysis of the pillar one payments schemes revealed that the fruits and vegetables producers could have access to only one payment that was half from European averages. Moreover, almost half of the producers had low sizes that left them outside the eligible criteria. The measures designed for the second pillar also penalized producers through the selection criteria. These results showed that for Romania there was not a real consistency between the actual policy measures and the objectives assumed by policy makers. The future measures (2014-2020 seem to correct these negative findings being better tailored to the situation of the local fruits and vegetables producers.

  14. Workshop on accelerator magnet superconductors. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The workshop on accelerator magnet superconductors has gathered 102 registered participants from research laboratories, universities and industry. 8 European companies, active in superconducting materials and cables were present. This workshop has been organized to deal with the status of the world research and development on superconducting materials and cables for high field magnets (B > 10 T). The workshop has also reviewed the status of high temperature superconductors and transmission line cables for potential use in low field superconducting magnets for injectors and beam transfer lines, as well as cables for pulsed magnets that might be used in future hadron colliders or injectors.

  15. Order parameter fluctuations in the holographic superconductor

    CERN Document Server

    Plantz, N W M; Vandoren, S

    2015-01-01

    We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, the fully backreacted spectral functions of the order parameter in both the normal and the superconducting phase are computed. We also present a vector-like large-$N$ version of the Ginzburg-Landau model that accurately describes our long-wavelength results in both phases. The large-$N$ limit of the latter model explains why the Higgs mode and the second-sound mode are not present in the spectral functions. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC-BCS crossover.

  16. Aluminum-stabilized NB3SN superconductor

    Science.gov (United States)

    Scanlan, Ronald M.

    1988-01-01

    An aluminum-stabilized Nb.sub.3 Sn superconductor and process for producing same, utilizing ultrapure aluminum. Ductile components are co-drawn with aluminum to produce a conductor suitable for winding magnets. After winding, the conductor is heated to convert it to the brittle Nb.sub.3 Sn superconductor phase, using a temperature high enough to perform the transformation but still below the melting point of the aluminum. This results in reaction of substantially all of the niobium, while providing stabilization and react-in-place features which are beneficial in the fabrication of magnets utilizing superconducting materials.

  17. Electrical connection structure for a superconductor element

    Science.gov (United States)

    Lallouet, Nicolas; Maguire, James

    2010-05-04

    The invention relates to an electrical connection structure for a superconductor element cooled by a cryogenic fluid and connected to an electrical bushing, which bushing passes successively through an enclosure at an intermediate temperature between ambient temperature and the temperature of the cryogenic fluid, and an enclosure at ambient temperature, said bushing projecting outside the ambient temperature enclosure. According to the invention, said intermediate enclosure is filled at least in part with a solid material of low thermal conductivity, such as a polyurethane foam or a cellular glass foam. The invention is applicable to connecting a superconductor cable at cryogenic temperature to a device for equipment at ambient temperature.

  18. Building blocks for correlated superconductors and magnets

    Directory of Open Access Journals (Sweden)

    J. L. Sarrao

    2015-04-01

    Full Text Available Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  19. Building blocks for correlated superconductors and magnets

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J. L.; Ronning, F.; Bauer, E. D.; Batista, C. D.; Zhu, J.-X.; Thompson, J. D. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2015-04-01

    Recent efforts at Los Alamos to discover strongly correlated superconductors and hard ferromagnets are reviewed. While serendipity remains a principal engine of materials discovery, design principles and structural building blocks are beginning to emerge that hold potential for predictive discovery. Successes over the last decade with the so-called “115” strongly correlated superconductors are summarized, and more recent efforts to translate these insights and principles to novel hard magnets are discussed. While true “materials by design” remains a distant aspiration, progress is being made in coupling empirical design principles to electronic structure simulation to accelerate and guide materials design and synthesis.

  20. Electromagnetic Effects in Superconductors in Gravitational Field

    CERN Document Server

    Ahmedov, B J

    2005-01-01

    The general relativistic modifications to the resistive state in superconductors of second type in the presence of a stationary gravitational field are studied. Some superconducting devices that can measure the gravitational field by its red-shift effect on the frequency of radiation are suggested. It has been shown that by varying the orientation of a superconductor with respect to the earth gravitational field, a corresponding varying contribution to AC Josephson frequency would be added by gravity. A magnetic flux (being proportional to angular velocity of rotation $\\Omega$) through a rotating hollow superconducting cylinder with the radial gradient of temperature $\

  1. Long-range spin transport in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Beckmann, Detlef; Wolf, Michael J. [Institut fuer Nanotechnologie, Karlsruher Institut fuer Technologie (Germany); Huebler, Florian [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Loehneysen, Hilbert von [Institut fuer Festkoerperphysik, Karlsruher Institut fuer Technologie (Germany); Physikalisches Institut, Karlsruher Institut fuer Technologie (Germany)

    2012-07-01

    Recently, there has been some controversy about spin-polarized quasiparticle transport and relaxation in superconductors, with reports of both anomalously short or anomalously long relaxation times as compared to the normal state. Here, we report on non-local transport in multiterminal superconductor-ferromagnet structures. We find signatures of spin transport over distances much larger than the normal-state spin-diffusion length in the presence of a large Zeeman splitting of the quasiparticle states. The relaxation length shows a nearly linear increase with magnetic field, hinting at a freeze-out of spin relaxation by the Zeeman splitting.

  2. Order parameter fluctuations in the holographic superconductor

    Science.gov (United States)

    Plantz, N. W. M.; Stoof, H. T. C.; Vandoren, S.

    2017-03-01

    We investigate the effect of order parameter fluctuations in the holographic superconductor. In particular, following an introduction to the concept of intrinsic dynamics and its implementation within holographic models, we compute the intrinsic spectral functions of the order parameter in both the normal and the superconducting phase, using a fully backreacted bulk geometry. We also present a vector-like large-N version of the Ginzburg–Landau model that accurately describes our long-wavelength results in both phases. Our results indicate that the holographic superconductor describes a relativistic multi-component superfluid in the universal regime of the BEC–BCS crossover.

  3. Fluctuations electrical conductivity in a granular s-wave superconductor

    Science.gov (United States)

    Salehi, H.; Yousefvand, A.; Zargar Shoushtari, M.

    2017-01-01

    The present study tries to evaluate the fluctuation electrical conductivity in a granular s-wave superconductor at the temperature near to the critical temperature. The evaluation is conducted under the condition of limited tunneling conductance between the grains and small impurity concentration. All the first order fluctuation corrections, involving the nonlocal scattered electron in a granular s-wave superconductor, are calculated in three dimensions and in the limit of clean. Using Green's function theory initially, the Cooperon (impurity vertex), λ (q , ε1 , ε2) , and the fluctuation propagator, Lk (q , Ωk) , are calculated in the presence of impurities. Then, the three distinct contributions of Aslamazov-Larkin, Maki-Thompson, and Density of states are calculated by means of the Kubo formula. Analysis shows that the terms of Aslamazov-Larkin and anomalous Maki-Thompson have positive contributions to the conductivity in the clean limit, whereas the terms of Density of state and the regular Maki-Thompson have negative signs, leading to the reduction of total fluctuation conductivity.

  4. 'True' bosonic coupling strength in strongly correlated superconductors.

    Science.gov (United States)

    Iwasawa, Hideaki; Yoshida, Yoshiyuki; Hase, Izumi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Aiura, Yoshihiro

    2013-01-01

    Clarifying the coupling between electrons and bosonic excitations (phonons or magnetic fluctuations) that mediate the formation of Cooper pairs is pivotal to understand superconductivity. Such coupling effects are contained in the electron self-energy, which is experimentally accessible via angle-resolved photoemission spectroscopy (ARPES). However, in unconventional superconductors, identifying the nature of the electron-boson coupling remains elusive partly because of the significant band renormalization due to electron correlation. Until now, to quantify the electron-boson coupling, the self-energy is most often determined by assuming a phenomenological 'bare' band. Here, we demonstrate that the conventional procedure underestimates the electron-boson coupling depending on the electron-electron coupling, even if the self-energy appears to be self-consistent via the Kramers-Kronig relation. Our refined method explains well the electron-boson and electron-electron coupling strength in ruthenate superconductor Sr2RuO4, calling for a critical revision of the bosonic coupling strength from ARPES self-energy in strongly correlated electron systems.

  5. ‘True’ bosonic coupling strength in strongly correlated superconductors

    Science.gov (United States)

    Iwasawa, Hideaki; Yoshida, Yoshiyuki; Hase, Izumi; Shimada, Kenya; Namatame, Hirofumi; Taniguchi, Masaki; Aiura, Yoshihiro

    2013-01-01

    Clarifying the coupling between electrons and bosonic excitations (phonons or magnetic fluctuations) that mediate the formation of Cooper pairs is pivotal to understand superconductivity. Such coupling effects are contained in the electron self-energy, which is experimentally accessible via angle-resolved photoemission spectroscopy (ARPES). However, in unconventional superconductors, identifying the nature of the electron-boson coupling remains elusive partly because of the significant band renormalization due to electron correlation. Until now, to quantify the electron-boson coupling, the self-energy is most often determined by assuming a phenomenological ‘bare’ band. Here, we demonstrate that the conventional procedure underestimates the electron-boson coupling depending on the electron-electron coupling, even if the self-energy appears to be self-consistent via the Kramers-Kronig relation. Our refined method explains well the electron-boson and electron-electron coupling strength in ruthenate superconductor Sr2RuO4, calling for a critical revision of the bosonic coupling strength from ARPES self-energy in strongly correlated electron systems. PMID:23722675

  6. Giant supercurrent states in a superconductor-InAs/GaSb-superconductor junction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoyan, E-mail: xshi@sandia.gov; Pan, W.; Hawkins, S. D.; Klem, J. F. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Yu, Wenlong; Jiang, Zhigang [School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Andrei Bernevig, B. [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

    2015-10-07

    Superconductivity in topological materials has attracted a great deal of interest in both electron physics and material sciences since the theoretical predictions that Majorana fermions can be realized in topological superconductors. Topological superconductivity could be realized in a type II, band-inverted, InAs/GaSb quantum well if it is in proximity to a conventional superconductor. Here, we report observations of the proximity effect induced giant supercurrent states in an InAs/GaSb bilayer system that is sandwiched between two superconducting tantalum electrodes to form a superconductor-InAs/GaSb-superconductor junction. Electron transport results show that the supercurrent states can be preserved in a surprisingly large temperature-magnetic field (T – H) parameter space. In addition, the evolution of differential resistance in T and H reveals an interesting superconducting gap structure.

  7. Network Consistent Data Association.

    Science.gov (United States)

    Chakraborty, Anirban; Das, Abir; Roy-Chowdhury, Amit K

    2016-09-01

    Existing data association techniques mostly focus on matching pairs of data-point sets and then repeating this process along space-time to achieve long term correspondences. However, in many problems such as person re-identification, a set of data-points may be observed at multiple spatio-temporal locations and/or by multiple agents in a network and simply combining the local pairwise association results between sets of data-points often leads to inconsistencies over the global space-time horizons. In this paper, we propose a Novel Network Consistent Data Association (NCDA) framework formulated as an optimization problem that not only maintains consistency in association results across the network, but also improves the pairwise data association accuracies. The proposed NCDA can be solved as a binary integer program leading to a globally optimal solution and is capable of handling the challenging data-association scenario where the number of data-points varies across different sets of instances in the network. We also present an online implementation of NCDA method that can dynamically associate new observations to already observed data-points in an iterative fashion, while maintaining network consistency. We have tested both the batch and the online NCDA in two application areas-person re-identification and spatio-temporal cell tracking and observed consistent and highly accurate data association results in all the cases.

  8. Theoretical maximum performance evaluation of third generation silicon solar cell consisting of nc-Si:H/a-Si:H quantum wells

    Science.gov (United States)

    Tripathi, Brijesh; Sircar, Ratna

    2016-09-01

    The maximum performance of nc-Si:H/a-Si:H quantum well solar cell is theoretically evaluated by studying the spectral absorption of incident radiation with respect to the number of inserted nc-Si:H quantum well layers. Fundamental intrinsic properties of a-Si:H and nc-Si:H materials reported in literature have been used to evaluate the performance parameters. Enhanced spectral absorption is recorded due to insertion of nc-Si:H quantum well layers in the intrinsic region of a-Si:H solar cell. By inserting 50 QW layers of nc-Si:H in the intrinsic region of the a-Si:H solar cell, the short-circuit current density (JSC) increases by ∼100% as compared to the baseline whereas the open-circuit voltage (VOC) decreases by ∼38%. The decrease in VOC is explained on the basis of quasi-Fermi level separation under the illuminated state of solar cell. Theoretical maximum efficiency, having the combined effect of the increase in JSC and decrease in VOC, has increased by ∼24% in comparison with the baseline due to the use of QW as calculated using ideal carrier lifetime value. With a realistic carrier lifetime of the state-of-the-art a-Si:H solar cells, the addition of QWs do not yield any significant gain. From this study, it is concluded that a high carrier lifetime is required to gain a noteworthy benefit from the nc-Si:H/a-Si:H QWs.

  9. Analytical Result on the Supercurrent Through a Superconductor/Quantum-Dot/Superconductor Junction

    Institute of Scientific and Technical Information of China (English)

    LI Wei; ZHU Yu; LIN Tsung-Han

    2002-01-01

    We present an analytical result for the supercurrent across a superconductor/quantum-dot/superconductor junction. By converting the current integration into a special contour integral, we can express the current as a sum of the residues of poles. These poles are real and give a natural definition of the Andreev bound states. We also use the exact result to explain some features of the supercurrent transport behavior.

  10. Zeeman effects on Josephson current in d-wave superconductor/d-wave superconductor junctions

    Institute of Scientific and Technical Information of China (English)

    Liao Yan-Hua; Dong Zheng-Chao; Yin Zai-Feng; Fu Hao

    2008-01-01

    This paper solves a self-consistent equation for the d-wave superconducting gap and the effective exchange field in the mean-field approximation,and studies the Zeeman effects on the d-wave superconducting gap and thermodynamic potential.The Josephson currents in the d-wave superconductor(S)/insulating layer(I)/d-wave S junctions are calculated as a function of the temperature,exchange field,and insulating barrier strength under a Zeeman magnetic field on the two d-wave Ss.It is found that the Josephson critical currents in d-wave S/d-wave S junction to a great extent depend on the relative orientation of the effective exchange field of the two S electrodes,and the crystal orientation of the d-wave S.The exchange field under certain conditions can enhance the Josephson critical current in a d-wave S/I/d-wave S junction.

  11. Unconventional Andreev reflection on the quasi-one-dimensional superconductor Nb2PdxSe5

    Directory of Open Access Journals (Sweden)

    Yeping Jiang

    2016-04-01

    Full Text Available We have carried out Andreev reflection measurements on point contact junctions between normal metal and single crystals of the quasi-one-dimensional (Q1D superconductor Nb2PdxSe5 (Tc ∼ 5.5 K. The contacts of the junctions were made on either self-cleaved surfaces or crystal edges so that the current flow directions in the two types of junctions are different, and the measurements provide a directional probe for the order parameter of the superconductor. Junctions made in both configurations show typical resistances of ∼20-30 Ohms, and a clear double-gap Andreev reflection feature was consistently observed at low temperatures. Quantitative analysis of the conductance spectrum based on a modified Blonder-Tinkham-Klapwijk (BTK model suggests that the amplitudes of two order parameters may have angular dependence in the a-c plane. Moreover, the gap to transition temperature ratio (Δ/TC for the larger gap is substantially higher than the BCS ratio expected for phonon-mediated s-wave superconductors. We argue that the anisotropic superconducting order parameter and the extremely large gap to transition temperature ratio may be associated with an unconventional pairing mechanism in the inorganic Q1D superconductor.

  12. World-record current in the MgB2 superconductor

    CERN Multimedia

    Antonella Del Rosso

    2014-01-01

    In the framework of the High-Luminosity LHC project, experts from the CERN Superconductors team recently obtained a world-record current of 20 kA at 24 K in an electrical transmission line consisting of two 20-metre long cables made of Magnesium Diboride (MgB2) superconductor. This result makes the use of such technology a viable solution for long-distance power transportation.   The 20-metre long electrical transmission line containing the two 20 kA MgB2 cables. “The test is an important step in the development of cold electrical power transmission systems based on the use of MgB2,” says Amalia Ballarino, head of the Superconductors and Superconducting Devices section in the Magnet, Superconductors and Cryostat group of the Technology Department, and initiator of this project. “The cables and associated technologies were designed, developed and tested at CERN. The superconducting wire is the result of a long R&D effort that started ...

  13. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor.

    Science.gov (United States)

    Liu, Defa; Zhang, Wenhao; Mou, Daixiang; He, Junfeng; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Zhao, Lin; He, Shaolong; Peng, Yingying; Liu, Xu; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Hu, Jiangping; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J

    2012-07-03

    The recent discovery of high-temperature superconductivity in iron-based compounds has attracted much attention. How to further increase the superconducting transition temperature (T(c)) and how to understand the superconductivity mechanism are two prominent issues facing the current study of iron-based superconductors. The latest report of high-T(c) superconductivity in a single-layer FeSe is therefore both surprising and significant. Here we present investigations of the electronic structure and superconducting gap of the single-layer FeSe superconductor. Its Fermi surface is distinct from other iron-based superconductors, consisting only of electron-like pockets near the zone corner without indication of any Fermi surface around the zone centre. Nearly isotropic superconducting gap is observed in this strictly two-dimensional system. The temperature dependence of the superconducting gap gives a transition temperature T(c)~ 55 K. These results have established a clear case that such a simple electronic structure is compatible with high-T(c) superconductivity in iron-based superconductors.

  14. Quantized conductance doubling and hard gap in a two-dimensional semiconductor–superconductor heterostructure

    Science.gov (United States)

    Kjaergaard, M.; Nichele, F.; Suominen, H. J.; Nowak, M. P.; Wimmer, M.; Akhmerov, A. R.; Folk, J. A.; Flensberg, K.; Shabani, J.; Palmstrøm, C. J.; Marcus, C. M.

    2016-01-01

    Coupling a two-dimensional (2D) semiconductor heterostructure to a superconductor opens new research and technology opportunities, including fundamental problems in mesoscopic superconductivity, scalable superconducting electronics, and new topological states of matter. One route towards topological matter is by coupling a 2D electron gas with strong spin–orbit interaction to an s-wave superconductor. Previous efforts along these lines have been adversely affected by interface disorder and unstable gating. Here we show measurements on a gateable InGaAs/InAs 2DEG with patterned epitaxial Al, yielding devices with atomically pristine interfaces between semiconductor and superconductor. Using surface gates to form a quantum point contact (QPC), we find a hard superconducting gap in the tunnelling regime. When the QPC is in the open regime, we observe a first conductance plateau at 4e2/h, consistent with theory. The hard-gap semiconductor–superconductor system demonstrated here is amenable to top-down processing and provides a new avenue towards low-dissipation electronics and topological quantum systems. PMID:27682268

  15. On the explanation of the paramagnetic Meissner effect in superconductor/ferromagnet heterostructures

    Science.gov (United States)

    Nagy, B.; Khaydukov, Yu.; Efremov, D.; Vasenko, A. S.; Mustafa, L.; Kim, J.-H.; Keller, T.; Zhernenkov, K.; Devishvili, A.; Steitz, R.; Keimer, B.; Bottyán, L.

    2016-10-01

    An increase of the magnetic moment in superconductor/ferromagnet (S/F) bilayers V(40 nm)/F (\\text{F}=\\text{Fe}(1,~3 \\text{nm}) , Co(3 nm), Ni(3 nm)) was observed using SQUID magnetometry upon cooling below the superconducting transition temperature T C in magnetic fields of 10 Oe to 50 Oe applied parallel to the sample surface. A similar increase, often called the paramagnetic Meissner effect (PME), was observed before in various superconductors and superconductor/ferromagnet systems. To explain the PME effect in the presented S/F bilayers a model based on a row of vortices located at the S/F interface is proposed. According to the model the magnetic moment induced below T C consists of the paramagnetic contribution of the vortex cores and the diamagnetic contribution of the vortex-free region of the S layer. Since the thickness of the S layer is found to be 3-4 times less than the magnetic-field penetration depth, this latter diamagnetic contribution is negligible. The model correctly accounts for the sign, the approximate magnitude and the field dependence of the paramagnetic and the Meissner contributions of the induced magnetic moment upon passing the superconducting transition of a ferromagnet/superconductor bilayer.

  16. Polar Kerr effect studies of time reversal symmetry breaking states in heavy fermion superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schemm, E.R., E-mail: eschemm@alumni.stanford.edu [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Levenson-Falk, E.M. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Kapitulnik, A. [Geballe Laboratory for Advanced Materials, Stanford University, Stanford, CA 94305 (United States); Department of Physics, Stanford University, Stanford, CA 94305 (United States); Department of Applied Physics, Stanford University, Stanford, CA 94305 (United States); Stanford Institute of Energy and Materials Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States)

    2017-04-15

    Highlights: • Polar Kerr effect (PKE) probes broken time-reversal symmetry (TRS) in superconductors. • Absence of PKE below Tc in CeCoIn{sub 5} is consistent with dx2-y2 order parameter symmetry. • PKE in the B phase of the multiphase superconductor UPt3 agrees with an E2u model. • Data on URu2Si2 show broken TRS and additional structure in the superconducting state. - Abstract: The connection between chiral superconductivity and topological order has emerged as an active direction in research as more instances of both have been identified in condensed matter systems. With the notable exception of {sup 3}He-B, all of the known or suspected chiral – that is to say time-reversal symmetry-breaking (TRSB) – superfluids arise in heavy fermion superconductors, although the vast majority of heavy fermion superconductors preserve time-reversal symmetry. Here we review recent experimental efforts to identify TRSB states in heavy fermion systems via measurement of polar Kerr effect, which is a direct consequence of TRSB.

  17. Robustness of the 0 -π transition against compositional and structural ageing in superconductor/ferromagnetic/superconductor heterostructures

    Science.gov (United States)

    Loria, R.; Meneghini, C.; Torokhtii, K.; Tortora, L.; Pompeo, N.; Cirillo, C.; Attanasio, C.; Silva, E.

    2015-11-01

    We have studied the temperature induced 0 -π thermodynamic transition in Nb/PdNi/Nb superconductor/ferromagnetic/superconductor (SFS) heterostructures by microwave measurements of the superfluid density. We have observed a shift in the transition temperature with the ageing of the heterostructures, suggesting that structural and/or chemical changes took place. Motivated by the electrodynamics findings, we have extensively studied the local structural properties of the samples by means of x-ray absorption spectroscopy (XAS) technique, and the compositional profile by time-of-flight secondary ion mass spectrometry (ToF-SIMS). We found that the samples have indeed changed their properties, in particular for what concerns the interfaces and the composition of the ferromagnetic alloy layer. The structural and compositional data are consistent with the shift of the 0 -π transition toward the behavior of heterostructures with different F layers. An important emerging indication to the physics of SFS is the weak relevance of the ideality of the interfaces: even in aged samples, with less-than-ideal interfaces, the temperature-induced 0 -π transition is still detectable albeit at a different critical F thickness.

  18. Evaluation the consistency of location of moist desquamation and skin high dose area for breast cancer patients receiving adjuvant radiotherapy after breast conservative surgery.

    Science.gov (United States)

    Sun, Li-Min; Huang, Eng-Yen; Liang, Ji-An; Meng, Fan-Yun; Chang, Gia-Hsin; Tsao, Min-Jen

    2013-03-06

    To evaluate whether the location of moist desquamation matches high dose area for breast cancer patients receiving adjuvant radiotherapy (RT) after breast conservative surgery. One hundred and nine breast cancer patients were enrolled to this study. Their highest skin dose area (the hot spot) was estimated from the treatment planning. We divided the irradiated field into breast; sternal/parasternal; axillary; and inframammary fold areas. The location for moist desquamation was recorded to see if it matches the hot spot. We also analyzed other possible risk factors which may be related to the moist desquamation. Forty-eight patients with 65 locations developed moist desquamation during the RT course. Patients with larger breast sizes and easy to sweat are two independent risk factors for moist desquamation. The distribution of moist desquamation occurred most in the axillary area. All nine patients with the hot spots located at the axillary area developed moist desquamation at the axillary area, and six out of seven patients with the hot spots located at the inframammary fold developed moist desquamation there. The majority of patients with moist desquamation over the breast or sternal/parasternal areas had the hot spots located at these areas. For a patient with moist desquamation, if a hot spot is located at the axillary or inframammary fold areas, it is very likely to have moist desquamation occur there. On the other hand, if moist desquamation occurs over the breast or sternal/parasternal areas, we can highly expect these two areas are also the hot spot locations.

  19. Reporting consistently on CSR

    DEFF Research Database (Denmark)

    Thomsen, Christa; Nielsen, Anne Ellerup

    2006-01-01

    of a case study showing that companies use different and not necessarily consistent strategies for reporting on CSR. Finally, the implications for managerial practice are discussed. The chapter concludes by highlighting the value and awareness of the discourse and the discourse types adopted......This chapter first outlines theory and literature on CSR and Stakeholder Relations focusing on the different perspectives and the contextual and dynamic character of the CSR concept. CSR reporting challenges are discussed and a model of analysis is proposed. Next, our paper presents the results...... in the reporting material. By implementing consistent discourse strategies that interact according to a well-defined pattern or order, it is possible to communicate a strong social commitment on the one hand, and to take into consideration the expectations of the shareholders and the other stakeholders...

  20. A Magnetic Consistency Relation

    CERN Document Server

    Jain, Rajeev Kumar

    2012-01-01

    If cosmic magnetic fields are indeed produced during inflation, they are likely to be correlated with the scalar metric perturbations that are responsible for the Cosmic Microwave Background anisotropies and Large Scale Structure. Within an archetypical model of inflationary magnetogenesis, we show that there exists a new simple consistency relation for the non-Gaussian cross correlation function of the scalar metric perturbation with two powers of the magnetic field in the squeezed limit where the momentum of the metric perturbation vanishes. We emphasize that such a consistency relation turns out to be extremely useful to test some recent calculations in the literature. Apart from primordial non-Gaussianity induced by the curvature perturbations, such a cross correlation might provide a new observational probe of inflation and can in principle reveal the primordial nature of cosmic magnetic fields.

  1. Consistency in Distributed Systems

    OpenAIRE

    Kemme, Bettina; Ramalingam, Ganesan; Schiper, André; Shapiro, Marc; Vaswani, Kapil

    2013-01-01

    International audience; In distributed systems, there exists a fundamental trade-off between data consistency, availability, and the ability to tolerate failures. This trade-off has significant implications on the design of the entire distributed computing infrastructure such as storage systems, compilers and runtimes, application development frameworks and programming languages. Unfortunately, it also has significant, and poorly understood, implications for the designers and developers of en...

  2. Geometrically Consistent Mesh Modification

    KAUST Repository

    Bonito, A.

    2010-01-01

    A new paradigm of adaptivity is to execute refinement, coarsening, and smoothing of meshes on manifolds with incomplete information about their geometry and yet preserve position and curvature accuracy. We refer to this collectively as geometrically consistent (GC) mesh modification. We discuss the concept of discrete GC, show the failure of naive approaches, and propose and analyze a simple algorithm that is GC and accuracy preserving. © 2010 Society for Industrial and Applied Mathematics.

  3. p-wave superconductors in dilaton gravity

    CERN Document Server

    Fan, ZhongYing

    2013-01-01

    In this paper, we study peculiar properties of p-wave superconductors in dilaton gravity. The scale invariance of the bulk geometry is effectively broken due to the existence of dilaton. By coupling the dilaton to the non-Abelian gauge field, i.e., $-\\frac14 e^{-\\beta \\Phi} F^a_{\\mu\

  4. Enhancing critical current density of cuprate superconductors

    Science.gov (United States)

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  5. Stripe phases in high-temperature superconductors.

    Science.gov (United States)

    Emery, V J; Kivelson, S A; Tranquada, J M

    1999-08-03

    Stripe phases are predicted and observed to occur in a class of strongly correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representatives. The existence of stripe correlations necessitates the development of new principles for describing charge transport and especially superconductivity in these materials.

  6. Kinetic energy driven pairing in cuprate superconductors

    NARCIS (Netherlands)

    Maier, TA; Jarrell, M; Macridin, A; Slezak, C

    2004-01-01

    Pairing occurs in conventional superconductors through a reduction of the electronic potential energy accompanied by an increase in kinetic energy. In the underdoped cuprates, optical experiments show that pairing is driven by a reduction of the electronic kinetic energy. Using the dynamical cluster

  7. Stripe Phases in High-Temperature Superconductors

    Science.gov (United States)

    Emery, V. J.; Kivelson, S. A.; Tranquada, J. M.

    1999-08-01

    Stripe phases are predicted and observed to occur in a class of strongly correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representatives. The existence of stripe correlations necessitates the development of new principles for describing charge transport and especially superconductivity in these materials.

  8. Epitaxy of semiconductor-superconductor nanowires

    DEFF Research Database (Denmark)

    Krogstrup, P.; Ziino, N.L.B.; Chang, W.

    2015-01-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface...

  9. Transverse acousto-electric effect in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lipavský, P., E-mail: lipavsky@karlov.mff.cuni.cz [Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, Prague 2 121 16 (Czech Republic); Koláček, J., E-mail: kolacek@fzu.cz [Institute of Physics, Academy of Sciences, Cukrovarnická 10, Prague 6 162 00 (Czech Republic); Lin, P.-J., E-mail: fareh.lin@gmail.com [Research Department, Universal Analytics Inc., RR2 Airdrie, AB T4B 2A4 (Canada)

    2016-06-15

    Highlights: • A description of an acousto-electric effect of superconductors is formulated, continuous over the phase transition. • Interactions among a sound wave, normal and superconducting electrons are included. • Response radiation attains a maximum before transition to the normal state. • Effects should be observable in clean niobium. - Abstract: We formulate a theory based on the time-dependent Ginzburg–Landau (TDGL) theory and Newtonian vortex dynamics to study the transverse acousto-electric response of a type-II superconductor with Abrikosov vortex lattice. When exposed to a transverse acoustic wave, Cooper pairs emerge from the moving atomic lattice and moving electrons. As in the Tolman–Stewart effect in a normal metal, an electromagnetic field is radiated from the superconductor. We adapt the equilibrium-based TDGL theory to this non-equilibrium system by using a floating condensation kernel. Due to the interaction between normal and superconducting components, the radiated electric field as a function of magnetic field attains a maximum value occurring below the upper critical magnetic field. This local increase in electric field has weak temperature dependence and is suppressed by the presence of impurities in the superconductor.

  10. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  11. Noncontact Measurement Of Critical Current In Superconductor

    Science.gov (United States)

    Israelsson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Critical current measured indirectly via flux-compression technique. Magnetic flux compressed into gap between superconductive hollow cylinder and superconductive rod when rod inserted in hole in cylinder. Hall-effect probe measures flux density before and after compression. Method does not involve any electrical contact with superconductor. Therefore, does not cause resistive heating and consequent premature loss of superconductivity.

  12. Excitations in Topological Superfluids and Superconductors

    Science.gov (United States)

    Wu, Hao

    In this thesis I present the theoretical work on Fermionic surface states, and %the bulk Bosonic collective excitations in topological superfluids and superconductors. Broken symmetries %Bulk-edge correspondence in topological condensed matter systems have implications for the spectrum of Fermionic excitations confined on surfaces or topological defects. (Abstract shortened by ProQuest.).

  13. Technological Evolution of High Temperature Superconductors

    Science.gov (United States)

    2015-12-01

    power level would reach 250 kilowatts in a joint Navy-Advanced Research Projects Agency (the fore- runner to the Defense Advanced Research Projects...A1 2/22/2007 Method and apparatus for cooling a blade server H01L 021/66 US- 20060283620 A1 American Superconductor Corporation (United States

  14. Towards Structural Testing of Superconductor Electronics

    NARCIS (Netherlands)

    Arun, A.J.; Kerkhoff, Hans G.

    2003-01-01

    Many of the semiconductor technologies are already facing limitations while new-generation data and telecommunication systems are implemented. Although in its infancy, superconductor electronics (SCE) is capable of handling some of these high-end tasks. We have started a defect-oriented test

  15. Consistent wind Facilitates Vection

    Directory of Open Access Journals (Sweden)

    Masaki Ogawa

    2011-10-01

    Full Text Available We examined whether a consistent haptic cue suggesting forward self-motion facilitated vection. We used a fan with no blades (Dyson, AM01 providing a wind of constant strength and direction (wind speed was 6.37 m/s to the subjects' faces with the visual stimuli visible through the fan. We used an optic flow of expansion or contraction created by positioning 16,000 dots at random inside a simulated cube (length 20 m, and moving the observer's viewpoint to simulate forward or backward self-motion of 16 m/s. we tested three conditions for fan operation, which were normal operation, normal operation with the fan reversed (ie, no wind, and no operation (no wind and no sound. Vection was facilitated by the wind (shorter latency, longer duration and larger magnitude values with the expansion stimuli. The fan noise did not facilitate vection. The wind neither facilitated nor inhibited vection with the contraction stimuli, perhaps because a headwind is not consistent with backward self-motion. We speculate that the consistency between multi modalities is a key factor in facilitating vection.

  16. A mechanistic description of the global COS cycle consistent with atmospheric measurements and its potential to evaluate gross primary production of vegetation models

    Science.gov (United States)

    Launois, Thomas; Peylin, Philippe; Belviso, Sauveur; Bopp, Laurent; Ogée, Jérôme; Wingate, Lisa; Cuntz, Matthias

    2016-04-01

    Accurate estimates of the gross carbon fluxes - photosynthesis and respiration - are essential to predict the ecosystem carbon fluxes and stocks and their evolution in a changing climate. The gross primary productivity (GPP) in the current dynamic global vegetation models (DGVMs), however, shows large differences in terms of mean values, phase and amplitude. As large scale measurements of the GPP are not possible, their estimates are usually based on indirect tracers. Carbonyl sulfide (COS) has been proposed as a tracer of GPP since COS and CO2 are dominantly taken up by plants via the same enzyme during photosynthesis. Thus leaf uptakes of COS and CO2 are often found to be proportional, with a coefficient of proportionality (LRU) that is species-dependant according to laboratory measurements. However contrarily to CO2, atmospheric records of COS over the last decades show a strong seasonal cycle but with no significant trend, which implies roughly equilibrated sources and sinks of COS at the global scale. Most recent estimates of COS uptake by plants using this LRU concept led to larger sinks over land than initially estimated. In order to maintain a closed atmospheric budget, a compensatory COS source had to be found, with the ocean being suggested as the most likely candidate. In this work, we propose a new mechanistically-based parameterization of the major sources and sinks of COS, allowing to close the global atmospheric budget. For the ocean, we used the ocean general circulation and biogeochemistry model NEMO-PISCES to assess the marine source of COS. Using the simulated organic compounds at the surface, we derived a direct source of COS through the COS photo-production as well as an indirect source through the emissions of sulfur compounds (DMS). The resulting simulated global fluxes correspond to a net source of COS of around 800 GgS yr-1, spatially and temporally consistent with the suggested missing source. For the land, we considered most anoxic soils

  17. Local self-field measurements in Tl-2223 polycrystalline superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Saenz, A. [Univ. de Costa Rica, San Jose (Costa Rica). Escuela de Fisica; Niculescu, H. [Florida Agricultural and Mechanical Univ., Tallahassee, FL (United States). Dept. of Physics; Gielisse, P.J. [Dept. of Mechanical Engineering, Florida State Univ., Tallahassee, FL (United States)

    2000-07-01

    We report local self-field measurements on superconducting (Tl-2223) disks in an applied field. The axial components of the self-field generated by polycrystalline superconductors, have been measured at points above the sample using a Hall probe. The measurements were conducted with a computer controlled precision x-y scanning assembly, at liquid nitrogen temperatures. Single point and two- dimensional distributions of the local self-field above the samples immersed in a homogeneous applied field up to 16 mT, were recorded. In an increasing/decreasing magnetic field the magnetic response of the superconductors traverses hysteresis loops due to inter- and intragranular flux pinning. The field for full flux penetration and the maximum shielded field have been identified from characteristic points on the hysteresis loops. Evaluation of the average intergrain current density j{sub c}, assuming a uniform critical current density, resulted in the value 2.7 x 10{sup 6} A/m{sup 2}. (orig.)

  18. Isotope and multiband effects in layered superconductors.

    Science.gov (United States)

    Bussmann-Holder, Annette; Keller, Hugo

    2012-06-13

    In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.

  19. A parameter optimization tool for evaluating the physical consistency of the plot-scale water budget of the integrated eco-hydrological model GEOtop in complex terrain

    Science.gov (United States)

    Bertoldi, Giacomo; Cordano, Emanuele; Brenner, Johannes; Senoner, Samuel; Della Chiesa, Stefano; Niedrist, Georg

    2017-04-01

    In mountain regions, the plot- and catchment-scale water and energy budgets are controlled by a complex interplay of different abiotic (i.e. topography, geology, climate) and biotic (i.e. vegetation, land management) controlling factors. When integrated, physically-based eco-hydrological models are used in mountain areas, there are a large number of parameters, topographic and boundary conditions that need to be chosen. However, data on soil and land-cover properties are relatively scarce and do not reflect the strong variability at the local scale. For this reason, tools for uncertainty quantification and optimal parameters identification are essential not only to improve model performances, but also to identify most relevant parameters to be measured in the field and to evaluate the impact of different assumptions for topographic and boundary conditions (surface, lateral and subsurface water and energy fluxes), which are usually unknown. In this contribution, we present the results of a sensitivity analysis exercise for a set of 20 experimental stations located in the Italian Alps, representative of different conditions in terms of topography (elevation, slope, aspect), land use (pastures, meadows, and apple orchards), soil type and groundwater influence. Besides micrometeorological parameters, each station provides soil water content at different depths, and in three stations (one for each land cover) eddy covariance fluxes. The aims of this work are: (I) To present an approach for improving calibration of plot-scale soil moisture and evapotranspiration (ET). (II) To identify the most sensitive parameters and relevant factors controlling temporal and spatial differences among sites. (III) Identify possible model structural deficiencies or uncertainties in boundary conditions. Simulations have been performed with the GEOtop 2.0 model, which is a physically-based, fully distributed integrated eco-hydrological model that has been specifically designed for mountain

  20. Infanticide and moral consistency.

    Science.gov (United States)

    McMahan, Jeff

    2013-05-01

    The aim of this essay is to show that there are no easy options for those who are disturbed by the suggestion that infanticide may on occasion be morally permissible. The belief that infanticide is always wrong is doubtfully compatible with a range of widely shared moral beliefs that underlie various commonly accepted practices. Any set of beliefs about the morality of abortion, infanticide and the killing of animals that is internally consistent and even minimally credible will therefore unavoidably contain some beliefs that are counterintuitive.

  1. The Rucio Consistency Service

    CERN Document Server

    Serfon, Cedric; The ATLAS collaboration

    2016-01-01

    One of the biggest challenge with Large scale data management system is to ensure the consistency between the global file catalog and what is physically on all storage elements. To tackle this issue, the Rucio software which is used by the ATLAS Distributed Data Management system has been extended to automatically handle lost or unregistered files (aka Dark Data). This system automatically detects these inconsistencies and take actions like recovery or deletion of unneeded files in a central manner. In this talk, we will present this system, explain the internals and give some results.

  2. Evaluation of three different data fusion approaches that uses satellite soil moisture from different passive microwave sensors to construct one consistent climate record

    Science.gov (United States)

    van der Schalie, Robin; de Jeu, Richard; Kerr, Yann; Wigneron, Jean-Pierre; Rodríguez-Fernández, Nemesio; Al-Yaari, Amen; Drusch, Matthias; Mecklenburg, Susanne; Dolman, Han

    2016-04-01

    Datasets that are derived from satellite observations are becoming increasingly important for measuring key parameters of the Earth's climate and are therefore crucial in research on climate change, giving the opportunity to researchers to detect anomalies and long-term trends globally. One of these key parameters is soil moisture (SM), which has a large impact on water, energy and biogeochemical cycles worldwide. A long-term SM data record from active and passive microwave satellite observations was developed as part of ESA's Climate Change Initiative (ESA-CCI-SM, http://www.esa-soilmoisture-cci.org/). Currently the dataset covers a period from 1978 to 2014 and is updated regularly, observations from a several microwave satellites including: ERS-1, ERS-2, METOP-A, Nimbus 7 SMMR, DMSP SSM/I, TRMM TMI, Aqua AMSRE, Coriolis WindSat, and GCOM-W1 AMSR2. In 2009, ESA launched the Soil Moisture and Ocean Salinity (SMOS, Kerr et al., 2010) mission, carrying onboard a unique L-band radiometer, but its SM retrievals are not yet part of this dataset. Due to the different radiometric characteristics of SMOS, integrating SMOS into the ESA-CCI-SM dataset is not straight forward. Therefore several approaches have been tested to fuse soil moisture retrievals from SMOS and AMSRE, which currently forms the basis of the passive microwave part within ESA-CCI-SM project. These approaches are: 1. A Neural Network Fusion approach (Rodríguez-Fernández et al., 2015), 2. A regression approach (Wigneron et al., 2004; Al-Yaari et al., 2015) and 3. A radiative transfer based approach, using the Land Parameter Retrieval Model (Van der Schalie et al., 2016). This study evaluates the three different approaches and tests their skills against multiple datasets, including MERRA-Land, ERA-Interim/Land, the current ESA-CCI-SM v2.2 and in situ measurements from the International Soil Moisture Network and present a recommendation for the potential integration of SMOS soil moisture into the ESA

  3. When is holography consistent?

    Energy Technology Data Exchange (ETDEWEB)

    McInnes, Brett, E-mail: matmcinn@nus.edu.sg [National University of Singapore (Singapore); Ong, Yen Chin, E-mail: yenchin.ong@nordita.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-106 91 Stockholm (Sweden)

    2015-09-15

    Holographic duality relates two radically different kinds of theory: one with gravity, one without. The very existence of such an equivalence imposes strong consistency conditions which are, in the nature of the case, hard to satisfy. Recently a particularly deep condition of this kind, relating the minimum of a probe brane action to a gravitational bulk action (in a Euclidean formulation), has been recognized; and the question arises as to the circumstances under which it, and its Lorentzian counterpart, is satisfied. We discuss the fact that there are physically interesting situations in which one or both versions might, in principle, not be satisfied. These arise in two distinct circumstances: first, when the bulk is not an Einstein manifold and, second, in the presence of angular momentum. Focusing on the application of holography to the quark–gluon plasma (of the various forms arising in the early Universe and in heavy-ion collisions), we find that these potential violations never actually occur. This suggests that the consistency condition is a “law of physics” expressing a particular aspect of holography.

  4. Irreversible Magnetization Deep in the Vortex-Liquid State of a 2D Superconductor at High Magnetic Fields

    OpenAIRE

    Maniv, T.; Zhuravlev, V.; Wosnitza, J.; Hagel, J.

    2004-01-01

    The remarkable phenomenon of weak magnetization hysteresis loops, observed recently deep in the vortex-liquid state of a nearly two-dimensional (2D) superconductor at low temperatures, is shown to reflect the existence of an unusual vortex-liquid state, consisting of collectively pinned crystallites of easily sliding vortex chains.

  5. Observation of Leggett's collective mode in a multiband MgB2 superconductor.

    Science.gov (United States)

    Blumberg, G; Mialitsin, A; Dennis, B S; Klein, M V; Zhigadlo, N D; Karpinski, J

    2007-11-30

    We report observation of Leggett's collective mode in a multiband MgB2 superconductor with Tc=39 K arising from the fluctuations in the relative phase between two superconducting condensates. The novel mode is observed by Raman spectroscopy at 9.4 meV in the fully symmetric scattering channel. The observed mode frequency is consistent with theoretical considerations based on first-principles computations.

  6. Density of states of s+d-wave superconductor with Anderson impurities

    Energy Technology Data Exchange (ETDEWEB)

    Borkowski, L S, E-mail: lsb@man.poznan.p [Quantum Physics Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan (Poland)

    2009-03-01

    We present results for the density of states of a s+d-wave superconductor containing finite concentration of Anderson impurities within the self-consistent slave boson approximation. There may be zero, one or two peaks in the energy gap at low energies. The height of the peaks is controlled by the impurity concentration whereas their position depends on the strength of interaction between impurities and the conduction band. Experimental consequences are briefly discussed.

  7. Imaging the anisotropic nonlinear meissner effect in nodal YBa2 Cu3 O7-δ thin-film superconductors.

    Science.gov (United States)

    Zhuravel, Alexander P; Ghamsari, B G; Kurter, C; Jung, P; Remillard, S; Abrahams, J; Lukashenko, A V; Ustinov, Alexey V; Anlage, Steven M

    2013-02-22

    We have directly imaged the anisotropic nonlinear Meissner effect in an unconventional superconductor through the nonlinear electrodynamic response of both (bulk) gap nodes and (surface) Andreev bound states. A superconducting thin film is patterned into a compact self-resonant spiral structure, excited near resonance in the radio-frequency range, and scanned with a focused laser beam perturbation. At low temperatures, direction-dependent nonlinearities in the reactive and resistive properties of the resonator create photoresponse that maps out the directions of nodes, or of bound states associated with these nodes, on the Fermi surface of the superconductor. The method is demonstrated on the nodal superconductor YBa2Cu3O7-δ and the results are consistent with theoretical predictions for the bulk and surface contributions.

  8. Consistent quantum measurements

    Science.gov (United States)

    Griffiths, Robert B.

    2015-11-01

    In response to recent criticisms by Okon and Sudarsky, various aspects of the consistent histories (CH) resolution of the quantum measurement problem(s) are discussed using a simple Stern-Gerlach device, and compared with the alternative approaches to the measurement problem provided by spontaneous localization (GRW), Bohmian mechanics, many worlds, and standard (textbook) quantum mechanics. Among these CH is unique in solving the second measurement problem: inferring from the measurement outcome a property of the measured system at a time before the measurement took place, as is done routinely by experimental physicists. The main respect in which CH differs from other quantum interpretations is in allowing multiple stochastic descriptions of a given measurement situation, from which one (or more) can be selected on the basis of its utility. This requires abandoning a principle (termed unicity), central to classical physics, that at any instant of time there is only a single correct description of the world.

  9. Thermal fluctuation conductivity and dimensionality in iron-based superconductors

    Science.gov (United States)

    Wang, Rui; Li, Ding-Ping

    2016-09-01

    The time-dependent Ginzburg-Landau Lawrence-Doniach model is used to investigate the superconducting fluctuation electrical conductivities. The theoretical result based on the self-consistent Gaussian approximation is used to fit the transport measurement data of iron-based superconductors F-doped LaOFeAs and BaFe2-xNixAs2. We demonstrate that LaOFeAs shows layered behavior, while BaFe2-xNixAs2 is more of a 3D feature. The conductivity in the region near Tc is well described by the theoretical formula. Project supported by the National Natural Science Foundation of China (Grant No. 11274018).

  10. Imaging the anisotropic nonlinear Meissner effect in unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhuravel, Alexander P. [B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Kharkov (Ukraine); Ghamsari, Behnood G.; Kurter, Cihan; Abrahams, John [CNAM, Physics Department, University of Maryland, College Park, MD (United States); Jung, Philipp; Lukashenko, Alexander; Ustinov, Alexey V. [Physikalisches Institut and DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, Karlsruhe (Germany); Remillard, Stephen [Physics Department, Hope College, Holland, MI (United States); Anlage, Steven M. [CNAM, Physics Department, University of Maryland, College Park, MD (United States); Physikalisches Institut and DFG-Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2013-07-01

    We present measurements on the anisotropic nonlinear Meissner effect (aNLME). Using a laser scanning microscope we have directly imaged this effect in a self-resonant spiral patterned from a thin film of the d{sub x{sup 2}-y{sup 2}} superconductor YBa{sub 2}Cu{sub 3}O{sub 7-δ}. The spiral is excited at one of its resonant frequencies while a focused laser spot is scanned across its surface. The local illumination by the laser gives rise to a detectable change in the resonant properties. At low temperatures, the aNLME causes a direction dependent contribution to the critical current density. This makes it possible to image the directions of nodes and anti-nodes of the superconducting order parameter and the contribution of Andreev bound states associated with them. These two contributions to the photoresponse can be distinguished by their temperature dependence, which is consistent with theoretical predictions.

  11. Composite Topological Excitations in Ferromagnet-Superconductor Heterostructures.

    Science.gov (United States)

    Hals, Kjetil M D; Schecter, Michael; Rudner, Mark S

    2016-07-01

    We investigate the formation of a new type of composite topological excitation-the Skyrmion-vortex pair (SVP)-in hybrid systems consisting of coupled ferromagnetic and superconducting layers. Spin-orbit interaction in the superconductor mediates a magnetoelectric coupling between the vortex and the Skyrmion, with a sign (attractive or repulsive) that depends on the topological indices of the constituents. We determine the conditions under which a bound SVP is formed and characterize the range and depth of the effective binding potential through analytical estimates and numerical simulations. Furthermore, we develop a semiclassical description of the coupled Skyrmion-vortex dynamics and discuss how SVPs can be controlled by applied spin currents.

  12. Gate-tuned Superconductor-Insulator transition in (Li,Fe)OHFeSe

    OpenAIRE

    Lei, B; Xiang, Z. J.; Lu, X. F.; Wang, N. Z.; Chang, J. R.; Shang, C.; Luo, X. G.; Wu, T.; Z. Sun; Chen, X. H.

    2015-01-01

    The antiferromagnetic(AFM) insulator-superconductor transition has been always a center of interest in the underlying physics of unconventional superconductors. The quantum phase transition between Mott insulator with AFM and superconductor can be induced by doping charge carriers in high-Tc cuprate superconductors. For the best characterized organic superconductors of k-(BEDT-TTF)2X (X=anion), a first order transition between AFM insulator and superconductor can be tuned by applied external ...

  13. Ginzburg-Landau theory of dirty two band s(+/-) superconductors.

    Science.gov (United States)

    Ng, Tai-Kai

    2009-12-04

    In this Letter, we study the effect of nonmagnetic impurities on two-band superconductors by deriving the corresponding Ginzburg-Landau equation. Depending on the strength of (impurity-induced) interband scattering, we find that there are two distinctive regions where the superconductors behave very differently. In the strong impurity-induced interband scattering regime T(c) band, the two-band superconductor behaves as an effective one-band dirty superconductor. In the other limit T(c) > or = tau(t)(-1), the dirty two-band superconductor is described by a network of frustrated two-band superconductor grains connected by Josephson tunneling junctions, and the Anderson theorem breaks down.

  14. Shiba chains of scalar impurities on unconventional superconductors

    Science.gov (United States)

    Neupert, Titus; Yazdani, A.; Bernevig, B. Andrei

    2016-03-01

    We show that a chain of nonmagnetic impurities deposited on a fully gapped two- or three-dimensional superconductor can become a topological one-dimensional superconductor with protected Majorana bound states at its end. A prerequisite is that the pairing potential of the underlying superconductor breaks the spin-rotation symmetry, as it is generically the case in systems with strong spin-orbit coupling. We illustrate this mechanism for a spinless triplet-superconductor (px+i py ) and a time-reversal symmetric Rashba superconductor with a mixture of singlet and triplet pairing. For the latter, we show that the impurity chain can be topologically nontrivial even if the underlying superconductor is topologically trivial.

  15. Vibronic dispersion in the copper oxide superconductors

    Science.gov (United States)

    Goodenough, J. B.; Zhou, J.-S.

    1994-02-01

    Attempts to describe the normal-state electronic behavior of the copper oxide superconductors have been unable to reconcile the following observations: (i) a well-defined Fermi surface with a locus predicted by band theory, but having charge carriers of a sign predicted for a Mott-Hubbard splitting of the band; (ii) a change in sign of the carriers to that predicted by band theory, but without a significant change in the locus of the Fermi surface, on overdoping beyond the narrow superconductive compositional range; (iii) a remarkable stability of the narrow range of superconductive charge-carrier concentrations in the CuO2 sheets even in the presence of charge transfer from nonsuperconductive intergrowth layers; (iv) a dramatic sensitivity of the Néel temperature of the parent compound to oxidation of the CuO2 sheets, but the persistence of antiferromagnetic spin fluctuations into the superconductive compositions; and (v) unusual transport properties that cannot be treated within the Migdal approximation and are insensitive to high magnetic fields. To address this impasse, we propose a phenomenological polaron model based on the observation that the system must accommodate to the coexistence of ``ionic'' and ``covalent'' Cu-O bonding having different equilibrium Cu-O bond lengths. We designate this entity a correlation polaron. Covalent Cu-O bonding with molecular-orbital formation occurs within the polaron, which moves in a background of ionic Cu-O bonding. Vibronic coupling at the ``avoided crossover'' from ionic to covalent bonding allows diffusional motion of uncoupled polarons without any motional enthalpy in the mobility. At temperatures T>Tl>~300 K the polarons are uncoupled and move randomly; in the narrow superconductive compositional range they condense below Tl to form a distinguishable thermodynamic phase consisting of extended vibronic states. In this ``polaron liquid,'' a distinction between bonding and antibonding states within the polarons opens a

  16. Theoretical study of pair density wave superconductors

    Science.gov (United States)

    Zheng, Zhichao

    In conventional superconductors, the Cooper pairs are formed from quasiparticles. We explore another type of superconducting state, a pair density wave (PDW) order, which spontaneously breaks some of the translational and point group symmetries. In a PDW superconductor, the order parameter is a periodic function of the center-of-mass coordinate, and the spatial average value of the superconducting order parameter vanishes. In the early 1960s, following the success of the BCS theory of superconductivity, Fulde and Ferrell and Larkin and Ovchinnikov (FFLO) developed theories of inhomogeneous superconducting states. Because of this Zeeman splitting in a magnetic field, the Cooper pairs having a nonzero center-of-mass momentum are more stable than the normal pairing, leading to the FFLO state. Experiments suggest possible occurrence of the FFLO state in the heavy-fermion compound CeCoIn5, and in quasi-low-dimensional organic superconductors. FFLO phases have also been argued to be of importance in understanding ultracold atomic Fermi gases and in the formation of color superconductivity in high density quark matter. In all Fermi superfluids known at the present time, Cooper pairs are composed of particles with spin 1/2. The spin component of a pair wave function can be characterized by its total spin S = 0 (singlet) and S = 1 (triplet). In the discovered broken inversion superconductors CePt3Si, Li2Pt3B, and Li2Pd3B, the magnetic field leads to novel inhomogeneous superconducting states, namely the helical phase and the multiple-q phase. Its order parameter exhibits periodicity similar to FFLO phase, and the consequences of both phases are same: the enhancement of transition temperature as a function of magnetic field. We have studied the PDW phases in broken parity superconductors with vortices included. By studying PDW vortex states, we find the usual Abrikosov vortex solution is unstable against a new solution with fractional vortex pairs. We have also studied the

  17. When Is Holography Consistent?

    CERN Document Server

    McInnes, Brett

    2015-01-01

    Holographic duality relates two radically different kinds of theory: one with gravity, one without. The very existence of such an equivalence imposes strong consistency conditions which are, in the nature of the case, hard to satisfy. Recently a particularly deep condition of this kind, relating the minimum of a probe brane action to a gravitational bulk action (in a Euclidean formulation), has been recognised; and the question arises as to the circumstances under which it, and its Lorentzian counterpart, are satisfied. We discuss the fact that there are physically interesting situations in which one or both versions might, in principle, \\emph{not} be satisfied. These arise in two distinct circumstances: first, when the bulk is not an Einstein manifold, and, second, in the presence of angular momentum. Focusing on the application of holography to the quark-gluon plasma (of the various forms arising in the early Universe and in heavy-ion collisions), we find that these potential violations never actually occur...

  18. Low resistivity contact to iron-pnictide superconductors

    Science.gov (United States)

    Tanatar, Makariy; Prozorov, Ruslan; Ni, Ni; Bud& #x27; ko, Sergey; Canfield, Paul

    2013-05-28

    Method of making a low resistivity electrical connection between an electrical conductor and an iron pnictide superconductor involves connecting the electrical conductor and superconductor using a tin or tin-based material therebetween, such as using a tin or tin-based solder. The superconductor can be based on doped AFe.sub.2As.sub.2, where A can be Ca, Sr, Ba, Eu or combinations thereof for purposes of illustration only.

  19. Search for New and Better High Temperature Superconductors

    Science.gov (United States)

    2014-03-30

    AFRL-OSR-VA-TR-2015-0096 (MURI 09) TOWARDS NEW AND BETTER HIGH TEMPERATURE SUPERCONDUCTORS Malcolm Beasley LELAND STANFORD JUNIOR UNIV CA Final...Search for New and Better High Temperature Superconductors 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-09-1-0583 5c. PROGRAM ELEMENT NUMBER 6...SUPPLEMENTARY NOTES 14. ABSTRACT This program was focused on an integrated search for new superconductors in material systems with perceived

  20. Andreev Spectra and Subgap Bound States in Multiband Superconductors

    OpenAIRE

    Golubov, A. A.; Brinkman, A.; Tanaka, Yukio; Mazin, I.I.; Dolgov, O. V.

    2009-01-01

    The theory of Andreev conductance is formulated for junctions involving normal metals (N) and multiband superconductors (S) and applied to the case of superconductors with nodeless extended $s_{\\pm}$-wave order parameter symmetry, as possibly realized in the recently discovered ferro pnictides. We find qualitative differences from tunneling into s-wave or d-wave superconductors that may help to identify such a state. First, interband interference leads to a suppression of Andreev reflection i...

  1. Conductance of d-wave superconductor/normal metal/d-wave superconductor junctions

    Science.gov (United States)

    Pesin, Dmytro; Andreev, Anton; Spivak, Boris

    2008-03-01

    We develop a theory of the low-temperature conductance of superconductor/normal metal/superconductor junctions in which the superconductors have d-wave pairing symmetry. We show that at low temperatures the conductance of the junction is determined by the inelastic relaxation time of quasiparticles in the bulk of d-wave superconductors, GDND√&(d)circ;ɛ. Thus it greatly exceeds the conductance of the normal metal part of the junction, which is controlled by the elastic mean free path. This dependence of GDND on the inelastic relaxation time should be contrasted with that of the low-temperature conductance of the junction in the case of the s- wave superconductor leads, GSNS. In the latter case the conductance is proportional to the first power of the inelastic electron relaxation time in the normal metal part of the junction, GSNSτɛ^(n) [1]. [1] S. V. Lempitskii, Sov. Phys. JETP 58, 624 (1983); U. Gunsenheimer and A. D. Zaikin, Phys. Rev. B50, 6317 (1994); F. Zhou and B. Spivak, JETP Lett. 65, 369 (1997).

  2. A modified beam stiffness matrix for superconductor elements

    Energy Technology Data Exchange (ETDEWEB)

    Gori, R.; Schrefler, B.A. (Padua Univ. (Italy). Ist. di Scienza e Tecnica delle Costruzioni)

    1989-10-01

    The components of the stiffness matrix of superconductor elements are derived taking into account the effects of the wrapping of superconductor strands around the internal insulating strip and of possible stabilizing profiles around conductor core. It is already known that the inclination of the strands referred to the longitudinal axis of the superconductor produces a reduction of the axial stiffness and a considerable increase in torsional stiffness. Here also the effects of bending are taken into account, completing hence the previous investigation. Examples relating to superconductors proposed for the Toroidal Field Coil of the Next European Torus are shown. In that instance the strand transposition is carried out by roebling. (orig.).

  3. Structural and Chemical Diversity of Tl-Based Cuprate Superconductors

    Institute of Scientific and Technical Information of China (English)

    信赢

    2003-01-01

    The Tl-based cuprate superconductor family is the largest family in crystal structure and chemical composition among all high Tc cuprate superconductors. The Tl family can be divided into two sub-families, the Tl single layer family and the Tl double layer family, based on their crystal structural characteristics. The Tl single layer family is an ideal material for investigating the evolution of crystalline formation, charge carrier density, chemical composition, transport properties, superconductivity and their relationships. The Tl family contains almostall possible crystal structures discovered in high-Tc cuprate superconductors. Tl cuprate superconductors are of great importance not only in studying high-temperature superconductivity but also in commercial applications.

  4. Evaluation of the Consistency of MODIS Land Cover Product (MCD12Q1 Based on Chinese 30 m GlobeLand30 Datasets: A Case Study in Anhui Province, China

    Directory of Open Access Journals (Sweden)

    Dong Liang

    2015-11-01

    Full Text Available Land cover plays an important role in the climate and biogeochemistry of the Earth system. It is of great significance to produce and evaluate the global land cover (GLC data when applying the data to the practice at a specific spatial scale. The objective of this study is to evaluate and validate the consistency of the Moderate Resolution Imaging Spectroradiometer (MODIS land cover product (MCD12Q1 at a provincial scale (Anhui Province, China based on the Chinese 30 m GLC product (GlobeLand30. A harmonization method is firstly used to reclassify the land cover types between five classification schemes (International Geosphere Biosphere Programme (IGBP global vegetation classification, University of Maryland (UMD, MODIS-derived Leaf Area Index and Fractional Photosynthetically Active Radiation (LAI/FPAR, MODIS-derived Net Primary Production (NPP, and Plant Functional Type (PFT of MCD12Q1 and ten classes of GlobeLand30, based on the knowledge rule (KR and C4.5 decision tree (DT classification algorithm. A total of five harmonized land cover types are derived including woodland, grassland, cropland, wetland and artificial surfaces, and four evaluation indicators are selected including the area consistency, spatial consistency, classification accuracy and landscape diversity in the three sub-regions of Wanbei, Wanzhong and Wannan. The results indicate that the consistency of IGBP is the best among the five schemes of MCD12Q1 according to the correlation coefficient (R. The “woodland” LAI/FPAR is the worst, with a spatial similarity (O of 58.17% due to the misclassification between “woodland” and “others”. The consistency of NPP is the worst among the five schemes as the agreement varied from 1.61% to 56.23% in the three sub-regions. Furthermore, with the biggest difference of diversity indices between LAI/FPAR and GlobeLand30, the consistency of LAI/FPAR is the weakest. This study provides a methodological reference for evaluating the

  5. I. Low frequency noise in metal films at the superconducting transition. II. Resistance of superconductor - normal metal- superconductor sandwiches and the quasiparticle relaxation time

    Energy Technology Data Exchange (ETDEWEB)

    Hsiang, T.Y.

    1977-07-01

    Measurements of the noise power spectra of tin and lead films at the superconducting transition in the frequency range of 0.1 Hz to 5k Hz are reported. Two types of samples were made. Type A were evaporated directly onto glass substrate, while Type B were evaporated onto glass or sapphire substrate with a 50A aluminum underlay. The results were consistent with a thermal diffusion model which attributes the noise to the intrinsic temperature fluctuation in the metal film driven with a random energy flux source. In both types of metal films, the noise power was found to be proportional to (V-bar)/sup 2/ ..beta../sup 2//..cap omega.., where V-bar was the mean voltage across the sample, ..beta.. was the temperature coefficient of resistance and ..cap omega.. was the volume of the sample. Correlation of noises in two regions of the metal film a distance d apart was detected at frequencies less than or = D/..pi..d/sup 2/. A possible explanation of the noises using quantitative boundary conditions and implications of this work for device applications are discussed. Theoretical and experimental investigation are reported on the resistance of superconductor-normal metal-superconductor sandwiches near T/sub c/. The increase in SNS resistance is attributed to the penetration of normal electric current in the superconductor. It is proved from first principles that an electric field can exist inside the superconductor when quasiparticles are not equally populated on the two branches of the excitation spectrum, and such is the case in a current biased SNS junction. The electric field inside S decays according to a diffusion law. The diffusion length is determined by the quasiparticle ''branch-crossing'' relaxation time. The branch-crossing relaxation times were measured. Impurity-doping of tin was found to decrease this relaxation time.

  6. 诊断试验一致性评价中几种方法的比较及应用%Evaluation and Application on Different Assessment Methods of Consistency of Diagnostic Test

    Institute of Scientific and Technical Information of China (English)

    周宇豪; 许金芳; 贺佳

    2011-01-01

    Objective To evaluate different assessment methods of consistency of diagnostic test.Methods Different assessment methods were adopted to evaluate the consistency of a true example with good consistency in fact and three simulation situations developed from the true one.Results All assessment methods showed good consistency for the true example except paired t test.Simple correlation analysis was insensitive in the situation of obvious systematic bias.And in the situation with comparatively large random error where low consistency was accepted,paired t test suggested better consistency.In the situation with low range of measurement where both systematic bias and random error were small,intra-class correlation analysis failed demonstrate exact results.Conclusion Both paired t test and simple correlation analysis have obvious defects in assessing consistency.Although intra-class correlation analysis has some limitation,it take account of systematic bias and random bias.And BlandAltman methods and ATE/LER zones are recommended to evaluate the consistency.%目的 对诊断试验中评价一致性的几种方法进行比较.方法 对实例及3种模拟情况进行一致性评价,比较几种方法的优劣.结果 检验试剂与参考试剂测量游离前列腺特异抗原(FPSA)的实例分析中,除配对t检验外,几种方法均显示出良好的一致性;在系统误差较大的模拟情况下,简单相关分析所得结果相对实例而言没有变化;在随机误差较大的模拟情况下,配对t检验得出两种试剂具有良好的一致性;在系统误差和随机误差均小的模拟情况下,组内相关系数所得结果显示一致性较差.结论 配对t检验、简单相关分析用于一致性评价都只适用于部分资料,组内相关系数法适用于存在系统误差和/或随机误差的时候,而Bland-Altman法以及ATE/LER区域可作为一致性评价的优先考虑方法.

  7. Electrical bushing for a superconductor element

    Science.gov (United States)

    Mirebeau, Pierre; Lallouet, Nicolas; Delplace, Sebastien; Lapierre, Regis

    2010-05-04

    The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.

  8. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  9. Method for fabrication of high temperature superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam; Ma, Beihai; Miller, Dean

    2009-07-14

    A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y.sub.2O.sub.3 and then a layer of CeO.sub.2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO.sub.2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10.degree. to about 40.degree. and YBCO superconductors are used.

  10. A Fifth Force: Generalized through Superconductors

    Science.gov (United States)

    Robertson, Glen A.

    1999-01-01

    The connection between the Biefield-Brown Effect, the recent repeat of the 1902 Trouton-Noble (TN) experiments, and the gravity shielding experiments was explored. This connection is visualized through high capacitive electron concentrations. From this connection, a theory is proposed that connects mass energy to gravity and a fifth force. The theory called the Gravi-Atomic Energy theory presents two new terms: Gravi-atomic energy and quantum vacuum pressure (QVP). Gravi-atomic energy is defined as the radiated mass energy, which acts on vacuum energy to create a QVP about a mass, resulting in gravity and the fifth force. The QVP emission from a superconductor was discussed followed by the description of a test for QVP from a superconductor using a Cavendish balance.

  11. Abrikosov Gluon Vortices in Color Superconductors

    CERN Document Server

    Ferrer, Efrain J

    2010-01-01

    In this talk I will discuss how the in-medium magnetic field can influence the gluon dynamics in a three-flavor color superconductor. It will be shown how at field strengths comparable to the charged gluon Meissner mass a new phase can be realized, giving rise to Abrikosov's vortices of charged gluons. In that phase, the inhomogeneous gluon condensate anti-screens the magnetic field due to the anomalous magnetic moment of these spin-1 particles. This paramagnetic effect can be of interest for astrophysics, since due to the gluon vortex antiscreening mechanism, compact stars with color superconducting cores could have larger magnetic fields than neutron stars made up entirely of nuclear matter. I will also discuss a second gluon condensation phenomenon connected to the Meissner instability attained at moderate densities by two-flavor color superconductors. In this situation, an inhomogeneous condensate of charged gluons emerges to remove the chromomagnetic instability created by the pairing mismatch, and as a ...

  12. Phases of holographic d-wave superconductor

    CERN Document Server

    Krikun, Alexander

    2015-01-01

    We study different phases in the holographic model of d-wave superconductor. These are described by solutions to the classical equations of motion found in different ansatze. Apart from the known homogeneous d-wave superconducting phase we find three new solutions. Two of them represent two distinct families of the spatially modulated solutions, which realize the charge density wave phases in the dual theory. The third one is the new homogeneous phase with nonzero anapole moment. These phases are relevant to the physics of cuprate high-Tc superconductor in pseudogap region. While the d-wave phase preserves translation, parity and time reversal symmetry, the striped phases break translations spontaneously. Parity and time-reversal are preserved when combined with discrete half-periodic shift of the wave. In anapole phase translation symmetry is preserved, but parity and time reversal are spontaneously broken. All of the considered solutions brake the global $U(1)$. Thermodynamical treatment shows that in the s...

  13. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    Kalobaran Maiti

    2015-06-01

    Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant role of states in their electronic properties, which is significantly different from the cuprate superconductors. In this article, some of our studies of the electronic structure of these fascinating systems employing high-resolution photoemission spectroscopy is reviewed. The combined effect of electron correlation and covalency reveals an interesting scenario in their electronic structure. The contribution of ligand states at the Fermi level is found to be much more significant than indicated in earlier studies. Temperature evolution of the energy bands reveals the signature of transition akin to Lifshitz transition in these systems.

  14. Shot Noise in Ferromagnetic Superconductor Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In this paper, the superconducting order parameter and the energy spectrum of the Bogoliubov excitations are obtained from the Bogoliubov-de Gennes (BdG) equation for a ferromagnetic superconductor (FS). Taking into account the rough interface scattering effect, we calculate the shot noise and the differential conductance of the normal- metal insulator ferromagnetic superconductor junction. It is shown that the exchange energy Eh in FS can lead to splitting of the differential shot noise peaks and the conductance peaks. The energy difference between the two splitting peaks is equal to 2Eh. The rough interface scattering strength results in descent of conductance peaks and the shot noise-to-current ratio but increases the shot noise.

  15. Magnetic chains on a triplet superconductor.

    Science.gov (United States)

    Sacramento, P D

    2015-11-11

    The topological state of a two-dimensional triplet superconductor may be changed by an appropriate addition of magnetic impurities. A ferromagnetic magnetic chain at the surface of a superconductor with spin-orbit coupling may eliminate the edge states of a finite system giving rise to localized zero modes at the edges of the chain. The coexistence/competition between the two types of zero modes is considered. The reduction of the system to an effective 1d system gives partial information on the topological properties but the study of the two sets of zero modes requires a two-dimensional treatment. Increasing the impurity density from a magnetic chain to magnetic islands leads to a finite Chern number. At half-filling small concentrations are enough to induce chiral modes.

  16. Iron-Based Superconductors as topological matter

    Science.gov (United States)

    Hu, Jiangping

    We show the existence of non-trivial topological properties in Iron-based superconductors. Several examples are provided, including (1) the single layer FeSe grown on SrTiO3 substrate, in which an topological insulator phase exists due to the band inversion at M point; (2) CaFeAs2, a staggered intercalation compound that integrates both quantum spin hall and superconductivity in which the nontrivial topology stems from the chain-like As layers away from FeAs layers; (3) the Fe(Te,Se) thin films in which the nontrivial Z2 topological invariance originates from the parity exchange at Γ point that is controlled by the Te(Se) height; (4 nontrivial topology that is driven by the nematic order in FeSe. These results lay ground for integrating high Tc superconductivity with topological properties to realize new emergent phenomena, such as majorana particles, in iron-based high temperature superconductors

  17. Topological properties in Iron-Based Superconductors

    Science.gov (United States)

    Hu, Jiangping; Hao, Ningning; Wu, X. X.

    2015-03-01

    We show the existence of non-trivial topological properties in Iron-based superconductors. Several examples are provided, including (1) the single layer FeSe grown on SrTiO3 substrate, in which an topological insulator phase exists due to the band inversion at M point; (2) CaFeAs2, a staggered intercalation compound that integrates both quantum spin hall and superconductivity in which the nontrivial topology stems from the chain-like As layers away from FeAs layers; (3) the Fe(Te,Se) thin films in which the nontrivial Z2 topological invariance originates from the parity exchange at ? point that is controlled by the Te(Se) height. These results lay ground for integrating high Tc superconductivity with topological properties to realize new emergent phenomena, such as majorana particles, in iron-based high temperature superconductors. The work is supported by NSFC and the Ministry of Science and Technology of China.

  18. Asymmetric Ferromagnet-Superconductor-Ferromagnet Switch

    Energy Technology Data Exchange (ETDEWEB)

    Cadden-Zimansky, P.; Bazaliy, Ya.B.; Litvak, L.M.; Jiang, J.S.; Pearson, J.; Gu, J.Y.; You, Chun-Yeol; Beasley, M.R.; Bader, S.D.

    2011-11-04

    In layered ferromagnet-superconductor-ferromagnet F{sub 1} /S/F{sub 2} structures, the critical temperature T{sub c} of the superconductors depends on the magnetic orientation of the ferromagnetic layers F{sub 1} and F{sub 2} relative to each other. So far, the experimentally observed magnitude of change in T{sub c} for structures utilizing weak ferromagnets has been 2 orders of magnitude smaller than is expected from calculations. We theoretically show that such a discrepancy can result from the asymmetry of F/S boundaries, and we test this possibility by performing experiments on structures where F{sub 1} and F{sub 2} are independently varied. Our experimental results indicate that asymmetric boundaries are not the source of the discrepancy. If boundary asymmetry is causing the suppressed magnitude of T{sub c} changes, it may only be possible to detect in structures with thinner ferromagnetic layers.

  19. Unconventional Disorder Effects in Correlated Superconductors

    Science.gov (United States)

    Gastiasoro, Maria N.; Bernardini, Fabio; Andersen, Brian M.

    2016-12-01

    We study the effects of disorder on unconventional superconductors in the presence of correlations, and explore a novel correlated disorder paradigm dominated by strong deviations from standard Abrikosov-Gor'kov theory due to generation of local bound states and cooperative impurity behavior driven by Coulomb interactions. Specifically we explain under which circumstances magnetic disorder acts as a strong poison destroying high-Tc superconductivity at the sub-1% level, and when nonmagnetic disorder, counterintuitively, hardly affects the unconventional superconducting state while concomitantly inducing an inhomogeneous full-volume magnetic phase. Recent experimental studies of Fe-based superconductors have discovered that such unusual disorder behavior seems to be indeed present in those systems.

  20. Very General Holographic Superconductors and Entanglement Thermodynamics

    CERN Document Server

    Dey, Anshuman; Sarkar, Tapobrata

    2014-01-01

    We construct and analyze holographic superconductors with generalized higher derivative couplings, in single R-charged black hole backgrounds in four and five dimensions. These systems, which we call very general holographic superconductors, have multiple tuning parameters and are shown to exhibit a rich phase structure. We establish the phase diagram numerically as well as by computing the free energy, and then validated the results by calculating the entanglement entropy for these systems. The entanglement entropy is shown to be a perfect indicator of the phase diagram. The differences in the nature of the entanglement entropy in R-charged backgrounds compared to the AdS-Schwarzschild cases are pointed out. We also compute the analogue of the entangling temperature for a subclass of these systems and compare the results with non-hairy backgrounds.

  1. Revisiting holographic superconductors with hyperscaling violation

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Qiyuan [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil); Hunan Normal University, Department of Physics, Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of Ministry of Education, Changsha, Hunan (China); Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Zhang, Shao-Jun [Universidade de Sao Paulo, Instituto de Fisica, C.P. 66318, Sao Paulo (Brazil)

    2016-03-15

    We investigate the effect of the hyperscaling violation on the holographic superconductors. In the s-wave model, we find that the critical temperature decreases first and then increases as the hyperscaling violation increases, and the mass of the scalar field will not modify the value of the hyperscaling violation which gives the minimum critical temperature. We analytically confirm the numerical results by using the Sturm-Liouville method with the higher order trial function and improve the previous findings in Fan (J High Energy Phys 09:048, 2013). However, different from the s-wave case, we note that the critical temperature decreases with the increase of the hyperscaling violation in the p-wave model. In addition, we observe that the hyperscaling violation affects the conductivity of the holographic superconductors and changes the expected relation in the gap frequency in both s-wave and p-wave models. (orig.)

  2. Energy efficiency of adiabatic superconductor logic

    Science.gov (United States)

    Takeuchi, Naoki; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2015-01-01

    Adiabatic superconductor logic (ASL), including adiabatic quantum-flux-parametron (AQFP) logic, exhibits high energy efficiency because its bit energy can be decreased below the thermal energy through adiabatic switching operations. In the present paper, we present the general scaling laws of ASL and compare the energy efficiency of ASL with those of other energy-efficient logics. Also, we discuss the minimum energy-delay product (EDP) of ASL at finite temperature. Our study shows that there is a maximum temperature at which the EDP can reach the quantum limit given by ħ/2, which is dependent on the superconductor material and the Josephson junction quality, and that it is reasonable to operate ASL at cryogenic temperatures in order to achieve an EDP that approaches ħ/2.

  3. Evaluating the consistency of the 1982-1999 NDVI trends in the Iberian Peninsula across four time-series derived from the AVHRR sensor: LTDR, GIMMS, FASIR, and PAL-II.

    Science.gov (United States)

    Alcaraz-Segura, Domingo; Liras, Elisa; Tabik, Siham; Paruelo, José; Cabello, Javier

    2010-01-01

    Successive efforts have processed the Advanced Very High Resolution Radiometer (AVHRR) sensor archive to produce Normalized Difference Vegetation Index (NDVI) datasets (i.e., PAL, FASIR, GIMMS, and LTDR) under different corrections and processing schemes. Since NDVI datasets are used to evaluate carbon gains, differences among them may affect nations' carbon budgets in meeting international targets (such as the Kyoto Protocol). This study addresses the consistency across AVHRR NDVI datasets in the Iberian Peninsula (Spain and Portugal) by evaluating whether their 1982-1999 NDVI trends show similar spatial patterns. Significant trends were calculated with the seasonal Mann-Kendall trend test and their spatial consistency with partial Mantel tests. Over 23% of the Peninsula (N, E, and central mountain ranges) showed positive and significant NDVI trends across the four datasets and an additional 18% across three datasets. In 20% of Iberia (SW quadrant), the four datasets exhibited an absence of significant trends and an additional 22% across three datasets. Significant NDVI decreases were scarce (croplands in the Guadalquivir and Segura basins, La Mancha plains, and Valencia). Spatial consistency of significant trends across at least three datasets was observed in 83% of the Peninsula, but it decreased to 47% when comparing across the four datasets. FASIR, PAL, and LTDR were the most spatially similar datasets, while GIMMS was the most different. The different performance of each AVHRR dataset to detect significant NDVI trends (e.g., LTDR detected greater significant trends (both positive and negative) and in 32% more pixels than GIMMS) has great implications to evaluate carbon budgets. The lack of spatial consistency across NDVI datasets derived from the same AVHRR sensor archive, makes it advisable to evaluate carbon gains trends using several satellite datasets and, whether possible, independent/additional data sources to contrast.

  4. Evaluating the Consistency of the 1982–1999 NDVI Trends in the Iberian Peninsula across Four Time-series Derived from the AVHRR Sensor: LTDR, GIMMS, FASIR, and PAL-II

    Directory of Open Access Journals (Sweden)

    José Paruelo

    2010-02-01

    Full Text Available Successive efforts have processed the Advanced Very High Resolution Radiometer (AVHRR sensor archive to produce Normalized Difference Vegetation Index (NDVI datasets (i.e., PAL, FASIR, GIMMS, and LTDR under different corrections and processing schemes. Since NDVI datasets are used to evaluate carbon gains, differences among them may affect nations’ carbon budgets in meeting international targets (such as the Kyoto Protocol. This study addresses the consistency across AVHRR NDVI datasets in the Iberian Peninsula (Spain and Portugal by evaluating whether their 1982–1999 NDVI trends show similar spatial patterns. Significant trends were calculated with the seasonal Mann-Kendall trend test and their spatial consistency with partial Mantel tests. Over 23% of the Peninsula (N, E, and central mountain ranges showed positive and significant NDVI trends across the four datasets and an additional 18% across three datasets. In 20% of Iberia (SW quadrant, the four datasets exhibited an absence of significant trends and an additional 22% across three datasets. Significant NDVI decreases were scarce (croplands in the Guadalquivir and Segura basins, La Mancha plains, and Valencia. Spatial consistency of significant trends across at least three datasets was observed in 83% of the Peninsula, but it decreased to 47% when comparing across the four datasets. FASIR, PAL, and LTDR were the most spatially similar datasets, while GIMMS was the most different. The different performance of each AVHRR dataset to detect significant NDVI trends (e.g., LTDR detected greater significant trends (both positive and negative and in 32% more pixels than GIMMS has great implications to evaluate carbon budgets. The lack of spatial consistency across NDVI datasets derived from the same AVHRR sensor archive, makes it advisable to evaluate carbon gains trends using several satellite datasets and, whether possible, independent/additional data sources to contrast.

  5. Evaluating the Consistency of the 1982–1999 NDVI Trends in the Iberian Peninsula across Four Time-series Derived from the AVHRR Sensor: LTDR, GIMMS, FASIR, and PAL-II

    Science.gov (United States)

    Alcaraz-Segura, Domingo; Liras, Elisa; Tabik, Siham; Paruelo, José; Cabello, Javier

    2010-01-01

    Successive efforts have processed the Advanced Very High Resolution Radiometer (AVHRR) sensor archive to produce Normalized Difference Vegetation Index (NDVI) datasets (i.e., PAL, FASIR, GIMMS, and LTDR) under different corrections and processing schemes. Since NDVI datasets are used to evaluate carbon gains, differences among them may affect nations’ carbon budgets in meeting international targets (such as the Kyoto Protocol). This study addresses the consistency across AVHRR NDVI datasets in the Iberian Peninsula (Spain and Portugal) by evaluating whether their 1982–1999 NDVI trends show similar spatial patterns. Significant trends were calculated with the seasonal Mann-Kendall trend test and their spatial consistency with partial Mantel tests. Over 23% of the Peninsula (N, E, and central mountain ranges) showed positive and significant NDVI trends across the four datasets and an additional 18% across three datasets. In 20% of Iberia (SW quadrant), the four datasets exhibited an absence of significant trends and an additional 22% across three datasets. Significant NDVI decreases were scarce (croplands in the Guadalquivir and Segura basins, La Mancha plains, and Valencia). Spatial consistency of significant trends across at least three datasets was observed in 83% of the Peninsula, but it decreased to 47% when comparing across the four datasets. FASIR, PAL, and LTDR were the most spatially similar datasets, while GIMMS was the most different. The different performance of each AVHRR dataset to detect significant NDVI trends (e.g., LTDR detected greater significant trends (both positive and negative) and in 32% more pixels than GIMMS) has great implications to evaluate carbon budgets. The lack of spatial consistency across NDVI datasets derived from the same AVHRR sensor archive, makes it advisable to evaluate carbon gains trends using several satellite datasets and, whether possible, independent/additional data sources to contrast. PMID:22205868

  6. Flywheel energy storage with superconductor magnetic bearings

    Energy Technology Data Exchange (ETDEWEB)

    Weinberger, Bernard R. (Avon, CT); Lynds, Jr., Lahmer (Glastonbury, CT); Hull, John R. (Hinsdale, IL)

    1993-01-01

    A flywheel having superconductor bearings has a lower drag to lift ratio that translates to an improvement of a factor of ten in the rotational decay rate. The lower drag results from the lower dissipation of melt-processed YBCO, improved uniformity of the permanent magnet portion of the bearings, operation in a different range of vacuum pressure from that taught by the art, and greater separation distance from the rotating members of conductive materials.

  7. Scale dependent superconductor-insulator transition

    OpenAIRE

    D. Kowal; Ovadyahu, Z.

    2007-01-01

    We study the disorder driven superconductor to insulator transition in amorphous films of high carrier-concentration indium-oxide. Using thin films with various sizes and aspect ratios we show that the `critical' sheet-resistance $R_{{\\small \\square}}$ depends systematically on sample geometry; superconductivity disappears when $R_{{\\small \\square}}$ exceeds $\\approx6 $k$\\Omega$ in large samples. On the other hand, wide and sufficiently short samples of the same batch exhibit superconductivit...

  8. High temperature superconductors applications in telecommunications

    Science.gov (United States)

    Kumar, A. Anil; Li, Jiang; Zhang, Ming Fang

    1995-01-01

    The purpose of this paper is twofold: (1) to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and (2) to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices - obvious advantages versus practical difficulties - needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models - a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B) - shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance - conductivity, surface resistance and attenuation constant - will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T

  9. Magnetic impurities in spin-split superconductors

    Science.gov (United States)

    van Gerven Oei, W.-V.; Tanasković, D.; Žitko, R.

    2017-02-01

    Hybrid semiconductor-superconductor quantum dot devices are tunable physical realizations of quantum impurity models for a magnetic impurity in a superconducting host. The binding energy of the localized subgap Shiba states is set by the gate voltages and external magnetic field. In this work we discuss the effects of the Zeeman spin splitting, which is generically present both in the quantum dot and in the (thin-film) superconductor. The unequal g factors in semiconductor and superconductor materials result in respective Zeeman splittings of different magnitude. We consider both classical and quantum impurities. In the first case we analytically study the spectral function and the subgap states. The energy of bound states depends on the spin-splitting of the Bogoliubov quasiparticle bands as a simple rigid shift. For the case of collinear magnetization of impurity and host, the Shiba resonance of a given spin polarization remains unperturbed when it overlaps with the branch of the quasiparticle excitations of the opposite spin polarization. In the quantum case, we employ numerical renormalization group calculations to study the effect of the Zeeman field for different values of the g factors of the impurity and of the superconductor. We find that in general the critical magnetic field for the singlet-doublet transition changes nonmonotonically as a function of the superconducting gap, demonstrating the existence of two different transition mechanisms: Zeeman splitting of Shiba states or gap closure due to Zeeman splitting of Bogoliubov states. We also study how in the presence of spin-orbit coupling, modeled as an additional noncollinear component of the magnetic field at the impurity site, the Shiba resonance overlapping with the quasiparticle continuum of the opposite spin gradually broadens and then merges with the continuum.

  10. Phases of holographic d-wave superconductor

    OpenAIRE

    Krikun, A.

    2015-01-01

    We study different phases in the holographic model of d-wave superconductor. These are described by solutions to the classical equations of motion found in different ansatze. Apart from the known homogeneous d-wave superconducting phase we find three new solutions. Two of them represent two distinct families of the spatially modulated solutions, which realize the charge density wave phases in the dual theory. The third one is the new homogeneous phase with nonzero anapole moment. These phases...

  11. Soft wall model for a holographic superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Afonin, S.S.; Pusenkov, I.V. [Saint Petersburg State University, St.Petersburg (Russian Federation)

    2016-06-15

    We consider the soft wall holographic approach for description of the high-T{sub c} superconductivity. In comparison with the existing bottom-up holographic superconductors, the proposed approach is more phenomenological and does not describe the superconducting phase transition. On the other hand, technically it is simpler and has more freedom for fitting the conductivity properties of the real high-T{sub c} materials in the superconducting phase. Some examples of emerging models are analyzed. (orig.)

  12. Review of holographic superconductors with Weyl corrections

    CERN Document Server

    Momeni, Davood; Myrzakulov, Ratbay

    2014-01-01

    A quick review on the analytical aspects of holographic superconductors (HSC) with Weyl corrections has been presented. Mainly we focus on matching method and variations approaches. Different types of such HSC have been investigated, s-wave, p-wave and St\\'{u}ckelberg ones. We also review the fundamental construction of a p-wave type , in which the non-Abelian gauge field is coupled to the Weyl tensor. The results are compared from numerics to analytical results.

  13. Soft wall model for a holographic superconductor

    CERN Document Server

    Afonin, S S

    2015-01-01

    We apply the soft wall holographic model from hadron physics to a description of the high-$T_c$ superconductivity. In comparison with the existing bottom-up holographic superconductors, the proposed approach is more phenomenological. On the other hand, it is much simpler and has more freedom for fitting the conductivity properties of the real high-$T_c$ materials. We demonstrate some examples of emerging models and discuss a possible origin of the approach.

  14. Superconductor Digital Electronics: -- Current Status, Future Prospects

    Science.gov (United States)

    Mukhanov, Oleg

    2011-03-01

    Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The

  15. Spray-Deposited Superconductor/Polymer Coatings

    Science.gov (United States)

    Wise, Stephanie A.; Tran, Sang Q.; Hooker, Matthew W.

    1993-01-01

    Coatings that exhibit the Meissner effect formed at relatively low temperature. High-temperature-superconductor/polymer coatings that exhibit Meissner effect deposited onto components in variety of shapes and materials. Simple, readily available equipment needed in coating process, mean coatings produced economically. Coatings used to keep magnetic fields away from electronic circuits in such cryogenic applications as magnetic resonance imaging and detection of infrared, and in magnetic suspensions to provide levitation and/or damping of vibrations.

  16. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  17. Towards Structural Testing of Superconductor Electronics

    OpenAIRE

    Arun, A.J.; Kerkhoff, Hans G.

    2003-01-01

    Many of the semiconductor technologies are already facing limitations while new-generation data and telecommunication systems are implemented. Although in its infancy, superconductor electronics (SCE) is capable of handling some of these high-end tasks. We have started a defect-oriented test methodology for SCE, so that reliable systems can be implemented in this technology. In this paper, the details of the study on the Rapid Single-Flux Quantum (RSFQ) process are presented. We present commo...

  18. Triplet Cooper pairs induced in diffusive s-wave superconductors interfaced with strongly spin-polarized magnetic insulators or half-metallic ferromagnets.

    Science.gov (United States)

    Ouassou, Jabir Ali; Pal, Avradeep; Blamire, Mark; Eschrig, Matthias; Linder, Jacob

    2017-05-16

    Interfacing superconductors with strongly spin-polarized magnetic materials opens the possibility to discover new spintronic devices in which spin-triplet Cooper pairs play a key role. Motivated by the recent derivation of spin-polarized quasiclassical boundary conditions capable of describing such a scenario in the diffusive limit, we consider the emergent physics in hybrid structures comprised of a conventional s-wave superconductor (e.g. Nb, Al) and either strongly spin-polarized ferromagnetic insulators (e.g. EuO, GdN) or halfmetallic ferromagnets (e.g. CrO2, LCMO). In contrast to most previous works, we focus on how the superconductor itself is influenced by the proximity effect, and how the generated triplet Cooper pairs manifest themselves in the self-consistently computed density of states (DOS) and the superconducting critical temperature T c . We provide a comprehensive treatment of how the superconductor and its properties are affected by the triplet pairs, demonstrating that our theory can reproduce the recent observation of an unusually large zero-energy peak in a superconductor interfaced with a half-metal, which even exceeds the normal-state DOS. We also discuss the recent observation of a large superconducting spin-valve effect with a T c change ~1 K in superconductor/half-metal structures, in which case our results indicate that the experiment cannot be explained fully by a long-ranged triplet proximity effect.

  19. Generador Eólico Superconductor Superconducting Wind Synchronous Generator

    Directory of Open Access Journals (Sweden)

    A Leão Rodrigues

    2010-01-01

    Full Text Available En este artículo se presentan las propiedades de los materiales superconductores de alta temperatura (SAT en la construcción de máquinas eléctricas. Se describe un generador sincrónico con configuración en disco con una elevada potencia específica, para futuras aplicaciones de energía. El generador es excitado por medio de bloques de materiales cerámicos SAT y se explica el mecanismo para atrapar el flujo magnético en ellos. El sistema criogénico está formado por un contenedor de nitrógeno líquido localizado en el suelo de forma a reducir el peso sobre la torre. Se presenta el grafico del flujo magnético por dos polos de la maquina, calculado por medio del método de los elementos finitos, así como la distribución de la densidad de flujo en el entrehierro del generador superconductor en disco. Se propone un parque eólico de elevado rendimiento con este tipo de generadores.This paper presents the properties of high temperature superconductor (HTS materials in the construction of electrical machines. A disc type configuration synchronous generator with high specific power for future wind power applications is described. The generator is excited by means blocks of HTS ceramic materials. The mechanism to trap the magnetic flux in HTS blocks is explained. To decrease the weight of the generator on the top of the tower, the cryogenic system used consists of a liquid nitrogen storage container located on the ground to reduce weight on the tower. A flux plot per two poles of the machine calculated using the finite element method is presented and the flux density distribution in the air gap of the superconducting disc generator is also displayed. A high efficiency wind park with this type of generators is proposed.

  20. Engineering design of a high-temperature superconductor current lead

    Science.gov (United States)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Daugherty, M. A.; Buckles, W. E.

    As part of the US Department of Energy's Superconductivity Pilot Center Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads suitable for application to superconducting magnetic energy storage systems. The principal objective of the development program is to design, construct, and evaluate the performance of HTS current leads suitable for near-term applications. Supporting objectives are to (1) develop performance criteria; (2) develop a detailed design; (3) analyze performance; (4) gain manufacturing experience in the areas of materials and components procurement, fabrication and assembly, quality assurance, and cost; (5) measure performance of critical components and the overall assembly; (6) identify design uncertainties and develop a program for their study; and (7) develop application-acceptance criteria.

  1. High field superconductor development and understanding project, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, David C.; Lee, Peter J.

    2009-07-15

    Over 25 years the Applied Superconductivity Center at the University of Wisconsin-Madison provided a vital technical resource to the High Energy Physics community covering development in superconducting strand for HEP accelerator magnet development. In particular the work of the group has been to develop the next generation of high field superconductors for high field application. Grad students Mike Naus, Chad Fischer, Arno Godeke and Matt Jewell improved our understanding of the microstructure and microchemistry of Nb3Sn and their impact on the physical and mechanical properties. The success of this work has led to the continued funding of this work at the ASC after it moved to the NHMFL and also to direct funding from BNL for some aspects of Nb3Sn cable evaluation.

  2. Topology of nonsymmorphic crystalline insulators and superconductors

    Science.gov (United States)

    Shiozaki, Ken; Sato, Masatoshi; Gomi, Kiyonori

    2016-05-01

    Topological classification in our previous paper [K. Shiozaki and M. Sato, Phys. Rev. B 90, 165114 (2014), 10.1103/PhysRevB.90.165114] is extended to nonsymmorphic crystalline insulators and superconductors. Using the twisted equivariant K theory, we complete the classification of topological crystalline insulators and superconductors in the presence of additional order-two nonsymmorphic space-group symmetries. The order-two nonsymmorphic space groups include half-lattice translation with Z2 flip, glide, twofold screw, and their magnetic space groups. We find that the topological periodic table shows modulo-2 periodicity in the number of flipped coordinates under the order-two nonsymmorphic space group. It is pointed out that the nonsymmorphic space groups allow Z2 topological phases even in the absence of time-reversal and/or particle-hole symmetries. Furthermore, the coexistence of the nonsymmorphic space group with time-reversal and/or particle-hole symmetries provides novel Z4 topological phases, which have not been realized in ordinary topological insulators and superconductors. We present model Hamiltonians of these new topological phases and analytic expressions of the Z2 and Z4 topological invariants. The half-lattice translation with Z2 spin flip and glide symmetry are compatible with the existence of boundaries, leading to topological surface gapless modes protected by the order-two nonsymmorphic symmetries. We also discuss unique features of these gapless surface modes.

  3. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  4. The polar Kerr effect in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, Joshua; Annett, James F.; Gradhand, Martin [University of Bristol (United Kingdom)

    2016-07-01

    The polar Kerr effect is an optical phenomenon which arises in states with broken time-reversal symmetry. This effect has recently been observed in a series of unconventional superconductors, including the layered perovskite compound Sr{sub 2}RuO{sub 4}. Confirmation of a Kerr signal below T{sub c} supports the hypothesis of chiral p-wave superconductivity in this material. However, the nature of the unconventional superconducting state remains a source of controversy. Here, we present calculations for the chiral superconducting state including spin-orbit coupling (SOC) by extending the three dimensional, multiband model considered previously. SOC was found to induce strong mixing of the orbital characters within the bandstructure. This mixing is essential for the existence of the polar Kerr effect and the large increase due to SOC has a significant influence on the frequency dependence of the predicted Kerr signal. We will extend and apply the model to other unconventional superconductors which have displayed the Kerr effect in recent years. This will allow a detailed study of the symmetry properties of these systems and will provide valuable insight into the pairing mechanism of superconductors.

  5. Electronic structure investigation of novel superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Buling, Anna

    2014-05-15

    The discovery of superconductivity in iron-based pnictides in 2008 gave rise to a high advance in the research of high-temperature superconductors. But up to now there is no generally admitted theory of the non-BCS mechanism of these superconductors. The electron and hole doped Ba122 (BaFe{sub 2}As{sub 2}) compounds investigated in this thesis are supposed to be suitable model systems for studying the electronic behavior in order to shed light on the superconducting mechanisms. The 3d-transition metal doped Ba122 compounds are investigated using the X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES) and X-ray magnetic circular dichroism (XMCD), while the completely hole doped K122 is observed using XPS. The experimental measurements are complemented by theoretical calculations. A further new class of superconductors is represented by the electride 12CaO*7Al{sub 2}O{sub 3}: Here superconductivity can be realized by electrons accommodated in the crystallographic sub-nanometer-sized cavities, while the mother compound is a wide band gap insulator. Electronic structure investigations, represented by XPS, XAS and resonant X-ray photoelectron spectroscopy (ResPES), carried out in this work, should help to illuminate this unconventional superconductivity and resolve a debate of competing models for explaining the existence of superconductivity in this compound.

  6. Free energy of a Lovelock holographic superconductor

    CERN Document Server

    Aranguiz, Ligeia

    2014-01-01

    We study black hole solutions in Lanczos-Lovelock AdS gravity in d+1 dimensions coupled to nonlinear electrodynamics and a Stueckelberg scalar field. This class of theories with [d/2] gravitational coupling constants and two arbitrary functions that govern the matter interaction is used in the context of gauge/gravity duality to describe a high-temperature superconductor in d dimensions. We regularize the gravitational action and find the finite conserved quantities for a planar black hole with scalar hair. Then we derive the quantum statistical relation in the Euclidean sector of the theory, and obtain the exact formula for the free energy of the superconductor in the holographic quantum field theory. Our result is exact, analytic and it includes the effects of back reaction of the gravitational field. We further discuss on how this formula could be used to analyze second order phase transitions through the discontinuities of the free energy, and classify holographic superconductors in terms of the parameter...

  7. Charge of a quasiparticle in a superconductor.

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-02-16

    Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.

  8. AC susceptibilities of grain-textured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, N. [Department of Electrical Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai, 813-8503 Fukuoka (Japan)], E-mail: saka@te.kyusan-u.ac.jp; Fukuda, Y.; Koga, M.; Akune, T. [Department of Electrical Engineering, Kyushu Sangyo University, 2-3-1 Matsukadai, 813-8503 Fukuoka (Japan); Khan, H.R. [Institut von Ionenstrahl und Vakuum Technologie, 73728 Esslingen (Germany); Lueders, K. [Freie Universitaet Berlin, Arnimallee, Fac.Physik, D-14195 Berlin (Germany)

    2008-09-15

    In-phase {chi}{sub n}' and out-phase {chi}{sub n}'' components of nth harmonics of AC susceptibility with measuring parameters of a DC magnetic field B{sub dc}, an amplitude B{sub a} and a frequency f of the superimposed AC magnetic fields give substantial information of the superconducting properties. In low-T{sub c} metallic superconductors, {chi}{sub 1}' shows smooth transition and {chi}{sub 1}'' does single peak. High-T{sub c} oxide superconductors with anisotropic and grain-textured structures show deformed complex characteristics. Double peaks in {chi}{sub 1}'' and shoulders in {chi}{sub 1}' appear in AC susceptibility of Hg-1223 superconductors. Instead of simple Bean model, a grained model, where the superconducting grains are immersed in weak superconducting matrix, are proposed. The susceptibilities numerically analyzed using the model show varied and deformed curves and are successfully compared with the measured results.

  9. Meissner holes in iron-based superconductors

    Science.gov (United States)

    Tamegai, Tsuyoshi; Mohan, Shyam; Tsuchiya, Yuji; Nakajima, Yasuyuki

    2012-02-01

    Magnetic flux penetrates into a superconductor in the form of quantized vortices. This process is usually described by the Bean model, and the flux front forms a regular pattern reflecting the shape of the sample. However, a novel form of flux penetration accompanying wiggling fronts between vortices and antivortices has been observed in YBa2Cu3O7-δ upon remagnetization [1]. Such a phenomenon is ascribed to the presence of special arrangements of vortices at the front accompanying flux free regions and excess current around it. The flux free region is called as `Mesissner hole'. We have performed extensive magneto-optical imagings of iron-based superconductor single crystals and found similar anomalous features for the first time in superconductors other than 123-type cuprates [2]. Implications of this finding will be discussed with possible origins of the anomalous vortex arrangements. [1] V. K. Vlasko-Vlasov et al., Phys. Rev. B 56, 5622 (1997). [2] S. Mohan, Y. Tsuchiya, Y. Nakajima, and T. Tamegai, Phys. Rev. B 84, 18050X (2011).

  10. A Simple Holographic Superconductor with Momentum Relaxation

    CERN Document Server

    Kim, Keun-Young; Park, Miok

    2015-01-01

    We study a holographic superconductor model with momentum relaxation due to massless scalar fields linear to spatial coordinates($\\psi_I = \\beta \\delta_{Ii} x^i$), where $\\beta$ is the strength of momentum relaxation. In addition to the original superconductor induced by the chemical potential($\\mu$) at $\\beta=0$, there exists a new type of superconductor induced by $\\beta$ even at $\\mu=0$. It may imply a new `pairing' mechanism of particles and antiparticles interacting with $\\beta$, which may be interpreted as `impurity'. Two parameters $\\mu$ and $\\beta$ compete in forming superconducting phase. As a result, the critical temperature behaves differently depending on $\\beta/\\mu$. It decreases when $\\beta/\\mu$ is small and increases when $\\beta/\\mu$ is large, which is a novel feature compared to other models. After analysing ground states and phase diagrams for various $\\beta/\\mu$, we study optical electric($\\sigma$), thermoelectric($\\alpha$), and thermal($\\bar{\\kappa}$) conductivities. When the system undergo...

  11. Tradução, adaptação e avaliação da consistência interna do Eating Behaviours and Body Image Test para uso com crianças do sexo feminino Translation, adaptation and internal consistency evaluation of the Eating Behaviours and Body Image Test for female children

    Directory of Open Access Journals (Sweden)

    Elizângela Moreira Careta Galindo

    2007-02-01

    Full Text Available Este trabalho tem por objetivo traduzir, adaptar e validar o Eating Behaviours and Body Image Test, para uso com crianças de uma cidade do interior do estado de São Paulo. Foram sujeitos do estudo 261 escolares do sexo feminino, na faixa etária de 9 a 12 anos. Por meio da análise fatorial, com rotação varimax avaliou-se a consistência interna do instrumento. Esta análise, realizada com o auxílio do programa Statistical Package for Social Sciences, versão 10.0, revelou dois fatores. Para o instrumento total a consistência interna foi adequada (coeficiente a de Cronbach: 0,89 e para os dois fatores (1 e 2 os valores de a também foram considerados satisfatórios (alfa=0,90 e alfa=0,80, respectivamente, mostrando, assim, que o Eating Behaviours and Body Image Test é útil para uma avaliação precoce, rastreando atitudes indicadoras de possíveis distúrbios no comportamento alimentar. Foram mantidas as características psicométricas do instrumento original.This study aimed to translate, adapt and validate the Eating Bahaviours and Body Image Test, to be used with children in a city in upstate São Paulo. Study subjects were 261 female students aging from 9 to 12 years. The internal consistency of the instrument was evaluated by means of factorial analysis with varimax rotation. This analysis was accomplished through Statistical Package for Social Sciences, version 10.0, revealing two factors. The internal consistency was adequate for the total instrument (Cronbach's alpha=0.89 and a values were also considered satisfactory for the two factors (1 and 2 (alpha=0.90 and alpha=0.80, respectively, which demonstrated that the Eating Bahaviours and Body Image Test is useful for an initial evaluation, tracing symptoms that indicate possible eating behavior disorders. The psychometric characteristics of the original instrument were maintained.

  12. Momentum-resolved electronic structure of the superconductor parent compound BaBiO3

    Science.gov (United States)

    Plumb, N. C.; Ristic, Z.; Park, J.; Wang, Z.; Matt, C. E.; Xu, N.; Lv, B. Q.; Gawryluk, D.; Pomjakushina, E.; Conder, K.; Wang, Y.; Johnston, S.; Mesot, J.; Shi, M.; Radovic, M.

    We use in situ angle-resolved photoemission to study thin films of BaBiO3, a parent compound of bismuthate superconductors with Tc up to 30 K. By simple electron counting, BaBiO3 should be metallic. However, in analogy with many unconventional and high-Tc superconductor families, it is instead insulating, and superconductivity emerges with doping. Our experiments reveal a folded band structure consistent with known BiO6 breathing distortions. However, charge ordering often thought to accompany the distortions is virtually nonexistent. The data combined with DFT calculations indicate that states near EF are primarily oxygen-derived. Hence BaBiO3 appears to be characterized by negative charge transfer energy. This can account for the seeming discrepancy between the atomic structure and ''missing'' charge order. It should also be relevant for understanding the doping evolution and superconductivity in bismuthates.

  13. Microscopic model of quasiparticle wave packets in superfluids, superconductors, and paired Hall states.

    Science.gov (United States)

    Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z

    2012-12-07

    We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.

  14. Quantum Griffiths singularity of superconductor-metal transition in Ga thin films.

    Science.gov (United States)

    Xing, Ying; Zhang, Hui-Min; Fu, Hai-Long; Liu, Haiwen; Sun, Yi; Peng, Jun-Ping; Wang, Fa; Lin, Xi; Ma, Xu-Cun; Xue, Qi-Kun; Wang, Jian; Xie, X C

    2015-10-30

    The Griffiths singularity in a phase transition, caused by disorder effects, was predicted more than 40 years ago. Its signature, the divergence of the dynamical critical exponent, is challenging to observe experimentally. We report the experimental observation of the quantum Griffiths singularity in a two-dimensional superconducting system. We measured the transport properties of atomically thin gallium films and found that the films undergo superconductor-metal transitions with increasing magnetic field. Approaching the zero-temperature quantum critical point, we observed divergence of the dynamical critical exponent, which is consistent with the Griffiths singularity behavior. We interpret the observed superconductor-metal quantum phase transition as the infinite-randomness critical point, where the properties of the system are controlled by rare large superconducting regions.

  15. Ultrafast photoresponse of superconductor/ferromagnet Nb/NiCu heterostructures

    Science.gov (United States)

    Piero Pepe, Giovanni; Amanti, Maria; de Lisio, Corrado; Latempa, Rossella; Marrocco, Nicola; Parlato, Loredana; Peluso, Giuseppe; Barone, Antonio; Sobolewski, Roman; Taneda, Takahiro

    2006-09-01

    We report on femtosecond optical pump-probe studies of proximized ferromagnet/superconductor (F/S) hybrids, consisting of Ni0.5Cu0.5 layers deposited on top of Nb films. The weak ferromagnetic nature of the completely proximised Ni0.5Cu0.5 film makes possible to observe the dynamics of the nonequilibrium superconductivity through the near-surface optical reflectivity change measurements. The time-resolved photoresponse transient of the NiCu(21 nm)/Nb bilayer in the superconducting state shows strongly suppressed slow bolometric component. The fast relaxation time is also discussed accordingly to current theories on S/F heterostructures. The proposed S/F nanobilayers represent a new, artificially designed superconductor with the features (sub-picosecond photoresponse with suppressed bolometric component) very desirable for superconducting photodetectors and photon counters.

  16. High critical temperature nodal superconductors as building block for time-reversal invariant topological superconductivity

    Science.gov (United States)

    Trani, F.; Campagnano, G.; Tagliacozzo, A.; Lucignano, P.

    2016-10-01

    We study possible applications of high critical temperature nodal superconductors for the search for Majorana bound states in the DIII class. We propose a microscopic analysis of the proximity effect induced by d -wave superconductors on a semiconductor wire with strong spin-orbit coupling. We characterize the induced superconductivity on the wire employing a numerical self-consistent tight-binding Bogoliubov-de Gennes approach, and analytical considerations on the Green's function. The order parameter induced on the wire, the pair correlation function, and the renormalization of the Fermi points are analyzed in detail, as well as the topological phase diagram in the case of weak coupling. We highlight optimal Hamiltonian parameters to access the nontrivial topological phase which could display time-reversal invariant Majorana doublets at the boundaries of the wire.

  17. McMillan-Rowell like oscillations in a superconductor-InAs/GaSb-superconductor junction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoyan, E-mail: xshi@sandia.gov; Yu, Wenlong; Hawkins, S. D.; Klem, J. F.; Pan, W. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2015-08-03

    We have fabricated a superconductor (Ta)-InAs/GaSb bilayer-superconductor (Ta) junction device that has a long mean free path and can preserve the wavelike properties of particles (electrons and holes) inside the junction. Differential conductance measurements were carried out at low temperatures in this device, and McMillan-Rowell like oscillations (MROs) were observed. Surprisingly, a much larger Fermi velocity, compared to that from Shubnikov-de Haas oscillations, was obtained from the frequency of MROs. Possible mechanisms are discussed for this discrepancy.

  18. McMillan-Rowell Like Oscillations in a Superconductor-InAs/GaSb-Superconductor Junction

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiaoyan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Yu, Wenlong [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hawkins, Samuel D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-04

    We fabricated a superconductor (Ta)-InAs/GaSb bilayer-superconductor (Ta) junction device that has a long mean free path and can preserve the wavelike properties of particles (electrons and holes) inside the junction. Differential conductance measurements were also carried out at low temperatures in this device, and McMillan-Rowell like oscillations (MROs) were observed. A much larger Fermi velocity, compared to that from Shubnikov-de Haas oscillations, was obtained from the frequency of MROs. Possible mechanisms are discussed for this discrepancy.

  19. McMillan-Rowell like oscillations in a superconductor-InAs/GaSb-superconductor junction

    Science.gov (United States)

    Shi, Xiaoyan; Yu, Wenlong; Hawkins, S. D.; Klem, J. F.; Pan, W.

    2015-08-01

    We have fabricated a superconductor (Ta)-InAs/GaSb bilayer-superconductor (Ta) junction device that has a long mean free path and can preserve the wavelike properties of particles (electrons and holes) inside the junction. Differential conductance measurements were carried out at low temperatures in this device, and McMillan-Rowell like oscillations (MROs) were observed. Surprisingly, a much larger Fermi velocity, compared to that from Shubnikov-de Haas oscillations, was obtained from the frequency of MROs. Possible mechanisms are discussed for this discrepancy.

  20. Bitter decoration and magneto-optical observations of vortex chains in high temperature superconductors

    Indian Academy of Sciences (India)

    T Tamegai; H Aoki; M Matsui; M Tokunaga

    2006-01-01

    In tilted magnetic fields, vortices in anisotropic superconductors form one-dimensional arrangements, called vortex chains. We have visualized vortex chains by Bitter decoration and magneto-optical technique. The fundamental energy scale for the attractive interaction between pancake and Josephson vortices is evaluated by observing vortex chains under various conditions. We also explore how the vortex chains evolve when the large in-plane field is applied or when the anisotropy parameter of the system is changed.

  1. Flux pinning in superconductors. 2. ed.

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Teruo [Kyushu Institute of Technology, Iizuka, Fukuoka (Japan). Dept. of Computer Science and Electronics

    2014-04-01

    Ideal for graduate students studying superconductivity and experts alike. Written by a researcher with more than 30 years experience in the field. All chapters are completely revised. The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of superconductor, specimen size and electric field strength. Recent developments of critical current properties in various high-Tc superconductors and MgB2 are introduced. Other topics are: singularity in the case of transport current in a parallel magnetic field such as deviation from the Josephson relation, reversible flux motion inside pinning potentials which causes deviation from the critical state model prediction, the concept of the minimization of energy dissipation in the flux pinning phenomena which gives the basis for the critical state model, etc. Significant reduction in the AC loss in AC wires with very fine filaments originates from the reversible flux motion which is dominant in the two-dimensional pinning. The concept of minimum energy dissipation explains also the behavior

  2. Magnetic excitations in iron chalcogenide superconductors.

    Science.gov (United States)

    Kotegawa, Hisashi; Fujita, Masaki

    2012-10-01

    Nuclear magnetic resonance and neutron scattering experiments in iron chalcogenide superconductors are reviewed to make a survey of the magnetic excitations in FeSe, FeSe1-x Te x and alkali-metal-doped Ax Fe2-y Se2 (A = K, Rb, Cs, etc). In FeSe, the intimate relationship between the spin fluctuations and superconductivity can be seen universally for the variations in the off-stoichiometry, the Co-substitution and applied pressure. The isovalent compound FeTe has a magnetic ordering with different wave vector from that of other Fe-based magnetic materials. The transition temperature Tc of FeSe increases with Te substitution in FeSe1-x Te x with small x, and decreases in the vicinity of the end member FeTe. The spin fluctuations are drastically modified by the Te substitution. In the vicinity of the end member FeTe, the low-energy part of the spin fluctuation is dominated by the wave vector of the ordered phase of FeTe; however, the reduction of Tc shows that it does not support superconductivity. The presence of same wave vector as that of other Fe-based superconductors in FeSe1-x Te x and the observation of the resonance mode demonstrate that FeSe1-x Te x belongs to the same group as most of other Fe-based superconductors in the entire range of x, where superconductivity is mediated by the spin fluctuations whose wave vector is the same as the nesting vector between the hole pockets and the electron pockets. On the other hand, the spin fluctuations differ for alkali-metal-doped Ax Fe2-y Se2 and FeSe or other Fe-based superconductors in their wave vector and strength in the low-energy part, most likely because of the different Fermi surfaces. The resonance mode with different wave vector suggests that Ax Fe2-y Se2 has an exceptional superconducting symmetry among Fe-based superconductors.

  3. Published assessments bearing on the future use of ceramic superconductors by the electric power sector

    Energy Technology Data Exchange (ETDEWEB)

    Giese, R.F.; Wolsky, A.M.

    1992-08-25

    Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report's purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

  4. Published assessments bearing on the future use of ceramic superconductors by the electric power sector

    Energy Technology Data Exchange (ETDEWEB)

    Giese, R.F.; Wolsky, A.M.

    1992-08-25

    Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report`s purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science & Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

  5. Fingerprint analysis and quality consistency evaluation of flavonoid compounds for fermented Guava leaf by combining high-performance liquid chromatography time-of-flight electrospray ionization mass spectrometry and chemometric methods.

    Science.gov (United States)

    Wang, Lu; Tian, Xiaofei; Wei, Wenhao; Chen, Gong; Wu, Zhenqiang

    2016-10-01

    Guava leaves are used in traditional herbal teas as antidiabetic therapies. Flavonoids are the main active of Guava leaves and have many physiological functions. However, the flavonoid compositions and activities of Guava leaves could change due to microbial fermentation. A high-performance liquid chromatography time-of-flight electrospray ionization mass spectrometry method was applied to identify the varieties of the flavonoids in Guava leaves before and after fermentation. High-performance liquid chromatography, hierarchical cluster analysis and principal component analysis were used to quantitatively determine the changes in flavonoid compositions and evaluate the consistency and quality of Guava leaves. Monascus anka Saccharomyces cerevisiae fermented Guava leaves contained 2.32- and 4.06-fold more total flavonoids and quercetin, respectively, than natural Guava leaves. The flavonoid compounds of the natural Guava leaves had similarities ranging from 0.837 to 0.927. The flavonoid compounds from the Monascus anka S. cerevisiae fermented Guava leaves had similarities higher than 0.993. This indicated that the quality consistency of the fermented Guava leaves was better than that of the natural Guava leaves. High-performance liquid chromatography fingerprinting and chemometric analysis are promising methods for evaluating the degree of fermentation of Guava leaves based on quality consistency, which could be used in assessing flavonoid compounds for the production of fermented Guava leaves.

  6. Evaluating Test Reliability: From Coefficient Alpha to Internal Consistency Reliability%测验信度估计:从α系数到内部一致性信度

    Institute of Scientific and Technical Information of China (English)

    温忠麟; 叶宝娟

    2011-01-01

    沿用经典的测验信度定义,简介了信度与α系数的关系以及α系数的局限.为了推荐替代α系数的信度估计方法,深入讨论了与α系数关系密切的同质性信度和内部一致性信度.在很一般的条件下,证明了α系数和同质性信度都不超过内部一致性信度,后者不超过测验信度,说明内部一致性信度比较接近测验信度.总结出一个测验信度分析流程,说明什么情况下α系数还有参考价值;什么情况下α系数不再适用,应当使用内部一致性信度(文献上也常称为合成信度).提供了计算同质性信度和内部一致性信度的计算程序,一般的应用工作者可以直接套用.%In the research of psychology and other social sciences, test reliability is often used to reflect measurement stability and consistency. Coefficient a is the most popular indicator of test reliability. Recent years, however, coefficient a was challenged now and again. Is coefficient a still recommended for evaluating test reliability? If not, what should replace it?With the classical concept of reliability, which is defined as the ratio of true variance to observed variance on a test under consideration, we introduced the relationship between test reliability and coefficient a, and the limitations of coefficient a. The concepts closely related to coefficient a were considered. We clearly defined homogeneity reliability and internal consistency reliability. Homogeneity reflects the presence of a general factor, whereas internal consistency relates the presence of common factors (including a general factor and local factors). For unidimensional tests, homogeneity and internal consistency are the same concept. Investigating the relationship between test reliability, coefficient o, homogeneity reliability, and internal consistency reliability, we showed that homogeneity reliability is not larger than internal consistency reliability, and that the latter is not larger than test

  7. Fluxons in thin-film superconductor-insulator superlattices

    DEFF Research Database (Denmark)

    Sakai, S.; Bodin, P.; Pedersen, Niels Falsig

    1993-01-01

    films; in the limit of ultrathin superconductor films it may give a model for describing fluxon motion in layered high-Tc superconductors. Numerical examples of current versus voltage curves to be expected in such an experiment are presented. Journal of Applied Physics is copyrighted by The American...... Institute of Physics....

  8. Peltier effect in the mixed state of high- Tc superconductors

    Science.gov (United States)

    Logvenov, G. Yu.; Ryazanov, V. V.; Ustinov, A. V.; Huebener, R. P.

    1991-04-01

    The Peltier and Seebeck effects in the mixed state of high- Tc superconductors are proportional to the resistivity due to flux motion. Therefore, both effects also show the broadening of the transition regime characteristic for these superconductors. The origin of the Peltier effect is discussed in detail, and the validity of the Thomson relation is confirmed, as expected.

  9. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  10. Stop of magnetic flux movement in levitating superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Smolyak, B.M., E-mail: b-smolyak@yandex.ru; Zakharov, M.S., E-mail: maksim.s.zakharov@gmail.com

    2017-01-15

    Highlights: • A direct experimental study of magnetic flux creep in the levitating superconductor. • When a levitating object is in a fixed position, magnetic flux movement is observed. • Levitation stops flux creep process. - Abstract: A phenomenon of magnetic relaxation stopping in a levitating superconductor was studied. It was experimentally shown that magnetic flux creep (diffusion of flux lines to regions with lower vortex density) is absent in magnetic suspension of the superconductor. Magnetic relaxation arises, when a rigid constraint that fixes a position of the superconductor relative to a magnet is imposed on a levitating object. It is assumed that oscillations of magnetic structure, which is due to free oscillations of the levitating superconductor, stop magnetic relaxation.

  11. Optical studies of crystalline organic superconductors under extreme conditions

    CERN Document Server

    McDonald, R D

    2001-01-01

    the aim being to make an optical measurement of the pressure dependence of the charge carrier effective mass. Chapter 4 concentrates on the vibrational modes of kappa-(BEDT-TTF) sub 2 Cu(SCN) sub 2. This chapter reports the first Raman scattering experiments on an organic superconductor at high pressure. Comparison of the infrared reflectance and Raman scattering measurements are used to elucidate the role of electron-phonon coupling in this material's superconductivity. Chapter 5 reports the first non-resonant measurements of the GHz conductivity of an organic molecular superconductor. These experiments probe the unconventional metallic properties of an organic superconductor during the onset of superconductivity. This thesis reports experiments which involve the interaction of light and matter to probe the properties of crystalline organic superconductors. The organic superconductors of the BEDT-TTF family are prototypical correlated electron systems; their low-temperature ground states are dominated by man...

  12. System and method for quench protection of a superconductor

    Science.gov (United States)

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  13. Stable and unstable thermo -current states of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Romanovskii, V; Lavrov, N; Ozhogina, V [Russian Research Center ' Kurchatov Institute' , Moscow 123182 (Russian Federation)], E-mail: vromanovskii@netscape.net

    2008-02-01

    Formation peculiarities of the stable and unstable states of high-T{sub c} superconductors are discussed. To understand the basic physical trends, which are characteristic for the current penetration mechanism in high temperature superconductors, the operating states of Bi2212 slab without stabilizing matrix placed in DC external magnetic fields at low coolant temperature are theoretically investigated. It is proved that the temperature of a high-T{sub c} superconductor is not equals to the coolant temperature before instability onset. Therefore, the voltage-current characteristic of a high-T{sub c} superconductor has only a positive slope during continuous current charging. As a result, it does not allow one to find the boundary between stable and unstable thermo - current states. This peculiarity has to be considered during experiments at which the critical current of high-T{sub c} superconductors is defined.

  14. Disappearance of nodal gap across the insulator-superconductor transition in a copper-oxide superconductor.

    Science.gov (United States)

    Peng, Yingying; Meng, Jianqiao; Mou, Daixiang; He, Junfeng; Zhao, Lin; Wu, Yue; Liu, Guodong; Dong, Xiaoli; He, Shaolong; Zhang, Jun; Wang, Xiaoyang; Peng, Qinjun; Wang, Zhimin; Zhang, Shenjin; Yang, Feng; Chen, Chuangtian; Xu, Zuyan; Lee, T K; Zhou, X J

    2013-01-01

    The parent compound of the copper-oxide high-temperature superconductors is a Mott insulator. Superconductivity is realized by doping an appropriate amount of charge carriers. How a Mott insulator transforms into a superconductor is crucial in understanding the unusual physical properties of high-temperature superconductors and the superconductivity mechanism. Here we report high-resolution angle-resolved photoemission measurement on heavily underdoped Bi₂Sr₂-xLaxCuO(₆+δ) system. The electronic structure of the lightly doped samples exhibit a number of characteristics: existence of an energy gap along the nodal direction, d-wave-like anisotropic energy gap along the underlying Fermi surface, and coexistence of a coherence peak and a broad hump in the photoemission spectra. Our results reveal a clear insulator-superconductor transition at a critical doping level of ~0.10 where the nodal energy gap approaches zero, the three-dimensional antiferromagnetic order disappears, and superconductivity starts to emerge. These observations clearly signal a close connection between the nodal gap, antiferromagnetism and superconductivity.

  15. The improved damping of superconductor bearings for 35 kWh superconductor flywheel energy storage system

    Energy Technology Data Exchange (ETDEWEB)

    Han, Y.H., E-mail: yhhan@kepri.re.kr [KEPCO Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejeon 305-760 (Korea, Republic of); Park, B.J.; Jung, S.Y.; Han, S.C.; Lee, W.R.; Bae, Y.C. [KEPCO Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejeon 305-760 (Korea, Republic of)

    2013-02-14

    Highlights: ► We made a 35 kWh superconductor flywheel energy storage system. ► The damping coefficient of the superconductor bearing was increased over 3000 N s/m. ► The source of damping was discussed. -- Abstract: A 35 kWh Superconductor Flywheel Energy Storage system (SFES) using hybrid bearing sets, which is composed of a high temperature superconductor (HTS) bearing and an active magnet damper (AMD), has been developed at KEPCO Research Institute (KEPRI). Damping is a source of energy loss but necessary for the stability of the flywheel system. We found that the damping of HTS bearings can be improved by thermal insulating bolts, which play a role of passive type external damper. To investigate the source of the increased damping, damping coefficients were measured with HTS bearings using insulating bolts made of three kinds of polymer materials. The damping coefficient was raised over 3000 N s/m in the case of PEEK bolts. The value was almost a quarter of the AMD. In this study, thermoelastic and Coulomb friction damping mechanisms are discussed. The main damping mechanism was the thermoelastic damping of the bolts themselves. And interfacial gap between the insulating bolt and metal chamber, which increased during the cooling process, was considered to be the cause of the anisotropic damping coefficients. Finally, the effects of the HTS bearings on the first critical speed are shown.

  16. A Double-Decker Levitation Experiment Using a Sandwich of Superconductors.

    Science.gov (United States)

    Jacob, Anthony T.; And Others

    1988-01-01

    Shows that the mutual repulsion that enables a superconductor to levitate a magnet and a magnet to levitate a superconductor can be combined into a single demonstration. Uses an overhead projector, two pellets of "1-2-3" superconductor, Nd-Fe-B magnets, liquid nitrogen, and paraffin. Offers superconductor preparation, hazards, and disposal…

  17. Studies of anisotropy of iron based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Jason [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    To study the electronic anisotropy in iron based superconductors, the temperature dependent London penetration depth, Δλ (T), have been measured in several compounds, along with the angular dependent upper critical field, Hc2(T). Study was undertaken on single crystals of Ba(Fe1-xCox)2As2 with x=0.108 and x=0.127, in the overdoped range of the doping phase diagram, characterized by notable modulation of the superconducting gap. Heavy ion irradiation with matching field doses of 6 T and 6.5 T respectively, were used to create columnar defects and to study their effect on the temperature Δλ (T). The variation of the low-temperature penetration depth in both pristine and irradiated samples was fitted with a power-law function Δλ (T) = ATn. Irradiation increases the magnitude of the pre-factor A and decreases the exponent n, similar to the effect on the optimally doped samples. This finding supports the universal s± scenario for the whole doping range. Knowing that the s± gap symmetry exists across the superconducting dome for the electron doped systems, we next looked at λ (T), in optimally - doped, SrFe2(As1-xPx)2, x =0.35. Both, as-grown (Tc ~ 25 K) and annealed (Tc ~ 35 K) single crystals of SrFe2(As1-xPx)2 were measured. Annealing decreases the absolute value of the London penetration depth from λ(0) = 300 ± 10 nm in as-grown samples to λ (0) = 275±10 nm. At low temperatures, λ (T) ~ T indicates a superconducting gap with line nodes. Analysis of the full-temperature range superfluid density is consistent with the line nodes, but differs from the simple single-gap d-wave. The observed behavior is very similar to that of BaFe2(As1-xPx)2, showing that isovalently substituted pnictides are inherently different from

  18. 0 -π phase transition in hybrid superconductor-InSb nanowire quantum dot devices

    Science.gov (United States)

    Li, Sen; Kang, N.; Caroff, P.; Xu, H. Q.

    2017-01-01

    Hybrid superconductor-semiconducting nanowire devices provide an ideal platform to investigating interesting intragap bound states, such as the Andreev bound states (ABSs), Yu-Shiba-Rusinov (YSR) states, and the Majorana bound states. The competition between Kondo correlations and superconductivity in Josephson quantum dot (QD) devices results in two different ground states and the occurrence of a 0 -π quantum phase transition. Here we report on transport measurements on hybrid superconductor-InSb nanowire QD devices with different device geometries. We demonstrate a realization of continuous gate-tunable ABSs with both 0-type levels and π -type levels. This allow us to manipulate the transition between the 0 and π junction and explore charge transport and spectrum in the vicinity of the quantum phase transition regime. Furthermore, we find a coexistence of 0-type ABS and π -type ABS in the same charge state. By measuring temperature and magnetic field evolution of the ABSs, the different natures of the two sets of ABSs are verified, being consistent with the scenario of phase transition between the singlet and doublet ground state. Our study provides insight into Andreev transport properties of hybrid superconductor-QD devices and sheds light on the crossover behavior of the subgap spectrum in the vicinity of the 0 -π transition.

  19. Report on neutron beam utilization and study of high Tc superconductors at NRI

    Energy Technology Data Exchange (ETDEWEB)

    Vuong Huu Tan [Nuclear Physics Dept., Nuclear Research Inst. (NRI), Dalat (Viet Nam)

    1998-10-01

    Utilization of reactor neutron beams at NRI for research and applications up to November 1996 had been presented at the last Workshop in Jakarta (25-28 Nov., 1996). This paper describes new research and applications carried out at Nuclear Physics Department of NRI after that time. They consist of neutron beam developments, neutron activation cross section measurements for waste disposal assessment and in-vivo prompt gamma neutron activation analysis for Cd determination in organs. After the last Sub-Workshop on Neutron Scattering in Serpong (21-23 Nov., 1996), we were accepted to participate in the Regional Program on Study of High Tc Superconductors with the topic `The mechanism of Pb and Sb dopant role on superconductivity of 2223 phase of Bi-Sr-Ca-Cu-O system`. Indeed, this study has begun at NRI only since August, 1997 due to the problem of materials. The study has been carried out in collaboration with the Hanoi State University (Superconductors Department) where experts and equipment for superconductors research have been considered as the best ones in Vietnam. Primary results in this study are presented in this workshop. (author)

  20. Odd-frequency pairing and Ising spin susceptibility in time-reversal-invariant superfluids and superconductors

    Science.gov (United States)

    Mizushima, Takeshi

    2014-11-01

    We here illustrate the relation between odd-frequency spin-triplet even-parity (OTE) Cooper pairs and anomalous surface magnetic response in time-reversal-invariant (TRI) spin-triplet superfluids and superconductors. The spin susceptibility generally consists of two contributions: even-frequency odd-parity pair amplitudes and odd-frequency even-parity pair amplitudes. The OTE pair amplitudes are absent in the bulk region, but ubiquitously exist in the surface and interface region as Andreev bound states. We here clarify that additional discrete symmetries, originating from the internal symmetry and point-group symmetry, impose strong constraint on the OTE pair amplitudes emergent in the surface of TRI superfluids and superconductors. As a result of the symmetry constraint, the magnetic response of the OTE pairs yields Ising-like anisotropy. For the topological phase of the 3He -B in a restricted geometry, the coupling of the OTE pair amplitudes to an applied field is prohibited by an additional discrete symmetry. Once the discrete symmetry is broken, however, the OTE pairs start to couple to the applied field, which anomalously enhances surface spin susceptibility. Furthermore, we extend this theory to TRI superconductors, where the corresponding discrete symmetry is the mirror reflection symmetry.

  1. The fluctuation Hall conductivity and the Hall angle in type-II superconductor under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Tinh, Bui Duc, E-mail: tinhbd@hnue.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam); Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Hoc, Nguyen Quang; Thu, Le Minh [Department of Physics, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi (Viet Nam)

    2016-02-15

    Highlights: • The time-dependent Ginzburg–Landau was used to calculate fluctuation Hall conductivity and Hall angle in type-II superconductor in 2D and 3D. • We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. • The results were compared to the experimental data on YBCO. - Abstract: The fluctuation Hall conductivity and the Hall angle, describing the Hall effect, are calculated for arbitrary value of the imaginary part of the relaxation time in the frame of the time-dependent Ginzburg–Landau theory in type II-superconductor with thermal noise describing strong thermal fluctuations. The self-consistent Gaussian approximation is used to treat the nonlinear interaction term in dynamics. We obtain analytical expressions for the fluctuation Hall conductivity and the Hall angle summing all Landau levels without need to cutoff higher Landau levels to treat arbitrary magnetic field. The results are compared with experimental data on high-T{sub c} superconductor.

  2. Exploring intertwined orders in cuprate superconductors

    Science.gov (United States)

    Tranquada, John M.

    2015-03-01

    The concept of intertwined orders has been introduced to describe the cooperative relationship between antiferromagnetic spin correlations and electron (or hole) pair correlations that develop in copper-oxide superconductors. This contrasts with systems in which, for example, charge-density-wave (CDW) order competes for Fermi surface area with superconductivity. La2-xBaxCuO4 with x=0.125 provides an example in which the ordering of spin stripes coincides with the onset of two-dimensional superconducting correlations. The apparent frustration of the interlayer Josephson coupling has motivated the concept of the pair-density-wave superconductor, a state that theoretical calculations show to be energetically competitive with the uniform d-wave superconductor. Even at x=0.095, where there is robust superconductivity below 32 K in zero field, the coexistence of strong, low-energy, incommensurate spin excitations implies a spatially modulated and intertwined pair wave function. Recent observations of CDW order in YBa2Cu3O6+x and other cuprate families have raised interesting questions regarding the general role of charge modulations and the relation to superconductivity. While there are differences in the doping dependence of the modulation wave vectors in YBa2Cu3O6+x and La2-xBaxCuO4, the maximum ordering strength is peaked at the hole concentration of 1/8 in both cases. There are also possible connections with the quantum oscillations that have been detected about the same hole concentration but at high magnetic fields. Resolving these relationships remains a research challenge.

  3. Interaction of gravitational waves with superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)

    2017-06-15

    Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Ginzburg-Landau theory of noncentrosymmetric superconductors

    OpenAIRE

    Mukherjee, Soumya P.; Mandal, Sudhansu S.

    2007-01-01

    The data of temperature dependent superfluid density $n_s(T)$ in Li$_2$Pd$_3$B and Li$_2$Pt$_3$B [Yuan {\\it et al.}, \\phrl97, 017006 (2006)] show that a sudden change of the slope of $n_s (T)$ occur at slightly lower than the critical temperature. Motivated by this observation, we microscopically derive the Ginzburg-Landau (GL) equations for noncentrosymmetric superconductors with Rashba type spin orbit interaction. Cooper pairing is assumed to occur between electrons only in the same spin sp...

  5. Quantum oscillations in superconductors in magnetic field

    Science.gov (United States)

    Gvozdikov, Vladimir M.; Gvozdikova, Mariya V.

    2000-07-01

    The Aharonov-Bohm oscillations (ABO) of the free energy, the critical temperature, and the magnetic susceptibility in a stack of hollow mesoscopic cylinders are calculated. It is shown that sinusoidal (in flux) ABO crosses over to the parabolic Little-Parks oscillations (LPO) when the diameter of cylinders exceeds the coherence length. The exponential temperature behaviour of the magnetic susceptibility is like that found in Ag cylinders with thin Nb coating [Czech. J. Physics 46 (1996) 2317]. The formal analogy between oscillations of the free energy in the Aharonov-Bohm system in question and the de Haas-van Alphen oscillations (dHvAO) in layered superconductors is discussed.

  6. Topological Aspects of Superconductors at Dual Point

    Institute of Scientific and Technical Information of China (English)

    REN Ji-Rong; XU Dong-Hui; ZHANG Xin-Hui; DUAN Yi-Shi

    2008-01-01

    We study the properties of the Ginzburg-Landau model at the dual point for the superconductors. By making use of the U(1) gauge potential decomposition and the C-mapping theory, we investigate the topological inner structure of the Bogomol'nyi equations and deduce a modified deeoupled Bogomol'nyi equation with a nontrivial topo-logical term, which is ignored in conventional model. We find that the nontrivial topological term is closely related tothe N-vortex, which arises from the zero points of the complex scalar field. Furthermore, we establish a relationship between Ginzburg-Landau free energy and the winding number.

  7. Applications of bulk high-temperature superconductors

    Science.gov (United States)

    Hull, J. R.

    The development of high-temperature superconductors (HTS's) can be broadly generalized into thin-film electronics, wire applications, and bulk applications. We consider bulk HTS's to include sintered or crystallized forms that do not take the geometry of filaments or tapes, and we discuss major applications for these materials. For the most part applications may be realized with the HTS's cooled to 77 K, and the properties of the bulk HTS's are often already sufficient for commercial use. A non-exhaustive list of applications for bulk HTS's includes trapped field magnets, hysteresis motors, magnetic shielding, current leads, and magnetic bearings. These applications are briefly discussed in this paper.

  8. Photoemission study of iron-based superconductor

    Institute of Scientific and Technical Information of China (English)

    Liu Zhong-Hao; Cai Yi-Peng; Zhao Yan-Ge; Jia Lei-Lei; Wang Shan-Cai

    2013-01-01

    The iron-based superconductivity (IBSC) is a great challenge in correlated system.Angle-resolved photoemission spectroscopy (ARPES) provides electronic structure of the IBSCs,the pairing strength,and the order parameter symmetry.Here,we briefly review the recent progress in IBSCs and focus on the results from ARPES.The ARPES study shows the electronic structure of “122”,“111”,“11”,and “122*” families of IBSCs.It has been agreed that the IBSCs are unconventional superconductors in strong coupling region.The order parameter symmetry basically follows s± form with considerable out-of-plane contribution.

  9. Collective excitations in unconventional superconductors and superfluids

    CERN Document Server

    Brusov, Peter

    2009-01-01

    This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF&SC). Using the most powerful method of modern theoretical physics - the path (functional) integral technique - authors build the three- and two-dimensional models for s -, p - and d -wave pairing in neutral as well as in charged Fermi-systems, models of superfluid Bose-systems and Fermi-Bose-mixtures. Within these models they study the collective properties of such systems as superfluid 3 He, superfluid 4 He, superfluid 3 He-

  10. Practical Low-Temperature Superconductors for Electromagnets

    CERN Document Server

    Devred, Arnaud

    2004-01-01

    After a brief history of the main discoveries in applied superconductivity, the structure and properties of NbTi and Nb3Sn are discussed. Then, we explain why low-critical-temperature superconductors are produced under the form of multifilament composites, and we review the manufacturing processes of NbTi and Nb3Sn wires. We follow by a description of the transition from the superconducting to the normal resistive state of multifilament composite wires and we detail their magnetization properties. Last, we present the most commonly used cable configurations and we provide simple formulae illustrating with a few examples the computation of losses generated under time-varying magnetic fields.

  11. Quench in high temperature superconductor magnets

    CERN Document Server

    Schwartz, J

    2013-01-01

    High field superconducting magnets using high temperature superconductors are being developed for high energy physics, nuclear magnetic resonance and energy storage applications. Although the conductor technology has progressed to the point where such large magnets can be readily envisioned, quench protection remains a key challenge. It is well-established that quench propagation in HTS magnets is very slow and this brings new challenges that must be addressed. In this paper, these challenges are discussed and potential solutions, driven by new technologies such as optical fiber based sensors and thermally conducting electrical insulators, are reviewed.

  12. Detection of infrared photons with a superconductor

    Institute of Scientific and Technical Information of China (English)

    ZHANG LaBao; ZHONG YangYin; KANG Lin; CHEN Jian; JI ZhengMing; XU WeiWei; CAO ChunHai

    2009-01-01

    A superconductor single photon detector based on NbN nanowire was fabricated using electron beam lithography (EBL) and reactive ion etching (RIE) for infrared photon detection. When biased well below its critical current at 4.2 K, NbN nanowire is very sensitive to the incident photons. Typical telecommunication photons with a wavelength of 1550 nm were detected by this detector. Data analysis indicates the repeating rate of the device with 200 nm NbN nanowire may be up to 100 MHz, and the quantum efficiency is about 0.01% when biased at 0.95Ic.

  13. High-Tc superconductor coplanar waveguide filter

    Science.gov (United States)

    Chew, Wilbert; Bajuk, Louis J.; Cooley, Thomas W.; Foote, Marc C.; Hunt, Brian D.; Rascoe, Daniel L.; Riley, A. L.

    1991-01-01

    Coplanar waveguide (CPW) low-pass filters made of YBa2Cu3O(7-delta) (YBCO) on LaAlO3 substrates, with dimensions suited for integrated circuits, were fabricated and packaged. A complete filter gives a true idea of the advantages and difficulties in replacing thin-film metal with a high-temperature superconductor in a practical circuit. Measured insertion losses in liquid nitrogen were superior to the loss of a similar thin-film copper filter throughout the 0- to 9.5-GHz passband. These results demonstrate the performance of fully patterned YBCO in a practical CPW structure after sealing in a hermetic package.

  14. Paramagnetic excited vortex states in superconductors

    Science.gov (United States)

    Gomes, Rodolpho Ribeiro; Doria, Mauro M.; Romaguera, Antonio R. de C.

    2016-06-01

    We consider excited vortex states, which are vortex states left inside a superconductor once the external applied magnetic field is switched off and whose energy is lower than of the normal state. We show that this state is paramagnetic and develop here a general method to obtain its Gibbs free energy through conformal mapping. The solution for any number of vortices in any cross-section geometry can be read off from the Schwarz-Christoffel mapping. The method is based on the first-order equations used by Abrikosov to discover vortices.

  15. Discovery of a Superhard Iron Tetraboride Superconductor

    Science.gov (United States)

    Gou, Huiyang; Dubrovinskaia, Natalia; Bykova, Elena; Tsirlin, Alexander A.; Kasinathan, Deepa; Schnelle, Walter; Richter, Asta; Merlini, Marco; Hanfland, Michael; Abakumov, Artem M.; Batuk, Dmitry; Van Tendeloo, Gustaaf; Nakajima, Yoichi; Kolmogorov, Aleksey N.; Dubrovinsky, Leonid

    2013-10-01

    Single crystals of novel orthorhombic (space group Pnnm) iron tetraboride FeB4 were synthesized at pressures above 8 GPa and high temperatures. Magnetic susceptibility and heat capacity measurements demonstrate bulk superconductivity below 2.9 K. The putative isotope effect on the superconducting critical temperature and the analysis of specific heat data indicate that the superconductivity in FeB4 is likely phonon mediated, which is rare for Fe-based superconductors. The discovered iron tetraboride is highly incompressible and has the nanoindentation hardness of 62(5) GPa; thus, it opens a new class of highly desirable materials combining advanced mechanical properties and superconductivity.

  16. Coulomb blockade in fractional topological superconductors

    Science.gov (United States)

    Kim, Younghyun; Clarke, David J.; Lutchyn, Roman M.

    2017-07-01

    We study charge transport through a floating mesoscopic superconductor coupled to counterpropagating fractional quantum Hall edges at filling fraction ν =2 /3 . We consider a superconducting island with finite charging energy and investigate its effect on transport through the device. We calculate conductance through such a system as a function of temperature and gate voltage applied to the superconducting island. We show that transport is strongly affected by the presence of parafermionic zero modes, leading at zero temperature to a zero-bias conductance quantized in units of ν e2/h independent of the applied gate voltage.

  17. 低分子肝素仿制药一致性研究法规现状%Current Regulatory Situation of Quality Consistency Evaluation for Generic Low Molecular Weight Heparin

    Institute of Scientific and Technical Information of China (English)

    柳晓芳; 崔慧斐

    2013-01-01

    Quality consistency evaluation is required for generic low molecular weight heparin (LMWH) because it is a multi-component biochemical medicine. The patents for LMWH have expired or will expire shortly, thus guidelines for quality consistency evaluation of generics have been issued in many countries or regions. In this paper, these guidelines or statements were summarized to provide reference for development of such generics.%低分子肝素(LMWH)是一类多组分生化药,其复杂的结构特点决定了其仿制药与原研药一致性研究的必要性。随着LMWH,如依诺肝素钠等原研药专利的到期,各国均发布了针对此类产品仿制药与原研药一致性研究的指导原则。本文综述了各国或各组织发布的指导原则或声明,为LMWH仿制药的研究提供借鉴。

  18. The normal state of high temperature oxide superconductor

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Looking back on the experiments about the normal state of thehigh temperature superconductor (HTS), the authors point out nine important experimental results. On the basis of these results, the authors have argued that the two-dimension, two-subsystem Hamiltonian is the appropriate starting point for describing the normal state of HTS. By this Hamiltonian, using the decoupling approximation of Green's function method by Kaga through numerical calculations, the authors have obtained the temperature dependent pseudogap in the density of states (DOS), which is consistent qualitatively with the experimental results by angle-resolved photoemission spectroscopy (ARPES). Theoretically, this Hamiltonian has the superconducting order parameter of d+s symmetry with d-wave as the main component, which is consistent with experiments. Further, the quantum electronic liquid in HTS is a near Fermi liquid in which there is coexistence of the delocalized states and nearly localized states, and there is finite probability for the nearly localized carriers to form the nearly localized carrier pairs at any finite temperature.

  19. Theory of the pairbreaking superconductor-metal transition in nanowires

    Science.gov (United States)

    Sachdev, Subir

    2009-03-01

    We present a detailed description of a zero temperature phase transition between superconducting and diffusive metallic states in very thin wires due to a Cooper pair breaking mechanism. The dissipative critical theory contains current reducing fluctuations in the guise of both quantum and thermally activated phase slips. A full cross-over phase diagram is computed via an expansion in the inverse number of complex components of the superconducting order parameter (one in the physical case). The fluctuation corrections to the electrical (σ) and thermal (κ) conductivities are determined, and we find that σ has a non-monotonic temperature dependence in the metallic phase which may be consistent with recent experimental results on ultra-narrow wires. In the quantum critical regime, the ratio of the thermal to electrical conductivity displays a linear temperature dependence and thus the Wiedemann-Franz law is obeyed, with a new universal experimentally verifiable Lorenz number. We also examined the influence of quenched disorder on the superconductor-metal transition. The self-consistent pairing eigenmodes of a quasi-one dimensional wire were determined numerically. Our results support the proposal by Hoyos et al./ (Phys. Rev. Lett. 99, 230601 (2007)) that the transition is described by the same strong disorder fixed point describing the onset of ferromagnetism in the quantum Ising model in a transverse field.

  20. Unbalanced Holographic Superconductors and Spintronics

    CERN Document Server

    Bigazzi, Francesco; Musso, Daniele; Fokeeva, Natalia Pinzani; Seminara, Domenico

    2011-01-01

    We present a minimal holographic model for s-wave superconductivity with unbalanced Fermi mixtures, in 2+1 dimensions at strong coupling. The breaking of a U(1)_A "charge" symmetry is driven by a non-trivial profile for a charged scalar field in a charged asymptotically AdS_4 black hole. The chemical potential imbalance is implemented by turning on the temporal component of a U(1)_B "spin" field under which the scalar field is uncharged. We study the phase diagram of the model and comment on the eventual (non) occurrence of LOFF-like inhomogeneous superconducting phases. Moreover, we study "charge" and "spin" transport, implementing a holographic realization (and a generalization thereof to superconducting setups) of Mott's two-current model which provides the theoretical basis of modern spintronics. Finally we comment on possible string or M-theory embeddings of our model and its higher dimensional generalizations, within consistent Kaluza-Klein truncations and brane-anti brane setups.

  1. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  2. High-temperature superconductors make major progress

    CERN Multimedia

    CERN Bulletin

    2014-01-01

    This month's Nature Materials featured an important breakthrough for high-temperature superconductors. A new method has been found for processing Bi-2212 high-temperature superconducting round wire in order to drastically increase its critical current density. The result confirms that this conductor is a serious candidate for future very-high-field magnets.   This image shows the cross-section of two Bi-2212 wires. The bottom wire has less leakage and void porosity due to a heat treatment done at an overpressure of 100 bar - about 100 times the pressure used to produce the top wire (image from [Nature Materials, Vol. 13 (2014), 10.1038/nmat3887]). The workhorse for building superconducting accelerator magnets has been, so far, the Niobium-Titanium (Nb-Ti) alloy superconductor. But with Nb-Ti having reached its full potential, other conductors must be used to operate in higher magnetic fields beyond those reached with the LHC magnets. Today, the intermetallic Niobium-Tin (Nb3Sn) is th...

  3. Charge of a quasiparticle in a superconductor

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-01-01

    Nonlinear charge transport in superconductor–insulator–superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e=n, with n = 1–4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD∼2Δ, we found a reproducible and clear dip in the extracted charge to q ∼0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure. PMID:26831071

  4. Demagnetisation by crossed fields in superconductors

    Science.gov (United States)

    Campbell, Archie; Baghdadi, Mehdi; Patel, Anup; Zhou, Difan; Huang, K. Y.; Shi, Yunhua; Coombs, Tim

    2017-03-01

    A study has been made of the decay of the trapped magnetisation in superconductors when exposed to a crossed field. Numerical results have been compared with the theory of Brandt and Mikitik (2002 Phys. Rev. Lett. 89 027002) which solves the problem for a thin strip superconductor. FlexPDE with the A formulation and COMSOL with the H formulation were both used. Simulations of a strip with a cross section aspect ratio of 20 showed good agreement with theory both for the case of a transverse field larger than the transverse penetration field and for one smaller. In the latter case the magnetisation saturates as predicted, however the simulations show a slow decay after many cycles. In the case of stacked YBCO tapes the movement of flux lines is very small and the effects of the reversible motion were investigated. This can decrease the decay initially for very thin decoupled tapes, but cause a steady decay after very large numbers of cycles. Simulations on stacked strips showed that the decay constant increased approximately linearly with the number of strips. When combined with the theory for one tape this can explain the very slow decay observed in previous experiments. Experimental results were qualitatively in agreement with theory and simulations but showed some discrepancies. However there are a number of differences between the experimental situation and theory so good agreement is not expected.

  5. Magnetic Excitations from Stripes in Cuprate Superconductors

    Science.gov (United States)

    Tranquada, J. M.; Woo, H.; Perring, T. G.; Goka, H.; Gu, G. D.; Xu, G.; Fujita, M.; Yamada, K.

    2004-03-01

    While it is generally believed that antiferromagnetic spin excitations play a significant role in the pairing mechanism of copper-oxide superconductors [1], the nature of the magnetic excitations themselves remains a matter of controversy. Recent measurements of the dispersion of spin excitations in superconducting YBa_2Cu_3O_6+x (YBCO) have attracted much attention. Here we present the results of comprehensive inelastic neutron scattering measurements of the momentum- and energy-dependent spectra of the magnetic fluctuations in La_0.875Ba_0.125CuO_4, which exhibits inhomogeneous, charge-stripe order. We will also point out universalities and differences in the magnetic excitation spectra compared to related charge-stripe ordered compounds and high-temperature superconductors, including La_2-xSr_xNiO4 and YBCO. JMT, HW, GDG and GX are supported by U.S. Department of Energy contract # DE-AC02-98CH1088 [1] J. Orenstein and A. J. Millis, Science 288, 468 (2000).

  6. Electronic phase separation and high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kivelson, S.A. [Univ. of California, Los Angeles, CA (United States). Dept. of Physics; Emery, V.J. [Brookhaven National Lab., Upton, NY (United States)

    1994-01-11

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional.

  7. Development of Strengthened Bundle High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lue, J.W.; Lubell, M.S. [Oak Ridge National Lab., TN (United States); Demko, J.A. [Oak Ridge Inst. for Science and Education, TN (United States); Tomsic, M. [Plastronic, Inc., Troy, OH (United States); Sinha, U. [Southwire Company, Carollton, GA (United States)

    1997-12-31

    In the process of developing high temperature superconducting (HTS) transmission cables, it was found that mechanical strength of the superconducting tape is the most crucial property that needs to be improved. It is also desirable to increase the current carrying capacity of the conductor so that fewer layers are needed to make the kilo-amp class cables required for electric utility usage. A process has been developed by encapsulating a stack of Bi-2223/Ag tapes with a silver or non-silver sheath to form a strengthened bundle superconductor. This process was applied to HTS tapes made by the Continuous Tube Forming and Filling (CTFF) technique pursued by Plastronic Inc. and HTS tapes obtained from other manufacturers. Conductors with a bundle of 2 to 6 HTS tapes have been made. The bundled conductor is greatly strengthened by the non-silver sheath. No superconductor degradation as compared to the sum of the original critical currents of the individual tapes was seen on the finished conductors.

  8. Percolation effect in thick film superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sali, R.; Harsanyi, G. [Technical Univ. of Budapest (Hungary)

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  9. Vortex Dynamics in Anisotropic Superconductors

    Science.gov (United States)

    Steel, David Gordon

    Measurements of the ac screening response and resistance of superconducting Bi_2Sr _2CaCu_2O _8 (BSCCO) crystals have been used to probe the dynamics of the magnetic flux lines within the mixed state as a function of frequency, temperature, and applied dc field. For the particular range of temperature and magnetic field in which measurements were made, the systematic behavior of the observed dissipation peak in the screening response is consistent with electromagnetic skin size effects rather than a phase transition. According to microscopic theories of the interaction between the flux lines and a driving ac field, such a skin size effect is expected for the case when the vortex motion is diffusive in nature. However, diffusive motion is inconsistent with simple activation models that use a single value for the pinning energy (derived from direct measurement of the dc resistance). This contradiction suggests a distribution of pinning energies within the sample. Interlayer vortex decoupling has been directly observed as a function of temperature and applied magnetic field using electronic transport perpendicular to the layers in synthetic amorphous MoGe/Ge multilayer samples. Perpendicular transport has been shown to be a far more sensitive measure of the phase coupling between layers than in-plane properties. Below the decoupling temperature T_{D} the resistivity anisotropy collapses and striking nonlinearities appear in the perpendicular current-voltage behavior, which are not observed in parallel transport. A crossover in behavior is also observed at a field H _{x}, in accordance with theory. The data suggest the presence of a phase transition into a state with finite in-plane resistivity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.).

  10. American superconductor technology to help CERN to explore the mysteries of matter company's high temperature superconductor wire to be used in CERN's Large Hadron Collider

    CERN Multimedia

    2003-01-01

    American Superconductor Corporation has been selected by CERN, to provide 14,000 meters of high temperature superconductor (HTS) wire for current lead devices that will be used in CERN's Large Hadron Collider (1 page).

  11. Topologically protected surface states in a centrosymmetric superconductor β-PdBi2.

    Science.gov (United States)

    Sakano, M; Okawa, K; Kanou, M; Sanjo, H; Okuda, T; Sasagawa, T; Ishizaka, K

    2015-01-01

    The topological aspects of electrons in solids can emerge in real materials, as represented by topological insulators. In theory, they show a variety of new magneto-electric phenomena, and especially the ones hosting superconductivity are strongly desired as candidates for topological superconductors. While efforts have been made to develop possible topological superconductors by introducing carriers into topological insulators, those exhibiting indisputable superconductivity free from inhomogeneity are very few. Here we report on the observation of topologically protected surface states in a centrosymmetric layered superconductor, β-PdBi2, by utilizing spin- and angle-resolved photoemission spectroscopy. Besides the bulk bands, several surface bands are clearly observed with symmetrically allowed in-plane spin polarizations, some of which crossing the Fermi level. These surface states are precisely evaluated to be topological, based on the Z2 invariant analysis in analogy to three-dimensional strong topological insulators. β-PdBi2 may offer a solid stage to investigate the topological aspect in the superconducting condensate.

  12. Design of Nb3Sn magnetic devices to study the superconductor degradation under variable mechanical load

    CERN Document Server

    Regis, Federico

    2009-01-01

    The Large Hadron Collider (LHC) is a two-ring, superconducting synchrotron accelerator and collider installed in a 27 km long tunnel aiming at the discovery of the Higgs particle and the study of rare events with center mass collision energies of up to 14 TeV. The number of collisions per unit of area and time in a collider are evaluated trough the Luminosity function. Inside the LHC, superconducting magnets aligned with a precision of a few tenths of millimeters are used to bend and focus the particle trajectories. The LHC can be considered as the state of the art for superconducting magnets using the Nb-Ti superconductor technology. Therefore, a higher luminosity and beam energy can be achieved in the LHC only by using a more performing superconductor, such as the Nb3Sn. This is considered as the most suitable superconductor to be used in high field magnets, allowing peak field of the order of 15 T. Nevertheless, the critical current jc variations in a Nb3Sn has been found as strongly dependent on the mecha...

  13. Design features of internal tin superconductors for ITER magnetic system

    Energy Technology Data Exchange (ETDEWEB)

    Pantsyrnyi, V.I.; Shikov, A.K.; Nikulin, A.D.; Silaev, A.G.; Bel`akov, N.A.; Vdovin, V.F.; Semin, M.J. [Bochvar All-Russia Inst. of Inorganic Materials, Moscow (Russian Federation)

    1996-07-01

    The influence of parameters of internal tin superconductor design on the main working characteristics such as critical current density and hysteresis losses were analyzed. It was shown that having the value of hysteresis losses at the acceptable level of 400--600 mJ/cm{sup 3} the critical current density 20--30% higher than the value typical for bronze route processed superconductors was attainable in principle. The results of experimental work on the design of new types of internal tin superconductors for ITER magnetic system are given.

  14. Study of the glass formation of high temperature superconductors

    Science.gov (United States)

    Ethridge, Edwin C.; Kaukler, William F.; Rolin, Terry

    1992-01-01

    A number of compositions of ceramic oxide high T(sub c) superconductors were elevated for their glass formation ability by means of rapid thermal analysis during quenching, optical, and electron microscopy of the quenched samples, and with subsequent DSC measurements. Correlations between experimental measurements and the methodical composition changes identified the formulations of superconductors that can easily form glass. The superconducting material was first formed as a glass; then, with subsequent devitrification, it was formed into a bulk crystalline superconductor by a series of processing methods.

  15. Observability of surface currents in p-wave superconductors

    Science.gov (United States)

    Bakurskiy, S. V.; Klenov, N. V.; Soloviev, I. I.; Kupriyanov, M. Yu; Golubov, A. A.

    2017-04-01

    A general approach is formulated to describe spontaneous surface current distribution in a chiral p-wave superconductor. We use the quasiclassical Eilenberger formalism in the Ricatti parametrization to describe various types of the superconductor surface, including arbitrary roughness and metallic behavior of the surface layer. We calculate angle resolved distributions of the spontaneous surface currents and formulate the conditions of their observability. We argue that local measurements of these currents by muon spin rotation technique may provide an information on the underlying pairing symmetry in the bulk superconductor.

  16. Vortex loops entry into type-II superconductors

    CERN Document Server

    Samokhvalov, A V

    1996-01-01

    The magnetic field distribution, the magnetic flux, and the free energy of an Abrikosov vortex loop near a flat surface of type--II superconductors are calculated in the London approximation. The shape of such a vortex line is a semicircle of arbitrary radius. The interaction of the vortex half--ring and an external homogeneous magnetic field applied along the surface is studied. The magnitude of the energy barrier against the vortex expansion into superconductor is found. The possibilities of formation of an equilibrium vortex line determined by the structure of the applied magnetic field by creating the expanding vortex loops near the surface of type--II superconductor are discussed.

  17. Effects of chiral helimagnets on vortex states in a superconductor

    Science.gov (United States)

    Fukui, Saoto; Kato, Masaru; Togawa, Yoshihiko

    2016-12-01

    We have investigated vortex states in chiral helimagnet/superconductor bilayer systems under an applied external magnetic field {H}{appl}, using the Ginzburg-Landau equations. Effect of the chiral helimagnet on the superconductor is taken as a magnetic field {H}{CHM}, which is perpendicular to the superconductor and oscillates spatially. For {H}{appl}=0 and weak {H}{CHM}, there appear pairs of up- and down-vortices. Increasing {H}{appl}, down-vortices gradually disappear, and the number of up-vortices increases in the large magnetic field region. Then, up-vortices form parallel, triangular, or square structures.

  18. Magnetization of two-dimensional superconductors with defects

    CERN Document Server

    Kashurnikov, V A; Zyubin, M V

    2002-01-01

    The new method for modeling the layered high-temperature superconductors magnetization with defects, based on the Monte-Carlo algorithm, is developed. Minimization of the free energy functional of the vortex two-dimensional system made it possible to obtain the equilibrium vortex density configurations and calculate the magnetization of the superconductor with the arbitrary defects distribution in the wide range of temperatures. The magnetic induction profiles and magnetic flux distribution inside the superconductor, proving the applicability of the Bean model, are calculated

  19. Compact terahertz passive spectrometer with wideband superconductor-insulator-superconductor mixer.

    Science.gov (United States)

    Kikuchi, K; Kohjiro, S; Yamada, T; Shimizu, N; Wakatsuki, A

    2012-02-01

    We developed a compact terahertz (THz) spectrometer with a superconductor-insulator-superconductor (SIS) mixer, aiming to realize a portable and highly sensitive spectrometer to detect dangerous gases at disaster sites. The receiver cryostat which incorporates the SIS mixer and a small cryocooler except for a helium compressor has a weight of 27 kg and dimensions of 200 mm × 270 mm × 690 mm. In spite of the small cooling capacity of the cryocooler, the SIS mixer is successfully cooled lower than 4 K, and the temperature variation is suppressed for the sensitive measurement. By adopting a frequency sweeping system using photonic local oscillator, we demonstrated a spectroscopic measurement of CH(3)CN gas in 0.2-0.5 THz range.

  20. Experiments on non-equilibrium superconductor-normal metal-superconductor Josephson junctions

    Science.gov (United States)

    Crosser, Michael S.

    By controlling the distribution function within the normal metal of a superconductor/normal metal/superconductor (SNS) Josephson junction, one can reverse the supercurrent-phase relation in the normal wire, creating a pi-junction. This manipulation is done by injecting normal quasiparticle current into the wire, via one or more leads attached at the middle of the junction. Two experiments evolve from this concept. First, in a sample of four reservoirs, two normal and two superconducting, all connected by a wire cross of normal metal, one may inject current either antisymmetrically (AS) or symmetrically (S). In the AS case, current is injected into one normal lead and extracted from the other, creating normal current flow that does not interact with the supercurrent except at the junction. In the S case, current is injected into both normal leads and extracted from the superconductors. Theory predicts that, in the absence of electron energy relaxation in the normal part of the junction, these two situations should result in identical behavior of the Josephson junction. However, due to Joule heating, the S case shows a slightly larger maximum pi-current than the AS case. The second experiment considers a more subtle effect resulting from normal current being injected symmetrically into a SNS Josephson junction. One side of the SNS junction has both normal current and supercurrent flowing in the same direction while the other side has opposing current flows. This situation creates an effective energy gradient across the SNS junction that can appear in the distribution function of the normal wire. Using superconductor/insulator/normal metal tunnelling spectroscopy, it is possible to extract these changes to the distribution function.