WorldWideScience

Sample records for superconductor yba2cu3o approximately

  1. HgO-added YBa2Cu3O7- superconductors

    Indian Academy of Sciences (India)

    Mangalesh Dixit; Shovit Bhattacharya; Rajneesh Mohan; Kiran Singh; P S R Krishna; Vilas Shelke; N K Gaur; R K Singh

    2004-08-01

    The HgO-added YBa2Cu3O7- (YBCO) superconductor has been studied for its structural and superconducting properties. Polycrystalline YBCO samples were synthesized through solid-state reaction method by adding HgO in different concentrations without using oxygen annealing. All the samples showed a sharp superconducting transition temperature around 90 K. The X-ray diffraction patterns of all the samples revealed monophasic Y-123 nature. The structural studies were carried out by neutron scattering and Rietveld analysis. The neutron scattering revealed that Hg is not incorporated in the Y-123 system and has shown optimum oxygen concentration. The significant role played by the HgO is to provide oxygen ambient through its decomposition, thus changing the oxygen balance in favour of high Cu-valence state.

  2. Imaging the anisotropic nonlinear meissner effect in nodal YBa2 Cu3 O7-δ thin-film superconductors.

    Science.gov (United States)

    Zhuravel, Alexander P; Ghamsari, B G; Kurter, C; Jung, P; Remillard, S; Abrahams, J; Lukashenko, A V; Ustinov, Alexey V; Anlage, Steven M

    2013-02-22

    We have directly imaged the anisotropic nonlinear Meissner effect in an unconventional superconductor through the nonlinear electrodynamic response of both (bulk) gap nodes and (surface) Andreev bound states. A superconducting thin film is patterned into a compact self-resonant spiral structure, excited near resonance in the radio-frequency range, and scanned with a focused laser beam perturbation. At low temperatures, direction-dependent nonlinearities in the reactive and resistive properties of the resonator create photoresponse that maps out the directions of nodes, or of bound states associated with these nodes, on the Fermi surface of the superconductor. The method is demonstrated on the nodal superconductor YBa2Cu3O7-δ and the results are consistent with theoretical predictions for the bulk and surface contributions.

  3. Positron Annihilation Lifetime Spectroscopy Study of Neutron Irradiated High Temperature Superconductors YBa2Cu3O7-δ for Application in Fusion Facilities

    Science.gov (United States)

    Veterníková, J.; Chudý, M.; Slugeň, V.; Eisterer, M.; Weber, H. W.; Sojak, S.; Petriska, M.; Hinca, R.; Degmová, J.; Sabelová, V.

    2012-02-01

    This study focuses on the crystallographic defects introduced by neutron irradiation and the resulting changes of the superconducting properties in the high temperature superconductor YBa2Cu3O7-δ. This material is considered to be most promising for magnet systems in future fusion reactors. Two different bulk samples, pure non-doped YBa2Cu3O7-δ (YBCO) and multi-seed YBa2Cu3O7-δ doped by platinum (MS2F) were studied prior to and after irradiation in the TRIGA MARK II reactor in Vienna. Neutron irradiation is responsible for a significant enhancement of the critical current densities as well as for a reduction in critical temperature. The accumulation of small open volume defects (treatment.

  4. Magnetic-Field-Enhanced Incommensurate Magnetic Order in the Underdoped High-Temperature Superconductor YBa2Cu3O6.45

    DEFF Research Database (Denmark)

    Haug, D.; Hinkov, V.; Suchaneck, A.

    2009-01-01

    We present a neutron-scattering study of the static and dynamic spin correlations in the underdoped high-temperature superconductor YBa2Cu3O6.45 in magnetic fields up to 15 T. The field strongly enhances static incommensurate magnetic order at low temperatures and induces a spectral-weight shift...

  5. Superconductor to Mott insulator transition in YBa2Cu3O7/LaCaMnO3 heterostructures

    Science.gov (United States)

    Gray, B. A.; Middey, S.; Conti, G.; Gray, A. X.; Kuo, C.-T.; Kaiser, A. M.; Ueda, S.; Kobayashi, K.; Meyers, D.; Kareev, M.; Tung, I. C.; Liu, Jian; Fadley, C. S.; Chakhalian, J.; Freeland, J. W.

    2016-09-01

    The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high Tc superconductor YBa2Cu3O7 (YBCO) and colossal magnetoresistance ferromagnet La0.67Ca0.33MnO3 (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping in cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Such deterministic control of Tc by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.

  6. Superconductor to Mott insulator transition in YBa2Cu3O7/LaCaMnO3 heterostructures.

    Science.gov (United States)

    Gray, B A; Middey, S; Conti, G; Gray, A X; Kuo, C-T; Kaiser, A M; Ueda, S; Kobayashi, K; Meyers, D; Kareev, M; Tung, I C; Liu, Jian; Fadley, C S; Chakhalian, J; Freeland, J W

    2016-01-01

    The superconductor-to-insulator transition (SIT) induced by means such as external magnetic fields, disorder or spatial confinement is a vivid illustration of a quantum phase transition dramatically affecting the superconducting order parameter. In pursuit of a new realization of the SIT by interfacial charge transfer, we developed extremely thin superlattices composed of high Tc superconductor YBa2Cu3O7 (YBCO) and colossal magnetoresistance ferromagnet La0.67Ca0.33MnO3 (LCMO). By using linearly polarized resonant X-ray absorption spectroscopy and magnetic circular dichroism, combined with hard X-ray photoelectron spectroscopy, we derived a complete picture of the interfacial carrier doping in cuprate and manganite atomic layers, leading to the transition from superconducting to an unusual Mott insulating state emerging with the increase of LCMO layer thickness. In addition, contrary to the common perception that only transition metal ions may respond to the charge transfer process, we found that charge is also actively compensated by rare-earth and alkaline-earth metal ions of the interface. Such deterministic control of Tc by pure electronic doping without any hindering effects of chemical substitution is another promising route to disentangle the role of disorder on the pseudo-gap and charge density wave phases of underdoped cuprates.

  7. The study of ultrasonic irradiation effects on solid state powders of HTc superconductor YBa2Cu3O7-x

    Science.gov (United States)

    Kargar, Mahboubeh; Khoshnevisan, Bahram

    2016-03-01

    In this paper, an ultrasound assisted solid state synthesis method for high-temperature (HTc) YBa2Cu3O7-x (YBCO) superconductor nanostructures with different morphologies is presented. Here, the routine heat treatment of the powder mixture of as-prepared precursors is followed by the ultrasound irradiation inside various alcoholic solutions. Not only the influence of the ultrasound irradiation intensity and duration but also the influence of different solvents such as ethanol, methanol and 1-butanol with various vapor pressures and so various destruction powers were also studied on the morphology and particle size of the products. The various morphologies were studied by scanning electron microscope (SEM) which not only have been affected by intensity and type of alcoholic solvent but also sonication time and ultrasound power have significant role as well. Formation of the YBCO superconducting phase was examined by using Rietveld refinement of X-ray diffraction (XRD) which indicates the crystalline preferred growth in c-axis orientation in crystal. Magnetic susceptibility measurements showed the ultrasound waves had no important effect on the onset critical temperature of the prepared nanorods (about 91.64 K) which is compared with the bulk samples (Tc ˜ 92K).

  8. Charge-screening role of c -axis atomic displacements in YBa2Cu3O6 +x and related superconductors

    Science.gov (United States)

    Božin, E. S.; Huq, A.; Shen, Bing; Claus, H.; Kwok, W. K.; Tranquada, J. M.

    2016-02-01

    The importance of charge reservoir layers for supplying holes to the CuO2 planes of cuprate superconductors has long been recognized. Less attention has been paid to the screening of the charge transfer by the intervening ionic layers. We address this issue in the case of YBa2Cu3O6 +x , where CuO chains supply the holes for the planes. We present a simple dielectric-screening model that gives a linear correlation between the relative displacements of ions along the c axis, determined by neutron powder diffraction, and the hole density of the planes. Applying this model to the temperature-dependent shifts of ions along the c axis, we infer a charge transfer of 5-10% of the hole density from the planes to the chains on warming from the superconducting transition to room temperature. Given the significant coupling of c -axis displacements to the average charge density, we point out the relevance of local displacements for screening charge modulations and note recent evidence for dynamic screening of in-plane quasiparticles. This line of argument leads us to a simple model for atomic displacements and charge modulation that is consistent with images from scanning-tunneling microscopy for underdoped Bi2Sr2CaCu2O8 +δ .

  9. Amplitude effect of internal friction associated with magnetic flux pinning in YBa 2Cu 3O 7- x superconductor

    Science.gov (United States)

    Wen, Y. T.; Kê, T. S.; Bohn, H. G.; Soltner, H.; Schilling, W.

    1992-04-01

    The amplitude effect of internal friction associated with magnetic flux pinning in high- Tc bulk and film YBa 2Cu 3O 7- superconductors were investigated by the vibrating reed technique. It was found that Q-B exhibits an anomalous amplitude effect at low temperature, weak applied magnetic field and small vibration amplitude, and exhibits a normal amplitude effect at high temperature, strong applied magnetic field and large vibration amplitude. Both anomalous and normal amplitude effects of Q-1B were found for a bulk specimen, but only an anomalous amplitude effect of Q-B for a film specimen. This amplitude effect of Q-1B reflects the variation of the state of motion and the process of pinning and depinning of the flux lines during the vibration of the specimen. The resonant frequency fr was found to be independent of Am within the measured amplitude range. It is considered that the variation of fr with Ba is mainly associated with the diamagnetism of the specimen.

  10. Bulk YBa2Cu3O(x) superconductors through pressurized partial melt growth processing

    Science.gov (United States)

    Hu, S.; Hojaji, H.; Barkatt, A.; Boroomand, M.; Hung, M.; Buechele, A. C.; Thorpe, A. N.; Davis, D. D.; Alterescu, S.

    1992-01-01

    A novel pressurized partial melt growth process has been developed for producing large pieces of bulk Y-Ba-Cu-O superconductors. During long-time partial melt growth stage, an additional driving force for solidification is obtained by using pressurized oxygen gas. The microstructure and superconducting properties of the resulting samples were investigated. It was found that this new technique can eliminate porosity and inhomogeneity, promote large-scale grain-texturing, and improve interdomain coupling as well.

  11. Currents, magnetization and AC-losses of YBa 2Cu 3O 7 superconductors in rapidly changing magnetic fields

    Science.gov (United States)

    Kwasnitza, K.; Plotzner, V.; Waldmann, M.; Widmer, E.

    1988-06-01

    In YBa 2Cu 3O 7 samples of different shape time dependent magnetization currents were induced at 4.2K by the application of rapid magnetic field changes. This contactless method allows the study of the intergrain and intragrain currents in the resistive flux flow state.

  12. Oxygen desorption from YBa2Cu3O(7-x) and Bi2CaSr2Cu2O(8 + delta) superconductors

    Science.gov (United States)

    Mesarwi, A.; Levenson, L. L.; Ignatiev, A.

    1991-01-01

    Oxygen desorption experiments from YBa2Cu3O(7-x) (YBCO) and Bi2CaSr2Cu2O(8 + delta) (BSCCO) superconductors were carried out using a quadrupole mass spectrometer for monitoring the desorbing species and X-ray photoemission spectroscopy for surface characterization. Molecular oxygen was found to desorb from both superconductors following photoirradiation with ultraviolet/optical radiation and subsequent heating at over 150 C. Both YBCO and BSCCO were found to have similar oxygen desorption rates and similar activation energies. The desorption data as well as the X-ray photoemission data indicate that the oxygen desorption is not intrinsic to the superconductors but rather due to molecular oxygen entrapped in the material.

  13. Momentum dependence of the electron-phonon coupling and self-energy effects in superconducting YBa2Cu3O7 within the local density approximation.

    Science.gov (United States)

    Heid, Rolf; Bohnen, Klaus-Peter; Zeyher, Roland; Manske, Dirk

    2008-04-04

    Using the local density approximation and a realistic phonon spectrum we determine the momentum and frequency dependence of alpha(2)F(k,omega) in YBa(2)Cu(3)O(7) for the bonding, antibonding, and chain band. The resulting self-energy Sigma is rather small near the Fermi surface. For instance, for the antibonding band the maximum of ReSigma as a function of frequency is about 7 meV at the nodal point in the normal state and the ratio of bare and renormalized Fermi velocities is 1.18. These values are a factor of 3-5 too small compared to the experiment showing that only a small part of Sigma can be attributed to phonons. Furthermore, the frequency dependence of the renormalization factor Z(k,omega) is smooth and has no anomalies at the observed kink frequencies which means that phonons cannot produce well-pronounced kinks in stoichiometric YBa(2)Cu()3)O(7), at least, within the local density approximation.

  14. Effect of induced shielding current transmission in longitudinal direction on levitation force of melt grown single-domain YBa2Cu3O7-x cylindrical superconductor

    Institute of Scientific and Technical Information of China (English)

    YANG Wanmin; ZHOU Lian; FENG Yong; ZHANG Pingxiang; R.Nicolsky; R.de Andrade Jr

    2004-01-01

    A novel layer deletion method is used to experimentally investigate the effect of induced shielding current transmission (ISCT) in the longitudinal direction on the levitation force of a single-domain YBa2Cu3O7-x (YBCO) cylindrical superconductor (φ30x7 mm). In the experiment the sample was gradually sliced into two equal sheets, at the middle height along a diameter with 5 mm every step. The experimental results show that the levitation force is closely related with the ISCT in the longitudinal direction. Any layer deletion, even a small piece of layer deletion can reduce the levitation force of the sample. After the whole layer was deleted the levitation force can diminish about 50%. It is also found that the levitation force is directly proportional to the effective factor of surface area, which is equal to the top surface area divided by the total surface area parallel to the top surface of the sample.

  15. Self-doping processes between planes and chains in the metal-to-superconductor transition of YBa2Cu3O6.9.

    Science.gov (United States)

    Magnuson, M; Schmitt, T; Strocov, V N; Schlappa, J; Kalabukhov, A S; Duda, L-C

    2014-11-12

    The interplay between the quasi 1-dimensional CuO-chains and the 2-dimensional CuO2 planes of YBa(2)Cu(3)O(6+x) (YBCO) has been in focus for a long time. Although the CuO-chains are known to be important as charge reservoirs that enable superconductivity for a range of oxygen doping levels in YBCO, the understanding of the dynamics of its temperature-driven metal-superconductor transition (MST) remains a challenge. We present a combined study using x-ray absorption spectroscopy and resonant inelastic x-ray scattering (RIXS) revealing how a reconstruction of the apical O(4)-derived interplanar orbitals during the MST of optimally doped YBCO leads to substantial hole-transfer from the chains into the planes, i.e. self-doping. Our ionic model calculations show that localized divalent charge-transfer configurations are expected to be abundant in the chains of YBCO. While these indeed appear in the RIXS spectra from YBCO in the normal, metallic, state, they are largely suppressed in the superconducting state and, instead, signatures of Cu trivalent charge-transfer configurations in the planes become enhanced. In the quest for understanding the fundamental mechanism for high-Tc-superconductivity (HTSC) in perovskite cuprate materials, the observation of such an interplanar self-doping process in YBCO opens a unique novel channel for studying the dynamics of HTSC.

  16. Synthesis of YBa2Cu3O(7-δ) and Y2BaCuO5 nanocrystalline powders for YBCO superconductors using carbon nanotube templates.

    Science.gov (United States)

    Shi, Yunhua; Hasan, Tawfique; Babu, Nadendla H; Torrisi, Felice; Milana, Silvia; Ferrari, Andrea C; Cardwell, David A

    2012-06-26

    We fabricate nanosized superconducting YBa(2)Cu(3)O(7-δ) (Y-123) and nonsuperconducting Y(2)BaCuO(5) (Y-211) powders using carbon nanotubes as template. The mean particle size of Y-123 and Y-211 is 12 and 30 nm, respectively. The superconducting transition temperature of the Y-123 nanopowder is 90.9 K, similar to that of commercial, micrometer-scale powders fabricated by conventional processing. The elimination of carbon and the formation of a high purity superconducting phase both on the micro- and macroscale is confirmed by Raman spectroscopy and X-ray diffraction. We also demonstrate improvement in the superconducting properties of YBCO single grain bulk samples fabricated using the nanosize Y-211 powder, both in terms of trapped field and critical current density. The former reaches 553 mT at 77 K, with a ∼20% improvement compared to samples fabricated from commercial powders. Thus, our processing method is an effective source of pinning centers in single grain superconductors.

  17. Structure and properties of YBa2Cu3O7-δ superconductor doped with bulk cadmium oxide

    Directory of Open Access Journals (Sweden)

    A Echresh

    2010-09-01

    Full Text Available In this paper, the Y1-xCdxBa2Cu3O7-δ superconductor with x=0, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5 are prepared using the solid state method and the structure, electrical resistance, critical current density and critical temperature of it, have been studied. The results show that these doping do not affect so much on the structure and lattice parameters. The electrical resistance of samples increased with doping. A little amount of doping cadmium improve critical current density such that the sample x=0.1 has a maximum critical current density among the samples. The critical temperature with doping cadmium up to x=0.2 has little fluctuation and its variation can be ignored, but by increasing up to x=0.5 the critical temperature decreases gradually.

  18. Superconducting transition width (ΔT c) characteristics of 25 mol% Zr-added (Gd, Y)Ba2Cu3O7-δ superconductor tapes with high in-field critical current density at 30 K

    Science.gov (United States)

    Heydari Gharahcheshmeh, M.; Galstyan, E.; Xu, A.; Kukunuru, J.; Katta, R.; Zhang, Y.; Majkic, G.; Li, X.-F.; Selvamanickam, V.

    2017-01-01

    The superconducting transition width (∆T c) characteristics of REBa2Cu3O7-δ (REBCO and RE = Gd, Y) superconductor tapes with Zr content of 25 mol% with high lift factor (ratio of critical current density (J c) at 30 K, 3 T (B||c) to the J c at 77 K, 0 T) has been determined. In this work, heavily doped (Gd, Y)Ba2Cu3O7-δ superconductor tapes with 25 mol% Zr addition were fabricated by metal organic chemical vapor deposition using a reel-to reel process. The optimal chemical composition range of (Gd, Y)Ba2Cu3O7-δ superconductor tapes with Zr content of 25 mol% to achieve critical current densities above 3.5 MA cm-2 at 77 K in zero applied magnetic field has been determined. A superconducting transition width (∆T c) as narrow as 0.4 K and an onset critical transition temperature (T c-onset) as high as 92 K were obtained in the 25 mol% Zr-added (Gd, Y)BaCuO superconductor tapes. Based on the mapped compositional phase diagram of the ∆Tc and lift factor, ∆T c in the range of 0.7-0.9 K is observed in 25 mol% Zr-added (Gd, Y)BaCuO superconductor tapes with a high lift factor.

  19. Correlation between superfluid density and T(C) of underdoped YBa2Cu3O6+x near the superconductor-insulator transition.

    Science.gov (United States)

    Zuev, Yuri; Kim, Mun Seog; Lemberger, Thomas R

    2005-09-23

    We report measurements of the ab-plane superfluid density n(s) (magnetic penetration depth lambda) of heavily underdoped films of YBa2Cu3O6+x, with T(C)'s from 6 to 50 K. We find the characteristic length for vortex unbinding transition equal to the film thickness, suggesting strongly coupled CuO2 layers. At the lowest dopings, T(C) is as much as 5 times larger than the upper limit set by the 2D Kosterlitz-Thouless-Berezinskii transition temperature calculated for individual CuO2 bilayers. Our main finding is that T(C) is not proportional to n(s)(0); instead, we find T(C) proportional to ns(1/2.3+/-0.4). This conflicts with a popular point of view that quasi-2D thermal phase fluctuations determine the transition temperature.

  20. Measurements and analysis of Hall effect of a two dimensional electron gas in the close proximity of a superconducting YBa2Cu3O(7 - x) film

    Science.gov (United States)

    Tseng, M. Z.; Jiang, W. N.; Hu, E. L.

    1994-09-01

    A direct integration of YBa2Cu3O(7 - x) and a two dimensional electron gas Hall probe was made possible through the use of a MgO buffer layer. We demonstrate the use of this structure for the measurements of the magnetization hysteresis of a superconducting YBa2Cu3O(7 - x) thin film, and we make an estimate of the sensitivity and resolution that can be achieved with this probe structure. The close proximity of the YBa2Cu3O(7 - x) to the two dimensional electron gas (approximately 1700 A) allows sensitive measurements of interactions between the two; more importantly, closer superconductor-semiconductor spacing can be achieved without severe compromise of the component material quality.

  1. Anomalous Weight Behavior in $YBa_{2}Cu_{3}O_{7}$ Compounds at Low Temperature

    CERN Document Server

    Rounds, F N

    1997-01-01

    YBa2Cu3O7 high temperature superconductor samples were weighed on an electronic balance during a warming cycle beginning at 77 degrees K. The experiment was configured so that the YBa2Cu3O7 material was weighed along with a magnet, a target mass, and liquid Nitrogen coolant. The weights were captured during Nitrogen evaporation. Results indicated unexpected variations in the system weight that appear as a function of temperature and possibly other parameters.

  2. Anisotropy of the Seebeck Coefficient in the Cuprate Superconductor YBa_{2}Cu_{3}O_{y}: Fermi-Surface Reconstruction by Bidirectional Charge Order

    Directory of Open Access Journals (Sweden)

    O. Cyr-Choinière

    2017-09-01

    Full Text Available The Seebeck coefficient S of the cuprate YBa_{2}Cu_{3}O_{y} is measured in magnetic fields large enough to suppress superconductivity, at hole dopings p=0.11 and p=0.12, for heat currents along the a and b directions of the orthorhombic crystal structure. For both directions, S/T decreases and becomes negative at low temperature, a signature that the Fermi surface undergoes a reconstruction due to broken translational symmetry. Above a clear threshold field, a strong new feature appears in S_{b}, for conduction along the b axis only. We attribute this feature to the onset of 3D-coherent unidirectional charge-density-wave modulations seen by x-ray diffraction, also along the b axis only. Because these modulations have a sharp onset temperature well below the temperature where S/T starts to drop towards negative values, we infer that they are not the cause of Fermi-surface reconstruction. Instead, the reconstruction must be caused by the quasi-2D bidirectional modulations that develop at significantly higher temperature. The unidirectional order only confers an additional anisotropy to the already reconstructed Fermi surface, also manifest as an in-plane anisotropy of the resistivity.

  3. First-Principles Calculations of Electronic States and Self-Doping Effects at a 45° Grain Boundary in the High Temperature YBa2Cu3O7 Superconductor

    KAUST Repository

    Schwingenschlögl, Udo

    2009-06-03

    The charge redistribution at grain boundaries determines the applicability of high-Tc superconductors in electronic devices because the transport across the grains can be hindered considerably. We investigate the local charge transfer and the modification of the electronic states in the vicinity of the grain-grain interface by ab initio calculations for a (normal-state) 45°-tilted [001] grain boundary in YBa2Cu3O7. Our results explain the suppressed interface transport and the influence of grain boundary doping in a quantitative manner, in accordance with the experimental situation. The charge redistribution is found to be strongly inhomogeneous, which has a substantial effect on transport properties since it gives rise to a self-doping of 0.10±0.02 holes per Cu atom.

  4. The study of the dependency of critical current density on cross section of sample in Bi1.6Pb0.4Sr2Ca2Cu3Oy and YBa2Cu3O7-& delta ceramic superconductors

    Directory of Open Access Journals (Sweden)

    M Zargar Shoushtari

    2006-09-01

    Full Text Available  In this paper, the effect of the cross-section on the critical current density (Jc of a sample in ceramic superconductors YBa2Cu3O7-­δ (YBCO and Bi1.6Pb0.4Sr2Ca2cu3Oy (BPSCCO has been studied. Five orthorhombic bar samples of YBCO with cross-sections of 6.25, 7.67, 9.25, 11.76, 14.67 mm2­ and also five orthorhombic bar samples of BPSCCO with cross-section of 6.4, 9.01, 11.88, 13.86, 14.98 mm2­ with the same synthesis conditions by the solid state reaction method were prepared. After the preparation of the samples, the Meissner effect, the critical temperature (Tc, and the critical current density (Jc measurements, XRD and SEM have been done on the samples. The results of XRD show that the dominant phase in YBCO and BPSCCO are 123 and 2223, respectively. The results of Jc measurements in 77 K show that in both superconductors, the Jc decreases with increasing of cross-section (A. The type of dissipation obeys a power law with the relation . For a given cross-section, Jc of the BPSCCO sample is smaller than the YBCO sample.

  5. Processing of Bulk YBa2Cu3O(7-x) High Temperature Superconductor Materials for Gravity Modification Experiments and Performance Under AC Levitation

    Science.gov (United States)

    Koczor, Ronald; Noever, David; Hiser, Robert

    1999-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of bulk-processed high temperature superconductor disks. Others have indicated that large annular disks (on the order of 25cm diameter) and AC levitation fields play an essential role in their observed experiments. We report experiments in processing such large bulk superconductors. Successful results depend on material mechanical characteristics, and pressure and heat treat protocols. Annular disks having rough dimensions of 30cm O.D., 7cm I.D. and 1 cm thickness have been routinely fabricated and tested under AC levitation fields ranging from 45 to 300OHz. Implications for space transportation initiatives and power storage flywheel technology will be discussed.

  6. Magneto-transport studies in (1-X) YBa2Cu3O7-δ+X BaTiO3 superconductors

    Science.gov (United States)

    Kujur, A.; Behera, D.

    2015-03-01

    The magneto-resistance of bulk polycrystalline (1-x) YBCO+x BaTiO3 superconductor is reported. The onset of global superconductivity and transition temperature decreases with BaTiO3 incorporation as well as on magnetic field application. Below the onset of superconductivity (Tmagnetic field. The activation energy of the thermally activated flux flow was determined from the slope of Arrhenius plot. The magnetic field dependence was found to be ∝ H-0.5. The temperature dependence of the activation energy was interpreted using the Ambegaokar and Halperin phase-slip model that followed power law as tq with q=3/2 and t=(T/Tc). The upper critical field values were calculated employing Werthamer-Helfand-Hohenberg formula. The field independent metallic region above 100 K follows weak localization effect with a decrease of psuedogap temperature after BaTiO3 insertion.

  7. Vortex Depinning in YBa2Cu3O7 : Resistive Transition Identification of the Crossover from Flux-Creep to Flux-Flow Behavior

    NARCIS (Netherlands)

    Hebard, A.F.; Palstra, T.T.M.

    1989-01-01

    Analysis of resistive transitions of YBa2Cu3O7, crystals reveals a scaling behavior which identifies the vortex-depinning critical field Hcp, hence the crossover in behavior from flux creep to flux flow. The inferred Hcp for YBa2Cu3O7 crystals closely approximates the magnitude and temperature depen

  8. Self-injection length in La0.7Ca0.3MnO3–YBa2Cu3O7−δ ferromagnet–superconductor multilayer thin films

    NARCIS (Netherlands)

    Pai, S.P.; Wanchoo, S.; Purandare, S.C.; Banerjee, T.; Apte, P.R.; Narsale, A.M.

    2002-01-01

    We have carried out extensive studies on the self-injection problem in barrierless heterojunctions between La0.7Ca0.3MnO3 (LCMO) and YBa2Cu3O7−δ (YBCO) thin films. The heterojunctions were formed in situ by sequentially growing LCMO and YBCO films on LaAlO3 (LAO) substrate using a pulsed laser depos

  9. Atomic scale real-space mapping of holes in YBa2Cu3O(6+δ).

    Science.gov (United States)

    Gauquelin, N; Hawthorn, D G; Sawatzky, G A; Liang, R X; Bonn, D A; Hardy, W N; Botton, G A

    2014-07-15

    The high-temperature superconductor YBa2Cu3O(6+δ) consists of two main structural units--a bilayer of CuO2 planes that are central to superconductivity and a CuO(2+δ) chain layer. Although the functional role of the planes and chains has long been established, most probes integrate over both, which makes it difficult to distinguish the contribution of each. Here we use electron energy loss spectroscopy to directly resolve the plane and chain contributions to the electronic structure in YBa2Cu3O6 and YBa2Cu3O7. We directly probe the charge transfer of holes from the chains to the planes as a function of oxygen content, and show that the change in orbital occupation of Cu is large in the chain layer but modest in CuO2 planes, with holes in the planes doped primarily into the O 2p states. These results provide direct insight into the local electronic structure and charge transfers in this important high-temperature superconductor.

  10. Bilayer exchange coupling and Neel temperature of YBa2Cu3O6.2

    Indian Academy of Sciences (India)

    Govinda; A Pratap; Ajay; R S Tripathi

    2000-03-01

    The present paper attempts to study the Neel temperature of bilayer antiferromagnetic cuprate YBa2Cu3O6.2 within anisotropic Heisenberg model. The double time Green’s function formalism within random phase approximation (RPA) has been used to obtain various correlation functions. The magnetization and the Neel temperature (N) are evaluated. It is observed that the ratio of intrabilayer to inplane exchange coupling ( = ⊥/∥) plays an important role in the magnetic dynamics of bilayer systems. The recent experimental data of bilayer system YBa2 Cu3O6.2 have been used to estimate the ratio from the expression for Neel temperature. The estimated values of spin gap and the ratio of hopping matrix elements ⊥=∥ are found to be in fairly good agreement with the existing experimental results.

  11. Quasi-particle injection into YBa2Cu3O7-δ micro-bridge

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Several types of quasi-particle injections into YBa2Cu3O70-δ (YBCO) micro-bridge have been studied, re-vealing the quasi-particle non-equilibrium effect, the current superposition effect and the heating effect. The current gain's dependence on temperatures indicates that supercon-ductivity of YBCO is really suppressed by quasi-particle injection. We propose a new type of quasi-particle injection which turns out to be a promising candidate for interface between superconductor and semiconductor circuits.

  12. Effect of Hafnium Impurities on the Magnetoresistance of {YBa}2{Cu}3{O}_{7-δ }

    Science.gov (United States)

    Savich, S. V.; Samoylov, A. V.; Kamchatnaya, S. N.; Goulatis, I. L.; Vovk, R. V.; Chroneos, A.; Solovjov, A. L.; Omelchenko, L. V.

    2017-02-01

    In the present study, we investigate the influence of the hafnium (Hf) impurities on the magnetoresistance of {YBa}2{Cu}3{O}_{7-δ } ceramic samples in the temperature interval of the transition to the superconducting state in constant magnetic field up to 12 T. The cause of the appearance of low- temperature "tails" (paracoherent transitions) on the resistive transitions, corresponding to different phase regimes of the vortex matter state is discussed. At temperatures higher than the critical temperature ( T > T_c), the temperature dependence of the excess paraconductivity can be described within the Aslamazov-Larkin theoretical model of the fluctuation conductivity for layered superconductors.

  13. Self-injection length in La0.7Ca0.3MnO3–YBa2Cu3O7- ferromagnet–superconductor multilayer thin films

    Indian Academy of Sciences (India)

    S P Pai; S Wanchoo; S C Purandare; T Banerjee; P R Apte; A M Narsale; R Pinto

    2002-05-01

    We have carried out extensive studies on the self-injection problem in barrierless heterojunctions between La0.7Ca0.3MnO3 (LCMO) and YBa2Cu3O7- (YBCO) thin films. The heterojunctions were formed in situ by sequentially growing LCMO and YBCO films on $\\langle 100\\rangle$ LaAlO3 (LAO) substrate using a pulsed laser deposition (PLD) system. YBCO micro-bridges with 64 m width were patterned both on the LAO (control) and LCMO side of the substrate. Critical current, c, was measured at 77 K on both the control side as well as the LCMO side for different YBCO film thickness. It was observed that while the control side showed a c of ∼ 2 × 106 A/cm2, the LCMO side showed about half the value for the same thickness (1800 Å). The difference in c indicates that a certain thickness of YBCO has become ‘effectively’ normal due to self-injection. From the measurement of c at two different thicknesses (1800 Å and 1500 Å) of YBCO films both on the LAO as well as the LCMO side, the value of self-injection length (at 77 K) was estimated to be ∼ 900 Å. To the authors’ best knowledge, this is the first time that self-injection length has been quantified. A control experiment carried out with LaNiO3 deposited by PLD on YBCO did not show any evidence of self-injection.

  14. PREPARATION OF ULTRA-FINE SUPERCONDUCTING YBa2Cu3O7-x POWDERS BY GEL COMBUSTION PROCESS%凝胶燃烧法制备超细YBa2Cu3O7-x超导粉末

    Institute of Scientific and Technical Information of China (English)

    郭建栋; 徐晓林; 王永忠; 张炎; 刘达颐; 石磊

    2005-01-01

    The ultra-fine superconducting YBa2Cu3O7-x powders were prepared by means of the gel combustion process using nitrates of Y, Ba and Cu as the starting materials and citric acid as the fuel. The resulting particle size and its superconducting properties is dependent on the nature of the auto-ignition reaction, which in turn depends upon the citrate-nitrate ratio in the gel. An attempt to determine the optimal citrate-nitrate ratio has been made in order to obtain pure, homogeneous and reasonably fine YBCO superconductor. In our experiments we found the best fuel-oxidant molar ratio to be 0.5.%纳米级细度的YBa2Cu3O7-x超导粉末有可能在第二代超导带材的研制中得到应用.超细YBa2Cu3O7-x超导粉末已经通过凝胶燃烧法制备成功.使用的起始物质是钇、钡、铜的硝酸盐以及作为燃烧剂的柠檬酸.产物颗粒的尺寸大小及其超导性能依赖于自燃过程的情况,而自燃过程又与凝胶中柠檬酸盐-硝酸盐的YBa2Cu3O7-x超导粉末.在本实验中我们发现最好的燃烧剂-氧化剂摩尔比为0.5.

  15. In-situ deposition and processing of YBa2Cu3O(7-x) films and multilayers for optoelectronic devices

    Science.gov (United States)

    Villegier, J. C.; Moriceau, H.; Boucher, H.; di Cioccio, L.; Chicault, R.

    1991-03-01

    In situ direct deposition at about 700 C of thin YBa2Cu3O(7-x) superconductive films and multilayers has been done by three techniques using stoichiometric YBa2Cu3O(7-x) sintered targets. Excimer laser ablation in a dc magnetron system with hollow and planar targets leads to 0.5-, 1.2-, and 2.5-in diameter uniformly superconductive layers under static conditions. High critical current densities associated with low resistivity and good epitaxial behavior are achieved on top of MgO, SrTiO3, LaAlO3, and YSZ single-crystal wafers. High-quality c-oriented films are routinely obtained by means of a dc magnetron on large sapphire substrates covered by a YSZ RF sputtered buffer layer. The infrared properties of such films have been checked at 1.15-micron wavelength. In order to achieve active devices, small YBa2Cu3O7-YSZ-Ag tunnel junctions and arrays have been successfully patterned in the superconductor/insulator/normal-metal trilayers using SNOP (selective niobium overlap process).

  16. ON THE ROLE OF DISLOCATIONS IN HEAVILY STRAINED YBA2CU3O7-DELTA

    NARCIS (Netherlands)

    VERWERFT, M; DIJKEN, DK; DEHOSSON, JTM; VANDERSTEEN, AC

    1994-01-01

    Dense pellets of polycrystalline YBa2Cu3O7-delta have been made by shock compaction. While YBa2Cu3O7-delta is brittle at ambient conditions, the high pressure generated during the shock deformation is known to enhance its plasticity. Plastic deformation as well as fracture occurs when the shock wave

  17. On the role of dislocations in heavily strained YBa2Cu3O7-δ

    NARCIS (Netherlands)

    Verwerft, M.; Dijken, D.K.; Hosson, J.Th.M. de; Steen, A.C. van der

    1994-01-01

    Dense pellets of polycrystalline YBa2Cu3O7-δ have been made by shock compaction. While YBa2Cu3O7-δ is brittle at ambient conditions, the high pressure generated during the shock deformation is known to enhance its plasticity. Plastic deformation as well as fracture occurs when the shock wave passes

  18. Magnetostriction and Magnetostructural Domains in Antiferromagnetic YBa2Cu3O6.

    Science.gov (United States)

    Náfrádi, B; Keller, T; Hardy, F; Meingast, C; Erb, A; Keimer, B

    2016-01-29

    We use high-resolution neutron Larmor diffraction and capacitative dilatometry to investigate spontaneous and forced magnetostriction in undoped, antiferromagnetic YBa_{2}Cu_{3}O_{6.0}, the parent compound of a prominent family of high-temperature superconductors. Upon cooling below the Néel temperature T_{N}=420  K, Larmor diffraction reveals the formation of magnetostructural domains of characteristic size ∼240  nm. In the antiferromagnetic state, dilatometry reveals a minute (4×10^{-6}) orthorhombic distortion of the crystal lattice in external magnetic fields. We attribute these observations to exchange striction and spin-orbit coupling induced magnetostriction, respectively, and show that they have an important influence on the thermal and charge transport properties of undoped and lightly doped cuprates.

  19. Intermittent Flux Penetration at Different Temperatures in YBa2Cu3O7−x on NdGaO3 Substrates

    DEFF Research Database (Denmark)

    Qviller, Atle Jorstad; Yurchenko, Vitaliy; Vestgården, Jørn Inge

    2011-01-01

    in applications. YBa2Cu3O7−x (YBCO) is an important high-temperature superconductor, but until recently, it has been hard to make wires from it due to misalignment of superconducting grains. A solution to this problem is to deposit YBCO on vicinal substrates to better align the grains. Some of these samples show...

  20. Lattice dynamics of La 2CuO 4 and YBa 2Cu 3O 7

    Science.gov (United States)

    Kimura, Shunji; Sota, Takayuki; Suzuki, Katsuo

    1990-08-01

    We report lattice dynamics calculations of La 2CuO 4 and YBa 2Cu 3O 7 where the mode assignment is fully performed. It is found that frequencies of the in-plane bond streching 0 vibration mode phonons are much higher than those of the bond bending 0 vibration mode phonons in La 2CuO 4 while they are close in YBa 2Cu 3O 7. The bond streching mode phonons and the bond bending mode phonons can couple to electrons near E F in YBa 2Cu 3O 7 but the latter can not in La 2CuO 4.

  1. Accessing the entire overdoped regime in pristine YBa2Cu3O6 +x by application of pressure

    Science.gov (United States)

    Alireza, P. L.; Zhang, G. H.; Guo, W.; Porras, J.; Loew, T.; Hsu, Y.-T.; Lonzarich, G. G.; Le Tacon, M.; Keimer, B.; Sebastian, Suchitra E.

    2017-03-01

    We uncover the previously inaccessible overdoped regime to attain the complete superconducting dome in a pristine high temperature cuprate superconductor, by applying pressures up to 280 kbar to single crystals near stoichiometric YBa2Cu3O7 . The obtained superconducting phase boundary as a function of hole doping closely follows the form of the superconducting dome in La2 -xSrxCuO4 . Measurements are now enabled to trace the evolution of various entangled phases and the Fermi surface from the underdoped to overdoped regime in a single high purity cuprate superconducting family of materials.

  2. Influence of additions and radiation damage on the superconducting properties of sintered YBa 2Cu 3O 7 - gd

    Science.gov (United States)

    Koblischka, M. R.; Schuster, Th.; Kronmüller, H.

    1993-06-01

    Using the high-resolution Faraday (HRF) technique, domain patterns of sintered YBa 2Cu 3O 7 - δ samples containing additions of Ag 2O and Y 2BaCuO 5 are obtained. Similar observations are carried out on sintered YBa 2Cu 3O 7- δ samples with reduced oxygen content and on electron-irradiated samples. The penetration of flux into sintered high- Tc superconductors is found to be totally different from single crystalline materials (single crystals and epitaxial thin films) as the Abrikosov vortices penetrate the sample not as a whole thus forming a so-called flux front. Only a flux penetration into single superconducting grains is observed. From the measured flux density profiles, the intragrain critical current densities are determined locally. It is found that the chemical impurity phases do not affect the intragranular flux density distribution and the intragranular critical current density, but the decomposition of the Ag 2O leads to an improved oxygen stoichiometry in these samples. Electron irradiation is found to enhance the intragrain critical current densities, whereas the oxygen reduction leads to reduced intragrain currents. To determine the influence of the additions also on the intergrain critical current densities, standard four-point transport current measurements are carried out on the same samples. It is found that a maximum enhancement of the critical current density is obtained by the addition of 10 wt% silver oxide; however, this critical current density is drastically reduced by applying small external magnetic fields. The lower critical field of the matrix and the corresponding Josephson penetration depth are determined from transport current measurements. The Ag 2O additions and the green phase particles are found to separate the superconducting YBa 2Cu 3O 7- δ grains. The resulting larger widths of the barriers between the superconducting grains are found to cause a stronger influence of external magnetic fields on the intergrain critical

  3. Thermodynamic properties of underdoped YBa2Cu3O6+x cuprates for several doping values

    Science.gov (United States)

    Salas, P.; Solís, M. A.; Fortes, M.; Sevilla, F. J.

    2017-05-01

    We report the thermodynamic properties of cuprate superconductors YBa2Cu3O6+x, with x ranging from underdoped (x = 0.55) to optimally doped (x = 0.9) regions. We model cuprates as a boson-fermion gas mixture immersed in a layered structure, which is generated via a Dirac-comb potential applied in the perpendicular direction to the CuO2 planes, while the particles move freely in the other two directions. The optimal system parameters, namely, the planes’ impenetrability and the paired-fermion fraction, are obtained by minimizing the Helmholtz free energy in addition to fixing the critical temperature Tc to its experimental value. Using this optimized scheme, we calculate the entropy, the Helmholtz free energy and the specific heat as functions of temperature. Additionally, some fundamental properties of the electronic specific heat are obtained, such as the normal linear coefficient γ(Tc), the quadratic α term and the jump height at Tc. We reproduce the cubic βl term of the total specific heat for low temperatures. Also our multilayer model inherently brings with it the mass anisotropy observed in cuprate superconductors. Furthermore, we establish the doping value beyond which superconductivity is suppressed.

  4. Experimental Observation of Non-'S-Wave' Superconducting Behavior in Bulk Superconducting Tunneling Junctions of Yba2Cu3O7-δ

    Directory of Open Access Journals (Sweden)

    Leandro Jose Guerra

    1998-06-01

    Full Text Available Evidence of non-s-wave superconductivity from normal tunneling experiments in bulk tunneling junctions of YBa2Cu3O7-δ is presented. The I-V and dI/dV characteristics of bulk superconducting tunneling junctions of YBa2Cu3O7-δ have been measured at 77.0K and clear deviation from s-wave superconducting behavior has been observed. The result agrees with d-wave symmetry, and interpreting the data in this way, the magnitude of the superconducting energy gap, 2Δ, is found to be (0.038 ± 0.002 eV. Comparing this energy gap with Tc (2Δ/kB Tc = 5.735, indicates that these high-Tc superconductors are strongly correlated materials, which in contrast with BCS-superconductors are believed to be weakly correlated.

  5. Processing and fabrication of YBa2Cu3O(x)/Ag composite wires and coils

    Science.gov (United States)

    Ferrando, W. A.; Divecha, A. P.; Mansour, A. N.; Karmarkar, S. D.; Balachandran, U.; Dorris, S. E.; Dusek, J. T.; Picciolo, J. J.; Singh, J. P.; Poeppel, R. B.

    1990-11-01

    Silver was added to YBa2Cu3O(x) (123) powder by a melt technique using AgNO3 and heated to approx. 600 C to decompose the nitrate. This process yields 123 powder that is uniformly coated with Ag, as indicated by optical and scanning electron microscopy (SEM). The composite power is formed into rods (approx. 4 mm diameter) via drawing and swaging through conical converging dies. Wires of finer diameter (approx. 1 mm) and substantially greater linear uniformity were produced by slurry extrusion of the composite powder in a polymeric vehicle. Transport critical current density, J sub c, of these wires at present is about 750 A/sq cm. This value may be expected to rise due to further reduction of second phase impurities localized at grain boundaries and better understanding of the Ag/superconductor interface. The wire fabrication is described in some detail and discusses the results of microscopic analyses by scanning electron microscopy (SEM), x ray photoemission spectroscopy (XPS), and x ray diffraction (XRD).

  6. Superconducting YBa2Cu3O7 films for novel (opto)electronic device structures

    Science.gov (United States)

    Pavuna, D.; Dwir, B.; Gauzzi, A.; James, J. H.; Kellett, B. J.

    1991-02-01

    This short overview briefly summarizes the most important parameters for successful preparation and associated properties of thin films of YBa2Cu3O(7-delta) (YBCO) superconductors. The principles are illustrated by using the example of monotarget ion beam sputtering technique: YBCO films grown in situ on SrTiO3 show Tc(onset) = 92 K and Tco = 91 K. Magnetron sputtering, E-beam evaporation, laser ablation and molecular beam epitaxy are discussed. In situ ion beam sputtering of YBCO on Si and GaAs substrates with intermediate, conducting Indium Tin Oxide (ITO) buffer layers is also presented. Uniform, textured YBCO films on ITO exhibit Tc(onset) at 92 K and Tco at 68 K and 60 K on Si and GaAs substrates, respectively; the latter is the highest Tc reported on GaAs. YBCO/ITO films exhibit metallic resistivity behavior. Finally, the performance of a simple optical bolometer demonstrated on YBCO films and the results of tunneling measurements on the window-type YBCO-Pb tunnel junctions are discussed.

  7. Specific temperature dependence of pseudogap in YBa2Cu3O7 -δ nanolayers

    Science.gov (United States)

    Solovjov, A. L.; Omelchenko, L. V.; Stepanov, V. B.; Vovk, R. V.; Habermeier, H.-U.; Lochmajer, H.; Przysłupski, P.; Rogacki, K.

    2016-12-01

    The pseudogap (PG) derived from the analysis of the excess conductivity σ'(T ) in superlattices and double-layer films of YBa2Cu3O7-δ-PrBa2Cu3O7-δ (YBCO-PrBCO), prepared by pulsed laser deposition, is studied for the first time. The σ'(T ) analysis has been performed within the local-pair (LP) model based on the assumption of the paired fermion (LPs) formation in the cuprate high-Tc superconductors (cuprates) below the representative temperature T*≫Tc resulting in the PG opening. Within the model, the temperature dependencies of the PG, Δ*(T ) , for the samples with different number of the PrBCO layers (NPr) were analyzed in the whole temperature range from T* down to Tc. Near Tc,σ'(T ) was found to be perfectly described by the Aslamazov-Larkin (AL) and Hikami-Larkin (HL) [Maki-Thompson (MT) term] fluctuation theories, suggesting the presence of superconducting fluctuations in a relatively large (up to 15 K) temperature range above Tc. All sample parameters were found to change with increase of NPr, finally resulting in the appearance of the pronounced maximum of Δ*(T ) at high temperatures. The result is most likely due to increasing influence of the intrinsic magnetism of PrBCO (μPr≈4 μB ) and suggests the possibility to search in that way the change of interplay between the superconductivity and magnetism in cuprates.

  8. Fabrication of YBa2Cu3O7-δ superconducting nanofibres by electrospinning

    Science.gov (United States)

    Cui, Xue Mei; Lyoo, Won Seok; Son, Won Keun; Park, Dae Hun; Choy, Jin Ho; Lee, Taek Seung; Park, Won Ho

    2006-12-01

    YBa2Cu3O7-δ superconducting nanofibres were successfully fabricated via the electrospinning method in combination with the sol-gel process. The solution was prepared by the sol-gel process with a homogeneous aqueous PVA solution containing Y, Ba, and Cu acetates. The viscosity of the precursor sol for electrospinning was controlled by the evaporation of solvent and a condensation reaction. The electrospun nanofibres were pyrolysed to remove PVA or volatile components, and then sintered to generate a superconducting phase. The critical transition temperature (Tc) of superconducting YBa2Cu3O7-δ nanofibres was measured by DC susceptibility tests. By optimizing the electrospinning process and following heat treatments, superconducting YBa2Cu3O7-δ nanofibres with a Tc = 92.2 K could be produced.

  9. Effect of magnetic field on the photovoltaic properties of YBa2Cu3O6.96/Ag heterojunction

    Science.gov (United States)

    Yang, Feng; Han, Mengyuan; Chu, Zhuang; Ma, Zhipan; Chang, Fanggao

    2017-02-01

    The obvious photovoltaic effect (Voc ˜ 30 μV) induced by purple-laser illumination at high Tc superconductor YBa2Cu3O6.96/Ag (YBCO/Ag) heterojunction has been observed, revealing that there exists an electrical field across the YBCO/Ag interface. It has been found that magnetic field can dramatically change the photo-induced voltage in the vicinity of superconducting transition. With increasing magnetic fields up to 3 T, the photovoltage at 74 K and 30 mW/mm2 is reduced from 15 μV to zero and then reaches -15 μV. The polarity of the voltage can be switched by applying an external magnetic field, as well as by varying the laser intensity. Our results can be understood in terms of the magnetic vortex penetrating in high Tc superconductors and provide strong evidence for the existence of an interface electrical field in the superconductor/metal heterojunction.

  10. Maximum allowable currents in YBa2Cu3O7 superconducting tapes as a function of the coating thickness, external magnetic field induction, and cooling conditions

    Science.gov (United States)

    Arkharov, A. M.; Dontsova, E. S.; Lavrov, N. A.; Romanovskii, V. R.

    2014-04-01

    Maximum allowable (ultimate) currents stably passing through an YBa2Cu3O7 superconducting current-carrying element are determined as a function of a silver (or copper) coating thickness, external magnetic field induction, and cooling conditions. It is found that if a magnetic system based on yttrium ceramics is cooled by a cryogenic coolant, currents causing instabilities (instability onset currents) are almost independent of the coating thickness. If, however, liquid helium is used as a cooling agent, the ultimate current monotonically grows with the thickness of the stabilizing copper coating. It is shown that depending on cooling conditions, the stable values of the current and electric field strength preceding the occurrence of instability may be both higher and lower than the a priori chosen critical parameters of the superconductor. These features should be taken into account in selecting the stable value of the operating current of YBa2Cu3O7 superconducting windings.

  11. Linewidth of Josephson oscillations in YBa2Cu3O7-x grain-boundary junctions

    DEFF Research Database (Denmark)

    Divin, Yu. Ya.; Mygind, Jesper; Pedersen, Niels Falsig;

    1993-01-01

    The AC Josephson effect in YBa2Cu3O7-x grain-boundary junctions (GBJs) was studied in the temperature range from 4 K to 90 K. The temperature dependence of the linewidth of millimeter-wave Josephson oscillations was measured, and it is shown that the derived effective noise temperature of GBJ might...

  12. Local structural variations near twins in YBa2Cu3O7–δ

    NARCIS (Netherlands)

    Bakel, G.P.E.M. van; Hof, P.A.; Engelen, J.P.M. van; Bronsveld, P.M.; Hosson, J.Th.M. De

    1990-01-01

    Field-ion microscopic images of twinned high-Tc YBa2Cu3O7–δ revealed the characteristic fingerprint pattern combined with planar defects crossing the tip apex. The orientation and location of the twin boundaries was examined by transmission electron microscopy. Computed images revealed little twin-b

  13. Dynamical scaling of oxygen ordering in YBa2Cu3O7-δ

    DEFF Research Database (Denmark)

    Poulsen, Henning Friis; Andersen, Niels Hessel; Andersen, Jørgen Vitting

    1991-01-01

    Computer simulation on a two-dimensional anisotropic lattice-gas model of oxygen ordering in high-Tc supeconductors of the YBa2Cu3O7-δ -type shows that the ordering dynamics obey algebraic growth laws which are different in the ortho-I and ortho-II phases. It is possible to relate this dynamical...

  14. Relaxation of the electronic states at a thin-layer YBa2Cu 3O7/PrBa2Cu3O7 interface

    KAUST Repository

    Gómez, Javier Alexandra M

    2010-11-01

    We discuss in detail spin-polarized electronic structure calculations for the 1 × 1 YBa2Cu3O7/PrBa 2Cu3O7 superlattice. Our results are based on the full-potential linear augmented plane wave method and the generalized gradient approximation for the exchange-correlation functional. The on-site Coulomb interaction affecting the correlated Cu 3d and Pr 4f electrons is taken into consideration. At first glance the YBa2Cu3O 7/PrBa2Cu3O7 interface appears to be inert, i.e., the electronic states do not show a clear sign of interaction between the two component materials. Nonetheless, a total energy analysis points to a significant modification of the magnetic coupling in the vicinity of the interface due to the relaxation of the electronic structure. © 2010 Elsevier B.V. All rights reserved.

  15. Direct observation of competition between superconductivity and charge density wave order in YBa2Cu3O6.67

    DEFF Research Database (Denmark)

    Chang, J.; Blackburn, E.; Holmes, A. T.

    2012-01-01

    Superconductivity often emerges in the proximity of, or in competition with, symmetry-breaking ground states such as antiferromagnetism or charge density waves (CDW). A number of materials in the cuprate family, which includes the high transition-temperature (high-Tc) superconductors, show spin...... and charge density wave order. Thus a fundamental question is to what extent do these ordered states exist for compositions close to optimal for superconductivity. Here we use high-energy X-ray diffraction to show that a CDW develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc= 67 K......). This sample has a hole doping of 0.12 per copper and a well-ordered oxygen chain superstructure. Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. Hence, the CDW and superconductivity in this typical high-Tc material are competing orders with similar energy...

  16. Magnetic hysteresis of p(+) and He-3(2+) irradiated melt-textured YBa2Cu3O(7-delta)

    Science.gov (United States)

    Song, S. N.; Liu, J.; Chen, I. G.; Weinstein, Roy

    1992-01-01

    We have measured the magnetic hysteresis loops and temperature dependent trapped fields in melt-textured YBa2Cu3O(7-delta) samples before and after p(+) and He-3(2+) irradiation using a Hall effect magnetometer (HEM) as well as a commercial vibrating sample magnetometer (VSM). For proper He-3(2+) fluence, the critical current density may be enhanced by a factor of 10. Calculations based on various critical state models show that before the irradiation, the hysteresis loops can be well accounted for by a critical current density of a modified power law field dependence. After the irradiation, the best fit has been achieved by using an exponential form. Jc and its field dependence deduced from HEM hysteresis loops are in good agreement with those deduced from the VSM loops, suggesting that the Hall effect magnetometer can be conveniently used to characterize bulk high Tc oxide superconductors.

  17. Three-Dimensional Charge Density Wave Order in YBa2Cu3O6.67 at High Magnetic Fields

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, S.; Jang, H.; Nojiri, H.; Matsuzawa, S.; Yasumura, H.; Bonn, D. A.; Liang, R.; Hardy, W.; Islam, Z.; Lee, W. -S.; Zhu, D.; Lee, J. -S.

    2015-11-20

    Charge density wave (CDW) correlations have been shown to universally exist in cuprate superconductors. However, their nature at high fields inferred from nuclear magnetic resonance is distinct from that measured by x-ray scattering at zero and low fields. Here we combine a pulsed magnet with an x-ray free electron laser to characterize the CDW in YBa2Cu3O6.67 via x-ray scattering in fields up to 28 Tesla. While the zero-field CDW order, which develops below T ~ 150 K, is essentially two-dimensional, at lower temperature and beyond 15 Tesla, another three-dimensionally ordered CDW emerges. The field-induced CDW onsets around the zero-field superconducting transition temperature, yet the incommensurate inplane ordering vector is field-independent. This implies that the two forms of CDW and hightemperature superconductivity are intimately linked.

  18. Investigation of transverse Peltier effect on top-seeded melt textureYBa2Cu3O7 - delta

    Science.gov (United States)

    He, Z. H.; Ma, Z. G.; Li, Q. Y.; Luo, Y. Y.; Zhang, J. X.; Meng, R. L.; Chu, C. W.

    1996-12-01

    The transverse Peltier effect is investigated on the top-seeded melt texture superconductor YBa2Cu3O7-δ (YBCO). By restricting the heat absorbing or evolving on one of the sample's surfaces, the Peltier heat flow is converted into a temperature difference for measurement. The temperature difference is found proportional to the current applied, which is in accordance with the prediction of transverse Peltier effect. Based on a simplified model, the difference of the Seebeck coefficients between the ab plane and the c axis, |Sab-Sc|, is about 35 μV/K. It is in good agreement with that of large single crystal [I. Terasaki, Y. Sato, S. Tajima, S. Miyamoto, and S. Tanaka, Physica C 235-240, 1413 (1994)]. The transverse Peltier effect is verified. This supports the idea that the off-diagonal thermoelectric effect is responsible for the anomalously high laser-induced transient transverse voltage on the oriented YBCO superconducting thin films.

  19. Microwave determination of the quasiparticle scattering time in YBa2Cu3O6.95

    Science.gov (United States)

    Bonn, D. A.; Liang, Ruixing; Riseman, T. M.; Baar, D. J.; Morgan, D. C.; Zhang, Kuan; Dosanjh, P.; Duty, T. L.; Macfarlane, A.; Morris, G. D.; Brewer, J. H.; Hardy, W. N.; Kallin, C.; Berlinsky, A. J.

    1993-05-01

    We report microwave surface resistance (Rs) measurements on two very-high-quality YBa2Cu3O6.95 crystals which exhibit extremely low residual loss at 1.2 K (2-6 μΩ at 2 GHz), a broad, reproducible peak at around 38 K, and a rapid increase in loss, by 4 orders of magnitude, between 80 and 93 K. These data provide one ingredient in the determination of the temperature dependence of the real part of the microwave conductivity, σ1(T), and of the quasiparticle scattering time. The other necessary ingredient is an accurate knowledge of the magnitude and temperature dependence of the London penetration depth, λ(T). This is derived from published data, from microwave data of Anlage, Langley, and co-workers and from, high-quality μSR data. We infer, from a careful analysis of all available data, that λ2(0)/λ2(T) is well approximated by the simple function 1-t2, where t=T/Tc, and that the low-temperature data are incompatible with the existence of an s-wave, BCS-like gap. Combining the Rs and λ(T) data, we find that σ1(T), has a broad peak around 32 K with a value about 20 times that at Tc. Using a generalized two-fluid model, we extract the temperature dependence of the quasiparticle scattering rate which follows an exponential law, exp(T/T0), where T0~=12 K, for T between 15 and 84 K. Such a temperature dependence has previously been observed in measurements of the nuclear spin-lattice relaxation rate. Both the uncertainties in our analysis and the implications for the mechanism of high-temperature superconductivity are discussed.

  20. Peak Effect Evolution In Successive Proton Irradiated YBa2Cu3O7-d Single Crystals

    Science.gov (United States)

    Tobos, Valentina; Paulius, L. M.; Petrean, A. M.; Olsson, R. J.; Kwok, W.-K.; Ferguson, S.; Crabtree, G. W.

    2000-03-01

    We report on the effects of point-like disorder on the pinning properties of an untwinned, single crystal of YBa2Cu3O7-d. We use magnetic hysteresis measurements in order to determine the critical current density for temperatures ranging from 10 K to 80 K in fields up to 7 T. Measurements were performed on a high quality, detwinned, single crystal of YBa2Cu3O7-d that displays a first order vortex melting transition. The sample was cleaved in two parts. One half was used for electrical transport measurements, and the other for magnetization measurements, making it possible to compare between the effects of irradiation induced defects on the critical current density in two different ranges of temperatures. We discuss the effects of the irradiation on the magnetization, critical current density, the peak effect, and vortex phase diagram. This work was supported by National Scince Foundation grant DMR-97-03732 and DMR-96-24047.

  1. Plastic vortex-creep in $YBa_{2}Cu_{3}O_{7-x}$ crystals

    CERN Document Server

    Abulafia, Y; Wolfus, Y; Prozorov, R; Burlachkov, L; Yeshurun, Y; Zeldov, D M E; Wühl, H; Geshkenbein, B V; Vinokur, V M

    1996-01-01

    Local magnetic relaxation measurements in YBa$_2$Cu$_3$O$_{7-x}$ crystals show evidence for plastic vortex-creep associated with the motion of dislocations in the vortex lattice. This creep mechanism governs the vortex dynamics in a wide range of temperatures and fields below the melting line and above the field corresponding to the peak in the ''fishtail'' magnetization. In this range the activation energy $U_{pl}$, which decreases with field, drops below the elastic (collective) creep activation energy, $U_{el}$, which increases with field. A crossover in flux dynamics from elastic to plastic creep is shown to be the origin of the fishtail in YBa$_2$Cu$_3$O$_{7-x}$.

  2. Nonaqueous slip casting of YBa2Cu3O(7-x) superconductive ceramics. Ph.D. Thesis - 1993

    Science.gov (United States)

    Hooker, Matthew W.; Taylor, Theodore D.

    1994-01-01

    This study investigates the slip casting of YBa2Cu3O(7-x) powders using nonaqueous carrier liquids and fired ceramic molds. The parameters of the process examined here include the rheological properties of YBa2Cu3O(7-x) powder dispersed in various solvent/dispersant systems, the combination of nonaqueous slips with fired ceramic molds to form the superconductive ceramics, the process-property relationships using a four-factor factorial experiment, and the applicability of magnetic fields to align the YBa2Cu3O(7-x) grains during the casting process.

  3. Preparation, Processing and Tunneling in YBa2Cu3O7-δ-Pb Native-Barrier Structures

    Science.gov (United States)

    Frangi, Francesca; Dwir, Benjamin; James, Jonathan H.; Gauzzi, Andrea; Pavuna, Davor

    1993-06-01

    We have developed a procedure for the preparation of small (40× 40 μm2) window-type YBa2Cu3O7-δ-Pb junctions with YSZ insulator and native tunnel barrier. We present the patterning technique of the two electrodes based on photolithography and wet etching. The nature of the barrier is found to be semiconducting. The tunneling measurements show gap-like feature of YBa2Cu3O7-δ at 8.5 meV and some additional features related to Pb and YBa2Cu3O7-δ phonon spectra.

  4. Tunneling characteristics of YBa 2Cu 3O 7-δ-Pb window-type Josephson junctions

    Science.gov (United States)

    Frangi, F.; Dwir, B.; Pavuna, D.

    1992-02-01

    We present the results of tunneling measurements done on window-type, native-barrier YBa 2Cu 3O 7-δ-Pb junctions. We show features in the I-V curves which are related to the gap of YBa 2Cu 3O 7-δ, as well as to the Pb and YBa 2Cu 3O 7-δ phonon spectra. The nature of barrier in these structures is found to be semi-conducting. We can also see the asymmetry in the tunneling curves.

  5. Induced Ferromagnetism at BiFeO3/YBa2Cu3O7 Interfaces

    OpenAIRE

    Zhu, Jian-Xin; WEN, XIAO-DONG; Haraldsen, J. T.; He, Mi; C. Panagopoulos; Chia, Elbert E. M.

    2014-01-01

    Transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. Here, we report results from first-principles calculations on the magnetism at the BiFeO3/YBa2Cu3O7 interfaces. By comparing the total energy for various magnetic spin configurations inside BiFe...

  6. Antiferromagnetic ordering in superconducting YBa2Cu3O6.5

    DEFF Research Database (Denmark)

    Sidis, Y.; Ulrich, C.; Bourges, P.

    2001-01-01

    Commensurate antiferromagnetic ordering has been observed in the superconducting high-T-c. cuprate YBa2Cu3O6.5 (T-c = 55 K) by polarized and unpolarized elastic neutron scattering. The magnetic peak intensity exhibits a marked enhancement at T-c. Zero-field muon-spin-resonance experiments...... demonstrate that the staggered magnetization is not truly static but fluctuates on a nanosecond time scale. These results point towards an unusual spin density wave state coexisting with superconductivity....

  7. No antiferromagnetic reordering at low temperature in pure YBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Casalta, H.; Schleger, P.; Brecht, E.;

    1994-01-01

    Magnetic ordering has been investigated by neutron scattering on an YBa2Cu3O6+x single crystal with x=0.1 and x=0.18, and an Al doped YBa2(CU2.86Al0.14)O-6.25 crystal. For the undoped crystal an antiferromagnetic ordering transition (AFI) was observed at T-N=410 K and 368 K (respectively for x=0...

  8. Ionic liquid gating of ultra-thin YBa2Cu3O7-x films

    Science.gov (United States)

    Fête, A.; Rossi, L.; Augieri, A.; Senatore, C.

    2016-11-01

    In this paper, we present a detailed investigation of the self-field transport properties of an ionic liquid gated ultra-thin YBa2Cu3O7-x (YBCO) film. From the high temperature dynamic of the resistivity (>220 K), different scenarios pertaining to the interaction between the liquid and the thin film are proposed. From the low temperature evolution of Jc and Tc, a comparison between the behavior of our system and the standard properties of YBCO is drawn.

  9. Submicrometer Superconducting YBa2Cu3O6+x Particles Made by a Low-Temperature Synthetic Route.

    Science.gov (United States)

    Horowitz, H S; McLain, S J; Sleight, A W; Druliner, J D; Gai, P L; Vankavelaar, M J; Wagner, J L; Biggs, B D; Poon, S J

    1989-01-06

    Evidence suggests that superconducting, orthorhombic YBa(2)Cu(3)O(6+x)+ (x greater, similar 0.5) is always produced by oxidation of the oxygen-deficient, tetragonal form (x less, similar 0.5) of this phase (commonly referred to as 123). A synthetic route whereby solution-derived, carbon-free precursors are decomposed at 650 degrees to 700 degrees C in inert atmosphere to yield tetragonal 123 is now available. Appropriate precursors include hydrated oxides derived from the hydrolysis of organometallic solutions and aqueous solution-derived hyponitrites. Subsequent oxidation of the tetragonal phase at 400 degrees C results in submicrometer particles of orthorhombic 123. Superconductivity (T(c) onset approximately 87 K) has been confirmed in these materials by both Meissner effect and specific-heat measurements.

  10. Effects of Ca doping and O deficiency on the charge distribution in the vicinity of a 45° [001] grain boundary in YBa2Cu3O7

    KAUST Repository

    Schwingenschlögl, Udo

    2012-02-01

    The charge redistribution at grain boundaries is critical for the applicability of high-T c superconductors in electronic devices, because it determines the transport across the material. We investigate the charge transfer and the alterations of the electronic states due to local doping of a normal-state 45°-tilted [001] grain boundary in YBa 2Cu 3O 7 by means of first-principles calculations. Considering Ca doping and O deficiency as prototypical modifications we demonstrate that the redistribution of the charge carriers in the CuO 2 planes displays a very complex spatial pattern, which deviates even qualitatively from the naive expectation. Copyright © EPLA, 2012.

  11. Large area ion beam sputtered YBa2Cu3O(7-delta) films for novel device structures

    Science.gov (United States)

    Gauzzi, A.; Lucia, M. L.; Kellett, B. J.; James, J. H.; Pavuna, D.

    1992-03-01

    A simple single-target ion-beam system is employed to manufacture large areas of uniformly superconducting YBa2Cu3O(7-delta) films which can be reproduced. The required '123' stoichiometry is transferred from the target to the substrate when ion-beam power, target/ion-beam angle, and target temperature are adequately controlled. Ion-beam sputtering is experimentally demonstrated to be an effective technique for producing homogeneous YBa2Cu3O(7-delta) films.

  12. Structural phase diagram and equilibrium oxygen partial pressure of YBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Andersen, N.H.; Lebech, B.; Poulsen, H.F.

    1990-01-01

    An experimental technique by which in-situ gas volumetric measurements are carried out on a neutron powder diffractometer, is presented and used for simultaneous studies of oxygen equilibrium partial pressure and the structural phase diagram of YBa2Cu3O6 + x. Experimental data was collected under...... of the ordering of oxygen. Oxygen equilibrium partial pressure shows significant variations with temperature and concentration which indicate that x = 0.15 and x = 0.92 are minimum and maximum oxygen concentrations. Measurements of oxygen in-diffusion flow show relaxation type behaviour: View the MathML source...

  13. Doping and defects in YBa2Cu3O7: Results from hybrid density functional theory

    KAUST Repository

    Schwingenschlögl, Udo

    2012-06-21

    Modified orbital occupation and inhomogeneous charge distribution in high-Tc oxide compounds due to doping and/or defects play a huge role for the material properties. To establish insight into the charge redistribution, we address metallic YBa2Cu3O7 in two prototypical configurations: Ca doped (hole doping) and O deficient (electron doping). By means of first principles calculations for fully relaxed structures, we evaluate the orbital occupations. We find that the change of the charge density, in particular in the CuO2 planes, shows a complex spatial pattern instead of the expected uniform (de-)population of the valence states.

  14. Homogeneous lattice disorder and superconducting properties of YBa2Cu3O6.9 films.

    Science.gov (United States)

    Pavuna, Davor; Gauzzi, Andrea

    We discuss the striking changes of the superconducting properties of YBa2Cu3O6.9 films to the homogeneous lattice disorder, induced by varying growth temperatures: Tc decreases with increasing disorder, while the width of the resistive transition and the normal state resistivity increase. We estimate the length scale of such dis- order from the broadening DJ of the lt; 005 > X-ray diffraction rocking curves. The suppression of superconductivity and normal conductivity scales as DJ and appears for in-plane lattice coherence lengths rc ≫ 1/DJ smaller than about 10 nm.

  15. Thermal expansion of YBa2Cu3O7 single crystals

    Science.gov (United States)

    Aleksandrov, I. V.; Zibrov, I. P.; Stishov, S. M.

    1990-09-01

    The thermal expansion of a YBa2Cu3O7 single crystal was investigated by X-ray diffraction analysis at temperatures from 4 to 180 K. During the experiment, the crystal was glued to a beryllium plate coupled with a copper block inside the vacuum chamber of a helium cryostat. The temperature of the specimen was stabilized to within 0.01 K. The temperature was measured by using a platinum resistance thermometer. It is shown that the crystal is characterized by an anomalous behavior of the thermal expansion coefficient in the direction parallel to the Cu-O chains.

  16. In operando evidence of deoxygenation in ionic liquid gating of YBa2Cu3O7-X.

    Science.gov (United States)

    Perez-Muñoz, Ana M; Schio, Pedro; Poloni, Roberta; Fernandez-Martinez, Alejandro; Rivera-Calzada, Alberto; Cezar, Julio C; Salas-Colera, Eduardo; Castro, German R; Kinney, Joseph; Leon, Carlos; Santamaria, Jacobo; Garcia-Barriocanal, Javier; Goldman, Allen M

    2017-01-10

    Field-effect experiments on cuprates using ionic liquids have enabled the exploration of their rich phase diagrams [Leng X, et al. (2011) Phys Rev Lett 107(2):027001]. Conventional understanding of the electrostatic doping is in terms of modifications of the charge density to screen the electric field generated at the double layer. However, it has been recently reported that the suppression of the metal to insulator transition induced in VO2 by ionic liquid gating is due to oxygen vacancy formation rather than to electrostatic doping [Jeong J, et al. (2013) Science 339(6126):1402-1405]. These results underscore the debate on the true nature, electrostatic vs. electrochemical, of the doping of cuprates with ionic liquids. Here, we address the doping mechanism of the high-temperature superconductor YBa2Cu3O7-X (YBCO) by simultaneous ionic liquid gating and X-ray absorption experiments. Pronounced spectral changes are observed at the Cu K-edge concomitant with the superconductor-to-insulator transition, evidencing modification of the Cu coordination resulting from the deoxygenation of the CuO chains, as confirmed by first-principles density functional theory (DFT) simulations. Beyond providing evidence of the importance of chemical doping in electric double-layer (EDL) gating experiments with superconducting cuprates, our work shows that interfacing correlated oxides with ionic liquids enables a delicate control of oxygen content, paving the way to novel electrochemical concepts in future oxide electronics.

  17. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling.

    Science.gov (United States)

    Hu, W; Kaiser, S; Nicoletti, D; Hunt, C R; Gierz, I; Hoffmann, M C; Le Tacon, M; Loew, T; Keimer, B; Cavalleri, A

    2014-07-01

    Nonlinear optical excitation of infrared active lattice vibrations has been shown to melt magnetic or orbital orders and to transform insulators into metals. In cuprates, this technique has been used to remove charge stripes and promote superconductivity, acting in a way opposite to static magnetic fields. Here, we show that excitation of large-amplitude apical oxygen distortions in the cuprate superconductor YBa2Cu3O6.5 promotes highly unconventional electronic properties. Below the superconducting transition temperature (Tc = 50 K) inter-bilayer coherence is transiently enhanced at the expense of intra-bilayer coupling. Strikingly, even above Tc a qualitatively similar effect is observed up to room temperature, with transient inter-bilayer coherence emerging from the incoherent ground state and similar transfer of spectral weight from high to low frequency. These observations are compatible with previous reports of an inhomogeneous normal state that retains important properties of a superconductor, in which light may be melting competing orders or dynamically synchronizing the interlayer phase. The transient redistribution of coherence discussed here could lead to new strategies to enhance superconductivity in steady state.

  18. Optically enhanced coherent transport in YBa2Cu3O6.5 by ultrafast redistribution of interlayer coupling

    Science.gov (United States)

    Hu, W.; Kaiser, S.; Nicoletti, D.; Hunt, C. R.; Gierz, I.; Hoffmann, M. C.; Le Tacon, M.; Loew, T.; Keimer, B.; Cavalleri, A.

    2014-07-01

    Nonlinear optical excitation of infrared active lattice vibrations has been shown to melt magnetic or orbital orders and to transform insulators into metals. In cuprates, this technique has been used to remove charge stripes and promote superconductivity, acting in a way opposite to static magnetic fields. Here, we show that excitation of large-amplitude apical oxygen distortions in the cuprate superconductor YBa2Cu3O6.5 promotes highly unconventional electronic properties. Below the superconducting transition temperature (Tc = 50 K) inter-bilayer coherence is transiently enhanced at the expense of intra-bilayer coupling. Strikingly, even above Tc a qualitatively similar effect is observed up to room temperature, with transient inter-bilayer coherence emerging from the incoherent ground state and similar transfer of spectral weight from high to low frequency. These observations are compatible with previous reports of an inhomogeneous normal state that retains important properties of a superconductor, in which light may be melting competing orders or dynamically synchronizing the interlayer phase. The transient redistribution of coherence discussed here could lead to new strategies to enhance superconductivity in steady state.

  19. In operando evidence of deoxygenation in ionic liquid gating of YBa2Cu3O7-X

    Science.gov (United States)

    Perez-Muñoz, Ana M.; Schio, Pedro; Poloni, Roberta; Fernandez-Martinez, Alejandro; Rivera-Calzada, Alberto; Salas-Colera, Eduardo; Kinney, Joseph; Leon, Carlos; Santamaria, Jacobo; Garcia-Barriocanal, Javier; Goldman, Allen M.

    2017-01-01

    Field-effect experiments on cuprates using ionic liquids have enabled the exploration of their rich phase diagrams [Leng X, et al. (2011) Phys Rev Lett 107(2):027001]. Conventional understanding of the electrostatic doping is in terms of modifications of the charge density to screen the electric field generated at the double layer. However, it has been recently reported that the suppression of the metal to insulator transition induced in VO2 by ionic liquid gating is due to oxygen vacancy formation rather than to electrostatic doping [Jeong J, et al. (2013) Science 339(6126):1402–1405]. These results underscore the debate on the true nature, electrostatic vs. electrochemical, of the doping of cuprates with ionic liquids. Here, we address the doping mechanism of the high-temperature superconductor YBa2Cu3O7-X (YBCO) by simultaneous ionic liquid gating and X-ray absorption experiments. Pronounced spectral changes are observed at the Cu K-edge concomitant with the superconductor-to-insulator transition, evidencing modification of the Cu coordination resulting from the deoxygenation of the CuO chains, as confirmed by first-principles density functional theory (DFT) simulations. Beyond providing evidence of the importance of chemical doping in electric double-layer (EDL) gating experiments with superconducting cuprates, our work shows that interfacing correlated oxides with ionic liquids enables a delicate control of oxygen content, paving the way to novel electrochemical concepts in future oxide electronics. PMID:28028236

  20. Bounding the pseudogap with a line of phase transitions in YBa2Cu3O6+δ.

    Science.gov (United States)

    Shekhter, Arkady; Ramshaw, B J; Liang, Ruixing; Hardy, W N; Bonn, D A; Balakirev, Fedor F; McDonald, Ross D; Betts, Jon B; Riggs, Scott C; Migliori, Albert

    2013-06-06

    Close to optimal doping, the copper oxide superconductors show 'strange metal' behaviour, suggestive of strong fluctuations associated with a quantum critical point. Such a critical point requires a line of classical phase transitions terminating at zero temperature near optimal doping inside the superconducting 'dome'. The underdoped region of the temperature-doping phase diagram from which superconductivity emerges is referred to as the 'pseudogap' because evidence exists for partial gapping of the conduction electrons, but so far there is no compelling thermodynamic evidence as to whether the pseudogap is a distinct phase or a continuous evolution of physical properties on cooling. Here we report that the pseudogap in YBa2Cu3O6+δ is a distinct phase, bounded by a line of phase transitions. The doping dependence of this line is such that it terminates at zero temperature inside the superconducting dome. From this we conclude that quantum criticality drives the strange metallic behaviour and therefore superconductivity in the copper oxide superconductors.

  1. Model for the high-temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x - inclusion of electron spin and charge degrees of freedom

    DEFF Research Database (Denmark)

    Schleger, P.; Hardy, W.N.; Casalta, H.

    1994-01-01

    A lattice-gas model for the high temperature oxygen-ordering thermodynamics in YBa2Cu3O6+x is presented, which assumes constant effective pair interactions between oxygen atoms and includes in a simple fashion the effect of the electron spin and charge degrees of freedom. This is done using...... a commonly utilized picture relating the creation of mobile electron holes and unpaired spins to the insertion of oxygen into the basal plane. The model is solved using the nearest-neighbor square approximation of the cluster-variation method. In addition, preliminary Monte Carlo results using next...

  2. A model for the chain-to-plane charge transfer in YBa2Cu3O6+x

    Institute of Scientific and Technical Information of China (English)

    V.M.Matic; N.Dj.Lazarov; M.Milic

    2012-01-01

    A model for the chain-to-plane charge transfer is proposed to account for the two plateaus,at 60 K and at 90 K,of the Tc(x) characteristics of the YBa2Cu3O6+x high-Tc superconductor.It is assumed that the number of holes transferred from a CuO chain of length l to two nearby CuO2 sheets is proportional to l (that is,to the number of oxygen atoms in the chain),if the chain length is greater than,or equal to,a certain critical chain length,lcr,that is required to trigger the charge transfer process.No holes are assumed to have been transferred from chains of length l < lcr.The calculated Tc(x) dependence is found to be in excellent agreement with the experimentally reported Tc(x).The critical chain length parameter is estimated to be equal to lcr =11 (eleven oxygen atoms in a chain),which is a greater value than that obtained in the previously proposed model for the chain-to plane charge transfer (lcr =4).The results obtained out of the proposed model are briefly discussed.

  3. Intra-unit-cell magnetic correlations near optimal doping in YBa2Cu3O6.85.

    Science.gov (United States)

    Mangin-Thro, L; Sidis, Y; Wildes, A; Bourges, P

    2015-07-03

    The pseudo-gap phenomenon in copper oxide superconductors is central to any description of these materials as it prefigures the superconducting state itself. A magnetic intra-unit-cell order was found to occur just at the pseudo-gap temperature in four cuprate high-Tc superconducting families. Here we present polarized neutron-scattering measurements of nearly optimally doped YBa2Cu3O6.85, carried out on two different spectrometers, that reveal several features. The intra-unit-cell order consists of finite-sized planar domains that are very weakly correlated along the c axis. At high temperature, only the out-of-plane magnetic components correlate, indicating a strong Ising anisotropy. An aditional in-plane response develops at low temperature, giving rise to an apparent tilt of the magnetic moment. The discovery of these two regimes puts stringent constraints, which are tightly bound to the pseudo-gap physics, on the intrinsic nature of intra-unit-cell order.

  4. Study on the effects of fluorine and oxygen deficiency on YBa2Cu3O7 by ab initio method

    Institute of Scientific and Technical Information of China (English)

    刘洪霖; 曹晓卫; 瞿丽曼; 陈念贻

    1997-01-01

    The calculations of clusters modeling the fluorine-doping and oxygen deficiency of YBa2Cu3O2,have been performed by the method of all-electron ab initio Hartree-Fock with self-consistent crystal field Results show that in CuO planes electric charge significantly increases,the chemical valence of Cu decreases and the covalent bonding of Cu-O greatly weakens owing to oxygen deficiency,while the effect of F restores the local electronic structure of YBa2Cu3O7 The reported opinion that F occupied the oxygen vacancy in Cu-O chains seems disputable according to the calculated bonding characteristics.

  5. Direct Observation of Long-Term Durability of Superconductivity in YBa2Cu3O7-Ag2O Composites

    Science.gov (United States)

    Lin, Juhn-Jong; Lin, Yong-Han; Huang, Shiu-Ming; Lee, Tsang-Chou; Chen, Teng-Ming

    2003-10-01

    We report direct observation of long-term durability of superconductivity of several YBa2Cu3O7-Ag2O composites that were first prepared and studied almost fourteen years ago [J. J. Lin et al.: Jpn. J. Appl. Phys. 29 (1990) 497]. Remeasurements performed recently on both resistances and magnetizations indicate a sharp critical transition temperature at 91 K. We also find that such long-term environmental stability of high-temperature superconductivity can only be achieved in YBa2Cu3O7 with Ag2O addition, but not with pure Ag addition.

  6. X-ray diffraction observations of a charge-density-wave order in superconducting ortho-II YBa2Cu3O6.54 single crystals in zero magnetic field.

    Science.gov (United States)

    Blackburn, E; Chang, J; Hücker, M; Holmes, A T; Christensen, N B; Liang, Ruixing; Bonn, D A; Hardy, W N; Rütt, U; Gutowski, O; von Zimmermann, M; Forgan, E M; Hayden, S M

    2013-03-29

    X-ray diffraction measurements show that the high-temperature superconductor YBa2Cu3O6.54, with ortho-II oxygen order, has charge-density-wave order in the absence of an applied magnetic field. The dominant wave vector of the charge density wave is q(CDW)=(0,0.328(2),0.5), with the in-plane component parallel to the b axis (chain direction). It has a similar incommensurability to that observed in ortho-VIII and ortho-III samples, which have different dopings and oxygen orderings. Our results for ortho-II contrast with recent high-field NMR measurements, which suggest a commensurate wave vector along the a axis. We discuss the relationship between spin and charge correlations in YBa2Cu3O(y) and recent high-field quantum oscillation, NMR, and ultrasound experiments.

  7. Induced Ferromagnetism at BiFeO3/YBa2Cu3O7 Interfaces

    Science.gov (United States)

    Zhu, Jian-Xin; Wen, Xiao-Dong; Haraldsen, J. T.; He, Mi; Panagopoulos, C.; Chia, Elbert E. M.

    2014-06-01

    Transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. Here, we report results from first-principles calculations on the magnetism at the BiFeO3/YBa2Cu3O7 interfaces. By comparing the total energy for various magnetic spin configurations inside BiFeO3, we are able to show that a metallic ferromagnetism is induced near the interface. We further develop an interface exchange-coupling model and place the extracted exchange coupling interaction strengths, from the first-principles calculations, into a resultant generic phase diagram. Our conclusion of interfacial ferromagnetism is confirmed by the presence of a hysteresis loop in field-dependent magnetization data. The emergence of interfacial ferromagnetism should have implications to electronic and transport properties.

  8. YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer

    Science.gov (United States)

    Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.

    1993-03-01

    Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.

  9. Cross-sectional TEM studies of YBa2Cu3O7-x superlattices

    Institute of Scientific and Technical Information of China (English)

    李贻杰; 连贵君; 甘子钊; 冯景伟

    1995-01-01

    Microstructure of high-quality YBa2Cu3O7-x superlattices has been investigated using high-resolution transmission electron microscope (HRTEM). The observations revealed that the superlattioes had atomic sharp interfaces between YBCO and PrBCO layers without interdiffusion. But undulations and. steps of the layer thickness existed in the specimen. An intermediate layer about 1 nm in thickness with many defects, which was caused by the surface steps and dislocations at SrTiO3 substrate surface, was observed at the film-substrate interfaces. However, the films did not have large extended defects beyond several unit cells. The results suggested that when studying the two-dimensional transport properties and superconducting mechanism of YACO using YBCO/PrBCO superlattioes or ultra-thin YBCO films, the influence of the micro-structural elements must be taken into account.

  10. Investigation of Chemical Bond Properties and Mssbauer Spectroscopy in YBa2Cu3O7

    Institute of Scientific and Technical Information of China (English)

    高发明; 李东春; 张思远

    2003-01-01

    Chemical bond properties of YBa2Cu3O7 were studied by using the average band-gap model. The calculated results show that the covalency of Cu(1)-O bond is 0.406, and one of Cu(2)-O is 0.276. Mssbauer isomer shifts of 57Fe in Y-123 were calculated by the chemical surrounding factor hv defined by covalency and electronic polarizability. The charge-state and site of Fe were determined. The relation between the coupling constant of electron-phonon interaction and covalency is employed to explain that the Cu(2)-O plane is more important than the Cu(1)-O chain on the superconductivity in the Y-123 compounds.

  11. Magnetization studies of YBa 2Cu 3O 7-x irradiated by fast neutrons

    Science.gov (United States)

    Wisniewski, A.; Baran, M.; Przysłupski, P.; Szymczak, H.; Pajaczkowska, A.; Pytel, B.; Pytel, K.

    1988-02-01

    Studies of the effect of fast neutron damage on the magnetic hysteresis of YBa 2Cu 3O 7-x ceramic samples subjected to fluence of neutrons of 2∗10 16 n/cm 2 up to 6∗10 17 n/cm 2 have been performed. irradiation up to dose of 1∗10 17 did not cause any change in the critical temperature. However it causes a strong increase of the magnetic hysteresis which is presumably connected with the creation of defects. The critical current density at 77 K in H = 10 k0e for the sample irradiated with the dose 1∗10 17 n/cm 2 was estimated to be 520 A/cm 2 as compared to 29 A/cm 2 for the reference non-irradiated sample, non-irradiated sample.

  12. Anisotropy of thermal conductivity in single crystals YBa 2Cu 3O 7

    Science.gov (United States)

    Gusakov, Vasilii; Jezowski, Andrzej; Barilo, Sergey; Kalanda, Nikolay; Saiko, Alexandr

    2000-07-01

    The anisotropy of thermal conductivity k in single crystals YBa 2Cu 3O 7 has been studied. The temperature dependence of k in c-direction is well described by the lattice thermal conductivity ( T max=60 K; k max=4 W/ mK; T D=140 K) . The precise measurements reveal the hysteretic behavior of out-of-plane thermal conductivity. In ab-direction the upturn in k for temperatures below Tc is observed and temperatures of thermal conductivity peaks in ab- and c-direction coincide. Theoretical analysis suggests a model in which an observed peak below Tc in thermal conductivity for ab-direction is ascribed to a quasiparticle contribution.

  13. Scaling Between Localization Length and TC in Disordered YBa2Cu3 O6.9

    Science.gov (United States)

    Gauzzi, Andrea; Pavuna, Davor

    We quantitatively study the effect of growth-induced reduction of long range structural order on the superconducting transition in epitaxial YBa2Cu3O6.9 films. The corresponding reduction of structural coherence length rc is determined from the width of X-ray diffraction rocking curves. Tc measurements in the films give evidence for the validity of the empirical scaling relation ΔTc~ rc,ab-2, where ΔTc is the disorder-induced reduction of Tc and rc,ab is the structural coherence length in the ab-plane. To explain this algebraic law we propose a simple phenomenological model based on the disorder-induced localization of the charge carriers within each ordered domain of size rc,ab. This picture enables us to precisely determine the Ginzburg-Landau superconducting coherence length in the ab-plane, and we obtain ξab=1.41±0.04 nm.

  14. Stability studies of Hg implanted YBa$_{2}$Cu$_{3}$O$_{6+x}$

    CERN Document Server

    Araújo, J P; Wahl, U; Marques, J G; Alves, E; Amaral, V S; Lourenço, A A; Galindo, V; Von Papen, T; Senateur, J P; Weiss, F; Vantomme, A; Langouche, G; Melo, A A; Da Silva, M F A; Soares, J C; Sousa, J B

    1999-01-01

    High quality YBa$_{2}$Cu$_{3}$O$_{6+x}$ (YBCO) superconducting thin films were implanted with the radioactive $^{197m}$Hg (T$_{1/2}$ = 24 h) isotope to low fluences of 10$^{13}$ atoms/cm$^{2}$ and 60 keV energy. The lattice location and stability of the implanted Hg were studied combining the Perturbed Angular Correlation (PAC) and Emission Channeling (EC) techniques. We show that Hg can be introduced into the YBCO lattice by ion implantation into unique regular sites. The EC data show that Hg is located on a highly symmetric site on the YBCO lattice, while the PAC data suggests that Hg occupies the Cu(1) site. Annealing studies were performed under vacuum and O$_{2}$ atmosphere and show that Hg starts to diffuse only above 653 K.

  15. Stability and diffusion of Hg implanted YBa$_{2}$Cu$_{3}$O$_{6+x}$

    CERN Document Server

    Araújo, J P; Wahl, U; Marques, J G; Alves, E; Amaral, V S; Lourenço, A A; Galindo, V; Von Papen, T; Senateur, J P; Weiss, F; Vantomme, A; Langouche, G; Melo, A A; Da Silva, M F A; Soares, J C; Sousa, J B

    1999-01-01

    The radioactive isotope $^{197m}$Hg was implanted at 60 keV with low fluences (10$^{13}$ ions/cm$^{2}$ ) into YBa$_{2}$Cu$_{3}$O$_{6+x}$ (YBCO) superconducting thin films at ISOLDE/CERN. We report on the Hg dynamics and stability inside the YBCO lattice as a function of annealing temperature up to 890 K in vacuum or O$_{2}$ atmosphere. The perturbed angular correlation (PAC) technique was used for probing the Hg behavior at the atomic scale, while by monitoring the sample's activity in situ the Hg outdiffusion was studied. We found that Hg ions occupy unique lattice sites and that Hg should be bound to two apical oxygens. Hg diffusion occurs only for annealing temperatures above 653 K, in vacuum. The Hg migration energy was estimated to be EM = 1.58 $\\pm$ 0.15 eV.

  16. Preparation and characterization of microcrack-free thick YBa2Cu3O7-δ films

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    High quality epitaxial YBa2Cu3O7-δ (YBCO) superconducting films were fabricated on (00l) LaAlO3 substrates using the direct-current sputtering method. The attainment of an unusually high film thickness (up to 2.0 μm) without microcracking was attributed in part to the presence of pores correlated with yttrium-rich composition in the films. The influence of the film thickness on the microstructure was investigated by X-ray diffraction conventional scan (θ-2θ, ω-scan, pole figure) and high-resolution reciprocal space mapping. The films were c-axis oriented with no a-axis-oriented grains up to the thickness of 2 μm. The surface morphology and the critical current density (Jc) strongly depended on the film thickness.Furthermore, the reasons for these thickness dependences were elucidated in derail.

  17. Oxygen diffusion in c-textured epitaxial YBa2Cu3O7-δ thin films

    Institute of Scientific and Technical Information of China (English)

    李力; 周健; 董学斌; 袁润章

    2001-01-01

    Isothermal oxygen in-diffusion in c-textured epitaxial YBa2Cu3O7-δ thin films was studied by in situ X-ray diffraction. Thermal expansion coefficients of c-axis length with different oxygen contents are αc (6.91, O2)=19.1×10-6 K-1 and αc (6.0, N2)=19.3×10-6 K-1 respectively. Chemical diffusion process of oxygen was described by relaxation time. From the Arrhenius plot of relaxation time, an activation energy of lattice diffusion was obtained as 1.1eV, which is close to the results of SIMS (0.95eV) and internal friction (1.02eV).

  18. INTERFACE DISORDER CONTROLLED SUPERCONDUCTIVITY YBa2Cu3O7 / SrTiO3 SUPERLATTICES

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Barriocanal, Javier [Universidad Complutense, Spain; Rivera-Calzada, Alberto [Universidad Complutense, Spain; Sefrioui, Z. [Universidad Complutense, Spain; Arias, D [Universidad Complutense, Spain; Varela del Arco, Maria [ORNL; Leon, C. [Universidad Complutense, Spain; Pennycook, Stephen J [ORNL; Santamaria, J. [Universidad Complutense, Spain

    2013-01-01

    We report on the coherent growth of ultrathin YBa2Cu3O7 (YBCO) layers on SrTiO3 (STO) in YBCO/STO superlattices. The termination plane of the STO is TiO2 and the CuO chains are missing at the interface. Disorder (steps) at the STO interface cause alterations of the stacking sequence of the intra-cell YBCO atomic layers. Stacking faults give rise to antiphase boundaries which break the continuity of the CuO2 planes and depress superconductivity. We show that superconductivity is directly controlled by interface disorder outlining the importance of pair breaking and localization by disorder in ultrathin layers.

  19. Pressure induced self-doping and dependence of critical temperature in stoichiometry YBa2Cu3O6.95 predicted by first-principle and BVS calculations

    Science.gov (United States)

    Gao, Peifeng; Zhang, Rui; Wang, Xingzhe

    2017-03-01

    This paper deals with the pressure effect on self-doping and critical temperature in optimum oxygen stoichiometry YBa2Cu3O6.95 of high temperature superconductor (HTS) based on a numerical study combined the first-principle with bond valence sum (BVS) calculations. The microscopic electronic properties and equilibrium ionic position configurations in the superconductor under external pressure are firstly calculated using the first-principle method. The results show that the apex oxygen in the cuprate superconductor shifts towards CuO2 plane due to pressure effect, and the minimum buckling angle of CuO2 plane is correlated with the maximum critical temperature. A BVS formalism is then utilized for evaluating the valences of all ions in the superconductor on the basis of the electronic and ionic properties and the hole concentration in both CuO2 plane and Cu-O chain are deduced. It demonstrates that the pressure-induced charge redistribution leads to a self-doping process of the hole-transfer into CuO2 plane from both Cu-O chain and Y site in the cuprate superconductor, which is the dominant mechanism of pressure effect on the superconductive properties. In order to quantitatively predict critical temperature profile of YBa2Cu3O6.95 under pressure, a modified formula describing pressure-induced charge transfer taking into account pressure dependence of the optimum hole concentration is developed. The predicted results exhibit good agreements with the experimental data in the literature, and the model parameters on the critical characteristics of the superconductor are discussed in details.

  20. Influence of defect-induced biaxial strain on flux pinning in thick YBa2Cu3O7 layers

    Energy Technology Data Exchange (ETDEWEB)

    Solovyov, V [Brookhaven National Laboratory (BNL); Li, Q [Brookhaven National Laboratory (BNL); Weidong, Si [Brookhaven National Laboratory (BNL); Maiorov, B. [Los Alamos National Laboratory (LANL); Haugan, T. J. [Air Force Research Laboratory; Macmanus-driscoll, J L [University of Cambridge; Yao, H [Soochow University, Suzhou, People' s Republic of China; Jia, Q X [Los Alamos National Laboratory (LANL); Specht, Eliot D [ORNL

    2012-01-01

    This work reports a detailed structural study by synchrotron x-ray diffraction of several sets of thickYBa2Cu3O7 layers. The samples represent recent advances in flux-pinning design, containing various concentrations of artificial pinning centers: (i) BaZrO3 nanorods, (ii) BaZrO3 nanoparticles, and (iii) Y2O3 nanoparticles. A statistical analysis was performed in order to separate the effects of defect-induced and intrinsic pinning. We report a statistically significant correlation between the orthorhombic distortion of the YBCO matrix and the pinning strength. Our result implies that the in-plane ordering of oxygen ions in the chain positions accounts for approximately 60% of the pinning force. The strain-induced pinning mechanism analysis, based on the Eshelby model of elastically strained composites, predicts that small YBCO grain size is a critical component of a strong pinning architecture that can enable critical current density values approaching the depairing limit.

  1. Critical length of disorder for the onset of localization in YBa2Cu3O6.9films

    Science.gov (United States)

    Gauzzi, Andrea; Joensson, B. J.; Clerc-Dubois, Arnaud; Pavuna, Davor

    1996-07-01

    We report a combined analysis of resistivity and x-ray diffraction rocking curve measurements on c-axis oriented YBA2Cu3O6.9 films epitaxially grown on (100) SrTiO3 and LaAlO3 by ion-beam sputtering. We find that the growth-induced reduction of long-range lattice order in the films begins to depress superconductivity and normal conductivity at a critical value of lattice coherence length of approximately equals 10 and 5 nm for the two above types of substrates respectively. Evidence for disorder-induced localization is given by a deviation from linearity of the temperature-dependence of the resistivity which scales as the reduction of superconducting critical temperature. Similar nonlinear dependence observed in slightly reduced or lightly Co-doped samples suggests that the disorder in our films significantly affects the CuO chains. Our analysis of the paraconductivity term in the films gives evidence for the enhancement of the superconducting fluctuations by the disorder.

  2. Single liquid source plasma-enhanced metalorganic chemical vapor deposition of high-quality YBa2Cu3O(7-x) thin films

    Science.gov (United States)

    Zhang, Jiming; Gardiner, Robin A.; Kirlin, Peter S.; Boerstler, Robert W.; Steinbeck, John

    1992-01-01

    High quality YBa2Cu3O(7-x) films were grown in-situ on LaAlO3 (100) by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition process. The metalorganic complexes M(thd) (sub n), (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; M = Y, Ba, Cu) were dissolved in an organic solution and injected into a vaporizer immediately upstream of the reactor inlet. The single liquid source technique dramatically simplifies current CVD processing and can significantly improve the process reproducibility. X-ray diffraction measurements indicated that single phase, highly c-axis oriented YBa2Cu3O(7-x) was formed in-situ at substrate temperature 680 C. The as-deposited films exhibited a mirror-like surface, had transition temperature T(sub cO) approximately equal to 89 K, Delta T(sub c) less than 1 K, and Jc (77 K) = 10(exp 6) A/sq cm.

  3. Single liquid source plasma-enhanced metalorganic chemical vapor deposition of high-quality YBa2Cu3O(7-x) thin films

    Science.gov (United States)

    Zhang, Jiming; Gardiner, Robin A.; Kirlin, Peter S.; Boerstler, Robert W.; Steinbeck, John

    1992-01-01

    High quality YBa2Cu3O(7-x) films were grown in-situ on LaAlO3 (100) by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition process. The metalorganic complexes M(thd) (sub n), (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; M = Y, Ba, Cu) were dissolved in an organic solution and injected into a vaporizer immediately upstream of the reactor inlet. The single liquid source technique dramatically simplifies current CVD processing and can significantly improve the process reproducibility. X-ray diffraction measurements indicated that single phase, highly c-axis oriented YBa2Cu3O(7-x) was formed in-situ at substrate temperature 680 C. The as-deposited films exhibited a mirror-like surface, had transition temperature T(sub cO) approximately equal to 89 K, Delta T(sub c) less than 1 K, and Jc (77 K) = 10(exp 6) A/sq cm.

  4. Observation of distinct, temperature dependent flux noise near bicrystal grain boundaries in YBa2Cu3O7-x films

    DEFF Research Database (Denmark)

    Bukh, K. R.; Jacobsen, Claus Schelde; Hansen, Jørn Bindslev

    2000-01-01

    The characteristics of the magnetic flux noise in high temperature superconducting thin-films of yttrium-barium-copper-oxide (YBa2Cu3O7) in the vicinity of artificial grain boundaries have been studied by means of a low critical temperature superconducting quantum interference device (SQUID...

  5. The line shape of the Ortho-II superstructure reflection in YBa2Cu3O6.5

    DEFF Research Database (Denmark)

    Schleger, P.; Hadfield, R.; Casalta, H.;

    1994-01-01

    Neutron and synchrotron x-ray measurements of the Ortho-II superstructure reflections on a high quality single crystal of YBa2Cu3O6.5 revealed that the intrinsic line shape is a Lorentzian to the power 5/2. It is argued that such a line shape implies late-stage domain coarsening of a quenched...

  6. Oxygen ordering in YBa2Cu3O6+x using Monte Carlo simulation and analytic theory

    DEFF Research Database (Denmark)

    Mønster, D.; Lindgård, Per-Anker; Andersen, N.H.

    2001-01-01

    We have simulated the phase diagram and structural properties of the oxygen ordering in YBa2Cu3O6+x testing simple extensions of the asymmetric next-nearest-neighbor Ising (ASYNNNI) Model. In a preliminary paper [Phys. Rev. B 60, 110 (1999)] we demonstrated that the inclusion of a single further...

  7. Oxygen-ordering phenomena in YBa2Cu3O6+x studied by Monte Carlo simulation

    DEFF Research Database (Denmark)

    Fiig, T.; Andersen, J.V.; Andersen, N.H.

    1993-01-01

    The oxygen order in YBa2Cu3O6+x has been investigated by Monte Carlo simulation with the two-dimensional anisotropic next-nearest-neighbor lattice gas model, the ASYNNNI model. For a specific set of interaction parameters we have calculated the structural phase diagram, the chemical potential...

  8. Far- and mid-infrared spectrum of YBa2Cu3O6.0 in high magnetic fields

    NARCIS (Netherlands)

    Gruninger, M; vanderMarel, D; vanBentum, PJM; Erb, A; Geserich, HP; Kopp, T

    1996-01-01

    The far- and mid-infrared spectrum of antiferromagnetic YBa2Cu3O6.0 was investigated by infrared transmission measurements ((k) over right arrow parallel to c-axis) in high magnetic fields up to 16.5 Tesla. at T=1K. A peak at 1436 cm(-1) which previously was assigned to the excitation of single opti

  9. Millimeter-wave response and linewidth of Josephson oscillations in YBa2Cu3O7 step-edge junctions

    DEFF Research Database (Denmark)

    Divin, Yu. Ya.; Andreev, A. V.; Fischer, Gerd Michael

    1993-01-01

    We have studied the response of YBa2Cu3O7 step-edge junctions to low-intensity millimeter-wave radiation in the temperature range from 4 to 80 K. The linewidth of the Josephson oscillations derived from the resonant part of the response at voltages V congruent-to (h/2e)f is shown to be determined...

  10. Electrical properties, texture, and microstructure of vicinal YBa2Cu3O7−δ thin films

    NARCIS (Netherlands)

    Pedarnig, J.D.; Rössler, R.; Delamare, M.P.; Lang, W.; Bäuerle, D.; Köhler, A.; Zandbergen, H.W.

    2002-01-01

    Vicinal YBa2Cu3O7−δ (YBCO) thin films of thickness h = 20–480 nm are grown by pulsed-laser deposition on 10° miscut (001) SrTiO3 substrates. The anisotropic resistivities, c-axis texture, and critical temperature drastically depend on the thickness of vicinal films. High-resolution electron microsco

  11. Neutron scattering study of the magnetic phase diagram of underdoped YBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Haug, Daniel; Hinkov, Vladimir; Sidis, Yvan;

    2010-01-01

    We present a neutron triple-axis and resonant spin-echo spectroscopy study of the spin correlations in untwinned YBa2Cu3O6+x single crystals with x=0.3, 0.35 and 0.45 as a function of temperature and magnetic field. As the temperature T→0, all samples exhibit static incommensurate magnetic order ...

  12. Fabricating Nanogaps in YBa2 Cu3 O7 -δ for Hybrid Proximity-Based Josephson Junctions

    Science.gov (United States)

    Baghdadi, Reza; Arpaia, Riccardo; Charpentier, Sophie; Golubev, Dmitri; Bauch, Thilo; Lombardi, Floriana

    2015-07-01

    The advances of nanotechnologies applied to high-critical-temperature superconductors (HTSs) have recently given a huge boost to the field, opening new prospectives for their integration in hybrid devices. The feasibility of this research goes through the realization of HTS nanogaps with superconductive properties close to the as-grown bulk material at the nanoscale. Here we present a fabrication approach allowing the realization of YBa2 Cu3 O7 -δ (YBCO) nanogaps with dimensions as small as 35 nm. To assess the quality of the nanogaps, we measure, before and after an ozone treatment, the current-voltage characteristics and the resistance versus temperature of YBCO nanowires with various widths and lengths, fabricated by using different lithographic processes. The analysis of the superconducting transition with a thermally activated vortex-entry model allows us to determine the maximum damage the nanowires undergo during the patterning which relates to the upper bound for the dimension of the nanogap. We find that the effective width of the nanogap is of the order of 100 nm at the superconducting transition temperature while retaining the geometrical value of about 35 nm at lower temperatures. The feasibility of the nanogaps for hybrid Josephson devices is demonstrated by bridging them with thin Au films. We detect a Josephson coupling up to 85 K with an almost ideal magnetic-field response of the Josephson current. These results pave the way for the realization of complex hybrid devices, where tiny HTS nanogaps can be instrumental to study the Josephson effect through barriers such as topological insulators or graphene.

  13. Ultrasonic evaluation of oxygen content, modulus, and microstructure changes in YBa2Cu3O(7-x) occurring during oxidation and reduction

    Science.gov (United States)

    Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.

    1992-01-01

    Ultrasonic velocity measurement techniques were used to evaluate the effects of oxidation and reduction on the elastic properties, global microstructure and oxygen content of the YBa2Cu3O(7-x) ceramic superconductor for samples ranging from 70 to 90 pct of theoretical density. Bulk density, velocity, and elastic modulus generally increased with increasing oxygen content upon oxidation, and this behavior was reversible. Velocity image patterns were similar after oxidation and reduction treatments for a 90 pct. dense sample, although the velocity value at any given point on the sample was changed following the treatments. The unchanging pattern correlated with destructive measurements showing that the spatial pore distribution (fraction and size) was not measurably altered after the treatments. Changes in superconducting behavior, crystal structure, and grain structure were observed consistent with changes in oxygen content.

  14. Ultrasonic evaluation of oxidation and reduction effects on the elastic behavior and global microstructure of YBa2Cu3O7-x

    Science.gov (United States)

    Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.

    1991-01-01

    Ultrasonic velocity measurement techniques were used to evaluate the effects of oxidation and reduction on the elastic properties, global microstructure and oxygen content of the YBa2Cu3O(7-x) ceramic superconductor for samples ranging from 70 to 90 pct. of theoretical density. Bulk density, velocity, and elastic modulus generally increased with increasing oxygen content upon oxidation, and this behavior was reversible. Velocity image patterns were similar after oxidation and reduction treatments for a 90 pct. dense sample, although the velocity value at any given point on the sample was changed following the treatments. The unchanging pattern correlated with destructive measurements showing that the spatial pore distribution (fraction and size) was not measurably altered after the treatments. Changes in superconducting behavior, crystal structure, and grain structure were observed consistent with changes in oxygen content.

  15. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction

    DEFF Research Database (Denmark)

    Forgan, E.M.; Blackburn, E.; Holmes, A.T.;

    2015-01-01

    Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6...... with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements........54 at its superconducting transition temperature ∼60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar...

  16. Comparison of the scaling analysis of mixed-state magnetization data with direct measurements of the upper critical field for YBa2Cu3O7-x

    Science.gov (United States)

    Landau, I. L.

    2008-07-01

    By comparison of recent direct measurements of the temperature dependence of the upper critical field Hc2 of an YBa2Cu3O7-x high-Tc superconductor with the scaling analysis of magnetization data, collected in fields H \\ll H_{\\mathrm {c2}} , we demonstrate that the temperature dependence of the Ginzburg-Landau parameter κ is negligible. Another conclusion is that the normalized temperature dependence of Hc2 is independent of the orientation of the magnetic field with respect to the crystallographic axes of the sample. We also discuss the fact that isotropy of the temperature dependence of Hc2 straightforwardly follows from the Ginzburg-Landau theory if κ does not depend on the temperature.

  17. Growth and characterization of large YBa2Cu3O(7-x) single crystals

    Science.gov (United States)

    Keester, Kenneth L.; Housley, Robert M.; Marshall, David B.

    1988-01-01

    Centimeter-sized crystal plates of YBa2Cu3O(7-x) have been obtained using a bulk composition and method described by Schneemeyer at al. (1987) modified for growth in a pure oxygen atmosphere. A porous MgO crucible and long soak time promote large crystals. Mg was not detectable in the crystals. Electron microbeam analysis using a 60 A monochromator crystal for the oxygen determination gave the composition Y(1.05)Ba(2.02)Cu(2.94)O(6.52 + or - 0.06). As-grown crystals from the melt surface exhibit a fairly sharp Tc with zero resistance at 80 K, and show complex twinning and crack patterns. Optical micrographs of a lightly polished surface normal to the c-axis of a 3-mm crystal delineate twinning and fine scale microcracking; this crystal surface now has a zero resistance at 68 K. Microhardness measurements and microfracture observations indicate intrinsic properties that may inhibit or impede large scale manufacture of electronic ceramics.

  18. YBa2Cu3O7 films grown by metal cosputtering

    Science.gov (United States)

    Steinberg, Richard N.; McCambridge, James D.; Prober, Daniel E.; Guenin, Bruce M.

    1992-04-01

    Superconducting YBa2Cu3O7 films have been grown in situ by simultaneously sputtering from Y, BaCu, and Cu targets. One advantage of such metal cosputtering is the higher deposition rate compared to oxide target sputtering. Another advantage is the ability to control the individual element rates to vary composition or to substitute for any of the metals without interrupting film growth and without making additional composite targets. To prevent film damage due to oxygen ion bombardment during film growth which was observed when the sputter guns faced the substrate (on-axis sputtering), an off-axis geometry was used. One disadvantage we found with in situ metal cosputtering was that reproducibility of stoichiometries was difficult because of the presence of oxygen at the targets. To minimize the oxygen partial pressure at the targets during sputtering, the chamber was differentially pumped. Films grown in the off-axis geometry with a substrate temperature near 700 °C, a chamber pressure of 7.5 mT, and an O2:Ar flow ratio of 1:50 had zero resistance at 85 K. Results for on-axis, composite target magnetron sputtering with a high-strength magnet are also presented. These results are not promising.

  19. Comprehensive X-Ray Diffraction Study of YBa 2Cu 3O 7-δ Thin Films

    Science.gov (United States)

    Moshfegh, A.; Fatollahi, A.; Wang, Y.; Sun, Y.; Hor, P.; Ignatiev, A.

    1995-11-01

    In situ annealed high temperature superconducting YBa2Cu3O7-δ thin films have been deposited on an MgO (100) substrate from a single stoichiometric target using DC magnetron sputtering. The films were characterized by X-Ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The effect of varying substrate temperature, T s, and O2/Ar ratio on lattice parameters and on the degree of orientation of the films were examined. Both c- and a-lattice parameters decreased with increasing T s. The reduction of c and a-lattice parameters as well as the oxygen deficiency in the films, δ, obey general (T s - T0)-4 behavior. We develope a new method to measure a more accurate way to find the degree of preferrential orientation along c and a-axis of the deposited films, (ΔV006/ΔV200), at different T s by using X-ray diffraction theory and JCPDS files to obtain \\mid {F(006)}/{F(200)}\\mid2. At T s=735°C, the volume fraction along the c-axis was found to be ΔVc≈5.5 ×ΔVa corresponding to 85 grains having preferred orientation along c-axis. In addition, we have also measured FWHM of the (006) and (200) peaks by varying T s. The thickness of the grains were estimated at different substrate temperature using the Scherrer formula.

  20. Magnetic field controlled charge density wave coupling in underdoped YBa2Cu3O6+x

    Science.gov (United States)

    Chang, J.; Blackburn, E.; Ivashko, O.; Holmes, A. T.; Christensen, N. B.; Hücker, M.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Rütt, U.; Zimmermann, M. V.; Forgan, E. M.; Hayden, S. M.

    2016-05-01

    The application of magnetic fields to layered cuprates suppresses their high-temperature superconducting behaviour and reveals competing ground states. In widely studied underdoped YBa2Cu3O6+x (YBCO), the microscopic nature of field-induced electronic and structural changes at low temperatures remains unclear. Here we report an X-ray study of the high-field charge density wave (CDW) in YBCO. For hole dopings ~0.123, we find that a field (B~10 T) induces additional CDW correlations along the CuO chain (b-direction) only, leading to a three-dimensional (3D) ordered state along this direction at B~15 T. The CDW signal along the a-direction is also enhanced by field, but does not develop an additional pattern of correlations. Magnetic field modifies the coupling between the CuO2 bilayers in the YBCO structure, and causes the sudden appearance of the 3D CDW order. The mirror symmetry of individual bilayers is broken by the CDW at low and high fields, allowing Fermi surface reconstruction, as recently suggested.

  1. Dynamics of photodoping and photoconductivity relaxation in oxygen-deficient YBa 2Cu 3O x

    Science.gov (United States)

    Markowitsch, W.; Stockinger, C.; Göb, W.; Lang, W.; Kula, W.; Sobolewski, Roman

    1996-02-01

    Studies of the time evolution of the photodoping process and of the relaxation of persistent photoconductivity (PPC) in oxygen-deficient YBa 2Cu 3O x are presented. We show that the resistance decrease during white light illumination of the samples does not saturate up to photon doses of 10 23-10 24 cm -2. The efficiency of the photodoping process is weakly temperature dependent, decreasing at low temperatures for extended illumination. The relaxation of PPC follows a Kohlrausch law with the time constant of several hours near room temperature and more than 1200 h at 254 K. Similarly to semiconducting samples, the temperature dependence of the relaxation rate follows the thermal activation process across an energy barrier of ≈0.9 eV. However, the dispersion parameter exhibits in our case the opposite temperature dependence - it increases with the temperature decrease. There is no indication of a threshold temperature around 270 K. The observed behavior suggests that two different mechanisms contribute to the photodoping process.

  2. Detailed magnetization study of superconducting properties of YBa2Cu3O7-x ceramic spheres

    Science.gov (United States)

    Landau, I. L.; Willems, J. B.; Hulliger, J.

    2008-03-01

    We present a magnetization study of low density YBa2Cu3O7-x ceramics carried out in magnetic fields H such that 0.5 Oe85 K, using low field magnetization measurements, we were able to evaluate the temperature dependence of λ, which turned out to be very close to predictions from conventional Ginzburg-Landau theory. Although the present samples consisted of randomly oriented grains, specifics of magnetization measurements allowed for evaluation of λab(T). Good agreement between our estimation of the grain size and the real sample structure provides evidence for the validity of this analysis of magnetization data. Measurements of the equilibrium magnetization in high magnetic fields were used for evaluation of Hc2(T). At temperatures close to Tc, the Hc2(T) dependence turned out to be linear, in agreement with Ginzburg-Landau theory. The value of the temperature at which Hc2 vanishes coincides with the superconducting critical temperature evaluated from low field measurements, which is important evidence of the validity of both approaches to the analysis of magnetization data.

  3. Large area superconducting YBa 2Cu 3O 7-x films grown by single target ion beam sputtering

    Science.gov (United States)

    Gauzzi, Andrea; Lucía, Maria L.; Kellett, Bruce J.; James, Jonathan H.; Pavuna, Davor

    1991-10-01

    We have demonstrated, by using a simple single YBa 2Cu 3O 7- x target ion beam system that, with a sufficiently low power ion beam, preferential sputtering is avoided and high-quality YBa 2Cu 3O 7- x films are deposited over areas larger than ≈ 30 cm 2 in a reproducible way. As-deposited films on SrTiO 3 are 50-100 nmthick, c-oriented and show the following reproducible electrical properties (within the given variations): Tc0 =90±0.5 K, transitions widths less than 1 K, j inc(77 K)=1.0-1.2× 10 6 A cm -2, ϱ(300 K)=300±50μΩ cm, ϱ(300 K)/ ϱ(100 K)=2.9±0.1. The extrapolated residual resistivity ϱ res(O K) is between 0 and 5% of ϱ(300 K).

  4. Preparation of YBa 2Cu 3O 7-x crystals by verneuil process with laser-heating

    Science.gov (United States)

    Nakada, I.; Itoh, M.; Ogura, I.; Koga, K.; Sato, S.

    1989-09-01

    Premelted YBa 2Cu 3O 7- x was mixed with a BaCuO 2-CuO flux and formed into a boule melting the fed powder under laser-heating. Holding the boule at 910°C, the surplus flux was removed by melting and YBa 2Cu 3O 7- x crystals were extracted. The size of the crystals was from 0.01×0.01 to 0.5×0.5 mm with 0.02V0.04mm in thickness. After annealing at 600°C the crystals became superconducting with the transition temperature at 92 K. Interference contrast microscopy revealed microstep line structures on the as-grown crystal surfaces as well as domain structures in the orthorhombic phase. It was found that the crystallographic orientation of the orthorhombic lattice could be determined from the contrast of the domains in the microscope.

  5. X-ray diffraction measurements of the c-axis Debye-Waller factors of YBa2Cu3O7 and HgBa2CaCu2O6

    OpenAIRE

    2003-01-01

    We report the first application of x-rays to the measurement of the temperature dependent Bragg peak intensities to obtain Debye-Waller factors on high-temperature superconductors. Intensities of (0,0,l) peaks of YBa2Cu3O7 and HgBa2CaCu2O6 thin films are measured to obtain the c-axis Debye-Waller factors. While lattice constant and some Debye-Waller factor measurements on high Tc superconductors show anomalies at the transition temperature, our measurements by x-ray diffraction show a smooth ...

  6. Ultrafast Linear Kinetic Inductive Photoresponse of YBa2Cu3O7-{\\delta} Meander-Line Structures by Photoimpedance Measurements

    CERN Document Server

    Atikian, Haig A; Anlage, Steven M; Majedi, A Hamed

    2010-01-01

    We report the experimental demonstration of linear kinetic-inductive photoresponse of thin-film YBa2Cu3O7-{\\delta} (YBCO) meander-line structures, where the photoresponse amplitude, full-width-half-maximum (FWHM), and rise-time are bilinear in the incident optical power and bias current. This bilinear behavior reveals a trade off between obtaining high responsivity and high speed photodetection. We also report a rise-time as short as 29ps in our photoimpedance measurements.

  7. Relaxation of the normal electrical resistivity induced by high-pressure in strongly underdoped YBa2Cu3O7-δ single crystals

    Science.gov (United States)

    Vovk, R. V.; Khadzhai, G. Ya.; Nazyrov, Z. F.; Goulatis, I. L.; Chroneos, A.

    2012-11-01

    We investigate the relaxation of the normal electrical resistivity, induced by high-pressure in YBa2Cu3O6.45 single crystals. It is determined that the pressure affects to the phase composition of the sample. Under pressure phases with different (but similar) critical temperatures form. It is determined that the application-removal pressure process is completely reversible. Above Tc the temperature dependence of the resistivity in the layers' plane at different hydrostatic pressures can be approximated with high accuracy with the scattering of electrons by phonons model. With increasing pressure, the residual resistance is reduced and the contribution of intraband s-s scattering increases. Additionally, the role of the interband s-d scattering and the Debye temperature is enhanced.

  8. Hybrid artificial pinning centers of elongated-nanorods and segmented-nanorods in YBa2Cu3O7 films

    Science.gov (United States)

    Horide, Tomoya; Sakamoto, Nobuhiro; Ichinose, Ataru; Otsubo, Koji; Kitamura, Takanori; Matsumoto, Kaname

    2016-10-01

    To control the anisotropy of critical current density (J c), hybrid artificial pinning centers (APCs) of elongated-nanorods and segmented-nanorods were incorporated into YBa2Cu3O7 films. The elongated-nanorods and segmented-nanorods were formed by fabricating multilayer films using YBa2Cu3O7+BaSnO3 targets with a different BaSnO3 content. According to the elastic calculation, the BaSnO3-free YBa2Cu3O7 regions between BaSnO3 segmented-nanorods were highly strained, resulting in their alignment along the c-axis. Pinning of the vortex kinks and straight vortices by the nanorod ends improved J c in a wide range around B//ab. The angular dependence of J c systematically varied with the multilayer structure of layer thickness and BSO content. J c depended on the layer thickness even with keeping the constant average BSO content, showing that the BaSnO3 distribution, as well as the average BaSnO3 content, affected the J c. The hybrid pinning effect of elongated-nanorods and nanorod ends improved the J c anisotropy although the effect was not so large in the present films. The control of strain and interface is expected to lead to further improvement of J c.

  9. PROCESAMIENTO EN DESCARGA LUMINISCENTE DE LA PEROVSKITA YBa2Cu3O7-d

    Directory of Open Access Journals (Sweden)

    UBEIMAR FUENTES GUERRERO

    2011-01-01

    Full Text Available La aplicación de la descarga luminiscente anormal al proceso de sinterización es una técnica reciente que representa disminución en el tiempo requerido para el proceso de sinterización de muestras, tanto metálicas como cerámicas, y un menor consumo de energía, debido a que el calentamiento se realiza en forma directa por el bombardeo de los iones y átomos neutros sobre la superficie del cátodo donde generalmente se localiza la muestra. En este trabajo se estudia la aplicación de la descarga luminiscente anormal de baja presión como método alternativo para realizar la etapa de sinterización del material cerámico YBa2Cu3O7-, se comparan la estructura y la microestructura de muestras sinterizadas en la descarga luminiscente con las de muestras sinterizadas en horno resistivo, el cual es comúnmente utilizado para la producción de este tipo de materiales. Para ello se realiza el análisis estructural y morfológico por DRX y SEM, respectivamente, de las muestras obtenidas por los dos procedimientos. Los resultados experimentales permitieron establecer una estructura similar para ambos casos y una menor porosidad superficial en las muestras sinterizadas por plasma. Además, en el proceso de sinterización por plasma se observa una ligera contaminación de la superficie de las muestras debida a la pulverización catódica, la cual es fácilmente eliminada por métodos mecánicos.

  10. Epitaxial YBa2Cu3O7-x nanocomposite thin films from colloidal solutions

    Science.gov (United States)

    Cayado, P.; De Keukeleere, K.; Garzón, A.; Perez-Mirabet, L.; Meledin, A.; De Roo, J.; Vallés, F.; Mundet, B.; Rijckaert, H.; Pollefeyt, G.; Coll, M.; Ricart, S.; Palau, A.; Gázquez, J.; Ros, J.; Van Tendeloo, G.; Van Driessche, I.; Puig, T.; Obradors, X.

    2015-12-01

    A methodology of general validity to prepare epitaxial nanocomposite films based on the use of colloidal solutions containing different crystalline preformed oxide nanoparticles (ex situ nanocomposites) is reported. The trifluoroacetate (TFA) metal-organic chemical solution deposition route is used with alcoholic solvents to grow epitaxial YBa2Cu3O7 (YBCO) films. For this reason stabilizing oxide nanoparticles in polar solvents is a challenging goal. We have used scalable nanoparticle synthetic methodologies such as thermal and microwave-assisted solvothermal techniques to prepare CeO2 and ZrO2 nanoparticles. We show that stable and homogeneous colloidal solutions with these nanoparticles can be reached using benzyl alcohol, triethyleneglycol, nonanoic acid, trifluoroacetic acid or decanoic acid as protecting ligands, thereby allowing subsequent mixing with alcoholic TFA solutions. An elaborate YBCO film growth analysis of these nanocomposites allows the identification of the different relevant growth phenomena, e.g. nanoparticles pushing towards the film surface, nanoparticle reactivity, coarsening and nanoparticle accumulation at the substrate interface. Upon mitigation of these effects, YBCO nanocomposite films with high self-field critical currents (J c ˜ 3-4 MA cm-2 at 77 K) were reached, indicating no current limitation effects associated with epitaxy perturbation, while smoothed magnetic field dependences of the critical currents at high magnetic fields and decreased effective anisotropic pinning behavior confirm the effectiveness of the novel developed approach to enhance vortex pinning. In conclusion, a novel low cost solution-derived route to high current nanocomposite superconducting films and coated conductors has been developed with very promising features.

  11. Chemical stability at noble metal M/YBa 2Cu 3O 6.8 interfaces (M = Pt, Ag, Au)

    Science.gov (United States)

    Bohnenkamp-Weiss, Ruth; Schmid-Fetzer, Rainer

    1994-02-01

    The chemical compatibility between YBa 2Cu 3O 6.8 (Y123) and Pt, Ag or Au was studied using quasi-infinite diffusion couples which were encapsulated and annealed at 650 to 800°C for 5 to 80 h. The phase formation at the interface was analyzed in cross sections of these couples using optical and scanning electron microscopy together with energy- and wavelength dispersive X-ray microanalysis. In addition, bulk powder mixtures of Y123 with Pt, Ag or Au were annealed at 800°C for 100 h and phase analysis was performed using X-ray diffraction. At the Pt/Y123 interface a reaction zone grows slowly but decisively at 800°C. Its microstructure is multiphase with YCu-oxides and a fine-grained dispersion of Y 2BaCuO 5 (Y211) with BaCu-oxides. Additional BaPt oxides and other phases are seen in powder mixtures annealed for longer times. Barium is suspected to diffuse out from the superconductor along grain boundaries from as deep as 1 mm, causing the decomposition of Y123 into YCu-oxides in the depleted regions. Ag and Au form a stable contact at the interface to Y123 with no reaction zone or new phases. Interdiffusion at the Ag/Y123 interface at 800°C was too low to be clearly detected. In contrast, Au diffuses very fast into Y123 and at 800°C the solubility is 4.2 mass% Au. Yttrium and barium diffuse much slower into the (Au) phase, Cu diffusion was not detected. Weak traces of decomposition products, mostly Y211 and BaCu-oxides, were observed in bulk powder mixtures of Y123 with Ag or Au annealed at 800°C for 100 h in closed capsules. These decomposition products are considered to be due to the high oxygen pressure in the closed capsule, exceeding the stability limit of Y123, and not due to the reduction of Y123. Both Ag and Au are virtually non-reactive with Y123.

  12. Coaxial line configuration for microwave power transmission study of YBa2Cu3O(7-delta) thin films

    Science.gov (United States)

    Chorey, C. M.; Miranda, F. A.; Bhasin, K. B.

    1991-01-01

    Microwave transmission measurements through YBa2Cu3O(7-delta) (YBCO) high-transition-temperature superconducting thin films on lanthanum aluminate (LaAlO3) have been performed in a coaxial line at 10 GHz. LaAlO3 substrates were ultrasonically machined into washer-shaped discs, polished, and coated with laser-ablated YBCO. These samples were mounted in a 50-ohm coaxial air line to form a short circuit. The power transmitted through the films as a function of temperature was used to calculate the normal state conductivity and the magnetic penetration depth for the films.

  13. Neutron irradiation damage effect on superconducting and normal state properties of the YBa 2Cu 3O 7 system

    Science.gov (United States)

    Przysłupski, P.; Wiśniewski, A.; Koleśnik, S.; Dobrowolski, W.; Pajączkowska, A.; Pytel, K.; Pytel, B.

    1988-06-01

    Effect of irradiation by fast neutrons on superconducting and normal state properties of the YBa 2Cu 3O 7 samples is presented. Transport measurements showed a degradation of all superconducting parameters, especially the transport critical current density. Critical current densities obtained from magnetization data exhibited a substantial increase / about 15 times at 77 K and H = 10 kOe/ after the irradiation with the fluence in the range 2.4·10 17 ÷ 8.7 · 10 17 n/cm 2. Such an anomalous bahavior is explained in terms of neutron created defects at intergrain regions and improved intragrain pinning.

  14. Crossover between channeling and pinning at twin boundaries in YBa2Cu3O7 thin films.

    Science.gov (United States)

    Palau, A; Durrell, J H; Macmanus-Driscoll, J L; Harrington, S; Puig, T; Sandiumenge, F; Obradors, X; Blamire, M G

    2006-12-22

    The critical current (Jc) of highly twinned YBa2Cu3O7 films has been measured as a function of temperature, magnetic field, and angle. For much of the parameter space we observe a strong suppression of Jc for fields in the twin boundary (TB) directions; this is quantitatively modeled as flux-cutting-mediated vortex channeling. For certain temperatures and fields a crossover occurs to a regime in which channeling is blocked and the TBs act as planar pinning centers so that TB pinning enhances the overall Jc. In this regime, intrinsic pinning along the TBs is comparable to that between the twins.

  15. Josephson oscillations and noise temperatures in YBa2Cu3O7-x grain-boundary junctions

    DEFF Research Database (Denmark)

    Yu, Ya. Divin; Mygind, Jesper; Pedersen, Niels Falsig;

    1992-01-01

    The ac Josephson effect was studied in YBa2Cu3O7−x grain-boundary junctions (GBJ) in the temperature range from 4 to 90 K. The temperature dependence of the linewidth of millimeter-wave Josephson oscillations was measured and it is shown that the derived effective noise temperatures may be as low...... as the physical temperature in the temperature range investigated. In the millimeter-wave range, linewidths as low as 380 MHz were found at liquid-nitrogen temperatures. Applied Physics Letters is copyrighted by The American Institute of Physics....

  16. Structure factor calculation and metal-ion doping effects of YBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Andersen, N.H.; Fiig, T.; Lindgård, P.-A.

    1994-01-01

    with recent neutron diffraction measurements. In addition we determine the effect on the materials properties of the interplay between oxygen ordering and the diffusive motion of metal-ion dopants in YBa(2)Cu(3-y)M(y)O(6+x) (M = Co, Fe, Al) by Monte Carlo simulation. The simulations are performed......The oxygen order in YBa2Cu3O6+x has been investigated by Monte Carlo simulation with an extension of the well known anisotropic next nearest neighbor lattice gas model, the ASYNNNI model. Our results for the widths of the structure factor at the (1/2,0,0) superstructure reflection are compared...

  17. Magnetic properties of melt-textured YBa2Cu3O7 prepared in a solar furnace

    Science.gov (United States)

    Reich, S.; Godin, T.

    1996-05-01

    Magnetic properties of bulk melt-textured YBa2Cu3O7 prepared in a solar furnace were investigated. The material obtained demonstrates high critical current density of the order of 105 A/cm2 in the field of a 1 T at 50 K. The effective activation energy for flux creep was calculated using Maley's approach and fits the universal relation: Ueff=U0G(T)(J/Jc)-n, where n=3/2, which agrees with the result predicted by the collective flux creep theory.

  18. Excess conductivity and the pseudogap state in Hf-doped YBa2Cu3O7-δ ceramics

    Science.gov (United States)

    Savich, S. V.; Samoilov, A. V.; Vovk, R. V.; Dobrovolskiy, O. V.; Kamchatna, S. N.; Dolgopolova, Ya. V.; Chernovol-Tkachenko, O. A.

    2016-12-01

    The electrical conductivity of hafnium (Hf)-doped YBa2Cu3O7-δ ceramics is investigated. Hf doping has been revealed to lead to an increase of the number of effective scattering centers for the normal charge carriers. In a broad temperature range, the excess conductivity of the investigated samples obeys an exponential temperature dependence, while near Tc it is satisfactorily described by the Aslamazov-Larkin model. Meanwhile, Hf doping has been shown to lead to a notable broadening of the temperature range for the manifestation of the pseudogap anomaly in the ab-plane.

  19. Interplay between static and dynamic properties of semifluxons in YBa2Cu3O(7-delta) 0-pi Josephson junctions.

    Science.gov (United States)

    Cedergren, K; Kirtley, J R; Bauch, T; Rotoli, G; Troeman, A; Hilgenkamp, H; Tafuri, F; Lombardi, F

    2010-04-30

    We have investigated the static and dynamic properties of long YBa2Cu3O(7-delta) 0-pi Josephson junctions and compared them with those of conventional 0 junctions. Scanning SQUID microscope imaging has revealed the presence of a semifluxon at the phase discontinuity point in 0-pi Josephson junctions. Zero field steps have been detected in the current-voltage characteristics of all junctions. Comparison with simulation allows us to attribute these steps to fluxons traveling in the junction for conventional 0 junctions and to fluxon-semifluxon interactions in the case of 0-pi Josephson junctions.

  20. Effects of lattice disorder on the superconducting properties of YBa 2Cu 3O 6.9 films

    Science.gov (United States)

    Gauzzi, Andrea; Pavuna, Davor

    1994-12-01

    We report on striking sensitivity of the superconducting properties of ion-beam sputtered YBa 2Cu 3O 6.9 films to the lattice disorder (induced by varying growth temperatures). Tc decreases with increasing disorder, while the width of the resistive transition and the normal state resistivity increase. We give a quantitative significance to this trend by expressing the degree of the disorder in terms of the lattice coherence length rc is extracted from the width of X-ray diffraction rocking curves. We find that Tc saturates to the maximum of ∼ 92 K for rc > 10 nm.

  1. Optimization of large area YBa 2Cu 3O 7-x films by single target ion beam sputtering

    Science.gov (United States)

    Gauzzi, A.; Lucia, M. L.; Affronte, M.; Pavuna, D.

    1991-12-01

    We report on the in-situ growth over large area of high-quality homogeneous YBa 2Cu 3O 7-x films by single target ion beam sputtering. The ‘123’ stoichiometry transfer to the substrates is obtained by using sufficiently low power ion beam and a grazing angle between the ion beam and the target. The as-deposited films show consistent homogeneity and reproducible superconducting properties (ΔT c10 6 A cm -2 at 77 K) over areas larger than ≈30 cm 2.

  2. Scaling between superconducting critical temperature and structural coherence length in YBa2Cu3O6.9 films

    Science.gov (United States)

    Gauzzi, A.; Jönsson-Åkerman, B. Johan; Clerc-Dubois, A.; Pavuna, D.

    2000-09-01

    Measurements of critical temperature Tc in superconducting YBa2Cu3O6.9 films with reduced long-range structural order show the validity of the empirical scaling relation ΔTc propto rc-2 between disorder-induced reduction of Tc and structural coherence length rc in the ab-plane. This result is quantitatively explained by the disorder-induced confinement of the charge carriers within each ordered domain of size rc. Our analysis of the data based on this picture enables us to precisely determine the Ginzburg-Landau superconducting coherence length in the ab-plane, ξab = 1.41 ± 0.04 nm.

  3. Modification of a YBa2Cu3O7-δ Thin Film Using an Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    尤立星; 尹晓波; 冯一军; 杨森祖; 康琳; 王牧; 吴培亨

    2002-01-01

    A YBa2Cu3O7-δ thin film is modified by a probe electric field of an atomic force microscope to form a ridge with the width of only a grain cell. The modification varies with the operation parameters of the bias voltage,the moving velocity of the probe and the ambient humidity. Energy dispersive spectroscopy analysis shows only oxygen deficiency in the modified YBCO thin film. As a result, the suppressed superconductivity was found in the junction crossing the ridge.

  4. Photocatalytically Active YBa2Cu3O7−x Nanoparticles Synthesized via a Soft Chemical Route

    Directory of Open Access Journals (Sweden)

    Zhenjiang Shen

    2015-01-01

    Full Text Available YBa2Cu3O7−x (YBCO nanoparticles (NPs were synthesized via a soft chemical approach and they were found photocatalytically active at room temperature. Using metal acetate as precursors, a well-designed soft chemical procedure was carried out to produce YBCO NPs. The very small particle size and/or large number of defects might have led the NPs to semiconductors with vigorous photocatalytic activities. This work provides a direct and efficient route to obtain multifunction in YBCO based nanomaterials which are based on specific size and surface effects.

  5. Fluctuation-induced anisotropic magnetoconductivity in oxygen-deficient YBa 2Cu 3O 7-δthin films

    Science.gov (United States)

    Göb, W.; Lang, W.; Kula, W.; Sobolewski, Roman

    1997-04-01

    We report on measurements of both the longitudinal and transverse magnetoresistivity (MR) of oxygen-reduced YBa2Cu3O7-δ(YBCO) thin films with critical temperatures betweenTc = 55 K andTc = 89 . We find the MR solely caused by the suppression of superconducting fluctuations by a magnetic field. In fully oxygenated samples both the Aslamazov-Larkin process (AL) and another, presumably the Maki-Thompson process (MT), contribute to the MR. In oxygen-deficient samples the MT process unambiguously is absent, thus indicating an unconventional (non-s-wave) pairing symmetry in YBCO.

  6. Erasable photoinduced change of carrier density and coherence lengths in oxygen-deficient YBa 2Cu 3O x

    Science.gov (United States)

    Göb, W.; Lang, W.; Markowitsch, W.; Schlosser, V.; Kula, W.; Soblewski, Roman

    1995-11-01

    We report on the persistent and erasable photoinduced change of normal-state transport and superconducting properties of oxygen-deficient YBa 2Cu 3O 6.6 thin films. After illumination with white light for several hours at 150K, a decrease of the electrical resistivity, an increase of the number of mobile holes, and a change of the magnetoresistance caused by superconducting order-parameter fluctuations, were observed. From the latter measurement, we find a photoinduced enhancement of the superconducting coherence lengths in both in-plane and out-of-plane directions.

  7. Investigation of the off-diagonal Seebeck effect and Peltier effect on textured YBa 2Cu 3O 7-δ

    Science.gov (United States)

    He, Z. H.; Zhong, F. Q.; Luo, Y. Y.; Wu, M.; Gavalek, W.; Liang, K. F.; Fung, P. C. W.

    1997-08-01

    Both of the off-diagonal Seebeck effect and the off-diagonal Peltier effect were investigated with the use of the same textured sample YBa 2Cu 3O 7-δ (Y-123) and the same experimental setup. The reliability of the measurement is studied by applying different heat-conductive mediums. The flatness of both of the sample and the heat-conducting block, and the matching between them are found very important for the reduction of the heat resistance. The annealing effect on the Sxz is also studied and found in accordance with that studied by the thermoelectric power.

  8. Transport properties of variable-angle YBa2Cu3O7 - δ step-edge junctions in the a-b plane

    Science.gov (United States)

    Mitchell, E. E.; Macfarlane, J. C.; Foley, C. P.

    2011-05-01

    The superconductor-barrier-superconductor interface in a range of YBa2Cu3O7 - δ (YBCO) step-edge Josephson junctions was engineered to lie at angles θ other than normal to the a-b axes of the YBCO crystal. This systematic study enabled the effect of the d-wave anisotropy to be probed over the range θ = 0° ([100] direction) to θ = 45° ([110] direction) in a way not possible with junction technologies such as bicrystals. Anomalous temperature dependence of the critical current and a peak in the differential conductance at low voltage were reminiscent of features attributed elsewhere to zero-energy states in a range of [001]-tilt bicrystal and ramp-edge junctions. Moreover, IcRN products decreased with increasing θ, and conductance minima or gap-related structures were measured for large θ. The data reported here for variable-angle junctions are compared with results from studies of other grain boundary junctions (such as bicrystal and biepitaxial junctions) and provide support for theories developed by Shirai et al (2003 J. Phys. Soc. Japan 72 2299-307) in particular.

  9. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5.

    Science.gov (United States)

    Mankowsky, R; Subedi, A; Först, M; Mariager, S O; Chollet, M; Lemke, H T; Robinson, J S; Glownia, J M; Minitti, M P; Frano, A; Fechner, M; Spaldin, N A; Loew, T; Keimer, B; Georges, A; Cavalleri, A

    2014-12-04

    Terahertz-frequency optical pulses can resonantly drive selected vibrational modes in solids and deform their crystal structures. In complex oxides, this method has been used to melt electronic order, drive insulator-to-metal transitions and induce superconductivity. Strikingly, coherent interlayer transport strongly reminiscent of superconductivity can be transiently induced up to room temperature (300 kelvin) in YBa2Cu3O6+x (refs 9, 10). Here we report the crystal structure of this exotic non-equilibrium state, determined by femtosecond X-ray diffraction and ab initio density functional theory calculations. We find that nonlinear lattice excitation in normal-state YBa2Cu3O6+x at above the transition temperature of 52 kelvin causes a simultaneous increase and decrease in the Cu-O2 intra-bilayer and, respectively, inter-bilayer distances, accompanied by anisotropic changes in the in-plane O-Cu-O bond buckling. Density functional theory calculations indicate that these motions cause drastic changes in the electronic structure. Among these, the enhancement in the character of the in-plane electronic structure is likely to favour superconductivity.

  10. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    Science.gov (United States)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  11. Structural Evolution Induced by Interfacial Lattice Mismatch in Self-Organized YBa2Cu3O7-δ Nanocomposite Film.

    Science.gov (United States)

    Horide, Tomoya; Kametani, Fumitake; Yoshioka, Satoru; Kitamura, Takanori; Matsumoto, Kaname

    2017-02-28

    Intriguing properties of self-organized nanocomposites of perovskite oxides are usually derived from the complex interface of constituent material phases. A sophisticated control of such a system is required for a broad range of energy and device applications, which demand a comprehensive understanding of the interface at the atomic scale. Here, we visualized and theoretically modeled the highly elastically strained nanorod, the interface region with misfit dislocations and heterointerface distortion, and the matrix with strain-induced oxygen vacancies in the self-organized YBa2Cu3O7-δ nanocomposite films with Ba perovskite nanorods. Large misfit strain was elastically accommodated in the nanocomposites, but since the elastic strain was mainly accommodated by the nanorods, the concentration of strain-induced oxygen vacancies was small enough for the matrix to keep high critical temperature (>85 K). The interfacial bonding distorted the atomic structure of YBa2Cu3O7-δ, but the thickness of distortion was limited to a few unit cells (less than the coherence length) due to the electron screening. The effect of volume fraction on elastic strain and the electron screening are crucial for strong vortex pinning without significant degradation of both the elementary pinning force and critical temperature in the nanocomposites. Thus, we comprehensively clarified the self-organized nanocomposite structure for on-demand control of superconductivity and oxide functionality in the nanocomposite engineering of perovskite oxides.

  12. Preparation, processing and tunneling in YBa2Cu3O(7-[delta])-Pb native-barrier structures

    Energy Technology Data Exchange (ETDEWEB)

    Frangi, F.; Dwir, B.; James, J. H.; Gauzzi, A.; Pavuna, D. (Swiss Federal Institute of Technology, Lausanne (Switzerland). Institute of Micro- and Optoelectonics)

    1993-06-15

    In this study, a procedure for the preparation of small (40[times]40[mu]m[sup 2]) window-type YBa2Cu3O(7-[delta])-Pb junctions with YSZ (yttrium-stabilized zirconium-oxide) insulator and native tunnel barrier has been developed. This paper presents the patterning technique of the two electrodes based on photolithography and wet etching. From the device characteristics, the nature of the barrier was found to be semiconducting. The tunneling I-V curves showed a behavior dominated by the Pb gap at 1.3 meV below 7.2 K. The dI/dV curve also showed an additional feature at 5.3 meV, which disappeared above Tc of Pb, and was attributed to longitudinal Pb phonons. Furthermore, another structure at 8.5 meV that persisted at temperatures above the critical temperature of Pb was attributed to the YBa2Cu3O(7-[delta]) gap. 15 refs., 7 figs.

  13. Effect of water intercalation on the structure and electrophysical properties of YBa2Cu3O6.9

    Science.gov (United States)

    Bobylev, I. B.; Zyuzeva, N. A.; Degtyarev, M. V.; Gerasimov, E. G.; Ponosov, Yu. S.; Pilyugin, V. P.

    2016-09-01

    The influence of water vapors and plastic deformation on the structure and electrophysical properties of YBa2Cu3O6.9 (123) has been studied. It has been established that, at T = 200°C, the introduction of water into the structure of YBa2Cu3O6.9 leads to its transition into a defect tetragonal phase of the 124 type as a result of the formation of planar stacking faults. After annealing at T = 930°C, these defects are partially retained and are efficient centers of pinning in the magnetic fields applied perpendicularly to the c axis, which makes it possible to increase (by an order of magnitude) the critical current density in the high-textured ceramics at 77 K in the external magnetic field of 5-10 T. The plastic deformation of the hydrated ceramics favors the reverse transition of the arising 124 phase to the 123 phase at T = 930°C and is accompanied by a recrystallization of the material, which leads to the appearance of a texture and an increase the critical current density.

  14. Microstructures of Sputtered Oriented Si/CeO2 Bilayers YBa2Cu3O7-δ/Si Integrated Microelectronics

    Science.gov (United States)

    Chiodoni, A.; Mezzetti, E.; Botta, D.; Gozzelino, L.; Minetti, B.; Pirri, C. F.; Tresso, E.; Camerlingo, C.; Tallarida, G.; Barucca, G.; Fabbri, F.

    In the framework of a research aimed to superconductor/semiconductor integrated electronics, we have grown a-axis oriented YBa2Cu3O7-δ (YBCO) thin films on silicon (100) substrates with (111) oriented insulating buffer layers of cerium dioxide (CeO2), using magnetron sputtering deposition techniques. The properties of the cerium dioxide layer have been preliminary optimized by means of several layout and by monitoring the growing procedures through X-ray diffraction, AFM and TEM techniques. The lattice matching between CeO2 and YBCO resulted to be worsened by an amorphous thin SiO2 layer at the Si/CeO2 interface, that decouples the buffer orientation from the seed orientation. However, it was possible to grow a relatively thick, optimally textured layer of CeO2 without spurious orientations. The YBCO films deposited on top of this layer result preferentially a-axis oriented. The transition widths are very large, jet well controllable and reproducible. Some technological applications can be already envisaged.

  15. Crossover between superconductivity and magnetism in SrRuO3 mesocrystal embedded YBa2Cu3O7-x heterostructures.

    Science.gov (United States)

    Suresh, Vandrangi; Lin, Jheng-Cyuan; Liu, Heng-Jui; Zhang, Zaoli; Chiang, Ping-Chih; Hsun, Yu-Ching; Chen, Yi-Chun; Lin, Jiunn-Yuan; Chu, Ying-Hao

    2016-11-03

    The competition between superconductivity and ferromagnetism poses great challenges and has attracted renewed interest for applications in novel spintronic devices. In order to emphasize their interactions, we fabricated a heterostructure composed of superconducting YBa2Cu3O7-δ (YBCO) film embedded with itinerant ferromagnetic SrRuO3 (SRO) mesocrystals. Starting from a doping concentration of 10 vol% of SRO mesocrystal in a YBCO matrix, corresponding to the density of SRO nanocrystals ∼5 × 10(9) cm(-2), which exhibits the typical characteristic of a metal-superconductor transition, and then increasing the magnetic interactions as a function of SRO embedment, the electronic correlation and the interplay between superconductivity and magnetism throughout the temperature regime were investigated. A metal-insulator transition in the normal state of YBCO and a crossover between superconductivity and magnetism at low temperatures were found upon increasing the density of nano-size SRO crystallites in the YBCO matrix as a consequence of competing interactions between these two ordered phases.

  16. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction

    Science.gov (United States)

    Forgan, E. M.; Blackburn, E.; Holmes, A. T.; Briffa, A. K. R.; Chang, J.; Bouchenoire, L.; Brown, S. D.; Liang, Ruixing; Bonn, D.; Hardy, W. N.; Christensen, N. B.; Zimmermann, M. V.; Hücker, M.; Hayden, S. M.

    2015-12-01

    Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ~60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.

  17. Thermodynamic properties of underdoped YBa2Cu3O6+x cuprates for doping values x ∈ (0 . 5 , 0 . 9)

    Science.gov (United States)

    Salas, P.; Solis, M. A.; Fortes, M.

    We extend the Boson-Fermion superconductivity model to include layered systems, such as underdoped cuprate superconductors YBa2Cu3O6+x, with x ∈ (0 . 5 , 0 . 9) ranging from underdoped to optimally doped. We model cuprates as a boson-fermion quantum gas mixture immersed in a layered structure, generated via a Dirac comb potential applied in one direction while the particles move freely in the other two directions. The optimum parameters of the system, which are the impenetrability of the planes and the paired fermion fraction, are obtained by minimizing the Helmholtz free energy and setting the experimental critical temperature Tc. Using this optimized scheme, we are able to predict the following thermodynamic properties of cuprates as a function of temperature: the entropy; the Helmholtz free energy; the electronic specific heat and the total specific heat for different doping values. Furthermore, we determinate the behavior of the jump height in the electronic specific heat, the normal electronic specific heat coefficient γ (Tc) , the quadratic α and cubic β terms of the specific heat for low temperatures, the ground state energy and the mass anisotropy as a function of doping. Comparison to experimental values reported is analyzed. We aknowledge the support from Grants UNAM-DGAPA-PAPIIT IN-111613 and CONACYT 221030, Mexico.

  18. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction.

    Science.gov (United States)

    Forgan, E M; Blackburn, E; Holmes, A T; Briffa, A K R; Chang, J; Bouchenoire, L; Brown, S D; Liang, Ruixing; Bonn, D; Hardy, W N; Christensen, N B; Zimmermann, M V; Hücker, M; Hayden, S M

    2015-12-09

    Charge density wave (CDW) order appears throughout the underdoped high-temperature cuprate superconductors, but the underlying symmetry breaking and the origin of the CDW remain unclear. We use X-ray diffraction to determine the microscopic structure of the CDWs in an archetypical cuprate YBa2Cu3O6.54 at its superconducting transition temperature ∼ 60 K. We find that the CDWs in this material break the mirror symmetry of the CuO2 bilayers. The ionic displacements in the CDWs have two components, which are perpendicular and parallel to the CuO2 planes, and are out of phase with each other. The planar oxygen atoms have the largest displacements, perpendicular to the CuO2 planes. Our results allow many electronic properties of the underdoped cuprates to be understood. For instance, the CDWs will lead to local variations in the electronic structure, giving an explicit explanation of density-wave states with broken symmetry observed in scanning tunnelling microscopy and soft X-ray measurements.

  19. ac MH loop measurements on Mn doped YBa2Cu3O7– superconductors

    Indian Academy of Sciences (India)

    E Isaac Samuel; V Seshu Bai

    2006-06-01

    Isothermal ac MH (magnetization-field) loops for varying field amplitudes were recorded at 77 K on YBa2(Cu1–Mn)3O7– with = 0, 0.010, 0.015, 0.020, 0.025, 0.035 and 0.050, YBa2(Cu0.075Fe0.025)3O7–, YBa2(Cu0.075Ni0.025)3O7– and YBa2(Cu0.075Zn0.025)3O7– samples up to a maximum field amplitude of 80 Oe. Flat band susceptibility, ac losses and flux profiles were deduced from the ac MH loops. The undoped sample exhibited a minimum weak link ac loss and the 5.0% doped sample showed maximum weak link ac loss. Ni and Fe doped samples showed higher granular losses. cg estimated from the flux profiles decreases monotonically with increasing concentrations of Mn up to 2.5%.

  20. Potassium substitution effects in YBa2Cu3O7- & delta superconductor

    Directory of Open Access Journals (Sweden)

    M Farbod

    2006-09-01

    Full Text Available   YBa2-xKxCu3O7-δ compound with x = 0, 0.1, 0.15, 0.2, 0.3, 0.5, 0.8, 1 was prepared. The samples were characterized by XRD, Tc, oxygen content and room temperature thermopower measurements. The results shows that by increasing the potassium, the samples go to the underdoped regime. This is due to the depletion of oxygen from the samples. By post annealing of the sample with x = 0.2 and Tc = 78 K in oxygen, the Tc increased up to 93 K which means it is possible to put back the oxygens into the structure.

  1. Magnetization of Gd diffused YBa2Cu3O7-x superconductor:Experiment and theory

    Institute of Scientific and Technical Information of China (English)

    F.Inanir; S.Yildiz; K.Ozturk; S.Celebi

    2013-01-01

    The magnetization of Gd diffused YBa2Cu3OT-x is measured by a vibrating sample magnetometer (VSM) at selected temperatures (5,25,50,77 K).The experimental results for the magnetization are analyzed in the critical state framework involving Kim-Anderson field dependence Jc(H) =Jc0/(1 + |H|/Ho)n of critical current density and equilibrium magnetization Meq.It is found that the inclusion of the equilibrium magnetization becomes more important at higher temperatures.At 77 K,the shape of the isothermal M-H hysteresis curve is governed by the equilibrium magnetization.Some superconducting parameters are determined by fitting the calculated curves to the experimental data.

  2. Enhancement in the transport critical current density Jc in YBa2Cu3O7-δ added with an insulating nano crystalline YBa2HfO5.5 perovskite

    Science.gov (United States)

    Rejith, P. P.; Vidya, S.; Solomon, Sam; Thomas, J. K.

    2014-01-01

    When a magnetic field is applied to type II superconductors, such as YBa2Cu307-δ (YBCO), the flux quanta penetrate the material as a regular array of vortices. However when transport currents are applied, they act to move these vortices, thus lowers the critical current density (Jc) as well as destroying superconductivity. The development of microstructures made of YBCO materials has enabled engineers to increase the critical current density, within Type II materials by introducing flux pinning centres into the material. The microstructure and flux pinning properties of YBa2Cu3O7-δ system with varying levels (0-5 wt. %) of a nano perovskite ceramic insulator; YBa2HfO5.5 addition was studied in detail. Orthorhombic YBa2Cu3O7-δ powder was prepared through conventional solid state route and a modified combustion method was used for synthesizing nanocrystalline YBa2HfO5.5. The structure and microstructure of the samples examined by X-ray diffraction and scanning electron microscopy showed that YBa2HfO5.5 and YBCO remained unreacted even at higher processing temperature without deteriorating the superconducting properties. The scanning electron microscope image shows that YBa2HfO5.5 forms an electrical-network between grains. These observations suggest that the YBa2HfO5.5 addition to the Y-123-compounds improve the electrical connection between superconducting grains and substantial improvements in the relative electrical transport properties of the composites. The variation of sintering temperature, density, critical transition temperature (Tc) and magnetic field dependence of critical current density (Jc) of YBa2Cu3O7-δ having different proportions of YBa2HfO5.5 in the matrix were also studied in detail. It is found that the addition of these elements considerably enhances the flux pinning strength of the system, and there is also an increase of critical temperature (Tc) and critical current density (Jc) up to an optimum value of 8.76 × 104 A/cm2 for a

  3. Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements

    Science.gov (United States)

    Bhasin, K. B.; Warner, J. D.; Miranda, F. A.; Gordon, W. L.; Newman, H. S.

    1991-01-01

    A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approximately 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approximately 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approximately 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition superconducting thin films at microwave frequencies.

  4. Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements

    Science.gov (United States)

    Bhasin, K. B.; Warner, J. D.; Miranda, F. A.; Gordon, W. L.; Newman, H. S.

    1991-01-01

    A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approximately 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approximately 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approximately 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition superconducting thin films at microwave frequencies.

  5. Superconducting YBa2Cu3O7– thick film (c (0)$ = 92 K) on a newly developed perovskite ceramic substrate

    Indian Academy of Sciences (India)

    S U K Nair; P R S Warriar; J Koshy

    2002-04-01

    A complex perovskite oxide, YbBa2NbO6, as a non-reacting substrate for YBa2Cu3O7– superconducting film has been developed. The dielectric constant and loss factor values of the material are in the range suitable for its use as substrate for microwave application. A YBa2Cu3O7– superconducting thick film dip coated on YbBa2NbO6 substrate gave a c (0) of 92 K and current density of ∼ 1.3 × 104 A cm-2.

  6. O 2-annealing effects on dielectric properties of Sr 2AlTaO 6/YBa 2Cu 3O y films

    Science.gov (United States)

    Takahashi, Yoshihiro; Zama, Hideaki; Morishita, Tadataka; Tanabe, Keiichi

    2001-08-01

    Approximately 160-nm-thick Sr 2AlTaO 6 (SAT) thin films were prepared by metalorganic chemical vapor deposition on liquid phase epitaxy-grown 60-μm-thick YBa 2Cu 3O 7- δ (YBCO) films. The effects of oxygen postannealing on the dielectric properties of SAT and the superconducting properties of YBCO were investigated. The c-axis length of YBCO decreased from 11.82 to 11.70 Å and its Tc of 90 K was observed after oxidation for 250 h at 500°C in 1 atm O 2 atmosphere, indicating that YBCO is almost fully oxygenated through SAT. Postannealed samples showed reasonably low dielectric constants for SAT of approximately 24 and low conductance of 10 -8 S at 10 5 Hz which corresponds to a loss tangent of 5×10 -4. On the other hand, the SAT films without postannealing exhibited an order of magnitude larger conductance. The improved dielectric properties of the annealed samples are probably attributed to compensation of oxygen defects at the SAT grain boundaries as well as oxidation of the lower YBCO film.

  7. Interfacial effects revealed by ultrafast relaxation dynamics in BiFeO 3 / YBa 2 Cu 3 O 7 bilayers

    KAUST Repository

    Springer, D.

    2016-02-12

    The temperature dependence of the relaxation dynamics in the bilayer thin film heterostructure composed of multiferroic BiFeO3 (BFO) and superconducting YBa2Cu3O7 (YBCO) grown on a (001) SrTiO3 substrate is studied by a time-resolved pump-probe technique, and compared with that of pure YBCO thin film grown under the same growth conditions. The superconductivity of YBCO is found to be retained in the heterostructure. We observe a speeding up of the YBCO recombination dynamics in the superconducting state of the heterostructure, and attribute it to the presence of weak ferromagnetism at the BFO/YBCO interface as observed in magnetization data. An extension of the Rothwarf-Taylor model is used to fit the ultrafast dynamics of BFO/YBCO, that models an increased quasiparticle occupation of the ferromagnetic interfacial layer in the superconducting state of YBCO.

  8. Magnetic penetration depth of YBa2Cu3O(7-delta) thin films determined by the power transmission method

    Science.gov (United States)

    Heinen, Vernon O.; Miranda, Felix A.; Bhasin, Kul B.

    1992-01-01

    A power transmission measurement technique was used to determine the magnetic penetration depth (lambda) of YBa2Cu3O(7-delta) superconducting thin films on LaAlO3 within the 26.5 to 40.0 GHz frequency range, and at temperatures from 20 to 300 K. Values of lambda ranging from 1100 to 2500 A were obtained at low temperatures. The anisotropy of lambda was determined from measurements of c-axis and a-axis oriented films. An estimate of the intrinsic value of lambda of 90 +/- 30 nm was obtained from the dependence of lambda on film thickness. The advantage of this technique is that it allows lambda to be determined nondestructively.

  9. Influence of inductance induced noise in an YBa2Cu3O7 dc-SQUID at high operation temperatures

    DEFF Research Database (Denmark)

    Nilsson, P. Å.; Claeson, T.; Hansen, J. B.;

    1994-01-01

    The voltage modulation depth of a high T(c) dc-SQUID was measured at temperatures close to T(c) and compared to a model by Enpuku et al. where the flux noise from the SQUID inductance is taken into account. The device was an YBa2Cu3O7 dc-SQUID made on a bicrystal substrate of SrTiO3. The design...... was of the Ketchen square-washer type with an inductance of 67 pH. Measurements were made in a temperature interval from 75 to 87 K, where the voltage modulation depth changed from 4.5 to 1.4 muV in close agreement with the model....

  10. Peak effect at microwave frequencies in swift heavy ion irradiated YBa2Cu3O7- thin films

    Indian Academy of Sciences (India)

    Tamalika Banerjee; Avinash Bhangale; D Kanjilal; S P Pai; R Pinto

    2002-05-01

    The vortex dynamics at microwave frequencies in YBa2Cu3O7- (YBCO) films have been studied. We observe a peak in the microwave (4.88 and 9.55 GHz) surface resistance in some films in magnetic fields up to 0.8 T. This is associated with the `peak-effect’ phenomenon and reflects the order–disorder transformation of the flux line lattice near the transition temperature. Introduction of artificial pinning centers like columnar defects created as a result of irradiation with 200 MeV Ag ion (at a fluence of 4 × 1010 ions/cm2) leads to the suppression of the peak in films previously exhibiting `peak effect’.

  11. A new technique for the growth of superconducting YBa2Cu3O6 + δ crystals completely separated from flux

    Science.gov (United States)

    Rao, S. M.; Loo, B. H.; Wang, N. P.; Kelley, R. J.

    1991-04-01

    Growth of completely flux-separated YBa2Cu3O6 + δ (referred to as 123 phase) crystals using a novel technique is described. The technique employs a modification of the seed pulling method commonly used in crystal growth. The crystals are grown in the temperature range of 960-1000°C using a BaCuO2 flux. A 123 flux ratio of 1:5 is maintained. Photographs of the crystals and photomicrograph of the surfaces are presented to show complete flux-separation of the crystals measuring 6 mm × 3 mm × 1 mm. The Raman spectra recorded on the as-grown crystals show that they are in the tetragonal phase. Magnetic susceptibility measurements on crystals annealed in an oxygen atmosphere show a superconducting transition starting at 71 K. The present technique offers a possibility of growing large, completely flux-separated crystals of 123 for superconductivity research.

  12. The effect of ageing on YBa2Cu3O7-x obtained by the photoacoustic method

    Directory of Open Access Journals (Sweden)

    Nikolić Pantelija M.

    2003-01-01

    Full Text Available Thermal diffusivity and electric transport properties of fourteen years old superconducting YBa2Cu3O7-x pellets were obtained using the photoacoustic transmission technique and then compared with freshly made superconducting samples. The theoretical model for photoacoustic (PA detection configuration is given. The measured amplitude and phase PA signals, as a function of the modulation frequency, were numerically analyzed. The thermal diffusivity, the coefficient of the carrier diffusion, optical absorption coefficient and the excess carrier lifetime were calculated. The thermal diffusivity of freshly produced samples decreased, after ageing, from about 1.3·10-6 to about 6.1·10-7 m2/s.

  13. Effect of nanowires SiO2 on superconducting properties of YBa2Cu3O7-d bulks

    Science.gov (United States)

    Salem, M. K. Ben; Hannachi, E.; Slimani, Y.; Hamrita, A.; Bessais, L.; Azzouz, F. Ben; Salem, M. Ben

    2013-12-01

    The effects of SiO2 nanowires on the superconducting properties of YBa2Cu3O7-d (YBCO) compound were studied. Samples were synthesized in air using a standard solid state reaction technique by adding nanowires SiO2 up to 1wt.%. Phase analysis by X-ray diffraction (XRD), microstructure investigation by scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDXS), critical current density dependence on applied magnetic field Jc(H) and electrical resistivity as a function of temperature ρ(T) were carried out to evaluate the relative performance of samples. We find that Tco does not change much (90.8-90.2 K) with the low concentration of SiO2 (≤ 0.1 wt.%) and Jc(H) is enhanced.

  14. Correlation of Critical Current Density with Cu3+ Concentration and Density in YBa2Cu3O7-x

    Science.gov (United States)

    Dou, S. X.; Liu, H. K.; Zhou, J. P.; Bourdillon, A. J.; Savvides, N.; Apperley, M.; Gouch, A.; Sorrell, C. C.

    Superconducting YBa2Cu3O7 wires and tapes were fabricated by cold drawing, rolling and extrusion processes. It was found that the critical current density, after O2 equilibration, correlates both with density and Cu3+ concentration. Full density was achieved by using a special heat treatment, but the critical current density was low owing to the low Cu3+ concentration present in this heavily twinned material. The best critical current density results were obtained for material with density of 92-95% of the theoretical value. The low critical current density of the porous specimens is attributed not only to a poor connectivity between grains but also to a low Cu3+ concentration due to the instability of Cu3+ at crystallite surfaces which increase in area with specimen porosity.

  15. Structural and magnetic properties of YBa2Cu3O7/BaZrO3 composites

    Directory of Open Access Journals (Sweden)

    David A. Landínez-Téllez

    2013-01-01

    Full Text Available We reported a study of the structural and magnetic properties of BaZrO3 (BZO as possible substrate material for the production of YBa2Cu3O7-δ (YBCO superconducting films. Rietveld analyses of the X-ray diffraction pattern show that BZO crystalizes as a cubic perovskite, space group Pm3m (#221. Chemical stability and crystallographic coupling between BZO and YBCO were examined by characterizing YBCO/BZO (10, 30 and 50 YBCO vol% polycrystalline composites. Morphological and compositional analyses of composites were performed through scanning electron microscopy and energy dispersive X-ray experiments, respectively. Response of magnetization measurements revealed that the proximity of BZO does not affect the superconducting transition temperature (Tc=90,2 K of YBCO material. Our results evidenced that the BZO is an excellent candidate to be substrate for the fabrication of YBCO superconducting thin films.

  16. Superconducting YBa 2Cu 3O 7- δ thin film grown on metallic film evaporated on MgO

    Science.gov (United States)

    Verdyan, A.; Azoulay, J.; Lapsker, I.

    2001-03-01

    At present it is commonly accepted that thin film formation of YBa 2Cu 3O 7- δ (YBCO) on conducting substrate is one of the keys to further development of advanced devices in the microelectronic and other applications. We have grown YBCO thin films by resistive evaporation technique on MgO coated with metallic layers (Ni or Ag). A simple inexpensive vacuum system equipped with resistively heated boats for metal and precursor mixture of yttrium, copper and barium fluoride powders was used. X-ray diffraction (XRD) and scanning electron microscopy techniques were used for texture, morphology and surface analyses respectively. Electrical and magnetical properties were determined by a standard dc four-probe method. The way of heating process is shown to be critical parameter in the film quality. The physical and electrical properties of the YBCO films are discussed in light of the fact that XRD measurements done on the metallic buffer layers have revealed a multicrystalline structure.

  17. Smooth YBa2Cu3O7-x thin films prepared by pulsed laser deposition in O2/Ar atmosphere

    DEFF Research Database (Denmark)

    Kyhle, Anders; Skov, Johannes; Hjorth, Søren

    1994-01-01

    We report on pulsed laser deposition of YBa2Cu3O7-x in a diluted O2/Ar gas resulting in thin epitaxial films which are almost outgrowth-free. Films were deposited on SrTiO3 or MgO substrates around 800-degrees-C at a total chamber pressure of 1.0 mbar, varying the argon partial pressure from 0 to 0.......6 mbar. The density of boulders and outgrowths usual for laser deposited films varies strongly with Ar pressure: the outgrowth density is reduced from 1.4 x 10(7) to 4.5 x 10(5) cm-2 with increasing Ar partial pressure, maintaining a critical temperature T(c,zero) almost-equal-to 90 K and a transport...... critical current density J(c)(77 K) greater-than-or-equal-to 10(6) A/cm2 by extended oxygenation time during cool down....

  18. The effect of temperature cycling typical of low earth orbit satellites on thin films of YBa2Cu3O(7-x)

    Science.gov (United States)

    Mogro-Campero, A.; Turner, L. G.; Bogorad, A.; Herschitz, R.

    1990-01-01

    The refrigeration of superconductors in space poses a challenging problem. The problem could be less severe if superconducting materials would not have to be cooled when not in use. Thin films of the YBa2Cu3O(7-x) (YBCO) superconductor were subjected to thermal cycling, which was carried out to simulate a large number of eclipses of a low earth orbit satellite. Electrical measurements were performed to find the effect of the temperature cycling. Thin films of YBCO were formed by coevaporation of Y, BaF2, and Cu and postannealing in wet oxygen at 850 C for 3.5 h. The substrates used were (100) SrTiO3, polycrystalline alumina, and oxidized silicon; the last two have an evaporated zirconia layer. Processing and microstructure studies of these types of films have been published. THe zero resistance transition temperatures of the samples used in this study were 91, 82, and 86 K, respectively. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were: the zero resistance transition temperature, the 10 to 90 percent transition width, and the room temperature resistance, normalized to that measured before temperature cycling. The results for two samples are presented. Each sample had a cumulative exposure. Cycling in atmospheric pressure nitrogen was performed at a rate of about 60 cycles per day, whereas in vacuum the rate was only about 10 cycles per day. The results indicate only little or no changes in the parameters measured. Degradation of superconducting thin films of YBCO has been reported due to storage in nitrogen. It is believed that the relatively good performance of films after temperature cycling is related to the fact that BaF2 was used as an evaporation source. The latest result on extended temperature cycling indicates significant degradation. Further tests of extended cycling will be carried out to provide additional data and to clarify this preliminary finding.

  19. First-order melting transition observed from resistivity measurements in ultra-pure YBa2Cu3O7-δ single crystals with high twin boundary density

    DEFF Research Database (Denmark)

    Grivel, Jean-Claude; Eltsev, Y.; Andersson, M.

    1999-01-01

    R(T) measurements have been performed on optimally and overdoped heavily twinned high-purity YBa2Cu3O7-delta single crystals, under a magnetic field B oriented parallel to the twin boundary planes (B parallel to c). The characteristic feature attributed to the flux line lattice melting transition...

  20. Inductance mode characteristics of a ceramic YBa2Cu3O7-x radio-frequency superconducting quantum interference device at 77 K

    DEFF Research Database (Denmark)

    Il'ichev, E. V.; Andreev, A. V.; Jacobsen, Claus Schelde

    1993-01-01

    Experimental results on some radio-frequency superconducting quantum interference device (rf-SQUID) signal properties are presented. The quantum interferometer was made of ceramic YBa2Cu3O7−x and was due to a low critical current operated in the inductance or nonhysteretic mode. With bias current...

  1. Influence of water vapor on the formation of pinning centers in YBa2Cu3O y upon low-temperature annealing

    Science.gov (United States)

    Bobylev, I. B.; Gerasimov, E. G.; Zyuzeva, N. A.

    2017-08-01

    The influence of the double heat treatment ( T = 300 and 930°C) on the critical parameters of highly textured YBa2Cu3O6.96 and YBa2Cu3O6.8 ceramics has been investigated. It has been shown that, upon low-temperature annealing in humid air, planar stacking faults are formed in these ceramics. These defects are partly retained after reduction annealing (at T = 930°C) and are efficient pinning centers in magnetic fields applied parallel and perpendicular to the c axis. Due to the absorption of water, the oxygen content is increased in the ceramics, which is accompanied by an increase in the critical temperature of superconducting transition up to 94 K for YBa2Cu3O6.96 and up to 90 K for YBa2Cu3O6.8. Optimal conditions of the double annealing have been established, after which the critical-current density increased to j c ≥ 104 A/cm2 in an external magnetic field of up to 6 T. The low-temperature treatment in the neutral atmosphere saturated by water vapors deteriorates the current-carrying capacity of the highly textured ceramics, which is connected with the disappearance of texture due to the copper reduction and the precipitation of impurity phases.

  2. Characterization of Microstructure and Performance of YBa2Cu3O7−x Films Synthesized Through Sol–Gel Aqueous Precursors with DEA/TEA Addition

    DEFF Research Database (Denmark)

    Tang, Xiao; He, Dong; Zhao, Yichun

    2013-01-01

    YBa2Cu3O7−x (YBCO) superconducting thin films are synthesized through non-fluorine sol–gel aqueous processes. Diethanolamine (DEA) and triethonalamine (TEA), which have similar molecular structures but different complexation abilities and molecular weights, are separately used as chelating agents...

  3. A HREM study of the atomic structure and the growth mechanism of the YBa2Cu3O7/YSZ interface

    NARCIS (Netherlands)

    Wen, J.G.; Traeholt, C.; Zandbergen, H.W.; Joosse, K.; Reuvekamp, E.M.C.M.; Rogalla, H.

    1993-01-01

    The interface between yttria-stabilized zirconia (YSZ) substrate and YBa2Cu3O7 (YBCO) film was studied by high-resolution electron microscopy. In all specimens we have observed an intermediate layer of BaZrO3 located between the substrate YSZ and YBCO. The BaZrO3 layer is composed of almost equally

  4. Strain-induced structural changes in thin YBa2Cu3O7-x films on SrTiO3 substrates

    NARCIS (Netherlands)

    Vonk, V.; van Reeuwijk, S.J.; Dekkers, Jan M.; Harkema, Sybolt; Rijnders, Augustinus J.H.M.; Graafsma, H.; Graafsma, H

    2004-01-01

    High-energy synchrotron radiation is used to obtain reciprocal space maps of thin YBa2Cu3O7−x films grown by pulsed laser deposition on (001) SrTiO3 substrates. The films show a transition from a tetragonal to an orthorhombic structure with increasing film thickness. The critical thickness is found

  5. The effect of high-enthalpy argon plasma flow on the structure and properties of YBa2Cu3O7 - δ nanoceramics

    Science.gov (United States)

    Gadzhiev, M. Kh.; Gadzhimagomedov, S. Kh.; Demirov, N. A.; Ragimkhanov, G. B.; Kurbanismailov, V. S.; Palchaev, D. K.; Murlieva, Zh. Kh.

    2017-07-01

    The structure and electrical resistivity of YBa2Cu3O7 - δ-based nanostructured ceramics before and after exposure to the high-enthalpy argon plasma flow are investigated. It is demonstrated that the plasma-flow processing can strengthen the intergrain bonds in the surface layer of the ceramics and change its oxygen stoichiometry index.

  6. AC Losses in a YBa2Cu3O7-x Coil (Postprint)

    Science.gov (United States)

    2012-02-01

    Academy of Sciences D. Aized and C.L.H. Thieme American Superconductor Corporation G.A. Levin and P.N. Barnes Mechanical Energy Conversion...Sciences) D. Aized and C.L.H. Thieme (American Superconductor Corporation) G.A. Levin and P.N. Barnes (AFRL/RZPG) 5d. PROJECT NUMBER 3145 5e. TASK...Demencik, L. Jansak, and P. Mozola Institute of Electrical Engineering, 841 04 Bratislava, Slovakia D. Aized and C. L. H. Thieme American

  7. X-Ray Diffraction Observations of a Charge-Density-Wave Order in Superconducting Ortho-II YBa2Cu3O6.54 Single Crystals in Zero Magnetic Field

    Science.gov (United States)

    Blackburn, E.; Chang, J.; Hücker, M.; Holmes, A. T.; Christensen, N. B.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Rütt, U.; Gutowski, O.; Zimmermann, M. v.; Forgan, E. M.; Hayden, S. M.

    2013-03-01

    X-ray diffraction measurements show that the high-temperature superconductor YBa2Cu3O6.54, with ortho-II oxygen order, has charge-density-wave order in the absence of an applied magnetic field. The dominant wave vector of the charge density wave is qCDW=(0,0.328(2),0.5), with the in-plane component parallel to the b axis (chain direction). It has a similar incommensurability to that observed in ortho-VIII and ortho-III samples, which have different dopings and oxygen orderings. Our results for ortho-II contrast with recent high-field NMR measurements, which suggest a commensurate wave vector along the a axis. We discuss the relationship between spin and charge correlations in YBa2Cu3Oy and recent high-field quantum oscillation, NMR, and ultrasound experiments.

  8. Direct injection of spin-polarized carriers across YBa2Cu3O7-–La0.3Ca0.7MnO3 interface at 77 K

    Indian Academy of Sciences (India)

    K V Upadhye; K Ganesh Kumara; S C Purandare; S P Pai; R Pinto

    2002-05-01

    We report here injection of spin-polarized carriers from a half-metallic La0.3-Ca0.7MnO3 (LCMO) colossal magnetoresistive (CMR) thin film into a high-temperature superconducting YBa2Cu3O7- (YBCO) thin film studied using a micro-bridge. The LCMO and YBCO films were grown on $\\langle 100\\rangle$ LaAlO3 (LAO) substrate sequentially using pulsed laser deposition (PLD). - measurements carried out at 77 K show that while normal critical current, $I^{n}_{c}$, of the micro-bridge is 80 mA, the critical current, $I^{p}_{c}$, through the micro-bridge when injected from the CMR layer is 38 mA. This clearly shows that spin-polarized quasiparticles injected from the CMR layer into the YBCO layer suppress the critical current of the superconductor via the pair-breaking phenomena.

  9. Structural and electronic properties of epitaxial YBa2Cu3O7-δ-La0.67Ca0.33MnO3 bilayers grown on SrTiO3 (1 1 0) substrates

    Science.gov (United States)

    Mustafa, L.; Driza, N.; Soltan, S.; Le Tacon, M.; Habermeier, H.-U.; Keimer, B.

    2014-10-01

    Epitaxial bilayers of the high-temperature-superconductor YBa2Cu3O7-δ (YBCO) and the ferromagnetic metal La0.67Ca0.33MnO3 (LCMO) were prepared by pulsed laser deposition on (1 1 0)-oriented SrTiO3 substrates, such that the CuO2 planes of YBCO are perpendicular to the YBCO-LCMO interface. X-ray diffraction and Raman scattering demonstrate complete (1 1 0) orientation of both YBCO and LCMO overlayers. The resistivity and magnetization of the bilayer films are highly anisotropic. The critical temperatures for superconductivity and ferromagnetism as well as the saturation magnetization exhibit modest reductions compared to corresponding bulk values.

  10. Fabrication and critical current density analysis of YBa2Cu3O7+(BaSnO3)‧/YBa2Cu3O7+(BaSnO3)″ multilayer films

    Science.gov (United States)

    Horide, Tomoya; Sakamoto, Nobuhiro; Ichinose, Ataru; Matsumoto, Kaname

    2016-08-01

    Multilayers (MLs) comprising of YBa2Cu3O7(YBCO)+BaSnO3(BSO) layers with different BSO content were fabricated, and their critical current density (J c) was measured to understand influence of ML structure on vortex pinning. Elongated and segmented nanorods were observed in the MLs, and ab-plane aligned nanoparticles appeared depending on BSO content. When BSO formed only elongated and segmented nanorods in MLs, J c exhibited a linear relationship between J c in the single layer films. On the other hand, when MLs contained ab-plane aligned nanoparticles in addition to nanorods, J c decreased with lower-J c-layer fraction more rapidly. These results suggest that J c was degraded due to easy vortex flow along the lower-J c-layers, and that the acceleration of vortex motion depended on the type of lower-J c-layers. Vortex behavior which is not observed in conventional systems such as single layer films and bulk samples is strongly expected in MLs, since fine tuning of pinning center structure is possible.

  11. Diffusion synthesis of textured YBa2Cu3O(7-delta) ceramic

    Science.gov (United States)

    Kalanda, N. A.; Shambalev, V. N.; Pan'kov, V. V.

    1991-07-01

    A method is described whereby a textured high-temperature superconductor ceramic of the system Y-Ba-Cu-O is synthesized by the diffusion method using various mixtures of Y-Ba-Cu-O and Ba-Cu-O systems. The basal plane of the perovskite structure is shown to be formed in the direction of the diffusion flow. Critical current densities in excess of 1000 A/sq cm at 77 K have been demonstrated for the best specimens.

  12. Induced Ferromagnetism at Interfaces between BiFeO3 and YBa2Cu3O7

    Science.gov (United States)

    Zhu, Jian-Xin; Wen, Xiao-Dong; Haraldsen, J. T.; Panagopoulos, C.; Chia, E. E. M.

    2014-03-01

    Transition metal oxides (TMOs) exhibit many emergent phenomena ranging from high-temperature superconductivity and giant magnetoresistance to magnetism and ferroelectricity. In addition, when TMOs are interfaced with each other, new functionalities can arise, which are absent in individual components. Here, we report results from first-principles calculations on the magnetism at the BiFeO3/YBa2Cu3O7 interfaces. By comparing the total energy for various magnetic spin configurations inside BiFeO3, we are able to show that the ferromagnetism is induced near the interface. We further develop an interface exchange-coupling model and place the extracted exchange coupling interaction strengths from the first-principles calculations, into a resultant generic phase diagram. The emergence of interfacial ferromagnetism should have implications to electronic and transport properties. This work was supported by U.S. DOE at LANL under Contract No. DE-AC52-06NA25396, LANL LDRD-DR Program, and in part by the Center for Integrated Nanotechnologies, a U.S. DOE Office of Basic Energy Sciences user facility.

  13. Effect of oxygen deficiency on the magnetic field-dependent entropy in YBa2 Cu3 O7−

    Indian Academy of Sciences (India)

    A Pattanaik; P Nayak

    2012-12-01

    Roulin $\\mathit{et}$ $\\mathit{al}$ (1988), in one of their experimental papers, have presented a study of field-dependent entropy of high-purity YBa2 Cu3 O7− (YBCO) as a function of oxygen deficiency. In order to explain their experimental results, we have used phenomenological GL-theory of anisotropic HTSCs in the London limit in line with of our earlier paper (Pattanaik $\\mathit{et}$ $\\mathit{al}$, Physica B405, 3234 (2010)). Moreover, to account for the applicability of the theory at high field, we have incorporated the effect of vortex overlapping in the London theory done by Nanda (1995). Here, we have presented the variation of change in entropy (S) with magnetic field for different oxygen deficiencies = 0, 0.04, and 0.06. On comparison, we found that our results are in good agreement with the experimental data of Roulin $\\mathit{et}$ $\\mathit{al}$ (1988). The variation of penetration depth () and anisotropic ratio of effective masses () with concentration is also presented.

  14. Mixed-State Hall Effect in Chemically-Substituted YBa_2Cu_3O_7-δ Single Crystals

    Science.gov (United States)

    Han, S. H.; Herrmann, J.; Gajewski, D. A.; Paulius, L. M.; Almasan, C. C.; Maple, M. B.

    1996-03-01

    Longitudinal resistivity and Hall effect measurements on single crystals of Y_1-xPr_xBa_2Cu_3O_7-δ, YBa_2Cu_3O_7-y, and YBa_2Cu_3-zZn_zO_7-δ in the mixed-state reveal a ``negative Hall anomaly'' below T_c. The negative Hall signal decreases with decreasing CuO2 plane hole concentration and increasing disorder. The Hall conductivity has been analyzed using the expression σ_xy = C_1/B + C_2B + C_3, where C_1/B and C_2B are associated with the motion of the magnetic vortices and of the quasiparticles in the vortex cores, respectively. We extracted the scaling behavior of the parameters C1 and C2 with temperature in the form of A(1-T/T_c)^α and B_1(T_c/T)^β + B_2, respectively. We discovered a delayed onset of a finite transverse resistance with increasing applied magnetic fields, as compared to the longitudinal resistance. The results will be discussed in terms of a model involving quasiparticle density fluctuations in the vortex cores. This work was supported by the U. S. Department of Energy DE-FG03-86ER-45230. Financial support from LANL/INCOR (UC-91-6-A-110) (SHH) and DAAD (JH) is acknowledged. *Present Address: Department of Physics, Western Michigan University **Present Address: Department of Physics, Kent State University

  15. Trimming the electrical properties on nanoscale YBa2Cu3O7-x constrictions by focus ion beam technique

    Science.gov (United States)

    Lam, Simon K. H.; Bendavid, Avi; Du, Jia

    2017-09-01

    High temperature superconducting (HTS) nanostructure has a great potential in photon sensing at high frequency due to its fast recovery time. For maximising the coupling efficiency, the normal resistance of the nanostructure needs to be better matched to that of the thin-film antenna, which is typically few tens of ohm. We report on the fabrication of nanoscale high temperature superconducting YBa2Cu3O7-x (YBCO) constrictions using Gallium ion focus ion beam (FIB) technique. The FIB has been used to both remove the YBCO in lateral dimension and also tune its critical current and normal resistance by a combination of surface etching and implantation on the YBCO top layer. High critical current density of 2.5 MA/cm2 at 77 K can be obtained on YBCO nanobridges down to 100 nm in width. Subsequent trimming of the naobridges can lead to a normal resistance value over 50 Ω. Simulation of the Ga ion trajectory has also been performed to compare the measurement results. This method provides a simple step of fabricating nanoscale superconducting detectors such as hot electron bolometer.

  16. Impact of quenched oxygen disorder on charge density wave order in YBa2Cu3O6+x.

    Science.gov (United States)

    Achkar, A J; Mao, X; McMahon, Christopher; Sutarto, R; He, F; Liang, Ruixing; Bonn, D A; Hardy, W N; Hawthorn, D G

    2014-09-05

    The competition between superconductivity and charge density wave (CDW) order in underdoped cuprates has now been widely reported, but the role of disorder in this competition has yet to be fully resolved. A central question is whether disorder sets the length scale of the CDW order, for instance by pinning charge density fluctuations or disrupting an otherwise long-range order. Using resonant soft x-ray scattering, we investigate the sensitivity of CDW order in YBa2Cu3O6+x (YBCO) to varying levels of oxygen disorder. We find that quench cooling YBCO6.67 (YBCO6.75) crystals to destroy their o-V and o-VIII (o-III) chains decreases the intensity of the CDW superlattice peak by a factor of 1.9 (1.3), but has little effect on the CDW correlation length, incommensurability, and temperature dependence. This reveals that while quenched oxygen disorder influences the CDW order parameter, the spatial extent of the CDW order is insensitive to the level of quenched oxygen disorder and may instead be a consequence of competition with superconductivity.

  17. Growth of YBa 2Cu 3O 7-δ on alkaline earth flouride substrates and thin films

    Science.gov (United States)

    Vasquez, R. P.; Foote, M. C.; Hunt, B. D.; Barner, J. B.

    1993-03-01

    The growth and characterization of YBa 2Cu 3O 7-δ (YBCO) thin films grown by laser ablation on MgF 2 (100), CaF 2 (100), SrF 2 (100), and BaF 2 (100) substrates, and on CaF 2 and BaF 2 thin films on LaAlO 3 (100) substrates, are described. High quality superconducting YBCO films could be grown directly only on the BaF 2 substrates and thin films. YBCO films grown directly on MgF 2 or CaF 2 substrates were insulating and showed clear signs of interdiffusion and reaction, as measured by X-ray photoelectron spectroscopy. Superconducting YBCO films could be grown on SrF 2 and CaF 2 substrates and thin films only with an yttria-stabilized zirconia buffer layer and/or with a low YBCO growth temperature, while YBCO grown on MgF 2 yielded insulating films for all growth conditions investigated. The highest quality YBCO films were obtained on BaF 2 substrates ( Tc=87.6 K, ΔTc=0.3 K). These results are discussed in terms of the thermodynamic stability of possible reaction products and the temperature dependence of the ionic mobilities.

  18. Comparison of the E- J characteristics of several YBa 2Cu 3O 7-δ thin films

    Science.gov (United States)

    Wooldridge, Ian; Howson, Mark A.; Gauzzi, Andrea; Pavuna, Davor; Walker, Daron J. C.

    1996-02-01

    The current-voltage characteristics of several YBa 2Cu 3O 7-δ thin films have been measured in a range of magnetic fields up to 4 tesla applied perpendicular to the plane with the current in the a- b plane. Two of these films were grown by laser ablation and one by ion beam sputtering. All of the films were c-axis aligned, epitaxial and grown on SrTiO 3 substrates. The behaviour exhibited by the ablated and sputtered films was found to be quite different. In the ablated sample it was found that the E- J characteristics, over a wide current range, were consistent with the critical scaling behaviour expected close to a continuous vortex-glass transition. In the sputtered sample finite size effects perpendicular to the plane and a relatively low critical current density play an important role in limiting the current range over which critical scaling consistent with a vortex glass transition is found to occur.

  19. Structural properties of strained YBa2Cu3O6+x superconducting films grown by pulsed laser deposition

    Science.gov (United States)

    Ariosa, Daniel; Abrecht, M.; Pavuna, Davor; Onellion, Marshall

    2000-09-01

    In YBa2Cu3O6+x compound the tetragonal to orthorhombic transition occurs around x equals 0.3, followed by a continuum variation of lattice parameters. Hence both, the structural and superconducting properties, depend upon the oxygen content in CuO chains. Conversely, the epitaxial stress, exerted by the substrate on YBCO films, modified the lattice parameters influencing the oxygen stability in the chains. The understanding of this mechanism is essential when growing epitaxial films for in- situ photoemission studies as well as for tunneling experiments, since the oxygen stability up to the top surface unit-cell is a central issue. We have studied this effect on c-axis oriented YBCO films grown by laser ablation on (001) STO single crystals. Accurate x-ray diffraction analysis of thick films (t GRT 500 angstrom) indicates the presence of two distinct layers, one strained and the other relaxed. Detailed analysis shows that the relaxed layer is as well oxidized as bulk samples, while the strained one is oxygen deficient. Furthermore, despite an oxygen content of about x equals 0.65, the strained layer is in the tetragonal phase (in bulk, the tetragonal phase exists for x < 0.3). We discuss these results in terms of competition between the chemical pressure induced by oxygen inclusion in the chains, and the uniaxial stress within the film.

  20. Effects of self-assembled gold nanoparticles on YBa2Cu3O7-δ thin films and devices

    Science.gov (United States)

    Michalowski, P.; Katzer, C.; Schmidl, F.; Seidel, P.

    2012-11-01

    In our work we prepared YBa2Cu3O7-δ (YBCO) thin films with self-assembled gold nanoparticles on SrTiO3 (STO) substrates. We carried out different experiments to determine the effects on the crystallographic properties of the YBCO matrix as well as of the gold nanoparticles. Furthermore, we investigated how the particles influence the superconducting parameters of the film, e.g. the critical temperature TC and the critical current density jC. To ascertain jC we employed magneto-optical Faraday microscopy. In addition, the YBCO film was deposited and structured on STO bi-crystal substrates, thus producing grain boundary Josephson junctions. We studied those junctions with respect to the normal state resistance RN, and the dependence of the critical current IC on the temperature T as well as on the magnetic flux Φ. Finally, we prepared direct current superconducting quantum interference device (dc-SQUID) gradiometers and embedded gold nanoparticles at well-defined areas such as only the antenna or the SQUID region. We measured the flux noise in a shielded environment using an ac-bias reversal technique and compared it with that of sensors without gold nanoparticles. Thus, we demonstrate a new preparation method and an innovative application of gold nanoparticles.

  1. Optically induced lattice deformations, electronic structure changes, and enhanced superconductivity in YBa2Cu3O6.48

    Directory of Open Access Journals (Sweden)

    R. Mankowsky

    2017-07-01

    Full Text Available Resonant optical excitation of apical oxygen vibrational modes in the normal state of underdoped YBa2Cu3O6+x induces a transient state with optical properties similar to those of the equilibrium superconducting state. Amongst these, a divergent imaginary conductivity and a plasma edge are transiently observed in the photo-stimulated state. Femtosecond hard x-ray diffraction experiments have been used in the past to identify the transient crystal structure in this non-equilibrium state. Here, we start from these crystallographic features and theoretically predict the corresponding electronic rearrangements that accompany these structural deformations. Using density functional theory, we predict enhanced hole-doping of the CuO2 planes. The empty chain Cu dy2-z2 orbital is calculated to strongly reduce in energy, which would increase c-axis transport and potentially enhance the interlayer Josephson coupling as observed in the THz-frequency response. From these results, we calculate changes in the soft x-ray absorption spectra at the Cu L-edge. Femtosecond x-ray pulses from a free electron laser are used to probe changes in absorption at two photon energies along this spectrum and provide data consistent with these predictions.

  2. Quantum oscillations in a bilayer with broken mirror symmetry: A minimal model for YBa2Cu3O6+δ

    Science.gov (United States)

    Maharaj, Akash V.; Zhang, Yi; Ramshaw, B. J.; Kivelson, S. A.

    2016-03-01

    Using an exact numerical solution and semiclassical analysis, we investigate quantum oscillations (QOs) in a model of a bilayer system with an anisotropic (elliptical) electron pocket in each plane. Key features of QO experiments in the high temperature superconducting cuprate YBCO can be reproduced by such a model, in particular the pattern of oscillation frequencies (which reflect "magnetic breakdown" between the two pockets) and the polar and azimuthal angular dependence of the oscillation amplitudes. However, the requisite magnetic breakdown is possible only under the assumption that the horizontal mirror plane symmetry is spontaneously broken and that the bilayer tunneling t⊥ is substantially renormalized from its `bare' value. Under the assumption that t⊥=Z ˜t⊥(0) , where Z ˜ is a measure of the quasiparticle weight, this suggests that Z ˜≲1 /20 . Detailed comparisons with new YBa2Cu3O6.58 QO data, taken over a very broad range of magnetic field, confirm specific predictions made by the breakdown scenario.

  3. Critical State Flux Penetration and Linear Microwave Vortex Response in $YBa_{2}Cu_{3}O_{7-x}$ Films

    CERN Document Server

    Willemsen, B A; Sridhar, S; Willemsen, Balam A.

    1996-01-01

    The vortex contribution to the dc field (H) dependent microwave surface impedance Z_s = R_s+iX_s of YBa_2Cu_3O_{7-x} thin films was measured using suspended patterned resonators. Z_s(H) is shown to be a direct measure of the flux density B(H) enabling a very precise test of models of flux penetration. Three regimes of field-dependent behavior were observed: (1) Initial flux penetration occurs on very low field scales H_i(4.2K) 100Oe, (2) At moderate fields the flux penetration into the virgin state is in excellent agreement with calculations based upon the field-induced Bean critical state for thin film geometry, parametrized by a field scale H_s(4.2K) J_c*d 0.5T, (3) for very high fields H >>H_s, the flux density is uniform and the measurements enable direct determination of vortex parameters such as pinning force constants disagreement with the thin film Bean model, and instead are governed by the low field scale H_i, rather than by H_s. Geometric barriers are insufficient to account for the observed result...

  4. Field dependence of the complex resistivity of YBa_2Cu_3O_7-δ thin films at high frequencies

    Science.gov (United States)

    Wu, Dong Ho; Booth, James C.; Anlage, Steven M.

    1996-03-01

    We have measured the complex resistivity ρ_1(H,ω) + i ρ_2(H,ω) of YBa_2Cu_3O_7-δ thin films with field variation at various fixed frequencies from 45 MHz through 50 GHz.footnote[1]Dong Ho Wu, James C. Booth and Steven M. Anlage, Phys. Rev. Lett. 75 , 525 (1995) Experiments indicate that the real part of the resistivity follows a power law (ρ_1(H) ~ H^n with n>=4) field dependence at frequencies below a characteristic frequency. In contrast, ρ_1(H) follows a single particle model at frequencies above the characteristic frequency, exhibiting a magnetic field crossover at a characteristic field. For all frequencies, the imaginary part of the resistivity shows a peak at a field denoted as H_peak. Analysis suggests that the H_peak discretely decreases with increasing measurement frequency ω for T < T_c. Analysis and interpretation on these behaviors of the complex resistivity will be presented.

  5. Epitaxial solution deposition of YBa2Cu3O7-6 coated conductors.

    Energy Technology Data Exchange (ETDEWEB)

    Overmyer, Donald L.; Clem, Paul Gilbert; Siegal, Michael P.; Holesinger, Terry A. (Los Alamos National Laboratory, Los Alamos, NM); Voigt, James A.; Richardson, Jacob J.; Dawley, Jeffrey Todd

    2004-11-01

    A variety of solution deposition routes have been reported for processing complex perovskite-based materials such as ferroelectric oxides and conductive electrode oxides, due to ease of incorporating multiple elements, control of chemical stoichiometry, and feasibility for large area deposition. Here, we report an extension of these methods toward long length, epitaxial film solution deposition routes to enable biaxially oriented YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO)-coated conductors for superconducting transmission wires. Recent results are presented detailing an all-solution deposition approach to YBCO-coated conductors with critical current densities J{sub c} (77 K) > 1 MA/cm{sup 2} on rolling-assisted, biaxially textured, (200)-oriented Ni-W alloy tapes. Solution-deposition methods such as this approach and those of other research groups appear to have promise to compete with vapor phase methods for superconductor electrical properties, with potential advantages for large area deposition and low cost/kA {center_dot} m of wire.

  6. The effects of space radiation on thin films of YBa2Cu3O(7-x)

    Science.gov (United States)

    Herschitz, R.; Bogorad, A.; Bowman, C.; Seehra, S. S.; Mogro-Campero, A.; Turner, L. G.

    1991-01-01

    This investigation had two objectives: (1) to determine the effects of space radiation on superconductor parameters that are most important in space applications; and (2) to determine whether this effect can be simulated with Co-60 gamma rays, the standard test method for space materials. Thin films of yttrium barium copper oxide (YBCO) were formed by coevaporation of Y, BaF2, and Cu and post-annealing in wet oxygen at 850 C for 3.5 h. The substrate used was (100) silicon with an evaporated zirconia buffer layer. The samples were characterized by four point probe electrical measurements as a function of temperature. The parameters measured were the zero resistance transition temperature T(sub c) and the room temperature resistance. The samples were then exposed to Co-60 gamma-rays in air and in pure nitrogen, and to 780 keV electrons, in air. The parameters were then remeasured. The results are summarized. The results indicate little or no degradation in the parameters measured for samples exposed up to 10 Mrads of gamma-rays in nitrogen. However, complete degradation is preliminarily attributed to the high level of ozone generated in the chamber by the gamma-ray interaction with air. It can be concluded that: (1) the electron component of space radiation does not degrade the critical temperature of the YBCO films described, at least for energies around 800 keV and doses similar to those received by surface materials on spacecraft in typical remote sensing missions; and (2) for qualifying this and other superconducting materials against the space-radiation threat the standard test method used in the aerospace industry, namely, exposure to Co-60 gamma-rays in air, may require some further investigation. As a minimum, the sample must be either in vacuum or in positive nitrogen pressure.

  7. Evidence for nonuniversal behavior of paraconductivity caused by predominant short-wavelength Gaussian fluctuations in YBa2Cu3O6.9

    Science.gov (United States)

    Gauzzi, Andrea; Pavuna, Davor

    1995-06-01

    We report on in-plane paraconductivity measurements in thin YBa2Cu3O6.9 films. Our analysis of the data shows that the temperature dependence of paraconductivity is affected by lattice disorder and deviates at all temperatures from the universal power laws predicted by both scaling and mean-field theories. This gives evidence for the absence of critical fluctuations and for the failure of the Aslamazov-Larkin universal relation between critical exponent and dimensionality of the spectrum of Gaussian fluctuations. We account quantitatively for the data within the experimental error by introducing a short-wavelength cutoff into this spectrum. This implies that three-dimensional short-wavelength Gaussian fluctuations dominate in YBa2Cu3O6.9 and suggests a rapid attenuation of these fluctuations with decreasing wavelength in short-coherence-length systems as compared to the case of the conventional Ginzburg-Landau theory.

  8. Peak effect and its evolution with defect structure in YBa2Cu3O7-δ thin films at microwave frequencies

    NARCIS (Netherlands)

    Banerjee, Tamalika; Kanjilal, D.

    2002-01-01

    The vortex dynamics in YBa2Cu3O7-δ thin films have been studied at microwave frequencies. A pronounced peak in the surface resistance Rs is observed in these films at frequencies of 4.88 and 9.55 GHz for magnetic fields varying from 0.2 to 0.8 T. The occurrence of the peak in Rs is crucially depende

  9. Superconducting YBa2Cu3O(7-delta) thin films on GaAs with conducting indium-tin-oxide buffer layers

    Science.gov (United States)

    Kellett, B. J.; Gauzzi, A.; James, J. H.; Dwir, B.; Pavuna, D.

    1990-12-01

    Superconducting YBa2Cu3O(7-delta) (YBCO) thin films have been grown in situ on GaAs with conducting indium-tin-oxide (ITO) buffer layers. Superconducting onset is about 92 K with zero resistance at 60 K. ITO buffer layers usually form Schottky-like barriers on GaAs. The YBCO film and ITO buffer layer, grown by ion beam sputter codeposition, are textured and polycrystalline with a combined room-temperature resistivity of about 1 milliohm cm.

  10. Interface resistance of YBa2Cu3O7−δ/La0.67Sr0.33MnO3 ramp-type contacts

    NARCIS (Netherlands)

    Zalk, van M.; Brinkman, A.; Aarts, J.; Hilgenkamp, H.

    2010-01-01

    We fabricated and characterized YBa2Cu3O7−δ/La0.67Sr0.33MnO3 (YBCO/LSMO) ramp-type contacts and junctions. An interlayer technique was applied to repair the ramp stoichiometry after etching. It was found that, typically, the resistance of the YBCO/LSMO interface is high compared to the resistances o

  11. DC Josephson effect and critical currents of YBa 2Cu 3O 7 and Tl 2CaBa 2O 8

    Science.gov (United States)

    Kleiner, R.; Müller, P.; Andres, K.

    1989-12-01

    The DC Josephson effect between grains in YBa 2Cu 3O 7 and Tl 2CaBa 2Cu 2O 8 sinters was investigated. DC SQUID operation was detected in two geometries up to T = 86 K and T = 101 K respectively. The results are consistent with the assumption that the grain boundaries are S-N-S or S-S'-S junctions and that the transport currents are of pure Josephson type.

  12. Fluctuation conductivity of oxygen underdoped YBa2Cu3O7-δ single crystals

    Science.gov (United States)

    Vovk, R. V.; Khadzhai, G. Ya.; Goulatis, I. L.; Chroneos, A.

    2014-03-01

    The electrical resistance in the range of ТC-300 K in the layer planes of YВа2Сu3О7-δ single crystals with a range of oxygen deficiency (providing a range of TC from 78 to 92 K) was investigated. The experimental data is approximated by an expression that accounts for the scattering of electrons on phonons, as well as on defects and the fluctuation conductivity in a 3-D model of the Aslamazov-Larkin theory. According to this approximation, depending upon the oxygen deficiency, the Debye temperature varies from 245 to 400 K, coherence length ξС(0)≈0.5 Å.

  13. Pressure sensitivity and dielectric properties of Yba_2Cu_3O_(7+δ)/silicone rubber composite%超导YBa_2Cu_3O_(7+δ)/硅橡胶复合材料的压敏与介电特性

    Institute of Scientific and Technical Information of China (English)

    宋桂林; 杨枫; 王少祥; 常方高

    2009-01-01

    采用YBa_2Cu_3O_(+δ)(简称YBCO)多晶陶瓷超导粉末与硅橡胶(110型)按不同质量比进行配料, 经过特殊的制备工艺, 合成不同含量的超导YBCO/硅橡胶高分子复合材料, 分别测量样品的压敏效应和介电特性. 结果表明, 在不同应力作用下, 样品电阻值的变化范围在1~4个数量级. 样品电阻值随测量温度的降低(300~50 K)呈下降趋势, 测量温度降到90 K时, 样品电阻值发生突变, 但在90~50 K没有观察到超导零电阻现象. 室温下, 样品的介电常数随频率的增加(1 kHz~5 MHz)而减小, 介电损耗随测量频率的增大先增大后减小. 随着YBCO含量的增加, 形成的超电容网络微观结构也就越多, 样品的电阻逐渐减小电流加大, 导致超电容中电解质的极化强度有所增加, 两者共同作用的结果导致样品的介电常数、介电损耗均随着YBCO含量的增加而增大.%Pressure sensitive superconductor/polymer composites were prepared using silicone rubber and high temperature superconductor YBa_2Cu_3O_(7+δ)(YBCO)powder at different mass ratios. The piezoresistance and the dielectric properties of the composite samples at room temperature were measured. It was found that the resistance of all samples decreases exponentially with increasing pressure: application of different pressurees could result in a decease of 1~4 orders of magnitude in resistivity. Both resistivity and its sensitivity to external pressure vary with the superconductor filler content. The electrical resistivity was also measured as a function of temperature for samples from 300~50 K. The result shows that the change of resistivity is considerably larger. There are sharp decreases in the resistivity of superconductor/polymer composite samples below 90 K, but the sample ofsuperconduction with zero resistivity was not found from 90~50 K. The dielectric content and dielectric loss of thecomposite at room temperature decrease with increasing

  14. PHONON-EXCITON MECHANISM IN YBa2Cu3O7-δ SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Li Zhenji; Li Fengyue

    2006-01-01

    In this paper, based on the phonon-exciton mechanism, the superconductivity of yttrium barium copper oxide (YBCO) system is explained. The transition temperature (Tc) 's formula is derived by the extended BCS-Eliashberg theory, i.e. phonon-exciton mechanism and McMillan's energy gap function, and the Tc's expressions isreduced by using the Einstein spectrum. Last, the calculating method of element metal effective phonon spectrum is used to the high Tc cuprate YBCO system by using a crystal average atom approximation model. The theoretical analysis and calculational results show that the superconductivity of high Tc YBCO system maybe described by phonon-exciton model.

  15. Performance correlation between YBa2Cu3O7-δ coils and short samples for coil technology development

    Science.gov (United States)

    Wang, X.; Dietderich, D. R.; Godeke, A.; Gourlay, S. A.; Marchevsky, M.; Prestemon, S. O.; Sabbi, G. L.

    2016-06-01

    A robust fabrication technology is critical to achieve the high performance in YBa2Cu3O{}7-δ (YBCO) coils as the critical current of the brittle YBCO layer is subject to the strain-induced degradation during coil fabrication. The expected current-carrying capability of the magnet and its temperature dependence are two key inputs to the coil technology development. However, the expected magnet performance is not straightforward to determine because the short-sample critical current depends on both the amplitude and orientation of the applied magnetic field with respect to the broad surface of the tape-form conductor. In this paper, we present an approach to calculate the self-field performance limit for YBCO racetrack coils at 77 and 4.2 K. Critical current of short YBCO samples was measured as a function of the applied field perpendicular to the conductor surface from 0 to 15 T. This field direction limited the conductor critical current. Two double-layer racetrack coils, one with three turns and the other with 10 turns, were wound and tested at 77 and 4.2 K. The test coils reached at least 80% of the expected critical current. The ratio between the coil critical currents at 77 and 4.2 K agreed well with the calculation. We conclude that the presented approach can determine the performance limit in YBCO racetrack coils based on the short-sample critical current and provide a useful guideline for assessing the coil performance and fabrication technology. The correlation of the coil critical current between 77 K and 4.2 K was also observed, allowing the 77 K test to be a cost-effective tool for the development of coil technology.

  16. Preparation and properties of new self-lubricant YBa2Cu3O7/Cu composites%新型自润滑YBa2Cu3O7/Cu复合材料的制备及性能

    Institute of Scientific and Technical Information of China (English)

    王爱琴; 李敏; 谢敬佩

    2016-01-01

    采用草酸盐共沉淀法制备了YBa2Cu3O7 (YBCO)粉体,利用真空热压烧结法制备了不同质量分数的YBCO/Cu复合材料,测定了YBCO/Cu复合材料的密度、硬度和电导率,利用MMU-5GA磨损试验机对YBCO/Cu复合材料进行了摩擦磨损试验.采用XRD、SEM和TEM对YBCO粉体及YBCO/Cu复合材料的微观结构、磨损表面形貌及物相组成进行了表征.研究了YBCO质量分数对YBCO/Cu复合材料组织及性能的影响.结果表明:所制备的YBCO粉体物相为Y123相,其层状结构明显,粉体纯度高、杂质少,粒度达到纳米级;纳米YBCO可显著细化YBCO/Cu复合材料的基体组织,提高复合材料的摩擦学性能.随着YBCO质量分数增加,基体组织中纳米YBCO颗粒分布均匀度降低,逐渐出现团聚;YBCO/Cu复合材料的电导率和密度降低,硬度先升高后降低,摩擦系数逐渐减小.3% YBCO/Cu复合材料的摩擦磨损性能最好.YBCO/Cu复合材料强化机制为Orowan强化、热错配强化和细晶强化;其磨损机制主要为塑变磨损、磨粒磨损和疲劳剥落.

  17. Dynamics of the superconducting mixed state in YBa2Cu3O7-/PrBa2Cu3O7- superlattices in radio frequency regime

    Indian Academy of Sciences (India)

    K Senapati; R C Budhani

    2002-05-01

    Epitaxial multilayers of YBa2Cu3O7- and PrBa2Cu3O7- have been deposited on (100) cut SrTiO3 substrates using the technique of pulsed laser deposition. Standard -2 X-ray diffraction measurements on the films showed excellent superlattice reflections. The mixed state of these superlattices has been probed through measurements of radio frequency penetration depth () as a function of temperature (), magnetic field () and it’s orientation () with respect to the planes of the superlattices. These data reflect the two-dimensional nature of the mixed state in these systems.

  18. Influence of oxygen pressure on critical current density and magnetic flux pinning structures in YBa2Cu3O7-x fabricated by chemical solution deposition

    Institute of Scientific and Technical Information of China (English)

    Ding Fa-Zhu; Gu Hong-Wei; Zhang Teng; Dai Shao-Tao; Xiao Li-Ye

    2011-01-01

    This paper studies the effect of oxygen partial pressure on the fabrication of YBa2Cu3O7-x films on (00/) LaAlO3 substrates by metalorganic deposition using trifluoroacetates (TFA-MOD). As the oxygen partial pressure increases to 1500 Pa, a great increase in the superconducting properties is observed at high magnetic fields parallel to the YBCO c axis. The cross-sectional transmission electron microscope images show that a high density of stacking faults in the size range of 10-15 nm may act as flux pinning centres to enhance the critical current density of the YBCO films

  19. Observation of Ortho-III correlations by neutron and hard x-ray scattering in an untwinned YBa2Cu3O6.77 single crystal

    DEFF Research Database (Denmark)

    Schleger, P.; Casalta, H.; Hadfield, R.;

    1995-01-01

    We present measurements of Ortho-III phase correlations in an untwinned single crystal of YBa2Cu3O6.77 by neutron scattering and the novel method of hard (95 keV) X-ray scattering. The Ortho-III ordering is essentially two-dimensional, exhibiting Lorentzian peak shapes in the a-b plane. At room...... temperature, the correlation lengths deduced from the Lorentzian peak widths are about 5 unit cells (congruent-to 20 angstrom) along h and 19 unit cells (congruent-to 74 angstrom) along k, and are comparable to some correlation lengths measured for the Ortho-II phase. Upon heating, the superstructure...

  20. 3d xy scaling of the resistivity and the effect of disorder in YBa 2Cu 3O 7-δ thin films

    Science.gov (United States)

    Wooldridge, Ian; Howson, Mark A.; Gauzzi, Andrea; Pavuna, Davor; Walker, Daron J. C.

    1994-12-01

    We present measurements for the resistivity of ‘c’ axis oriented YBa 2Cu 3O 7-δ (YBCO) films grown on (100) SrTiO 3 substrates by both Laser Ablation and ion beam sputtering. The effect of the magnetic field on the resistivity is investigated with the field parallel to the ‘c’ axis. The zero field transition widths vary from 1K to 4K in different films. However the data exhibits 3d XY critical scaling having introduced an ‘effective’ magnetic field, characteristic of the length scale of the disorder in the film.

  1. Quantitative analysis of growth-induced reduction of long range lattice order in ion-beam sputtered YBa2Cu3O6.9 films

    Science.gov (United States)

    Gauzzi, Andrea; Pavuna, Davor

    1995-04-01

    We report evidence for the reduction of long range lattice order caused by slight departures from the optimal growth temperature in fully doped (x≊0.9) YBa2Cu3O6+x films deposited by ion-beam sputtering on SrTiO3. We estimate the characteristic length of this disorder from the broadening Δϑ of the x-ray diffraction rocking curve. The depression of superconductivity and normal conductivity scales as Δϑ and disappears when the in-plane lattice coherence length rc˜1/Δϑ is larger than ≊10 nm.

  2. Persistent photoconductivity in YBa 2Cu 3O 6+ x films as a method of photo-doping near the semiconductor-metal transition

    Science.gov (United States)

    Kudinov, Vladimir I.

    1994-02-01

    Persistent photoconductivity and metastable photoinduced superconductivity recently discovered by Kudinov et.al. in YBa 2Cu 3O 6+x films are studied over the oxygen content 0 < x < 1. As evidenced, prolonged illumination of the films by visible light leads to essential enhancement of their metallic and superconducting properties. The observed phenomena are attributed to photoexcitation of additional mobile holes into CuO 2 planes (photodoping), allowing a metastable superconducting phase to be initiated. It is suggested that photoinduced superconductivity may have applications in fabrication of in situ optically tunable weak-link devices.

  3. 铁磁(La(0.7)Ca(0.3)MnO3)/高温超导(YBa2Cu3O7)双层薄膜微结构的高分辨电镜研究%High resolution electron microscopy study of ferromagnet (La0.7 Ca0.3 MnO3 )/superconductor (YBa2 Cu3 07 ) bi-layer

    Institute of Scientific and Technical Information of China (English)

    王明光; 徐奕辰; 祁阳; 王志嘉

    2012-01-01

    采用脉冲激光沉积法在LaAlO3(LAO)衬底上生长了YBa2Cu3O7/La0.7Ca0.3MnO3(YBCO/LC-MO)和La0.7Ca0.3MnO3/YBa2Cu3O7(LCMO/YBCO)两种外延薄膜,利用高分辨电子显微镜研究了其微观结构。在YBCO/LCMO/LAO薄膜中,LCMO以层-岛模式生长,并形成层状取向畴结构。YBCO层均由c轴取向晶粒组成,其中含有c/3平移畴界、额外CuO层及Y2O3第二相等缺陷结构。在LCMO/YBCO/LAO薄膜中,LAO衬底上初始生长的YBCO为c轴取向,至一定厚度(几个纳米)转为c与a轴混合生长。LCMO层在YBCO上外延生长并具有[100]m与[011]m混合取向畴结构。在LCMO/YBCO界面未观察到失配位错,因此二者界面属应变型界面。%Epitaxial YBa2 Cu3O/La0.7 Ca0.3 MnO3 (YBCO/LCMO) and La0.7 Ca0.3 MnO3/YBa2 Cu3 07 ( LCMO/YB-CO) bi-layers were fabricated on LaA103 (LAO) substrate by pulsed laser deposition, and their microstructures were investigated by using high resolution electron microscopy. In YBCO/LCMO/LAO bi-layer, LCMO layer growed on LAO substrate with a layer-island mode, and developed a layered oriented domain structure. YBCO layers consisted of c-axis oriented domain. Some defects such as c/3 translational boundary, extra CuO layer and Y203 second phase were observed in YBCO film. In LCMO/YBCO/LAO hi-layer, the initial YBCO layer on LAO showed c-axis orientation, and switched to a mixed domain structure containing both c-axis and a-axis when the film thickness reached several nanometers. LCMO layer, which comprises a mixed domain of [100]m and [011]m orientation, epitaxially growed on YBCO film. No misfit dislocation was observed between LCMO and YBCO interface, which was characterized by a strain interface.

  4. Orbital symmetry of charge-density-wave order in La1.875Ba0.125CuO4 and YBa2Cu3O6.67

    Science.gov (United States)

    Achkar, A. J.; He, F.; Sutarto, R.; McMahon, Christopher; Zwiebler, M.; Hücker, M.; Gu, G. D.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Geck, J.; Hawthorn, D. G.

    2016-06-01

    Recent theories of charge-density-wave (CDW) order in high-temperature superconductors have predicted a primarily d CDW orbital symmetry. Here, we report on the orbital symmetry of CDW order in the canonical cuprate superconductors La1.875Ba0.125CuO4 (LBCO) and YBa2Cu3O6.67 (YBCO), using resonant soft X-ray scattering and a model mapped to the CDW orbital symmetry. From measurements sensitive to the O sublattice, we conclude that LBCO has predominantly s' CDW orbital symmetry, in contrast to the d orbital symmetry recently reported in other cuprates. Furthermore, we show for YBCO that the CDW orbital symmetry differs along the a and b crystal axes and that these both differ from LBCO. This work highlights CDW orbital symmetry as an additional key property that distinguishes the different cuprate families. We discuss how the CDW symmetry may be related to the `1/8-anomaly’ and to static spin ordering.

  5. Effects of critical fluctuations and dimensionality on the jump in specific heat at the superconducting transition temperature: Application to YBa2Cu3O7 -δ ,Bi2Sr2CaCu2O8 +δ , and KOs2O6 compounds

    Science.gov (United States)

    Keumo Tsiaze, R. M.; Wirngo, A. V.; Mkam Tchouobiap, S. E.; Fotue, A. J.; Baloïtcha, E.; Hounkonnou, M. N.

    2016-06-01

    We report on a study of the superconducting order parameter thermodynamic fluctuations in YBa2Cu3O7 -δ ,Bi2Sr2CaCu2O8 +δ , and KOs2O6 compounds. A nonperturbative technique within the framework of the renormalized Gaussian approach is proposed. The essential features are reported (analytically and numerically) through Ginzburg-Landau (GL) model-based calculations which take into account both the dimension and the microscopic parameters of the system. By presenting a self-consistent approach improvement on the GL theory, a technique for obtaining corrections to the asymptotic critical behavior in terms of nonuniversal parameters is developed. Therefore, corrections to the specific heat and the critical transition temperature for one-, two-, and three-dimensional samples are found taking into account the fact that fluctuations occur at all length scales as the critical point of a system is approached. The GL model in the free-field approximation and the 3D-X Y model are suitable for describing the weak and strong fluctuation regimes respectively. However, with a modified quadratic coefficient, the renormalized GL model is able to explain certain experimental observations including the specific heat of complicated systems, such as the cup-rate superconductors and the β -pyrochlore oxides. It is clearly shown that the enhancement, suppression, or rounding of the specific heat jump of high-Tc cup-rate superconductors at the transition are indicative of the order parameter thermodynamic fluctuations according to the dimension and the nature of interactions.

  6. Effects of critical fluctuations and dimensionality on the jump in specific heat at the superconducting transition temperature: Application to YBa_{2}Cu_{3}O_{7-δ},Bi_{2}Sr_{2}CaCu_{2}O_{8+δ}, and KOs_{2}O_{6} compounds.

    Science.gov (United States)

    Keumo Tsiaze, R M; Wirngo, A V; Mkam Tchouobiap, S E; Fotue, A J; Baloïtcha, E; Hounkonnou, M N

    2016-06-01

    We report on a study of the superconducting order parameter thermodynamic fluctuations in YBa_{2}Cu_{3}O_{7-δ},Bi_{2}Sr_{2}CaCu_{2}O_{8+δ}, and KOs_{2}O_{6} compounds. A nonperturbative technique within the framework of the renormalized Gaussian approach is proposed. The essential features are reported (analytically and numerically) through Ginzburg-Landau (GL) model-based calculations which take into account both the dimension and the microscopic parameters of the system. By presenting a self-consistent approach improvement on the GL theory, a technique for obtaining corrections to the asymptotic critical behavior in terms of nonuniversal parameters is developed. Therefore, corrections to the specific heat and the critical transition temperature for one-, two-, and three-dimensional samples are found taking into account the fact that fluctuations occur at all length scales as the critical point of a system is approached. The GL model in the free-field approximation and the 3D-XY model are suitable for describing the weak and strong fluctuation regimes respectively. However, with a modified quadratic coefficient, the renormalized GL model is able to explain certain experimental observations including the specific heat of complicated systems, such as the cup-rate superconductors and the β-pyrochlore oxides. It is clearly shown that the enhancement, suppression, or rounding of the specific heat jump of high-T_{c} cup-rate superconductors at the transition are indicative of the order parameter thermodynamic fluctuations according to the dimension and the nature of interactions.

  7. Investigation of Optically Modified YBa2Cu3O7–x Films by Means of X-ray Microanalysis Technique

    Directory of Open Access Journals (Sweden)

    Artūras JUKNA

    2014-06-01

    Full Text Available This work reports on investigation of remnant oxygen content in optically-modified regions of 0.3-mm-thick YBa2Cu3O7–x films, patterned by a laser-writing technique in an inert ambient gas atmosphere at room temperature. A laser-treated region of weak superconductivity with dimensions depending on the size of a laser spot, laser power, and initial content of oxygen is characterized by a lower oxygen content, weaker critical magnetic field, and suppressed both the superconducting critical temperature and the critical current density, as compared to the laser untreated regions. Optically induced (cw-laser, 532-nm-wavelength heating strongly affects a non-uniform distribution of remnant oxygen content in the film, depending both on the optical power and beam’s scanning velocity. A level of oxygen depletion and the size of the oxygen-deficient region have been directly estimated from scanning-electron-microscope spectra with the X-ray microanalysis technique. The results of our measurements were compared with results extracted from electric measurements, assuming a correlation between the remnant oxygen content and the electric transport properties of oxygen-deficient YBa2Cu3O7–x films. DOI: http://dx.doi.org/10.5755/j01.ms.20.2.6323

  8. Preparation of Ba0.09Sr0.91TiO3/YBa2Cu3O7-x bilayers and investigation of their dielectric properties

    Science.gov (United States)

    Jia, Jiqiang; Zhao, Gaoyang; Shi, Xiaoxue; Lei, Li

    2016-08-01

    YBa2Cu3O7-x (YBCO) films of 110 nm thickness were prepared on LaAlO3 (LAO) substrates via the sol-gel method. Subsequently, about 400 nm thick Ba0.09Sr0.91TiO3 (BST) films were epitaxially grown on the YBCO and LNO films surface; the BST films exhibited a strong c-axis orientation. The dielectric adjustability and relative dielectric constant was investigated in the range of 300-83 K. Results indicate that the tunability of the Ba0.09Sr0.91TiO3/YBa2Cu3O7-x (BST/YBCO) displayed an increase relative to c-axis-oriented BST on LaNiO3 (LNO). The tunability was further enhanced as the operating temperature decreased, yet the loss tangent (tanδ) decreased. The tunability and the tanδ at 100 kHz and 83 K were 58% and 0.029, respectively.

  9. Photogeneration of self-localized polarons in YBa2 Cu3O7-delta and La2CuO4

    Science.gov (United States)

    Kim, Y. H.; Foster, C. M.; Heeger, A. J.; Cox, S.; Acedo, L.

    1988-08-01

    Photoinduced infrared absorption measurements of YBa2Cu3O7-delta (delta=0.75) and La2CuO4 are reported. We have observed photoinduced infrared active vibrational modes and associated phonon bleachings which indicate the formation of a localized structural distortion in the Cu-O plane around the photogenerated carriers. In both materials, an associated electronic transition indicates that this structural distortion causes the formation of a self-localized electronic state in the energy gap. The photoinduced distortion and the associated self-localized gap state demonstrate that the photoexcitations are relatively long-lived polarons (or bipolarons). The dynamic mass associated with the distortion is smaller in YBa2Cu3O7-delta than in La2CuO4 (smaller dynamic mass implies a longer range distortion). Since these features are not observed in the isostructural compound, La2NiO4, we suggest that polaron (or bipolaron) formation may play an important role in the high temperature superconductivity.

  10. 熔融织构YBa2Cu3O7-δ晶体中磁通涡旋锁定转变反常行为研究∗%Abnormal b ehaviors in lo ck-in transition of the vortices in melt textured growth of YBa2Cu3O7-δ crystals

    Institute of Scientific and Technical Information of China (English)

    吴董杰; 徐克西; 唐天威

    2016-01-01

    The magnetization behavior of the layered anisotropic high-Tc superconductor in the mixed state Hc1 In this paper, we systematically measure the magnetic torque signal in melt texture growth YBCO (MTG-YBCO) bulk and observe an abnormal lock-in transition behavior in the vortex system. The critical angle of the lock-in transition is found to be directly proportional to the strength of the magnetic field, which is contrary to the observations in the common cases. According to the framework of the Ginzburg-Landau theory and the kink structure model of the vortex line, we discuss the abnormal phenomenon, and propose that there is a type of extend-correlated defect structure, which is parallel to the a-b plane, in the MTG-YBCO crystal. The relationship between the critical angle of the lock-in transition to the temperature and the magnetic field is established theoretically, and the theoretical results coincide well with the torque measurements.%通过改变磁场与c轴方向夹角测量了熔融织构YBa2Cu3O7−δ(YBCO)晶体的磁力矩信号响应,观察到了磁通涡旋系统的锁定(lock-in)转变行为以及锁定转变角正比于外磁场强度的反常现象。基于Ginzburg-Landau理论和磁通涡旋线Kink结构模型,对上述锁定转变反常现象进行了分析讨论,提出了熔融织构YBCO晶体中存在平行于a-b面的延展性关联缺陷结构假设,导出了锁定转变临界角与温度和磁场之间的关系,理论分析模型结果与实验测量结果基本符合。

  11. Possible Nodeless Superconducting Gaps in Bi2Sr2CaCu2O8+δ and YBa2Cu3O7-x Revealed by Cross-Sectional Scanning Tunneling Spectroscopy

    Science.gov (United States)

    Ren, Ming-Qiang; Yan, Ya-Jun; Zhang, Tong; Feng, Dong-Lai

    2016-12-01

    Pairing in the cuprate high-temperature superconductors and its origin remain among the most enduring mysteries in condensed matter physics. With cross-sectional scanning tunneling microscopy/ spectroscopy, we clearly reveal the spatial-dependence or inhomogeneity of the superconducting gap structure of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\\delta}$ (Bi2212) and YBa$_2$Cu$_3$O$_{7-x}$ (YBCO) along their $c$-axes on a scale shorter than the interlayer spacing. By tunneling into the (100) plane of a Bi2212 single crystal and a YBCO film, we observe both U-shaped tunneling spectra with extended flat zero-conductance bottoms, and V-shaped gap structures, in different regions of each sample. On the YBCO film, tunneling into a (110) surface only reveals a U-shaped gap without any zero-bias peak. Our analysis suggests that the U-shaped gap is likely a nodeless superconducting gap. The V-shaped gap has a very small amplitude, and is likely proximity-induced by regions having the larger U-shaped gap.

  12. X-ray absorption study of the ferromagnetic Cu moment at the YBa2Cu3O7/La2 /3Ca1 /3MnO3 interface and variation of its exchange interaction with the Mn moment

    Science.gov (United States)

    Sen, K.; Perret, E.; Alberca, A.; Uribe-Laverde, M. A.; Marozau, I.; Yazdi-Rizi, M.; Mallett, B. P. P.; Marsik, P.; Piamonteze, C.; Khaydukov, Y.; Döbeli, M.; Keller, T.; Biškup, N.; Varela, M.; Vašátko, J.; Munzar, D.; Bernhard, C.

    2016-05-01

    With x-ray absorption spectroscopy and polarized neutron reflectometry we studied how the magnetic proximity effect at the interface between the cuprate high-TC superconductor YBa2Cu3O7 (YBCO) and the ferromagnet La2 /3Ca1 /3MnO3 (LCMO) is related to the electronic and magnetic properties of the LCMO layers. In particular, we explored how the magnitude of the ferromagnetic Cu moment on the YBCO side depends on the strength of the antiferromagnetic (AF) exchange coupling with the Mn moment on the LCMO side. We found that the Cu moment remains sizable if the AF coupling with the Mn moments is strongly reduced or even entirely suppressed. The ferromagnetic order of the Cu moments thus seems to be intrinsic to the interfacial CuO2 planes and related to a weakly ferromagnetic intraplanar exchange interaction. The latter is discussed in terms of the partial occupation of the Cu 3 d3 z2-r2 orbitals, which occurs in the context of the so-called orbital reconstruction of the interfacial Cu ions.

  13. Enhancement of Electrical Properties by Tailoring Nanoparticles in Holmium-doped YBa2Cu3O7-Delta Superconductors

    Science.gov (United States)

    2008-01-01

    for the vortices. NRL also has found that nanoparticles formed in YBCO films also can stabilize other defects such as twin boundaries , antiphase...Twins: Crystallographic twin boundaries , i.e., grain boundaries of relatively good atomic fit between regions of different (but symmetri- cal... boundaries . Figure 6(b) provides a high-resolution TEM image of twin boundaries that appear to be bent in the vicinity of a nanoparticle, pre- sumably due

  14. Effect of ammonium hydroxide on preparation process of YBa2Cu3O7-x superconductor by sol gel method

    Directory of Open Access Journals (Sweden)

    H Arabi

    2006-09-01

    Full Text Available  In this paper the effect of ammonium hydroxide addition to the solution of metallic oxide on sol gel preparation process of YBCO is studied with differential thermal analysis, thermal graviometry and X-ray diffraction. Two samples with and without ammonium hydroxide. Ammonium hydroxide prevents both barium nitrate precipitate during the gel preparation and also unwanted reaction as well as increasing homogeneous product. After drying the gel, the samples heated up to 1050°C in DTA apparatus in order to find more accurate the type and the temperature of reaction during the preparation process. After the initial reactions in the samples, Y2Cu2O5 and 123 phases are created in the range of 780-840°C and then the 123 phase is strengthened at 900-950°C. As shown in X-ray data, 123 was the only phase after this range. In addition ammonium hydroxide support and increase the creation of 123 phase at lower temperature.

  15. Scanning micro-Hall probe mapping of magnetic flux distributions and current densities in YBa2Cu3O7 thin films

    Science.gov (United States)

    Xing, W.; Heinrich, B.; Zhou, HU; Fife, A. A.; Cragg, A. R.; Grant, P. D.

    1995-01-01

    Mapping of the magnetic flux density B(sub z) (perpendicular to the film plane) for a YBa2Cu3O7 thin-film sample was carried out using a scanning micro-Hall probe. The sheet magnetization and sheet current densities were calculated from the B(sub z) distributions. From the known sheet magnetization, the tangential (B(sub x,y)) and normal components of the flux density B were calculated in the vicinity of the film. It was found that the sheet current density was mostly determined by 2B(sub x,y)/d, where d is the film thickness. The evolution of flux penetration as a function of applied field will be shown.

  16. Microwave properties of YBa2Cu3O(7-delta) high-transition-temperature superconducting thin films measured by the power transmission method

    Science.gov (United States)

    Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Heinen, V. O.; Warner, J. D.

    1991-01-01

    The microwave response of YBa2Cu3O(7-delta) superconducting thin films deposited on LaAlO3, MgO, YSZ, and LaGaO3 substrates are studied. It is found that the microwave transmission properties are very weakly dependent on temperature in the normal state but change drastically upon transition to the superconducting state. In particular, the transmission decreases and there is a negative phase shift with respect to the phase at room temperature when the sample is cooled through its transition temperature. The magnetic penetration depth for all the films was determined from the surface reactance of the films. The microwave complex conductivity is determined in both the normal and the superconducting state. It is observed that both sigma1 and sigma2 increase in transition to the superconducting state. The surface resistivity is calculated for all the films.

  17. Analysis of the YBa2Cu3O7/SrTiO3 interface as a function of post-deposition annealing temperature

    Science.gov (United States)

    Asher, Sally E.; Nelson, Art J.; Mason, Alice R.; Swartzlander, A. B.; Dhere, R.; Kazmerski, L. L.; Halbritter, Jurgen; Harvey, Todd E.; Beall, James A.; Ono, Ronald H.

    1990-01-01

    A multiple technique approach is used to study YBa2Cu3O7 grown on SrTiO3 as a function of post-deposition annealing temperature. X-ray diffraction data are used to determine the relative amounts of a-axis and c-axis oriented growth. These results are compared to the surface morphology of the films observed by SEM. Secondary ion mass spectrometry (SIMS) is used to study the diffusion of substrate elements into the YBCO films as a function of post-deposition annealing temperature. The data obtained from all these techniques are correlated to determine an optimized temperature for post-deposition annealing. The results of this study show that the desired c-axis oriented growth can be obtained with minimal diffusion of substrate elements into the film at annealing temperatures of 750 °C.

  18. Twin-domain size and bulk oxygen in-diffusion kinetics of YBa2Cu3O6+x studied by neutron powder diffraction and gas volumetry

    DEFF Research Database (Denmark)

    Poulsen, H.F.; Andersen, N.H.; Lebech, B.

    1991-01-01

    distribution. At higher temperatures, tau is activated with activation energies 0.55 and 0.25 eV in the tetragonal and orthorhombic phases, respectively. Comparison between twin-domain sizes and bulk oxygen in-diffusion time constants indicates that the twin-domain boundaries may contribute to the effective......We report experimental results of twin-domain size and bulk oxygen in-diffusion kinetics of YBa2Cu3O6+x, which supplement a previous and simultaneous study of the structural phase diagram and oxygen equilibrium partial pressure. Analysis of neutron powder diffraction peak broadening show features...... which are identified to result from temperature independent twin-domain formation in to different orthorhombic phases with domain sizes 250 and 350 angstrom, respectively. The oxygen in-diffusion flow shows simple relaxation type behaviour J = J0 exp(-t/tau) despite a rather broad particle size...

  19. Investigation of the temperature dependence of the critical state in melt processed YBa2Cu3O7-∂ thick films

    Science.gov (United States)

    Dewhurst, C. D.; Cardwell, D. A.; Alford, N. McN.

    1995-03-01

    The inter- and intra-grain critical current densities of melt processed YBa2Cu3O7-∂ (YBCO) thick films have been measured as a function of temperature using vibrating sample magnetometry. The width of the M-H hysteresis curve has been observed to scale with the cube of the sample width for temperatures up to ˜70 K and applied fields of greater than 1 T which implies that current flows on the length scale of the sample over this temperature and field regime. An exponential decrease of magnetic moment hysteresis with temperature up to ˜70 K and between ˜80 K and Tc has been observed and attributed to the dominance of inter- and intra-granular current, respectively. An empirical model is presented to account for the observed dependence of the critical current density on temperature, based upon weak link behavior within the ``Hub and Spoke'' like morphology characteristic of melt processed YBCO thick films.

  20. Pulsed laser deposition for in-situ photoemission studies on YBa2Cu3O7-δ and related oxide films

    Science.gov (United States)

    Schmauder, T.; Frazer, B.; Gatt, R.; Xi, Xiaoxing; Onellion, Marshall; Ariosa, Daniel; Grioni, M.; Margaritondo, Giorgio; Pavuna, Davor

    1998-12-01

    We describe a new pled laser deposition (PLD) system that is linked to an angle-resolved photoemission (ARPES) chamber at the Synchrotron Radiation Center (SRC) in Wisconsin, USA. We also discuss our first results on epitaxially grown YBa2Cu3O7-(delta ) (YBCO) films. The core level photoemission data indicate that a Ba-oxide layer is the dominant surface layer. We were not able to reproducibly detect a sharp fermi edge in the photoemission spectra and thus conclude that the surface layer is non-metallic, probably due to oxygen loss at the surface. The absence of screening of the Y and Ba core levels is a further argument for this conclusion. Further experiments with ozone treated film surfaces are currently under way.

  1. Superconducting YBa2Cu3O7 films on Si and GaAs with conducting indium tin oxide buffer layers

    Science.gov (United States)

    James, J. H.; Kellett, B. J.; Gauzzi, A.; Dwir, B.; Pavuna, D.

    1991-03-01

    Superconducting YBa2Cu3O7-delta (YBCO) thin films have been grown in situ by ion beam sputtering on Si and GaAs substrates with intermediate, conducting Indium Tin Oxide (ITO) buffer layers. Uniform, textured YBCO films on ITO exhibit Tc onset at 92K and Tc0 at 68K and 60K on Si and GaAs substrates respectively, the latter value is the highest Tc reported on GaAs. YBCO/ITO films exhibit metallic resistivity behavior. In situ YBCO films on SrTiO3 show Tc onset = 92K and Tc0 = 90.5K, transition widths are less than 1K. A simple optical bolometer has been constructed from YBCO films on SrTiO3. Tunnelling measurements have also been carried out using the first YBCO-Pb window-type tunnel junctions.

  2. Dramatic effects of chlorine addition on expanding synthesis conditions for fluorine-free metal-organic decomposition YBa2Cu3O y films

    Science.gov (United States)

    Motoki, Takanori; Ikeda, Shuhei; Honda, Genki; Nagaishi, Tatsuoki; Nakamura, Shin-ichi; Shimoyama, Jun-ichi

    2017-02-01

    The synthesis conditions of fluorine-free metal-organic decomposition (FF-MOD)-processed YBa2Cu3O y (YBCO) films on buffered metallic substrates have been systematically investigated. Chlorine addition to the starting solution was found to be quite effective for expanding the synthesis conditions of highly c-axis-oriented YBCO films. YBCO films showing a high critical current, ˜100 A/cm (77 K, ˜0 T), were successfully obtained by sintering at 740 °C, which is ˜50 °C lower than the typical sintering temperature for FF-MOD-processed YBCO films. This strongly indicated that chlorine addition is promising for the development of long and homogeneous YBCO tapes even by sintering at a low temperature of ˜740 °C.

  3. YBa2Cu3O7-δ long Josephson junctions on bicrystal Zr1-xYxO2 substrates fabricated by preliminary topology masks

    Science.gov (United States)

    Masterov, D. V.; Parafin, A. E.; Revin, L. S.; Chiginev, A. V.; Skorokhodov, E. V.; Yunin, P. A.; Pankratov, A. L.

    2017-02-01

    YBa2Cu3O{}7-δ (YBCO) films were fabricated by magnetron sputtering with modification of the substrate surface by preliminary topology masks. Formation features of Josephson junctions on bicrystal Zr1-xYxO2 (YSZ) substrates have been considered. The structural and electrical properties of such junctions were investigated. As a result, the presented technology allows us to fabricate YBCO structures on YSZ substrates with a buffer cerium dioxide (CeO2) layer where YBCO film sputtering is the final stage of structure formation. In particular, long Josephson junctions with good characteristics have been fabricated by this technology and measured, allowing us to achieve critical currents of 80 mA for 150 um junctions.

  4. A rapid process of Yba2Cu3O7-δ thin film fabrication using trifluoroacetate metal-organic deposition with polyethylene glycol additive

    DEFF Research Database (Denmark)

    Wu, Wei; Feng, Feng; Shi, Kai

    2013-01-01

    and oxygenation processes, mass percentage and molecular weight of PEG additive, YBCO thin films with Jc of about 4.5 MA cm-2 (77 K, self-field) could be routinely fabricated using (20-30) wt% PEG(1000-2000) additive with a total treatment time of about 2 h including the 15 min pyrolysis process time. The effects......Trifluoroacetate metal-organic deposition (TFA-MOD) is a promising technique to fabricate YBa2Cu3O7-δ (YBCO) superconducting films. However, its slow pyrolysis process, which usually takes more than 10 h, constitutes a barrier for industrial production. In this study, polyethylene glycol (PEG......) was utilized to reduce the stress generation inside the coated films when the strong pyrolysis reactions happen. With the addition of 30 wt% PEG2000 to the precursor solution, a smooth film surface could be obtained through a rapid pyrolysis process of 15 min. After the optimizations of the crystallization...

  5. Photogeneration of self-localized polarons in YBa2Cu3O(7-delta) and La2CuO4

    Science.gov (United States)

    Kim, Y. H.; Foster, C. M.; Heeger, A. J.; Cox, S.; Acedo, L.

    1989-01-01

    Photoinduced IR absorption measurements of YBa2Cu3O(7-delta) (delta = 0.75) and La2CuO4 are reported. Photoinduced IR active vibrational modes and associated phonon bleachings which indicate the formation of a localized structural distortion in the Cu-O plane around the photogenerated carriers are observed. In both materials, an associated electronic transition indicates that this structural distortion causes the formation of a self-localized electronic state in the energy gap. The photoinduced distortion and the associated self-localized gap state demonstrate that the photoexcitations are relatively long-lived polarons (or bipolarons). It is found that polaron (or bipolaron) formation plays an important role in the high temperature superconductivity.

  6. Characterization of YBa2Cu3O7−δ Films With Various Porous Structures Grown by Metalorganic Decomposition Route

    DEFF Research Database (Denmark)

    Yue, Zhao; Qureishy, T.; Mikheenko, P.

    2016-01-01

    Metalorganic decomposition route with trifluoroacetates has been successfully used to fabricate YBa2Cu3O7−δ (YBCO)-based coated conductors with an excellent performance. The microstructure and superconducting properties of YBCO films were controlled by the substrate properties and the solution...... chemistry or by regulating the processing parameters during the film heat treatment. In this work, three YBCO films with various porous structures, namely, a fully dense sample, a cell-structured sample with dense regions surrounded by a porous structure, and a highly porous sample, were deposited on single...... onset around 89 K and .Ic higher than 3 MA/cm2 at 77 K in self-field). However, we found that the porous structures formed by different nucleation and growth mechanisms during the sintering process still have strong influence on the superconducting properties, particularly when applying magnetic fields...

  7. Model for the magnetic phases observed at low temperatures in reduced YBa2Cu3O6+x materials with Al substitution for Cu or rare earth ions for Ba

    DEFF Research Database (Denmark)

    Andersen, N.H.; Uimin, G.

    1997-01-01

    From a classical statistical model it is shown that the low temperature antiferromagnetic AFII phase, observed in reduced YBa2Cu3O6+x type materials with Al in the CuOx basal plane or rare earth on the Ba site, results from an effective ferromagnetic coupling between adjacent CuO2 double layers...

  8. Appearance of an inhomogeneous superconducting state in La0.67Sr0.33MnO3–YBa2Cu3O7–La0.67Sr0.33MnO3 trilayers

    Indian Academy of Sciences (India)

    K Senapati; R C Budhani

    2007-08-01

    An experimental study of proximity effect in La0.67Sr0.33MnO3–YBa2Cu3O7–La0.67Sr0.33MnO3 trilayers is reported. Transport measurements on these samples show clear oscillations in critical current (c) as the thickness of La0.67Sr0.33MnO3 layers (F) is scanned from ∼ 50 Å to ∼ 1100 Å. In the light of existing theories of ferromagnet–superconductor (FM–SC) heterostructures, this observation suggests a long range proximity effect in the manganite, modulated by its weak exchange energy (∼ 2 meV). The observed modulation of the magnetic coupling between the ferromagnetic LSMO layers as a function of F, also suggests an oscillatory behavior of the SC order parameter near the FM–SC interface.

  9. Orientation of thin YBa2Cu3O7-Journals/Common/ delta.gif" ALT="delta" />/YSZ films characterization by micro-Raman spectroscopy

    Science.gov (United States)

    Chen, M. S.; Shen, Z. X.; Zhou, W. Z.; Xu, S. Y.; Ong, C. K.

    1999-05-01

    Micro-Raman scattering of thin YBa2Cu3O7-icons/Journals/Common/delta" ALT="delta" ALIGN="MIDDLE"/> films of various thicknesses, deposited by pulsed laser deposition on the yttrium-stabilized zirconia (001) substrates, was carried out at different scattering geometries. The fraction of c-axis orientation of the films was calculated from the intensity ratio of the O(2,3)-B1g and O(4)-Ag modes. It is shown that it is strongly dependent on the film thickness and the highest fraction of c-axis orientation occurs for film thickness around 80 nm. The lower c-axis fraction for thinner films was explained by the simultaneous growth of a- and c-axis-oriented grains at the interface region, while the lower c-axis fraction for thicker films was due to the faults and voids in the films. Several a- and b-axis in-plane orientations have been identified using polarized Raman spectra.

  10. Microstructural comparison of Yba2Cu3O7-x thin films laser deposited in O2 and O2/Ar ambient

    DEFF Research Database (Denmark)

    Verbist, K.; Kyhle, Anders; Vasiliev, A.L.

    1996-01-01

    still in excess of 10(6) A cm(-2) at 77 K. Electron microscopy revealed that the outgrowths mainly consist of a large copper-oxide grain connected to Y2O3 grains. Y2O3 nano-scale inclusions are present irrespective of the deposition atmosphere, however at remarkably low densities compared to other......The use of a diluted O-2/Ar atmosphere-for laser deposition of YBa2Cu3O7-x thin films results in a strong decrease of the surface outgrowth density as compared to deposition in pure O-2. The smoother films need a longer oxygenation period and show slightly lower critical current densities; though...... literature data. We find that the twin plane density is lower and the twin structure more homogeneous in the case of films deposited in a mixture of O-2/Ar. This we ascribe to the absence of surface outgrowths which seem to block regular twin structure formation. Possibly the differences in necessary post...

  11. The unconventional doping in YBa2Cu3O7-x/La0.7Ca0.3MnO3 heterostructures by termination control

    Science.gov (United States)

    Tra, V. T.; Huang, R.; Gao, X.; Chen, Y.-J.; Liu, Y. T.; Kuo, W. C.; Chin, Y. Y.; Lin, H. J.; Chen, J. M.; Lee, J. M.; Lee, J. F.; Shi, P. S.; Jiang, M. G.; Duan, C. G.; Juang, J. Y.; Chen, C. T.; Jeng, H. T.; He, Q.; Chuang, Y.-D.; Lin, J.-Y.; Chu, Y.-H.

    2017-01-01

    In strongly correlated oxides, heterostructures provide a powerful route to manipulate the charge, spin, orbital, and lattice degrees of freedom to create distinctive functionalities. In this work, we have achieved atomically precise interface control in YBa2Cu3O7-x/La0.7Ca0.3MnO3 (YBCO/LCMO) heterostructures and find a hidden effective doping. This mechanism is responsible for higher Tc in the sample with the MnO2-terminated interface than in that with the La0.7Ca0.3O-terminated interface. The MnO2-terminated sample also shows a larger magnetic moment of Mn together with a lower valence state. For more than a decade, the control of Tc in these heterostructures prior to this work has been solely via the variation of YBCO or LCMO thickness. This work hints at an alternative way of exploiting and exploring the interactions between superconductivity and magnetism in this system.

  12. Critical current density behaviors across a grain boundary inclined to current with different angles in YBa2Cu3O7-δ bicrystal junctions

    Science.gov (United States)

    Tao, Hua; Wei-Wei, Xu; Zheng-Ming, Ji; Da-Yuan, Guo; Qing-Yun, Wang; Xiang-Rong, Ma; Rui-Yu, Liang

    2016-06-01

    The critical current density behaviors across a bicrystal grain boundary (GB) inclined to the current direction with different angles in YBa2Cu3O7-δ bicrystal junctions in magnetic fields are investigated. There are two main reasons for the difference in critical current density in junctions at different GB inclined angles in the same magnetic field: (i) the GB plane area determines the current carrying cross section; (ii) the vortex motion dynamics at the GB affects the critical current value when the vortex starts to move along the GB by Lorentz force. Furthermore, the vortex motion in a bicrystal GB is studied by investigating transverse (Hall) and longitudinal current-voltage characteristics (I-V xx and I-V xy ). It is found that the I-V xx curve diverges from linearity at a high driving current, while the I-V xy curve keeps nearly linear, which indicates the vortices inside the GB break out of the GB by Lorentz force. Project supported by the National Natural Science Foundation of China (Grant Nos. 61501222, 61371036, and 61571219) and the School Scientific Research Fund of Nanjing Institute of Technology, China (Grant Nos. YKJ201418).

  13. Synergetic pinning centres in BaZrO3-doped YBa2Cu3O7-x films induced by SrTiO3 nano-layers

    Science.gov (United States)

    Crisan, A.; Dang, V. S.; Mikheenko, P.; Ionescu, A. M.; Ivan, I.; Miu, L.

    2017-04-01

    We report on the enhancement of critical current density (J c) and the unusual behaviour of its dependence on field orientation in YBa2Cu3O7‑x (YBCO) nanostructured films by a combination of substrate decoration with Ag nano-dots, of the incorporation of BaZrO3 (BZO) nano-particles and nano-rods, and of multilayer architecture (a thin SrTiO3 layer separating two 1.5 μm-thick YBCO layers). SrTiO3 insulating layers were 15, 30 or 45 nm thick. The highest improvement of J c in applied magnetic fields along the c-axis and smaller than 1 T occurs in the bi-layer with 30 nm-thick STO, but the influence of STO thickness is small. Our thick nanostructured films show significant improvement of J c in the magnetic field along the ab-plane direction. The presence of BZO nano-rods, ab-plane defects and nano particles of BZO and Y2O3 was observed in transmission electron microscopy (TEM) images of the film. The peculiarities of artificial pinning centres revealed in the TEM images of the nanostructured films are used to explain an unusual split of the peak in the J c dependence on the magnetic field along the ab-plane of YBCO. Effective pinning potentials in high magnetic fields have rather high values for such thick films.

  14. Functional behavior of the anomalous magnetic relaxation observed in melt-textured YBa2Cu3O7-δ samples showing the paramagnetic Meissner effect

    Science.gov (United States)

    Dias, F. T.; Vieira, V. N.; Garcia, E. L.; Wolff-Fabris, F.; Kampert, E.; Gouvêa, C. P.; Schaf, J.; Obradors, X.; Puig, T.; Roa, J. J.

    2016-10-01

    We have studied the functional behavior of the field-cooled (FC) magnetic relaxation observed in melt-textured YBa2Cu3O7-δ (Y123) samples with 30 wt% of Y2Ba1Cu1O5 (Y211) phase, in order to investigate anomalous paramagnetic moments observed during the experiments. FC magnetic relaxation experiments were performed under controlled conditions, such as cooling rate and temperature. Magnetic fields up to 5T were applied parallel to the ab plane and along the c-axis. Our results are associated with the paramagnetic Meissner effect (PME), characterized by positive moments during FC experiments, and related to the magnetic flux compression into the samples. After different attempts our experimental data could be adequately fitted by an exponential decay function with different relaxation times. We discuss our results suggesting the existence of different and preferential flux dynamics governing the anomalous FC paramagnetic relaxation in different time intervals. This work is one of the first attempts to interpret this controversial effect in a simple analysis of the pinning mechanisms and flux dynamics acting during the time evolution of the magnetic moment. However, the results may be useful to develop models to explain this interesting and still misunderstood feature of the paramagnetic Meissner effect.

  15. Studies on Oxygen Characteristics of YBa2Cu3O7-x and Its Applications to Air Separation and Gas Purification

    Institute of Scientific and Technical Information of China (English)

    Yang Delin; Mo Jiong; Lu Hongxia; Guo Yiqun; Gao Zhishuang; Hu Xing

    2005-01-01

    Oxygen diffusion and oxygen selective adsorption properties of rare earths material YBa2Cu3O7-x (YBCO) were investigated by thermogravimetric, oxygen static adsorption and selectivity adsorption experiments. The results show that YBCO is a very good deoxidizing material. The oxygen desorption of YBCO begins remarkably at about 400 ℃, mass loss can arrive at 1.2% of its original quantity at 800 ℃. Oxygen can be completely absorbed back into the sample again when temperature descends to 400 ℃. The oxygen adsorption selectivity, reproducibility and oxygen adsorption under very low oxygen partial pressure make the material desirable for air separation and gas purification. High purity nitrogen gas was produced with the YBCO molecular sieves in the air separation and gas purification experiments. 0.017 m3 of high purity nitrogen (>99.9999%) can be obtained with 1 kg YBCO molecular sieve in one cycle. As a deoxidant, an obvious advantage of YBCO is that no hydrogen is needed in its applications.

  16. Decoupling and tuning competing effects of different types of defects on flux creep in irradiated YBa2Cu3O7-δ coated conductors

    Science.gov (United States)

    Eley, S.; Leroux, M.; Rupich, M. W.; Miller, D. J.; Sheng, H.; Niraula, P. M.; Kayani, A.; Welp, U.; Kwok, W.-K.; Civale, L.

    2017-01-01

    YBa2Cu3O7-δ coated conductors (CCs) have achieved high critical current densities (J c) that can be further increased through the introduction of additional defects using particle irradiation. However, these gains are accompanied by increases in the flux creep rate, a manifestation of competition between the different types of defects. Here, we study this competition to better understand how to design pinning landscapes that simultaneously increase J c and reduce creep. CCs grown by metal organic deposition show non-monotonic changes in the temperature-dependent creep rate, S(T). Notably, in low fields, there is a conspicuous dip to low S as the temperature (T) increases from ˜20 to ˜65 K. Oxygen-, proton-, and Au-irradiation substantially increase S in this temperature range. Focusing on an oxygen-irradiated CC, we investigate the contribution of different types of irradiation-induced defects to the flux creep rate. Specifically, we study S(T) as we tune the relative density of point defects to larger defects by annealing both an as-grown and an irradiated CC in O2 at temperatures T A = 250 °C-600 °C. We observe a steady decrease in S(T > 20 K) with increasing T A, unveiling the role of pre-existing nanoparticle precipitates in creating the dip in S(T) and point defects and clusters in increasing S at intermediate temperatures.

  17. Optimization of BaZrO3 concentration as secondary phase in superconducting YBa2Cu3O7 for high current applications

    Science.gov (United States)

    Malik, Bilal A.; Malik, Manzoor A.; Asokan, K.

    2016-04-01

    We report the superconducting state properties of YBa2Cu3O7 (YBCO) on introduction of BaZrO3 (BZO) as a secondary phase. YBCO+xBZO (x= 0, 2, 4, 6, and 10 wt%) composite samples were prepared by solid state reaction method and characterized for structural, morphological and superconducting properties. X-ray diffraction confirms the increased crystallinity and images of scanning electron microscopy measurement show an increase in both grain size and grain connectivity on addition of BZO in YBCO. These effects are well pronounced in an applied magnetic field. Critical current density, JC, as well as the pinning force peaks at 4% of BZO concentration showed significant difference. A three-fold enhancement in JC and a six-fold enhancement in pinning force were observed at this optimum BZO concentration. This has been attributed to the pinning of flux lines in YBCO due to introduction of BZO as a secondary phase. These results show that this composite has potential application in high current applications.

  18. High Critical Current Density of YBa2Cu3O7-x Superconducting Films Prepared through a DUV-assisted Solution Deposition Process.

    Science.gov (United States)

    Chen, Yuanqing; Bian, Weibai; Huang, Wenhuan; Tang, Xinni; Zhao, Gaoyang; Li, Lingwei; Li, Na; Huo, Wen; Jia, Jiqiang; You, Caiyin

    2016-12-01

    Although the solution deposition of YBa2Cu3O7-x (YBCO) superconducting films is cost effective and capable of large-scale production, further improvements in their superconductivity are necessary. In this study, a deep UV (DUV) irradiation technique combined with a low-fluorine solution process was developed to prepare YBCO films. An acrylic acidic group as the chelating agent was used in the precursor solution. The acrylic acidic group was highly sensitive to DUV light at 254 nm and significantly absorbed UV light. The coated gel films exposed to DUV light decomposed at 150 °C and copper aggregation was prevented. The UV irradiation promoted the removal of the carbon residue and other by-products in the films, increased the density and enhanced the crystallinity and superconductivity of the YBCO films. Using a solution with F/Ba = 2, YBCO films with thicknesses of 260 nm and enhanced critical current densities of nearly 8 MA/cm(2) were produced on the LaAlO3 (LAO) substrates.

  19. High Critical Current Density of YBa2Cu3O7‑x Superconducting Films Prepared through a DUV-assisted Solution Deposition Process

    Science.gov (United States)

    Chen, Yuanqing; Bian, Weibai; Huang, Wenhuan; Tang, Xinni; Zhao, Gaoyang; Li, Lingwei; Li, Na; Huo, Wen; Jia, Jiqiang; You, Caiyin

    2016-12-01

    Although the solution deposition of YBa2Cu3O7‑x (YBCO) superconducting films is cost effective and capable of large-scale production, further improvements in their superconductivity are necessary. In this study, a deep UV (DUV) irradiation technique combined with a low-fluorine solution process was developed to prepare YBCO films. An acrylic acidic group as the chelating agent was used in the precursor solution. The acrylic acidic group was highly sensitive to DUV light at 254 nm and significantly absorbed UV light. The coated gel films exposed to DUV light decomposed at 150 °C and copper aggregation was prevented. The UV irradiation promoted the removal of the carbon residue and other by-products in the films, increased the density and enhanced the crystallinity and superconductivity of the YBCO films. Using a solution with F/Ba = 2, YBCO films with thicknesses of 260 nm and enhanced critical current densities of nearly 8 MA/cm2 were produced on the LaAlO3 (LAO) substrates.

  20. Optimization of BaZrO3 concentration as secondary phase in superconducting YBa2Cu3O7 for high current applications

    Directory of Open Access Journals (Sweden)

    Bilal A. Malik

    2016-04-01

    Full Text Available We report the superconducting state properties of YBa2Cu3O7 (YBCO on introduction of BaZrO3 (BZO as a secondary phase. YBCO+xBZO (x= 0, 2, 4, 6, and 10 wt% composite samples were prepared by solid state reaction method and characterized for structural, morphological and superconducting properties. X-ray diffraction confirms the increased crystallinity and images of scanning electron microscopy measurement show an increase in both grain size and grain connectivity on addition of BZO in YBCO. These effects are well pronounced in an applied magnetic field. Critical current density, JC, as well as the pinning force peaks at 4% of BZO concentration showed significant difference. A three-fold enhancement in JC and a six-fold enhancement in pinning force were observed at this optimum BZO concentration. This has been attributed to the pinning of flux lines in YBCO due to introduction of BZO as a secondary phase. These results show that this composite has potential application in high current applications.

  1. Field dependence of resistance transitions in thin films of YBA 2CU 3O 7 and YBA 2CU 4O 8

    Science.gov (United States)

    Berghuis, P.; Guo, S. Q.; Van der Slot, A. L. F.; Dam, B.; Stollman, G. M.; Kes, P. H.

    1989-12-01

    Preferentially oriented thin films of YBa 2Cu 3O 7 (123) and YBa 2Cu 4O 8 (248) with the c-axis perpendicular to the substrate have been prepared by e-gun evaporation from Y, BaF 2 and Cu. Critical current and resistance transition measurements have been carried out in magnetic fields parallel to the c-axis. The results will be analysed in terms of a model for thermally activated flux flow combined with two models for flux pinning, one in which the pinning is predominantly caused by twin boundaries and a second in which pinning by dislocations is considered. The resistance broadening in the 248 is well described by the model with dislocation pinning. The B c2 (T) values obtained from the fits compare well with estimates from the fluxflow resistivity and a kink in the resistance vs field curves. The slope of B c2 at T c is 0.37 T/K, a factor four smaller than in the 123.

  2. Growth of YBa2Cu3O7-δ Crystals By Alumina Crucibles Coated Protective Layer of BaZrO3%利用BaZrO3涂层Al2O3坩锅生长YBa2Cu3O7-δ单晶体

    Institute of Scientific and Technical Information of China (English)

    寇庆红; 刘海林; 汤五丰; 余祖兴; 熊锐; 石兢

    2001-01-01

    在常规Al2O3刚玉坩锅内表面制备BaZrO3保护层的方法生长YBa2Cu3O7-δ高温超导单晶.实验结果显示,在晶体生长过程中,这种BaZrO3薄层确实可以有效地阻止坩锅材料中的Al向Y2O3-BaO-CuO溶液的扩散,且生长出的YBa2Cu3O7-δ晶体中,在仪器精度范围内没有发现Al杂质的存在.刚刚生长没有进行氧退火处理样品具有四方对称性,晶格常数分别为a=0.385 86 nm,b=0.385 83 nm,c=1.179 31 nm,α=β=γ=90°.简单氧气氛下热处理后,超导转变温度由45 K提高到84 K.%We develop a novel technique of the solution for the crucible corrosion problem during the single crystal growth of high-Tc superconducting YBa2Cu3O7-δ, i.e. coating a layer of BaZrO3 on Al2O3 crucibles to handle the diffusion of Al to melt of Y2O3-BaO-CuO. The coating material is a polymer-compound containing BaZrO3. The experimental results show that the contamination from Al2O3 crucibles can be greatly reduced by this kind of coating BaZrO3 layer. The effectiveness of the BaZrO3 layer is found to depend on the sintering conductions. For the crystals grown in the Al2O3 Crucibles with a coated BaZrO3 layer prepared at a high sintering temperature (1 400~1 500 °C) and a long sintering time (48 h), the composition YBa2Cu3O7-δ is confirmed and the aluminum contamination is not detectable. The as-grown crystals show tetragonal symmetry with the lattice constants: a=0.385 86 nm, b=0.385 83 nm, c=1.179 31 nm; and α=β=γ=90°. After oxygen annealing, the superconducting transition temperature Tc of the crystal increases from 47 K to 84 K.

  3. Interdiffusion studies on high-Tc superconducting YBa2Cu3O7-δ thin films on Si(111) with a NiSi2/ZrO2 buffer layer

    DEFF Research Database (Denmark)

    Aarnink, W.A.M.; Blank, D.H.A.; Adelerhof, D.J.

    1991-01-01

    Interdiffusion studies on high-T(c) superconducting YBa2Cu3O7-delta thin films with thickness in the range of 2000-3000 angstrom, on a Si(111) substrate with a buffer layer have been performed. The buffer layer consists of a 400 angstrom thick epitaxial NiSi2 layer covered with 1200 angstrom...... x 10(4) A/cm2. With X-ray analysis (XRD), only c-axis orientation has been observed. The interdiffusion studies, using Rutherford backscattering spectrometry (RBS) and scanning Auger microscopy (SAM) show that the ZrO2 buffer layer prevents severe Si diffusion to the YBa2Cu3O7-delta layer, the Si...... substrate and Ni segregation to the surface of the ZrO2 layer may be expected. From the results we may conclude that, when using laser ablation, it is well possible to grow polycrystalline, c-axis-oriented high-T(c) superconducting YBa2Cu3O7-delta thin films on a Si(111) substrate with a NiSi2/ZrO2 buffer...

  4. Effect of particle size on the flux pinning properties of YBa2Cu3O7-δ thin films containing fine Y2O3 nanoprecipitates

    Science.gov (United States)

    Yamasaki, H.

    2016-06-01

    The magnetic-field angle dependence of the critical current density, J c(H, θ), was measured at various temperatures in co-evaporated YBa2Cu3O7-δ (YBCO) thin films. The YBCO films showed volcano-shaped J c(θ) peaks around H//ab, and J c(θ) peaks around H//c were not observed. Film A, deposited at a lower temperature than the commercial standard film B, showed lower J c values at high temperatures (T ≥ 60 K) compared with film B, although film A showed higher J c at T = 20 K. Plan-view transmission electron microscope observations revealed that films A and B contained a high density of fine Y2O3 nanoprecipitates. The modes in the distribution of their cross-sectional areas are 10-20 nm2 in film A and 20-30 nm2 in film B. Because of the smaller particle size, film A showed lower J c at high temperatures owing to the smaller elementary pinning force, f p, but showed higher J c at 20 K where the temperature-dependent coherence length ξ ab (T) was short (˜2 nm) and comparable with the radius of Y2O3 nanoparticles. Film A showed anisotropic scaling behavior at T = 70-80 K, and the T dependence of J c followed ˜(1 - T/T c) m (1 + T/T c)2 (m ≈ 2.5), which was expected from a simple flux-pinning model.

  5. Nanorod Self-Assembly in High Jc YBa2Cu3O7−x Films with Ru-Based Double Perovskites

    Directory of Open Access Journals (Sweden)

    Javier F. Baca

    2011-11-01

    Full Text Available Many second phase additions to YBa2Cu3O7−x (YBCO films, in particular those that self-assemble into aligned nanorod and nanoparticle structures, enhance performance in self and applied fields. Of particular interest for additions are Ba-containing perovskites that are compatible with YBCO. In this report, we discuss the addition of Ba2YRuO6 to bulk and thick-film YBCO. Sub-micron, randomly oriented particles of this phase were found to form around grain boundaries and within YBCO grains in bulk sintered pellets. Within the limits of EDS, no Ru substitution into the YBCO was observed. Thick YBCO films were grown by pulsed laser deposition from a target consisting of YBa2Cu3Oy with 5 and 2.5 mole percent additions of Ba2YRuO6 and Y2O3, respectively. Films with enhanced in-field performance contained aligned, self-assembled Ba2YRuO6 nanorods and strained Y2O3 nanoparticle layers. A 0.9 µm thick film was found to have a self-field critical current density (Jc of 5.1 MA/cm2 with minimum Jc(Q, H=1T of 0.75 MA/cm2. Conversely, Jc characteristics were similar to YBCO films without additions when these secondary phases formed as large, disordered phases within the film. A 2.3 µm thick film with such a distribution of secondary phases was found to have reduced self-field Jc values of 3.4 MA/cm2 at 75.5 K and Jc(min, Q, 1T of 0.4 MA/cm2.

  6. Crossover from magnetostatic to exchange coupling in La0.67Ca0.33MnO3/YBa2Cu3O7/La0.67Ca0.33MnO3 heterostructures

    Science.gov (United States)

    Porwal, Rajni; Gupta, Anurag; Budhani, R. C.

    2016-12-01

    The influence of YBa2Cu3O7 (YBCO) superconductor layer (S-layer) with a varying thickness d YBCO  =  20-50 nm on the magnetic coupling between two La0.67Ca0.33MnO3 (LCMO) ferromagnet layers (F-layer, thickness d LCMO  =  50 nm) in F/S/F heterostructures (HSs) was investigated by measuring global magnetization (M) in a temperature (T) range  =  2-300 K and a magnetic field (H) range  =  0-10 kOe. All the HSs were superconducting with the critical temperature (T C) decreasing from  =  78 to 36 K with decrease in d YBCO, whereas the ferromagnetic ordering temperature T M  =  250 K did not change much. Systematically measured M-H loops of all HSs at both T  >  T C and T  YBCO  ⩾  30 nm, (b) the magnitude and magnetic field corresponding to the additional two switching steps show characteristic evolution with T and d YBCO; and (c) the HS with d YBCO  =  20 nm shows radically different behaviour, where the two step magnetic reversal above T C continues to persist below T C and converts into a single step reversal at T \\ll T C. The first two results indicate magnetostatic coupling between the magnetic domains and the vortices across the two F/S interfaces resulting in reversal dynamics different from that deep within the LCMO layers. Whereas, the result ‘c’ reveals indirect exchange coupling between LCMO layers through the superconducting YBCO layer, which is a clear experimental evidence of coexistence of ferromagnetism and superconductivity in nm scale F/S/F HSs expected theoretically by Sa de Melo (2003 Physica C 387 17-25).

  7. Preparation of YBa2Cu3O7-δsuperconducting thick film on Ni-W tapes via electrophoretic deposition%电泳沉积法在Ni-W基带上制备YBa2Cu3O7-δ超导厚膜

    Institute of Scientific and Technical Information of China (English)

    罗清威; 李英楠; 李凤华; 樊占国

    2014-01-01

    The preparation of La0.4Sr0.6TiO3 (LSTO) buffer layer and YBa2Cu3O7-δ(YBCO) superconducting thick film by a low cost technology was studied. The crystal orientation of LSTO and YBCO films was detected by X-ray diffraction, the conductivity of LSTO film and superconductivity of YBCO coating were investigated by standard four-probe method. Excellent in-plane alignment, smooth and dense LSTO buffer layer was successfully prepared on textured Ni-W taps by metal organic deposition (MOD). YBCO thick film was fabricated by electrophoretic deposition (EPD). The effects of applied voltage and deposition time on the YBCO coatings properties were studied. The results show that the critical current density of the YBCO coating deposited under 138 V for 35 min was about 600 A/cm2 (0 T, 77 K).%研究La0.4Sr0.6TiO3(LSTO)缓冲层和YBa2Cu3O7-δ(YBCO)超导厚膜的低成本制备技术。采用X射线衍射分析LSTO和YBCO膜的晶体取向,利用标准四引线法分析LSTO薄膜的导电性能和YBCO厚膜的超导性能。首先采用金属有机沉积法(MOD)成功在Ni-W基带上制备取向较好、表面光滑致密的LSTO缓冲层;然后采用电泳沉积(EPD)技术制备YBCO超导厚膜。研究电泳沉积电压和沉积时间对YBCO涂层性能的影响。结果表明:138 V下电泳沉积35 min所制备的YBCO涂层,临界电流密度可达600 A/cm2(0 T,77 K)。

  8. THE EPITAXIALLY GROWTH AND GD DOPING EFFECT OF YBa2Cu3O7-δ SUPERCONDUCTING THIN FILMS BY LOW-FLUORINE MOD METHOD%低氟MOD法YBa2Cu3O7-δ超导薄膜外延生长及Gd掺杂效应

    Institute of Scientific and Technical Information of China (English)

    孙梅娟; 刘志勇; 白传易; 李敏娟; 郭艳群; 蔡传兵

    2013-01-01

    A series of Y1-xGdxBa2Cu3O7-δ(x=0,0.23,0.5,0.77,1)superconducting thin films were prepared on Hastelloy substrate by low fluorine MOD process.The X ray diffraction (XRD) analysis showed that the epitaxial growth of Gd doped YBa2Cu3O7-δ superconducting thin film is easier to form.The pole figures showed the he inplane orientation of FWHM of Y1-xGdxBa2Cu3O7-δ changes nonlinearly with increasing the nominal amount of Gddoping.The doped films have higher performance and better surface morphology,compared with pure YBCO thin films.Appropriate doping may lead to the enhancement of critical current density in 77K,self field,which may due to modulation structure formed by doping can be effective flux pinning centers.%通过低氟金属有机物沉积方法(MOD)在哈氏合金基底上制备了一系列Y1-xGdxBa2Cu3O7-δ(x=0,0.23,0.5,0.77,1)超导薄膜.X光衍射(XRD)分析表明:Gd3+掺杂使YBa2Cu3 O7-δ超导薄膜外延生长易于形成,X光极图显示,随掺杂量增加,其面内取向半高宽随名义掺杂量的增加呈非线性变化.与纯YBCO相比,掺杂薄膜具有更好的表面形貌.Gd3+掺杂的样品的超导性能均优于纯YBCD的性能.在77K、自场下适当掺杂量有助于超导薄膜临界电流密度的提高,这可能由于掺杂形成的调制结构可以作为磁通钉扎中心.

  9. Co掺杂对YBa2Cu3O7-δ微观结构及透氧性能的影响%Effect of Co Doping on the Microstructure and Oxygen Permeation Property of YBa2Cu3O7-δ

    Institute of Scientific and Technical Information of China (English)

    胡捷; 郝好山; 杨德林; 郭益群; 胡行

    2005-01-01

    利用XRD、TG和标准四电极法研究了YBa2Cu3-xCoxO7-δ(x=0~0.5)混合导体的结构和性能,稳态法考察了Co掺杂量对膜材料透氧性能的影响.实验表明:当x<0.05时,Co掺杂可以提高透氧量,在x=0.05时达到最大值(940℃,厚1.4mm的膜材料透氧量为0.53ml/min·cm2).当x>0.05透氧量开始减小,当x>0.01后,透氧量下降到比未掺杂的YBa2Cu3O7-δ还要小.从晶格结构与Co掺杂量的关系及Co-O键能与Cu-O键能的差别对透氧量随Co掺杂量的变化进行了讨论.

  10. Structural and electrical characterization of ultra-thin SrTiO3 tunnel barriers grown over YBa2Cu3O7 electrodes for the development of high Tc Josephson junctions.

    Science.gov (United States)

    Félix, L Avilés; Sirena, M; Guzmán, L A Agüero; Sutter, J González; Vargas, S Pons; Steren, L B; Bernard, R; Trastoy, J; Villegas, J E; Briático, J; Bergeal, N; Lesueur, J; Faini, G

    2012-12-14

    The transport properties of ultra-thin SrTiO(3) (STO) layers grown over YBa(2)Cu(3)O(7) electrodes were studied by conductive atomic force microscopy at the nano-scale. A very good control of the barrier thickness was achieved during the deposition process. A phenomenological approach was used to obtain critical parameters regarding the structural and electrical properties of the system. The STO layers present an energy barrier of 0.9 eV and an attenuation length of 0.23 nm, indicating very good insulating properties for the development of high-quality Josephson junctions.

  11. Growth of large-domain YBa 2Cu 3O x with new seeding crystals of CaNdAlO 4 and SrLaGaO 4

    Science.gov (United States)

    Shi, Donglu; Lahiri, K.; Hull, J. R.; LeBlanc, D.; LeBlanc, M. A. R.; Dabkowski, Antoni; Chang, Y.; Jiang, Y.; Zhang, Z.; Fan, H.

    1995-02-01

    Single crystals of CaNdAlO 4 and SrLaGaO 4 were used as seeds to grow large domains of YBa 2Cu 3O x for levitation applications. These crystals have high melting temperatures (> 1500°C) and similar lattice structures to that of YBa 2Cu 3O x. In a seeded melt-texturing method developed previously, the single crystals of CaNdAlO 4, SrLaGaO 4, and NdBa 2Cu 3O x were used as seeds for comparison. After melt processing, scanning electron microscopy analysis did not reveal any major differences in all these seeded melt-textured samples. However, the levitation forces in the samples seeded with single crystals of CaNdAlO 4 and SrLaGaO 4 increased considerably compared to that of the sample seeded with NdBa 2Cu 3O x. A model is proposed to describe the domain growth mechanism during seeded melt processing.

  12. Magneto-transport properties of La0.75Ca0.15Sr0.1MnO3 with YBa2Cu3O7-δ addition

    Science.gov (United States)

    Zghal, E.; Koubaa, M.; Berthet, P.; Sicard, L.; Cheikhrouhou-Koubaa, W.; Decorse-Pascanut, C.; Cheikhrouhou, A.; Ammar-Merah, S.

    2016-09-01

    We report the structural, magnetic, electrical and magentoresistance properties of (La0.75Ca0.15Sr0.1MnO3)1-x(YBa2Cu3O7-δ)x (with x=0, 0.025, 0.05, 0.075, 0.1, 0.2, and 0.3) composites synthesized through sol-gel method. The powder X-ray diffraction patterns indicate no evidence of reaction between La0.75Ca0.15Sr0.1MnO3 (LCSMO) and YBa2Cu3O7-δ (YBCO). The addition of YBCO induces a reduction of the total magnetization while the Curie temperature remains almost constant (∼312 K). The behavior of the electrical resistivity evolves differently depending on the doping level. Above the paramagnetic-insulating transition temperature the resistivity data were best-fitted by using the adiabatic small polaron and variable range hopping models. Ferromagnetic-metallic regime in the composites seems to emanate from the electron-phonon or/and electron-magnon scattering processes. With increasing the YBCO doping content (until x=0.1), the positive magnetoresistance (MR) of YBCO phase dominates the negative MR of LCSMO one, which gives rise to the decreasing of MR of the composites.

  13. Metal-organic deposition of YBa2Cu3O and Bi2Sr2Ca1Cu2O films on various substrates starting from different fluorine-free metallorganic compounds

    Indian Academy of Sciences (India)

    Paola Benzi; Elena Bottizzo; Chiara Demaria; Nicoletta Rizzi

    2007-11-01

    YBa2Cu3O (Y-123 ) and Bi2Sr2Ca1Cu2O (Bi-2212) films on various substrates have been prepared by Metal-Organic Deposition starting from different metallorganic fluorine-free compounds and using a very simple instrumentation. The processing conditions include a rapid pyrolysis step in air and an annealing step in oxygen for Y-123 and in air for Bi-2212. The films obtained have been characterized by X-ray diffraction (XRD) and the formation of a superconducting phase of Y-123 or Bi-2212 was confirmed measuring the critical temperature (c) with Ac-susceptibility and resistive measurements. Microstructure and final cationic ratios have been studied by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS).

  14. Evidence for a pseudogap in underdoped Bi{2}Sr_{2}CaCu{2}O{8+delta} and YBa2Cu3O6.50 from in-plane optical conductivity measurements.

    Science.gov (United States)

    Hwang, J; Carbotte, J P; Timusk, T

    2008-05-02

    The real part of the in-plane optical self-energy data in underdoped Bi_{2}Sr_{2}CaCu_{2}O_{8+delta} (Bi-2212) and ortho II YBa2Cu3O6.5 contains new and important information on the pseudogap. Using a theoretical model approach, a major new finding is that states lost below the pseudogap Delta_{pg} are accompanied by a pileup of states just above this energy. The pileup along with a sharp mode in the bosonic spectral function leads to an unusually rapid increase in the optical scattering rate as a function of frequency and a characteristically sloped peak in the real part of the optical self-energy. These features are not found in optimally doped and overdoped samples and represent the clearest signature so far in the in-plane optical conductivity of the opening of a pseudogap.

  15. Photogenerated carriers in La 2CuO 4, YBa 2Cu 3O 7-δ, and Tl 2Ba 2Ca (1-x)Gd xCu 2O 8: Polarizability-induced pairing of polarons

    Science.gov (United States)

    Foster, C. M.; Heeger, A. J.; Kim, Y. H.; Stucky, G.; Herron, N.

    1989-12-01

    Photoinduced absorption measurements have been carried out on Tl 2Ba 2Ca (1-x)Gd xCu 2O 8 (x=0.02), YBa 2Cu 3O 7-δ (δ=0.75) and La 2CuO 4. The observation of infrared active vibrational (IRAV) modes and an associated electronic transition with common intensity and temperature dependence indicate the formation of self-localized polarons as photogenerated carriers. The photoinduced electronic transition deep in the infrared implies a major shift of oscillator strength leading to a large local polarizability in the vicinity of the polaron. We suggest that the enhanced local polarizability may provide an important mechanism for pairing.

  16. Study of superconducting a-axis oriented YBa 2Cu 3O 7-δ thin films deposited on Y 2O 3/YSZ/Si with PrBa 2Cu 3O 7-δ seed layer

    Science.gov (United States)

    Rosova, Alica; Chromik, Stefan; Benacka, Stefan; Wuyts, Bart

    1995-02-01

    Epitaxial a-axis oriented YBa 2Cu 3O 7-δ (YBCO) superconducting thin films have been grown by off-axis magnetron sputtering on Y 2O 3/YSZ/Si substrates with PrBa 2Cu 3O 7-δ (PBCO) seed layer. The YBCO thin films were deposited immediately after the on-axis magnetron sputtering of PBCO. XRD analyses show that the a-axis volume fraction for 120 nm thick YBCO films varies with substrate temperature during PBCO deposition and its maximum value is higher than 98%. The TEM study shows the clear dependence between the character of the R- T dependence and the microstructure of our YBCO thin films, which varies with the change of the volume ratio of a-axis to c-maxis oriented YBCO.

  17. Nonlinear ultrafast dynamics of high temperature YBa2Cu3O7–δ superconductors probed with THz pump / THz probe spectroscopy

    Directory of Open Access Journals (Sweden)

    Chen H. T.

    2013-03-01

    Full Text Available High power THz pulses induce near transparency in superconductive YBCO thin films below the critical temperature. THz pump/THz probe measurements reveal a decay of the induced transparency on the time scale of a few picoseconds.

  18. Synthesis and characterization of YBa2Cu3O7(Y123) via sol-gel method for development of superconducting quantum interference device magnetometer.

    Science.gov (United States)

    Yahya, Noorhana; Zakariah, Muhammad Hanis

    2012-10-01

    Electromagnetic (EM) waves transmitted by Horizontal Electric Dipole (HED) source to detect contrasts in subsurface resistivity termed Seabed Logging (SBL) is now an established method for hydrocarbon exploration. However, currently used EM wave detectors for SBL have several challenges including the sensitivity and its bulk size. This work exploits the benefit of superconductor technology in developing a magnetometer termed Superconducting Quantum Interference Device (SQUID) which can potentially be used for SBL. A SQUID magnetometer was fabricated using hexagon shape-niobium wire with YBa2Cu37O, (YBCO) as a barrier. The YBa2Cu37O, samples were synthesized by sol-gel method and were sintered using a furnace and conventional microwave oven. The YBCO gel was dried at 120 degrees C in air for 72 hours. It was then ground and divided into 12 parts. Four samples were sintered at 750 degrees C, 850 degrees C, 900 degrees C, and 950 degrees C for 12 hours in a furnace to find the optimum temperature. The other eight samples were sintered in a microwave with 1100 Watt (W) with a different sintering time, 5, 15, 45 minutes, 1 hour, 1 hour 15 minutes, 1 hour 30 minutes, 1 hour 45 minutes and 2 hours. A DEWAR container was designed and fabricated using fiberglass material. It was filled with liquid nitrogen (LN2) to ensure the superconducting state of the magnetometer. XRD results showed that the optimum sintering temperature for the formation of orthorhombic Y-123 phase was at 950 degrees C with the crystallite size of 67 nm. The morphology results from Field Emission Scanning Electron Microscopy (FESEM) showed that the grains had formed a rod shape with an average diameter of 60 nm. The fabricated SQUID magnetometer was able to show an increment of approximately 249% in the intensity of the EM waves when the source receiver offset was one meter apart.

  19. Material Specific Rational Design of A1B2C3O7 High-Tc Superconductors without Copper [A, B, C = Cations

    Science.gov (United States)

    Isikaku-Ironkwe, O'paul; Schaffer, Michael J.

    Soon after the discovery of YBa2Cu3O7 with Tc = 93K, a similar structured system with Ag replacing Cu was discovered with a Tc = 50K. Also, the discovery of Ba0 . 6 K0 . 4 BiO3 with Tc = 30K indicated that Cu was not indispensable for high temperature superconductivity (HTSC). Latter, the discoveries of the Pnictide and Chalcogenide high-Tc superconductors confirmed those earlier experimental indications. Using our recently developed Material Specific Characterization Dataset (MSCD) model for analysis and design of superconductors, we have computed many designs that satisfy the MSCD characteristics of YBa2Cu3O7 as a design model. Our design recognizes the valence state characteristics that make YBa2Cu3O6 a semiconductor, while YBa2Cu3O7is a superconductor. Here we present ten material specific rational design examples of potential A1B2C3O7 HTSCs without Cu, using the YBa2Cu3O7 design model. This MSCD design model opens the possibility for search and discovery of high-Tc oxide superconductor systems without copper.

  20. Kinetics of diffuesion-controlled oxygen ordering in a lattic-gas model of YBa2Cu3O7-δ

    DEFF Research Database (Denmark)

    Andersen, Jørgen Vitting; Bohr, Henrik; Mouritsen, Ole G.

    1990-01-01

    Nonequilibrium properties of oxygen ordering in high-Tc superconductors of the Y-Ba-Cu-O type are studied via computer simulation of an anisotropic two-dimensional lattice-gas model in which the ordering processes are controlled by diffusion across the sample edges. With a view to designing optimal...

  1. Figure of Merit for Detectors Based on Laser-Induced Thermoelectric Voltages in La1-xCaxMnO3 and YBa2Cu3O7-σ Thin Films

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-Yong; ZHANG Peng-Xiang; ZHANG Hui; LEE Wing-Kee

    2005-01-01

    @@ A figure ofmerit (FOM) Z = Up/тr, where Up is the peak voltage, and тr is the rise time of the laser-induced thermoelectric voltage (LITV) signal, is defined for photodetector based on the LITV and the influence of the parameters on FOM is analysed based on the time dependence of LITVs in La1-x CaxMnO3 (LCMO) and YBa2 Cu3 O7-σ(YBCO) thin films grown on vicinal-cut substrates. We find that the FOM increases as the photon penetration depth decreases, and linearly increases with the thermal diffusion constant D. To achieve the highest FOM, the film thickness d has to be controlled to an optimum value. We also find that the FOM is directly proportional to the laser absorption coefficient α0, the laser energy density per pulse E, the illuminated length of film l, sin(2α)[αis the vicinal-cut angle], the Seebeck coefficient anisotropy ( Sab - Sc), and is inversely proportional to the mass density p and the specific heat co.

  2. Aging Effect on Electrical Conductivity of Pure and Al-Doped YBa2Cu3O7−δ Single Crystals with a Given Topology of Planar Defects

    Directory of Open Access Journals (Sweden)

    Ruslan V. Vovk

    2013-01-01

    Full Text Available The conducting properties in the basal ab plane of pure and Al-doped YBa2Cu3O7-δ single crystals before and after long-time exposure in air atmosphere are investigated. It is shown that prolonged aging leads to an increase of the density of effective scattering centers for the normal carriers. The aluminum doping has been revealed to partially slowdown the degradation of the conducting properties in process of aging. The excess conductivity, Δσ(T, has been found to obey exponential dependence in the broad temperature range Tc

  3. Thermal expansion of Y 2Ba 4Cu 7O 15 in the temperature range 10-290 K, and comparison with YBa 2Cu 3O 7 and YBa 2Cu 4O 8

    Science.gov (United States)

    Alexandrov, O. V.; François, M.; Graf, T.; Yvon, K.

    1991-01-01

    The orthorhombic lattice parameters of superconducting Y 2Ba 4Cu 7O 15.28 ( Tc = 85.5 K) are measured as a function of temperature (10-290 K) to a precision of 1 × 10 -4 on a low-temperature Guinier X-ray powder diffractometer by using an internal standard. The thermal expansion is anisotropic (( a297 K- a10 K)/ a297 K = 17(2) × 10 -4, ( b297 K- b10 K)/ b297 K = 11(2) × 10 -4, ( c297 K- c10 K)/ c297 K = 34(2) × 10 -4) and intermediate between that of structurally related YBa 2Cu 3O 7 and YBa 2Cu 4O 8. It is attributed to anharmonic thermal vibrations of the CuO 2-planes and CuO single- and double-chains in the directions of vacant oxygen sites. No anomalous changes as a function of temperature are found within experimental resolution.

  4. The 2√2 a0 × √2 b0 × c0 herringbone phase of YBa 2Cu 3O 6 + x. No oxygen ordering but an alien oxide, BaCu 3O 4

    Science.gov (United States)

    Yakhou, F.; Plakhty, V.; Stratilatov, A.; Burlet, P.; Lauriat, J. P.; Elkaim, E.; Henry, J. Y.; Vlasov, M.; Moshkin, S.

    1996-02-01

    A synchrotron-radiation study has been carried out on a crystal of YBa 2Cu 3O 6 + x with a low oxygen content ( x = 0.15-0.20) to investigate the so-called 2√2 a0 × √2 b0 × c0 phase, attributed up to now to oxygen ordering in the YBCO CuO x layers. This crystal was grown from a flux and quenched from 900°C. It is shown that neither the ordering of CuOCu monomers in the herringbone-like scheme nor any other kind of oxygen ordering in the YBCO lattice can explain the observed reflections that actually correspond to the unit cell 2√2 a0 × √2 b0 × c ≈ c0/3. A structural model is proposed that gives a very good description of the diffraction pattern; it corresponds to a parasitic phase of formula BaCu 3O 4 that is characterized by a stacking of Cu 3O 4 layers connected by barium atoms and that probably grows by epitaxy upon the CuO 2 planes of YBCO.

  5. Several Microstrip-Based Conductor/Thin Film Ferroelectric Phase Shifter Designs Using (YBa2Cu3O(7 - Delta), Au)/SrTiO3/LaAlO3 Structures

    Science.gov (United States)

    VanKeuls, F. W.; Romanofsky, R. R.; Miranda, F. A.

    1998-01-01

    We have designed, fabricated, and tested several novel microstrip-base YBa2Cu3O7-delta/SrTiO3/LaAlO3 (YBCO/STO/LAO) and Au/SrTiO3ALO3 (Au/STO/LAO) phase shifters. The first design consists of eight coupled microstrip phase shifters (CMPS) in series. This design using YBCO achieved a relative insertion phase shift (Delta f) of 484 degrees with a figure of merit of 80 degrees/dB at Vdc = 375 V, 16 GHz, and 40 K. A Delta f of 290 degrees was observed while maintaining the insertion loss below 4.5 dB. At 77 K, a Delta of 420 degrees was obtained for this phase shifter at the same bias and frequency. Both results correspond to an effective coupling length of 0.33 cm. A second compact design, consisting of an Au meander line and a CMPS section was also tested. Of the two samples tested, the best showed a figure of merit of 43 degrees/dB with Delta f = 290 degrees and 6.8 dB loss, at 40 K, 10 GHz and 400 V. Experimental and modeling results on these circuits will be discussed in the context of potential applications.

  6. A study of planar structures formed on the modified Al2O3 surfaces determining the topology of superconducting elements during YBa2Cu3O7- d deposition

    Science.gov (United States)

    Masterov, D. V.; Pavlov, S. A.; Parafin, A. E.; Yunin, P. A.

    2016-06-01

    We investigate the structural and electrical properties of planar superconducting structures based on the YBa2Cu3O7- d (YBCO) epitaxial films obtained by preliminary modification of the substrate surface. A special master mask was formed on the substrates, so that, at the standard YBCO film deposition onto such a substrate, an insulator layer grew in the modified areas and a superconducting film, in the unmodified ones. Thus, the planar superconducting structure of a desired topology was formed, and the YBCO deposition finished the process. Using this technique, YBCO bridges with widths of 4, 10, and 50 μm on films of different thicknesses and a planar inductive coil were formed. The superconducting transition temperature of the bridges was about 90 K, and the critical current density at a temperature of 77 K was up to 3 MA/cm2. The Q factor of the planar inductive coil at a frequency of 85 MHz was 53000 at a temperature of 77 K.

  7. Structural and flux-pinning properties of laser ablated YBa 2Cu 3O 7-δ thin films: Effects of self-assembled CeO 2 nanodots on LaAlO 3 substrates

    Science.gov (United States)

    Haywood, Talisha; Oh, Sang Ho; Kebede, Abebe; Pai, Devdas M.; Sankar, Jag; Christen, David K.; Pennycook, Stephen J.; Kumar, Dhananjay

    2008-12-01

    Self-assembled nanodots of CeO 2 on (1 0 0) LaAlO 3 substrates, generated in situ by means of a pulsed laser deposition method prior to the deposition of YBa 2Cu 3O 7-δ (YBCO) films, have been used to modify the superconducting properties of resulting YBCO films. Structural characterization has indicated that CeO 2 layers grow via van der Merwe three-dimensional mode and the islands eventually acquire a pancake type of structure with lateral dimension several times larger than vertical dimension. The three-dimensional growth of CeO 2 islands with (1 0 0) preferred orientation is believed to be associated with its surface energy anisotropy. The magnetization versus temperature and magnetization versus field measurements and analysis have suggested that CeO 2 can affect the superconducting properties of YBCO films favorably or adversely depending on the density of CeO 2 nanodots on the substrate surfaces prior to the deposition of YBCO films.

  8. Measurement of Out-of-Plane Thermal Conductivity of Epitaxial YBa2Cu3O_{7-{δ }} Thin Films in the Temperature Range from 10 K to 300 K by Photothermal Reflectance

    Science.gov (United States)

    Murakami, Yusuke; Goto, Haruna; Taguchi, Yoshihiro; Nagasaka, Yuji

    2017-10-01

    We measured the out-of-plane ( c-axis) thermal conductivity of epitaxially grown YBa2Cu3O_{7-{δ }} (YBCO) thin films (250 nm, 500 nm and 1000 nm) in the temperature range from 10 K to 300 K using the photothermal reflectance technique. The technique enables us to determine the thermal conductivity perpendicular to a thin film on a substrate by curve fitting analysis of the phase lag between the thermoreflectance signal and modulated heating laser beam in the frequency range from 102 Hz to 106 Hz. The uncertainties of measured thermal conductivity of all samples were estimated to be within {± }9 % at 300 K, {± }12 % at 180 K, {± }16 % at 90 K and {± }20 % below 50 K. The experimental results show that the thermal conductivity is dependent on the thickness of the thin films across the entire temperature range. We also observed that the thermal conductivity of the present YBCO thin films showed T^{1.4} to T^{1.6} glass-like dependence below 50 K, even though the films are crystalline solids. In order to explain the reason for this temperature dependence, we attempted to analyze our results using phonon relaxation times for possible phonon scattering models, including stacking faults, grain boundary and tunneling states scattering models.

  9. Demagnetizing fields of crystallites and a method for measuring the thermodynamic fields of quasi-single-crystal and polycrystalline thin YBa2Cu3O7 - x disks

    Science.gov (United States)

    Rostami, Kh. R.

    2008-10-01

    The role of the demagnetizing fields of crystallites in HTSC samples is studied. An increase in the crystallite size is shown to suppress the intra-and intercrystalline critical currents of the sample in lower fields. The demagnetizing fields of crystallites are shown to be one of the main causes of the fact that the Bean model is invalid for HTSC samples. A method is proposed to measure the thermodynamic field of a superconductor; this method allows the first thermodynamic critical magnetic fields of the sample and its crystallites and “subcrystallites” to be measured with a high accuracy. The first thermodynamic critical magnetic fields are used to estimate the critical current density J c of the sample, crystallites, and subcrystallites.

  10. Low-temperature solid-state reaction of in situ growth of YBa2Cu3O7 - delta thin films by resistive evaporation

    Science.gov (United States)

    Azoulay, Jacob

    1992-12-01

    Thin films of Y-Ba-Cu-O were in situ prepared with the use of a simple conventional inexpensive vacuum system. No thickness monitor or control system is required. A pulverized mixture of Y, BaF2, and Cu constituents weighed in the atomic proportion was evaporated from resistively heated source onto a MgO substrate. The substrates temperature was then raised to 700 °C after evaporation. Oxygen was injected through a nozzle placed near the substrate surface, thus raising the pressure to about 8 Pa (60 mTorr). The film was kept at this stage for about 15 min, after which it was gradually cooled to room temperature and the pressure raised to atmospheric pressure. The obtained films with no further heat treatment were found to be superconductors with zero resistance at 85 K detected by four-probe dc measurements.

  11. Influence of calcium on transport properties, band spectrum and superconductivity of YBa2Cu3O(y) and YBa(1.5)La(0.5)Cu3O(y)

    Science.gov (United States)

    Gasumyants, V. E.; Vladimirskaya, E. V.; Patrina, I. B.

    1995-01-01

    The comparative investigation of transport phenomena in Y(1-x)Ca(x)Ba2Cu3O(y) (0 is less than x is less than 0.25; 6.96 is greater than y is greater than 6.87 and 6.73 is less than x is less than 6.53); Y(1-x)Ca(x)Ba(1.5)La(0.5)Cu3O(y) (0 is less than x is less than 0.5; 7.12 is greater than y is greater than 6.96) and YBa(2-x)La(x)Cu3O(y) (0 is less than x is less than 0.5; 6.95 is less than y is less than 7.21) systems have been carried out. The temperature dependencies of resistivity and thermopower have been measured. It was found that the S(T) dependencies take some additional features with Ca content increase. The results obtained have been analyzed on the basis of the phenomenological theory of electron transport in the case of the narrow conductive band. The main parameters of the band spectrum (the band filling with electrons degree and the total effective band width) have been determined. The dependencies of these from contents of substituting elements are discussed. Analyzing the results obtained simultaneously with the tendencies in oxygen content and critical temperature change we have confirmed the conclusion that the oxygen sublattice disordering has a determinant effect on band structure parameters and superconductive properties of YBa2Cu3O(y). The results obtained suggest that Ca gives rise to some peculiarities in band spectrum of this compound.

  12. Sm2O3掺杂Ce2O3的加入量对YBa2Cu3O7-δ界面性能的影响

    Institute of Scientific and Technical Information of China (English)

    夏红伟; 胡学飞

    2011-01-01

    Solid oxide fuel cell (SOFC) has many virtues such as high stability, long life, and low pollntion and so on, and is considered to be one of the green powers in twenty-one century. Currently, doped perovskite ABO3 materials are adopted as cathode material%固体氧化物燃料电池(SOFC)具有稳定性高、寿命长、污染低等优点,是二十一世纪的绿色能源之一。当前SOFC阴极通常采用掺杂的ABO3钙钛矿型材料。这类材料在高温下具有较高的导电率和催化活性,但中温化是SOFC的趋势,高温下常用的La(Sr)MnO3阴极材料在中温下性能下降,不能满足中温下电导率的要求。本论文尝试采用柠檬酸燃烧法来制备YBa2Cu3O7-δ,并在YBCO中加入一定量的Sm2O3掺杂的Ce2O3(SDC)作为SOFC的阴极材料,通过对阻抗分析,研究了SDC掺杂量、烧结温度等对该阴极材料性能的影

  13. Sm2O3掺杂Ce2O3的加入量对YBa2Cu3O7-δ界面性能的影响

    Institute of Scientific and Technical Information of China (English)

    夏红伟; 胡学飞

    2011-01-01

    固体氧化物燃料电池(SOFC)具有稳定性高、寿命长、污染低等优点,是二十一世纪的绿色能源之一.当前SOFC阴极通常采用掺杂的ABO3钙钛矿型材料.这类材料在高温下具有较高的导电率和催化活性,但中温化是SOFC的趋势,高温下常用的La(Sr)MnO3阴极材料在中温下性能下降,不能满足中温下电导率的要求.本论文尝试采用柠檬酸燃烧法来制备YBa2Cu3O7-δ,并在YBCO中加入一定量的Sm2O3掺杂的Ce2O3(SDC)作为SOFC的阴极材料,通过对阻抗分析,研究了SDC掺杂量、烧结温度等对该阴极材料性能的影响.实验结果表明:随着SDC的掺杂量x(0≤x≤50%)和烧结温度的升高,阴极材料的界面阻抗减小.在SDC的掺杂量为50%时,且在800℃下烧结得到的烧结体界面阻抗最小,其界面比电阻仅为0.1353ohm/c㎡(800℃).这标志着掺杂SDC的YBCO作为中温固体氧化物燃料电池的阴极材料时非常具有发展前景的.

  14. Magnetic flux annihilation waves in inhomogeneous high-temperature superconductors

    NARCIS (Netherlands)

    Rudnev, IA; Khodot, AE; Eremin, AV; Mikhailov, BP

    2004-01-01

    The process of magnetic field penetration into polycrystalline high-T-c superconductors of the YBa2Cu3O7 - x and Bi2Sr2Ca2Cu3O10 - x systems has been studied using traditional magnetooptical methods and scanning Hall probe microscopy. It is established that remagnetization of a sample is accompanied

  15. Development of a superconducting joint between a GdBa2Cu3O7-δ-coated conductor and YBa2Cu3O7-δ bulk: towards a superconducting joint between RE (Rare Earth) Ba2Cu3O7-δ-coated conductors

    Science.gov (United States)

    Jin, Xinzhe; Yanagisawa, Yoshinori; Maeda, Hideaki; Takano, Yoshiki

    2015-07-01

    We have started to develop a superconducting bridge joint between two GdBa2Cu3O7-δ (Gd123)-coated conductors, where both conductors are placed in an end-to-end arrangement on the surface of a melt-textured YBCO (including Y2BaCuO5 and YBa2Cu3O7-δ) bulk, which acts as a superconducting medium between the coated conductors. As a first step in the development, one half of the bridge joint assembly was modeled and investigated. Experimental results achieved are as follows: (a) the higher-melting-temperature textured Gd123-coated conductor acts as a seed for the melt texture of the YBa2Cu3O7-δ (Y123) bulk, and (b) the superconducting phase continues across the Y123/Gd123 boundary. The critical current of the joint model is 10 A, which is about 10% of the original Gd123-coated conductor, at 77 K in a self-magnetic field. These results are considered to be extensible to the superconducting bridge joint between the Gd123-coated conductors.

  16. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  17. Melting of the Abrikosov flux lattice in anisotropic superconductors

    Science.gov (United States)

    Beck, R. G.; Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.; Kogan, V. G.

    1992-01-01

    It has been proposed that the Abrikosov flux lattice in high-Tc superconductors is melted over a significant fraction of the phase diagram. A thermodynamic argument is provided which establishes that the angular dependence of the melting temperature is controlled by the superconducting mass anisotropy. Using a low-frequency torsional-oscillator technique, this relationship has been tested in untwinned single-crystal YBa2Cu3O(7-delta). The results offer decisive support for the melting proposal.

  18. Optical magnetic flux generation in superconductor

    Indian Academy of Sciences (India)

    Masayoshi Tonouchi

    2002-05-01

    The generation of the magnetic flux quanta inside the superconductors is studied as a new effect to destroy superconductivity using femtosecond (fs) laser. The vortices are successfully generated in the YBa2Cu3O7- thin film striplines by the fs laser. It is revealed that the vortex distribution in the strip reflects the fs laser beam profile.

  19. Line group techniques in description of the structural phase transitions in some superconductors

    Science.gov (United States)

    Meszaros, CS.; Balint, A.; Bankuti, J.

    1995-01-01

    The main features of the theory of line groups, and their irreducible representations are briefly discussed, as well as the most important applications of them. A new approach in the general symmetry analysis of the modulated systems is presented. It is shown, that the line group formalism could be a very effective tool in the examination of the structural phase transitions in High Temperature SUperconductors. As an example, the material YBa2Cu3O(7-x) is discussed briefly.

  20. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  1. Pulsed laser deposition growth of heteroepitaxial YBa2Cu3O7/La0.67Ca0.33MnO3 superlattices on NdGaO3 and Sr0.7La0.3Al0.65Ta0.35O3 substrates

    Science.gov (United States)

    Malik, V. K.; Marozau, I.; Das, S.; Doggett, B.; Satapathy, D. K.; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Schneider, C. W.; Marcelot, C.; Stahn, J.; Bernhard, C.

    2012-02-01

    Heteroepitaxial superlattices of [YBa2Cu3O7(n)/La0.67Ca0.33MnO3(m)]x (YBCO/LCMO), where n and m are the number of YBCO and LCMO monolayers and x the number of bilayer repetitions, have been grown with pulsed laser deposition on NdGaO3 (110) and Sr0.7La0.3Al0.65Ta0.35O3 (001). These substrates are well lattice matched with YBCO and LCMO and, unlike the commonly used SrTiO3, they do not give rise to complex and uncontrolled strain effects at low temperature. The growth dynamics and the structure have been studied in situ with reflection high-energy electron diffraction and ex situ with scanning transmission electron microscopy, x-ray diffraction, and neutron reflectometry. The individual layers are found to be flat and continuous over long lateral distances with sharp and coherent interfaces and with a well-defined thickness of the individual layer. The only visible defects are antiphase boundaries in the YBCO layers that originate from perovskite unit-cell height steps at the interfaces with the LCMO layers. We also find that the first YBCO monolayer at the interface with LCMO has an unusual growth dynamics and is lacking the CuO chain layer, while the subsequent YBCO layers have the regular Y-123 structure. Accordingly, the CuO2 bilayers at both the LCMO/YBCO and the YBCO/LCMO interfaces are lacking one of their neighboring CuO chain layers and, thus, half of their hole-doping reservoir. Nevertheless, from electric transport measurements on a superlattice with n=2 we obtain evidence that the interfacial CuO2 bilayers remain conducting and even exhibit the onset of a superconducting transition at very low temperature. Finally, we show from dc magnetization and neutron reflectometry measurements that the LCMO layers are strongly ferromagnetic.

  2. High-Tc superconductor coplanar waveguide filter

    Science.gov (United States)

    Chew, Wilbert; Bajuk, Louis J.; Cooley, Thomas W.; Foote, Marc C.; Hunt, Brian D.; Rascoe, Daniel L.; Riley, A. L.

    1991-01-01

    Coplanar waveguide (CPW) low-pass filters made of YBa2Cu3O(7-delta) (YBCO) on LaAlO3 substrates, with dimensions suited for integrated circuits, were fabricated and packaged. A complete filter gives a true idea of the advantages and difficulties in replacing thin-film metal with a high-temperature superconductor in a practical circuit. Measured insertion losses in liquid nitrogen were superior to the loss of a similar thin-film copper filter throughout the 0- to 9.5-GHz passband. These results demonstrate the performance of fully patterned YBCO in a practical CPW structure after sealing in a hermetic package.

  3. Study of High-Temperature Superconductor Diplexers for Satellite Communications

    Institute of Scientific and Technical Information of China (English)

    LIU Juan-xiu; YANG Kai; LUO Zheng-xiang; BU Shi-rong; NING Jun-song; ZHANG Tian-liang

    2005-01-01

    The high-temperature superconductor (HTSC) resonator and diplexer are simulated by full-wave tools.A newly developed miniature HTSC diplexer is designed and fabricated on double sided YBa2Cu3O7 (YBCO) film (YBCO/LaAlO3/YBCO), the thickness of which is 400 nm for YBCO and 0.5 mm for the LaAlO3. The measured results show a good agreement with the simulation. The volume and mass of the diplexers are greatly reduced by miniaturized configuration.

  4. U-Doped Y-Ba-Cu-O Melt-Processed Superconductor

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Large grain Y-Ba-Cu-O (YBCO) superconductors doped with various amounts of deplete d uranium oxide have been fabricated by top seeded melt growth (TSMG). The effec t of depleted UO2 on the large grain microstructure has been studied systemati cally in samples with and without added Pt. Addition of uranium oxide results in the formation of U-phase particles of dimensions of a few hundred nanometers w ith an approximately spherical morphology in the superconducting YBa2Cu3O 7-δ (Y-123) phase matrix. Addition of Y2O3 to the uran ium doped precursor powder, rather than Y-211, yields a significantly finer dis tribution of second phase particles. The chemical composition of the U-phase pa rticles, found in samples with no Pt addition, has been identified as Y2Ba4C u UOy, which exhibits paramagnetic behaviour. It has been confir med experimentally that this phase forms during the peritectic solidification pr ocess. Magnetic measurements show that U-doped melt processed YBCO exhibits imp roved critical current densities and trapped fields compared to un-doped material.

  5. Universal lower limit on vortex creep in superconductors

    Science.gov (United States)

    Eley, S.; Miura, M.; Maiorov, B.; Civale, L.

    2017-04-01

    Superconductors are excellent testbeds for studying vortices, topological excitations that also appear in superfluids, liquid crystals and Bose-Einstein condensates. Vortex motion can be disruptive; it can cause phase transitions, glitches in pulsars, and losses in superconducting microwave circuits, and it limits the current-carrying capacity of superconductors. Understanding vortex dynamics is fundamentally and technologically important, and the competition between thermal energy and energy barriers defined by material disorder is not completely understood. Specifically, early measurements of thermally activated vortex motion (creep) in iron-based superconductors unveiled fast rates (S) comparable to measurements of YBa 2Cu3O7-δ (refs ,,,,,). This was puzzling because S is thought to somehow correlate with the Ginzburg number (Gi), and Gi is significantly lower in most iron-based superconductors than in YBa 2Cu3O7-δ. Here, we report very slow creep in BaFe 2(As0.67P0.33)2 films, and propose the existence of a universal minimum realizable S ~ Gi1/2(T/Tc) (Tc is the superconducting transition temperature) that has been achieved in our films and few other materials, and is violated by none. This limitation provides new clues about designing materials with slow creep and the interplay between material parameters and vortex dynamics.

  6. Relaxation time of the Cooper pairs near Tc in cuprate superconductors

    Science.gov (United States)

    Ramallo, M. V.; Carballeira, C.; Viña, J.; Veira, J. A.; Mishonov, T.; Pavuna, D.; Vidal, F.

    1999-10-01

    It is first shown that the thermal fluctuation effects on the transport and on the thermodynamic observables above the superconducting transition may provide, when they are analyzed simultaneously and consistently, a powerful tool to access the relaxation time, τ0, of the Cooper pairs with wave vector k = 0 in high-temperature cuprate superconductors (HTSC). Then, we apply this procedure to optimally doped YBa2Cu3O7 - δ (Y-123) crystals. It is found that in this HTSC τ0 follows, within 20% accuracy, the BCS temperature behaviour and amplitude given by τ0 = πhbar/[8kB(T - Tc0)].

  7. Direct imaging by atomic force microscopy of surface-localized self-assembled monolayers on a cuprate superconductor and surface X-ray scattering analysis of analogous monolayers on the surface of water

    DEFF Research Database (Denmark)

    Schougaard, Steen B.; Reitzel, Niels; Bjørnholm, Thomas

    2007-01-01

    A self-assembled monolayer of CF3(CF2)(3)(CH2)(11)NH2 atop the (001) surface of the high-temperature superconductor YBa2Cu3O7-x was imaged by atomic force microscopy (AFM). The AFM images provide direct 2D-structural evidence for the epitaxial 5.5 angstrom square root 2 x root 2R45 degrees unit...... was studied by grazing-incidence X-ray diffraction and specular X-ray reflectivity. Structural differences and similarities between the water-supported and superconductor-localized monolayers are discussed....

  8. Screen printed Y and Bi-based superconductors

    Science.gov (United States)

    Haertling, Gene H.; Hsi, Chi-Shiung

    1992-01-01

    High T(sub c) superconducting thick film was prepared by screen printing process. Y-based (YBa2Cu3O(7 - x)) superconducting thick films were printed on 211/Al2O3, SNT/Al2O3, and YSZ substrates. Because of poor adhesion of the superconducting thick films to 211/Al2O3 and SNT/Al2O3 substrates, relatively low T(sub c) and J(sub c) values were obtained from the films printed on these substrates. Critical temperatures of YBa2Cu3O(7 - x) thick films deposited on 211/Al2O3 and SNT/Al2O3 substrates were about 80 K. The critical current densities of these films were less than 2 A/cm(exp 2). Higher T(sub c) and J(sub c) films were printed on the YSZ substrates; T(sub c) = 86.4 K and J(sub c) = 50.4 A/cm(exp 2). Multiple lead samples were also prepared on the YSZ substrates. These showed lower T(sub c) and J(sub c) values than plain samples. The heat treatment conditions of the multiple lead samples are still under investigation. Bi-based superconductor thick films have been obtained so far. Improving the superconducting properties of the BSCCO screen printed thick films will be emphasized in future work.

  9. Quantum magnetic excitations from stripes in copper oxide superconductors.

    Science.gov (United States)

    Tranquada, J M; Woo, H; Perring, T G; Goka, H; Gu, G D; Xu, G; Fujita, M; Yamada, K

    2004-06-03

    In the copper oxide parent compounds of the high-transition-temperature superconductors the valence electrons are localized--one per copper site--by strong intra-atomic Coulomb repulsion. A symptom of this localization is antiferromagnetism, where the spins of localized electrons alternate between up and down. Superconductivity appears when mobile 'holes' are doped into this insulating state, and it coexists with antiferromagnetic fluctuations. In one approach to describing the coexistence, the holes are believed to self-organize into 'stripes' that alternate with antiferromagnetic (insulating) regions within copper oxide planes, which would necessitate an unconventional mechanism of superconductivity. There is an apparent problem with this picture, however: measurements of magnetic excitations in superconducting YBa2Cu3O6+x near optimum doping are incompatible with the naive expectations for a material with stripes. Here we report neutron scattering measurements on stripe-ordered La1.875Ba0.125CuO4. We show that the measured excitations are, surprisingly, quite similar to those in YBa2Cu3O6+x (refs 9, 10) (that is, the predicted spectrum of magnetic excitations is wrong). We find instead that the observed spectrum can be understood within a stripe model by taking account of quantum excitations. Our results support the concept that stripe correlations are essential to high-transition-temperature superconductivity.

  10. Quantum magnetic excitations from stripes in copper oxide superconductors

    Science.gov (United States)

    Tranquada, J. M.; Woo, H.; Perring, T. G.; Goka, H.; Gu, G. D.; Xu, G.; Fujita, M.; Yamada, K.

    2004-06-01

    In the copper oxide parent compounds of the high-transition-temperature superconductors the valence electrons are localized-one per copper site-by strong intra-atomic Coulomb repulsion. A symptom of this localization is antiferromagnetism, where the spins of localized electrons alternate between up and down. Superconductivity appears when mobile `holes' are doped into this insulating state, and it coexists with antiferromagnetic fluctuations. In one approach to describing the coexistence, the holes are believed to self-organize into `stripes' that alternate with antiferromagnetic (insulating) regions within copper oxide planes, which would necessitate an unconventional mechanism of superconductivity. There is an apparent problem with this picture, however: measurements of magnetic excitations in superconducting YBa2Cu3O6+x near optimum doping are incompatible with the naive expectations for a material with stripes. Here we report neutron scattering measurements on stripe-ordered La1.875Ba0.125CuO4. We show that the measured excitations are, surprisingly, quite similar to those in YBa2Cu3O6+x (refs 9, 10) (that is, the predicted spectrum of magnetic excitations is wrong). We find instead that the observed spectrum can be understood within a stripe model by taking account of quantum excitations. Our results support the concept that stripe correlations are essential to high-transition-temperature superconductivity.

  11. Exploring intertwined orders in cuprate superconductors

    Science.gov (United States)

    Tranquada, John M.

    2015-03-01

    The concept of intertwined orders has been introduced to describe the cooperative relationship between antiferromagnetic spin correlations and electron (or hole) pair correlations that develop in copper-oxide superconductors. This contrasts with systems in which, for example, charge-density-wave (CDW) order competes for Fermi surface area with superconductivity. La2-xBaxCuO4 with x=0.125 provides an example in which the ordering of spin stripes coincides with the onset of two-dimensional superconducting correlations. The apparent frustration of the interlayer Josephson coupling has motivated the concept of the pair-density-wave superconductor, a state that theoretical calculations show to be energetically competitive with the uniform d-wave superconductor. Even at x=0.095, where there is robust superconductivity below 32 K in zero field, the coexistence of strong, low-energy, incommensurate spin excitations implies a spatially modulated and intertwined pair wave function. Recent observations of CDW order in YBa2Cu3O6+x and other cuprate families have raised interesting questions regarding the general role of charge modulations and the relation to superconductivity. While there are differences in the doping dependence of the modulation wave vectors in YBa2Cu3O6+x and La2-xBaxCuO4, the maximum ordering strength is peaked at the hole concentration of 1/8 in both cases. There are also possible connections with the quantum oscillations that have been detected about the same hole concentration but at high magnetic fields. Resolving these relationships remains a research challenge.

  12. NMR in pulsed high-field magnets and application to high-T(C) superconductors.

    Science.gov (United States)

    Stork, H; Bontemps, P; Rikken, G L J A

    2013-09-01

    This article deals with the implementation of Nuclear Magnetic Resonance (NMR) experiments in pulsed magnetic fields at the pulsed-field facility of the Laboratoire National des Champs Magnétiques Intenses and its application to the high-T(C) superconductor YBa2Cu3O6.51. The experimental setup is described in detail, including a low-temperature probe head adapted for pulsed fields. An entire paragraph is dedicated to the discussion of NMR in pulsed field and the introduction of an advanced deconvolution technique making use of the induction voltage in an additional pick-up coil. The (63)Cu/(65)Cu NMR experiments on an YBa2Cu3O6.51 single crystal were performed at 2.5K during a field pulse of 46.8-T-amplitude. In the recorded spectrum the (63)Cu center line and high-frequency satellites as well as the (65)Cu center line are identified and are compared with results in literature.

  13. Inverse correlation between quasiparticle mass and T c in a cuprate high-T c superconductor.

    Science.gov (United States)

    Putzke, Carsten; Malone, Liam; Badoux, Sven; Vignolle, Baptiste; Vignolles, David; Tabis, Wojciech; Walmsley, Philip; Bird, Matthew; Hussey, Nigel E; Proust, Cyril; Carrington, Antony

    2016-03-01

    Close to a zero-temperature transition between ordered and disordered electronic phases, quantum fluctuations can lead to a strong enhancement of electron mass and to the emergence of competing phases such as superconductivity. A correlation between the existence of such a quantum phase transition and superconductivity is quite well established in some heavy fermion and iron-based superconductors, and there have been suggestions that high-temperature superconductivity in copper-oxide materials (cuprates) may also be driven by the same mechanism. Close to optimal doping, where the superconducting transition temperature T c is maximal in cuprates, two different phases are known to compete with superconductivity: a poorly understood pseudogap phase and a charge-ordered phase. Recent experiments have shown a strong increase in quasiparticle mass m* in the cuprate YBa2Cu3O7-δ as optimal doping is approached, suggesting that quantum fluctuations of the charge-ordered phase may be responsible for the high-T c superconductivity. We have tested the robustness of this correlation between m* and T c by performing quantum oscillation studies on the stoichiometric compound YBa2Cu4O8 under hydrostatic pressure. In contrast to the results for YBa2Cu3O7-δ, we find that in YBa2Cu4O8, the mass decreases as T c increases under pressure. This inverse correlation between m* and T c suggests that quantum fluctuations of the charge order enhance m* but do not enhance T c.

  14. Fermi-surface reconstruction by stripe order in cuprate superconductors.

    Science.gov (United States)

    Laliberté, F; Chang, J; Doiron-Leyraud, N; Hassinger, E; Daou, R; Rondeau, M; Ramshaw, B J; Liang, R; Bonn, D A; Hardy, W N; Pyon, S; Takayama, T; Takagi, H; Sheikin, I; Malone, L; Proust, C; Behnia, K; Taillefer, Louis

    2011-08-16

    The origin of pairing in a superconductor resides in the underlying normal state. In the cuprate high-temperature superconductor YBa(2)Cu(3)O(y) (YBCO), application of a magnetic field to suppress superconductivity reveals a ground state that appears to break the translational symmetry of the lattice, pointing to some density-wave order. Here we use a comparative study of thermoelectric transport in the cuprates YBCO and La(1.8-x)Eu(0.2)Sr(x)CuO(4) (Eu-LSCO) to show that the two materials exhibit the same process of Fermi-surface reconstruction as a function of temperature and doping. The fact that in Eu-LSCO this reconstruction coexists with spin and charge modulations that break translational symmetry shows that stripe order is the generic non-superconducting ground state of hole-doped cuprates.

  15. Effect of oxygen stoichiometry on T(sub c) of Bi-based superconductors

    Science.gov (United States)

    Zhao, J.; Seehra, M. S.

    1990-01-01

    The role of oxygen stoichiometry on T(sub c) is relatively well established on La2CuO(4+x) and the YBa2Cu3O(7-x) (123) superconductors, as compared to the Bi-based superconductors. Results are presented of investigations on the effects of oxygen stoichiometry on the transition temperature T(sub c) of Bi2Sr2CaCu2O(8+x) (2212 phase), and Pb-doped Bi2Sr2Ca2Cu3O(10+X) (2223 phase). It is shown that the effects of oxygen stoichiometry on T(sub c) of these two phases are very different. These results may be helpful in understanding the mechanism of superconductivity in the Bi-based superconductors.

  16. Application of ceramic superconductors in high speed turbines

    Science.gov (United States)

    Mcmichael, C. K.; Lamb, M. A.; Lin, M. W.; Ma, K. B.; Chu, W. K.

    1992-01-01

    A turbine system was modified to adapt melt textured YBa2Cu3O(7-delta) (YBCO) with high energy permanent magnets to form a hybrid superconducting magnetic bearing (HSMB). The HSMB/turbine prototype has achieved a static axial thrust capacity exceeding 41 N/sq cm (60 psi) and a radial magnetic stiffness of 7 N/mm in a field cooled state at 77 K. A comparison was made between different configurations of magnets and superconductor for radial stability, axial instability, and force hystereses. This systematic study lead to a greater understanding of the interactions between YBCO and high energy permanent magnets to define design parameters for high rotational devices using the HSMB design.

  17. Electrical and Thermal Properties of Mixed Conductors and Superconductors

    Science.gov (United States)

    Thomas, Joyce Albritton

    1995-01-01

    The electrical and thermal properties of three types of electronic materials have been analyzed. Variable -temperature conductivity and thermoelectric power were measured on the following materials: rm V _2O_5 polymer electrolyte nanocomposites, oxygen-deficient rm YBa_2Cu_3O _{x} single crystals, and quaternary chalcogenides, rm K_2Cu_2CeS _4 and rm CsCuCeS_3. Theoretical models were employed to advance the understanding of the conduction mechanisms present in these materials. The sol-gel process has been used to intercalate rm V_2O_5 xerogels with the polymer electrolyte, oxymethylene linked poly(ethylene oxide)-lithium triflate ((a-PEO)_ {n}(LiCF_3SO _3)). The molar ratios of vanadium and lithium to ethylene oxide were varied to examine the effect on the charge transport properties. The V^ {+4} concentration was also increased in an effort to enhance the electrical properties. The conductivity and thermoelectric power data measured parallel to the planes exhibited semiconductor behavior. The thermoelectric power was negative, indicating electrons as the majority charge carriers. Both the conductivity and thermoelectric power data fit a variable-range hopping transport model. Thermoelectric power measurements were performed on various stoichiometries of twinned, rm YBa_2Cu_3O_{x} single crystals. The data were collected along both the ab-plane and c-axis directions to investigate the anisotropic properties of these materials. Several crystals were reoxygenated to either the same x values or different x values. The reoxygenation study was conducted to extend the knowledge of the effect of oxygen content on transport behavior. Theoretical models previously described in the literature were used to examine the conduction mechanisms in the rm YBa_2Cu_3O_{x} single crystals. The quaternary chalcogenides, rm K_2Cu_2CeS_4 and CsCuCeS _3, were also investigated. The amount of Cu present was found to have an effect on the crystal structure of both materials. As a result

  18. Crecimiento y caracterización de monocristales superconductores de alta temperatura crítica

    OpenAIRE

    Corredor, L. T.; Landínez, D. A.; Albino Aguilar, J.

    2014-01-01

    En este trabajo se presenta, detalladamente, el procedimiento para la implementación de la técnica de auto-flujo para el crecimiento de monocristales superconductores de alta temperatura crítica. Fueron producidos monocristales de las familias YBa2Cu3O7-δ y CaLaBaCu3O7-δ mediante dicha técnica. El carácter superconductor de los mismo se corroboró a través de mediciones de resistividad eléctrica y susceptibilidad magnética AC. Las características cristalográficas y morfológicas se estudiaron p...

  19. Measuring the interaction force between a high temperature superconductor and a permanent magnet

    Science.gov (United States)

    Valenzuela, S. O.; Jorge, G. A.; Rodríguez, E.

    1999-11-01

    Repulsive and attractive forces are both possible between a superconducting sample and a permanent magnet, and they can give rise to magnetic levitation or free-suspension phenomena, respectively. We show experiments to quantify this magnetic interaction, which represents a promising field with regard to short-term technological applications of high temperature superconductors. The measuring technique employs an electronic balance and a rare-earth magnet that induces a magnetic moment in a melt-textured YBa2Cu3O7 superconductor immersed in liquid nitrogen. The simple design of the experiments allows a fast and easy implementation in the advanced physics laboratory with a minimum cost. Actual levitation and suspension demonstrations can be done simultaneously as a help to interpret magnetic force measurements.

  20. Optimisation of CSD buffer layers for YBa(2)Cu(3)O(7) coated conductor development

    OpenAIRE

    Cavallaro, Andrea

    2005-01-01

    Consultable des del TDX Títol obtingut de la portada digitalitzada Las cintas superconductoras de alta temperatura (HTS) han emergido como materiales prometedores para sus uso en el campo de lenergía puesto que permiten reducir a mitad el tamaño de los equipos de energía eléctrica respecto a los convencionales, reducir las pérdidas de energía, aumentar la eficacia en la generación, la transmisión y la distribución de la misma, y así la reducir el impacto ambiental. Sin embargo, diversam...

  1. Raman scattering of light in YBa2Cu3O(7-delta) single-phase ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Limonov, M.F.; Markov, IU.F.; Pollert, E.; Triska, A.

    1988-07-01

    Results of an experimental study of Raman spectra are reported for specimens of YBa/sub 2/Cu/sub 3/O(7-delta) ceramics (delta=0.37) produced by the sintering of Y/sub 2/O/sub 3/, CuO, and BaCO/sub 3/. The characteristics of the Raman spectra of the specimens are discussed, and it is shown that the specimens of superconducting ceramics investigated are characterized by high homogeneity, with no traces of the 'parasitic' Y/sub 2/O/sub 3/ and Y/sub 2/Cu/sub 2/O/sub 5/ phases. 7 references.

  2. 结构YBa2Cu3O7的AC磁化率谐波

    Institute of Scientific and Technical Information of China (English)

    葛勇; 丁世英

    1998-01-01

    In magnetic measurements using AC field, the Magnetization is periodically changing in response to an applied AC field. Generally, a pure sinusoidal field, Ba(t) = Baccos(2πft ), induces a periodical agnetization M(t) . This Magnetization may be described as a sun of sinu-

  3. Interface engineering and strain in YBa2Cu3O7-δ thin films

    NARCIS (Netherlands)

    Huijben, Mark; Koster, Gertjan; Blank, Dave H.A.; Rijnders, Guus

    2008-01-01

    In thin films, new phases can be encountered near interfaces, whether it is the substrate-film interface or subsequent interfaces in the case of heterostructures. Both structural properties and surface morphology are a direct result of the thin film growth, controlled by deposition conditions and su

  4. Electronic State Distributions of YBa2Cu3O7-x Laser Ablated Plumes

    Science.gov (United States)

    2008-09-01

    Physical Review Letters, 67(15):2102–2105, October 2001. 64. Pathria, R. Statistical Mechanics . Butterworth Heinemann, Oxford, 2nd edition, 1996. 65...Radiation. Academic Press, New York, 1971. 71. Reif , F. Fundamentals of Statistical and Thermal Physics. McGraw-Hill, New York, 1965. 202 72. Riley, D., L...excitation mechanisms in the plume. 1.2 Problem Statement The purpose of this effort is to conduct a systematic measurement, analysis, and

  5. Crystal Chemical Substitutions of YBa2Cu3O7-d to Enhance Flux Pinning (Postprint)

    Science.gov (United States)

    2012-02-01

    Staub, M. R. Antonio , L. Soderholm, M. Guillaume, W. Henggeler, A. Furrer, Phys. Rev. B 50[10] {1994) 7085. 207 [24) G. Cao, S. McCall, F. Freibert, M...Lim , P.M. Grant, S.S.P. Parkin. M.L. Ramirez , J.E. Vazquez, RJ . Savoy, J. Am. Chern. Soc. 109 ( 1987) 2848-2849. (147) J.C. Tolliver, M.S. The sis

  6. Interpreting Quantum Oscillation Experiments on Underdoped YBa2Cu3O6+x

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, J.M.

    2010-02-01

    On the basis of negative transport coefficients, it has been argued that the quantum oscillations observed in underdoped YBa{sub 2}Cu{sub 3}O{sub 6+x} in high magnetic fields must be due to antinodal electron pockets. We point out a counterexample in which electronlike transport in a hole-doped cuprate is associated with Fermi-arc states. We also present evidence that the antinodal gap in YBa{sub 2}Cu{sub 3}O{sub 6.67} is robust to modest applied magnetic fields. We suggest that these observations should be taken into account when interpreting the results of the quantum oscillation experiments.

  7. Thermally activated coherent vortex motion in YBa2Cu3O7-δ thin film microbridges

    NARCIS (Netherlands)

    de Nivelle, M.J.M.E.; De Nivelle, M.J.M.E.; Gerritsma, G.J.; Rogalla, Horst

    1993-01-01

    Microbridges with dimensions smaller than the London penetration depth λ have been prepared in epitaxial YBaCu2O7-δ thin films by means of electron beam lithography. Typical peaks and kinks are observed in their differential resistance versus current characteristics which can be attributed to

  8. Interface engineering and strain in YBa2Cu3O7-d thin films

    NARCIS (Netherlands)

    Huijben, Mark; Koster, Gertjan; Blank, David H.A.; Rijnders, Augustinus J.H.M.

    2008-01-01

    In thin films, new phases can be encountered near interfaces, whether it is the substrate-film interface or subsequent interfaces in the case of heterostructures. Both structural properties and surface morphology are a direct result of the thin film growth, controlled by deposition conditions and

  9. The Normal Zone in YBa2Cu3O6+x-Coated Conductors (Postprint)

    Science.gov (United States)

    2007-09-21

    into the stabilizer. We obtain the potential distribution in the stabilizer and the superconducting film within the framework of the Bean model . In...where E0 is defined as 1 μV cm−1 and the exponent n is large (n ≈ 20–40). The Bean model is the limit n → ∞. In this limit, which we adopt hereafter in...understood as follows. In the Bean model an infinitesimally small variation of current around the value of Ic can cause a finite change in electric field

  10. Percolation Effects and Oxygen Inhomogeneities in YBa2Cu3O7-Delta Crystals

    Science.gov (United States)

    1991-10-01

    which may be expressed in the standard Bean model form1 1 Jc-(M+-M.)/2r, where r is the radius of the region through which the screening currents...are shown in figure 5a. The data are presented in the standard Bean model form with R=(3/2)w(1-(w/31)) for the crystal face of length, I and width, w...but not as predicted by the Bean model . This partial scaling of the magnetization implies that there is a distribution of current paths, some of

  11. AC Current Driven Dynamic Vortex State in YBa2Cu3O7-x (Postprint)

    Science.gov (United States)

    2012-02-01

    achieved by stroboscopic imaging using a Q- switched frequency-doubled Nd:YLF laser (100-ns pulse length, 527-nm wavelength) with a pulse repetition fre...a cross-polarized configuration, a digital camera with a reso- lution of 1344×1024 pixels, and a Bi-substituted ferrite gar- net crystal as a magneto

  12. Characterization of large size YBa2Cu3O7-δ films using magnetic field penetration

    Science.gov (United States)

    Almog, B.; Azoulay, M.; Castro, H.; Deutscher, G.

    2005-11-01

    High critical current density (jc) is one of the most important properties of high Tc superconducting thin films. Determining it is difficult especially in large films (2-3 inch). We propose a non-destructive and easy technique for measuring jc. From measurements of the magnetic moment in the middle of a superconducting film as a function of the external magnetic field, we calculate the macroscopic critical current density.

  13. Anomalous Thermal Diffusivity in Underdoped YBa$_2$Cu$_3$O$_{6+x}$

    CERN Document Server

    Zhang, J -C; Ramshaw, B J; Bonn, D A; Liang, R; Hardy, W N; Hartnoll, S A; Kapitulnik, A

    2016-01-01

    We present local optical measurements of thermal diffusivity in the $ab$ plane of underdoped YBCO crystals. We find that the diffusivity anisotropy is comparable to reported values of the electrical resistivity anisotropy, suggesting that the anisotropies have the same origin. The anisotropy drops sharply below the charge order transition. We interpret our results through a strong electron-phonon scattering picture and find that both electronic and phononic contributions to the diffusivity saturate a proposed bound. Our results suggest that neither well-defined electron nor phonon quasiparticles are present in this material.

  14. Role of the upper branch of the hour-glass magnetic spectrum in the formation of the main kink in the electronic dispersion of high-Tc cuprate superconductors

    Science.gov (United States)

    Geffroy, Dominique; Chaloupka, Jiří; Dahm, Thomas; Munzar, Dominik

    2016-04-01

    We investigate the electronic dispersion of the high-Tc cuprate superconductors using the fully self-consistent version of the phenomenological model, where charge planar quasiparticles are coupled to spin fluctuations. The inputs we use, the underlying (bare) band structure and the spin susceptibility χ , are extracted from fits of angle-resolved photoemission and inelastic neutron scattering data of underdoped YBa2Cu3O6.6 by T. Dahm and coworkers [Nat. Phys. 5, 217 (2009), 10.1038/nphys1180]. Our main results are as follows: (i) We have confirmed the finding by Dahm and coworkers that the main nodal kink is, for the present values of the input parameters, determined by the upper branch of the hourglass of χ . We demonstrate that the properties of the kink depend qualitatively on the strength of the charge-spin coupling. (ii) The effect of the resonance mode of χ on the electronic dispersion strongly depends on its kurtosis in the quasimomentum space. A low (high) kurtosis implies a negligible (considerable) effect of the mode on the dispersion in the near-nodal region. (iii) The energy of the kink decreases as a function of the angle θ between the Fermi surface cut and the nodal direction, in qualitative agreement with recent experimental observations. We clarify the trend and make a specific prediction concerning the angular dependence of the kink energy in underdoped YBa2Cu3O6.6 .

  15. Analysis of photonic spectra in Thue-Morse, double-period and Rudin-Shapiro quasiregular structures made of high temperature superconductors in visible range

    Science.gov (United States)

    Rahimi, H.

    2016-07-01

    The present paper attempts to determine the properties of photonic spectra of Thue-Morse, double-period and Rudin-Shapiro one-dimensional quasiperiodic multilayers. The supposed structures are constituted by high temperature HgBa2Ca2Cu3O10 and YBa2Cu3O7 superconductors. Our investigation is restricted to the visible wavelength domain. The results are demonstrated by the calculation of transmittance using transfer matrix method together with Gorter-Casimir two-fluid model. It is found that by manipulating the parameters such as incident angle, polarization, the thickness of each layer and operation temperature of superconductors the transmission spectra exhibit some interesting features. This paper, provides us a pathway to design tunable total reflector, optical filters and optical switching based on superconductor quasiregular photonic crystals.

  16. Renormalization effects and phonon density of states in high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Vinod Ashokan

    2013-02-01

    Full Text Available Using the versatile double time thermodynamic Green's function approach based on many body theory the renormalized frequencies, phonon energy line widths, shifts and phonon density of states (PDOS are investigated via a newly formulated Hamiltonian (does not include BCS type Hamiltonian that includes the effects of electron-phonon, anharmonicities and that of isotopic impurities. The automatic appearance of pairons, temperature, impurity and electron-phonon coupling of renormalized frequencies, widths, shifts and PDOS emerges as a characteristic feature of present theory. The numerical investigations on PDOS for the YBa2Cu3O7 − δ crystal predicts several new feature of high temperature superconductors (HTS and agreements with experimental observations.

  17. Electron-phonon coupling in high-temperature cuprate superconductors determined from electron relaxation rates.

    Science.gov (United States)

    Gadermaier, C; Alexandrov, A S; Kabanov, V V; Kusar, P; Mertelj, T; Yao, X; Manzoni, C; Brida, D; Cerullo, G; Mihailovic, D

    2010-12-17

    We determined electronic relaxation times via pump-probe optical spectroscopy using sub-15 fs pulses for the normal state of two different cuprate superconductors. We show that the primary relaxation process is the electron-phonon interaction and extract a measure of its strength, the second moment of the Eliashberg function λ[ω2] = 800 ± 200 meV2 for La(1.85)Sr(0.15)CuO4 and λ[ω2] = 400 ± 100 meV2 for YBa(2)Cu(3)O(6.5). These values suggest a possible fundamental role of the electron-phonon interaction in the superconducting pairing mechanism.

  18. High-Tc Superconductor Detection Coils for a Magnetic Resonance System

    Institute of Scientific and Technical Information of China (English)

    康琳; 吴培亨; 潘俊; 蔡卫星; 杨森祖; 曹春海

    2002-01-01

    Considering that in a magnetic resonance system, if the detection coil contributes dominantly to the system noise, the performance of the whole system can certainly be improved by switching to a detection coil made of a high-temperature superconductor, and using YBa2Cu3O7 thinfilms on 25 × 25 mm2 LaAIO3 substrates, we have prepared two kinds of detection coils: single-coil and two-coil. Encouragingly, their quality factors are measured to be Q > 2500 for two-coil (at 22.566MHz and 77K) and Q > 5500 for single-coil (at 92.3MHz and 77K),respectively. Here, we describe the details of the design, fabrication and testing of the coils.

  19. Status of high temperature superconductor based magnets and the conductors they depend upon

    CERN Document Server

    Schwartz, J; Chan, W K; Gou, X F; Liu, X T; Phillips, M; Le, Q V; Naderi, G; Turenne, M; Ye, L

    2011-01-01

    This paper reviews the status of high temperature superconductors for high field magnets for future devices such as a high energy LHC or a muon collider. Some of the primary challenges faced for the implementation of systems are discussed. Two conductor technologies, Bi$_2$Sr$_2$CaCu$_2$O$_{8+x}$ and YBa$_2$Cu$_3$O$_{7-\\delta}$, have emerged as high field conductor options, but their relative advantages and disadvantages for high field magnets are quite different. These are reviewed from an engineering perspective, including coil manufacturing, electromechanical behaviour and quench behaviour. Lastly, the important roles of "system pull" upon conductor and magnet technology development, and of interactions between the materials and magnet communities for accelerating development, are discussed.

  20. High-Tc superconductor/linear low density polyethylene (LLDPE) composite materials for diamagnetic applications

    Science.gov (United States)

    Bhadrakumari, S.; Predeep, P.

    2006-08-01

    A series of composite samples of YBa2Cu3O7-x and linear low density polyethylene (Y-123/LLDPE) with volume percentage ranging from 0 to 75% was prepared. The crystallinity of the composites was studied using x-ray diffraction (XRD) patterns. It is found that the percentage of crystallinity in the composite samples increases with increasing volume of the LLDPE. A four-phase system for the composite materials may be inferred from a combination of XRD and density data. Repulsive force measurements showed that the diamagnetic properties were preserved in the composites and the samples exhibited appreciable magnetic levitation forces and this force increases with increasing volume fraction of the superconductor filler.

  1. Absence of an energy gap in measurements of Cu-O superconductors with high-resolution electron-energy-loss spectroscopy

    Science.gov (United States)

    Phelps, R. B.; Akavoor, P.; Kesmodel, L. L.; Barr, A. L.; Markert, J. T.; Ma, J.; Kelley, R. J.; Onellion, M.

    1994-09-01

    We report extensive measurements of Bi2Sr2CaCu2O8 (Bi 2:2:1:2) and YBa2Cu3O7 (Y 1:2:3) single crystals with high-resolution electron-energy-loss spectroscopy (HREELS). Both as-grown and oxygen-annealed Bi 2:2:1:2 samples were studied. In all cases, peaks due to surface optical phonons were observed at loss energies from 24 to 80 meV. We see no evidence for the weak feature near 60 meV which has been previously reported and attributed to the superconducting energy gap. Our results demonstrate that the optical conductivity of high-temperature superconductors deduced from HREELS, like that deduced from infrared spectroscopy, does not exhibit the gaplike structure expected for a BCS superconductor.

  2. Facile and Cost-Effective Synthesis and Deposition of a YBCO Superconductor on Copper Substrates by High-Energy Ball Milling

    Science.gov (United States)

    Alami, Abdul Hai; Assad, Mhd Adel; Aokal, Camilia

    2016-09-01

    The article investigates the synthesis and deposition of YBCO on a copper substrate for various functional purposes. The superconductor is first prepared by mechanically alloying elemental components (yttrium, barium, and copper) for 50 hours in a high-energy ball mill with subsequent protocol of heat treatment in an oxygen-rich atmosphere to arrive at stoichiometric ratios of YBa2Cu3O7. The material is then deposited on a thin copper substrate also by ball milling under various parameters of rotational speed and deposition time to select the best and most homogenous substrate coverage. Atomic force microscopy has confirmed the desired results, and other microstructural, thermal, and electrical techniques are used to characterize the obtained material. High-energy ball milling proved to be a versatile means to synthesize and deposit the material in a straightforward manner and controllable parameters for different deposit thicknesses and coverages.

  3. Facile and Cost-Effective Synthesis and Deposition of a YBCO Superconductor on Copper Substrates by High-Energy Ball Milling

    Science.gov (United States)

    Alami, Abdul Hai; Assad, Mhd Adel; Aokal, Camilia

    2016-12-01

    The article investigates the synthesis and deposition of YBCO on a copper substrate for various functional purposes. The superconductor is first prepared by mechanically alloying elemental components (yttrium, barium, and copper) for 50 hours in a high-energy ball mill with subsequent protocol of heat treatment in an oxygen-rich atmosphere to arrive at stoichiometric ratios of YBa2Cu3O7. The material is then deposited on a thin copper substrate also by ball milling under various parameters of rotational speed and deposition time to select the best and most homogenous substrate coverage. Atomic force microscopy has confirmed the desired results, and other microstructural, thermal, and electrical techniques are used to characterize the obtained material. High-energy ball milling proved to be a versatile means to synthesize and deposit the material in a straightforward manner and controllable parameters for different deposit thicknesses and coverages.

  4. Meissner holes in iron-based superconductors

    Science.gov (United States)

    Tamegai, Tsuyoshi; Mohan, Shyam; Tsuchiya, Yuji; Nakajima, Yasuyuki

    2012-02-01

    Magnetic flux penetrates into a superconductor in the form of quantized vortices. This process is usually described by the Bean model, and the flux front forms a regular pattern reflecting the shape of the sample. However, a novel form of flux penetration accompanying wiggling fronts between vortices and antivortices has been observed in YBa2Cu3O7-δ upon remagnetization [1]. Such a phenomenon is ascribed to the presence of special arrangements of vortices at the front accompanying flux free regions and excess current around it. The flux free region is called as `Mesissner hole'. We have performed extensive magneto-optical imagings of iron-based superconductor single crystals and found similar anomalous features for the first time in superconductors other than 123-type cuprates [2]. Implications of this finding will be discussed with possible origins of the anomalous vortex arrangements. [1] V. K. Vlasko-Vlasov et al., Phys. Rev. B 56, 5622 (1997). [2] S. Mohan, Y. Tsuchiya, Y. Nakajima, and T. Tamegai, Phys. Rev. B 84, 18050X (2011).

  5. Magnetic Excitations from Stripes in Cuprate Superconductors

    Science.gov (United States)

    Tranquada, J. M.; Woo, H.; Perring, T. G.; Goka, H.; Gu, G. D.; Xu, G.; Fujita, M.; Yamada, K.

    2004-03-01

    While it is generally believed that antiferromagnetic spin excitations play a significant role in the pairing mechanism of copper-oxide superconductors [1], the nature of the magnetic excitations themselves remains a matter of controversy. Recent measurements of the dispersion of spin excitations in superconducting YBa_2Cu_3O_6+x (YBCO) have attracted much attention. Here we present the results of comprehensive inelastic neutron scattering measurements of the momentum- and energy-dependent spectra of the magnetic fluctuations in La_0.875Ba_0.125CuO_4, which exhibits inhomogeneous, charge-stripe order. We will also point out universalities and differences in the magnetic excitation spectra compared to related charge-stripe ordered compounds and high-temperature superconductors, including La_2-xSr_xNiO4 and YBCO. JMT, HW, GDG and GX are supported by U.S. Department of Energy contract # DE-AC02-98CH1088 [1] J. Orenstein and A. J. Millis, Science 288, 468 (2000).

  6. Magnetic proximity effect at the interface between a cuprate superconductor and an oxide spin valve

    Science.gov (United States)

    Ovsyannikov, G. A.; Demidov, V. V.; Khaydukov, Yu. N.; Mustafa, L.; Constantinian, K. Y.; Kalabukhov, A. V.; Winkler, D.

    2016-04-01

    A heterostructure that consists of the YBa2Cu3O7-δ cuprate superconductor and the SrRuO3/La0.7Sr0.3MnO3 ruthenate/manganite spin valve is investigated using SQUID magnetometry, ferromagnetic resonance, and neutron reflectometry. It is shown that a magnetic moment is induced due to the magnetic proximity effect in the superconducting part of the heterostructure, while the magnetic moment in the composite ferromagnetic interlayer is suppressed. The magnetization emerging in the superconductor coincides in order of magnitude with the results of calculations taking into account the induced magnetic moment of Cu atoms because of orbital reconstruction at the interface between the superconductor and the ferromagnet, as well as with the results of the model taking into account the variations in the density of states at a distance on the order of the coherence length in the superconductor. The experimentally obtained characteristic penetration depth of the magnetic moment in the superconductor considerably exceeds the coherence length of the cuprate superconductor, which indicates the predominance of the mechanism of induced magnetic moment of Cu atoms.

  7. Crecimiento y caracterización de superredes basadas en superconductores de alta temperatura crítica : relación entre microestructura y propiedades

    OpenAIRE

    Varela del Arco, María

    2001-01-01

    Esta Tesis se ha basado en el crecimiento y caracterización de superredes de YBa2Cu3O7-x/ PrBa2Cu3O7 con capas ultradelgadas de YBa2Cu3O7 de espesores decrecientes, desde unas pocas celdas unidad del material hasta tener solamente una celda unidad. En estas superredes la capa superconductora esta sometida a tensión epitaxial. Se ha caracterizado la estructura y los mecanismos de crecimiento de estas capas de YBa2Cu3O7. También se han estudiado las propiedades superconductoras, que se deprimen...

  8. Antiferromagnetic phase diagram of the cuprate superconductors

    Science.gov (United States)

    Nunes, L. H. C. M.; Teixeira, A. W.; Marino, E. C.

    2017-02-01

    Taking the spin-fermion model as the starting point for describing the cuprate superconductors, we obtain an effective nonlinear sigma-field hamiltonian, which takes into account the effect of doping in the system. We obtain an expression for the spin-wave velocity as a function of the chemical potential. For appropriate values of the parameters we determine the antiferromagnetic phase diagram for the YBa2Cu3O6+x compound as a function of the dopant concentration in good agreement with the experimental data. Furthermore, our approach provides a unified description for the phase diagrams of the hole-doped and the electron doped compounds, which is consistent with the remarkable similarity between the phase diagrams of these compounds, since we have obtained the suppression of the antiferromagnetic phase as the modulus of the chemical potential increases. The aforementioned result then follows by considering positive values of the chemical potential related to the addition of holes to the system, while negative values correspond to the addition of electrons.

  9. Growth and characterization of bulk superconductor material

    CERN Document Server

    Chen, Dapeng; Maljuk, Andrey; Zhou, Fang

    2016-01-01

    This book focuses on recently developed crystal growth techniques to grow large and high quality superconducting single crystals. The techniques applied are traveling solvent floating zone (TSFZ) with infrared image furnace, Bridgeman, solution/flux and top seeded solution growth (TSSG) methods. The materials range from cuprates, cobaltates to pnictides including La2CuO4-based (LCO), YBa2Cu3O7-d (YBCO), Bi2Sr2Can−1CunO2n+4+δ (n=1,2,3) (BSCCO) to NaxCoO2. The modified Bridgman “cold finger” method is devoted to the pnictide system with the best quality (transition width DTc~0.5 K) with highest Tc~38.5 K of Ba0.68K0.32Fe2A2. The book presents various iron-based superconductors with different structures, such as 1111, 122, 111, 11 and 42622,10-3-8. Detailed single crystal growth methods (fluxes, Bridgman, floating zone), the associated procedures and their impact to crystal size and quality are presented. The book also describes the influence of doping on the structure and the electric, magnetic, and supe...

  10. Intergrain and intragrain currents in bulk melt-grown YBa2Cu3O7-δ rings

    Science.gov (United States)

    Surzhenko, A. B.; Zeisberger, M.; Habisreuther, T.; Gawalek, W.; Uspenskaya, L. S.

    2003-08-01

    A simple contactless method suitable for discerning between the intergrain (circular) current, which flows in the thin superconducting ring, and the intragrain current, which does not cross the weakest link, has been proposed. At first, we show that the intergrain current may directly be estimated from the magnetic flux density B(±z0) measured by the Hall sensor positioned in the special points ±z0 above or below the ring center. The experimental and numerical techniques to determine the value z0 are discussed. Being very promising for the characterization of a current flowing across the joints in welded YBaCuO rings (its dependences on the temperature and external magnetic field as well as the time dissipation), the approach has been applied to study the corresponding properties of the intragrain and intergrain currents flowing across the a-twisted grain boundaries which are frequent in bulk melt-textured (MT) YBaCuO samples. We present experimental data related to the flux penetration inside a bore of MT YBaCuO rings both in the nonmagnetized, virgin state, and during the field reversal. The shielding properties and their dependence on external magnetic fields are also studied. Besides, we consider flux creep effects and their influence on the current redistribution during a dwell.

  11. Investigation of Precursor Superconducting State in YBa2Cu3O7-δ through In-Plane Optical Spectroscopy

    Science.gov (United States)

    Lee, Kegan; Kamiya, Keisuke; Nakajima, Masamichi; Miyasaka, Shigeki; Tajima, Setsuko

    2017-02-01

    A precursor of superconductivity has been searched in the in-plane optical spectra of underdoped YBa2Cu3Oy, in which the previous c-axis optical spectra showed the presence of superconducting carriers at a temperature far above Tc [Uykur et al., https://doi.org/10.1103/PhysRevLett.112.127003" xlink:type="simple">Phys. Rev. Lett. 112, 127003 (2014)][Dubroka et al., https://doi.org/10.1103/PhysRevLett.106.047006" xlink:type="simple">Phys. Rev. Lett. 106, 047006 (2011)]. By carefully subtracting the normal component from the imaginary part of conductivity σ2(ω), we found a clear in-plane response of superconducting condensate at the temperature consistent with the c-axis optical data. This confirms that the precursory superconductivity developing with decreasing doping level is an intrinsic phenomenon in the cuprates.

  12. Enhancement of critical current density in fast neutron irradiated melt-textured YBa 2Cu 3O 7- x

    Science.gov (United States)

    Puźniak, R.; Wiśniewski, A.; Baran, M.; Szymczak, H.; Pingxiang, Zhang; Jingrong, Wang; Lian, Zhou; Pytel, K.; Pytel, B.

    The critical current density in melt-textured samples obtained by the powder melting process was determined from magnetization measurements. Linear dependence between the width of the hysteresis loop and sample size was observed for both unirradiated and irradiated samples. This indicates that the critical current is circulating through the whole sample and is not disconnected by weak links, even when a magnetic field is applied in the irradiated sample. After fast neutron irradiation with fluences from 5 × 10 16 to 6 × 10 17 n cm -2 ( E > 0.5 MeV), significant enhancement of the critical current density, jc, was observed. Critical current density, determined from magnetization measurements, for magnetic field perpendicular to the a-b plane, jcab, reaches - 10 5 A cm 42 at 77 K in 1 T. For H parallel to the a-b plane, jcc along the c-axis reaches 5 × 10 3 A cm -2. An increase in the anisotropy of the critical current was observed after fast neutron irradiation in the temperature range 60 - 80 K.

  13. Grain Boundary Diffusion of Oxygen in c-Textured YBa2Cu3O7-δ Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The dislocation structure in magnetron sputtered c-textured YBCO films deposited on (100)SrTiO3 substrates consists of vertical (//c axis) screw dislocation forests together with layered horizontal (|caxis) edge dislocation net-works. It is found that in the oxygenation process in YBCO films, oxygen diffusion is enhanced greatly by the short circuit paths which we suggest to be the horizontally ( c axis) layered edge dislocation net-works. Diffusion equation for oxygenation was solved with the help of Fishers theory of grain boundary diffusion, and an active energy 1.16 ev.``

  14. The role of interfacial defects in enhancing the critical current density of YBa2Cu3O7-delta coatings

    Energy Technology Data Exchange (ETDEWEB)

    Foltyn, Stephen R [Los Alamos National Laboratory; Wang, Haiyan [Los Alamos National Laboratory; Civale, Leonardo [Los Alamos National Laboratory; Maiorov, Boris A [Los Alamos National Laboratory; Jia, Quanxi [Los Alamos National Laboratory

    2009-01-01

    The critical current density (J{sub c}) of YBa{sub 2}Cu{sub 3}0{sub 7-{delta}} (YBCO) films can approach 10 MA/cm{sup 2} at 77 K in self field , but only for very thin films. We have shown previously that strong thickness dependence results if J{sub c} is enhanced near the film-substrate interface. In the present work we investigate interfacial enhancement using laser-deposited YBCO films on NdGaO{sub 3} substrates, and find that we can adjust deposition conditions to switch the enhancement on and off. Interestingly, we find that the 'on' state is accompanied by interfacial misfit dislocations, establishing an unambiguous correlation between enhanced J{sub c} and dislocations at the film-substrate interface.

  15. In situ resonant Raman scattering and reversible photoinduced structural change in YBa2Cu3O6+x

    DEFF Research Database (Denmark)

    Osada, M.; Käll, M.; Bäckström, J.;

    2005-01-01

    or absence of a specific Raman scattering resonance. A comparison of the spectral efficiencies for this photoswitching with analogous data for the persistent photoconductivity and photoconductivity quenching effects suggests that the two phenomena have the same microscopic origin. We argue that the effects...

  16. Comparison Study of YBa2Cu3O7-x Films Deposited by Using Various Carboxylate Solutions

    DEFF Research Database (Denmark)

    Yue, Zhao; Torres, P.; Norby, Poul

    2015-01-01

    (at 77 K, self-field) of 2.1 MA/cm2 and 1.3 MA/cm2, respectively, while no superconducting transition above 70 K was observed in the other two films. A relatively larger amount of carbonaceous residue left as a by-product after decomposition of carboxylates with longer ligands, particularly under fast...

  17. Magnetic-field-induced nonlocal effects on the vortex interactions in twin-free YBa2Cu3O7

    DEFF Research Database (Denmark)

    White, J. S.; Heslop, R. W.; Holmes, A. T.

    2011-01-01

    measurements demonstrate how the influence of anisotropy on the VL, which in theory can be parameterized as nonlocal corrections, becomes progressively important with increasing magnetic field, and suppressed by increasing the temperature toward Tc. The data indicate that nonlocality due to different...

  18. Fermi Surface and Order Parameter Driven Vortex Lattice Structure Transitions in Twin-Free YBa2Cu3O7

    DEFF Research Database (Denmark)

    White, J.S.; Hinkov, V.; Heslop, R.W.;

    2009-01-01

    fields. It is separated from a low-field hexagonal phase of different orientation and distortion by a first-order transition at 2.0(2) T that is probably driven by Fermi surface effects. We argue that another first-order transition at 6.7(2) T, into a rhombic structure with a distortion of opposite sign......, marks a crossover from a regime where Fermi surface anisotropy is dominant, to one where the VL structure and distortion is controlled by the order-parameter anisotropy....

  19. Preparation of 3 Inch Double-Sided YBa2Cu3O7-X High Temperature Superconducting Thin Films

    Institute of Scientific and Technical Information of China (English)

    TAO Bo-wan

    2005-01-01

    @@ Owing to its excellent electrical property,YBCO thin film is much better than metal in the application for microwave devices. It makes the devices smaller, lighter, and with higher quality factor and lower insertion loss. YBCO thin film has attracted attentions for many years. Aiming at the uniformity and property of 3-inch double-sided YBCO thin film, the following aspects is considered in this dissertation:

  20. Dirty limit scattering behind the decreased anisotropy of doped YBa2Cu3O7-δ thin films

    Science.gov (United States)

    Malmivirta, M.; Palonen, H.; Inkinen, S.; Yao, L. D.; Tikkanen, J.; Huhtinen, H.; Jha, R.; Awana, V. P. S.; van Dijken, S.; Paturi, P.

    2016-05-01

    We measured the resistivity of pulsed-laser-deposited BaCeO3 (BCO)-doped YBCO thin films containing spherical BCO particles in fields up to 30 T. The average diameter of the particles depends on the dopant concentration being below 4 nm in all the samples. Raised values of the upper critical field, {{B}\\text{c2}} , were observed in all the samples. Additionally, the parameter γ, describing the electron mass anisotropy, decreased from 6.2 in the undoped sample to 3.1 in the 8 wt.% BCO-doped sample. These results can be explained by the increased number of defects decreasing the mean free path of electrons and thus lowering the coherence length, which in turn increases {{B}\\text{c2}} .

  1. The influence of doping with Ca and Mg in YBa2Cu3O7-δ ceramic

    Directory of Open Access Journals (Sweden)

    Vecchione A.

    2012-06-01

    Full Text Available We have investigated the effect of partial substitution of Ca for Y and/or Mg for Cu on structural, compositional and magnetic properties in γBa2Cu3O7-δ polycrystalline compounds. All prepared samples were found to be single phase with small fraction of Ba-secondary phases. Substitution by more than 2% of magnesium causes an increase of spurious phases. Energy Dispersive Spectroscopy (EDS revealed that the distribution of Ca in the sample is quite homogenous. DC susceptibility measurements show that superconducting transition temperature Tc is reduced much more by Ca than Mg. Hysteresis loops reveal that magnetic irreversibility is decreased by Ca and Mg content. The deduced critical current density Jc does not follow the same variation. Ca alone reduces Jc for x=0.1 and x=0.2. Together with Ca, Mg compensates the reduction of Jc and increasing its content near the solubility limit gives higher Jc than in the undoped sample.

  2. Flux Pinning Enhancement in YBa2Cu3O7-x Films for Coated Conductor Applications (Postprint)

    Science.gov (United States)

    2012-02-01

    Verebelyi , D.T. , Schoop , U. , Nguyen , N. , Thieme , C. , Chen , Z. , Feldman , D.M. , Larbalestier , D.C. , Holesinger , T.G...Fleshler , S. , Rupich , M. , Thieme , C. , Li , X. , Zhang , W. , Otto , A. , Maguire , J. , Folts , D. , Yuan , J. , Kraemer

  3. Assignment of Cu NQR frequencies and Cu spin-spin relaxation in YBa 2Cu 3O 7-δ

    Science.gov (United States)

    Mali, M.; Roos, J.; Brinkmann, D.

    1988-06-01

    We have repeated and confirmed our previous assignment of the Cu NQR frequencies to the Cu sites 1 and 2 by measuring the intensities of the NQR signals at 31.5. and 22.05 MHz. The pulse spectrometer has been calibrated by means of the 19F NMR signal at the same frequencies. The lower Cu frequency is assigned to Cul. A point charge calculation of the electric field gradient at the Cu sites is in good agreement with experimental data. The ratio of the spin-lattice relaxation times of both Cu isotopes at either site has been determined. Unusual temperature dependences of the Cu spin-spin relaxation times have been measured.

  4. Striped superconductors: how spin, charge and superconducting orders intertwine in the cuprates

    Science.gov (United States)

    Berg, Erez; Fradkin, Eduardo; Kivelson, Steven A.; Tranquada, John M.

    2009-11-01

    Recent transport experiments in the original cuprate high temperature superconductor, La2-xBaxCuO4, have revealed a remarkable sequence of transitions and crossovers that give rise to a form of dynamical dimensional reduction, in which a bulk crystal becomes essentially superconducting in two directions while it remains poorly metallic in the third. We identify these phenomena as arising from a distinct new superconducting state, the 'striped superconductor', in which the superconducting order is spatially modulated, so that its volume average value is zero. Here, in addition to outlining the salient experimental findings, we sketch the order parameter theory of the state, stressing some of the ways in which a striped superconductor differs fundamentally from an ordinary (uniform) superconductor, especially concerning its response to quenched randomness. We also present the results of density matrix renormalization group calculations on a model of interacting electrons in which sign oscillations of the superconducting order are established. Finally, we speculate concerning the relevance of this state to experiments in other cuprates, including recent optical studies of La2-xSrxCuO4 in a magnetic field, neutron scattering experiments in underdoped YBa2Cu3O6+x and a host of anomalies seen in STM and ARPES studies of Bi2Sr2CaCu2O8+δ.

  5. Electronic structure Fermi liquid theory of high T(sub c) superconductors: Comparison with experiments

    Science.gov (United States)

    Freeman, A. J.; Yu, Jaejun

    1990-01-01

    For years, there has been controversy on whether the normal state of the Cu-oxide superconductors is a Fermi liquid or some other exotic ground state. However, some experimentalists are clarifying the nature of the normal state of the high T(sub c) superconductors by surmounting the experimental difficulties in producing clean, well characterized surfaces so as to obtain meaningful high resolved photoemission data, which agrees with earlier positron-annihilation experiments. The experimental work on high resolution angle resolved photoemission by Campuzano et al. and positron-annihilation studies by Smedskjaer et al. has verified the calculated Fermi surfaces in YBa2Cu3O7 superconductors and has provided evidence for the validity of the energy band approach. Similar good agreement was found for Bi2Sr2CaCu2O8 by Olson et al. As a Fermi liquid (metallic) nature of the normal state of the high T(sub c) superconductors becomes evident, these experimental observations have served to confirm the predictions of the local density functional calculations and hence the energy band approach as a valid natural starting point for further studies of their superconductivity.

  6. Superconductor-Mediated Modification of Gravity? AC Motor Experiments with Bulk YBCO Disks in Rotating Magnetic Fields

    Science.gov (United States)

    Noever, David A.; Koczor, Ronald J.; Roberson, Rick

    1998-01-01

    We have previously reported results using a high precision gravimeter to probe local gravity changes in the neighborhood of large bulk-processed high-temperature superconductors. Podkietnov, et al (Podkietnov, E. and Nieminen, R. (1992) A Possibility of Gravitational Force Shielding by Bulk YBa2 Cu3 O7-x Superconductor, Physica C, C203:441-444.) have indicated that rotating AC fields play an essential role in their observed distortion of combined gravity and barometric pressure readings. We report experiments on large (15 cm diameter) bulk YBCO ceramic superconductors placed in the core of a three-phase, AC motor stator. The applied rotating field produces up to a 12,000 revolutions per minute magnetic field. The field intensity decays rapidly from the maximum at the outer diameter of the superconducting disk (less than 60 Gauss) to the center (less than 10 Gauss). This configuration was applied with and without a permanent DC magnetic field levitating the superconducting disk, with corresponding gravity readings indicating an apparent increase in observed gravity of less than 1 x 10(exp -6)/sq cm, measured above the superconductor. No effect of the rotating magnetic field or thermal environment on the gravimeter readings or on rotating the superconducting disk was noted within the high precision of the observation. Implications for propulsion initiatives and power storage flywheel technologies for high temperature superconductors will be discussed for various spacecraft and satellite applications.

  7. Understanding and eliminating the fast creep problem in Fe-based superconductors

    Science.gov (United States)

    Civale, Leonardo; Eley, Serena; Maiorov, Boris; Miura, Masashi

    One surprising characteristic of Fe-based superconductors is that they exhibit flux creep rates (S) as large as, or larger than, those found in oxide high temperature superconductors (HTS). This very fast vortex dynamics appears to be inconsistent with the estimate of the influence of the thermal fluctuations as quantified by the Ginzburg number (Gi), which measures the ratio of the thermal energy to the condensation energy in an elemental superconducting volume. In particular, compounds of the AFe2As2 family (``122'') have Gi ~10-5 to 10-4, so S could be expected to lie between that of low Tc materials (where typically Gi ~ 10-8) and HTS such as YBa2Cu3O7 (Gi ~ 10-2) , as indeed occurs in other superconductors with intermediate fluctuations, such as MgB2 (Gi ~10-6 to 10-4) . We have found the solution to this puzzle: the fast creep rates in 122 compounds are due to non-optimized pinning landscapes. Initial evidence comes from our previous studies showing that the introduction of additional disorder by irradiation decreases creep significantly in 122 single crystals, although still remaining well above the ideal limit. We now have new evidence from 122 thin films demonstrating that S can be reduced to the lower limit set by Gi by appropriate engineering of the pinning landscape.

  8. Charge and spin correlations in high temperature superconductors

    Science.gov (United States)

    Hayden, Stephen

    2013-03-01

    The cuprate high temperatures superconductors are characterised by numerous competing, and in some cases, co-existing broken symmetries. A important question is to what extent such additional ordered states exist for compositions with high superconducting transition temperatures. I will discuss high-energy X-ray diffraction measurements which show that a charge density wave state (CDW) develops at zero field in the normal state of superconducting YBa2Cu3O6.67 (Tc = 67 K). This material has a hole doping of 0.12 per copper and a well-ordered oxygen chain superstructure. Below Tc, the application of a magnetic field suppresses superconductivity and enhances the CDW. We find that the CDW and superconductivity are competing orders with similar energy scales, and the high-Tc superconductivity forms from a pre-existing CDW environment. Our results provide a mechanism for the formation of small Fermi surface pockets which can explain the negative Hall and Seebeck effects and the Tc plateau in this material. Work performed in collaboration with J. Chang, E. Blackburn, A. T. Holmes, N. B. Christensen, J. Larsen, J. Mesot, Ruixing Liang, D. A. Bonn, W. N. Hardy, A. Watenphul, M. v. Zimmermann and E. M. Forgan.

  9. Glass precursor approach to high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    The available studies on the synthesis of high T sub c superconductors (HTS) via the glass precursor approach were reviewed. Melts of the Bi-Sr-Ca-Cu-O system as well as those doped with oxides of some other elements (Pb, Al, V, Te, Nb, etc.) could be quenched into glasses which, on further heat treatments under appropriate conditions, crystallized into the superconducting phase(s). The nature of the HTS phase(s) formed depends on the annealing temperature, time, atmosphere, and the cooling rate and also on the glass composition. Long term annealing was needed to obtain a large fraction of the 110 K phase. The high T sub c phase did not crystallize out directly from the glass matrix, but was preceded by the precipitation of other phases. The 110 K HTS was produced at high temperatures by reaction between the phases formed at lower temperatures resulting in multiphase material. The presence of a glass former such as B2O3 was necessary for the Y-Ba-Cu-O melt to form a glass on fast cooling. A discontinuous YBa2Cu3O(7-delta) HTS phase crystallized out on heat treatment of this glass. Attempts to prepare Tl-Ba-Ca-Cu-O system in the glassy state were not successful.

  10. Theoretical study of cathode surfaces and high-temperature superconductors

    Science.gov (United States)

    Mueller, Wolfgang

    1995-01-01

    Calculations are presented for the work functions of BaO on W, Os, Pt, and alloys of Re-W, Os-W, and Ir-W that are in excellent agreement with experiment. The observed emission enhancement for alloy relative to tungsten dispenser cathodes is attributed to properties of the substrate crystal structure and explained by the smaller depolarization of the surface dipole on hexagonal as compared to cubic substrates. For Ba and BaO on W(100), the geometry of the adsorbates has been determined by a comparison of inverse photoemission spectra with calculated densities of unoccupied states based on the fully relativistic embedded cluster approach. Results are also discussed for models of scandate cathodes and the electronic structure of oxygen on W(100) at room and elevated temperatures. A detailed comparison is made for the surface electronic structure of the high-temperature superconductor YBa2Cu3O7 as obtained with non-, quasi-, and fully relativistic cluster calculations.

  11. Melt processing of bulk high Tc superconductors and their application

    Science.gov (United States)

    Murakami, M.; Oyama, T.; Fujimoto, H.; Gotoh, S.; Yamaguchi, K.

    1991-03-01

    The authors report a melt-powder-melt-growth (MPMG) process which results in high Jc for bulk Y-Ba-Cu-O superconductors. The Y-Ba-Cu-O pellets or powders are melt quenched. The quenched plates are crushed into powder and mixed well. The powder is then compacted into desired shapes, remelted, and slowly cooled in a thermal gradient. When the starting composition is changed from the 1:2:3 stoichiometry toward the Y2BaCuO5(211) rich region, the 211 inclusions can be dispersed in the YBa2Cu3O(x) matrix, which contributes to increases in both flux pinning force and fracture toughness. A Jc value exceeding 3 x 108 A/sq m has been achieved at 77 K and 1 T. Another attractive feature of the MPMG process is that other components such as fine Ag powders can be added during solid-state mixing. Fine dispersion of Ag particles can effectively reduce the amount of cracking. MPMG-processed Y-Ba-Cu-O with Ag doping can levitate a mass of 3-kg at 1-mm height using a repulsive force against a 0.4-T magnet. A noncontacting rotation device such as a magnetic bearing can be made utilizing bulk high-Jc materials. A superconducting permanent magnet is also a promising candidate for future application. MPMG-processed Y-Ba-Cu-O can generate 0.25 T at 77 K.

  12. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure.

    Science.gov (United States)

    Prajapat, C L; Singh, Surendra; Paul, Amitesh; Bhattacharya, D; Singh, M R; Mattauch, S; Ravikumar, G; Basu, S

    2016-05-21

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  13. Superconductivity-induced magnetization depletion in a ferromagnet through an insulator in a ferromagnet-insulator-superconductor hybrid oxide heterostructure

    Science.gov (United States)

    Prajapat, C. L.; Singh, Surendra; Paul, Amitesh; Bhattacharya, D.; Singh, M. R.; Mattauch, S.; Ravikumar, G.; Basu, S.

    2016-05-01

    Coupling between superconducting and ferromagnetic states in hybrid oxide heterostructures is presently a topic of intense research. Such a coupling is due to the leakage of the Cooper pairs into the ferromagnet. However, tunneling of the Cooper pairs though an insulator was never considered plausible. Using depth sensitive polarized neutron reflectivity we demonstrate the coupling between superconductor and magnetic layers in epitaxial La2/3Ca1/3MnO3 (LCMO)/SrTiO3/YBa2Cu3O7-δ (YBCO) hybrid heterostructures, with SrTiO3 as an intervening oxide insulator layer between the ferromagnet and the superconductor. Measurements above and below the superconducting transition temperature (TSC) of YBCO demonstrate a large modulation of magnetization in the ferromagnetic layer below the TSC of YBCO in these heterostructures. This work highlights a unique tunneling phenomenon between the epitaxial layers of an oxide superconductor (YBCO) and a magnetic layer (LCMO) through an insulating layer. Our work would inspire further investigations on the fundamental aspect of a long range order of the triplet spin-pairing in hybrid structures.

  14. Emerging Diluted Ferromagnetism in High-Tc Superconductors Driven by Point Defect Clusters.

    Science.gov (United States)

    Gazquez, Jaume; Guzman, Roger; Mishra, Rohan; Bartolomé, Elena; Salafranca, Juan; Magén, Cesar; Varela, Maria; Coll, Mariona; Palau, Anna; Valvidares, S Manuel; Gargiani, Pierluigi; Pellegrin, Eric; Herrero-Martin, Javier; Pennycook, Stephen J; Pantelides, Sokrates T; Puig, Teresa; Obradors, Xavier

    2016-06-01

    Defects in ceramic materials are generally seen as detrimental to their functionality and applicability. Yet, in some complex oxides, defects present an opportunity to enhance some of their properties or even lead to the discovery of exciting physics, particularly in the presence of strong correlations. A paradigmatic case is the high-temperature superconductor YBa2Cu3O7-δ (Y123), in which nanoscale defects play an important role as they can immobilize quantized magnetic flux vortices. Here previously unforeseen point defects buried in Y123 thin films that lead to the formation of ferromagnetic clusters embedded within the superconductor are unveiled. Aberration-corrected scanning transmission microscopy has been used for exploring, on a single unit-cell level, the structure and chemistry resulting from these complex point defects, along with density functional theory calculations, for providing new insights about their nature including an unexpected defect-driven ferromagnetism, and X-ray magnetic circular dichroism for bearing evidence of Cu magnetic moments that align ferromagnetically even below the superconducting critical temperature to form a dilute system of magnetic clusters associated with the point defects.

  15. Emerging Diluted Ferromagnetism in High‐T c Superconductors Driven by Point Defect Clusters

    Science.gov (United States)

    Guzman, Roger.; Mishra, Rohan; Bartolomé, Elena; Salafranca, Juan; Magén, Cesar; Varela, Maria; Coll, Mariona; Palau, Anna; Valvidares, S. Manuel; Gargiani, Pierluigi; Pellegrin, Eric; Herrero‐Martin, Javier.; Pennycook, Stephen J.; Pantelides, Sokrates T.; Puig, Teresa; Obradors, Xavier

    2016-01-01

    Defects in ceramic materials are generally seen as detrimental to their functionality and applicability. Yet, in some complex oxides, defects present an opportunity to enhance some of their properties or even lead to the discovery of exciting physics, particularly in the presence of strong correlations. A paradigmatic case is the high‐temperature superconductor YBa2Cu3O7‐δ (Y123), in which nanoscale defects play an important role as they can immobilize quantized magnetic flux vortices. Here previously unforeseen point defects buried in Y123 thin films that lead to the formation of ferromagnetic clusters embedded within the superconductor are unveiled. Aberration‐corrected scanning transmission microscopy has been used for exploring, on a single unit‐cell level, the structure and chemistry resulting from these complex point defects, along with density functional theory calculations, for providing new insights about their nature including an unexpected defect‐driven ferromagnetism, and X‐ray magnetic circular dichroism for bearing evidence of Cu magnetic moments that align ferromagnetically even below the superconducting critical temperature to form a dilute system of magnetic clusters associated with the point defects. PMID:27812469

  16. Ferromagnet / superconductor oxide superlattices

    Science.gov (United States)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  17. SmBa2NbO6 Nanopowders, an Effective Percolation Network Medium for YBCO Superconductors

    Directory of Open Access Journals (Sweden)

    S. Vidya

    2013-01-01

    Full Text Available The percolation behavior of superconductor-insulator composite, YBa2Cu3O7–δ, and nano SmBa2NbO2 synthesized by modified combustion technique was studied. Particle size of nano SmBa2NBO6 was determined using transmission electron microscopy. The chemical nonreactivity of nano SmBa2NbO6 with YBCO is evident from the X-Ray diffraction study which makes it a suitable nanoceramic substrate material for high temperature superconducting films. A systematic increase in the sintered density, approaching the optimum value of the insulating nanophase is clearly observed, as the vol.% of YBCO in the composite decreases. SEM micrograph showed uniform distribution of nanopowder among the large clusters of YBCO. The obtained percolation threshold is ~26 vol% of YBCO in the composite. All the composites below the threshold value showed TC(0~92 K even though the room resistivity increases with increase in vol.% of nano SmBa2NbO6. The values of critical exponents obtained matches well with the theoretically expected ones for an ideal superconductor-insulator system.

  18. Science and technology of cuprate-based high temperature superconductor thin films, heterostructures and superlattices—the first 30 years (Review Article)

    Science.gov (United States)

    Habermeier, H.-U.

    2016-10-01

    During the three decades after the discovery of superconductivity at high temperatures in copper oxides, intense research activities generated a tremendous progress in both, mastering the scientific challenges underpinning the understanding of the properties of these chemically and structurally complex materials as well as achieving a mature technology in preparing single phase bulk specimens—including single crystals—and epitaxially grown single crystalline thin films. This review covers in addition to more basic physics oriented developments mainly technological aspects of complex oxide thin film deposition as an enabling technology to explore the physics of these materials. It consists of two parts: after a brief introduction to the materials development prior to the discovery of superconducting copper oxides, a description of the relevant properties of copper oxide superconductors with focus on YBa2Cu3O7-δ is given, followed by the coverage of essentials of complex oxide thin film deposition technology with the copper oxides at its core. Here, the major physical vapor deposition technologies (evaporation and oxide molecular beam technology, sputtering and pulsed laser deposition) are described followed by an overview of substrate requirements to deposit high quality thin films. Opportunities by choosing special substrates with unique properties far beyond the usual mechanical support for a film are introduced with examples aside from usual lattice mismatch induced strain effects. One is the continuous modification of the strain state by poling ferroelectric oxide substrates linked to a piezoelectric effect, the other is the nanoscale tailoring of substrate step-and-terrace structures resulting in a controllable generation of planar defects in complex oxides, thus contributing to the physics of flux-line pinning in cuprate superconductors. In the second part of this review, first some highlights of single layer thin film research are given such as to tailor

  19. Studies of High-T$_{c}$ Superconductors Doped with Radioactive Isotopes

    CERN Multimedia

    Alves, E J; Goncalves marques, J; Cardoso, S; Lourenco, A A; Sousa, J B

    2002-01-01

    %title\\\\ \\\\We propose to study High T$_{c} $ Superconductors~(HTSc) doped with radioactive elements at ISOLDE, in order to investigate some of the problems that persist after use of conventional characterization techniques. Three main topics are proposed: \\begin{enumerate} \\item Characterization of the order/disorder of Hg in the Hg-planes of the HTSc family Hg$_{1}$Ba$_{2}$R$_{(n-1)}$Cu$_{n}$O$_{(2n+2+\\delta)}$ (T$_{c}$ > 130 K) due to defects or impurities such as C and Au. \\item Studies of the doping of Infinite Layers Cuprates (RCuO$_{2}$)$_{n}$, R=Ca, Sr or Ba, using unstable nuclei of the alkaline-earth (IIA) group which decay to the alkaline nuclei (IA) group. The purpose is to introduce charge carriers in these materials by changing the valence of the cations during the nuclear transmutation. The possibility of using ion implantation to introduce directly an alkaline dopant will also be studied. \\item Studies of the Hg/Au doping of high quality YBa$_{2}$Cu$_{3}$O$_{6+x}$ thin films. We intend to chara...

  20. Effects of seed orientation on the growth behavior of single grain REBCO bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Gyoun [Korea Polytechnic University, Siheung (Korea, Republic of)

    2017-06-15

    This study presents a simple method to control the seed orientation which leads to the various growth characteristics of a single grain REBCO (RE: rare-earth elements) bulk superconductors. Seed orientation was varied systematically from c-axis to a-axis with every 30 degree rotation around b-axis. Orientations of a REBCO single grain was successfully controlled by placing the seed with various angles on the prismatic indent prepared on the surface of REBCO powder compacts. Growth pattern was changed from cubic to rectangular when the seed orientation normal to compact surface was varied from c-axis to a-axis. Macroscopic shape change has been explained by the variation of the wetting angle of un-reacted melt depending on the interface energy between YBa2Cu3O7-y (Y123) grain and melt. Higher magnetic levitation force was obtained for the specimen prepared using tilted seed with an angle of 30 degree rotation around b-axis.

  1. Enhancement of trapped field in single grain Y-Ba-Cu-O bulk superconductors by a modified top-seeded melt-textured growth

    Science.gov (United States)

    Tang, Tian-wei; Wu, Dong-jie; Xu, Ke-Xi

    2016-08-01

    The modified top-seeded melt-textured growth technique for fabricating single grain Y-Ba-Cu-O (YBCO) bulk superconductors with high field-trapping ability by using modified precursor pellets was reported. The modified precursor pellets are composed of different precursor powders YBa2Cu3O{}7-δ (Y123) + x mol% Y2BaCuO5 (Y211) + 1 wt% CeO2 without any further chemical doping. The modified YBCO bulks up to 25 and 34 mm in diameter were successfully fabricated from the modified precursor pellets. Microstructural observation results showed that the modified YBCO bulk exhibited a homogeneous distribution of Y211 phase particles, which was qualitatively explained by the solute diffusion growth model in combination with the trapping/pushing theory. As a result, it is notable that the peak trapped field values of 0.91 T (maximum 0.96 T) and 1.2 T (maximum 1.28 T) at 77 K were achieved for 25 and 34 mm modified YBCO bulks, respectively. In a word, the results from present work are very helpful to understand the melt growth mechanism and to further improve the properties of YBCO bulk superconductors for practical applications.

  2. The effect of resolidification on preform optimized infiltration growth processed (Y, Nd, Sm, Gd)BCO, multi-grain bulk superconductor

    Science.gov (United States)

    Pavan Kumar Naik, S.; Seshu Bai, V.

    2017-01-01

    Controlling the microstructure of superconductors by incorporating the flux pinning centers and reducing the macro-defects to improve high field performance is the topic of recent research. In continuation, the preform optimized infiltration growth (POIG) processed YBa2Cu3O7-δ (YBCO) system, Y-site substituted with three mixed RE (Nd, Sm, Gd) elements is investigated. 20 wt.% of (Nd, Sm, Gd)2BaCuO5 were mixed with Y2BaCuO5 and POIG processed in reduced oxygen atmosphere to obtain YNSG superconductor. No seed is employed for crystal growth; hence the processed samples are multi-grained. Microstructural and compositional investigations on YNSG revealed the presence of different phases in the matrix as well as in precipitates which are of the order of submicron to 4 μm. A large fraction of macro-defects (∼6% of porosity) was observed in the YNSG sample. For reducing the unwanted macro-defects and refine the non-superconducting precipitates, processed YNSG sample is pressed and resolidified (by infiltrating the liquid phases once again) in an argon atmosphere and the structural, microstructural, elemental and superconducting properties are compared with YNSG and undoped samples. Due to spatial scatter in superconducting critical temperatures, caused by the distribution of different REBCO unit cells in YBCO, superconducting transition curve is sharp in YNSG, whereas the resolidified sample showed the broad transition due to solidified liquid phases.

  3. Effect of magnetic and nonmagnetic nano metal oxides doping on the critical temperature of a YBCO superconductor

    Science.gov (United States)

    Salama, A. H.; El-Hofy, M.; Rammah, Y. S.; Elkhatib, M.

    2015-12-01

    Bulk superconductor samples of YBa2Cu3O7-δ (YBCO) doped with nano metal oxides of Mn3O4, Co3O4, Cr2O3, CuO and SnO2 respectively with 0.2 wt% are synthesized by a solid-state reaction route. The structural characterization of all samples has been carried out by x-ray diffraction (XRD) and scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. The XRD patterns indicate that the magnetic doping of nano metal oxides ≤ft({{{Mn}}}{{3}}{{{O}}}{{4}}, {{{Co}}}{{3}}{{{O}}}{{4}}, {{{Cr}}}{{2}}{{{O}}}{{3}}\\right) gives a high value of orthorhombicity of the YBCO samples which is the result of high oxygen content, and consequently could give better superconducting properties contrary to the non magnetic nano oxides (CuO, SnO2). The critical temperature (Tc) of the studied samples was found to improve by nano magnetic doping and lower with nano nonmagnetic doping. The superconducting transition temperature Tc determined from electrical resistivity measurements was found to increase for Mn3O4 (5.27 μB) doping and decrease for other metal oxides doping.

  4. Role of nano and micron-sized inclusions on the oxygen controlled preform optimized infiltration growth processed YBCO superconductors

    Science.gov (United States)

    Pavan Kumar Naik, S.; Bai, V. Seshu

    2017-02-01

    In the present work, with the aim of improving the local flux pinning at the unit cell level in the YBa2Cu3O7-δ (YBCO) bulk superconductors, 20 wt% of nanoscale Sm2O3 and micron sized (Nd, Sm, Gd)2BaCuO5 secondary phase particles were added to YBCO and processed in oxygen controlled preform optimized infiltration growth process. Nano Dispersive Sol Casting method is employed to homogeneously distribute the nano Sm2O3 particles of 30-50 nm without any agglomeration in the precursor powder. Microstructural investigations on doped samples show the chemical fluctuations as annuli cores in the 211 phase particles. The introduction of mixed rare earth elements at Y-site resulted in compositional fluctuations in the superconducting matrix. The associated lattice mismatch defects have provided flux pinning up to large magnetic fields. Magnetic field dependence of current density (Jc(H)) at different temperatures revealed that the dominant pinning mechanism is caused by spatial variations of critical temperatures, due to the spatial fluctuations in the matrix composition. As the number of rare earth elements increased in the YBCO, the peak field position in the scaling of the normalized pinning force density (Fp/Fp max) significantly gets shifted towards the higher fields. The curves of Jc(H) and Fp/Fp max at different temperatures clearly indicate the LRE substitution for LRE' or Ba-sites for δTc pinning.

  5. Effect of the characteristics of a superconductor on the levitation properties of the magnet-superconductor system

    NARCIS (Netherlands)

    Rudnev, I. A.; Ermolaev, Yu. S.

    2007-01-01

    The results of the experimental and theoretical investigations of the magnetic levitation force appearing at the interaction of the multilayer superconducting block of the YBa2Cu3O7-x melted textured ceramic and a permanent magnet are presented. The maximum repulsive force and maximum attractive for

  6. Effect of the characteristics of a superconductor on the levitation properties of the magnet-superconductor system

    NARCIS (Netherlands)

    Rudnev, I. A.; Ermolaev, Yu. S.

    2007-01-01

    The results of the experimental and theoretical investigations of the magnetic levitation force appearing at the interaction of the multilayer superconducting block of the YBa2Cu3O7-x melted textured ceramic and a permanent magnet are presented. The maximum repulsive force and maximum attractive for

  7. The influence of slow cooling on Y211 size and content in single-grain YBCO bulk superconductor through the infiltration-growth process

    Science.gov (United States)

    Ouerghi, A.; Moutalbi, N.; Noudem, J. G.; M'chirgui, A.

    2017-03-01

    Highly textured YBa2Cu3O7-δ (Y123) superconductors were produced using modified Textured Top Seeded Infiltration Growth (TSIG) process. The liquid source is made of only Y123 powder whereas the solid source is composed of Y2BaCuO5 (Y211) powder. We aim to control the amount of liquid that infiltrates the solid pellet, which in turn controls the final amount of Y2BaCuO5 particles in Y123 matrix. The effect of the slow cooling kinetics on sample morphology, on grain growth and on final microstructure was too investigated. It is shown that appropriate slow cooling time may also contribute to the control of the amount of Y211 inclusions in the final structure of Y123 bulk. We report herein the Y211 particle size and density distribution in the whole Y123 matrix. The present work proves that finest Y211 particles locate under the seed and that their size and density increase with distance from the seed.

  8. Determining the in-plane Fermi surface topology in high T(c) superconductors using angle-dependent magnetic quantum oscillations.

    Science.gov (United States)

    Harrison, N; McDonald, R D

    2009-05-13

    We propose a quantum oscillation experiment by which the rotation of an underdoped YBa(2)Cu(3)O(6+x) sample about two different axes with respect to the orientation of the magnetic field can be used to infer the shape of the in-plane cross-section of corrugated Fermi surface cylinder(s). Deep corrugations in the Fermi surface are expected to give rise to nodes in the quantum oscillation amplitude that depend on the magnitude and orientation of the magnetic induction B. Because the symmetries of electron and hole cylinders within the Brillouin zone are expected to be very different, the topology can provide essential clues as to the broken symmetry responsible for the observed oscillations. The criterion for the applicability of this method to the cuprate superconductors (as well as other layered metals) is that the difference in quantum oscillation frequency 2ΔF between the maximum (belly) and minimum (neck) extremal cross-sections of the corrugated Fermi surface exceeds |B|.

  9. Magnetic proximity effect and superconducting triplet correlations at the cuprate superconductor and oxide spin valve interface

    Science.gov (United States)

    Ovsyannikov, G. A.; Constantinian, K. Y.; Demidov, V. V.; Khaydukov, Yu. N.

    2016-10-01

    A heterostructure consisting of a cuprate superconductor YBa2Cu3O7-δ and a ruthenate/manganite (SrRuO3/La0.7Sr0.3MnO3) spin valve was studied using SQUID magnetometry, ferromagnetic resonance, and neutron reflectometry. It is shown that because of the magnetic proximity effect a magnetic moment is excited in the superconducting portion of the heterostructure, whereas the magnetic moment in the spin valve becomes suppressed. The experimentally obtained value of a typical penetration depth of a magnetic moment into the superconductor is significantly greater than the coherence length of the cuprate superconductor, which indicates that the induced magnetic moment mechanism of Cu atoms is dominant. The mesastructure prepared by adding niobium film as a second superconducting electrode to the existing heterostructure, exhibited a superconducting current (dc Josephson effect) at interlayer thicknesses that are much greater than the coherence length of the ferromagnetic materials. The maximum of the critical current density dependence on the thickness of the spin valve material corresponds to the interlayer coherence length, which agrees with the theoretical predictions associated with spin-triplet pairing. The superconducting current is observed at magnetic fields that are two orders of magnitude greater than the field corresponding to the occurrence of one magnetic flux quantum in the mesastructure. The ratio of the second harmonic of the current-phase dependence of the mesastructure superconducting current to the first, determined according to the dependence of the Shapiro steps on the amplitude of microwave exposure, did not exceed 50%.

  10. How resistive must grain boundaries in polycrystalline superconductors be, to limit J c?

    Science.gov (United States)

    Wang, Guanmei; Raine, Mark J.; Hampshire, Damian P.

    2017-10-01

    Although we can use misorientation angle to distinguish the grain boundaries that can carry high critical current density ({J}{{c}}) in high temperature superconductors (HTS) from those that cannot, there is no established normal state property equivalent. In this paper, we explore the superconducting and normal state properties of the grains and grain boundaries of polycrystalline YBa2Cu3O7-x (YBCO) using complementary magnetisation and transport measurements, and calculate how resistive grain boundaries must be to limit {J}{{c}} in polycrystalline superconductors. The average resistivity of the grain boundaries, {ρ }{{GB}}, in our micro- and nanocrystalline YBCO are 0.12 Ωm and 8.2 Ωm, values which are much higher than that of the grains ({ρ }{{G}}) and leads to huge {ρ }{{GB}}/{ρ }{{G}} values of 2 × 103 and 1.6 × 105 respectively. We find that the grain boundaries in our polycrystalline YBCO are sufficiently resistive that we can expect the transport {J}{{c}} to be several tens of orders of magnitude below the potential current density of the grains in our YBCO samples, as is found experimentally. Calculations presented show that increasing {J}{{c}} values by ˜2 orders of magnitude in high fields is still possible in all state-of-the-art technological high-field superconductors. We conclude: grain boundary engineering is unlikely to improve {J}{{c}} sufficiently in randomly aligned polycrystalline YBCO, to make it technologically useful for high-field applications; in low temperature superconducting intermetallics, such as Nb3Sn, large increases in {J}{{c}} may be achieved by completely removing the grain boundaries from these materials and, as is the case for thin films of Nb, Ba(FeCo)2As2 and HTS materials, by incorporating additional artificial pinning.

  11. Effects of carbon nanotube addition on superconductivity in Y-Ba-Cu-O bulk superconductors

    Science.gov (United States)

    Inoue, K.; Miyake, Y.; Miryala, M.; Murakami, M.

    2017-07-01

    Bulk Y-Ba-Cu-O superconductors have significant potential for engineering applications due to high critical current density, which is attributed to the presence of pinning centers such as Y2BaCuO5. The introduction of nano-sized secondary phase is known to act as more effective pinning center than those in micron sizes. The diameter of carbon nanotube (CNT) is close to that of the coherence length of high-temperature superconductors, which is expected to improve the flux pinning performance. We have investigated the effects of CNT addition on the microstructure, superconducting transition temperature (T c), and critical current density (J c) of YBa2Cu3O x (Y123) based bulk superconductors. SEM observation showed the distribution of needle-like particles around 100 nm in length in the Y123 matrix for the CNT added samples. The highly porous texture was also observed for the excess addition of CNT. T c was enhanced from 90.5 K to 91.8 K with increasing CNT addition. It is probable that carbon originated from CNT suppressed oxidation and carrier doping. Jc exhibited the highest value for 0.25 wt% CNT added sample. This suggests that nano-sized needle-like particles act as effective pinning centers. However, a further increase of CNT led to the decline of J c, which suggests that there is an optimum amount of CNT for the improvement of J c. The secondary peak was observed for the sample with 1 wt% CNT addition, where CO3 substitutions with Cu site at the Cu-O chain might induce oxygen vacancies leading to the field induced pinning.

  12. Quantum magnetic excitations from stripes in copper-oxide superconductors

    Science.gov (United States)

    Tranquada, John

    2005-03-01

    Recent inelastic neutron scattering studies show that the magnetic excitation spectra of two well-studied families of cuprate superconductors are much more similar than previously believed. In particular, I will present results we have obtained on La2-xBaxCuO4 (LBCO) with x = 0.125 [1,2]. Using very large single crystals grown at Brookhaven, we were able to measure the magnetic excitations up to 200 meV using the MAPS time-of-flight spectrometer at the ISIS spallation source. While the lowest energy excitations are split incommensurately, these disperse inwards towards the antiferromagnetic wave vector with increasing energy, merging at ˜50 meV. At higher energies the excitations disperse outwards again. There is a significant enhancement of the Q-integrated magnetic scattering near ˜50 meV compared to lower energies, suggestive of quantum correlations and distinct from spin-wave predictions. Many features of the spectrum are quite similar to those found in YBa2Cu3O6.6 [3]. One can qualitatively characterize the results with a universal excitation spectrum, together with a material-dependent spin gap in the superconducting state. It is important to note that the LBCO sample exhibits static stripe order [2], as this has significant implications for the origin of the magnetic excitations in superconducting cuprates. *J. M. Tranquada, H. Woo, T. G. Perring, H. Goka, G. D. Gu, G. Xu, M. Fujita, and K. Yamada, Nature 429, 534 (2004). *M. Fujita, H. Goka, K. Yamada, J. M. Tranquada, and L.-P. Regnault, Phys. Rev. B 70, 104517 (2004). *S. M. Hayden, H. A. Mook, P. C. Dai, T. G. Perring, and F. Dogan, Nature 429, 531 (2004).

  13. Screening of point charge impurities in highly anisotropic metals: application to mu+-spin relaxation in underdoped cuprate superconductors.

    Science.gov (United States)

    Shekhter, Arkady; Shu, Lei; Aji, Vivek; MacLaughlin, D E; Varma, C M

    2008-11-28

    We calculate the screening charge density distribution due to a point charge, such as that of a positive muon (mu+), placed between the planes of a highly anisotropic layered metal. In underdoped hole cuprates the screening charge converts the charge density in the metallic-plane unit cells in the vicinity of the mu+ to nearly its value in the insulating state. The current-loop-ordered state observed by polarized neutron diffraction then vanishes in such cells, and also in nearby cells over a distance of order the intrinsic correlation length of the loop-ordered state. This strongly suppresses the magnetic field at the mu+ site. We estimate this suppressed field in underdoped YBa2Cu3O6+x and La2-xSrxCuO4, and find consistency with the observed approximately 0.2 G field in the former case and the observed upper bound of approximately 0.2 G in the latter case. This resolves the controversy between the neutron diffraction and mu-spin relaxation experiments.

  14. Two-dimensional Vortex Behavior in Highly Underdoped YBa2Cu3O6 x Observed by Scanning Hall Probe Microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Guikema, J.W.

    2010-02-22

    We report scanning Hall probe microscopy of highly underdoped superconducting YBa{sub 2}Cu{sub 3}O{sub 6+x} with T{sub c} ranging from 5 to 15 K which showed distinct flux bundles with less than one superconducting flux quantum ({Iota}{sub 0}) through the sample surface. The sub-{Iota}{sub 0} features occurred more frequently for lower T{sub c}, were more mobile than conventional vortices, and occurred more readily when the sample was cooled with an in-plane field component. We show that these features are consistent with kinked stacks of pancake vortices.

  15. Biaxially Textured Constantan Alloy (Cu 55 wt%, Ni 44 wt%, Mn 1 wt%) Substrates for YBa2Cu3O7-x Coated Conductors (Postprint)

    Science.gov (United States)

    2012-02-01

    and oxide buffers on these substrates, although with reduced quality, showed that the superconducting films can be deposited on these substrates with...Curie temperature of 35 K and so were paramagnetic at 77 K and ferromagnetic at 5 K with a saturation magnetization that is 2.5 times less than that...paramagnetic at 77 K and ferromagnetic at 5 K with a saturation magnetization that is 2.5 times less than that of Ni–5 at.% W substrates. Yield strengths of

  16. Pits on the Surfaces of Epitaxial c-Axis YBa2Cu3O7-δ Thin Films Grown on Vicinal SrTiO3 Substrates

    Institute of Scientific and Technical Information of China (English)

    胡文斐; 李林; 赵新杰; 刘维; 陈莺飞; 王天生; 邱祥冈

    2001-01-01

    The reoccurrence of pits has been found on the surfaces of c-axis YBa2CusO7-δ (YBCO) films grown epitaxially on 10℃ vicinal SrTiOs substrates by pulsed laser deposition. They are always associated with films with a stepterrace structure, while polycrystalline films have no pits. Pit formation is attributed to the large interfacial stress induced by vicinal substrate and oxygen deficiency of the YBCO film during the tetragonal-to-orthorhombic (TO) phase transition, which cannot be released by forming twins, and leads to rupturing of the film surface. By reducing the oxidation partial pressure for the T-O phase transition to 80 Pa, no pits were formed, and the YBCO film is superconducting at 60K.

  17. Excess conductivity analysis in YBa2Cu3O7-d added with SiO2 nanoparticles and nanowires: Comparative study

    Science.gov (United States)

    Al-Otaibi, A. L.; Almessiere, M. A.; Salem, M. Ben; Azzouz, F. Ben

    2016-07-01

    The effect of nanosized silicon oxide nanoparticles (denoted NP-SiO2) and nanowires (denoted NW-SiO2) additions during the final processing stage on electrical fluctuation conductivity of polycrystalline YBa2Cu3Oy (Y-123 for brevity) in the mean field region has been reported. Series of samples were synthesized in air using a standard solid-state reaction technique by adding nanosized entities up to 0.5 wt.%. Phases, microstructure and superconductivity properties have been systematically investigated using X-ray diffraction (XRD), transmission electron microscopy (TEM) and electrical measurements. TEM investigations show the presence of inhomogeneities embedded in the superconducting matrix along with the presence of columnar defects in the case of SiO2 nanoparticles added samples, however nanowires tend to agglomerate by entangling with each other in the intergrain regions. The fluctuation conductivity was analyzed as a function of reduced temperature using the Aslamazov-Larkin model. Using the Lawrence-Doniach equations, the Ginzburg-Landau (GL) number (NG) and equations, the coherence length, the effective layer thickness, the lower critical field Bc1(0), the upper critical field Bc2(0) and the critical current density Jc(0) were estimated. It was found that the addition of an optimum concentration of SiO2 nanomaterials, that depends on the shape, effectively controlled the microstructure, the grains coupling and hence improved the physical properties of Y-123 compound.

  18. Enhanced Jc's of YBa2Cu3O7-x-Ag ex situ annealed coevaporated films on LaAlO3 (100) substrates

    DEFF Research Database (Denmark)

    Clausen, Thomas; Ejrnæs, Mikkel; Olesen, Michael Wiinberg

    1995-01-01

    A 5x increase of the critical current density (J(c)) at 77 K was obtained by coating a coevaporated 500 nm thick Y, BaF2, Cu film with 50 nm Ag prior to the ex situ annealing. J(c) increased from 0.2 for uncoated samples to 1 MA/cm(2) for the Ag-coated sample without severely affecting the zero...

  19. Effects of room-temperature tensile fatigue on critical current and n-value of IBAD-MOCVD YBa2Cu3O7-x /Hastelloy coated conductor

    Science.gov (United States)

    Rogers, Samuel; Kan Chan, Wan; Schwartz, Justin

    2016-08-01

    REBa2Cu3O7-x (REBCO) coated conductors potentially enable a multitude of superconducting applications, over a wide range of operating temperatures and magnetic fields, including high-field magnets, energy storage devices, motors, generators, and power transmission systems (Zhang et al 2013 IEEE Trans. Appl. Supercond. 23 5700704). Many of these are AC applications and thus the fatigue properties may be limiting (Vincent et al 2013 IEEE Trans. Appl. Supercond. 23 5700805). Previous electromechanical studies have determined the performance of REBCO conductors under single cycle loads (Barth et al 2015 Supercond. Sci. Technol. 28 045011), but an understanding of the fatigue properties is lacking. Here the fatigue behavior of commercial ion beam assisted deposition-metal organic chemical vapor deposition REBCO conductors on Hastelloy substrates is reported for axial tensile strains up to 0.5% and up to 100 000 cycles. Failure mechanisms are investigated via microstructural studies. Results show that REBCO conductors retained I c(ɛ)/I c0 = 0.9 for 10 000 cycles at ɛ = 0.35% and ɛ = 0.45% strain, and ɛ = 0.5% for 100 cycles. The main cause of fatigue degradation in REBCO conductors is crack propagation that initiates at the slitting defects that result from the manufacturing process.

  20. Inducing Self-Assembly of Y2BaCuO5 Nanoparticles via Ca-Doping for Improved Pinning in YBa2Cu3O7-x

    Science.gov (United States)

    2010-03-01

    Huhne, L. Schultz, B. Holzapfel, Appl. Phys. Lett. 86 (2005) 122508. [7] N. Long, N. Strickland , B. Chapman, N. Ross, J. Xia, X. Li, W. Zhang, T...Leonard, P.M. Martin, A.A. Gapud, M. Varela, M. Paranthaman, A.O. Ijaduola, E.D. Specht, J.R. Thompson , D.K. Christen, S.J. Pennycook, F.A. List

  1. Specific heats and thermodynamic critical fields in Zn-doped YBa2Cu3O(7-x) according to an induced-pairing model

    Science.gov (United States)

    Eagles, D. M.

    1993-01-01

    Electronic specific heats and thermodynamic critical fields are calculated in a mean-field version of an induced-pairing model for superconductivity, and compared with results of Loram et al. (1990) on YBa2(Cu(1-y)Zn(y))3O(7-x). This model involves induction of pairing of holes in a wideband by strongly bound electronlike pairs. It is assumed that the planar hole concentration for no Zn addition is close to, but slightly higher than, that for the maximum Tc, and that it increases by 0.015 per planar Cu ion for each increase of y by 0.01. Parameters of the model are taken to be the same as in a previous publication in which energy gaps were discussed, except that an effective hybridization parameter is adjusted for each Zn concentration to give agreement with the observed Tc. Results are presented for y = 0.0, 0.01, and 0.03. The agreement with experiment is good for thermodynamic critical fields, and is fair for specific heats. For specimens with larger y, with relatively low T(c)s, it is argued that the model should be supplemented to include effects of a BCS-type interaction amongst the wideband carriers.

  2. Neutron-scattering determination of the structural parameters versus oxygen content of YBa2Cu3O6+x single crystals

    DEFF Research Database (Denmark)

    Casalta, H.; Schleger, P.; Harris, P.

    1996-01-01

    .96 (superconducting, orthorhombic phase), In the orthorhombic phase, both twinned and detwinned samples were measured. A detailed discussion is presented of the systematic changes taking place in the atomic positions and Debye-Waller factors as the oxygen content is varied, Some qualitative highlights are that one...... can identify two distinct regions within the unit cell: the characteristics of the atoms near the CuOx basal plane are essentially driven by the effect of oxygen addition, whereas near the CuO2 bilayer, the trends are more subtle and presumably dominated by charge transfer and bond-distance effects....... Also, there is neither an abrupt change of the apical-oxygen position at the orthorhombic to tetragonal transition, nor is there any indication of depletion of the atomic sites except for the chain-site oxygen, The superconducting critical temperatures or Neel temperatures, as well as the existence...

  3. Microstructural Characterization of YBa2Cu3O7-x Films with BaZrO3 Nanorods Grown on Vicinal SrTiO3 Substrates (Postprint)

    Science.gov (United States)

    2010-03-01

    Authorized licensed use limited to: AFRL Technical Library. Downloaded on March 23,2010 at 08:54:45 EDT from IEEE Xplore . Restrictions apply. 2...45 EDT from IEEE Xplore . Restrictions apply. 3 3374 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 19, NO. 3, JUNE 2009 non-vicinal STO...AFRL Technical Library. Downloaded on March 23,2010 at 08:54:45 EDT from IEEE Xplore . Restrictions apply. 4

  4. Very Large Scale Integration of Nano-Patterned YBa2Cu3O7-delta Josephson Junctions in a Two-Dimensional Array

    Science.gov (United States)

    2010-03-26

    suggested that it may be possible to use incommensurate area SQUID arrays as radio frequency ( RF ) amplifiers.32 3 Shane A. Cybart et al. The layout of...our array is shown in Figure 1. For efficient coupling of RF in future experiments we chose a microstrip line configuration with SQUID loops cut into...variations of the process to reproduce single junctions,20–24 series arrays of tens of junctions,25,26 and a series array of 280 SQUIDs .27 Here we report

  5. Physical properties and interface studies of YBa2Cu3O7 thin films deposited by laser ablation on S1 (111) with buffer layer

    NARCIS (Netherlands)

    Blank, D.H.A.; Aarnink, W.A.M.; Flokstra, J.; Rogalla, H.; Silfhout, van A.

    1990-01-01

    The physical properties of laser-deposited YBaCuO on Si using a single buffer layer of ZrO2 and a double layer of NiSi2 and ZrO2 have been studied. The influence of the deposition temperature has been investigated. Interface studies were performed by RBS and SAM. SEM pictures, resistivity and critic

  6. Possible Josephson-like behavior of the YBa2Cu3O7-x single crystal twin boundaries in low magnetic fields

    OpenAIRE

    Timofeev, V. P.; A. V. Bondarenko

    2004-01-01

    The experimental results on the magnetic response of YBCO single crystals with unidirectional twin boundary planes in low magnetic fields (0.01 - 1 Oe) are discussed. The observed non-monotone temperature dependence of magnetization is interpreted within a plausible model of a system of the Josephson weak links in the twin boundary planes and on the basis of the order parameter anisotropy.

  7. Decomposition and Oriented Growth of YBa2Cu3O7-x Films Prepared with Low Fluorine TFA-MOD Approach

    Directory of Open Access Journals (Sweden)

    Xiaohui Zhao

    2013-01-01

    be the most promising method for mass production of low cost high temperature coated conductors. In order to reduce the decomposition time and improve the properties of YBCO films, copper propionate was used as the precursor and certain Lewis-bases were introduced into the precursor solution. The fluorine content of the solution was significantly reduced. High quality oriented YBCO films were prepared on LAO substrates with this low fluorine TFA-MOD approach. The effects of the sintering temperature on the oriented growth and properties of YBCO films were investigated. The preliminary results yielded the critical current density (Jc of 2 MA/cm2 and critical current (Ic of 120 A/cm width at 77 K and self-field.

  8. Time Resolved Magneto-Optical Imaging in High Frequency AC Currents of YBa2Cu3O7-delta Thin Films (Postprint)

    Science.gov (United States)

    2012-02-01

    resolved imaging, we use a Q- switched Nd:YLF diode-pumped solid-state laser which provides 100-nsec short pulses at 527-nm wavelength. The pulse...We use a 6-µm thick epitaxial grown ferrite -garnet film (FGF) (Y,Bi,Pr,Lu)3.0(Fe,Ga)5.0O12.0 with an in-plane magnetization as the MO indicator...sub-nanoseconds by the magnetization switching time of the FGF as in ref. [11]. The power source provides up to 15 Amps of bipolar current in a

  9. Very Large Scale Integration of Nano-Patterned YBa2Cu3O7-delta Josephson Junctions in a Two-Dimensional Array

    Energy Technology Data Exchange (ETDEWEB)

    Cybart, Shane A; Anton, Steven; Wu, Stephen; Clarke, John; Dynes, Robert

    2009-09-01

    Very large scale integration of Josephson junctions in a two-dimensional series-parallel array has been achieved by ion irradiating a YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} film through slits in a nano-fabricated mask created with electron beam lithography and reactive ion etching. The mask consisted of 15,820 high-aspect ratio (20:1), 35-nm wide slits that restricted the irradiation in the film below to form Josephson junctions. Characterizing each parallel segment k, containing 28 junctions, with a single critical current I{sub ck} we found a standard deviation in I{sub ck} of about 16%.

  10. Harmonic frequency mixing using high Tc superconductor Josephson junction mounted on pulse tube cryocooler

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A frequency mixing system including microwave coupling and intermediate frequency (IF) measurement arrangements is esigned. In lieu of liquid nitrogen, a pulse tube cryocooler is used to cool the whole system. With YBa2Cu3O7/Yttrium stabilized irconia (YBCO/YSZ) bicrystal Josephson junction as the mixing element, 36th harmonic frequency mixing at the 8 mm waveband is obtained.

  11. Dispersive excitations in the high-temperature superconductor La2-xSrxCuO4

    DEFF Research Database (Denmark)

    Christensen, N.B.; McMorrow, D.F.; Rønnow, H.M.

    2004-01-01

    High-resolution neutron scattering experiments on optimally doped La(2-x)Sr(x)CuO(4) (x=0.16) reveal that the magnetic excitations are dispersive. The dispersion is the same as in YBa(2)Cu(3)O(6.85), and is quantitatively related to that observed with charge sensitive probes. The associated veloc...

  12. Specific heat of underdoped cuprate superconductors from a phenomenological layered Boson-Fermion model

    Science.gov (United States)

    Salas, P.; Fortes, M.; Solís, M. A.; Sevilla, F. J.

    2016-05-01

    We adapt the Boson-Fermion superconductivity model to include layered systems such as underdoped cuprate superconductors. These systems are represented by an infinite layered structure containing a mixture of paired and unpaired fermions. The former, which stand for the superconducting carriers, are considered as noninteracting zero spin composite-bosons with a linear energy-momentum dispersion relation in the CuO2 planes where superconduction is predominant, coexisting with the unpaired fermions in a pattern of stacked slabs. The inter-slab, penetrable, infinite planes are generated by a Dirac comb potential, while paired and unpaired electrons (or holes) are free to move parallel to the planes. Composite-bosons condense at a critical temperature at which they exhibit a jump in their specific heat. These two values are assumed to be equal to the superconducting critical temperature Tc and the specific heat jump reported for YBa2Cu3O6.80 to fix our model parameters namely, the plane impenetrability and the fraction of superconducting charge carriers. We then calculate the isochoric and isobaric electronic specific heats for temperatures lower than Tc of both, the composite-bosons and the unpaired fermions, which matches the latest experimental curves. From the latter, we extract the linear coefficient (γn) at Tc, as well as the quadratic (αT2) term for low temperatures. We also calculate the lattice specific heat from the ARPES phonon spectrum, and add it to the electronic part, reproducing the experimental total specific heat at and below Tc within a 5% error range, from which the cubic (ßT3) term for low temperatures is obtained. In addition, we show that this model reproduces the cuprates mass anisotropies.

  13. Charge stripes and spin correlations in copper-oxide superconductors

    Science.gov (United States)

    Tranquada, J. M.

    1997-08-01

    Recent neutron diffraction studies have yielded evidence that, in a particular cuprate family, holes doped into the CuO 2 planes segregate into stripes that separate antiferromagnetic domains. Here it is shown that such a picture provides a quantitatively consistent interpretation of the spin fluctuations measured by neutron diffraction in La 1.85Sr 0.15CuO 4 and YBa 2Cu 3O 6+ x.

  14. Charge stripes and spin correlations in copper-oxide superconductors

    OpenAIRE

    Tranquada, J. M.

    1997-01-01

    Recent neutron diffraction studies have yielded evidence that, in a particular cuprate family, holes doped into the CuO(2) planes segregate into stripes that separate antiferromagnetic domains. Here it is shown that such a picture provides a quantitatively consistent interpretation of the spin fluctuations measured by neutron scattering in La(1.85)Sr(0.15)CuO(4) and YBa(2)Cu(3)O(6+x).

  15. STUDY ON THE INTERACTION BETWEEN Ag AND YBa2Cu3O7-δTHIN FILMS ANNEALED IN OXYGEN%氧气中退火对Ag与YBa2Cu3O7-δ超导薄膜相互作用的影响

    Institute of Scientific and Technical Information of China (English)

    李天博; 赵永刚; 朱美红; 刘涛; 张留碗; 黄贺生; 刘梦林; 周岳亮; 何萌; 吕慧宾; 曹必松

    2001-01-01

    本文通过多种实验手段对Ag/YBCO薄膜退火后Ag膜与YBCO薄膜的相互作用进行了研究.Ag/YBCO在退火过程中,存在着Ag沿YBCO的表面的横向扩散和向YBCO薄膜内部的纵向扩散,Ag的纵向扩散有一定深度. Ag与YBCO很可能发生物理而非化学作用,渗透进入YBCO的Ag可能在YBCO的晶界处形核生长,使YBCO晶格发生畸变,产生应力,从而导致接触电阻值的增大.

  16. Superconductors

    CERN Document Server

    Narlikar, A V

    2014-01-01

    Superconductors is neither about basic aspects of superconductivity nor about its applications, but its mainstay is superconducting materials. Unusual and unconventional features of a large variety of novel superconductors are presented and their technological potential as practical superconductors assessed. The book begins with an introduction to basic aspects of superconductivity. The presentation is readily accessible to readers from a diverse range of scientific and technical disciplines, such as metallurgy, materials science, materials engineering, electronic and device engineering, and chemistry. The derivation of mathematical formulas and equations has been kept to a minimum and, wherever necessary, short appendices with essential mathematics have been added at the end of the text. The book is not meant to serve as an encyclopaedia, describing each and every superconductor that exists, but focuses on important milestones in their exciting development.

  17. Experimental evidence for flux-lattice melting. [in high-Tc superconductors

    Science.gov (United States)

    Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.

    1991-01-01

    A low-frequency torsional oscillator has been used to search for flux-lattice melting in an untwinned single crystal of YBa2Cu3O(7-delta). The damping of the oscillator was measured as a function of temperature, for applied magnetic fields in the range H = 0.1-2.3 T. A remarkably sharp damping peak has been located. It is suggested that the temperature of the peak corresponds to the melting point of the Abrikosov flux lattice.

  18. Development of near-field scanning microwave and optical dual probe: Application to characterization of high-T(c) superconductors

    Science.gov (United States)

    Aga, Roberto Sabas, Jr.

    In this dissertation, a novel dual-channel near-field scanning microwave and optical microprobe (NSMM/NSOM) was developed for simultaneous mapping of microwave and optical properties of a sample at microscopic scales. This microprobe is composed of an open-end coaxial resonator with its center conductor being replaced by a stainless steel tube terminated by a titanium/silver coated fiber optic with a tapered tip. The optical fiber serves as the channel for NSOM, while its metal coating is the channel for NSMM. Using this dual-channel NSMM/NSOM probe, a spatial resolution of ˜5 mum, that is comparable to the best reported for single-channel NSMM, has been achieved on metallic samples. This resolution is mainly limited by the sensitivity of the NSMM channel and may be further improved when the sensitivity of NSMM is enhanced. Characterization of the microwave properties of the highest-Tc Hg-based superconductors has been carried out using a traditional resonant cavity technique, as well as a novel single-channel NSMM and the dual-channel NSMM/NSOM. Using the traditional technique, the microwave surface resistance (Rs) and power handling capability (Pc) of HgBa 2CaCu2O6 (Hg-1212 with Tc ˜ 125 K) films have been measured for the first time, and the results are superior to the best achieved on other superconductors. For example, a comparable R s ˜ 0.3 mO (10 GHz) can be obtained on Hg-1212 at close to 120 K as opposed to the same Rs for YBa2Cu3O 7 (the most popular high-Tc superconductor with Tc ˜ 92 K) at around 77K. This can be attributed to the large difference in the Tcs between the two materials and has demonstrated the potential of Hg-1212 for microwave applications. A comparison of the microwave properties of Hg-1212, Tl-2212 and YBCO films at reduced temperature scale suggested further room for improvement of Hg-1212 performance. Using NSMM, the localized microwave properties, such as Tcs, sheet resistance and power handling capability have been investigated

  19. Superconducting MEM Switches for Microwave Power Applications

    Science.gov (United States)

    2005-11-01

    fabrication. (a) YBa2Cu 3O7 ; (b) BaTiO 3; (c) PMGI sacrificial layer; (d) Au. Figure 10. Sonnet simulation geometry for verification of Q magnitude...using MEMS switch high-Te superconductor," Advances in Cryogenic Engineering, 2004, vol. 50, pp. 724- 73 1. 6. D. Fairweather, L. Lawrence, Y. Hijazi, J

  20. Role of twins in peak effect phenomenon observed at microwave frequencies in high Tc superconductor thin films

    NARCIS (Netherlands)

    Banerjee, Tamalika; Bagwe, V.C.; John, J.; Pai, S.P.; Kumara, K. Ganesh

    2004-01-01

    Measurements of microwave surface resistance, Rs, at subcritical currents as a function of temperature with varying dc magnetic field upto 0.8 T have shown peak effect (PE) in epitaxial DyBa2Cu3O7-δ (DBCO) and YBa2Cu3O7-δ (YBCO) thin films grown by pulsed laser deposition on LaAlO3 substrates. Micro

  1. Combustion Synthesis of Yttrium BARIUM(2) COPPER(3) OXYGEN(6+X) Superconductor.

    Science.gov (United States)

    Lin, Sy-Chyi

    YBa_2Cu_3 O_{rm 6 + x} was produced from copper, barium peroxide, and yttrium oxide by Self-propagating High-temperature Synthesis (SHS) and thermal explosion methods. The SHS process was conducted in two modes: a horizontal combustion and a vertical combustion. The influence of copper particle size on the stability of the reaction front was studied. In contrast to previous studies, a stable reaction front could be maintained even when relatively large copper particles (smaller than 325 mesh) were used. In the horizontal SHS process, large diameter pellets (larger than 22 mm in diameter) enabled stable combustion at room temperature. Elevated ambient temperatures (400 {~} 500^circ C) were needed to stabilize the combustion front movement in small diameter pellets. The product had an average concentration of 84 wt% YBa_2Cu _3O_{rm 6 + x}. In the vertical SHS process, with the aid of a booster, the combustion front moved more rapidly and smoothly than that in the horizontal SHS process and gave a product concentration of about 90 wt% YBa _2Cu_3O_ {rm 6 + x}. High quality product (above 95 wt% YBa_2Cu_3 O_{rm 6 + x}) may be obtained by sintering/calcining the SHS product in an oxygen atmosphere. Three different sintering/calcining processes were studied and the required temperature and the time for each process were determined. The temperature at the center of the pellet in a vertical SHS was measured by thermocouples. The pellet temperature rise is a two step process. The first temperature rise is caused by the oxidation of the copper and the second is caused by the reaction between yttrium oxide and barium cuprate. A reaction mechanism is proposed to explain this behavior. A thermal explosion process was conducted in a continuous rotary kiln. In this mode a pellet was introduced suddenly into a heated rotary kiln causing it to be combusted. After the combustion, the pellet was sintered at 900 to 980 ^circC and a product containing about 95 wt% YBa_2Cu_3 O_{rm 6 + x

  2. Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy.

    Science.gov (United States)

    Wu, Tao; Mayaffre, Hadrien; Krämer, Steffen; Horvatić, Mladen; Berthier, Claude; Hardy, W N; Liang, Ruixing; Bonn, D A; Julien, Marc-Henri

    2011-09-07

    Electronic charges introduced in copper-oxide (CuO(2)) planes generate high-transition-temperature (T(c)) superconductivity but, under special circumstances, they can also order into filaments called stripes. Whether an underlying tendency towards charge order is present in all copper oxides and whether this has any relationship with superconductivity are, however, two highly controversial issues. To uncover underlying electronic order, magnetic fields strong enough to destabilize superconductivity can be used. Such experiments, including quantum oscillations in YBa(2)Cu(3)O(y) (an extremely clean copper oxide in which charge order has not until now been observed) have suggested that superconductivity competes with spin, rather than charge, order. Here we report nuclear magnetic resonance measurements showing that high magnetic fields actually induce charge order, without spin order, in the CuO(2) planes of YBa(2)Cu(3)O(y). The observed static, unidirectional, modulation of the charge density breaks translational symmetry, thus explaining quantum oscillation results, and we argue that it is most probably the same 4a-periodic modulation as in stripe-ordered copper oxides. That it develops only when superconductivity fades away and near the same 1/8 hole doping as in La(2-x)Ba(x)CuO(4) (ref. 1) suggests that charge order, although visibly pinned by CuO chains in YBa(2)Cu(3)O(y), is an intrinsic propensity of the superconducting planes of high-T(c) copper oxides.

  3. Processing and characterization of high temperature superconductor thin films deposited by electron beam co-evaporation

    Science.gov (United States)

    Huh, Jeong-Uk

    Ever since the high temperature superconductors (HTS) were discovered in the late 1980s, there have been enormous efforts to make this into applications such as power transmission cables, transformers, motors and generators. However, many obstacles in performance and high manufacturing cost made this difficult. The first generation HTS wires had low critical current density and were expensive to fabricate. The motivation of this research was to make high performance and low cost second generation HTS coated conductor. Electron beam co-evaporation technique was used to deposit YBCO(YBa2Cu3O7-x ) film at a high rate (10nm/s and higher) on single crystals and metal tapes. The oxygen pressure at the stage of depositing Y, Ba, Cu was 5x10 -5 Torr and the process temperature was 810-840°C. In-situ Fourier Transform Infrared spectroscopy (FTIR) was used to monitor the optical properties of the YBCO during and after deposition. The deposit transformed to a glassy amorphous mixture of Y, Ba and Cu at 3 mTorr of oxygen. YBCO crystallization occurred after extra oxygen was applied to several Torr. FTIR showed almost the same signature during the formation of YBCO and liquid Ba-Cu-O during deposition, which indicates the liquid played an important role in determining the properties of YBCO in terms of providing epitaxy and fast transport of atoms to nucleate on the film-metal interface. The transformation was very rapid---seconds to minutes, compared to minutes to hours for other post-reaction processes. The oxygen partial pressure and the rate of oxidation (supersaturation) in the liquid region defined in the YBCO phase stability diagram determined the electrical and microstructural properties. In-situ X-ray diffraction heating stage with ambient control was utilized to study this supersaturation effect and explore the temperature-pressure space during YBCO growth. With all the information gathered from FTIR and XRD in-situ experiments and also with nano-engineering during

  4. High-energy spin dynamics in La1.69Sr0.31NiO4.

    Science.gov (United States)

    Bourges, P; Sidis, Y; Braden, M; Nakajima, K; Tranquada, J M

    2003-04-11

    To test the prediction that the dispersion of the magnetic resonance in superconducting YBa2Cu3O(6+x) is similar to magnons in an incommensurate antiferromagnet, we have mapped out the spin dynamics in a stripe-ordered nickelate, La(2-x)SrxNiO4, with x approximately equal to 0.31, using inelastic neutron scattering. We observe spin-wave excitations up to 80 meV emerging from the incommensurate magnetic peaks with a surprisingly large and almost isotropic spin velocity: variant Planck's over 2 pi c(s) approximately 0.32 eV A. A comparison indicates that the inferred spin-excitation spectrum is not, by itself, an adequate model for the magnetic resonance feature of the superconductor.

  5. Multifunctional nanostructured superconductors by chemical routes: towards high current conductors

    OpenAIRE

    Cayado Llosa, Pablo

    2016-01-01

    Uno de los temas de mayor interés en el ámbito de la superconductividad es la fabricación de cintas superconductoras (CCs) de YBa2Cu3O6+δ (YBCO) debido a las excelentes propiedades superconductoras que poseen y a las prometedoras perspectivas en cuanto a aplicaciones se refiere. Sin embargo, para poder generalizar el uso de dichas CCs, se requiere de un proceso de fabricación de bajo coste. En este contexto, la técnica de deposición por solución química se presenta como una alternativa muy pr...

  6. Linear and field-independent relation between vortex core state energy and gap in Bi(2)Sr(2)CaCu(2)O(8+delta).

    Science.gov (United States)

    Hoogenboom, B W; Kadowaki, K; Revaz, B; Li, M; Renner, C; Fischer, Ø

    2001-12-24

    We present a scanning tunneling spectroscopy study on quasiparticle states in vortex cores in Bi(2)Sr(2)CaCu(2)O(8+delta). The energy of the observed vortex core states shows an approximately linear scaling with the superconducting gap in the region just outside the core. This clearly distinguishes them from conventional localized core states and is a signature of the mechanism responsible for their discrete appearance in high-temperature superconductors. The energy scaling of the vortex core states also suggests a common nature of vortex cores in Bi(2)Sr(2)CaCu(2)O(8+delta) and YBa(2)Cu(3)O(7-delta). Finally, these states do not show any dependence on the applied magnetic field between 1 and 6 T.

  7. Pinning and trapped field in MgB2- and MT-YBaCuO bulk superconductors manufactured under pressure

    Science.gov (United States)

    Prikhna, T.; Eisterer, M.; Chaud, X.; Weber, H. W.; Habisreuther, T.; Moshchil, V.; Kozyrev, A.; Shapovalov, A.; Gawalek, W.; Wu, M.; Litzkendorf, D.; Goldacker, W.; Sokolovsky, V.; Shaternik, V.; Rabier, J.; Joulain, A.; Grechnev, G.; Boutko, V.; Gusev, A.; Shaternik, A.; Barvitskiy, P.

    2016-03-01

    The relevant pinning centers of Abrikosov vortices in MgB2-based materials are oxygen-enriched Mg-B-O inclusions or nanolayers and inclusions of MgBx (x>4) phases. The high critical current densities, j c, of 106 and 103A/cm2 at 1 and 8.5 T, respectively, at 20 K can be achieved in polycrystalline materials (prepared at 2 GPa) containing a large amount of admixed oxygen. Besides, oxygen can be incorporated into the MgB2 structure in small amounts (MgB1.5O0.5), which is supported by Auger studies and calculations of the DOS and the binding energy. The j c of melt textured YBa2Cu3O7-δ (or Y123)-based superconductors (MT-YBaCuO) depends not only on the perfectness of texture and the amount of oxygen in the Y123 structure, but also on the density of twins and micro-cracks formed during the oxygenation (due to shrinking of the c-lattice parameter). The density of twins and microcracks increases with the reduction of the distance between Y2BaCuO5 (Y211) inclusions in Y123. At 77 K jc=8·104 A/cm2 in self-field and jc=103 A/cm2 at 10 T were found in materials oxygenated at 16 MPa for 3 days with a density of twins of 22–35 per µm (thickness of the lamellae: 45-30 nm) and a density of micro-cracks of 200–280 per mm. Pinning can occur at the points of intersection between the Y123 twin planes and the Y211 inclusions. MTYBaCuO at 77 K can trap 1.4 T (38×38×17 mm, oxygenated at 0.1 MPa for 20 days) and 0.8 T (16 mm in diameter and 10 mm thick with 0.45 mm holes oxygenated at 10 MPa for 53 h). The sensitivity of MgB2 to magnetic field variations (flux jumps) complicates estimates of the trapped field. At 20 K 1.8 T was found for a block of 30 mm in diameter and a thickness of 7.5 mm and 1.5 T (if the magnetic field was increased at a rate of 0.1 T) for a ring with dimensions 24×18 mm and a thickness of 8 mm.

  8. Effect of BaZrO3/Ag hybrid doping to the microstructure and performance of fluorine-free MOD method derived YBa2Cu3O7−x superconducting thin films

    DEFF Research Database (Denmark)

    Tang, Xiao; Yue, Zhao; Wu, W.

    2015-01-01

    It is known that BaZrO3 and Ag can improve the magnetic and transport performance of YBCO thin film through totally disparate ways. BaZrO3 plays the role of flux pinning centers and Ag improves the transparency of the YBCO grain boundaries. However, similar research is rare on the fluorine......-free derived YBCO films. In this research, BaZrO3-doped, Ag-doped and BaZrO3/Ag hybrid-doped YBCO films were synthesized through a fluorine-free metal–organic deposition method. BaZrO3 was found to deteriorate the microstructure and performance of YBCO, while Ag-doping was found to enhance the crystallization...... of YBCO and resulted in a high Jc of 3.87 MA/cm2 in self-field at 77 K. However, the microstructure and performance of the BaZrO3/Ag hybrid-doped YBCO film showed that the positive impact of Ag-doping was totally overwhelmed by that of BaZrO3....

  9. Comparative Study between Similarly Processed YBa2Cu3O7-x Films with Y2BaCuO5 or BaSnO3 Additions (Postprint)

    Science.gov (United States)

    2009-07-15

    limited to: AFRL Technical Library. Downloaded on August 11,2010 at 13:12:43 UTC from IEEE Xplore . Restrictions apply. Approved for public release...from IEEE Xplore . Restrictions apply. Approved for public release; distribution unlimited 2 3154 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL...Fig. 7, Authorized licensed use limited to: AFRL Technical Library. Downloaded on August 11,2010 at 13:12:43 UTC from IEEE Xplore . Restrictions apply

  10. Symmetric interfacial reconstruction and magnetism in La0.7Ca0.3MnO3/YBa2Cu3O7/La0.7Ca0.3MnO3 heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Visani, C. [Universidad Complutense, Spain; Tornos, J. [Universidad Complutense, Spain; Nemes, Norbert [Universidad Complutense, Spain; Rocci, M. [Universidad Complutense, Spain; Leon, C. [Universidad Complutense, Spain; Santamaria, J. [Universidad Complutense, Spain; te Velthuis, G. E. [Argonne National Laboratory (ANL); Liu, Y. [Argonne National Laboratory (ANL); Hoffman, A. [Argonne National Laboratory (ANL); Freeland, J. W. [Argonne National Laboratory (ANL); Garcia-Hernandez, M [Instituto de Ciencia de Materiales de Madrid (ICMM); Fitzsimmons, M. R. [Los Alamos National Laboratory (LANL); Kirby, B. J. [Los Alamos National Laboratory (LANL); Varela del Arco, Maria [ORNL; Pennycook, Stephen J [ORNL

    2011-01-01

    We have analyzed the interface structure and composition of La{sub 0.7}Ca{sub 0.3}MnO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7}/La{sub 0.7}Ca{sub 0.3}MnO{sub 3} trilayers by combined polarized neutron reflectometry, aberration-corrected microscopy, and atomic column resolution electron-energy-loss spectroscopy and x-ray absorption with polarization analysis. We find the same stacking sequence at both top and bottom cuprate interfaces. X-ray magnetic circular dichroism experiments show that both cuprate interfaces are magnetic with a magnetic moment induced in Cu atoms as expected from symmetric Mn-O-Cu superexchange paths. These results supply a solid footing for the applicability of recent theories explaining the interplay between magnetism and superconductivity in this system in terms of the induced Cu spin polarization at both interfaces.

  11. Miniaturization of BaHfO3 nanoparticles in YBa2Cu3O y -coated conductors using a two-step heating process in the TFA-MOD method

    Science.gov (United States)

    Horita, H.; Teranishi, R.; Yamada, Kazuhiro; Kaneko, K.; Sato, Y.; Otaguro, K.; Nishiyama, T.; Izumi, T.; Awaji, S.

    2017-02-01

    The critical current density (J c) of YBa2Cu3Oy (YBCO)-coated conductors in a magnetic field can be enhanced by the doping of flux-pinning centers in a metal organic deposition (MOD) process with trifluoroacetates (TFA). The size of these flux-pinning centers should be less than 10 nm to achieve commercial use due to the coherence length of YBCO at 77 K. In this paper, BaHfO3 (BHO) nanoparticles were introduced into YBCO films using the TFA-MOD method. Microstructures and the J c properties of the films prepared using a two-step heating process at crystallization were compared with film prepared using a conventional one-step heating process. The two-step heating process produced 15 nm average-sized BHO nanoparticles in the film compared to 19 nm nanoparticles in a film prepared using a one-step process. It was revealed that the size of nanoparticles in the films could be miniaturized by improving the heating processes in the MOD method, and the miniaturized nanoparticles could contribute to increased J c in magnetic fields. The mechanism of miniaturization is also discussed based on microstructure observations of quenched films.

  12. Flux turbulence in NdBa2Cu3O6+x and underdoped YBa2Cu3O6+x single crystals

    DEFF Research Database (Denmark)

    Frello, T.; Baziljevich, M.; Johansen, T.H.

    1999-01-01

    Magnetic flux turbulence was observed in single crystals of NdBa2Cu3O6+x near-optimally doped (x approximate to 1) and underdoped YBa2Cu3O6-x (x=0.50,0.82) using magneto-optical imaging. Such turbulent phenomena have so far been reported only for YBa2Cu3O6+x high-quality single crystals with opti......Magnetic flux turbulence was observed in single crystals of NdBa2Cu3O6+x near-optimally doped (x approximate to 1) and underdoped YBa2Cu3O6-x (x=0.50,0.82) using magneto-optical imaging. Such turbulent phenomena have so far been reported only for YBa2Cu3O6+x high-quality single crystals...... with optimal doping. The crystals were also characterized in terms of critical current density j(c), anisotropy gamma, and oxygen content/superstructure. The influence of these parameters on the turbulent behavior is discussed....

  13. Permanent magnets composed of high temperature superconductors

    Science.gov (United States)

    Weinstein, Roy; Chen, In-Gann; Liu, Jay; Lau, Kwong

    1991-01-01

    A study of persistent, trapped magnetic field has been pursued with high-temperature superconducting (HTS) materials. The main effort is to study the feasibility of utilization of HTS to fabricate magnets for various devices. The trapped field, when not in saturation, is proportional to the applied field. Thus, it should be possible to replicate complicated field configurations with melt-textured YBa2Cu3O7 (MT-Y123) material, bypassing the need for HTS wires. Presently, materials have been developed from which magnets of 1.5 T, at 77 K, can be fabricated. Much higher field is available at lower operating temperature. Stability of a few percent per year is readily attainable. Results of studies on prototype motors and minimagnets are reported.

  14. Study of local structure and magnetism in high-T(sub c) copper oxide superconductors

    Science.gov (United States)

    Budnick, J. I.; Tan, Z.; Filipkowski, M.; Niedermayer, CH.; Glueckler, H.; Simon, R.; Golnik, A.; Rauer, M.; Recknagel, E.; Weidinger, A.

    1990-01-01

    The muon spin rotation (MUSR) study of local magnetism of Sr-doped La2CuO4 is reviewed. Emphasis is placed on magnetic order as detected by local and bulk probes with local atomic environments studied by x ray absorption fine structure (XAFS). Correlations between the MUSR study of local magnetic ordering and the bulk magnetization study are presented along with a discussion of the dependence upon oxygen stoichiometry. Results are presented for both superconducting phases and magnetic phases. Recent data which reveals the existence of local magnetic ordering in the hydrogen-doped YBa2Cu3O7 system are also discussed.

  15. Measurement of the magnetic induction vector in superconductors using a double-layer Hall sensor array

    Science.gov (United States)

    Abulafia, Y.; McElfresh, M.; Shaulov, A.; Yeshurun, Y.; Paltiel, Y.; Majer, D.; Shtrikman, H.; Zeldov, E.

    1998-06-01

    We describe an experimental technique for simultaneous measurement of both the normal (Bz) and the in-plane (Bx) components of the magnetic induction field near the surface of a superconducting sample. This technique utilizes a novel design of a double-layered Hall sensor array fabricated from a GaAs/AlGaAs heterostructure containing two parallel layers of a two-dimensional electron gas. The effectiveness of this technique is demonstrated in measurements of Bx and Bz and the current distribution at the surface of a thin YBa2Cu3O7 crystal.

  16. Melt-processed bulk superconductors: Fabrication and characterization for power and space applications

    Science.gov (United States)

    Hojaji, Hamid; Barkatt, Aaron; Hu, Shouxiang; Thorpe, Arthur N.; Ware, Matthew F.; Davis, David; Alterescu, Sidney

    1991-01-01

    Melt-process bulk superconducting materials based on variations on the base YBa2Cu3O(x) were produced in a variety of shapes and forms. Very high values of both zero-field and high-field magnetization were observed. These are useful for levitation and power applications. Magnetic measurements show that the effects of field direction and intensity, temperature and time are consistent with an aligned grain structure with multiple pinning sites and with models of thermally activated flux motion.

  17. Modeling the Effects of Varying the Capacitance, Resistance, Temperature, and Frequency Dependence for HTS Josephson Junctions, DC SQUIDs and DC bi-SQUIDS

    Science.gov (United States)

    2014-09-01

    junction is a thin layer of insulating material sep- arating two superconductors that is thin enough for electrons to tunnel through. Two Josephson...different material and/or method on the bisecting Josephson junction for high temperature superconductor (HTS) YBa2Cu3O7 (YBCO) bi-SQUIDs. This...in the previous case. The transition point (critical current) and hysteresis are both decreased. There are much greater amplitude oscillations for K P

  18. Phonon density of states in Tl 2CaBa 2Cu 2O 8

    Science.gov (United States)

    Chaplot, S. L.; Dasannacharya, B. A.; Mukhopadhyay, R.; Rao, K. R.; Vijayaraghavan, P. R.; Iyer, R. M.; Phatak, G. M.; Yakhmi, J. V.

    1991-10-01

    The neutron-weighted phonon density of states in the high-temperature superconductor Tl 2CaBa 2Cu 2O 8 ( Tc=107 K) is obtained from coherent inelastic neutron scattering measurements at the Dhruva reactor at 300 K. The phonon spectrum is qualitatively similar to that in the 90 K superconductor YBa 2Cu 3O 7, and compares well with an independent lattice dynamical calculation.

  19. Analysis of field-angle dependent specific heat in unconventional superconductors: A comparison between Doppler-shift method and Kramer-Pesch approximation

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Nobuhiko, E-mail: n-hayashi@21c.osakafu-u.ac.j [Nanoscience and Nanotechnology Research Center (N2RC), Osaka Prefecture University, 1-2 Gakuen-cho, Sakai 599-8570 (Japan) and CREST (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nagai, Yuki [Department of Physics, University of Tokyo, Tokyo 113-0033 (Japan); JST, TRIP, Chiyoda, Tokyo 102-0075 (Japan); Higashi, Yoichi [Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531 (Japan)

    2010-12-15

    We theoretically discuss the magnetic-field-angle dependence of the zero-energy density of states (ZEDOS) in superconductors. Point-node and line-node superconducting gaps on spherical and cylindrical Fermi surfaces are considered. The Doppler-shift (DS) method and the Kramer-Pesch approximation (KPA) are used to calculate the ZEDOS. Numerical results show that consequences of the DS method are corrected by the KPA.

  20. Analysis of field-angle dependent specific heat in unconventional superconductors: A comparison between Doppler-shift method and Kramer-Pesch approximation

    Science.gov (United States)

    Hayashi, Nobuhiko; Nagai, Yuki; Higashi, Yoichi

    2010-12-01

    We theoretically discuss the magnetic-field-angle dependence of the zero-energy density of states (ZEDOS) in superconductors. Point-node and line-node superconducting gaps on spherical and cylindrical Fermi surfaces are considered. The Doppler-shift (DS) method and the Kramer-Pesch approximation (KPA) are used to calculate the ZEDOS. Numerical results show that consequences of the DS method are corrected by the KPA.

  1. Superconductivity applications for infrared and microwave devices II; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Heinen, Vernon O. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Topics discussed include thin-film technology, microwave transmission lines and resonators, microwave devices and circuits, infrared detectors and bolometers, and superconducting junctions. Papers are presented on possible enhancement in bolometric response using free-standing film of YBa2Cu3O(x), aging and surface instability in high-Tc superconductors, epitaxial Tl2Ba2CaCu2O8 thin films on LaAlO3 and their microwave device properties, the performance of stripline resonators using sputtered YBCO films, and a coplanar waveguide microwave filter of YBa2Cu3O7. Attention is also given to the performance characteristics of Y-Ba-Cu-O microwave superconducting detectors, high-Tc bolometer developments for planetary missions, infrared detectors from YBaCuO thin films, high-temperature superconductor junction technology, and submillimeter receiver components using superconducting tunnel junctions.

  2. Impact of pseudo-gap states on the pinning energy and irreversibility field of high temperature superconductors

    Directory of Open Access Journals (Sweden)

    Guy Deutscher

    2014-09-01

    Full Text Available The existence of pseudo-gap states at energies larger than the coherence energy scale is shown to be at the origin of the difficulties encountered in achieving strong vortex pinning in the high Tc cuprates. Reduction or elimination of the pseudo-gap states by overdoping is effective in increasing the condensation energy and the irreversibility field. In YBa2Cu3O7, a full BCS state, with a single energy scale, can be restored, leading to the highest known irreversibility field and pinning strength. In the bismuthates, the detrimental effect of the pseudo-gap states can only be mitigated to some extent by overdoping.

  3. X-ray diffraction observations of a charge-density-wave order in superconducting ortho-II YBa2Cu3O6.54 single crystals in zero magnetic field

    DEFF Research Database (Denmark)

    Blackburn, E.; Chang, J.; Hücker, M.;

    2013-01-01

    X-ray diffraction measurements show that the high-temperature superconductor YBa2Cu3O6.54, with ortho-II oxygen order, has charge-density-wave order in the absence of an applied magnetic field. The dominant wave vector of the charge density wave is qCDW=(0,0.328(2),0.5), with the in-plane compone...

  4. Experimental Evidence for Topological Doping in the Cuprates

    OpenAIRE

    Tranquada, J. M.

    1999-01-01

    Some recent experiments that provide support for the concept of topological doping in cuprate superconductors are discussed. Consistent with the idea of charge segregation, it is argued that the scattering associated with the ``resonance'' peak found in YBa(2)Cu(3)O(6+x) and Bi(2)Sr(2)CaCu(2)O(8+\\delta) comes from the Cu spins and not from the doped holes.

  5. Fabrication of Large YBCO Superconducting Disks

    Science.gov (United States)

    Koczor, Ronald J.; Noever, David A.; Robertson, Glen A.

    1999-01-01

    We have undertaken fabrication of large bulk items to develop a repeatable process and to provide test articles in laboratory experiments investigating reported coupling of electromagnetic fields with the local gravity field in the presence of rotating superconducting disks. A successful process was developed which resulted in fabrication of 30 cm diameter annular disks. The disks were fabricated of the superconductor YBa2Cu3O(7-x). Various material parameters of the disks were measured.

  6. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B. (Editor); Heinen, Vernon O. (Editor)

    1990-01-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  7. Studying the kinetics of magnetization in high Tc superconductors

    Science.gov (United States)

    Turchinskaya, Marina

    1993-01-01

    The first microscopic maps of magnetic induction in YBa2Cu3O(7-x) crystals which directly show the dependence of flux flow on twin density and polytwin block and twin boundary orientation are reported. These maps were obtained by means of a recently-improved magneto-optical imaging technique. Pinning was lowest in untwinned regions and increased with increasing twin density. An isotropy in twin boundary pinning, defined as the ratio of the magnetic induction gradient across twin boundaries to that along twin boundaries, was 10 at 17 K; this ratio increased with increasing temperature. In polycrystals, twin boundaries also had a strongly anisotropic effect on flux flow into a grain from a grain boundary.

  8. Thermodynamic signature of a magnetic-field-driven phase transition within the superconducting state of an underdoped cuprate

    Science.gov (United States)

    Kemper, J. B.; Vafek, O.; Betts, J. B.; Balakirev, F. F.; Hardy, W. N.; Liang, Ruixing; Bonn, D. A.; Boebinger, G. S.

    2016-01-01

    More than a quarter century after the discovery of the high-temperature superconductor (HTS) YBa2Cu3O6+δ (YBCO; ref. ), studies continue to uncover complexity in its phase diagram. In addition to HTS and the pseudogap, there is growing evidence for multiple phases with boundaries which are functions of temperature (T), doping (p) and magnetic field. Here we report the low-temperature electronic specific heat (Celec) of YBa2Cu3O6.43 and YBa2Cu3O6.47 (p = 0.076 and 0.084) up to a magnetic field (H) of 34.5 T, a poorly understood region of the underdoped H-T-p phase space. We observe two regimes in the low-temperature limit: below a characteristic magnetic field H' ~ 12-15 T, Celec/T obeys an expected H1/2 behaviour; however, near H' there is a sharp inflection followed by a linear-in-H behaviour. H' rests deep within the superconducting phase and, thus, the linear-in-H behaviour is observed in the zero-resistance regime. In the limit of zero temperature, Celec/T is proportional to the zero-energy electronic density of states. At one of our dopings, the inflection is sharp only at lowest temperatures, and we thus conclude that this inflection is evidence of a magnetic-field-driven quantum phase transition.

  9. Quantitative nanoscale vortex imaging using a cryogenic quantum magnetometer.

    Science.gov (United States)

    Thiel, L; Rohner, D; Ganzhorn, M; Appel, P; Neu, E; Müller, B; Kleiner, R; Koelle, D; Maletinsky, P

    2016-08-01

    Microscopic studies of superconductors and their vortices play a pivotal role in understanding the mechanisms underlying superconductivity. Local measurements of penetration depths or magnetic stray fields enable access to fundamental aspects such as nanoscale variations in superfluid densities or the order parameter symmetry of superconductors. However, experimental tools that offer quantitative, nanoscale magnetometry and operate over large ranges of temperature and magnetic fields are still lacking. Here, we demonstrate the first operation of a cryogenic scanning quantum sensor in the form of a single nitrogen-vacancy electronic spin in diamond, which is capable of overcoming these existing limitations. To demonstrate the power of our approach, we perform quantitative, nanoscale magnetic imaging of Pearl vortices in the cuprate superconductor YBa2Cu3O7-δ. With a sensor-to-sample distance of ∼10 nm, we observe striking deviations from the prevalent monopole approximation in our vortex stray-field images, and find excellent quantitative agreement with Pearl's analytic model. Our experiments provide a non-invasive and unambiguous determination of the system's local penetration depth and are readily extended to higher temperatures and magnetic fields. These results demonstrate the potential of quantitative quantum sensors in benchmarking microscopic models of complex electronic systems and open the door for further exploration of strongly correlated electron physics using scanning nitrogen-vacancy magnetometry.

  10. Neutron-scattering study of spin fluctuations in superconducting YBa2Cu3O6+x (x=0.40, 0.45, 0,50)

    DEFF Research Database (Denmark)

    Chou, H.; Tranquada, J.M.; Shirane, G.;

    1991-01-01

    We show by inelastic neutron scattering that dynamic spin correlations coexist with superconductivity in YBa2Cu3O6+x (x = 0.4,0.45,0.5). For the x = 0.5, T(c) = 50 K sample, the inelastic magnetic intensity at DELTA-E = 6 meV does not show any change near T(c) and is approximately constant from 2...

  11. Demonstrating superconductivity at liquid nitrogen temperatures

    Science.gov (United States)

    Early, E. A.; Seaman, C. L.; Yang, K. N.; Maple, M. B.

    1988-07-01

    This article describes two demonstrations of superconductivity at the boiling temperature of liquid nitrogen (77 K) using the 90 K superconductor YBa2Cu3O7-δ(δ≊0.2). Both demonstrations involve the repulsion of a permanent magnet by a superconductor due to the expulsion of the magnetic field from the interior of the latter. In the first demonstration, the repulsion is manifested in the separation of a permanent magnet and a superconductor that are suspended from separate threads, while in the second it results in the levitation of a permanent magnet above a flat superconducting disk.

  12. All-high-Tc superconductor rapid-single-flux-quantum circuit operating at ˜30 K

    Science.gov (United States)

    Shokhor, S.; Nadgorny, B.; Gurvitch, M.; Semenov, V.; Polyakov, Yu.; Likharev, K.; Hou, S. Y.; Phillips, Julia M.

    1995-11-01

    We have implemented a simple circuit of the rapid single-flux-quantum (RSFQ) logic family using a single-layer YBa2Cu3O7-x thin-film structure with 14 in-plane Josephson junctions formed by direct electron beam writing. The circuit includes two dc/SFQ converters, two Josephson transmission lines, a complete RS SFQ flip-flop, and an SFQ/dc converter (readout SQUID). Low-frequency testing has shown that the dc-current-biased circuit operates correctly and reliably at T˜30 K, a few degrees below the effective critical temperature of the junctions. Prospects for a further increase of the operation temperature and implementation of more complex RSFQ circuits are discussed in brief.

  13. Reactive nanophase oxide additions to melt-processed high-T(sub c) superconductors

    Science.gov (United States)

    Goretta, K. C.; Brandel, B. P.; Lanagan, M. T.; Hu, J.; Miller, D. J.; Sengupta, S.; Parker, J. C.; Ali, M. N.; Chen, Nan

    1994-10-01

    Nanophase TiO2 and Al2O3 powders were synthesized by a vapor-phase process and mechanically mixed with stoichiometric YBa2Cu3O(x) and TlBa2Ca2Cu3O(x) powders in 20 mole % concentrations. Pellets produced from powders with and without nanophase oxides were heated in air or O2 above the peritectic melt temperature and slow-cooled. At 4.2 K, the intragranular critical current density J(sub c)) increased dramatically with the oxide additions. At 35-50 K, effects of the oxide additions were positive, but less pronounced. At 77 K, the additions decreased J(sub c), probably because of inducing a depression of the transition temperature.

  14. Breakdown of the Migdal approximation at Lifshitz transitions with giant zero-point motion in the H3S superconductor.

    Science.gov (United States)

    Jarlborg, Thomas; Bianconi, Antonio

    2016-04-20

    While 203 K high temperature superconductivity in H3S has been interpreted by BCS theory in the dirty limit here we focus on the effects of hydrogen zero-point-motion and the multiband electronic structure relevant for multigap superconductivity near Lifshitz transitions. We describe how the topology of the Fermi surfaces evolves with pressure giving different Lifshitz-transitions. A neck-disrupting Lifshitz-transition (type 2) occurs where the van Hove singularity, vHs, crosses the chemical potential at 210 GPa and new small 2D Fermi surface portions appear with slow Fermi velocity where the Migdal-approximation becomes questionable. We show that the neglected hydrogen zero-point motion ZPM, plays a key role at Lifshitz transitions. It induces an energy shift of about 600 meV of the vHs. The other Lifshitz-transition (of type 1) for the appearing of a new Fermi surface occurs at 130 GPa where new Fermi surfaces appear at the Γ point of the Brillouin zone here the Migdal-approximation breaks down and the zero-point-motion induces large fluctuations. The maximum Tc = 203 K occurs at 160 GPa where EF/ω0 = 1 in the small Fermi surface pocket at Γ. A Feshbach-like resonance between a possible BEC-BCS condensate at Γ and the BCS condensate in different k-space spots is proposed.

  15. 205Tl nuclear spin lattice relaxation in the one layer (Tl 2Ba 2CuO 6), two layer (Tl 2CaBa 2Cu 2O 8) and three layer (Tl 2Ca 2Ba 2CuO 10 ) high-T c superconductors

    Science.gov (United States)

    Hentsch, F.; Winzek, N.; Mehring, M.; Mattausch, Hj.; Simon, A.; Kremer, R.

    1990-02-01

    We report on the comparison of the 205Tl nuclear spin lattice relaxation rate 1/ T1 versus temperature below and above Tc in the three title compounds. Although Tc varies significantly for the three compounds, their relaxation rates 1/ T1 behave almost identical above and below Tc. In the regime T > Tc non-Korringa behaviour is observed, resembling the 63Cu relaxation in the CuO 2 layer (Cu(2)) of YBa 2Cu 3O 7, whereas for TCaBa 2Cu 2O 8.

  16. Interaction of Mutually Perpendicular Magnetic Fields in HTSC

    Directory of Open Access Journals (Sweden)

    Vasilyev Aleksandr Fedorovich

    2015-11-01

    Full Text Available In this article a problem of interaction of the crossed magnetic fields in superconductors is considered. Superconducting materials have nonlinear magnetic properties. It allows using a non-linear magnetic susceptibility for measurement of feeble magnetic fields. We place a wire of superconducting material in a constant parallel uniform magnetic field. Then we let through a wire the alternating current leak. Interaction of mutual and perpendicular variation magnetic fields, with adequate accuracy is described by Ginzburg-Landau's equations. Approximate solution of the written equations is received. The component of a magnetic field parallel to a wire contains a variable component. Frequency of a variable component of the magnetic field is equal to the doubled current frequency. Amplitude of the variable component of the magnetic field is proportional to strength of the constant magnetic field. The experimental installation for research of interaction of mutually perpendicular magnetic fields is created. The cylinder from HTSC of ceramics of the YBa2Cu3O7-x was used as a sensor. Dependence of amplitude of the second harmonica of a variation magnetic field on strength of a constant magnetic field is received.

  17. Calculation of Raman- and infrared-active modes of Tl2CaBa2Cu2O8

    Science.gov (United States)

    Kulkarni, A. D.; Prade, J.; de Wette, F. W.; Kress, W.; Schröder, U.

    1989-08-01

    We present the frequencies and polarizaton vectors of the infrared- and Raman-active modes for Tl2CaBa2Cu2O8 (Tl 2:1:2:2). Our calculations are carried out in the framework of shell models, which are based on short-range overlap and long-range Coulomb potentials, as well as ionic polarizabilities. A guiding principle of this work is that the shell models for the different superconducting compounds should be mutually compatible, i.e., the short-range potentials for given ion pairs in equivalent environments should be transferable from one compound to the other. The optical data presented here for Tl 2:1:2:2 are obtained with a model which is applicable not only for six different thallium superconductors, but also for Bi2CaSr2Cu2O8 and YBa2Cu3O7. The model for Tl 2:1:2:2 reproduces the measured infrared and Raman data quite well and yields a reliable first approximation for the displacement patterns of the modes at the Γ point. This is far from trivial since a mere force constant fit to the measured eigenvalues may yield rather arbitrary eigenvectors.

  18. Pulsed laser deposition growth of heteroepitaxial YBa2Cu3O7/La0.67Ca0.33MnO3 superlattices on NdGaO3 and Sr0.7La0.3Al0.65Ta0.35O3 substrates

    OpenAIRE

    Malik, Vivek Kumar; Marozau, I.; Das, S; Doggett, B.; Satapathy, Dillip Kumar; Uribe-Laverde, M. A.; Biskup, N.; Varela, M.; Schneider, C.W.; Marcelot, C.; Stahn, J.; Bernhard, Christian

    2012-01-01

    Heteroepitaxial superlattices of [YBa₂Cu₃O₇(n)/La0.67Ca0.33MnO₃(m)]x (YBCO/LCMO), where n and m are the number of YBCO and LCMO monolayers and x the number of bilayer repetitions, have been grown with pulsed laser deposition on NdGaO₃ (110) and Sr0.7La0.3Al0.65Ta0.35O₃ (001). These substrates are well lattice matched with YBCO and LCMO and, unlike the commonly used SrTiO₃, they do not give rise to complex and uncontrolled strain effects at low temperature. The growth dynamics and the structur...

  19. Pulsed laser deposition growth of heteroepitaxial YBa2Cu3O7/La0.67Ca0.33MnO3 superlattices on NdGaO3 and Sr0.7La0.3Al0.65Ta0.35O3 substrates

    Energy Technology Data Exchange (ETDEWEB)

    Malik, V. K. [University of Fribourg; Marozau, I. [University of Fribourg; Das, S. [University of Fribourg; Doggett, B. [University of Fribourg; Satapathy, D. K. [University of Fribourg; Uribe-Laverde, M. A. [University of Fribourg; Biskup, Nevenko [ORNL; Varela del Arco, Maria [ORNL; Schneider, C. W. [Paul Scherrer Institut, Villigen, Switzerland; Marcelot, C. [Paul Scherrer Institut, Villigen, Switzerland; Stahn, J. [Paul Scherrer Institut, Villigen, Switzerland; Bernhard, C. [University of Fribourg

    2012-01-01

    Heteroepitaxial superlattices of [YBa{sub 2}Cu{sub 3}O{sub 7}(n)/La{sub 0.67}Ca{sub 0.33}MnO{sub 3}(m)]{sub x} (YBCO/LCMO), where n and m are the number of YBCO and LCMO monolayers and x the number of bilayer repetitions, have been grown with pulsed laser deposition on NdGaO{sub 3} (110) and Sr{sub 0.7}La{sub 0.3}Al{sub 0.65}Ta{sub 0.35}O{sub 3} (001). These substrates are well lattice matched with YBCO and LCMO and, unlike the commonly used SrTiO{sub 3}, they do not give rise to complex and uncontrolled strain effects at low temperature. The growth dynamics and the structure have been studied in situ with reflection high-energy electron diffraction and ex situ with scanning transmission electron microscopy, x-ray diffraction, and neutron reflectometry. The individual layers are found to be flat and continuous over long lateral distances with sharp and coherent interfaces and with a well-defined thickness of the individual layer. The only visible defects are antiphase boundaries in the YBCO layers that originate from perovskite unit-cell height steps at the interfaces with the LCMO layers. We also find that the first YBCO monolayer at the interface with LCMO has an unusual growth dynamics and is lacking the CuO chain layer, while the subsequent YBCO layers have the regular Y-123 structure. Accordingly, the CuO{sub 2} bilayers at both the LCMO/YBCO and the YBCO/LCMO interfaces are lacking one of their neighboring CuO chain layers and, thus, half of their hole-doping reservoir. Nevertheless, from electric transport measurements on a superlattice with n = 2 we obtain evidence that the interfacial CuO{sub 2} bilayers remain conducting and even exhibit the onset of a superconducting transition at very low temperature. Finally, we show from dc magnetization and neutron reflectometry measurements that the LCMO layers are strongly ferromagnetic.

  20. A Simple System to Measure Superconducting Transition Temperature at High Pressure

    Institute of Scientific and Technical Information of China (English)

    YU Yong; ZHAI Guang-Jie; JIN Chang-Qing

    2009-01-01

    A simple hydride system is fabricated to measure the superconducting transition temperature Tc under high pressure using a diamond anvil cell (DAC). The system is designed with centrosymetric coils around the diamond that makes it easy to keep balance between the pick-up coil and the inductance coil, while the superconducting states can be modulated with a low-frequency small external magnetic field. Using the device we successfully obtain the Tc evolution as a function of applied pressure up to 10 GPa for YBa2 Cu3O6+δ superconductor single crystal.

  1. Comparison of thermomagnetic history effects in weakly pinned single crystals of 3Rh4Sn13(R=Yb, Ca)

    Indian Academy of Sciences (India)

    S Sarkar; S Ramakrishnan; A K Grover; C V Tomy; G Balakrishnan; D McK Paul

    2002-05-01

    A comparative study of the thermomagnetic memory effects of c in two weakly pinned low c superconductors, Ca3Rh4Sn13 (CaRhSn) and Yb3Rh4Sn13 (YbRhSn), is presented. In both the systems, the peak effect (PE) phenomenon appears as an order–disorder transformation through stepwise amorphization of the flux line lattice (FLL). However, in CaRhSn, we can witness another disorder-driven transition (Bragg glass (BG) to a vortex glass (VG)) in a distinct manner as in a single crystal of high c YBa2Cu3O7- for $H||c$.

  2. Oxygen isotope effect in cuprates results from polaron-induced superconductivity

    OpenAIRE

    Weyeneth, S.; Müller, K. A.

    2011-01-01

    The planar oxygen isotope effect coefficient measured as a function of hole doping in the Pr- and La-doped YBa2Cu3O7 (YBCO) and the Ni-doped La1.85Sr0.15CuO4 (LSCO) superconductors quantitatively and qualitatively follows the form originally proposed by Kresin and Wolf [Phys. Rev. B 49, 3652 (1994)], which was derived for polarons perpendicular to the superconducting planes. Interestingly, the inverse oxygen isotope effect coefficient at the pseudogap temperature also obeys the...

  3. Magneto-Optical Measurements of a Cascade of Transitions in Superconducting La1.875Ba0.125CuO4 Single Crystals

    Science.gov (United States)

    Karapetyan, Hovnatan; Hücker, M.; Gu, G. D.; Tranquada, J. M.; Fejer, M. M.; Xia, Jing; Kapitulnik, A.

    2012-10-01

    Recent experiments on the original cuprate high-temperature superconductor, La2-xBaxCuO4, revealed a remarkable sequence of phase transitions. Here we investigate such crystals with the polar Kerr effect, which is sensitive to time-reversal-symmetry breaking. Concurrent birefringence measurements accurately locate the structural phase transitions from high-temperature tetragonal to low-temperature orthorhombic, and then to lower-temperature tetragonal, at which temperature strong Kerr signal onsets. Hysteretic behavior of the Kerr signal suggests that time-reversal symmetry is already broken well above room temperature, an effect that was previously observed in high quality YBa2Cu3O6+x crystals.

  4. Neutron-Scattering Evidence for a Periodically Modulated Superconducting Phase in the Underdoped Cuprate La1.905Ba0.095CuO4

    Science.gov (United States)

    Xu, Zhijun; Stock, C.; Chi, Songxue; Kolesnikov, A. I.; Xu, Guangyong; Gu, Genda; Tranquada, J. M.

    2014-10-01

    The role of antiferromagnetic spin correlations in high-temperature superconductors remains a matter of debate. We present inelastic neutron-scattering evidence that gapless spin fluctuations coexist with superconductivity in La1.905Ba0.095CuO4. Furthermore, we observe that both the low-energy magnetic spectral weight and the spin incommensurability are enhanced with the onset of superconducting correlations. We propose that the coexistence occurs through intertwining of spatial modulations of the pair wave function and the antiferromagnetic correlations. This proposal is also directly relevant to sufficiently underdoped La2-xSrxCuO4 and YBa2Cu3O6+x.

  5. X-ray absorption study of the ferromagnetic Cu moment at the ${\\mathrm{YBa}}_{2}{\\mathrm{Cu}}_{3}{\\mathrm{O}}_{7}/{\\mathrm{La}}_{2/3}{\\mathrm{Ca}}_{1/3}{\\mathrm{MnO}}_{3}$ interface and variation of its exchange interaction with the Mn moment

    OpenAIRE

    Sen, Kaushik; Perret, Edith; Alberca, Aurora; Uribe-Laverde, Miguel Angel; Marozau, Ivan; Yazdi-Rizi, M.; Mallett, B. P. P.; Maršík, Premysl; Piamonteze, C; Khaydukov, Yu N.; Döbeli, Max; Keller, T.; Biškup, N.; Varela, M.; Vašátko, J.

    2016-01-01

    With x-ray absorption spectroscopy and polarized neutron reflectometry we studied how the magnetic proximity effect at the interface between the cuprate high-TC superconductor YBa2Cu3O7 (YBCO) and the ferromagnet La2/3Ca1/3MnO3 (LCMO) is related to the electronic and magnetic properties of the LCMO layers. In particular, we explored how the magnitude of the ferromagnetic Cu moment on the YBCO side depends on the strength of the antiferromagnetic (AF) exchange coupling with the Mn moment...

  6. Granular superconductivity and magnetic-field-driven recovery of macroscopic coherence in a cuprate/manganite multilayer

    OpenAIRE

    Mallett, B. P. P.; Khmaladze, J.; Marsik, P.; Perret, E.; Cerreta, A.; Orlita, M.; Biškup, N.; Varela, M.; Bernhard, C.

    2015-01-01

    We show that in Pr$ _{0.5} $La$ _{0.2} $Ca$ _{0.3} $MnO$ _{3} $/YBa$ _{2} $Cu$ _{3} $O$ _{7} $ (PLCMO/YBCO) multilayers the low temperature state of YBCO is very resistive and resembles the one of a granular superconductor or a frustrated Josephson-junction network. Notably, a coherent superconducting response can be restored with a large magnetic field which also suppresses the charge-orbital order in PLCMO. This coincidence suggests that the granular superconducting state of YBCO is induced...

  7. First steps towards cube textured nickel profile wires for YBCO-coated conductors

    Science.gov (United States)

    Eickemeyer, J.; Güth, A.; Freudenberger, J.; Holzapfel, B.; Schultz, L.

    2011-10-01

    Cube textured nickel alloy tapes prepared by cold rolling and annealing (RABiTS method) represent a standard metallic substrate for superconductor coatings of the YBa 2Cu 3O 7-δ (YBCO) type. These tapes have a width to thickness ratio of about 30-100. However, a value of close to one is optimal concerning low energetic losses under alternating current applications. First experiments on micro-alloyed nickel prove that the cube texture as a typical sheet texture can also be formed in profile wires with a rectangular cross-section after cold drawing and recrystallization treatment.

  8. Applications of HTSC films in hybrid optoelectronic devices

    Science.gov (United States)

    Pavuna, Davor

    1992-03-01

    An overview is given of potential applications of high-Tc superconductors (HTSC) in the context of hybrid optoelectronic technology. The main requirements are described for the in situ growth of epitaxial YBa2Cu3O(7-delta) (YBCO) films on SrTiO3 and discuss the properties of YBCO layers grown on Si and GaAs substrates with intermediate, conducting indium-tin-oxide buffer layers. The performances of the microbridge and the meander type of HTSC bolometer are compared, and several concepts are discussed that may become relevant for future hybrid optoelectronic technology.

  9. Granular superconductivity and magnetic-field-driven recovery of macroscopic coherence in a cuprate/manganite multilayer

    Science.gov (United States)

    Mallett, B. P. P.; Khmaladze, J.; Marsik, P.; Perret, E.; Cerreta, A.; Orlita, M.; Biškup, N.; Varela, M.; Bernhard, C.

    2016-11-01

    We show that in Pr0.5La0.2Ca0.3MnO3 /YBa2Cu3O7 (PLCMO/YBCO) multilayers the low temperature state of YBCO is very resistive and resembles that of a granular superconductor or a frustrated Josephson-junction network. Notably, a coherent superconducting response can be restored with a large magnetic field which also suppresses the charge-orbital order in PLCMO. This coincidence suggests that the granular superconducting state of YBCO is induced by the charge-orbital order of PLCMO. The coupling mechanism and the nature of the induced inhomogeneous state in YBCO remain to be understood.

  10. Exploring the Microstructure of YBCO Nanopowders

    Institute of Scientific and Technical Information of China (English)

    MIAO Rui-Ping; QI Xiu-Zhen; ZHAO Yong

    2005-01-01

    High temperature superconductor YBa2Cu3O7-x (YBCO) nanopowders were successfully prepared by a citrate pyrolysis technique. The phase formation and microstructure of the nanopowders were studied. The microstructure analysis shows that the obtained YBCO powders have very fine grains with a size around several tens of nanometers. The superfine morphology reveals that the thermal agglomeration of the particles decreases with decreasing the annealing temperature and shortening the annealing time. In addition, the complete phase formation of YBCO depends upon the annealing temperature and the annealing time as well. So far, these nanopowders have been used to fabricate the melt-textured YBCO bulk materials.

  11. Synthesis, characterization and thermostability of barium β-diketonate with tetraethylenepentamine ligand

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The metal-organic chemical vapor deposition (MOCVD) technique is a promising process for high-temperature superconductor YBa2Cu3O7-δ(YBCO) preparation. In this technique, it is a challenge to obtain barium precursors with high volatility. In addition, the purity, evaporation characteristics and thermostability of adopted precursors in the whole process would decide the quality and reproducible results of YBCO film. In the present report, the barium precursor containing 2,2,6,6-tetramethylheptane-3,5-dionate...

  12. The magnetoresistance of YBCO/BZO composite superconductors

    Science.gov (United States)

    Malik, Bilal A.; Asokan, K.; Ganesan, V.; Singh, Durgesh; Malik, Manzoor A.

    2016-12-01

    We study the effect of addition of BaZrO3 (BZO) on normal and superconducting state of YBa2Cu3O7-δ (YBCO). We find that in general both room temperature and residual resistivity increase with the addition of BZO except at low concentration of BZO. The temperature dependence of resistivity in presence of magnetic field also shows less resistivity broadening in composites containing low concentration of BZO below transition temperature (TC). The zero temperature upper critical field (Hc2(0)), estimated by using Werthamer, Helfand and Hohenberg theory and Ginzburg Landau theory, shows an increase by the finite addition of BZO in YBCO. Further, the activation energy (U0) determined from Arrhenius plots and vortex glass transition temperature (Tg) also increase with the limited addition of BZO. Such an enhancement in Hc2(0), Uo and Tg has been attributed to the increase in grain connectivity of YBCO . We conclude that the limited addition of BZO in YBCO significantly improves its superconducting performance in magnetic environment.

  13. Materiaux composites supraconducteurs

    Science.gov (United States)

    Kerjouan, Philippe; Boterel, Florence; Lostec, Jean; Bertot, Jean-Paul; Haussonne, Jean-Marie

    1991-11-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developped in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa2CU3O{7-δ} material. We first realized a composite material glass/YBa2CU3O{7-δ}, by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa2CU3O{7-δ} material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. Les nouveaux matériaux supraconducteurs à haute température critique ont potentiellement un rôle important à jouer dans le domaine de l'électronique et de l'électrotechnique. En particulier, le dépôt d'oxydes supraconducteurs sur divers types de substrats est une technologie amenée à se développer. Nous avons donc entrepris une étude dont l'objet est la réalisation de conducteurs sérigraphiés sur alumine et composés essentiellement du matériau YBa2CU3O{7-δ}. Nous avons tout d'abord cherché à réaliser un composite verre/YBa2CU3O{7-δ}, par analogie au principe de réalisation de couches conductrices sérigraphiées, le verre permettant d'obtenir une liaison physico-chimique avec le substrat. Une étude préliminaire a permis de réaliser divers matériaux composites massifs, utilisant différentes familles de verres. Ces matériaux massifs, se présentant sous la forme de barreaux de

  14. Mechanical properties of high-temperature superconducting wires. Ph.D. Thesis - Illinois Inst. of Tech.

    Science.gov (United States)

    Goretta, K. C.; Cluff, J. A.; Joo, J.; Lanagan, M. T.; Singh, J. P.; Vasanthamohan, N.; Xin, Y.; Wong, K. W.

    1995-01-01

    Bending strength, fracture toughness, and elastic modulus data were acquired for YBa2Cu3O(x), Bi2Sr2CaCu2O(x) (Bi,Pb)2Sr2Ca2Cu3O(x), and Tl2Ba2Ca2Cu3O(x) bars. These data and thermal expansion coefficients strongly suggest that the maximum possible tensile strain without fracture of bulk tapes or wires is approximately equals 0.2%. In Ag-clad conductors, residual stresses will be of limited benefit, but fractures produced by larger strains can be accommodated by shunting current through the Ag.

  15. Superconductor Composite

    Science.gov (United States)

    Dorris, Stephen E.; Burlone, Dominick A.; Morgan; Carol W.

    1999-02-02

    A superconducting conductor fabricated from a plurality of wires, e.g., fine silver wires, coated with a superconducting powder. A process of applying superconducting powders to such wires, to the resulting coated wires and superconductors produced therefrom.

  16. Kramer-Pesch Approximation for Analyzing Field-Angle-Resolved Measurements Made in Unconventional Superconductors: A Calculation of the Zero-Energy Density of States

    Science.gov (United States)

    Nagai, Yuki; Hayashi, Nobuhiko

    2008-08-01

    By measuring the angular-oscillations behavior of the heat capacity with respect to the applied field direction, one can detect the details of the gap structure. We introduce the Kramer-Pesch approximation as a new method to analyze the field-angle-dependent experiments, which improves the previous Doppler-shift technique. We show that the Fermi-surface anisotropy is an indispensable factor for identifying the superconducting gap symmetry.

  17. Single liquid-source plasma enhanced metalorganic chemical vapor deposition of YBa sub 2 Cu sub 3 O sub 7-x thin films. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J.; Gardiner, R.; Kirlin, P.S.; Boerstler, R.W.; Steinbeck, J.

    1992-07-29

    High quality YBa2Cu3O7-x films were grown in-situ on LaAlO3 (100) by a novel single liquid source plasma-enhanced metalorganic chemical vapor deposition process. The metalorganic complexes M(thd)n, (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate; M = Y, Ba, Cu) were dissolved in an organic solution and injected into a vaporizer immediately upstream of the reactor inlet The single liquid source technique dramatically simplifies current CVD processing and can significantly improve the process reproducibility. X-ray diffraction. measurements indicated that single phase, highly c-axis oriented YBa2Cu3O7-x was formed in-situ at a substrate temperature 680 degC. The as-deposited films exhibited a mirror-like surface, had transition temperature Tc = 89 K, Delta Tc < 1K, and Jc(77K) = 106 A/cm2. Plasma enhanced metalorganic chemical vapor deposition, YBCO, superconductors.

  18. Novel processing of HTS based conductors

    Science.gov (United States)

    Ginley, D. S.; Venturini, E. L.; Kwak, J. F.; Baughman, R. J.; Bourcier, R. J.; Mitchell, M. A.; Morosin, B.; Halloran, J. W.; Neal, N. J.; Capone, D. W.

    1990-04-01

    Conductor development is one of the major long term goals in high temperature superconductor research. Two promising processing technologies that were utilized to produce superconducting HTS conductors are reported. First, melt spun YBa2Cu3O7 fibers rapid thermal processed for 1 to 8 sec at 950 to 1075 C have (Tc)'s to 92 K, J(sub c)'s to 1100 A/sq cm and the orthorhombic twinned morphology typical for high quality YBa2Cu3O7. A processing matrix of time, temperature and composition for these fibers shows that slightly CuO-rich starting compositions give the best results. Second, silver tube encapsulated wires of Bi(1.7)Pb(0.3)Sr2Ca2Cu3O10 were made by extrusion, wire drawing and cold rolling. The resulting tapes show orientation of the crystallites, zero resistance up to 100 K and improved magnetic hysteresis above 50 K. The combination of mechanical reprocessing and extended thermal anneals near 850 C appears to significantly improve these materials.

  19. Coexistence of ferromagnetism and superconductivity in YBCO nanoparticles.

    Science.gov (United States)

    Zhu, Zhonghua; Gao, Daqiang; Dong, Chunhui; Yang, Guijin; Zhang, Jing; Zhang, Jinlin; Shi, Zhenhua; Gao, Hua; Luo, Honggang; Xue, Desheng

    2012-03-21

    Nanoparticles of superconducting YBa(2)Cu(3)O(7-δ) were synthesized via a citrate pyrolysis technique. Room temperature ferromagnetism was revealed in the samples by a vibrating sample magnetometer. Electron spin resonance spectra at selected temperatures indicated that there is a transition from the normal to the superconducting state at temperatures below 100 K. The M-T curves with various applied magnetic fields showed that the superconducting transition temperatures are 92 K and 55 K for the air-annealed and the post-annealed samples, respectively. Compared to the air-annealed sample, the saturation magnetization of the sample by reheating the air-annealed one in argon atmosphere is enhanced but its superconductivity is weakened, which implies that the ferromagnetism maybe originates from the surface oxygen defects. By superconducting quantum interference device measurements, we further confirmed the ferromagnetic behavior at high temperatures and interesting upturns in field cooling magnetization curves within the superconducting region are found. We attributed the upturn phenomena to the coexistence of ferromagnetism and superconductivity at low temperatures. Room temperature ferromagnetism of superconducting YBa(2)Cu(3)O(7-δ) nanoparticles has been observed in some previous related studies, but the issue of the coexistence of ferromagnetism and superconductivity within the superconducting region is still unclear. In the present work, it will be addressed in detail. The cooperation phenomena found in the spin-singlet superconductors will help us to understand the nature of superconductivity and ferromagnetism in more depth.

  20. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors.

    Science.gov (United States)

    Hinton, J P; Thewalt, E; Alpichshev, Z; Mahmood, F; Koralek, J D; Chan, M K; Veit, M J; Dorow, C J; Barišić, N; Kemper, A F; Bonn, D A; Hardy, W N; Liang, Ruixing; Gedik, N; Greven, M; Lanzara, A; Orenstein, J

    2016-04-13

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic "pseudogap" phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO(4+δ) (Hg-1201) and YBa2Cu3O(6+x) (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.

  1. Universal bulk charge-density-wave (CDW) correlations in the cuprate superconductors

    Science.gov (United States)

    Tabis, Wojciech

    2014-03-01

    The recent observation of bulk CDW order in YBa2Cu3O8+δ(YBCO) in competition with superconductivity is a significant development. Using Cu L-edge resonant X-ray scattering, we also observe bulk CDW order in HgBa2CuO4+δ(Hg1201 Tc = 72K). The correlations appear below TCDW ~ 200K, well below the pseudogap temperature T* ~ 320K associated with unusual magnetism, but coincident with the onset of Fermi-liquid-like charge transport. In contrast to YBCO, we observe no decrease of the CDW amplitude below Tc, and the correlation length is short and temperature independent. CDW correlations therefore are a universal property of underdoped cuprates, enhanced by low structural symmetry and a magnetic field, but fundamentally not in significant competition with superconductivity. We also discuss the relationship between the CDW modulation wave vector and the Fermi surface area extracted from QO experiments. Work supported by DOE-BES. In collaboration with Y. Li, M. Le Tacon, L. Braicovich, A. Kreyssig, M. Minola, G. Dellea, E. Weschke, M. Veit, A. Goldman, T. Schmitt, G. Ghiringhelli, N. Barisic, M.K. Chan, C. Dorow, G. Yu, X. Zhao, B. Keimer, M. Greven.

  2. The rate of quasiparticle recombination probes the onset of coherence in cuprate superconductors

    Science.gov (United States)

    Hinton, J. P.; Thewalt, E.; Alpichshev, Z.; Mahmood, F.; Koralek, J. D.; Chan, M. K.; Veit, M. J.; Dorow, C. J.; Barišić, N.; Kemper, A. F.; Bonn, D. A.; Hardy, W. N.; Liang, Ruixing; Gedik, N.; Greven, M.; Lanzara, A.; Orenstein, J.

    2016-04-01

    In the underdoped copper-oxides, high-temperature superconductivity condenses from a nonconventional metallic ”pseudogap” phase that exhibits a variety of non-Fermi liquid properties. Recently, it has become clear that a charge density wave (CDW) phase exists within the pseudogap regime. This CDW coexists and competes with superconductivity (SC) below the transition temperature Tc, suggesting that these two orders are intimately related. Here we show that the condensation of the superfluid from this unconventional precursor is reflected in deviations from the predictions of BSC theory regarding the recombination rate of quasiparticles. We report a detailed investigation of the quasiparticle (QP) recombination lifetime, τqp, as a function of temperature and magnetic field in underdoped HgBa2CuO4+δ (Hg-1201) and YBa2Cu3O6+x (YBCO) single crystals by ultrafast time-resolved reflectivity. We find that τqp(T ) exhibits a local maximum in a small temperature window near Tc that is prominent in underdoped samples with coexisting charge order and vanishes with application of a small magnetic field. We explain this unusual, non-BCS behavior by positing that Tc marks a transition from phase-fluctuating SC/CDW composite order above to a SC/CDW condensate below. Our results suggest that the superfluid in underdoped cuprates is a condensate of coherently-mixed particle-particle and particle-hole pairs.

  3. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  4. Levitation force from high-Tc superconducting thin-film disks

    Science.gov (United States)

    Riise, Anjali B.; Johansen, T. H.; Bratsberg, H.; Koblischka, M. R.; Shen, Y. Q.

    1999-10-01

    Experimental studies and theoretical modeling of the levitation force between a permanent magnet and superconducting thin film are reported. Measurements of the force Fz and magnetic stiffness κz=\\|δFz/δz\\| as functions of the magnet-superconductor separation z, show several features contrasting all previous levitation force data for bulk superconductors. In particular, the Fz(z) curves measured for decreasing and increasing separation form hysteresis loops of nearly symmetrical shape, also displaying a peak in the repulsive force branch. Recent theories for flux penetration in thin type-II superconductors in transverse magnetic fields are invoked to explain the results, which were obtained using a cylindrical Nd-Fe-B magnet and a YBa2Cu3O7-δ circular disk made by laser ablation. We derive explicit formulas for both Fz and κz, reproducing quantitatively all the features seen experimentally.

  5. Hybrid Superconducting Magnetic Bearing (HSMB) for high load devices

    Science.gov (United States)

    McMichael, C. K.; Ma, K. B.; Lamb, M. A.; Lin, M. W.; Chow, L.; Meng, R. L.; Hor, P. H.; Chu, W. K.

    1992-05-01

    Lifting capacities greater than 41 N/cm(exp 2) (60 psi) at 77 K have been achieved with a new type of levitation (hybrid) using a combination of permanent magnets and high quality melt-mixtured YBa2Cu3O(7-delta) (YBCO). The key concept of the hybrid superconducting magnetic bearing (HSMB) is the use of strong magnetic repulsion and attraction from permanent magnets for high levitation or suspension forces in conjunction with a superconductor's flux pinning characteristics to counteract the inherent instabilities in a system consisting of magnets only. To illustrate this concept, radial and axial forces between magnet/superconductor, magnet/magnet, and magnet/superconductor/magnet, were measured and compared for the thrust bearing configuration

  6. Superconductor Dynamics

    CERN Document Server

    Gömöry, F

    2014-01-01

    Superconductors used in magnet technology could carry extreme currents because of their ability to keep the magnetic flux motionless. The dynamics of the magnetic flux interaction with superconductors is controlled by this property. The cases of electrical transport in a round wire and the magnetization of wires of various shapes (circular, elliptical, plate) in an external magnetic field are analysed. Resistance to the magnetic field penetration means that the field produced by the superconducting magnet is no longer proportional to the supplied current. It also leads to a dissipation of electromagnetic energy. In conductors with unequal transverse dimensions, such as flat cables, the orientation with respect to the magnetic field plays an essential role. A reduction of magnetization currents can be achieved by splitting the core of a superconducting wire into fine filaments; however, new kinds of electrical currents that couple the filaments consequently appear. Basic formulas allowing qualitative analyses ...

  7. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  8. Influence of Both Cooling Rate and TeO2 Addition on the Properties of YBCO Superconductor

    Science.gov (United States)

    Ahmed, Yasser Momtaz Zaki; Hassan, Mervat Said; Abd-Elatif, Hassan

    2016-12-01

    Composite of superconducting system YBCO-TeO2 was synthesized utilizing solid-state reaction technique. Different weight percentages of TeO2 were mixed with a basic mixture [YBCO] for the synthesis of [YBa2Cu3O7- y ]1- x (TeO2) x composites. These mixtures were sintered at 1213 K (940 °C) for 24 hours and the samples cooled down by two different ways. The first way carried out via slowly cooling in furnace with the rate of 274 K/min to 275 K/min (1 °C/min to 2 °C/min) and the second one is quenching in oxygen gas. The XRD analysis showed that YBCO orthorhombic phase is the major phase appeared in all samples with different TeO2 content regardless of the cooling way. Additionally, minor unknown secondary phases appeared and enlarged with increasing TeO2 addition. Although quenched samples showed a phase difference between the sample's outer surface (orthorhombic) and its interior (tetragonal), the slowly cooled one did not clearly show such distinction. Moreover, doping YBCO with TeO2 leads to increase in the sample bulk density and reduction in their degradation degree in the wet atmosphere.

  9. Influence of Both Cooling Rate and TeO2 Addition on the Properties of YBCO Superconductor

    Science.gov (United States)

    Ahmed, Yasser Momtaz Zaki; Hassan, Mervat Said; Abd-Elatif, Hassan

    2016-08-01

    Composite of superconducting system YBCO-TeO2 was synthesized utilizing solid-state reaction technique. Different weight percentages of TeO2 were mixed with a basic mixture [YBCO] for the synthesis of [YBa2Cu3O7-y ]1-x (TeO2) x composites. These mixtures were sintered at 1213 K (940 °C) for 24 hours and the samples cooled down by two different ways. The first way carried out via slowly cooling in furnace with the rate of 274 K/min to 275 K/min (1 °C/min to 2 °C/min) and the second one is quenching in oxygen gas. The XRD analysis showed that YBCO orthorhombic phase is the major phase appeared in all samples with different TeO2 content regardless of the cooling way. Additionally, minor unknown secondary phases appeared and enlarged with increasing TeO2 addition. Although quenched samples showed a phase difference between the sample's outer surface (orthorhombic) and its interior (tetragonal), the slowly cooled one did not clearly show such distinction. Moreover, doping YBCO with TeO2 leads to increase in the sample bulk density and reduction in their degradation degree in the wet atmosphere.

  10. Ferromagnetic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Huxley, Andrew D.

    2015-07-15

    Highlights: • Review of ferromagnetic superconductors. • Covers UGe{sub 2}, URhGe and UCoGe and briefly other materials. • The focus is on experimental data and the pairing mechanism. - Abstract: The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a ‘standard’ theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the ‘standard’ model and from each other.

  11. Ferromagnetic superconductors

    Science.gov (United States)

    Huxley, Andrew D.

    2015-07-01

    The co-existence of superconductivity and ferromagnetism is of potential interest for spintronics and high magnetic field applications as well as a fascinating fundamental state of matter. The recent focus of research is on a family of ferromagnetic superconductors that are superconducting well below their Curie temperature, the first example of which was discovered in 2000. Although there is a 'standard' theoretical model for how magnetic pairing might bring about such a state, why it has only been seen in a few materials that at first sight appear to be very closely related has yet to be fully explained. This review covers the current state of knowledge of the magnetic and superconducting properties of these materials with emphasis on how they conform and differ from the behaviour expected from the 'standard' model and from each other.

  12. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank (Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  13. Competing charge, spin, and superconducting orders in underdoped YBa2Cu3Oy

    DEFF Research Database (Denmark)

    Hücker, M.; Christensen, Niels Bech; Holmes, A. T.

    2014-01-01

    order decreases with underdoping to TCDW~90 K in YBa2Cu3O6.44. Together with a weakened order parameter this suggests a competition between CDW and SDW orders. In addition, the CDW order in YBa2Cu3O6.44 shows the same type of competition with superconductivity as a function of temperature and magnetic...

  14. High-temperature superconductors

    CERN Document Server

    Saxena, Ajay Kumar

    2010-01-01

    The present book aims at describing the phenomenon of superconductivity and high-temperature superconductors discovered by Bednorz and Muller in 1986. The book covers the superconductivity phenomenon, structure of high-Tc superconductors, critical currents, synthesis routes for high Tc materials, superconductivity in cuprates, the proximity effect and SQUIDs, theories of superconductivity and applications of superconductors.

  15. From high-Tc superconductors to highly correlated Mott insulators—25 years of pulsed laser deposition of functional oxides in Leipzig

    Science.gov (United States)

    Lorenz, Michael; Hochmuth, Holger; Kneiß, Max; Bonholzer, Michael; Jenderka, Marcus; Grundmann, Marius

    2015-02-01

    Pulsed laser deposition (PLD) in Leipzig started in 1989 with Bi2Sr2Ca1Cu2O8 high-Tc superconducting thin films grown in a laser-ionization mass spectrometer. Here, we briefly review 25 years of development of advanced PLD processes in Leipzig and their application to high-Tc superconducting, wide-bandgap semiconducting and multiferroic thin films, nanostructures and composites. The first two decades were devoted to large-area and double-sided YBa2Cu3O7-δ thin films and hetero- and homoepitaxial ZnO-based films and nanowires, respectively. Based on that, transparent, oxide-based electronic devices are processed with epitaxial n-ZnO:Mg, Ga2O3, In2O3, or TiO2 films. Amorphous oxide films of p-ZnCo2O4 and p-NiO provide p-type counterparts in highly rectifying pn-junction devices and are an environmentally friendly alternative. Magnetoelectric multiferroic composites, and highly correlated iridate thin films are other current hot research topics. PLD appears as one of the most flexible growth techniques for functional oxides on research and demonstrator level.

  16. Advanced Electron Holography Applied to Electromagnetic Field Study in Materials Science.

    Science.gov (United States)

    Shindo, Daisuke; Tanigaki, Toshiaki; Park, Hyun Soon

    2016-11-17

    Advances and applications of electron holography to the study of electromagnetic fields in various functional materials are presented. In particular, the development of split-illumination electron holography, which introduces a biprism in the illumination system of a holography electron microscope, enables highly accurate observations of electromagnetic fields and the expansion of the observable area. First, the charge distributions on insulating materials were studied by using split-illumination electron holography and including a mask in the illumination system. Second, the three-dimensional spin configurations of skyrmion lattices in a helimagnet were visualized by using a high-voltage holography electron microscope. Third, the pinning of the magnetic flux lines in a high-temperature superconductor YBa2 Cu3 O7-y was analyzed by combining electron holography and scanning ion microscopy. Finally, the dynamic accumulation and collective motions of electrons around insulating biomaterial surfaces were observed by utilizing the amplitude reconstruction processes of electron holography.

  17. Development of all chemical solution derived Ce0.9La0.1O2 − y/Gd2Zr2O7 buffer layer stack for coated conductors: influence of the post-annealing process on surface crystallinity

    DEFF Research Database (Denmark)

    Yue, Zhao; Li, Xiaofen; Khoryushin, Alexey

    2012-01-01

    Preparation and characterization of a biaxially textured Gd2Zr2O7 and Ce0.9La0.1O2 − y (CLO, cap)/Gd2Zr2O7 (GZO, barrier) buffer layer stack by the metal–organic deposition route are reported. YBa2Cu3O7 − d (YBCO) superconductor films were deposited by the pulsed-laser deposition (PLD) technique...... that post-annealing GZO films in 2% H2 in Ar is an effective way to improve the surface crystallinity. As a result, a highly textured CLO film can grow directly on the GZO film at a lower crystallization temperature. The critical current density of a YBCOPLD film is higher than 1 MA cm − 2 (@77 K, in self...

  18. Highly efficient solid state catalysis by reconstructed (001) Ceria surface

    Energy Technology Data Exchange (ETDEWEB)

    Solovyov, VF; Ozaki, T; Atrei, A; Wu, LJ; Al-Mahboob, A; Sadowski, JT; Tong, X; Nykypanchuk, D; Li, Q

    2014-04-10

    Substrate engineering is a key factor in the synthesis of new complex materials. The substrate surface has to be conditioned in order to minimize the energy threshold for the formation of the desired phase or to enhance the catalytic activity of the substrate. The mechanism of the substrate activity, especially of technologically relevant oxide surfaces, is poorly understood. Here we design and synthesize several distinct and stable CeO2 (001) surface reconstructions which are used to grow epitaxial films of the high-temperature superconductor YBa2Cu3O7. The film grown on the substrate having the longest, fourfold period, reconstruction exhibits a twofold increase in performance over surfaces with shorter period reconstructions. This is explained by the crossover between the nucleation site dimensions and the period of the surface reconstruction. This result opens a new avenue for catalysis mediated solid state synthesis.

  19. Kerr effect measurements in the pseudo-gap regime of LBCO and Pb-BSCO using high resolution Sagnac

    Science.gov (United States)

    Karapetyan, Hovnatan; Nathan, Vikram; He, Ruihua; Hashimoto, Makoto; Shen, Zhi-Xun; Kapitulnik, Aharon; Eisaki, Hiroshi; Koralek, Jake; Hinton, Jamie; Orenstein, Joe; Tranquada, John; Gu, Genda; Huecker, Markus

    2011-03-01

    Polar Kerr effect in several high-Tc superconductors systems was measured at zero magnetic field with high precision using a cryogenic Sagnac fiber interferometer with zero-area. We observed non-zero Kerr rotations of order ~ 1 μ rad appearing near the pseudogap temperature T* , and marking what appears to be a true phase transition. In this talk we will review our work on YBa2Cu3 O 6 + x , La1.875Ba0.125CuO4 and Pb0.55Bi1.5Sr1.6La0.4CuO6 + δ . In particular, in Pb-BSCO we observe an emergence of Kerr signal that coincides with ARPES data showing an abrupt change at T* from a relatively simple one- band metal into a state with profoundly-altered electronic structure.

  20. Atomic arrangement and charge distribution in YBCO tilt grain boundaries

    Science.gov (United States)

    Bording, J. K.; Halley, J. W.; Zhu, Y.

    2005-03-01

    It is well known that the critical current, Jc, in high-Tc superconductors is reduced at grain boundaries. Recent high resolution holography experiments show the [100] tilt grain boundaries in YBa2Cu3O7-x to have an excess negative charge localized at the boundary dislocation core. Upon doping with Ca, this charge is reduced and the critical current increased. To shed light on this behavior at an atomic scale, we carried out Tight Binding (TB) calculations of these boundaries. Our TB scheme is charge self consistent to allow charge transfer typical for ionic materials. We present the arrangement of atoms and charge in YBCO tilt grain boundaries as determined by a combination of TB calculations, recent high resolution Scanning Transmission Electron Microscopy and Electron Energy Loss Spectroscopy measurements.