WorldWideScience

Sample records for superconductor includes providing

  1. Superconductors

    International Nuclear Information System (INIS)

    Ekin, J.W.

    1983-01-01

    This chapter attempts to provide an introductory guide to interpreting handbook data on practical, high-current, superconducting materials, principally for magnet applications. An overview is given of the properties and operational limits of superconductive materials, as well as techniques used to fabricate practical superconducting wires. Topics considered include critical temperature, critical magnetic field, Type I and Type II superconductors, upper critical field values for practical materials, the temperature dependence of critical field and upper critical field, critical current, critical current density values for practical materials, the measurement of critical current, composite fabrication, stability, ac losses, eddy current loss, hysteretic loss, mechanical properties, critical current degradation, and superconducting materals selection and composite design

  2. Thermodynamics of strong coupling superconductors including the effect of anisotropy

    Science.gov (United States)

    Daams, J. M.; Carbotte, J. P.

    1981-05-01

    The thermodynamics of several elemental superconductors is computed from isotropic Eliashberg theory formulated on the imaginary frequency axis. A symmary of the available experimental literature is presented and a comparison with theory is given. The small disagreements that are found are all in the direction expected from anisotropy effects. We calculate the effect of a small amount of model anisotropy on the critical temperature, critical field, and high-temperature specific heat from an exact solution of the anisotropic Eliashberg equations. These are the first such results below the critical temperature; unlike previous analytical work, we include retardation, anisotropy in the mass enhancement, and the effect of the Coulomb repulsion in enhancing anisotropy, all of which are significant. We derive a new formula independent of any model anisotropy for the rate of decrease with impurity lifetime of the critical temperature. Finally we demonstrate how the commonly used formulas of Markowitz and Kadanoff and of Clem may give entirely misleading estimates of the gap anisotropy when used to interpret certain experiments.

  3. Superconductors

    International Nuclear Information System (INIS)

    1988-01-01

    The chapter 6.3 p. 143 to 153 of this book deals with superconductors 19 items are briefly presented with address of manufacturer or laboratory to contact, mainly in the USA or Japan. In particular magnets, films, high temperature superconductors and various applications are presented [fr

  4. Superconductors

    CERN Document Server

    Narlikar, A V

    2014-01-01

    Superconductors is neither about basic aspects of superconductivity nor about its applications, but its mainstay is superconducting materials. Unusual and unconventional features of a large variety of novel superconductors are presented and their technological potential as practical superconductors assessed. The book begins with an introduction to basic aspects of superconductivity. The presentation is readily accessible to readers from a diverse range of scientific and technical disciplines, such as metallurgy, materials science, materials engineering, electronic and device engineering, and chemistry. The derivation of mathematical formulas and equations has been kept to a minimum and, wherever necessary, short appendices with essential mathematics have been added at the end of the text. The book is not meant to serve as an encyclopaedia, describing each and every superconductor that exists, but focuses on important milestones in their exciting development.

  5. Fine uniform filament superconductors

    Science.gov (United States)

    Riley, Jr., Gilbert N.; Li, Qi; Roberts, Peter R.; Antaya, Peter D.; Seuntjens, Jeffrey M.; Hancock, Steven; DeMoranville, Kenneth L.; Christopherson, Craig J.; Garrant, Jennifer H.; Craven, Christopher A.

    2002-01-01

    A multifilamentary superconductor composite having a high fill factor is formed from a plurality of stacked monofilament precursor elements, each of which includes a low density superconductor precursor monofilament. The precursor elements all have substantially the same dimensions and characteristics, and are stacked in a rectilinear configuration and consolidated to provide a multifilamentary precursor composite. The composite is thereafter thermomechanically processed to provide a superconductor composite in which each monofilament is less than about 50 microns thick.

  6. Ceramic superconductors II

    International Nuclear Information System (INIS)

    Yan, M.F.

    1988-01-01

    This volume compiles papers on ceramic superconductors. Topics include: structural patterns in High-Tc superconductors, phase equilibria of barium oxide superconductors, localized electrons in tetragonal YBa/sub 2/Cu/sub 3/O/sub 7-δ/, lattice and defect structure and properties of rare earth/alkaline earth-copper-oxide superconductors, alternate candidates for High-Tc superconductors, perovskite-structure superconductors; superconductive thin film fabrication, and superconductor/polymer composites

  7. Internal friction and ultrasonic attenuation in solids, including high Tc superconductors

    International Nuclear Information System (INIS)

    Magalas, L.B.; Gorczyca, S.

    1993-01-01

    This volume contains seven invited papers and about eighty refereed contributions from the main sessions of the Sixth European Conference on Internal Friction and Ultrasonic Attenuation in Solids (ECIFUAS-6) held at the Academy of Mining and Metallurgy (Akademia Gorniczo-Hutnicza, AGH) in Krakow, Poland, 5-7 September, 1991. In addition, this volume contains six invited lectures and eight contributed papers presented at the Workshop on High Tc Superconductors on 5 September, 1991. Together these documents constitute the Proceedings of the ECIFUAS-6 Conference. A total of 140 scientists from 20 countries participated in the Conference. The programme of the Conference and the Workshop consisted of 16 invidet papers and 119 contributed papers. 107 papers were presented during 8 poster sessions. (orig.)

  8. Preparation of superconductor precursor powders

    Science.gov (United States)

    Bhattacharya, Raghunath

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  9. Fabrication of high temperature superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam; Dorris, Stephen E.; Ma, Beihai; Li, Meiya

    2003-06-17

    A method of forming a biaxially aligned superconductor on a non-biaxially aligned substrate substantially chemically inert to the biaxially aligned superconductor comprising is disclosed. A non-biaxially aligned substrate chemically inert to the superconductor is provided and a biaxially aligned superconductor material is deposited directly on the non-biaxially aligned substrate. A method forming a plume of superconductor material and contacting the plume and the non-biaxially aligned substrate at an angle greater than 0.degree. and less than 90.degree. to deposit a biaxially aligned superconductor on the non-biaxially aligned substrate is also disclosed. Various superconductors and substrates are illustrated.

  10. Engineered flux-pinning centers in BSCCO TBCCO and YBCO superconductors

    Science.gov (United States)

    Goretta, K.C.; Lanagan, M.T.; Miller, D.J.; Sengupta, S.; Parker, J.C.; Hu, J.; Balachandran, U.; Siegel, R.W.; Shi, D.

    1999-07-27

    A method of preparing a high temperature superconductor is disclosed. A method of preparing a superconductor includes providing a powdered high temperature superconductor and a nanophase material. These components are combined to form a solid compacted mass with the material disposed in the polycrystalline high temperature superconductor. This combined mixture is rapidly heated, forming a dispersion of nanophase size particles without a eutectic reaction. These nanophase particles can have a flat plate or columnar type morphology. 4 figs.

  11. Inhomogeneous superconductors

    International Nuclear Information System (INIS)

    Tinkham, M.

    1978-01-01

    The coherence length xi and penetration depth lambda set the characteristic length scales in superconductors, typically 100 to 5,000 A. A lattice of flux lines, each carrying a single quantum, can penetrate type II superconductors, i.e., those for which kappa identical with lambda/xi > 1/√2. Inhomogeneities on the scale of the flux lattice spacing are required to pin the lattice to prevent dissipative flux motion. Recent work using voids as pinning centers has demonstrated this principle, but practical materials rely on cold-work, inclusions of second phases, etc., to provide the inhomogeneity. For stability against thermal fluctuations, the superconductor should have the form of many filaments of diameter 10 to 100 μm imbedded in a highly conductive normal metal matrix. Such wire is made by drawing down billets of copper containing rods of the superconductor. An alternative approach is the metallurgical one of Tsuei, which leads to thousands of superconducting filamentary segments in a copper matrix. The superconducting proximity effect causes the whole material to superconduct at low current densities. At high current densities, the range of the proximity effect is reduced so that the effective superconducting volume fraction falls below the percolation threshold, and a finite resistance arises from the copper matrix. But, because of the extremely elongated filaments, this resistance is orders of magnitude lower than that of the normal wire, and low enough to permit the possibility of technical applications

  12. Comparison of flux motion in type-II superconductors including pinning centers with the shapes of nano-rods and nano-particles by using 3D-TDGL simulation

    International Nuclear Information System (INIS)

    Ito, Shintaro; Ichino, Yusuke; Yoshida, Yutaka

    2015-01-01

    Highlights: • We constructed the 3D-TDGL simulator to calculate the flux motion. • We assumed two superconductors including only nano-rods and only nano-particles. • We succeeded to simulate the flux motion for various magnetic field angles. • If anyone introduce nano-rod, controlling the “single-kink” motion is very important. • The introduction of nano-particles is effective to pin the “single-kink” motion. - Abstract: Time-dependent Ginzburg–Landau (TDGL) equations are very useful method for simulation of the motion of flux quanta in type-II superconductors. We constructed the 3D-TDGL simulator and succeeded to simulate the motion of flux quanta in 3-dimension. We carried out the 3D-TDGL simulation to compare two superconductors which included only pinning centers with the shape of nano-rods and only nano-particle-like pinning centers in the viewpoint of the flux motion. As a result, a motion of “single-kink” caused the whole motion of a flux quantum in the superconductor including only the nano-rods. On the other hand, in the superconductor including the nano-particles, the flux quanta were pinned by the nano-particles in the various magnetic field applied angles. As the result, no “single-kink” occurred in the superconductor including the nano-particles. Therefore, the nano-particle-like pinning centers are effective shape to trap flux quanta for various magnetic field applied angles.

  13. The superconductor

    International Nuclear Information System (INIS)

    Lad, J.K.

    1979-01-01

    Techniques for fabrication of a few important superconductors like Nb, Ti and Nb 3 Sn are described. Copper or bronze or both can be used as a matrix in the superconductor. Current densities obtained for different ratios of copper to superconductor are studied. The specifications of multi-filament Nb 3 Sn superconductors are given. The relative merits of the two superconductors are discussed. The temperature range obtained is approximately 3 0 K and a magnetic field of 9T(tesla) can be achieved. (A.K.)

  14. High temperature superconductors

    CERN Document Server

    Paranthaman, Parans

    2010-01-01

    This essential reference provides the most comprehensive presentation of the state of the art in the field of high temperature superconductors. This growing field of research and applications is currently being supported by numerous governmental and industrial initiatives in the United States, Asia and Europe to overcome grid energy distribution issues. The technology is particularly intended for densely populated areas. It is now being commercialized for power-delivery devices, such as power transmission lines and cables, motors and generators. Applications in electric utilities include current limiters, long transmission lines and energy-storage devices that will help industries avoid dips in electric power.

  15. Organic superconductors

    International Nuclear Information System (INIS)

    Bulaevskij, L.N.; Shchegolev, I.F.

    1986-01-01

    Main achievements in creating new organic conducting materials - synthetic metals and superconductors, are considered. The processes of superconductivity occurrence in organic materials are discussed. It is shown that conjugated bonds between C and H atoms in organic molecules play an important role in this case. At present ''crystal direction'' in organic superconductor synthesis is mainly developed. Later on, organic superconductor crystals are supposed to be introduced into usual polymers, e.g. polyethylene

  16. Measuring condensate fraction in superconductors

    International Nuclear Information System (INIS)

    Chakravarty, Sudip; Kee, Hae-Young

    2000-01-01

    An analysis of off-diagonal long-range order in superconductors shows that the spin-spin correlation function is significantly influenced by the order if the order parameter is anisotropic on a microscopic scale. Thus, magnetic neutron scattering can provide a direct measurement of the condensate fraction of a superconductor. It is also argued that recent measurements in high-temperature superconductors come very close to achieving this goal. (c) 2000 The American Physical Society

  17. Briefing on superconductor developments

    International Nuclear Information System (INIS)

    Larbalestier, D.

    1987-01-01

    In this paper, the author covers the technology of the new oxide superconductors and how they might relate to the existing superconductors. He discusses old-fashioned superconductors; the material science of superconductors; the new oxide superconductors; and the future of oxide superconductors. 13 figures, 1 table

  18. Oxide superconductors

    International Nuclear Information System (INIS)

    Cava, R.J.

    2000-01-01

    This article briefly reviews ceramic superconductors from historical and materials perspectives. It describes the factors that distinguish high-temperature cuprate superconductors from most electronic ceramics and places them in the context of other families of superconducting materials. Finally, it describes some of the scientific issues presently being actively pursued in the search for the mechanism for high-temperature superconductivity and the directions of research into new superconducting ceramics in recent years

  19. Granular Superconductors and Gravity

    Science.gov (United States)

    Noever, David; Koczor, Ron

    1999-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cu cm). Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating Type II, YBCO superconductor, with a relatively high percentage change (0.05-2.1%) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 104 was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field and exposed without levitation to low-field strength AC magnetic fields. Changes in observed gravity signals were measured to be less than 2 parts in 108 of the normal gravitational acceleration. Given the high sensitivity of the test, future work will examine variants on the basic magnetic behavior of granular superconductors, with particular focus on quantifying their proposed importance to gravity.

  20. A Concept for Providing Warning of Chelyabinsk-like Meteors, including those approaching from the Sun

    Science.gov (United States)

    Dunham, D. W.; Reitsema, H.; Lu, E.; Arentz, R.; Linfield, R.; Chapman, C. R.; Farquhar, R. W.; Furfaro, R.; Eismont, N. A.; Ledkov, A.; Chumachenko, E.

    2013-12-01

    's), including those in orbits mostly inside the Earth's orbit that are hard to find with Earth-based telescopes, from a Venus-like orbit. Few modifications would be needed to the 50cm aperture passively-cooled infrared-observing Sentinel Space Telescope to operate in a SE-L1 orbit, 0.01 AU from Earth towards the Sun, to find most asteroids larger than about 5 meters that approach the Earth from the solar direction. Many objects in the 25-50m range will not be found by current NEO surveys, while they would nearly always be seen by this possible mission. A dense metallic NEO as small as 5m across can rain destruction over an area of 1 or 2 square kilometers, as the Sikhote-Alin meteor showed in 1947 Other concepts are either ineffective at providing warning of asteroids approaching from the Sun, or are more expensive, involving three or more spacecraft. We should give better warning for future 'Bolts out of the blue'.

  1. An unconventional colour superconductor

    International Nuclear Information System (INIS)

    Huang Mei

    2007-01-01

    Superfluidity, or superconductivity with mismatched Fermi momenta, appears in many systems such as charge-neutral dense quark matter, asymmetric nuclear matter, and in imbalanced cold atomic gases. The mismatch plays the role of breaking the Cooper pairing, and the pair-breaking state cannot be properly described in the framework of standard BCS theory. I give a brief review on recent theoretical developments in understanding unconventional colour superconductivity, including a gapless colour superconductor, chromomagnetic instabilities and the Higgs instability in the gapless phase. I also introduce a possible new framework for describing an unconventional colour superconductor

  2. Making superconductors

    International Nuclear Information System (INIS)

    McDonald, W.K.

    1981-01-01

    A method is described of producing composite rod or wire of increased strength and fineness wherein the composite is formed by reducing a lamina of two metals which have been rolled to form a cylindrical billet in which one of the metals is in expanded form. The composite produced can be encased in copper and fabricated to produce a superconductor. Alloys contemplated for producing superconductors are Nb 3 Sn, Nb 3 Ga, Nb 3 Ge, Nb 3 Si, Nb-Ti, V 3 Ga, V 3 Si, V 3 Sn, V 3 Al, and V 3 Ge laminated on bronze, Al, Cu, Ta, or combinations thereof. (author)

  3. Chapter 27. Superconductors

    International Nuclear Information System (INIS)

    Vavra, O.

    2007-01-01

    In this chapter author deals with superconductors and superconductivity. Different chemical materials used as high-temperature superconductors are presented. Some applications of superconductivity are presented.

  4. Ternary superconductors

    International Nuclear Information System (INIS)

    Giorgi, A.L.

    1987-01-01

    Ternary superconductors constitute a class of superconducting compounds with exceptional properties such as high transition temperatures (≅ 15.2 K), extremely high critical fields (H c2 >60 Tesla), and the coexistence of superconductivity and long-range magnetic order. This has generated great interest in the scientific community and resulted in a large number of experimental and theoretical investigations in which many new ternary compounds have been discovered. A review of some of the properties of these ternary compounds is presented with particular emphasis on the ternary molybdenum chalcogenides and the ternary rare earth transition metal tetraborides. The effect of partial substitution of a second metal atom to form pseudoternary compounds is examined as well as some of the proposed correlations between the superconducting transition temperature and the structural and electronic properties of the ternary superconductors

  5. Superconductor Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Gömöry, F [Bratislava, Inst. Elect. Eng. (Slovakia)

    2014-07-01

    Superconductors used in magnet technology could carry extreme currents because of their ability to keep the magnetic flux motionless. The dynamics of the magnetic flux interaction with superconductors is controlled by this property. The cases of electrical transport in a round wire and the magnetization of wires of various shapes (circular, elliptical, plate) in an external magnetic field are analysed. Resistance to the magnetic field penetration means that the field produced by the superconducting magnet is no longer proportional to the supplied current. It also leads to a dissipation of electromagnetic energy. In conductors with unequal transverse dimensions, such as flat cables, the orientation with respect to the magnetic field plays an essential role. A reduction of magnetization currents can be achieved by splitting the core of a superconducting wire into fine filaments; however, new kinds of electrical currents that couple the filaments consequently appear. Basic formulas allowing qualitative analyses of various flux dynamic cases are presented.

  6. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  7. Superconductors in the power grid materials and applications

    CERN Document Server

    2015-01-01

    Superconductors offer high throughput with low electric losses and have the potential to transform the electric power grid. Transmission networks incorporating cables of this type could, for example, deliver more power and enable substantial energy savings. Superconductors in the Power Grid: Materials and Applications provides an overview of superconductors and their applications in power grids. Sections address the design and engineering of cable systems and fault current limiters and other emerging applications for superconductors in the power grid, as well as case studies of industrial applications of superconductors in the power grid. Expert editor from highly respected US government-funded research centre Unique focus on superconductors in the power grid Comprehensive coverage

  8. Recent status of superconductors for accelerator magnets

    International Nuclear Information System (INIS)

    Greene, A.F.

    1992-01-01

    A survey is given of superconductor wire and cable which has been or will be used for construction of dipole magnets for all of the large European and US superconducting accelerator rings. Included is a simplified view of the construction methods and operating requirements of an accelerator dipole magnet, with emphasis on required superconductor performance. The methods of fabricating Nb-Ti superconductors are described, including the critical parameters and materials requirements. The superconductor performance requirements are summarized in an effort to relate why these are important to accelerator designers. Some of the recently observed time dependent effects are covered briefly

  9. Passivation Of High-Temperature Superconductors

    Science.gov (United States)

    Vasquez, Richard P.

    1991-01-01

    Surfaces of high-temperature superconductors passivated with native iodides, sulfides, or sulfates formed by chemical treatments after superconductors grown. Passivating compounds nearly insoluble in and unreactive with water and protect underlying superconductors from effects of moisture. Layers of cuprous iodide and of barium sulfate grown. Other candidate passivating surface films: iodides and sulfides of bismuth, strontium, and thallium. Other proposed techniques for formation of passivating layers include deposition and gas-phase reaction.

  10. Processing and characterization of ceramic superconductor/polymer composites

    International Nuclear Information System (INIS)

    Kander, R.G.; Namboodri, S.L.

    1993-01-01

    One way to more easily process a brittle high-temperature ceramic superconductor into a useful structure is to combine it with a polymer to form a composite material. Processing of polymer-based composites into complex shapes is well established and relatively easy when compared with traditional ceramic processing unit operations. In addition, incorporating a ceramic superconductor into a polymer matrix can improve mechanical performance as compared with a monolithic ceramic. Finally, because ceramic superconductors are susceptible to attack by moisture, a polymer-based composite structure can also provide protection from deleterious environmental effects. This paper focuses on the processing and subsequent characterization of ceramic superconductor/polymer composites designed primarily for electromagnetic shielding and diamagnetic applications. YBa 2 Cu 3 O 7-x [YBCO] ceramic superconductor is combined with poly(methyl methacrylate) [PMMA] to form novel composite structures. Composite structures have been molded with both a discontinuous superconducting phase (i.e., ceramic particulate reinforced polymers) and with a continuous superconducting phase (i.e., polymer infiltrated porous ceramics). Characterization of these composite structures includes the determination of diamagnetic strength, electromagnetic shielding effectiveness, mechanical performance, and environmental resistance. The goal of this program is to produce a composite structure with increased mechanical integrity and environmental resistance at liquid nitrogen temperatures without compromising the electromagnetic shielding and diamagnetic properties of the superconducting phase. Composites structures of this type are potentially useful in numerous magnetic applications including electromagnetic shielding, magnetic sensors, energy storage, magnetic levitation, and motor windings

  11. Bearing design for flywheel energy storage using high-TC superconductors

    Science.gov (United States)

    Hull, John R.; Mulcahy, Thomas M.

    2000-01-01

    A high temperature superconductor material bearing system (38) This system (38) includes a rotor (50) having a ring permanent magnet (60), a plurality of permanent magnets (16, 20 and 70) for interacting to generate levitation forces for the system (38). This group of magnets are a push/pull bearing (75). A high temperature superconductor structure (30) interacts with the ting permanent magnet (60) to provide stabilizing forces for the system (38).

  12. Vortices and nanostructured superconductors

    CERN Document Server

    2017-01-01

    This book provides expert coverage of modern and novel aspects of the study of vortex matter, dynamics, and pinning in nanostructured and multi-component superconductors. Vortex matter in superconducting materials is a field of enormous beauty and intellectual challenge, which began with the theoretical prediction of vortices by A. Abrikosov (Nobel Laureate). Vortices, vortex dynamics, and pinning are key features in many of today’s human endeavors: from the huge superconducting accelerating magnets and detectors at the Large Hadron Collider at CERN, which opened new windows of knowledge on the universe, to the tiny superconducting transceivers using Rapid Single Flux Quanta, which have opened a revolutionary means of communication. In recent years, two new features have added to the intrinsic beauty and complexity of the subject: nanostructured/nanoengineered superconductors, and the discovery of a range of new materials showing multi-component (multi-gap) superconductivity. In this book, leading researche...

  13. Neutron Depolarization in Superconductors

    Science.gov (United States)

    Zhuchenko, N. K.

    1995-04-01

    The dependences of neutron depolarization on applied magnetic field are deduced along the magnetization hysteresis loop in terms of the Bean model of the critical state. The depolarization in uniaxial superconductors with the reversible magnetization, including uniaxial magnetic superconductors, is also considered. A strong depolarization is expected if the neutrons travel along the vortex lines. On calcule la dépendance en champ magnétique de la dépolarisation des neutrons le long du cycle d'hystérésis en termes du modèle critique de Bean. On considère aussi la dépolarisation dans les supraconducteurs uniaxiaux en fonction de l'aimantation réversible, y compris pour les supraconducteurs magnétiques. On attend une forte dépolarisation si les neutrons se propagent le long des vortex.

  14. Localized superconductors

    International Nuclear Information System (INIS)

    Ma, M.; Lee, P.A.

    1985-01-01

    We study the effects of Anderson localization on superconductivity by using a Bardeen-Cooper-Schrieffer (BCS)-type trial wave function which pairs electrons in exact time-reversed eigenstates of the single-particle Hamiltonian. Within this approximation, and neglecting localization effects on the effective Coulomb repulsion and the electron-phonon coupling, we find that superconductivity persists below the mobility edge. In fact, Anderson's theorem is valid in the localized phase as long as rhoΔ 0 L/sup d/ > 1 (rho is the density of states averaged over +- Δ 0 of the Fermi energy, Δ 0 the BCS gap parameter, and L the localization length). Hence the gap order parameter Δ(r) remains uniform in space at the BCS value Δ 0 . The superfluid density and response to electromagnetic perturbations, however, show marked differences from the ''dirty superconductor'' regime. For rhoΔ 0 L/sup d/ < 1, Δ(r) fluctuates spatially and eventually drops to zero. In the limit when states are site localized, the system crosses over into the ''Anderson negative-U glass.'' Considerations beyond the trial wave-function approximation will speed up the destruction of superconductivity. The superconductor formed from localized states has the property that its quasiparticle excitations are also localized. Such excitations can be probed by observing the normal current in a tunneling junction

  15. Sealed glass coating of high temperature ceramic superconductors

    Science.gov (United States)

    Wu, Weite; Chu, Cha Y.; Goretta, Kenneth C.; Routbort, Jules L.

    1995-01-01

    A method and article of manufacture of a lead oxide based glass coating on a high temperature superconductor. The method includes preparing a dispersion of glass powders in a solution, applying the dispersion to the superconductor, drying the dispersion before applying another coating and heating the glass powder dispersion at temperatures below oxygen diffusion onset and above the glass melting point to form a continuous glass coating on the superconductor to establish compressive stresses which enhance the fracture strength of the superconductor.

  16. Modelling of bulk superconductor magnetization

    International Nuclear Information System (INIS)

    Ainslie, M D; Fujishiro, H

    2015-01-01

    This paper presents a topical review of the current state of the art in modelling the magnetization of bulk superconductors, including both (RE)BCO (where RE = rare earth or Y) and MgB 2 materials. Such modelling is a powerful tool to understand the physical mechanisms of their magnetization, to assist in interpretation of experimental results, and to predict the performance of practical bulk superconductor-based devices, which is particularly important as many superconducting applications head towards the commercialization stage of their development in the coming years. In addition to the analytical and numerical techniques currently used by researchers for modelling such materials, the commonly used practical techniques to magnetize bulk superconductors are summarized with a particular focus on pulsed field magnetization (PFM), which is promising as a compact, mobile and relatively inexpensive magnetizing technique. A number of numerical models developed to analyse the issues related to PFM and optimise the technique are described in detail, including understanding the dynamics of the magnetic flux penetration and the influence of material inhomogeneities, thermal properties, pulse duration, magnitude and shape, and the shape of the magnetization coil(s). The effect of externally applied magnetic fields in different configurations on the attenuation of the trapped field is also discussed. A number of novel and hybrid bulk superconductor structures are described, including improved thermal conductivity structures and ferromagnet–superconductor structures, which have been designed to overcome some of the issues related to bulk superconductors and their magnetization and enhance the intrinsic properties of bulk superconductors acting as trapped field magnets. Finally, the use of hollow bulk cylinders/tubes for shielding is analysed. (topical review)

  17. Method of production multifilamentary intermetallic superconductors

    International Nuclear Information System (INIS)

    Marancik, W.G.; Young, M.S.

    1980-01-01

    A method of making A-15 type intermetallic superconductors is disclosed which features elimination of numerous annealing steps. Nb or V filaments are embedded in Cu matrices; annular layers of Sn or Ga, respectively, separated from each other by Cu layers, provide the other component of the intermetallic superconductors Nb3Sn and V3Ga

  18. Superconductors in the High School Classroom

    Science.gov (United States)

    Lincoln, James

    2017-01-01

    In this article, we discuss the behavior of high-temperature superconductors and how to demonstrate them safely and effectively in the high school or introductory physics classroom. Included here is a discussion of the most relevant physics topics that can be demonstrated, some safety tips, and a bit of the history of superconductors. In an effort…

  19. Strongly disordered superconductors

    International Nuclear Information System (INIS)

    Muttalib, K.A.

    1982-01-01

    We examine some universal effects of strong non-magnetic disorder on the electron-phonon and electron-electron interactions in a superconductor. In particular we explicitly take into account the effect of slow diffusion of electrons in a disordered medium by working in an exact impurity eigenstate representation. We find that the normal diffusion of electrons characterized by a constant diffusion coefficient does not lead to any significant correction to the electron-phonon or the effective electron-electron interactions in a superconductor. We then consider sufficiently strong disorder where Anderson localization of electrons becomes important and determine the effect of localization on the electron-electron interactions. We find that due to localization, the diffusion of electrons becomes anomalous in the sense that the diffusion coefficient becomes scale dependent. This results in an increase in the effective electron-electron interaction with increasing disorder. We propose that this provides a natural explanation for the unusual sensitivity of the transition temperature T/sub c/ of the high T/sub c/ superconductors (T/sub c/ > 10 0 K) to damage effects

  20. Electrodynamics of spin currents in superconductors

    International Nuclear Information System (INIS)

    Hirsch, J.E.

    2008-01-01

    In recent work we formulated a new set of electrodynamic equations for superconductors as an alternative to the conventional London equations, compatible with the prediction of the theory of hole superconductivity that superconductors expel negative charge from the interior towards the surface. Charge expulsion results in a macroscopically inhomogeneous charge distribution and an electric field in the interior, and because of this a spin current is expected to exist. Furthermore, we have recently shown that a dynamical explanation of the Meissner effect in superconductors leads to the prediction that a spontaneous spin current exists near the surface of superconductors (spin Meissner effect). In this paper we extend the electrodynamic equations proposed earlier for the charge density and charge current to describe also the space and time dependence of the spin density and spin current. This allows us to determine the magnitude of the expelled negative charge and interior electric field as well as of the spin current in terms of other measurable properties of superconductors. We also provide a 'geometric' interpretation of the difference between type I and type II superconductors, discuss how superconductors manage to conserve angular momentum, discuss the relationship between our model and Slater's seminal work on superconductivity, and discuss the magnitude of the expected novel effects for elemental and other superconductors. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  1. Future applications of superconductors for industrial use

    International Nuclear Information System (INIS)

    Reddy, S.P.

    1988-01-01

    Superconductors have been in existence for many years. Recent developments in superconductivity at higher temperatures are directed towards the potential use of superconductors at ambient temperatures. The diligent efforts of the scientific, engineering, and political agencies in researching and developing superconducting materials have resulted in encouraging accomplishments. Although superconductors could be used in every branch of electrical engineering, the authors focuses on a few areas in this paper. The power distribution and utilization in a typical industry is compared to that of a system using superconductors. Brief discussions of various machines with superconductors at ambient temperatures, based on developments made so far on large superconducting machines, for potential industrial applications are included in this paper

  2. Topological insulators and topological superconductors

    CERN Document Server

    Bernevig, Andrei B

    2013-01-01

    This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topolo...

  3. Method of fabricating composite superconductors

    International Nuclear Information System (INIS)

    Koike, Y.; Shiraki, H.; Suzuki, E.; Yoshida, M.

    1977-01-01

    A method of making stabilized superconductors of a composition such as Nb 3 Sn is disclosed. The method includes forming a stock product comprising a tin base alloy as a core with a copper jacket and having a niobium tube clad thereon. The stock product is then embedded in a good thermally and electrically conducting matrix which is then coreduced until the desired size is obtained. This cold worked product is then submitted to a heat treatment to form superconductors of Nb 3 Sn

  4. Superconductors go organic

    International Nuclear Information System (INIS)

    Singleton, John; Mielke, Charles

    2002-01-01

    Superconductors made from organic molecules are revealing fascinating new physics and could offer huge technological potential as well. Solid-state physicists are simple people. They believe that basic research is best carried out on chemically simple materials. Traditionally they have focused on inorganic elements, alloys, and other straightforward compounds. This approach has provided some notable successes. For example, any physicist over 35 will remember the huge fuss surrounding the discovery of high-temperature cuprate superconductors in 1986, which led to the infamous 'Woodstock of physics' meeting the following year. Just before the cuprates were discovered, however, an alternative view had begun to emerge. Physical chemists such as Klaus Bechgaard, Peter Day, Gunzi Saito, Viktor Schegolev and Jack Williams were suggesting that the 'simple-materials-are-best' assumption was misplaced. They argued that some of the most exciting studies in solid-state physics can - and should - be attempted on crystalline organic materials. Although chemically complex, such materials are beautifully simple in other ways, and they can, for example, provide much more information about basic phenomena like superconductivity and magnetism than supposedly simple materials. Physicists eventually embraced these materials with enthusiasm, and the number of papers on crystalline organic metals overtook those on the high-temperature cuprate superconductors three years ago. The gap has widened ever since, and the fact that God and a billion years of evolution have produced a processor based on three-dimensional arrays of molecules, rather than silicon or gallium-arsenide chips, is taken as a good omen by those working in the field. (U.K.)

  5. High Temperature Superconductors: From Delivery to Applications (Presentation from 2011 Ernest Orlando Lawrence Award-winner, Dr. Amit Goyal, and including introduction by Energy Secretary, Dr. Steven Chu)

    International Nuclear Information System (INIS)

    Goyal, Amit

    2012-01-01

    Dr. Amit Goyal, a high temperature superconductivity (HTS) researcher at Oak Ridge National Laboratory, was named a 2011 winner of the Department of Energy's Ernest Orlando Lawrence Award honoring U.S. scientists and engineers for exceptional contributions in research and development supporting DOE and its mission. Winner of the award in the inaugural category of Energy Science and Innovation, Dr. Goyal was cited for his work in 'pioneering research and transformative contributions to the field of applied high temperature superconductivity, including fundamental materials science advances and technical innovations enabling large-scale applications of these novel materials.' Following his basic research in grain-to-grain supercurrent transport, Dr. Goyal focused his energy in transitioning this fundamental understanding into cutting-edge technologies. Under OE sponsorship, Dr. Goyal co-invented the Rolling Assisted Bi-Axially Textured Substrate technology (RABiTS) that is used as a substrate for second generation HTS wires. OE support also led to the invention of Structural Single Crystal Faceted Fiber Substrate (SSIFFS) and the 3-D Self Assembly of Nanodot Columns. These inventions and associated R and D resulted in 7 R and D 100 Awards including the 2010 R and D Magazine's Innovator of the Year Award, 3 Federal Laboratory Consortium Excellence in Technology Transfer National Awards, a DOE Energy100 Award and many others. As a world authority on HTS materials, Dr. Goyal has presented OE-sponsored results in more than 150 invited talks, co-authored more than 350 papers and is a fellow of 7 professional societies.

  6. Superconductor in a weak static gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Ummarino, Giovanni Alberto [Dipartimento DISAT, Politecnico di Torino, Turin (Italy); National Research Nuclear University MEPhI-Moscow Engineering Physics Institute, Moscow (Russian Federation); Gallerati, Antonio [Dipartimento DISAT, Politecnico di Torino, Turin (Italy)

    2017-08-15

    We provide the detailed calculation of a general form for Maxwell and London equations that takes into account gravitational corrections in linear approximation. We determine the possible alteration of a static gravitational field in a superconductor making use of the time-dependent Ginzburg-Landau equations, providing also an analytic solution in the weak field condition. Finally, we compare the behavior of a high-T{sub c} superconductor with a classical low-T{sub c} superconductor, analyzing the values of the parameters that can enhance the reduction of the gravitational field. (orig.)

  7. Magnetic Signals of High-Temperature Superconductor Bulk During the Levitation Force Measurement Process

    Science.gov (United States)

    Huang, Huan; Zheng, Jun; Qian, Nan; Che, Tong; Zheng, Botian; Jin, Liwei; Deng, Zigang

    2017-05-01

    In order to study the commonly neglected magnetic field information in the course of levitation force measurement process in a superconducting maglev system, a multipoint magnetic field measurement platform was employed to acquire magnetic signals of a bulk high-Tc superconductor on both the top and the bottom surface. Working conditions including field cooling (FC) and zero field cooling were investigated for these vertical down and up motions above a permanent magnet guideway performed on a HTS maglev measurement system. We have discussed the magnetic flux variation process based on the Bean model. A magnetic hysteresis effect similar to the levitation force hysteresis loop of the bulk superconductor was displayed and analyzed in this paper. What is more valuable, there exists some available magnetic flux on the top surface of the bulk superconductor, and the proportion is as high as 62.42% in the FC condition, which provides an experimental hint to design the superconductor bulk and the applied field for practical use in a more efficient way. In particular, this work reveals real-time magnetic flux variation of the bulk superconductor in the levitation application, which is the other important information in contrast to the macroscopic levitation and guidance force investigations in previous studies, and it enriches the existing research methods. The results are significant for understanding the magnetic characteristic of superconductors, and they can contribute to optimize the present HTS maglev system design.

  8. Superconductors by powder metallurgy techniques

    International Nuclear Information System (INIS)

    Pickus, M.R.; Wang, J.L.F.

    1976-05-01

    Fabrication methods for Nb 3 Sn type compounds are described. Information is included on the Bell Telephone process, the General Electric tape process, superconductor stability, the bronze process, powder metallurgy multifilamentary tapes and wires, and current assessment of powder metallurgy superconducting wire

  9. Chemistry of high temperature superconductors

    CERN Document Server

    1991-01-01

    This review volume contains the most up-to-date articles on the chemical aspects of high temperature oxide superconductors. These articles are written by some of the leading scientists in the field and includes a comprehensive list of references. This is an essential volume for researchers working in the fields of ceramics, materials science and chemistry.

  10. American superconductor technology to help CERN to explore the mysteries of matter company's high temperature superconductor wire to be used in CERN's Large Hadron Collider

    CERN Multimedia

    2003-01-01

    American Superconductor Corporation has been selected by CERN, to provide 14,000 meters of high temperature superconductor (HTS) wire for current lead devices that will be used in CERN's Large Hadron Collider (1 page).

  11. The cost of providing combined prevention and treatment services, including ART, to female sex workers in Burkina Faso.

    Directory of Open Access Journals (Sweden)

    Fiona Cianci

    Full Text Available BACKGROUND: Female Sex workers (FSW are important in driving HIV transmission in West Africa. The Yerelon clinic in Burkina Faso has provided combined preventative and therapeutic services, including anti-retroviral therapy (ART, for FSWs since 1998, with evidence suggesting it has decreased HIV prevalence and incidence in this group. No data exists on the costs of such a combined prevention and treatment intervention for FSW. This study aims to determine the mean cost of service provision per patient year for FSWs attending the Yerelon clinic, and identifies differences in costs between patient groups. METHODS: Field-based retrospective cost analyses were undertaken using top-down and bottom-up costing approaches for 2010. Expenditure and service utilisation data was collated from primary sources. Patients were divided into groups according to full-time or occasional sex-work, HIV status and ART duration. Patient specific service use data was extracted. Costs were converted to 2012 US$. Sensitivity analyses considered removal of all research costs, different discount rates and use of different ART treatment regimens and follow-up schedules. RESULTS: Using the top-down costing approach, the mean annual cost of service provision for FSWs on or off ART was US$1098 and US$882, respectively. The cost for FSWs on ART reduced by 29%, to US$781, if all research-related costs were removed and national ART monitoring guidelines were followed. The bottom-up patient-level costing showed the cost of the service varied greatly across patient groups (US$505-US$1117, primarily due to large differences in the costs of different ART regimens. HIV-negative women had the lowest annual cost at US$505. CONCLUSION: Whilst FSWs may require specialised services to optimise their care and hence, the public health benefits, our study shows that the cost of ART provision within a combined prevention and treatment intervention setting is comparable to providing ART to

  12. Should CAM and CAM Training Programs Be Included in the Curriculum of Schools That Provide Health Education?

    Directory of Open Access Journals (Sweden)

    2016-12-01

    Full Text Available Objectives: This study aimed to determine the knowledge levels and attitudes of School of Health and Vocational School of Health students toward complementary and alternative medicine (CAM. Methods: Three hundred thirty-three (333 students studying at the Mehmet Akif Ersoy University School of Health and the Golhisar Vocational School of Health in Burdur, Turkey, were included in the study. Research data were collected by using a survey method based on the expressed opinions of the participants. Results: Of the participants, 69.7% were female and 97% were single (unmarried. Of cigarette users and those with chronic illnesses, 46.8% and 47.8%, respectively, used CAM. Those using CAM were statistically more likely to be female (P < 0.021, to have higher grades (P < 0.007, to be single (P < 0.005, to be vocational school of health graduates (P < 0.008, and to have fathers at work (P < 0.021. While 9.6% of the students thought CAM to be nonsense, 10.8% thought that the methods of CAM should be tried before consulting a doctor. Conclusion: A majority of the students in the study population were found to use complementary and alternative medicine, but that they lacked information about its methods. As a way to address this, CAM should be included in the curriculum of schools that provide health education, and CAM training programs should be given to healthcare professionals to improve their knowledge of CAM. In Turkey, many more studies should be performed to determine nurses’ and doctors’ knowledge of and attitudes about CAM methods so that they can give correct guidance to society and take more active responsibility in improving patient safety.

  13. Functional development in density functional theory for superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, Antonio; Gross, E.K.U.; Essenberger, Frank [Max Planck Institute of Microstructure Physics, Halle (Saale) (Germany)

    2015-07-01

    Density functional theory for superconductors (SCDFT) is a fully parameter-free approach to superconductivity that allows for accurate predictions of critical temperature and properties of superconductors. We report on the most recent extensions of the method, in particular the development of new functionals to: (1) incorporate in a correct fashion Migdal's theorem; (2) compute the excitation spectrum; (3) include spin-fluctuation mediated pairing Applications and predictions are shown for a set of materials, including conventional and unconventional superconductors.

  14. Neutron irradiation effects in advanced superconductors

    International Nuclear Information System (INIS)

    Yoshida, H.; Kodaka, H.; Miyata, K.; Hayashi, Y.; Atobe, K.

    1988-01-01

    This paper reports the effects of neutron irradiation on superconducting transitions studied by susceptibility and resistivity measurements for A15 type compounds, Laves-phase compounds and oxide superconductors. For A15 superconductors, the transition temperature (T c ) decreased with increasing neutron fluence and showed large drop started at about 5 x 10 18 n/cm 2 (E > 0.1 MeV). Post-irradiation annealing gave recovery of T c , but the behaviors were different for the materials with different composition and microstructure. The Laves-phase compounds showed less degradation than the A15 superconductors. For oxide superconductors very sensitive transition change was observed, including the radiation-induced superconductivity

  15. Polymeric conductors and superconductors

    International Nuclear Information System (INIS)

    Goodings, E.P.

    1975-01-01

    The production of electrically conductive polymers which are flexible ans capable of being shaped by normal processes, is discussed. The relation between the structure of the polymer and its ability to transport electric charge is considered. The main problem is to combine high conductivity with good processability and it is shown that stacked-planar systems are superior to conjugated polymers. Good mechanical properties have yet to be achieved. In some way the rigid pi-bonded systems must be combined with a conventional sigma-bonded polymer without destroying its flexibility and tensile properties. The structure will contain a radical ion system to provide charge carriers but it is not yet known how to design the polymer structure to give high carrier mobility. Further work is required on organic superconductors in unravelling the relationship between charge carrier mobility and the supermolecular structure of polymers. (UK)

  16. 29 CFR 778.214 - Benefit plans; including profit-sharing plans or trusts providing similar benefits.

    Science.gov (United States)

    2010-07-01

    ... fide plan for providing old age, retirement, life, accident, or health insurance or similar benefits... employee on account of severance of employment (or for any other reason) would not result in any increase... mechanics performing contract work subject to the Davis-Bacon Act and related statutes, the provisions of...

  17. Superconductors with excess quasiparticles

    International Nuclear Information System (INIS)

    Elesin, V.F.; Kopaev, Y.V.

    1981-01-01

    This review presents a systematic kinetic theory of nonequilibrium phenomena in superconductors with excess quasiparticles created by electromagnetic or tunnel injection. The energy distributions of excess quasiparticles and of nonequilibrium phonons, dependence of the order parameter on the power and frequency (or intensity) of the electromagnetic field, magnetic properties of nonequilibrium superconductors, I-V curves of superconductor-insulator-superconductor junctions, and other properties are described in detail. The stability of superconducting states far from thermodynamic equilibrium is investigated and it is shown that characteristic instabilities leading to the formation of nonuniform states of a new type or phase transitions of the first kind are inherent to superconductors with excess quasiparticles. The results are compared with experimental data

  18. Topological insulators and superconductors from string theory

    International Nuclear Information System (INIS)

    Ryu, Shinsei; Takayanagi, Tadashi

    2010-01-01

    Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).

  19. Electromechanical properties of superconductors for DOE fusion applications

    International Nuclear Information System (INIS)

    Ekin, J.W.; Bray, S.L.; Lutgen, C.L.; Bahn, W.L.

    1994-01-01

    The electrical performance of many superconducting materials is strongly dependent on mechanical load. This report presents electromechanical data on a broad range of high-magnetic-field superconductors. The conductors that were studied fall into three general categories: Candidate conductors, experimental conductors, and reference conductors. Research on candidate conductors for fusion applications provides screening data for superconductor selection as well as engineering data for magnet design and performance analysis. The effect of axial tensile strain on critical-current density was measured for several Nb 3 Sn candidate conductors including the US-DPC (United States Demonstration Poloidal Coil) cable strand and an ITER (International Thermonuclear Experimental Reactor) candidate conductor. Also, data are presented on promising experimental superconductors that have strong potential for fusion applications. Axial strain measurements were made on a V 3 Ga tape conductor that has good performance at magnetic fields up to 20 T. Axial strain data are also presented for three experimental Nb 3 Sn conductors that contain dispersion hardened copper reinforcement for increased tensile strength. Finally, electromechanical characteristics were measured for three different Nb 3 Sn reference conductors from the first and second VAMAS (Versailles Project on Advanced Materials and Standards) international Nb 3 Sn critical-current round robins. Published papers containing key results, including the first measurement of the transverse stress effect in Nb 3 Sn, the effect of stress concentration at cable-strand crossovers, and electromechanical characteristics of Nb 3 Al, are included throughout the report

  20. Large area bulk superconductors

    Science.gov (United States)

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  1. Friction in levitated superconductors

    International Nuclear Information System (INIS)

    Brandt, E.H.

    1988-01-01

    A type I superconductor levitated above a magnet of low symmetry has a unique equilibrium position about which it may oscillate freely. In contrast, a type II superconductor has a continuous range of stable equilibrium positions and orientations where it floats rigidly without swinging or orbiting as if it were stuck in sand. A strong internal friction conspicuously indicates the existence and unpinning of flux lines in oxide superconductors levitated above liquid nitrogen. It is shown how these effects follow from the hysteretic magnetization curves and how the energy is dissipated

  2. Development of superconductor bulk for superconductor bearing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chan Joong; Jun, Byung Hyuk; Park, Soon Dong (and others)

    2008-08-15

    Current carrying capacity is one of the most important issues in the consideration of superconductor bulk materials for engineering applications. There are numerous applications of Y-Ba-Cu-O (YBCO) bulk superconductors e.g. magnetic levitation train, flywheel energy storage system, levitation transportation, lunar telescope, centrifugal device, magnetic shielding materials, bulk magnets etc. Accordingly, to obtain YBCO materials in the form of large, single crystals without weak-link problem is necessary. A top seeded melt growth (TSMG) process was used to fabricate single crystal YBCO bulk superconductors. The seeded and infiltration growth (IG) technique was also very promising method for the synthesis of large, single-grain YBCO bulk superconductors with good superconducting properties. 5 wt.% Ag doped Y211 green compacts were sintered at 900 .deg. C {approx} 1200 .deg.C and then a single crystal YBCO was fabricated by an infiltration method. A refinement and uniform distribution of the Y211 particles in the Y123 matrix were achieved by sintering the Ag-doped samples. This enhancement of the critical current density was ascribable to a fine dispersion of the Y211 particles, a low porosity and the presence of Ag particles. In addition, we have designed and manufactured large YBCO single domain with levitation force of 10-13 kg/cm{sup 2} using TSMG processing technique.

  3. A phenomenological approach to high Tc oxide superconductors

    International Nuclear Information System (INIS)

    Chela-Flores, J.; Das, M.P.; Saif, A.G.

    1987-06-01

    Oxide superconductors are described in terms of macroscopic wave functions Ψ and Φ corresponding, respectively, to electron pairs of the superconducting and insulating states. In terms of the total free energy of the system, including the effect of interaction, we discuss the electrodynamic responses of the oxide superconductors in relation with the experiments to data. (author). 10 refs

  4. Kohn anomalies in superconductors

    International Nuclear Information System (INIS)

    Flatte, M.E.

    1994-01-01

    The detailed behavior of phonon dispersion curves near momenta which span the electronic Fermi sea in a superconductor is presented. An anomaly, similar to the metallic Kohn anomaly, exists in a superconductor's dispersion curves when the frequency of the photon spanning the Fermi sea exceeds twice the superconducting energy gap. This anomaly occurs at approximately the same momentum but is stronger than the normal-state Kohn anomaly. It also survives at finite temperature, unlike the metallic anomaly. Determination of Fermi-surface diameters from the location of these anomalies, therefore, may be more successful in the superconducting phase than in the normal state. However, the superconductor's anomaly fades rapidly with increased phonon frequency and becomes unobservable when the phonon frequency greatly exceeds the gap. This constraint makes these anomalies useful only in high-temperature superconductors such as La 1.85 Sr 0.15 CuO 4

  5. Electronic Structure of the Bismuth Family of High Temperature Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Lisa

    2002-03-07

    High temperature superconductivity remains the central intellectual problem in condensed matter physics fifteen years after its discovery. Angle resolved photoemission spectroscopy (ARPES) directly probes the electronic structure, and has played an important role in the field of high temperature superconductors. With the recent advances in sample growth and the photoemission technique, we are able to study the electronic structure in great detail, and address regimes that were previously inaccessible. This thesis work contains systematic photoemission studies of the electronic structure of the Bi-family of high temperature superconductors, which include the single-layer system (Bi2201), the bi-layer system (Bi2212), and the tri-layer system (Bi2223). We show that, unlike conventional BCS superconductors, phase coherence information emerges in the single particle excitation spectrum of high temperature superconductors as the superconducting peak in Bi2212. The universality and various properties of this superconducting peak are studied in various systems. We argue that the origin of the superconducting peak may provide the key to understanding the mechanism of High-Tc superconductors. In addition, we identified a new experimental energy scale in the bilayer material, the anisotropic intra-bilayer coupling energy. For a long time, it was predicted that this energy scale would cause bilayer band splitting. We observe this phenomenon, for the first time, in heavily overdoped Bi2212. This new observation requires the revision of the previous picture of the electronic excitation in the Brillouin zone boundary. As the first ARPES study of a trilayer system, various detailed electronic proper- ties of Bi2223 are examined. We show that, comparing with Bi2212, both superconducting gap and relative superconducting peak intensity become larger in Bi2223, however, the strength of the interlayer coupling within each unit cell is possibly weaker. These results suggest that the

  6. Topological superconductors: a review.

    Science.gov (United States)

    Sato, Masatoshi; Ando, Yoichi

    2017-07-01

    This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.

  7. Room temperature superconductors

    International Nuclear Information System (INIS)

    Sleight, A.W.

    1995-01-01

    If the Holy Grail of room temperature superconductivity could be achieved, the impact on could be enormous. However, a useful room temperature superconductor for most applications must possess a T c somewhat above room temperature and must be capable of sustaining superconductivity in the presence of magnetic fields while carrying a significant current load. The authors will return to the subject of just what characteristics one might seek for a compound to be a room temperature superconductor. 30 refs., 3 figs., 1 tab

  8. Continuous lengths of oxide superconductors

    Science.gov (United States)

    Kroeger, Donald M.; List, III, Frederick A.

    2000-01-01

    A layered oxide superconductor prepared by depositing a superconductor precursor powder on a continuous length of a first substrate ribbon. A continuous length of a second substrate ribbon is overlaid on the first substrate ribbon. Sufficient pressure is applied to form a bound layered superconductor precursor powder between the first substrate ribbon and the second substrate ribbon. The layered superconductor precursor is then heat treated to establish the oxide superconducting phase. The layered oxide superconductor has a smooth interface between the substrate and the oxide superconductor.

  9. High temperature superconductor accelerator magnets

    NARCIS (Netherlands)

    van Nugteren, J.

    2016-01-01

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding 20T. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and

  10. Improvements in or relating to superconductors

    International Nuclear Information System (INIS)

    McDougal, I.L.

    1976-01-01

    A method of manufacturing a superconductor consisting of an intermetallic superconductive compound is described. It includes providing an assembly of at least one component of the intermetallic superconductive compound in indirect contact with a material that is not superconductive at 4.2 0 K, then diffusing the remaining component or components through the non-superconductive material to form the intermetallic compound, diffusion of the non-superconductive material being blocked. The non-superconductive material may be a stabilising material and may consist of Cu, Ag, Ni-Cu alloy, Mg, or Fe, and the blocking diffusion barrier may be Ta, Nb, Zr, or Hf. The assembly may be in the form of wire, tape, tube, or other extended configuration. Examples of application of the method are described. (U.K.)

  11. Doped Tl-1212 and Tl-1223 superconductors

    International Nuclear Information System (INIS)

    Eder, M.H.

    2001-09-01

    This work describes the preparation and characterization of thallium-lead-strontium-barium-calcium-(uranium)-copperoxide (Tl-1212, Tl-1223) high-temperature superconductors. The precursors were prepared via nitrate method. After calcination the oxidic powders were mixed with stoichiometric amounts of an Tl 2 O 3 , PbO, Er 2 O 3 and Gd 2 O 3 by milling and afterwards uniaxial compressed. Sintering was carried out in silver foils. X-ray diffractometry and high-resolution microscopy in combination with scanning electron microscopy (including EDAX) were used to study the influence of varying thallium/lead-, strontium/barium-, calcium/rare earth element ratios and the effect of uranium on the phase composition and microstructure of bulk superconductors. Furthermore the influence of the composition on the electrical and magnetical properties was studied. On phase pure Tl-1212 and Tl-1223 superconductors NMR-measurements were done. Small amounts of gadolinium and erbium instead of calcium and excess-uranium have a positive impact on the electrical and magnetical properties of the Tl-1223 superconductors. Higher amounts of these doping elements favor the Tl-1212 phase. Tl-1212 superconductors with varying thallium/lead- strontium/barium- and calcium/gadolinium ratios were prepared phasepure in wide range of doping. Transition temperatures up to 96 K were achieved. It was shown that lead has an oxidation number of +4 and thallium of +3. (author)

  12. Axial force in a superconductor magnet journal bearing

    Science.gov (United States)

    Postrekhin, E.; Chong, Wang; Ki Bui, Ma; Chen, Quark; Chu, Wei-Kan

    Using superconductors and magnets, a journal bearing could be made from a permanent magnet cylinder in a superconductor ring. We have assembled a prototype superconductor magnet journal bearing of this configuration, and investigated the behavior of the axial force that it can provide. We have put together a numerical model of the interaction between the permanent magnet and the superconductor that is capable of describing these experimental results semi-quantitatively. Combining direct experimental measurements and using the numerical models proposed, we have achieved a qualitative understanding of the behavior of the axial force and its relationship of to the dimensions of the magnet and material quality such as the homogeneity of the superconductor that constitute the bearing.

  13. System and method for quench protection of a superconductor

    Science.gov (United States)

    Huang, Xianrui; Sivasubramaniam, Kiruba Haran; Bray, James William; Ryan, David Thomas

    2008-03-11

    A system and method for protecting a superconductor from a quench condition. A quench protection system is provided to protect the superconductor from damage due to a quench condition. The quench protection system comprises a voltage detector operable to detect voltage across the superconductor. The system also comprises a frequency filter coupled to the voltage detector. The frequency filter is operable to couple voltage signals to a control circuit that are representative of a rise in superconductor voltage caused by a quench condition and to block voltage signals that are not. The system is operable to detect whether a quench condition exists in the superconductor based on the voltage signal received via the frequency filter and to initiate a protective action in response.

  14. Ivar Giaever, Tunneling, and Superconductors

    Science.gov (United States)

    dropdown arrow Site Map A-Z Index Menu Synopsis Ivar Giaever, Tunneling, and Superconductors Resources with in Superconductors Measured by Electron Tunneling; Physical Review Letters, Vol. 5 Issue 4: 147 - 148 ; August 15, 1960 Electron Tunneling Between Two Superconductors; Physical Review Letters, Vol. 5 Issue 10

  15. A nonquasiclassical description of inhomogeneous superconductors

    International Nuclear Information System (INIS)

    Zaikin, A.D.; Panyukov, S.V.

    1988-01-01

    Exact microscopic equations are derived that make it possible to describe inhomogeneous superconductors when the quasi-classical approach is not suitable. These equations are simpler than the Gorkov equations. The authors generalize the derived equations for describing the nonequilibrium states of inhomogeneous superconductors. It is demonstrated that the derived equations (including the case of a nonequilibrium quasi particle distribution function) may be written in the form of linear differential equations for the simultaneous wave function μ, ν. The quasi-classical limit of such equations is examined. Effective boundary conditions are derived for the μ, ν functions that allow description of superconductors with a sharp change in parameters within the scope of the quasi-classical approach

  16. Renormalized modes in cuprate superconductors

    Science.gov (United States)

    Gupta, Anushri; Kumari, Anita; Verma, Sanjeev K.; Indu, B. D.

    2018-04-01

    The renormalized mode frequencies are obtained with the help of quantum dynamical approach of many body phonon Green's function technique via a general Hamiltonian (excluding BCS Hamiltonian) including the effects of phonons and electrons, anharmonicities and electron-phonon interactions. The numerical estimates have been carried out to study the renormalized mode frequency of high temperature cuprate superconductor (HTS) YBa2Cu3O7-δ using modified Born-Mayer-Huggins interaction potential (MBMHP) best applicable to study the dynamical properties of all HTS.

  17. Photothermal measurements of superconductors

    International Nuclear Information System (INIS)

    Kino, G.S.; Wu, X.D.; Kapitulnik, A.; Fishman, I.

    1993-01-01

    The authors have developed a new photothermal technique to investigate electronic phase transitions of high temperature superconductors. The phase shift of the thermal wave yields the anisotropic thermal diffusivity coefficient of the sample. The amplitude of the photothermal signal is sensitive to electronic phase transitions of the second kind. The technique is completely noncontacting and nondestructive, and is well suited to measure small and fragile single-crystal high-T c superconductors. The measurements give good agreement with fluctuation theory near the transition temperature. They have studied diffusion in, and superconducting fluctuations of, single crystals of YBa 2 Cu 3 O 7-δ and Bi 2 Sr 2 CaCu 2 O 8 . Both systems show fluctuation effects beyond Gaussian fluctuations. While YBa 2 Cu 3 O 7-δ behaves as a three-dimensional anisotropic superconductor, results on Bi 2 Sr 2 CaCu 2 O 8 indicate strong two-dimensional effects

  18. Distribution of local magnetic field of vortex lattice near anisotropic superconductor surface in inclined external fields

    International Nuclear Information System (INIS)

    Efremova, S.A.; Tsarevskij, S.L.

    1997-01-01

    Magnetic field distribution in a unit cell of the Abrikosov vortex lattice near the surface of monoaxial anisotropic type-ii superconductors in inclined external magnetic field has been found in the framework of London model for the cases when the symmetry axis is perpendicular and parallel to the superconductor surface interface. Distribution of local magnetic field as a function of the distance from the superconductor interface surface and external field inclination angle has been obtained. Using high-Tc superconductor Y-Ba-Cu-O by way of examples, it has been shown that the study of local magnetic field distribution function, depending on external magnetic field inclination angle towards the superconductor symmetry axis and towards the superconductor surface, can provide important data on anisotropic properties of the superconductor [ru

  19. Macroscopic theory of superconductors

    International Nuclear Information System (INIS)

    Carr, W.J. Jr.

    1981-01-01

    A macroscopic theory for bulk superconductors is developed in the framework of the theory for other magnetic materials, where ''magnetization'' current is separated from ''free'' current on the basis of scale. This contrasts with the usual separation into equilibrium and nonequilibrium currents. In the present approach magnetization, on a large macroscopic scale, results from the vortex current, while the Meissner current and other surface currents are surface contributions to the Maxwell j. The results are important for the development of thermodynamics in type-II superconductors. The advantage of the description developed here is that magnetization becomes a local concept and its associated magnetic field can be given physical meaning

  20. Enhancing critical current density of cuprate superconductors

    Science.gov (United States)

    Chaudhari, Praveen

    2015-06-16

    The present invention concerns the enhancement of critical current densities in cuprate superconductors. Such enhancement of critical current densities include using wave function symmetry and restricting movement of Abrikosov (A) vortices, Josephson (J) vortices, or Abrikosov-Josephson (A-J) vortices by using the half integer vortices associated with d-wave symmetry present in the grain boundary.

  1. Quantum Dots Coupled to a Superconductor

    DEFF Research Database (Denmark)

    Jellinggaard, Anders Robert

    are tuned electrostatically. This includes tuning the odd occupation of the dot through a quantum phase transition, where it forms a singlet with excitations in the superconductor. We detail the fabrication of these bottom gated devices, which additionally feature ancillary sensor dots connected...

  2. High-Tc superconductor applications

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    There has been much speculation about new products and business opportunities which high-Tc superconductors might make possible. However, with the exception of one Japanese survey, there have not been any recognized forecasts suggesting a timeframe and relative economic impact for proposed high-Tc products. The purpose of this survey is to provide definitive projections of the timetable for high-Tc product development, based on the combined forecasts of the leading U.S. superconductivity experts. The FTS panel of experts on high-Tc superconductor applications, representing both business and research, forecast the commercialization and economic impact for 28 classes of electronic, magnetic, communications, instrumentation, transportation, industrial, and power generation products. In most cases, forecasts predict the occurrence of developments within a 90% statistical confidence limit of 2-to-3 years. The report provides background information on the 28 application areas, as well as other information useful for strategic planners. The panel also forecast high-Tc research spending, markets, and international competitiveness, and provide insight into how the industry will evolve

  3. Recent advances in high-temperature superconductor wire fabrication and applications development

    International Nuclear Information System (INIS)

    Hull, J.R.; Uherka, K.L.

    1992-01-01

    In this paper, recent advances in fabrication of high-temperature superconductor wires are summarized and detailed discussion is provided on developments in near- and intermediate-term applications. Near-term applications, using presently obtainable current densities, include liquid-nitrogen depth sensors, cryostat current leads, and magnetic bearings. Intermediate-term applications, using current densities expected to be available in the near future, include fault-current limiters and short transmission lines

  4. Classical spins in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shiba, H [Tokyo Univ.; Maki, K

    1968-08-01

    It is shown that there exists a localized excited state in the energy gap in a superconductor with a classical spin. At finite concentration localized excited states around classical spins form an impurity band. The process of growth of the impurity band and its effects on observable quantities are investigated.

  5. Superconductors and medical imaging

    International Nuclear Information System (INIS)

    Aubert, Guy

    2011-01-01

    After difficult beginnings in the 1970's, magnetic resonance imaging (MRI) has evolved to become nowadays the jewel in the crown of medical technology. Superconductors have been a key factor for the extraordinary expansion of MRI which in turn represents about 75 % of their total market. After recalling some basic principles, this article traces their common history and refers to future developments. (author)

  6. Irradiation damage in superconductors

    International Nuclear Information System (INIS)

    Quere, Y.

    1989-01-01

    Most superconductors are quite sensitive to irradiation defects. Critical temperatures may be depressed, critical currents may be increased, by irradiation, but other behaviours may be encountered. In compounds, the sublattice in which defects are created is of significant importance. 24 refs

  7. Ceramic superconductor/metal composite materials employing the superconducting proximity effect

    Science.gov (United States)

    Holcomb, Matthew J.

    2002-01-01

    Superconducting composite materials having particles of superconducting material disposed in a metal matrix material with a high electron-boson coupling coefficient (.lambda.). The superconducting particles can comprise any type of superconductor including Laves phase materials, Chevrel phase materials, A15 compounds, and perovskite cuprate ceramics. The particles preferably have dimensions of about 10-500 nanometers. The particles preferably have dimensions larger than the superconducting coherence length of the superconducting material. The metal matrix material has a .lambda. greater than 0.2, preferably the .lambda. is much higher than 0.2. The metal matrix material is a good proximity superconductor due to its high .lambda.. When cooled, the superconductor particles cause the metal matrix material to become superconducting due to the proximity effect. In cases where the particles and the metal matrix material are chemically incompatible (i.e., reactive in a way that destroys superconductivity), the particles are provided with a thin protective metal coating. The coating is chemically compatible with the particles and metal matrix material. High Temperature Superconducting (HTS) cuprate ceramic particles are reactive and therefore require a coating of a noble metal resistant to oxidation (e.g., silver, gold). The proximity effect extends through the metal coating. With certain superconductors, non-noble metals can be used for the coating.

  8. Studies of high temperature superconductors

    International Nuclear Information System (INIS)

    Narlikar, A.

    1989-01-01

    The high temperature superconductors (HTSCs) discovered are from the family of ceramic oxides. Their large scale utilization in electrical utilities and in microelectronic devices are the frontal challenges which can perhaps be effectively met only through consolidated efforts and expertise of a multidisciplinary nature. During the last two years the growth of the new field has occurred on an international scale and perhaps has been more rapid than in most other fields. There has been an extraordinary rush of data and results which are continually being published as short texts dispersed in many excellent journals, some of which were started to ensure rapid publication exclusively in this field. As a result, the literature on HTSCs has indeed become so massive and so diffuse that it is becoming increasingly difficult to keep abreast with the important and reliable facets of this fast-growing field. This provided the motivation to evolve a process whereby both professional investigators and students can have ready access to up-to- date in-depth accounts of major technical advances happening in this field. The present series Studies of High Temperature Superconductors has been launched to, at least in part, fulfill this need

  9. High Temperature Superconductor Accelerator Magnets

    CERN Document Server

    AUTHOR|(CDS)2079328; de Rijk, Gijs; Dhalle, Marc

    2016-11-10

    For future particle accelerators bending dipoles are considered with magnetic fields exceeding $20T$. This can only be achieved using high temperature superconductors (HTS). These exhibit different properties from classical low temperature superconductors and still require significant research and development before they can be applied in a practical accelerator magnet. In order to study HTS in detail, a five tesla demonstrator magnet named Feather-M2 is designed and constructed. The magnet is based on ReBCO coated conductor, which is assembled into a $10kA$ class Roebel cable. A new and optimized Aligned Block layout is used, which takes advantage of the anisotropy of the conductor. This is achieved by providing local alignment of the Roebel cable in the coil windings with the magnetic field lines. A new Network Model capable of analyzing transient electro-magnetic and thermal phenomena in coated conductor cables and coils is developed. This model is necessary to solve critical issues in coated conductor ac...

  10. Electronic structure and superconductivity of FeSe-related superconductors.

    Science.gov (United States)

    Liu, Xu; Zhao, Lin; He, Shaolong; He, Junfeng; Liu, Defa; Mou, Daixiang; Shen, Bing; Hu, Yong; Huang, Jianwei; Zhou, X J

    2015-05-13

    FeSe superconductors and their related systems have attracted much attention in the study of iron-based superconductors owing to their simple crystal structure and peculiar electronic and physical properties. The bulk FeSe superconductor has a superconducting transition temperature (Tc) of ~8 K and it can be dramatically enhanced to 37 K at high pressure. On the other hand, its cousin system, FeTe, possesses a unique antiferromagnetic ground state but is non-superconducting. Substitution of Se with Te in the FeSe superconductor results in an enhancement of Tc up to 14.5 K and superconductivity can persist over a large composition range in the Fe(Se,Te) system. Intercalation of the FeSe superconductor leads to the discovery of the AxFe2-ySe2 (A = K, Cs and Tl) system that exhibits a Tc higher than 30 K and a unique electronic structure of the superconducting phase. A recent report of possible high temperature superconductivity in single-layer FeSe/SrTiO3 films with a Tc above 65 K has generated much excitement in the community. This pioneering work opens a door for interface superconductivity to explore for high Tc superconductors. The distinct electronic structure and superconducting gap, layer-dependent behavior and insulator-superconductor transition of the FeSe/SrTiO3 films provide critical information in understanding the superconductivity mechanism of iron-based superconductors. In this paper, we present a brief review of the investigation of the electronic structure and superconductivity of the FeSe superconductor and related systems, with a particular focus on the FeSe films.

  11. Iron pnictide superconductors

    International Nuclear Information System (INIS)

    Tegel, Marcus Christian

    2011-01-01

    The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co x Fe 1-x )PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr 2 Si 2 -type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba 0.6 K 0.4 Fe 2 As 2 , is unveiled. A detailed examination of the complete solid solution series (Ba 1-x K x )Fe 2 As 2 is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe 2 As 2 and EuFe 2 As 2 are characterised and the superconductors Sr 1-x K x Fe 2 As 2 and Ca 1-x Na x Fe 2 As 2 are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se 1-x Te x ) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr 3 Sc 2 O 5 Fe 2 As 2 are presented and Ba 2 ScO 3 FeAs and Sr 2 CrO 3 FeAs, the first two members of the new 21311-type are portrayed. Sr 2 CrO 3 FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound is given. Finally, the superconductor Sr 2 VO 3 FeAs is scrutinised and necessary prerequisites for superconductivity in this compound are suggested. (orig.)

  12. "Fluctuoscopy" of Superconductors

    Science.gov (United States)

    Varlamov, A. A.

    Study of fluctuation phenomena in superconductors (SCs) is the subject of great fundamental and practical importance. Understanding of their physics allowed to clear up the fundamental properties of SC state. Being predicted in 1968, one of the fluctuation effects, namely paraconductivity, was experimentally observed almost simultaneously. Since this time, fluctuations became a noticeable part of research in the field of superconductivity, and a variety of fluctuation effects have been discovered. The new wave of interest to fluctuations (FL) in superconductors was generated by the discovery of cuprate oxide superconductors (high-temperature superconductors, HTS), where, due to extremely short coherence length and low effective dimensionality of the electron system, superconductive fluctuations manifest themselves in a wide range of temperatures. Moreover, anomalous properties of the normal state of HTS were attributed by many theorists to strong FL in these systems. Being studied in the framework of the phenomenological Ginzburg-Landau theory and, more extensively, in diagrammatic microscopic approach, SC FLs side by side with other quantum corrections (weak localization, etc.) became a new tool for investigation and characterization of such new systems as HTS, disordered electron systems, granular metals, Josephson structures, artificial super-lattices, etc. The characteristic feature of SC FL is their strong dependence on temperature and magnetic fields in the vicinity of phase transition. This allows one to definitely separate the fluctuation effects from other contributions and to use them as the source of information about the microscopic parameters of a material. By their origin, SC FLs are very sensitive to relaxation processes, which break phase coherence. This allows using them for versatile characterization of SC. Today, one can speak about the " fluctuoscopy" of superconductive systems. In review, we present the qualitative picture both of thermodynamic

  13. Processing of Mixed Oxide Superconductors

    Science.gov (United States)

    1990-07-01

    rapid changes world wide a major research centre on high Tc superconductors was awarded to Cambridge which involved moving the work and people to a...reports and paper is in the appendices. Separation Ceramic superconductors tend to be mixtures of phases, especially when first discovered. It would...properties of the superconducting state will in principle allow superconducting material to be levitated from the non superconductor and several designs

  14. Superconductor stability 90: A review

    International Nuclear Information System (INIS)

    Dresner, L.

    1990-01-01

    This paper reviews some recent developments in the field of stability of superconductors. The main topics dealt with are hydrodynamic phenomena in cable-in-conduit superconductors, namely, multiple stability, quench pressure, thermal expulsion, and thermal hydraulic quenchback, traveling normal zones in large, composite conductors, such as those intended for SMES, and the stability of vapor-cooled leads made of high-temperature superconductors. 31 refs., 5 figs

  15. High Temperature Superconductor Resonator Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — High Temperature Superconductor (HTS) infrared detectors were studied for years but never matured sufficiently for infusion into instruments. Several recent...

  16. The critical current of superconductors: an historical review

    International Nuclear Information System (INIS)

    Dew-Hughes, D.

    2001-01-01

    The most important practical characteristic of a superconductor is its critical current density. This article traces the history, both of the experimental discoveries and of the development of the theoretical ideas that have lead to the understanding of those factors that control critical current densities. These include Silsbee's hypothesis, the Meissner effect, London, Ginsburg-Landau and Abrikosov theories, flux pinning and the critical state, and the control of texture in high temperature superconductors

  17. Passive superconductor: A viable method of controlling magnetization multipoles in the SSC dipole

    International Nuclear Information System (INIS)

    Green, M.A.

    1989-02-01

    At injection, the magnetization of the superconductor produces the dominant field error in the SSC dipole magnets. The field generated by magnetization currents in the superconductor is rich in higher symmetric multipoles (normal sextupole, normal decapole, and so on). Pieces of passive superconductor properly located within the bore of the dipole magnet can cancel the higher multipoles generated by the SSC dipole coils. The multipoles generated by the passive superconductor (predominantly sextupole and decapole) are controlled by the angular and radial location of the superconductor, the volume of superconductor, and the size of the superconducting filaments within the passive conductor. This paper will present the tolerances on each of these factors. The paper will show that multipole correction using passive superconductor is in general immune to the effects of temperature and magnetization decay due to flux creep, provided that dipole superconductor and the passive correction superconductor are properly specified. When combined with a lumped correction system, the passive superconductor can be a viable alternative to continuous correction coils within the SSC dipoles. 20 refs., 8 figs., 2 tabs

  18. Passive superconductor a viable method of controlling magnetization multipoles in the SSC dipole

    International Nuclear Information System (INIS)

    Green, M.A.

    1989-01-01

    At injection, the magnetization of the superconductor produces the dominant field error in the SSC dipole magnets. The field generated by magnetization currents in the superconductor is rich in higher symmetric multipoles (normal sextupole, normal decapole, and so on). Pieces of passive superconductor properly located within the bore of the dipole magnet can cancel the higher multipoles generated by the SSC dipole coils. The multipoles generated by the passive superconductor (predominantly sextupole and decapole) are controlled by the angular and radial location of the superconductor, the volume of superconductor, and the size of the superconducting filaments within the passive conductor. This paper will present the tolerances on each of these factors. The paper will show that multipole correction using passive superconductor is in general immune to the effects of temperature and magnetization decay due to flux creep, provided that dipole superconductor and the passive correction superconductor are properly specified. When combined with a lumped correction system, the passive superconductor can be a viable alternative to continuous correction coils within the SSC dipoles. 20 refs., 8 figs., 2 tabs

  19. Ground state, collective mode, phase soliton and vortex in multiband superconductors.

    Science.gov (United States)

    Lin, Shi-Zeng

    2014-12-10

    This article reviews theoretical and experimental work on the novel physics in multiband superconductors. Multiband superconductors are characterized by multiple superconducting energy gaps in different bands with interaction between Cooper pairs in these bands. The discovery of prominent multiband superconductors MgB2 and later iron-based superconductors, has triggered enormous interest in multiband superconductors. The most recently discovered superconductors exhibit multiband features. The multiband superconductors possess novel properties that are not shared with their single-band counterpart. Examples include: the time-reversal symmetry broken state in multiband superconductors with frustrated interband couplings; the collective oscillation of number of Cooper pairs between different bands, known as the Leggett mode; and the phase soliton and fractional vortex, which are the main focus of this review. This review presents a survey of a wide range of theoretical exploratory and experimental investigations of novel physics in multiband superconductors. A vast amount of information derived from these studies is shown to highlight unusual and unique properties of multiband superconductors and to reveal the challenges and opportunities in the research on the multiband superconductivity.

  20. Radiation behavior of superconductors

    International Nuclear Information System (INIS)

    Scanlan, R.M.; Raymond, E.L.

    1979-01-01

    High energy neutron irradiations have been performed on Nb 3 Sn superconductors to assess their behavior in a fusion reactor environment. Irradiations were performed at 4.2 K and property measurements were made without warming the samples. The critical current I/sub c/ increased with irradiation to a level about 50% above the unirradiated value at the highest fluences reached in our experiments. These results are compared with the results of other low temperature irradiations of Nb 3 Sn

  1. Isotope and multiband effects in layered superconductors.

    Science.gov (United States)

    Bussmann-Holder, Annette; Keller, Hugo

    2012-06-13

    In this review we consider three classes of superconductors, namely cuprate superconductors, MgB(2) and the new Fe based superconductors. All of these three systems are layered materials and multiband compounds. Their pairing mechanisms are under discussion with the exception of MgB(2), which is widely accepted to be a 'conventional' electron-phonon interaction mediated superconductor, but extending the Bardeen-Cooper-Schrieffer (BCS) theory to account for multiband effects. Cuprates and Fe based superconductors have higher superconducting transition temperatures and more complex structures. Superconductivity is doping dependent in these material classes unlike in MgB(2) which, as a pure compound, has the highest values of T(c) and a rapid suppression of superconductivity with doping takes place. In all three material classes isotope effects have been observed, including exotic ones in the cuprates, and controversial ones in the Fe based materials. Before the area of high-temperature superconductivity, isotope effects on T(c) were the signature for phonon mediated superconductivity-even when deviations from the BCS value to smaller values were observed. Since the discovery of high T(c) materials this is no longer evident since competing mechanisms might exist and other mediating pairing interactions are discussed which are of purely electronic origin. In this work we will compare the three different material classes and especially discuss the experimentally observed isotope effects of all three systems and present a rather general analysis of them. Furthermore, we will concentrate on multiband signatures which are not generally accepted in cuprates even though they are manifest in various experiments, the evidence for those in MgB(2), and indications for them in the Fe based compounds. Mostly we will consider experimental data, but when possible also discuss theoretical models which are suited to explain the data.

  2. Weak links in high critical temperature superconductors

    Science.gov (United States)

    Tafuri, Francesco; Kirtley, John R.

    2005-11-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-TC superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  3. Weak links in high critical temperature superconductors

    International Nuclear Information System (INIS)

    Tafuri, Francesco; Kirtley, John R

    2005-01-01

    The traditional distinction between tunnel and highly transmissive barriers does not currently hold for high critical temperature superconducting Josephson junctions, both because of complicated materials issues and the intrinsic properties of high temperature superconductors (HTS). An intermediate regime, typical of both artificial superconductor-barrier-superconductor structures and of grain boundaries, spans several orders of magnitude in the critical current density and specific resistivity. The physics taking place at HTS surfaces and interfaces is rich, primarily because of phenomena associated with d-wave order parameter (OP) symmetry. These phenomena include Andreev bound states, the presence of the second harmonic in the critical current versus phase relation, a doubly degenerate state, time reversal symmetry breaking and the possible presence of an imaginary component of the OP. All these effects are regulated by a series of transport mechanisms, whose rules of interplay and relative activation are unknown. Some transport mechanisms probably have common roots, which are not completely clear and possibly related to the intrinsic nature of high-T C superconductivity. The d-wave OP symmetry gives unique properties to HTS weak links, which do not have any analogy with systems based on other superconductors. Even if the HTS structures are not optimal, compared with low critical temperature superconductor Josephson junctions, the state of the art allows the realization of weak links with unexpectedly high quality quantum properties, which open interesting perspectives for the future. The observation of macroscopic quantum tunnelling and the qubit proposals represent significant achievements in this direction. In this review we attempt to encompass all the above aspects, attached to a solid experimental basis of junction concepts and basic properties, along with a flexible phenomenological background, which collects ideas on the Josephson effect in the presence

  4. Ceramic high temperature superconductor levitating motor with laser commutator

    International Nuclear Information System (INIS)

    Roslan Abd Shukor; Lee Keng Heong

    1996-01-01

    The design of a magnetically levitating motor using a ceramic high temperature superconductor with laser commutator is discussed. A YBa sub 2 Cu sub 3 O sub 7-δ high temperature superconductor with 25 mm diameter and 6 mm thickness is used to levitate a Nd-Fe-B magnet (19.0 mm diameter and 4.8 mm thickness) which is attached symmetrically to a 150 mm long graphite rod. A smaller magnet (5.5 mm diameter and 2.0 mm thickness) is attached at each end of the rod with the appropriate poles arrangements. A suitable laser beam chopper is used to optically drive a solenoid which repels the smaller magnets thus driving the motor. A simple and efficient liquid nitrogen supply system is designed to cool the superconductor. The stability of the bearing is provided by the flux pinning in this type-II superconductor. Some characteristics of the motor are discussed

  5. Experimental and Computational Studies of the Superconducting Phase Transition of Quasi 1D Superconductors

    Science.gov (United States)

    Wong, Chi Ho

    In this PhD project, the feasibility of establishing a state with vanishing resistance in quasi-1D superconductors are studied. In the first stage, extrinsic quasi-1D superconductors based on composite materials made by metallic nanowire arrays embedded in mesoporous silica substrates, such as Pb-SBA-15 and NbN-SBA-15 (fabricated by a Chemical Vapor Deposition technique) are investigated. Two impressive outcomes in Pb-SBA-15 are found, including an enormous enhancement of the upper critical field from 0.08T to 14T and an increase of the superconducting transition temperature onset s from 7.2 to 11K. The second stage is to apply Monte Carlo simulations to model the quasi-1D superconductor, considering its penetration depth, coherence length, defects, electron mean free path, tunneling barrier and insulating width between the nanowires. The Monte Carlo results provide a clear picture to approach to stage 3, which represents a study of the intrinsic quasi-1D superconductor Sc3CoC4, which contains parallel arrays of 1D superconducting CoC4 ribbons with weak transverse Josephson or Proximity interaction, embedded in a Sc matrix. According to our previous work, a BKT transition in the lateral plane is believed to be the physics behind the vanishing resistance of quasi-1D superconductors, because it activates a dimensional crossover from a 1D fluctuating superconductivity at high temperature to a 3D bulk phase coherent state in the entire material at low temperatures. Moreover, we decided to study thin 1D Sn nanowires without substrate, which display very similar superconducting properties to Pb-SBA-15 with a strong critical field and Tc enhancement. Finally, a preliminary research on a novel quasi-2D superconductor formed by parallel 2D mercury sheets that are separated by organic molecules is presented. The latter material may represent a model system to study the effect of a layered structure, which is believed to be an effective ingredient to design high temperature

  6. Fluctuoscopy of Superconductors

    Science.gov (United States)

    Varlamov, Andrey

    2012-02-01

    The study of superconducting fluctuations (SF) is a subject of fundamental and practical importance. Since the moment of discovery SF became a noticeable part of research in the field of superconductivity (SC) and a variety of fluctuation effects have been detected. The interest to SF in SC was regenerated by the discovery of HTS, where, due to extremely short coherence length and low effective dimensionality of the electron system, SF manifest themselves in a wide range of temperatures. The characteristic feature of SF is their strong dependence on temperature and magnetic field. This allows to separate SFs from other contributions and to use them as a tool for characterization of SC systems (``fluctuoscopy'') for example to extract the values of Tc, Hc2(T) and phase-breaking time from experimental data. We present the complete results for fluctuation magneto-conductivity (FMC) and Nernst signal (FNS) of impure 2D superconductor in the whole phase diagram above the transition line Hc2(T), including the domain of quantum fluctuations. Along some line H0(T), in agreement with experimental findings, FMC becomes zero and beyond it remains small and negative. The corresponding surface in coordinates (T,H) becomes in particular non-trivial at low temperatures and close to Hc2(0), where it is trough-shaped. The observation of large FNS in HTS and conventional SC above Tc(H), has attracted much attention recently. The idea to attribute it to the entropy transport by analogy to vortices was proposed. On the other hand this giant effect, close to Tc(0), was explained in terms of SF. Our general results allow to successfully fit the available experimental data in a wide range of magnetic fields and temperatures, to extract the value of the ``ghost'' field and other parameters of SC. We offer also a qualitative consideration, which gives a natural explanation for the giant value of FNS attributing it to a strong dependence of the fluctuation Cooper pair (FCP) chemical

  7. Property and microstructural nonuniformity in the yttrium-barium-copper-oxide superconductor determined from electrical, magnetic, and ultrasonic measurements

    International Nuclear Information System (INIS)

    Roth, D.J.

    1991-01-01

    This dissertation is presented in two major chapters. In the first chapter, the use of ultrasonic velocity for estimating pore fraction in YBCO and other polycrystalline materials is reviewed, modeled, and statistically analyzed. This chapter provides the basis for using ultrasonic velocity to interrogate microstructure. In the second chapter, (1) the effect of pore fraction (0.10-0.25) on superconductor properties of YBCO samples is characterized, (2) spatial (within-sample) variations in microstructure and superconductor properties are investigated and (3) the effect of oxygen content on elastic behavior is examined. Experimental methods used included a.c. susceptibility, electrical, and ultrasonic-velocity measurements. Superconductor properties measured included transition temperature, magnetic transition width, transport and magnetic critical current density, magnetic shielding, a.c. loss, and sharpness of the voltage-current characteristic. Superconductor properties including within-sample uniformity were generally poorest for samples containing the lowest (0.10) pore fraction. Ultrasonic velocity was linearly related to pore fraction thereby allowing sample classification. Changes in superconducting behavior were observed consistent with changes in oxygen content

  8. Testability issues in Superconductor Electronics

    NARCIS (Netherlands)

    Kerkhoff, Hans G.; Arun, Arun J.

    2004-01-01

    An emerging technology for solutions in high-end applications in computing and telecommunication is superconductor electronics. A system-level study has been carried out to verify the feasibility of DfT in superconductor electronics. In this paper, we present how this can be realized to monitor

  9. Method for preparation of superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Barber, A.C.; McDougall, I.L.

    1975-07-10

    The invention deals with a method to prepare a superconductor consisting of a superconducting compound of at least two elements. It especially deals with superconductors which surround a superconducting intermetallic compounds of at least two elements, examples of which are Nb/sub 2/Sn and Nb/sub 3/Al.

  10. Nonmagnetic impurities in magnetic superconductors

    International Nuclear Information System (INIS)

    Mineev, V.P.

    1989-01-01

    The magnetization and magnetic field arising around the nonmagnetic impurity in magnetic superconductor with triplet pairing are found. The relationship of these results with the data of recent (gm)sR experiments in heavy fermionic superconductor U 1 - x Th x Be 13 is presented

  11. The intercalation chemistry of layered iron chalcogenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Vivanco, Hector K.; Rodriguez, Efrain E., E-mail: efrain@umd.edu

    2016-10-15

    The iron chalcogenides FeSe and FeS are superconductors composed of two-dimensional sheets held together by van der Waals interactions, which makes them prime candidates for the intercalation of various guest species. We review the intercalation chemistry of FeSe and FeS superconductors and discuss their synthesis, structure, and physical properties. Before we review the latest work in this area, we provide a brief background on the intercalation chemistry of other inorganic materials that exhibit enhanced superconducting properties upon intercalation, which include the transition metal dichalcogenides, fullerenes, and layered cobalt oxides. From past studies of these intercalated superconductors, we discuss the role of the intercalates in terms of charge doping, structural distortions, and Fermi surface reconstruction. We also briefly review the physical and chemical properties of the host materials—mackinawite-type FeS and β-FeSe. The three types of intercalates for the iron chalcogenides can be placed in three categories: 1.) alkali and alkaline earth cations intercalated through the liquid ammonia technique; 2.) cations intercalated with organic amines such as ethylenediamine; and 3.) layered hydroxides intercalated during hydrothermal conditions. A recurring theme in these studies is the role of the intercalated guest in electron doping the chalcogenide host and in enhancing the two-dimensionality of the electronic structure by spacing the FeSe layers apart. We end this review discussing possible new avenues in the intercalation chemistry of transition metal monochalcogenides, and the promise of these materials as a unique set of new inorganic two-dimensional systems.

  12. EDITORIAL: Focus on Iron-Based Superconductors FOCUS ON IRON-BASED SUPERCONDUCTORS

    Science.gov (United States)

    Hosono, Hideo; Ren, Zhi-An

    2009-02-01

    pace of research within the last year, iron-based superconductors have revealed several unique properties such as a high upper critical field and a robustness to impurities. Participation of five 3d-orbitals in the Fermi levels also means that the electronic structure is complex compared with the cuprates. So, we now have a new family of superconductors and it is worth stressing that we have only just begun looking at the many varieties of candidate materials containing an iron square lattice. At this time we do not know whether a material with a critical temperature greater than 100 K exists, or if completely new properties are to be found. However, as a research community we should go ahead with hope and 'strike while the iron is hot'—this saying is always true! This focus issue of New Journal of Physics was put together to provide a broad-based, free-to-read snapshot of the current state of research in this rapidly emerging field. The papers included cover many aspects related to material exploration, physical analysis, and the theory of these materials, and, as editors, we thank the authors for their fine contributions, and the many referees for their considerable efforts that have ensured fast publication. As an aside, the first special issue on this SUBject was published in November 2008 in the Journal of the Physical Society of Japan (vol 77, supplement c) as the proceedings of the International Symposium on Iron-Pnictide Superconductors held in Tokyo on 29-30 June 2008. We would like to encourage the community to read both issues. On a final note we would like to acknowledge the staff of New Journal of Physics for all of their efficient work in bringing this collection to fruition. Focus on Iron-Based Superconductors Contents Microwave response of superconducting pnictides: extended s+/- scenario O V Dolgov, A A Golubov and D Parker Orbital and spin effects for the upper critical field in As-deficient disordered Fe pnictide superconductors G Fuchs, S

  13. Superconductors for pulsed rf accelerators

    International Nuclear Information System (INIS)

    Campisi, I.E.; Farkas, Z.D.

    1985-04-01

    The choice of superconducting materials for accelerator rf cavities has been determined in the past only in part by basic properties of the superconductors, such as the critical field, and to a larger extent by criteria which include fabrication processes, surface conditions, heat transfer capabilities and so on. For cw operated cavities the trend has been toward choosing materials with higher critical temperatures and lower surface resistance, from Lead to Niobium, from Niobium to Nb 3 Sn. This trend has been dictated by the specific needs of storage ring cw system and by the relatively low fields which could be reached without breakdown. The work performed at SLAC on superconducting cavities using microsecond long high power rf pulses has shown that in Pb, Nb, and Nb 3 Sn fields close to the critical magnetic fields can be reached without magnetic breakdown

  14. Coupling spin qubits via superconductors

    DEFF Research Database (Denmark)

    Leijnse, Martin; Flensberg, Karsten

    2013-01-01

    We show how superconductors can be used to couple, initialize, and read out spatially separated spin qubits. When two single-electron quantum dots are tunnel coupled to the same superconductor, the singlet component of the two-electron state partially leaks into the superconductor via crossed...... Andreev reflection. This induces a gate-controlled singlet-triplet splitting which, with an appropriate superconductor geometry, remains large for dot separations within the superconducting coherence length. Furthermore, we show that when two double-dot singlet-triplet qubits are tunnel coupled...... to a superconductor with finite charging energy, crossed Andreev reflection enables a strong two-qubit coupling over distances much larger than the coherence length....

  15. Evaluating superconductors for microwave applications

    International Nuclear Information System (INIS)

    Hammond, B.; Bybokas, J.

    1989-01-01

    It is becoming increasingly obvious that some of the earliest applications for high Tc superconductors will be in the microwave market. While this is a major opportunity for the superconductor community, it also represents a significant challenge. At DC or low frequencies a superconductor can be easily characterized by simple measurements of resistivity and magnetic susceptibility versus temperature. These parameters are fundamental to superconductor characterization and various methods exist for measuring them. The only valid way to determine the microwave characteristics of a superconductor is to measure it at microwave frequencies. It is for this reason that measuring microwave surface resistance has emerged as one of the most demanding and telling tests for materials intended for high frequency applications. In this article, the theory of microwave surface resistance is discussed. Methods for characterizing surface resistance theoretically and by practical implementation are described

  16. Epitaxial heterojunctions of oxide semiconductors and metals on high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor); Hunt, Brian D. (Inventor); Foote, Marc C. (Inventor)

    1994-01-01

    Epitaxial heterojunctions formed between high temperature superconductors and metallic or semiconducting oxide barrier layers are provided. Metallic perovskites such as LaTiO3, CaVO3, and SrVO3 are grown on electron-type high temperature superconductors such as Nd(1.85)Ce(0.15)CuO(4-x). Alternatively, transition metal bronzes of the form A(x)MO(3) are epitaxially grown on electron-type high temperature superconductors. Also, semiconducting oxides of perovskite-related crystal structures such as WO3 are grown on either hole-type or electron-type high temperature superconductors.

  17. Intermetallic superconductors - The state of development in 1991

    International Nuclear Information System (INIS)

    Forsyth, E.

    1991-01-01

    The commercial fabrication of intermetallic superconductors has reached a high degree of maturity in the past thirty years. The only significant, commercial requirement for superconducting wire is the construction of magnetic resonance imaging (MRI) devices for medical diagnosis. In addition to this demand there are one-time projects such as a high energy particle accelerators which often need considerable quantities of superconducting material over the few years of construction. R and D projects also provide a fluctuating market for superconducting materials, in the past the projects have included power apparatus such as generators, motors, energy storage and transmission cables, and magnets for experimental fusion reactors. Superconducting magnetically levitated trains have undergone full scale trials in Japan and Germany. This is by no means a comprehensive list of all the possible applications. Virtually all the devices requiring a magnetic field to be produced by superconducting windings have used NbTi wire, but a few experimental Nb 3 Sn high field magnets have been constructed. In the case of these materials commercial vendors can provide a high degree of quality assurance on such characteristics as critical current, coupling effects and mechanical tolerances. This paper discusses the market for intermetallic and ceramic superconductors, their fabrication properties, applications, and cost

  18. Iron pnictide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tegel, Marcus Christian

    2011-03-22

    The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co{sub x}Fe{sub 1-x})PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr{sub 2}Si{sub 2}-type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, is unveiled. A detailed examination of the complete solid solution series (Ba{sub 1-x}K{sub x})Fe{sub 2}As{sub 2} is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe{sub 2}As{sub 2} and EuFe{sub 2}As{sub 2} are characterised and the superconductors Sr{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se{sub 1-x}Te{sub x}) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr{sub 3}Sc{sub 2}O{sub 5}Fe{sub 2}As{sub 2} are presented and Ba{sub 2}ScO{sub 3}FeAs and Sr{sub 2}CrO{sub 3}FeAs, the first two members of the new 21311-type are portrayed. Sr{sub 2}CrO{sub 3}FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound is

  19. Iron pnictide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tegel, Marcus Christian

    2011-03-22

    The scope of this dissertation therefore has not only been the synthesis of various new superconducting and non-superconducting iron pnictides of several structural families but also their in-depth crystallographic and physical characterisation. In Chapters 3 - 6, the family of the ZrCuSiAs-type (1111) compounds is subject of discussion. The solid solution series La(Co{sub x}Fe{sub 1-x})PO is analysed regarding magnetic and superconducting properties and the new compounds EuMnPF and REZnPO, as well as the new superconductor parent compound SrFeAsF are presented. Chapters 7 - 9 are dedicated to the new iron arsenide superconductors of the ThCr{sub 2}Si{sub 2}-type (122 family). Therein, also the discovery of the first superconductor in this structural family, Ba{sub 0.6}K{sub 0.4}Fe{sub 2}As{sub 2}, is unveiled. A detailed examination of the complete solid solution series (Ba{sub 1-x}K{sub x})Fe{sub 2}As{sub 2} is presented. Moreover, the crystallographic phase transitions of the closely related compounds SrFe{sub 2}As{sub 2} and EuFe{sub 2}As{sub 2} are characterised and the superconductors Sr{sub 1-x}K{sub x}Fe{sub 2}As{sub 2} and Ca{sub 1-x}Na{sub x}Fe{sub 2}As{sub 2} are examined for magnetic and phononic excitations. In Chapter 10, the redetermined crystal structure of the superconductor Fe(Se{sub 1-x}Te{sub x}) (11-type) is presented from a chemist's point of view. Chapters 11 - 14 look into the superconducting and non-superconducting iron arsenides of more complex structural families (32522-type and 21311-type). Therein, crystallographic and magnetic details of Sr{sub 3}Sc{sub 2}O{sub 5}Fe{sub 2}As{sub 2} are presented and Ba{sub 2}ScO{sub 3}FeAs and Sr{sub 2}CrO{sub 3}FeAs, the first two members of the new 21311-type are portrayed. Sr{sub 2}CrO{sub 3}FeAs is looked at in close detail with various methods, so e.g. the spin structure of the magnetically ordered compound is solved and a possible reason for the absence of superconductivity in this compound

  20. The experiences of clients and healthcare providers regarding the provision of reproductive health services including the prevention of HIV and AIDS in an informal settlement in Tshwane

    Directory of Open Access Journals (Sweden)

    M. L.S. Mataboge

    2016-10-01

    Full Text Available Globally challenges regarding healthcare provision are sometimes related to a failure to estimate client numbers in peri-urban areas due to rapid population growth. About one-sixth of the world's population live in informal settlements which are mostly characterised by poor healthcare service provision. Poor access to primary healthcare may expose residents of informal settlement more to the human immunodeficiency virus (HIV and to acquired immunodeficiency syndrome (AIDS than their rural and urban counterparts due to a lack of access to information on prevention, early diagnosis and treatment. The objective of this study was to explore and describe the experiences of both the reproductive health services' clients and the healthcare providers with regard to the provision of reproductive health services including the prevention of HIV and AIDS in a primary healthcare setting in Tshwane. A qualitative, exploratory and contextual design using a phenomenological approach to enquire about the participants' experiences was implemented. Purposive sampling resulted in the selection of 23 clients who used the reproductive healthcare services and ten healthcare providers who were interviewed during individual and focus group interviews respectively. Tesch's method for qualitative data analysis was used. Ethical principles guided the study, and certain strategies were followed to ensure trustworthiness. The findings revealed that females who lived in informal settlements were aware of the inability of the PHC setting to provide adequate reproductive healthcare to meet their needs. The HCPs acknowledged that healthcare provision was negatively affected by policies. It was found that the community members could be taught how to coach teenagers and support each other in order to bridge staff shortages and increase health outcomes including HIV/AIDS prevention.

  1. The experiences of clients and healthcare providers regarding the provision of reproductive health services including the prevention of HIV and AIDS in an informal settlement in Tshwane

    Directory of Open Access Journals (Sweden)

    M.L.S. Mataboge

    2016-12-01

    Full Text Available Globally challenges regarding healthcare provision are sometimes related to a failure to estimate client numbers in peri-urban areas due to rapid population growth. About one-sixth of the world's population live in informal settlements which are mostly characterised by poor healthcare service provision. Poor access to primary healthcare may expose residents of informal settlement more to the human immunodeficiency virus (HIV and to acquired immunodeficiency syndrome (AIDS than their rural and urban counterparts due to a lack of access to information on prevention, early diagnosis and treatment. The objective of this study was to explore and describe the experiences of both the reproductive health services' clients and the healthcare providers with regard to the provision of reproductive health services including the prevention of HIV and AIDS in a primary healthcare setting in Tshwane. A qualitative, exploratory and contextual design using a phenomenological approach to enquire about the participants' experiences was implemented. Purposive sampling resulted in the selection of 23 clients who used the reproductive healthcare services and ten healthcare providers who were interviewed during individual and focus group interviews respectively. Tesch's method for qualitative data analysis was used. Ethical principles guided the study, and certain strategies were followed to ensure trustworthiness. The findings revealed that females who lived in informal settlements were aware of the inability of the PHC setting to provide adequate reproductive healthcare to meet their needs. The HCPs acknowledged that healthcare provision was negatively affected by policies. It was found that the community members could be taught how to coach teenagers and support each other in order to bridge staff shortages and increase health outcomes including HIV/AIDS prevention.

  2. Magnetic Scaling in Superconductors

    International Nuclear Information System (INIS)

    Lawrie, I.D.

    1997-01-01

    The Ginzburg-Landau-Wilson superconductor in a magnetic field B is considered in the approximation that magnetic-field fluctuations are neglected. A formulation of perturbation theory is presented in which multiloop calculations fully retaining all Landau levels are tractable. A 2-loop calculation shows that, near the zero-field critical point, the singular part of the free energy scales as F sing ∼ |t| 2-α F(B|t| -2ν ), where ν is the coherence-length exponent emdash a result which has hitherto been assumed on purely dimensional grounds. copyright 1997 The American Physical Society

  3. Preparation of silver doped high temperature superconductors

    International Nuclear Information System (INIS)

    Stavek, Jiri; Zapletal, Vladimir

    1989-01-01

    High temperature superconductors were prepared by the controlled double-jet precipitation to manipulate the chemical composition, composition gradients, average grain size, grain size distribution, and other factors which contribute to the actual properties and performance of HTSC. The cations (Y-Ba-Cu or Bi-Pb-Ca-Sr-Cu) and oxalic anions solutions were simultaneously separately introduced to the crystallizer with a stirred solution of gelatin under conditions where the temperature, excess of oxalic anions in solution, pH, reactant addition rate, and other reaction conditions were tightly controlled to prepare the high sinterability powder. To increase the sinterability of submicron particles of produced precursor, the silver ions were introduced at the end of the controlled double-jet precipitation. This approach improves the electrical and mechanical properties of produced HTSC specimens. The controlled double jet precipitation provides a viable technique for preparation of oxide superconductors and the process is amenable for scaling up

  4. 'Beautiful' unconventional synthesis and processing technologies of superconductors and some other materials

    Directory of Open Access Journals (Sweden)

    Petre Badica, Adrian Crisan, Gheorghe Aldica, Kazuhiro Endo, Hanna Borodianska, Kazumasa Togano, Satoshi Awaji, Kazuo Watanabe, Yoshio Sakka and Oleg Vasylkiv

    2011-01-01

    Full Text Available Superconducting materials have contributed significantly to the development of modern materials science and engineering. Specific technological solutions for their synthesis and processing helped in understanding the principles and approaches to the design, fabrication and application of many other materials. In this review, we explore the bidirectional relationship between the general and particular synthesis concepts. The analysis is mostly based on our studies where some unconventional technologies were applied to different superconductors and some other materials. These technologies include spray-frozen freeze-drying, fast pyrolysis, field-assisted sintering (or spark plasma sintering, nanoblasting, processing in high magnetic fields, methods of control of supersaturation and migration during film growth, and mechanical treatments of composite wires. The analysis provides future research directions and some key elements to define the concept of 'beautiful' technology in materials science. It also reconfirms the key position and importance of superconductors in the development of new materials and unconventional synthesis approaches.

  5. Pinning and creep in superconductors

    International Nuclear Information System (INIS)

    Ovchinnikov, Yu.N.

    1994-01-01

    All superconductors can be separated into two large groups: type I and type II. The behaviour of these two groups in a magnetic field is quite different. The superconductors of type I, in a strong magnetic field, enter the intermediate state. Phenomenological picture of this state was given by Landau. The type II superconductors, in strong magnetic fields, form the mixed state (or Shubnikov phase). The microscopic picture of the mixed state was given by Abrikosov on the basis of Ginzburg-Landau equations. In ideal homogeneous superconductors the free energy is not changed if all the vortex structure is shifted on some distance u. The transport current will be proportional, therefore, to the electric field E. All the real superconductors, however, are inhomogeneous. Inhomogeneities interact with vortex lattice and pin it. In this new state the transport current below some critical value does not lead to the motion of the flux lattice and to the energy dissipation. The value of critical current strongly depends on the type of inhomogeneities, on the value of magnetic field and on temperature. In new layered superconductors, the critical current depends also on the orientation of the magnetic field B with respect to the layer planes. Temperature and quantum fluctuations lead to the transition between different metastable states in superconductors with current. As a result, the vortex lattice slowly moves (creep phenomenon). Below we will briefly discuss all these phenomena. (orig.)

  6. Propagation of normal zones in composite superconductors

    International Nuclear Information System (INIS)

    Dresner, L.

    1976-08-01

    This paper describes calculations of propagation velocities of normal zones in composite superconductors. Full accounting is made for (1) current sharing, (2) the variation with temperature of the thermal conductivity of the copper matrix, and the specific heats of the matrix and the superconductor, and (3) the variation with temperature of the steady-state heat transfer at a copper-helium interface in the nucleate-boiling, transition, and film-boiling ranges. The theory, which contains no adjustable parameters, is compared with experiments on bare (uninsulated) conductors. Agreement is not good. It is concluded that the effects of transient heat transfer may need to be included in the theory to improve agreement with experiment

  7. Positron annihilation studies on high temperature superconductors

    International Nuclear Information System (INIS)

    Sundar, C.S.; Bharathi, A.

    1996-01-01

    A survey of the positron annihilation studies on high temperature superconductors (HTSC), with results drawn mainly from our work, is presented. These include results of the studies on the temperature dependence of positron lifetime across T c , which have been carried out in the whole gamut of oxide superconductors. These experimental results are discussed in conjunction with the results of theoretically calculated positron density distribution, and it is shown that the observed temperature dependence of lifetime is intimately linked to the probing of the Cu-O network by the positrons. Results on the investigation of oxygen defects, which play a crucial role in HTSC, are presented. The most significant contribution of positrons to HTSC relates to the investigation of Fermi surface and the results of these studies, drawn from literature, are indicated. Some of our recent results in other novel superconducting materials, viz., the fullerenes and borocarbides are also presented. (author). 69 refs., 15 figs

  8. Voltage current characteristics of type III superconductors

    International Nuclear Information System (INIS)

    Dorofejev, G.L.; Imenitov, A.B.; Klimenko, E.Y.

    1980-01-01

    An adequate description of voltage-current characteristics is important in order to understand the nature of high critical current for the electrodynamic construction of type-III superconductors and for commercial superconductor specification. Homogeneous monofilament and multifilament Nb-Ti, Nb-Zr,Nb 3 Sn wires were investigated in different ranges of magnetic field, temperature and current. The shape of the voltage-current characteristics of multifilament wires, and the parameter's dependence on temperature and magnetic field may be explained qualitatively by the longitudinal heterogeneous nature of the filaments. A method of attaining the complete specification of the wire's electro-physical properties is proposed. It includes the traditional description of a critical surface (i.e. the surface corresponding to a certain conventional effective resistivity in T,B,J-space) and a description of any increasing parameter that depends on B and T. (author)

  9. Voltage current characteristics of type III superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Dorofeiev, G L; Imenitov, A B; Klimenko, E Y [Gosudarstvennyi Komitet po Ispol' zovaniyu Atomnoi Ehnergii SSSR, Moscow. Inst. Atomnoi Ehnergii

    1980-06-01

    An adequate description of voltage-current characteristics is important in order to understand the nature of high critical current for the electrodynamic construction of type-III superconductors and for commercial superconductor specification. Homogeneous monofilament and multifilament Nb-Ti, Nb-Zr,Nb/sub 3/Sn wires were investigated in different ranges of magnetic field, temperature and current. The shape of the voltage-current characteristics of multifilament wires, and the parameter's dependence on temperature and magnetic field may be explained qualitatively by the longitudinal heterogeneous nature of the filaments. A method of attaining the complete specification of the wire's electro-physical properties is proposed. It includes the traditional description of a critical surface (i.e. the surface corresponding to a certain conventional effective resistivity in T,B,J-space) and a description of any increasing parameter that depends on B and T.

  10. Theory of the electric current transmission coefficient in the superconductor-insulator-superconductor geometry

    International Nuclear Information System (INIS)

    Navani, R.

    1974-01-01

    Tunneling in the superconductor-insulator-superconductor (S'-I-S) geometry, where the two superconductors are not necessarily the same, is studied theoretically. Two different models of the S'-I-S geometry - which we call the ''initial model'' and the ''improved model'' are discussed. For the initial model the potential barrier is flat. In the improved model, however, the differing material properties of the three regions - S', I, and S - are taken into account in an approximate fashion. In addition, applied, contact, and image potentials in the insulator are included. The solid state material properties that are taken to be different are the effective electronic masses in the three regions and the Fermi energies in the two superconductors. The quasiparticle wave functions in the S', I, and S regions are determined for both models as solutions to the Bogoliubov-de Gennes equations. The electric current transmission coefficients (also the reflection coefficient for the initial model) are derived and their behavior is extensively analyzed. Their forms in the thick barrier limit - where L greater than or approximately equal to 5 A - are related to the BCS densities of states. The tunneling current density is found to depend strongly on the tunneling angle. A relation between the angular position of the tunneling current peak and the barrier thickness is given. Finally, it is shown that the choice of insulator material effects the tunneling current, and the effect is greater the thicker the insulating film

  11. Plasmons in strong superconductors

    International Nuclear Information System (INIS)

    Baldo, M.; Ducoin, C.

    2011-01-01

    We present a study of the possible plasmon excitations that can occur in systems where strong superconductivity is present. In these systems the plasmon energy is comparable to or smaller than the pairing gap. As a prototype of these systems we consider the proton component of Neutron Star matter just below the crust when electron screening is not taken into account. For the realistic case we consider in detail the different aspects of the elementary excitations when the proton, electron components are considered within the Random-Phase Approximation generalized to the superfluid case, while the influence of the neutron component is considered only at qualitative level. Electron screening plays a major role in modifying the proton spectrum and spectral function. At the same time the electron plasmon is strongly modified and damped by the indirect coupling with the superfluid proton component, even at moderately low values of the gap. The excitation spectrum shows the interplay of the different components and their relevance for each excitation modes. The results are relevant for neutrino physics and thermodynamical processes in neutron stars. If electron screening is neglected, the spectral properties of the proton component show some resemblance with the physical situation in high-T c superconductors, and we briefly discuss similarities and differences in this connection. In a general prospect, the results of the study emphasize the role of Coulomb interaction in strong superconductors.

  12. Superconductor fluxoid logic

    International Nuclear Information System (INIS)

    Andronov, A.A.; Kurin, V.V.; Levichev, M.Yu.; Ryndyk, D.A.; Vostokov, V.I.

    1993-01-01

    In recent years there has been much interest in superconductor logical devices. Our paper is devoted to the analysis of some new possibilities in this field. The main problems here are: minimization of time of logical operations and reducing of device scale. Josephson systems are quite appropriate for this purpose because of small size, short characteristic time and also small energy losses. Two different types of Josephson logic have been investigated during last years. The first type is based on hysteretic V-A characteristic of a single Josephson junction. Superconducting and resistive (with nonzero voltage) states are considered as logical zero and logical unit. The second one - rapid single flux quantum logic, has been developed recently and is based on SQUID-like bistability. Different logical states are the states with different number of magnetic flux quanta inside closed superconducting contour. Information is represented by voltage pulses with fixed ''area'' (∫ V(t)/dt). This pulses are generated when logical state of SQUID-like elementary cell changes. The fundamental role of magnetic flux quantization in this type of logic leads to the necessity of large enough self-inductance of superconductor contour and thus to limitations on minimal device dimensions. (orig.)

  13. Theory of disordered superconductors

    International Nuclear Information System (INIS)

    Wysokinski, K.I.

    1991-01-01

    The influence of disorder on the superconducting transition temperature is discussed. The main steps on the way to complete theory of disordered superconductors follows the steps in the authors' understanding of disorder and its effect on the quasiparticles in metals. Loosely speaking one can distinguish three such steps. First is the study of weakly disordered systems and this resulted in famous, celebrated Anderson theorem. The second step is ultimately connected with the coherent potential approximation as a method to study the spectrum and transport in concentrated alloys. The discovery of the role of usually neglected interferences between scattered waves in disordered conductors leading to decrease in mobility and increase of the mutual interactions between quantum particles, known as localization and interaction effects has given the new impetus to the theory of superconductivity. This is third step to be discussed in this lecture. The authors limit themselves to homogeneous bulk superconductors. In this paper some experiments on thin films as well as on copper oxides related to the presented theory are briefly mentioned

  14. Flux cutting in superconductors

    International Nuclear Information System (INIS)

    Campbell, A M

    2011-01-01

    This paper describes experiments and theories of flux cutting in superconductors. The use of the flux line picture in free space is discussed. In superconductors cutting can either be by means of flux at an angle to other layers of flux, as in longitudinal current experiments, or due to shearing of the vortex lattice as in grain boundaries in YBCO. Experiments on longitudinal currents can be interpreted in terms of flux rings penetrating axial lines. More physical models of flux cutting are discussed but all predict much larger flux cutting forces than are observed. Also, cutting is occurring at angles between vortices of about one millidegree which is hard to explain. The double critical state model and its developments are discussed in relation to experiments on crossed and rotating fields. A new experiment suggested by Clem gives more direct information. It shows that an elliptical yield surface of the critical state works well, but none of the theoretical proposals for determining the direction of E are universally applicable. It appears that, as soon as any flux flow takes place, cutting also occurs. The conclusion is that new theories are required. (perspective)

  15. Vortex cutting in superconductors

    Science.gov (United States)

    Vlasko-Vlasov, Vitalii K.; Koshelev, Alexei E.; Glatz, Andreas; Welp, Ulrich; Kwok, Wai-K.

    2015-03-01

    Unlike illusive magnetic field lines in vacuum, magnetic vortices in superconductors are real physical strings, which interact with the sample surface, crystal structure defects, and with each other. We address the complex and poorly understood process of vortex cutting via a comprehensive set of magneto-optic experiments which allow us to visualize vortex patterns at magnetization of a nearly twin-free YBCO crystal by crossing magnetic fields of different orientations. We observe a pronounced anisotropy in the flux dynamics under crossing fields and the filamentation of induced supercurrents associated with the staircase vortex structure expected in layered cuprates, flux cutting effects, and angular vortex instabilities predicted for anisotropic superconductors. At some field angles, we find formation of the vortex domains following a type-I phase transition in the vortex state accompanied by an abrupt change in the vortex orientation. To clarify the vortex cutting scenario we performed time-dependent Ginzburg-Landau simulations, which confirmed formation of sharp vortex fronts observed in the experiment and revealed a left-handed helical instability responsible for the rotation of vortices. This work was supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division.

  16. Flux Pinning in Superconductors

    CERN Document Server

    Matsushita, Teruo

    2007-01-01

    The book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of supercondu...

  17. Ac losses of transposed superconductors

    International Nuclear Information System (INIS)

    Eckert, D.; Enderlein, G.; Lange, F.

    1975-01-01

    Eastham and Rhodes published results of loss measurements on transposed superconducting NbTi cables and concluded basing on an extrapolation to very large numbers of wires that transposed superconductors could be used favorably in cables for power transmission. There are some reasons to question the correctness of their extrapolation. Losses were calculated for transposed superconductors in self field and got results different from those of Eastham and Rhodes. Loss measurements were performed the results of which give evidence for the correctness of our calculations. The results lead to the conclusion that the use of transposed cables of irreversible type 2 superconductors for power transmission is not advantageous

  18. Signatures of Majorana bound states in one-dimensional topological superconductors

    International Nuclear Information System (INIS)

    Pientka, Falko

    2014-01-01

    experimental manifestation of Majoranas is a zero-bias peak in the differential conductance. Here we show that in multi-subband wires the Majorana conductance peak can be suppressed compared to a strictly one-dimensional system, thereby providing a plausible explanation for recent experimental results. Based on this analysis, we furthermore predict an enhancement of the signature by deliberately introducing disorder, which could establish strong evidence for a Majorana bound state. A very recent proposal to realize a topological superconductor is based on a chain of magnetic impurities on the surface of a conventional superconductor. Here we derive a microscopic model in terms of the Shiba states bound to the individual impurities in the superconductor. Under realistic experimental conditions, the model involves long-range couplings leading to a new kind of topological phase transition and remarkable localization properties of the Majoranas. Finally, we investigate the tunneling spectroscopy of subgap states in superconductors. We develop a theory to describe the differential tunneling conductance from a superconducting tip into a localized quasiparticle state including relaxation processes present at nonzero temperature. Our result are in good agreement with experimental data on Shiba states and give access to properties of the bound state such as the local density of states and the nature of the relevant relaxation processes.

  19. Quasiparticle current in superconductor-semiconductor-superconductor junctions

    International Nuclear Information System (INIS)

    Tartakovskij, A.V.; Fistul', M.V.

    1988-01-01

    It is shown that the quasiparticle current in a superconductor-semiconductor-superconductor junction may significantly increase as a result of resonant passage of the quasiparticle along particular trajectories from periodically situated localized centers. A prediction of the theory is that with increasing junction resistance there should be a change from an excessive current to a insufficient current on the current-voltage characteristics (at high voltages). The effect of transparency of the boundaries on resonance tunneling in such junctions is also investigated

  20. Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials

    International Nuclear Information System (INIS)

    Štrbík, V.; Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V.; Knoška, J.; Gál, N.; Chromik, Š.; Sojková, M.; Pisarčík, M.

    2017-01-01

    Highlights: • Superconductor-ferromagnet-superconductor nanojunction. • Nanojunctions prepared by Ga"3"+ focused ion beam patterning. • Indication of triplet Cooper pair component in junction superconducting current. • Qualitative agreement with theoretical model. - Abstract: The lateral superconductor-ferromagnet–superconductor (SFS) nanojunctions based on high critical temperature superconductor YBa_2Cu_3O_x (YBCO) and half-metallic ferromagnet La_0_._6_7Sr_0_._3_3MnO_3 (LSMO) thin films were prepared to investigate a possible presence of long range triplet component (LRTC) of Cooper pairs in the LSMO. We applied Ga"3"+ focused ion beam patterning to create YBCO/LSMO/YBCO lateral type nanojunctions with LSMO length as small as 40 nm. The resistivity vs. temperature, critical current density vs. temperature and resistance vs. magnetic field dependence were studied to recognize the LRTC of Cooper pairs in the LSMO. A non-monotonic temperature dependence of junction critical current density and a decrease of the SFS nanojunction resistance in increased magnetic field were observed. Only weak manifestations of LRTC and some qualitative agreement with theory were found out in SFS nanojunctions realized from the perovskite materials. The presence of equal-spin triplet component of Cooper pairs in half-metallic LSMO ferromagnet is not such apparent as in SFS junctions prepared from low temperature superconductors NbTiN and half-metallic ferromagnet CrO_2.

  1. Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials

    Energy Technology Data Exchange (ETDEWEB)

    Štrbík, V., E-mail: vladimir.strbik@savba.sk [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Beňačka, Š.; Gaži, Š.; Španková, M.; Šmatko, V. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia); Knoška, J. [Center for Free-Electron Laser Science, DESY, Notkestraße 85, 22607, Hamburg (Germany); Department of Physics, University of Hamburg, Luruper Chaussee 149, 22607, Hamburg (Germany); Gál, N.; Chromik, Š.; Sojková, M.; Pisarčík, M. [Institute of Electrical Engineering, SAS, Dúbravská Cesta 9, Bratislava (Slovakia)

    2017-02-15

    Highlights: • Superconductor-ferromagnet-superconductor nanojunction. • Nanojunctions prepared by Ga{sup 3+} focused ion beam patterning. • Indication of triplet Cooper pair component in junction superconducting current. • Qualitative agreement with theoretical model. - Abstract: The lateral superconductor-ferromagnet–superconductor (SFS) nanojunctions based on high critical temperature superconductor YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) and half-metallic ferromagnet La{sub 0.67}Sr{sub 0.33}MnO{sub 3} (LSMO) thin films were prepared to investigate a possible presence of long range triplet component (LRTC) of Cooper pairs in the LSMO. We applied Ga{sup 3+} focused ion beam patterning to create YBCO/LSMO/YBCO lateral type nanojunctions with LSMO length as small as 40 nm. The resistivity vs. temperature, critical current density vs. temperature and resistance vs. magnetic field dependence were studied to recognize the LRTC of Cooper pairs in the LSMO. A non-monotonic temperature dependence of junction critical current density and a decrease of the SFS nanojunction resistance in increased magnetic field were observed. Only weak manifestations of LRTC and some qualitative agreement with theory were found out in SFS nanojunctions realized from the perovskite materials. The presence of equal-spin triplet component of Cooper pairs in half-metallic LSMO ferromagnet is not such apparent as in SFS junctions prepared from low temperature superconductors NbTiN and half-metallic ferromagnet CrO{sub 2}.

  2. High temperature superconductors applications in telecommunications

    International Nuclear Information System (INIS)

    Kumar, A.A.; Li, J.; Zhang, M.F.

    1994-01-01

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T c superconductors

  3. High temperature superconductors applications in telecommunications

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A.A.; Li, J.; Zhang, M.F. [Prairie View A& M Univ., Texas (United States)

    1994-12-31

    The purpose of this paper is twofold: to discuss high temperature superconductors with specific reference to their employment in telecommunications applications; and to discuss a few of the limitations of the normally employed two-fluid model. While the debate on the actual usage of high temperature superconductors in the design of electronic and telecommunications devices-obvious advantages versus practical difficulties-needs to be settled in the near future, it is of great interest to investigate the parameters and the assumptions that will be employed in such designs. This paper deals with the issue of providing the microwave design engineer with performance data for such superconducting waveguides. The values of conductivity and surface resistance, which are the primary determining factors of a waveguide performance, are computed based on the two-fluid model. A comparison between two models-a theoretical one in terms of microscopic parameters (termed Model A) and an experimental fit in terms of macroscopic parameters (termed Model B)-shows the limitations and the resulting ambiguities of the two-fluid model at high frequencies and at temperatures close to the transition temperature. The validity of the two-fluid model is then discussed. Our preliminary results show that the electrical transport description in the normal and superconducting phases as they are formulated in the two-fluid model needs to be modified to incorporate the new and special features of high temperature superconductors. Parameters describing the waveguide performance-conductivity, surface resistance and attenuation constant-will be computed. Potential applications in communications networks and large scale integrated circuits will be discussed. Some of the ongoing work will be reported. In particular, a brief proposal is made to investigate of the effects of electromagnetic interference and the concomitant notion of electromagnetic compatibility (EMI/EMC) of high T{sub c} superconductors.

  4. Superconductor Digital Electronics: -- Current Status, Future Prospects

    Science.gov (United States)

    Mukhanov, Oleg

    2011-03-01

    Two major applications of superconductor electronics: communications and supercomputing will be presented. These areas hold a significant promise of a large impact on electronics state-of-the-art for the defense and commercial markets stemming from the fundamental advantages of superconductivity: simultaneous high speed and low power, lossless interconnect, natural quantization, and high sensitivity. The availability of relatively small cryocoolers lowered the foremost market barrier for cryogenically-cooled superconductor electronic systems. These fundamental advantages enabled a novel Digital-RF architecture - a disruptive technological approach changing wireless communications, radar, and surveillance system architectures dramatically. Practical results were achieved for Digital-RF systems in which wide-band, multi-band radio frequency signals are directly digitized and digital domain is expanded throughout the entire system. Digital-RF systems combine digital and mixed signal integrated circuits based on Rapid Single Flux Quantum (RSFQ) technology, superconductor analog filter circuits, and semiconductor post-processing circuits. The demonstrated cryocooled Digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals, enabling multi-net data links, and performing signal acquisition from HF to L-band with 30 GHz clock frequencies. In supercomputing, superconductivity leads to the highest energy efficiencies per operation. Superconductor technology based on manipulation and ballistic transfer of magnetic flux quanta provides a superior low-power alternative to CMOS and other charge-transfer based device technologies. The fundamental energy consumption in SFQ circuits defined by flux quanta energy 2 x 10-19 J. Recently, a novel energy-efficient zero-static-power SFQ technology, eSFQ/ERSFQ was invented, which retains all advantages of standard RSFQ circuits: high-speed, dc power, internal memory. The

  5. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    Science.gov (United States)

    Litinski, Daniel; Kesselring, Markus S.; Eisert, Jens; von Oppen, Felix

    2017-07-01

    We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall-superconductor hybrids.

  6. Combining Topological Hardware and Topological Software: Color-Code Quantum Computing with Topological Superconductor Networks

    Directory of Open Access Journals (Sweden)

    Daniel Litinski

    2017-09-01

    Full Text Available We present a scalable architecture for fault-tolerant topological quantum computation using networks of voltage-controlled Majorana Cooper pair boxes and topological color codes for error correction. Color codes have a set of transversal gates which coincides with the set of topologically protected gates in Majorana-based systems, namely, the Clifford gates. In this way, we establish color codes as providing a natural setting in which advantages offered by topological hardware can be combined with those arising from topological error-correcting software for full-fledged fault-tolerant quantum computing. We provide a complete description of our architecture, including the underlying physical ingredients. We start by showing that in topological superconductor networks, hexagonal cells can be employed to serve as physical qubits for universal quantum computation, and we present protocols for realizing topologically protected Clifford gates. These hexagonal-cell qubits allow for a direct implementation of open-boundary color codes with ancilla-free syndrome read-out and logical T gates via magic-state distillation. For concreteness, we describe how the necessary operations can be implemented using networks of Majorana Cooper pair boxes, and we give a feasibility estimate for error correction in this architecture. Our approach is motivated by nanowire-based networks of topological superconductors, but it could also be realized in alternative settings such as quantum-Hall–superconductor hybrids.

  7. Kinetic equations in dirty superconductors

    International Nuclear Information System (INIS)

    Kraehenbuehl, Y.

    1981-01-01

    Kinetic equations for superconductors in the dirty limit are derived using a method developed for superfluid systems, which allows a systematic expansion in small parameters; exact charge conservation is obeyed. (orig.)

  8. Superconductor digital electronics

    International Nuclear Information System (INIS)

    Likharev, Konstantin K.

    2012-01-01

    The objective of these notes is to offer a brief review of the history of superconductor digital electronics, and discuss prospects of its future development. Due to length restrictions, many important technical contributions could not be mentioned at all - with sincere apologies to their authors. Though an attempt has been made to give an unbiased review of the most important work all over the world, a special emphasis on the efforts in the former Soviet Union, which had not been discussed much in literature, and in which the author of this text took an active part, seemed excusable. Another important qualification is that the author phased out his own research in the field about 10 years ago, so that the last parts of the notes, devoted to present-time and future work, should be viewed as not much more than remarks by an (interested) outsider.

  9. Manufacturing of Superconductors

    DEFF Research Database (Denmark)

    Bech, Jakob Ilsted; Bay, Niels

    Superconducting tapes based on the ceramic high temperature superconductor (HTS) is a new promising product for high current applications such as electro-magnets and current transmission cables. The tapes are made by the oxide powder in tube (OPIT) method implying drawing and rolling of silver...... tubes containing ceramic powder. The final product is a composite tape, where ceramic superconducting fibres are embedded in a silver matrix. The critical current density Je [kA/cm 2 ] is the primary quality parameter of the product. The quality of the superconducting tape depends very much...... in the individual fibres. · The stresses and strains in the deformation zone are analysed. It is concluded that more detailed mechanical tests and a more detailed constitutive plasticity model is desirable in order to improve the precision of the numerical modelling. New test equipment is designed implying the new...

  10. High temperature superconductor current leads

    International Nuclear Information System (INIS)

    Zeimetz, B.; Liu, H.K.; Dou, S.X.

    1996-01-01

    Full text: The use of superconductors in high electrical current applications (magnets, transformers, generators etc.) usually requires cooling with liquid Helium, which is very expensive. The superconductor itself produces no heat, and the design of Helium dewars is very advanced. Therefore most of the heat loss, i.e. Helium consumption, comes from the current lead which connects the superconductor with its power source at room temperature. The current lead usually consists of a pair of thick copper wires. The discovery of the High Temperature Superconductors makes it possible to replace a part of the copper with superconducting material. This drastically reduces the heat losses because a) the superconductor generates no resistive heat and b) it is a very poor thermal conductor compared with the copper. In this work silver-sheathed superconducting tapes are used as current lead components. The work comprises both the production of the tapes and the overall design of the leads, in order to a) maximize the current capacity ('critical current') of the superconductor, b) minimize the thermal conductivity of the silver clad, and c) optimize the cooling conditions

  11. Hybrid molecule/superconductor assemblies

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Zhou, J.P., Jones, C.

    1993-01-01

    The fabrication of electronic devices from molecular materials has attracted much attention recently. Schottky diodes, molecular transistors, metal-insulator-semiconductor diodes, MIS field effect transistors and light emitting diodes have all been prepared utilizing such substances. The active elements in these devices have been constructed by depositing the molecular phase onto the surface of a metal, semiconductor or insulating substrate. With the recent discovery of high temperature superconductivity, new opportunities now exist for the study of molecule/superconductor interactions as well as for the construction of novel hybrid molecule/superconductor devices. In this paper, methods for preparing the initial two composite molecule/semiconductor devices will be reported. Consequently, light sensors based on dye-coated superconductor junctions as well as molecular switches fashioned from conductive polymer coated superconductor junctions as well as molecular switches fashioned from conductive polymer coated superconductor microbridges will be discussed. Moreover, molecule/superconductor energy and electron transfer phenomena will be illustrated also for the first time

  12. Effect of spontaneous decay of superconductor quasiparticles in the tunneling density of states

    International Nuclear Information System (INIS)

    Coffey, D.

    1993-01-01

    Superconductivity has been successfully described with either the Landau-Ginzburg theory of second order phase transitions or with strong-coupling versions of the original BCS theory for almost fifty years. Recent tunneling and photoemission data on the cuprate oxide superconductors may now provide evidence of corrections to the mean field approximation. It has been shown by Zasadzinski et al. that there is a dip at eV ≅ 3Δ 0 in the SIS tunneling conductance, which is the derivative of the current across a superconductor-insulator-superconductor junction with respect to the applied voltage, for a set of cuprate superconductors whose T c 's range from 5.5K to 100K. Recently L. Coffey and I proposed an explanation of this feature in terms of the spontaneous decay of mean field quasiparticles. We showed that corrections to the mean field approximation for a superconductor lead to different frequency thresholds for spontaneous quasiparticle decay with different superconductor order parameter symmetries. These effects lead to features in the superconductor density of states and in the SIS tunneling conductance and provide experimental evidence of d-wave symmetry for the superconductor order parameter in the cuprates. I discuss model and also evidence of quasiparticle decay in ARPES data on Bi 2 Sr 2 CaCu 2 O 8

  13. High-Temperature Cuprate Superconductors Experiment, Theory, and Applications

    CERN Document Server

    Plakida, Nikolay Maksimilianovich

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their...

  14. High-temperature cuprate superconductors. Experiment, theory, and applications

    International Nuclear Information System (INIS)

    Plakida, Nikolay

    2010-01-01

    High-Temperature Cuprate Superconductors provides an up-to-date and comprehensive review of the properties of these fascinating materials. The essential properties of high-temperature cuprate superconductors are reviewed on the background of their theoretical interpretation. The experimental results for structural, magnetic, thermal, electric, optical and lattice properties of various cuprate superconductors are presented with respect to relevant theoretical models. A critical comparison of various theoretical models involving strong electron correlations, antiferromagnetic spin fluctuations, phonons and excitons provides a background for understanding of the mechanism of high-temperature superconductivity. Recent achievements in their applications are also reviewed. A large number of illustrations and tables gives valuable information for specialists. A text-book level presentation with formulation of a general theory of strong-coupling superconductivity will help students and researches to consolidate their knowledge of this remarkable class of materials. (orig.)

  15. Published assessments bearing on the future use of ceramic superconductors by the electric power sector

    International Nuclear Information System (INIS)

    Giese, R.F.; Wolsky, A.M.

    1992-01-01

    Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report's purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science ampersand Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections

  16. Published assessments bearing on the future use of ceramic superconductors by the electric power sector

    Energy Technology Data Exchange (ETDEWEB)

    Giese, R.F.; Wolsky, A.M.

    1992-08-25

    Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report's purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

  17. Published assessments bearing on the future use of ceramic superconductors by the electric power sector

    Energy Technology Data Exchange (ETDEWEB)

    Giese, R.F.; Wolsky, A.M.

    1992-08-25

    Much has been written about ceramic superconductors since their discovery in 1986. Most of this writing reports and describes scientific research. However, some authors have sought to put this research in context: to assess where the field stands, what might be technically feasible, what might be economically feasible, and what potential impacts ceramic superconductors will bring to the electric power sector. This report`s purpose is to make the results of already published assessments readily available. To that end, this report lists and provides abstracts for various technical and economic assessments related to applications of High-Temperature Superconductors (HTS) to the electric power sector. Those studies deemed most important are identified and summarized. These assessments were identified by two means. First, members of the Executive Committee identified some reports as worthy of consideration and forwarded them to Argonne National Laboratory. Twelve assessments were selected. Each of these is listed and summarized in the following section. Second, a bibliographic search was performed on five databases: INSPEC, NTIS, COMPENDEX, Energy Science & Technology, and Electric Power Database. The search consisted of first selecting all papers related to High Temperature Superconductors. Then papers related to SMES, cables, generators, motors, fault current limiters, or electric utilities were selected. When suitable variants of the above terms were included, this resulted in a selection of 493 citations. These citations were subjected to review by the authors. A number of citations were determined to be inappropriate (e.g. a number referred to digital transmission lines for electronics and communications applications). The reduced list consisted of 200 entries. Each of these citations, with an abstract, is presented in the following sections.

  18. Road Bridges and Culverts, Bridge dataset only includes bridges maintained by Johnson County Public Works in the unincorporated areas, Published in Not Provided, Johnson County Government.

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Road Bridges and Culverts dataset current as of unknown. Bridge dataset only includes bridges maintained by Johnson County Public Works in the unincorporated areas.

  19. Static Test for a Gravitational Force Coupled to Type 2 YBCO Superconductors

    Science.gov (United States)

    Li, Ning; Noever, David; Robertson, Tony; Koczor, Ron; Brantley, Whitt

    1997-01-01

    As a Bose condensate, superconductors provide novel conditions for revisiting previously proposed couplings between electromagnetism and gravity. Strong variations in Cooper pair density, large conductivity and low magnetic permeability define superconductive and degenerate condensates without the traditional density limits imposed by the Fermi energy (approx. 10(exp -6) g cc. Recent experiments have reported anomalous weight loss for a test mass suspended above a rotating type II, YBCO superconductor, with the percentage change (0.05 - 2.1 %) independent of the test mass' chemical composition and diamagnetic properties. A variation of 5 parts per 10' was reported above a stationary (non-rotating) superconductor. In experiments using a sensitive gravimeter, bulk YBCO superconductors were stably levitated in a DC magnetic field. Changes in acceleration were measured to be less than 2 parts in 108 of the normal gravitational acceleration. This result puts new limits on the strength and range of the proposed coupling between static superconductors and gravity.

  20. Ferromagnet / superconductor oxide superlattices

    Science.gov (United States)

    Santamaria, Jacobo

    2006-03-01

    The growth of heterostructures combining oxide materials is a new strategy to design novel artificial multifunctional materials with interesting behaviors ruled by the interface. With the (re)discovery of colossal magnetoresistance (CMR) materials, there has been renewed interest in heterostructures involving oxide superconductors and CMR ferromagnets where ferromagnetism (F) and superconductivity (S) compete within nanometric distances from the interface. In F/S/F structures involving oxides, interfaces are especially complex and various factors like interface disorder and roughness, epitaxial strain, polarity mismatch etc., are responsible for depressed magnetic and superconducting properties at the interface over nanometer length scales. In this talk I will focus in F/S/F structures made of YBa2Cu3O7 (YBCO) and La0.7Ca0.3MnO3 (LCMO). The high degree of spin polarization of the LCMO conduction band, together with the d-wave superconductivity of the YBCO make this F/S system an adequate candidate for the search of novel spin dependent effects in transport. We show that superconductivity at the interface is depressed by various factors like charge transfer, spin injection or ferromagnetic superconducting proximity effect. I will present experiments to examine the characteristic distances of the various mechanisms of superconductivity depression. In particular, I will discuss that the critical temperature of the superconductor depends on the relative orientation of the magnetization of the F layers, giving rise to a new giant magnetoresistance effect which might be of interest for spintronic applications. Work done in collaboration with V. Peña^1, Z. Sefrioui^1, J. Garcia-Barriocanal^1, C. Visani^1, D. Arias^1, C. Leon^1 , N. Nemes^2, M. Garcia Hernandez^2, S. G. E. te Velthuis^3, A. Hoffmann^3, M. Varela^4, S. J. Pennycook^4. Work supported by MCYT MAT 2005-06024, CAM GR- MAT-0771/2004, UCM PR3/04-12399 Work at Argonne supported by the Department of Energy, Basic

  1. Topological Insulators and Superconductors for Innovative Devices

    Science.gov (United States)

    2015-03-20

    Final 3. DATES COVERED (From - To) 20120321 - 20150320 4. TITLE AND SUBTITLE Topological insulators and superconductors for innovative...locking, which hold promise for various innovative devices. Similarly, topological superconductors are associated with exotic surface states, which...298 (Rev. 8/98) Prescribed by ANSI Std. Z39.18 Final Report Title: Topological Insulators and Superconductors for Innovative Devices

  2. Superconductors: The long road ahead

    International Nuclear Information System (INIS)

    Foner, S.; Orlando, T.P.

    1988-01-01

    Before the discovery of high-temperature superconductors, progress in superconductivity was measured by quite small increases in critical temperature, often of less than one degree. Today, there is no reason to believe that the dramatic leaps in critical temperature inaugurated by superconducting ceramics are over. Researchers may find new high-temperature superconducting materials with less severe technical limitations than the ceramics we know today. And if the day ever comes when a superconductor can be reliably manufactured to operate effectively at room temperature, then superconductors will be incorporated in a broad range of everyday household devices - motors, appliances, even children's toys - with a large consumer market. High-temperature superconductors may also cause us to extensively revise our traditional theories about how superconductivity works. Should it run out that superconductivity in ceramics involves new physical mechanisms, then these mechanisms could lead to applications never considered before. The recent discoveries have already reinvigorated superconductivity research. What was once largely the domain of a relatively small group of scientists has become a genuinely multidisciplinary realm. Now physicists, materials scientists, chemists, metallurgists, ceramists, and solid-state electronics engineers are all focusing on superconductivity. The cross-fertilization of these disciplines should contribute to further discoveries of importance to the practical application of superconductors

  3. New superconductors from granular to high T$_{c}$

    CERN Document Server

    Deutscher, Guy

    2018-01-01

    How new are the high Tc superconductors, as compared to the conventional low Tc ones? In what sense are these oxides different from regular metals in their normal state? How different is the mechanism for high Tc superconductivity from the well-known electron-phonon interaction that explains so well superconductivity in metals and alloys? What are the implications of the new features of the high Tc oxides for their practical applications? This interesting book aims to provide some answers to those questions, drawing particularly on similarities between the high Tc oxides and granular superconductors, which also present a short coherence length, a small superfluid density and an inhomogeneous structure.

  4. TECHNICAL TRAINING SEMINAR: High Temperature Superconductors: Progress and Issues

    CERN Multimedia

    Davide Vitè

    2002-01-01

    Monday 24 June from 14:30 to 15:30 - Training Centre Auditorium - bldg. 593-11 High Temperature Superconductors: Progress and Issues Prof. Jan Evetts / UNIVERSITY OF CAMBRIDGE, Department of Materials Science and Metallurgy, UK Grappling with grain boundaries: Current transport processes in granular High Temperature Superconductors (HTS) The development of High Temperature Superconductors, seen from a materials scientist's point of view, is relevant to the superconductivity community at CERN: their possible high current applications can include high performance magnets for future accelerators. There is an urgent need to develop a quantitative description of HTS conductors in terms of their complex anisotropy, inhomogeneity and dimensionality. This is essential both for the practical specification of a conductor and for charting routes to conductor optimisation. The critical current, the n-value, dissipation and quenching characteristics are amongst most important parameters that make up an engineering specifi...

  5. Workshop on Accelerator Magnet Superconductors, Design and Optimization

    CERN Document Server

    WAMSDO Workshop

    2009-01-01

    This report contains the proceedings of the CARE-HHH-AMT Workshop on Accelerator Magnet Superconductors, Design and Optimization (WAMSDO) held at CERN from 19 to 23 May 2008. The needs in terms of superconducting magnets for the accelerator projects were discussed, mainly for the LHC interaction regions and injector upgrades, and for the GSI FAIR complex. The first part of the workshop focused on the development of superconductor and cables, i.e., low-loss Nb-Ti cables, Nb$_{3}$Sn and high-temperature superconductors. An industry session summarized the actual plans and status of the activities in the main European industries. Then, a worldwide status of the high field magnets programme was presented. A special session was devoted to fast cycled magnets, including FAIR facilities and LHC injector upgrades. A final session focused on the optimization methods and numerical tools for magnet design.

  6. Static Properties of Superconductor Journal Bearing Substator for Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Jeong, N. H.; Sung, T. H.; Han, Y. H.

    2008-01-01

    A Superconductor Flywheel Energy Storage System(SFES) mainly consists of a pair of non-contacting High Temperature Superconductor(HTS) bearings that provide very low frictional losses, a composite flywheel with high energy storage density. The HTS bearings, which offer dynamic stability without active control, are the key technology that distinguishes the SFES from other flywheel energy storage devices, and great effort is being put into developing this technology. The Superconductor Journal Bearing(SJB) mainly consists of HTS bulks and a stator, which holds the HTS bulks and also acts as a cold head. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate SJB magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measure stiffness in static condition and the results are used to determine the optimal number of HTS bulks for a 100kWh SFES.

  7. Studies on ceramic superconductors

    International Nuclear Information System (INIS)

    Chaklader, A.C.D.; Roemer, G.; Hardy, W.N.; Brewer, J.H.; Carolan, J.F.; Parsons, R.R.

    1987-01-01

    The superconducting properties of both bulk specimens and sputtered thin films of the YBa 2 Cu 3 O x compound have been studied. The bulk specimens were fabricated by cold pressing and sintering, and also by hot-pressing (subsequent reheating). The dc resistivity measurements showed a sharp drop in the temperature range 92-87K in this material. Muon spin relaxation (μSR) measurements of sintered discs in 3.4 kOe revealed the formation of a mixed state with an effective magnetic penetration depth λ ∼ 1365 angstrom at 6K, implying an effective charge carrier density of 6 x 10 21 cm -3 . The temperature dependence λ(T) is that of an ordinary s-wave superconductor. The resistivity of the thin film prepared from the compound by dc planar magnetron sputtering, showed a sharp drop to a very low value near 80K. The compound YBa 2 Cu 3 O x loses its superconducting properties, when either hot-pressed (in air) or oxidized at 500 degree C in high O 2 pressure, but this property can be restored when reheated in one atmosphere of O 2 above 900 degree C

  8. Magnetic pinning in superconductor-ferromagnet multilayers

    International Nuclear Information System (INIS)

    Bulaevskii, L. N.; Chudnovsky, E. M.; Maley, M. P.

    2000-01-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10 6 -10 7 A/cm 2 at high temperatures (but not very close to T c ) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics

  9. Magnetic pinning in superconductor-ferromagnet multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Bulaevskii, L. N. [Department of Physics and Astronomy, CUNY Lehman College 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Chudnovsky, E. M. [Department of Physics and Astronomy, CUNY Lehman College, 250 Bedford Park Boulevard West, Bronx, New York 10468-1589 (United States); Maley, M. P. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2000-05-01

    We argue that superconductor/ferromagnet multilayers of nanoscale period should exhibit strong pinning of vortices by the magnetic domain structure in magnetic fields below the coercive field when ferromagnetic layers exhibit strong perpendicular magnetic anisotropy. The estimated maximum magnetic pinning energy for single vortex in such a system is about 100 times larger than the pinning energy by columnar defects. This pinning energy may provide critical currents as high as 10{sup 6}-10{sup 7} A/cm{sup 2} at high temperatures (but not very close to T{sub c}) at least in magnetic fields below 0.1 T. (c) 2000 American Institute of Physics.

  10. Campbell penetration depth in Fe-based superconductors

    International Nuclear Information System (INIS)

    Prommapan, Plegchart

    2011-01-01

    A 'true' critical current density, j c , as opposite to commonly measured relaxed persistent (Bean) current, j B , was extracted from the Campbell penetration depth, λ c (T,H) measured in single crystals of LiFeAs, and optimally electron-doped Ba(Fe 0.954 Ni 0.046 ) 2 As 2 (FeNi122). In LiFeAs, the effective pinning potential is nonparabolic, which follows from the magnetic field - dependent Labusch parameter α. At the equilibrium (upon field - cooling), α(H) is non-monotonic, but it is monotonic at a finite gradient of the vortex density. This behavior leads to a faster magnetic relaxation at the lower fields and provides a natural dynamic explanation for the fishtail (second peak) effect. We also find the evidence for strong pinning at the lower fields.The inferred field dependence of the pinning potential is consistent with the evolution from strong pinning, through collective pinning, and eventually to a disordered vortex lattice. The value of j c (2 K) ≅ 1.22 x 10 6 A/cm 2 provide an upper estimate of the current carrying capability of LiFeAs. Overall, vortex behavior of almost isotropic, fully-gapped LiFeAs is very similar to highly anisotropic d-wave cuprate superconductors, the similarity that requires further studies in order to understand unconventional superconductivity in cuprates and pnictides. In addition to LiFeAs, we also report the magnetic penetration depth in BaFe 2 As 2 based superconductors including irradiation of FeNi122. In unirradiated FeNi122, the maximum critical current value is, j c (2K) ≅ 3.3 x 10 6 A/cm 2 . The magnetic-dependent feature was observed near the transition temperature in FeTe 0.53 Se 0.47 and irradiated FeNi122. Because of this feature, further studies are required in order to properly calibrate the Campbell penetration depth. Finally, we detected the crossing between the magnetic penetration depth and London penetration depth in optimally hold-doped Ba 0.6 K 0.4 Fe 2 As 2 (BaK122) and isovalent doped BaFe 2 (As 0

  11. [Our Experience of Providing Home End-of-Life Care for a Child with a Brain Tumor - Overview of Issues Including Environmental Adjustment and Family Care].

    Science.gov (United States)

    Ohashi, Kota; Kayama, Makiko; Ryuuo, Shoko; Suzuki, Jun; Hayashinoshita, Yutaka; Ooka, Shiho; Matsuura, Rie

    2015-12-01

    We provided home end-of-life care to a child with a brain tumor. As cases of children with malignancies who receive such care have rarely been described in Japan, we report our experience with this patient. An 11-year-old previously healthy boy was found to have a brainstem glioma in December X. The tumor was reduced by radiotherapy and chemotherapy, but relapse was noted in August X plus 1. Best supportive care alone was selected for this patient. Before the initiation of home care, we consulted a designated hospital for pediatric cancer treatment in the area and requested a case- worker from the child/home section in his resident area. As the patient was too young for long-term care insurance, we immediately applied for a physical disability certificate to augment welfare support. After the initiation of home care, swallowing function diminished markedly, but we provided guidance on dietary contents and suction, allowing continued oral ingestion by prioritizing his and his family's wishes. In January X plus 2 of the following year, his respiratory condition worsened after the development of aspiration pneumonitis, and he died at home. We advocate the establishment of a regional network so that children with brain tumors can receive end-of-life care at home.

  12. Proximity effects in ferromagnet/superconductor structures

    International Nuclear Information System (INIS)

    Yu, H.L.; Sun, G.Y.; Yang, L.Y.; Xing, D.Y.

    2004-01-01

    The Nambu spinor Green's function approach is applied to study proximity effects in ferromagnet/superconductor (FM/SC) structures. They include the induced superconducting order parameter and density of states (DOS) with superconducting feature on the FM side, and spin-dependent DOS within the energy gap on the SC side. The latter indicates an appearance of gapless superconductivity and a coexistence of ferromagnetism and superconductivity in a small regime near the interface. The influence of exchange energy in FM and barrier strength at interface on the proximity effects is discussed

  13. Modeling forces in high-temperature superconductors

    International Nuclear Information System (INIS)

    Turner, L. R.; Foster, M. W.

    1997-01-01

    We have developed a simple model that uses computed shielding currents to determine the forces acting on a high-temperature superconductor (HTS). The model has been applied to measurements of the force between HTS and permanent magnets (PM). Results show the expected hysteretic variation of force as the HTS moves first toward and then away from a permanent magnet, including the reversal of the sign of the force. Optimization of the shielding currents is carried out through a simulated annealing algorithm in a C++ program that repeatedly calls a commercial electromagnetic software code. Agreement with measured forces is encouraging

  14. Infrared properties of high Tc superconductors

    International Nuclear Information System (INIS)

    Schlesinger, Z.; Rotter, L.D.; Collins, R.T.; Holtzberg, F.; Feild, C.

    1991-01-01

    Over the past several years a coherent phenomenology of the high T c cuprate superconductors has begun to emerge. Infrared measurements have contributed several important ingredients to this picture including: (1) the inference of a scattering rate that is linear in frequency for ω>T, and of order ω, (2) a characteristic energy scale in the superconducting state of 500 cm -1 (60 meV), which can be interpreted as a superconducting pair excitation threshold or energy gap, and (3) evidence for very unusual temperature dependence in the vicinity of T c . An attempt to describe these aspects of the data is presented here

  15. Edge instabilities of topological superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Johannes S. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany); Assaad, Fakher F. [Institut fuer Theoretische Physik und Astrophysik, Universitaet Wuerzburg (Germany); Schnyder, Andreas P. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    2016-07-01

    Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground state degeneracy and a diverging density of states. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry broken phases, which lift the ground-state degeneracy. Here, we employ Monte Carlo simulations combined with mean-field considerations to examine the instabilities of the flat-band edge states of d{sub xy}-wave superconductors. We find that attractive interactions induce a complex s-wave pairing instability together with a density wave instability. Repulsive interactions, on the other hand, lead to ferromagnetism mixed with spin-triplet pairing at the edge. We discuss the implications of our findings for experiments on cuprate high-temperature superconductors.

  16. Superconductor stability, 1983: a review

    International Nuclear Information System (INIS)

    Dresner, L.

    1983-01-01

    Three main topics have been discussed in this paper, namely, internally cooled superconductors, cooling by superfluid helium, and metastable magnets. The discussion of each has centered around a dominant idea, and it is fitting to highlight these ideas by way of conclusion. With regard to internally cooled superconductors, most of what we have learned in the last few years centers on the strong motion caused by the thermal expansion of helium. How naive were our early calculations that treated the helium as though it were incompressible. Our discussion of He-II was organized around the Gorter-Mellink relation and the solutions of the nonlinear diffusion equation it gives rise to. And our discussion of metastable magnets revolved around the fruitful concept of the MPZ. These three ideas are sturdy trunks that support much of the thought about superconductor stability that has flowered in the past several years

  17. Including the Copenhagen Adduction Exercise in the FIFA 11+ Provides Missing Eccentric Hip Adduction Strength Effect in Male Soccer Players: A Randomized Controlled Trial.

    Science.gov (United States)

    Harøy, Joar; Thorborg, Kristian; Serner, Andreas; Bjørkheim, André; Rolstad, Linn E; Hölmich, Per; Bahr, Roald; Andersen, Thor Einar

    2017-11-01

    The FIFA 11+ was developed as a complete warm-up program to prevent injuries in soccer players. Although reduced hip adduction strength is associated with groin injuries, none of the exercises included in the FIFA 11+ seem to specifically target hip adduction strength. To investigate the effect on eccentric hip adduction strength of the FIFA 11+ warm-up program with or without the Copenhagen adduction exercise. Randomized controlled trial; Level of evidence, 1. We recruited 45 eligible players from 2 U19 elite male soccer teams. Players were randomized into 2 groups; 1 group carried out the standard FIFA 11+ program, while the other carried out the FIFA 11+ but replaced the Nordic hamstring exercise with the Copenhagen adduction exercise. Both groups performed the intervention 3 times weekly for 8 weeks. Players completed eccentric strength and sprint testing before and after the intervention. Per-protocol analyses were performed, and 12 players were excluded due to low compliance (<67% of sessions completed). The main outcome was eccentric hip adduction strength (N·m/kg). Between-group analyses revealed a significantly greater increase in eccentric hip adduction strength of 0.29 Nm/kg (8.9%; P = .01) in favor of the group performing the Copenhagen adduction exercise, whereas no within-group change was noted in the group that used the standard FIFA 11+ program (-0.02 N·m/kg [-0.7%]; P = .69). Including the Copenhagen adduction exercise in the FIFA 11+ program increases eccentric hip adduction strength, while the standard FIFA 11+ program does not. Registration: Registration: ISRCTN13731446 (International Standard Randomised Controlled Trial Number registry).

  18. Topological surface states in nodal superconductors.

    Science.gov (United States)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-06-24

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.

  19. The choice of primary energy source including PV installation for providing electric energy to a public utility building - a case study

    Science.gov (United States)

    Radomski, Bartosz; Ćwiek, Barbara; Mróz, Tomasz M.

    2017-11-01

    The paper presents multicriteria decision aid analysis of the choice of PV installation providing electric energy to a public utility building. From the energy management point of view electricity obtained by solar radiation has become crucial renewable energy source. Application of PV installations may occur a profitable solution from energy, economic and ecologic point of view for both existing and newly erected buildings. Featured variants of PV installations have been assessed by multicriteria analysis based on ANP (Analytic Network Process) method. Technical, economical, energy and environmental criteria have been identified as main decision criteria. Defined set of decision criteria has an open character and can be modified in the dialog process between the decision-maker and the expert - in the present case, an expert in planning of development of energy supply systems. The proposed approach has been used to evaluate three variants of PV installation acceptable for existing educational building located in Poznań, Poland - the building of Faculty of Chemical Technology, Poznań University of Technology. Multi-criteria analysis based on ANP method and the calculation software Super Decisions has proven to be an effective tool for energy planning, leading to the indication of the recommended variant of PV installation in existing and newly erected public buildings. Achieved results show prospects and possibilities of rational renewable energy usage as complex solution to public utility buildings.

  20. Magnetic manipulation of topological states in p-wave superconductors

    DEFF Research Database (Denmark)

    Mercaldo, Maria Teresa; Cuoco, Mario; Kotetes, Panagiotis

    2018-01-01

    Substantial experimental investigation has provided evidence for spin-triplet pairing in diverse classes of materials and in a variety of artificial heterostructures. One of the fundamental challenges in this framework is how to manipulate the topological behavior of p-wave superconductors (PSC...

  1. On the role of doping in High-Tc superconductors

    International Nuclear Information System (INIS)

    Mei, C.; Smith, V.H. Jr.

    1994-01-01

    High-T c superconductors (HTSCS) are usually obtained by doping electron donors or acceptors into parent materials. The actual role played by doping is still uncertain with various interpretations. The present electronic structure study provides some hints which may help to solve the mystery

  2. Hotspot relaxation dynamics in a current-carrying superconductor

    Science.gov (United States)

    Marsili, F.; Stevens, M. J.; Kozorezov, A.; Verma, V. B.; Lambert, Colin; Stern, J. A.; Horansky, R. D.; Dyer, S.; Duff, S.; Pappas, D. P.; Lita, A. E.; Shaw, M. D.; Mirin, R. P.; Nam, S. W.

    2016-03-01

    We experimentally studied the dynamics of optically excited hotspots in current-carrying WSi superconducting nanowires as a function of bias current, bath temperature, and excitation wavelength. We observed that the hotspot relaxation time depends on bias current, temperature, and wavelength. We explained this effect with a model based on quasiparticle recombination, which provides insight into the quasiparticle dynamics of superconductors.

  3. Oxygen diffusion in cuprate superconductors

    International Nuclear Information System (INIS)

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La 2-x Sr x CuO 4 , YBa 2 Cu 3 O 7- δ, YBa 2 Cu 4 O 8 , and the Bi 2 Sr 2 Ca n-1 Cu n O 2+4 (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible

  4. Stability of superconductor

    International Nuclear Information System (INIS)

    Wada, Hitoshi; Takeuchi, Takao; Kuroda, Tsuneo

    2000-01-01

    To evaluate the stability of superconductors, we constructed a measurement system of the critical current density Jr property as function of temperature, magnetic strength, azimuth of magnetic field and distortion. LabView program automatically controlled the magnetic field, temperature, rotational displacement, load, multimeter and sample source in the system. The superconducting critical surface of Nb 3 Al wire was prepared by two methods: a low temperature diffusion method and a phase transformation method. Nb 3 Al prepared by two methods proved the temperature scaling law of magnetic pinning force density and parameters for fitting the pinning model were introduced. The tailing of Jc-T curve at the high temperature side was generated by pinning property of magnetic flux line. On measurement of AC magnetic susceptibility, a primary stack (JR filament) of RIT Nb 3 Al wire prepared by phase transformation connected electrically and the size corresponded to the effective core size, so that, large n value was shown in spite of high temperature treatment and it showed good distortion resistance. Nb 3 Al wire prepared by low temperature diffusion method indicated large anisotropy of Bc 2 and Jc in the rectangular wire. On V 3 Ga, the temperature scaling law of magnetic field was not established and it was observed the effective grain boundary pinning at the low magnetic field and the other pinning mechanism of which magnetic flux line synchronized in the high temperature field. The specific magnetic azimuth dependency showed in the neighborhood of the parallel magnetic field. Jc indicated the positive dependence of temperature in the peak magnetic field. Jc of Bi oxides tape conductor was measured and the results showed the magnetic field was governed by magnetic field dependence on the c axis direction. (S.Y.)

  5. Iron-based superconductors via soft chemistry

    International Nuclear Information System (INIS)

    Friederichs, Gina Maya

    2015-01-01

    This thesis provides new soft chemistry approaches to Fe-based superconductors. Mild syntheses were demonstrated to be able to overcome difficulties, occurring in conventional synthesis and to enable the access to new metastable phases. A solvent-based metathesis reaction led to β-FeSe exclusively. Contrary to solid state syntheses, the formation of hexagonal α-FeSe could be avoided under mild conditions. The deintercalation of interstitial Fe (by formation of Fe 3 O 4 ) could be proven by low temperature O 2 -annealing of Fe 1+x Te 1-y Se y . By using redox (de)intercalations K 1-x Fe 2-y Se 2 , metastable Na 1-x Fe 2-y As 2 and Na 1-x ((Fe 1-y Co y ) 1-z As) 2 could successfully be obtained at room temperature. The mild synthesis conditions led to compounds like FeSe and K 1-x Fe 2-y Se 2 which exhibited different physical properties than found by conventional high temperature methods. In general, the developed (de)intercalation reactions represent a new, universally applicable tool in order to manipulate the structure along with the properties of Fe-based superconductors. The basic structural features of the characteristic FeX 4/4 tetrahedral layers, however, are preserved. Soft chemistry syntheses have been shown to allow the formation of a variety of phases, like Na 1-x Fe 2-y As 2 , Na 1-x ((Fe 1-y Co y ) 1-z As) 2 and K 1-x Fe 2-y Se 2 . Hence, especially low temperature approaches may enable the realization of complex stacking sequences, potentially leading to the fulfillment of the greatest goal in the research of superconductors - room temperature superconductivity.

  6. Development of superconductor application technology

    Energy Technology Data Exchange (ETDEWEB)

    Hong, G W; Kim, C J; Lee, H G; Lee, H J; Kim, K B; Won, D Y; Jang, K I; Kwon, S C; Kim, W J; Ji, Y A; Yang, S W; Kim, W K; Park, S D; Lee, M H; Lee, D M; Park, H W; Yu, J K; Lee, I S; Kim, J J; Choi, H S; Chu, Y; Kim, Y S; Kim, D H

    1997-09-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm{sup 2} was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm{sup 2} was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs.

  7. Superconductor with improved persistence characteristics

    International Nuclear Information System (INIS)

    Stekly, Z. J. J.; Strauss, B. P.

    1984-01-01

    In a multifilamentary superconductor, plural filaments are separated from one another by a ductile nonsuperconducting copper matrix. The niobium titanium filaments are arrayed through the copper, with one filament being substantially larger than the others, and preferably, centrally located in the wire. Preferably also, the other filaments are arrayed in an annular configuration about the periphery of the wire

  8. Ceramic high-temperature superconductors

    International Nuclear Information System (INIS)

    Marquart, R.

    1989-01-01

    The contribution presents an overview treatment of the structure of the new superconductors (YBa 2 Cu 3 O 7-x ). Methods of powder production and processing technology are described, with current development projects by Dornier being taken into consideration. (orig.) [de

  9. Testing Superconductor Logic Integrated Circuits

    NARCIS (Netherlands)

    Arun, A.J.; Kerkhoff, Hans G.

    2005-01-01

    Superconductor logic has the potential of extremely low-power consumption and ultra-fast digital signal processing. Unfortunately, the obtained yield of the present processes is low and specific faults occur. This paper deals with fault-modelling, Design-for-Test structures, and ATPG for these

  10. High Temperature Superconductor Machine Prototype

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Træholt, Chresten

    2011-01-01

    A versatile testing platform for a High Temperature Superconductor (HTS) machine has been constructed. The stationary HTS field winding can carry up to 10 coils and it is operated at a temperature of 77K. The rotating armature is at room temperature. Test results and performance for the HTS field...

  11. Vortex lattices in layered superconductors

    International Nuclear Information System (INIS)

    Prokic, V.; Davidovic, D.; Dobrosavljevic-Grujic, L.

    1995-01-01

    We study vortex lattices in a superconductor--normal-metal superlattice in a parallel magnetic field. Distorted lattices, resulting from the shear deformations along the layers, are found to be unstable. Under field variation, nonequilibrium configurations undergo an infinite sequence of continuous transitions, typical for soft lattices. The equilibrium vortex arrangement is always a lattice of isocell triangles, without shear

  12. Dynamics of vortices in superconductors

    International Nuclear Information System (INIS)

    Weinan, E.

    1992-01-01

    We study the dynamics of vortices in type-II superconductors from the point of view of time-dependent Ginzburg-Landau equations. We outline a proof of existence, uniqueness and regularity of strong solutions for these equations. We then derive reduced systems of ODEs governing the motion of the vortices in the asymptotic limit of large Ginzburg-Landau parameter

  13. Development of superconductor application technology

    International Nuclear Information System (INIS)

    Hong, G. W.; Kim, C. J.; Lee, H. G.; Lee, H. J.; Kim, K. B.; Won, D. Y.; Jang, K. I.; Kwon, S. C.; Kim, W. J.; Ji, Y. A.; Yang, S. W.; Kim, W. K.; Park, S. D.; Lee, M. H.; Lee, D. M.; Park, H. W.; Yu, J. K.; Lee, I. S.; Kim, J. J.; Choi, H. S.; Chu, Y.; Kim, Y. S.; Kim, D. H.

    1997-09-01

    Fabrication of high Tc bulk superconductor and its application, fabrication of superconducting wire for electric power device and analysis for cryogenic system were carried out for developing superconductor application technologies for electric power system. High quality YBaCuO bulk superconductor was fabricated by controlling initial powder preparation process and prototype flywheel energy storage device was designed basically. The superconducting levitation force measuring device was made to examine the property of prepared superconductor specimen. Systematic studies onthe method of starting powder preparation, mechanical fabrication process, heat treatment condition and analysis of plastic deformation were carried out to increase the stability and reproducibility of superconducting wire. A starting power with good reactivity and fine particle size was obtained by mechanical grinding, control of phase assemblage, and emulsion drying method. Ag/BSCCO tape with good cross sectional shape and Jc of 20,000 A/cm 2 was fabricated by applying CIP packing procedure. Multifilamentary wire with Jc of 10,000 A/cm 2 was fabricated by rolling method using square billet as starting shape. The joining of the multifilamentary wire was done by etching and pressing process and showed 50% of joining efficiency. Analysis on the heat loss in cryostat for high Tc superconducting device was carried out for optimum design of the future cryogenic system. (author). 66 refs., 104 figs

  14. Strain effects in oxide superconductors

    International Nuclear Information System (INIS)

    Wada, H.; Kuroda, T.; Sekine, H.; Yuyama, M.; Itoh, K.

    1991-01-01

    Strain sensitivities of superconducting properties are critical to high magnetic field applications of superconductors, since critical temperature, T c , upper critical field, H c2 , and critical current (density), I c (J c ), are all degraded under strains. Oxide superconductors so far known are all very fragile, thus requiring to be fabricated in the form of composite. In the case of practical metallic superconductors, such as Nb 3 Sn and V 3 Ga, the so-called bronze method has been developed where these superconducting intermetallics are enveloped in a ductile metallic sheath. Recently, a fabrication method similar to the bronze method has been developed for the Bi 2 Sr 2 Ca 2 Cu 3 O x superconductors using Ag tubes as sheath. In the present study mono- and multicore BiPbSrCaCuO tape conductors were prepared by means of this Ag-sheath composite method, and examined in terms of strain sensitivity by measuring their T c and I c (J c ) under bending or tensile strains. (orig.)

  15. Application of high temperature superconductors for fusion

    International Nuclear Information System (INIS)

    Fietz, W.H.; Heller, R.; Schlachter, S.I.; Goldacker, W.

    2011-01-01

    The use of High Temperature Superconductor (HTS) materials in future fusion machines can increase the efficiency drastically. For ITER, W7-X and JT-60SA the economic benefit of HTS current leads was recognized after a 70 kA HTS current lead demonstrator was designed, fabricated and successfully tested by Karlsruhe Institute of Technology (KIT, which is a merge of former Forschungszentrum Karlsruhe and University of Karlsruhe). For ITER, the Chinese Domestic Agency will provide the current leads as a part of the superconducting feeder system. KIT is in charge of design, construction and test of HTS current leads for W7-X and JT-60SA. For W7-X 14 current leads with a maximum current of 18.2 kA are required that are oriented with the room temperature end at the bottom. JT60-SA will need 26 current leads (20 leads - 20 kA and 6 leads - 25.7 kA) which are mounted in vertical, normal position. These current leads are based on BiSCCO HTS superconductors, demonstrating that HTS material is now state of the art for highly efficient current leads. With respect to future fusion reactors, it would be very promising to use HTS material not only in current leads but also in coils. This would allow a large increase of efficiency if the coils could be operated at temperatures ≥65 K. With such a high temperature it would be possible to omit the radiation shield of the coils, resulting in a less complex cryostat and a size reduction of the machine. In addition less refrigeration power is needed saving investment and operating costs. However, to come to an HTS fusion coil it is necessary to develop low ac loss HTS cables for currents well above 20 kA at high fields well above 10 T. The high field rules BiSCCO superconductors out at temperatures above 50 K, but RE-123 superconductors are promising. The development of a high current, high field RE-123 HTS fusion cable will not be targeted outside fusion community and has to be in the frame of a long term development programme for

  16. Superconductors and electrotechnical materials

    Energy Technology Data Exchange (ETDEWEB)

    Stanculescu, V

    1975-07-01

    A description is given of the properties of superconducting materials and of other materials which will be used in low temperature electrical engineering. The electrical and magnetic properties of type 1 or soft and type 2 or hard superconducting materials are analyzed. Electroinsulating and magnetic materials at low temperatures are also surveyed. Emphasis is placed on gaseous and fluid dielectric substances which retain their condition of physical aggregation at low temperatures and provide a cryogenic medium. These include helium, hydrogen, and nitrogen. As for solid dielectrics, satisfactory electroinsulating materials in terms of mechanical and electrical properties include the category of thermoplastic organic materials such as mylar, teflon, kapton, and nylon. It is also emphasized that cryoelectrical engineering requires magnetic materials with high magnetic induction at low temperatures, coercive field and low magnetic loss.

  17. Mottness in high-temperature copper-oxide superconductors

    International Nuclear Information System (INIS)

    Phillips, Philip; Choy, T.-P.; Leigh, Robert G

    2009-01-01

    The standard theory of metals, Fermi liquid theory, hinges on the key assumption that although the electrons interact, the low-energy excitation spectrum stands in a one-to-one correspondence with that of a non-interacting system. In the normal state of the copper-oxide high-temperature superconductors, drastic deviations from the Fermi liquid picture are obtained, highlighted by a pseudogap, broad spectral features and T-linear resistivity. A successful theory in this context must confront the highly constraining scaling argument which establishes that all 4-Fermi interactions are irrelevant (except for pairing) at a Fermi surface. This argument lays plain that new low-energy degrees of freedom are necessary. This paper focuses on the series of experiments on copper-oxide superconductors which reveal that the number of low-energy addition states per electron per spin exceeds unity, in direct violation of the key Fermi liquid tenet. These experiments point to new degrees of freedom, not made out of the elemental excitations, as the key mechanism by which Fermi liquid theory breaks down in the cuprates. A recent theoretical advance which permits an explicit integration of the high-energy scale in the standard model for the cuprates reveals the source of the new dynamical degrees of freedom at low energies, a charge 2e bosonic field which has nothing to do with pairing but rather represents the mixing with the high-energy scales. We demonstrate explicitly that at half-filling, this new degree of freedom provides a dynamical mechanism for the generation of the charge gap and antiferromagnetism in the insulating phase. At finite doping, many of the anomalies of the normal state of the cuprates including the pseudogap, T-linear resistivity and the mid-infrared band are reproduced. A possible route to superconductivity is explored

  18. Critical Current Test of Liquid Hydrogen Cooled HTC Superconductors under External Magnetic Field

    OpenAIRE

    Shirai, Yasuyuki; Shiotsu, Masahiro; Tatsumoto, Hideki; Kobayashi, Hiroaki; Naruo, Yoshihiro; Nonaka, Satoshi; Inatani, Yoshifumi

    2016-01-01

    High-Tc (HTC) superconductors including MgB2 will show excellent properties under temperature of Liquid Hydrogen (LH2:20K), which has large latent heat and low viscosity coefficient. In order to design and fabricate the LH2 cooled superconducting energy devices, we must clear the cooling property of LH2 for superconductors, the cooling system and safety design of LH2 cooled superconducting devices and electro-magnetic property evaluation of superconductors (BSCCO, REBCO and MgB2) and their ma...

  19. Electronic Structure, Irreversibility Line and Magnetoresistance of Cu_0_._3Bi_2Se_3 Superconductor

    International Nuclear Information System (INIS)

    Yi He-Mian; Chen Chao-Yu; Sun Xuan; Xie Zhuo-Jin; Feng Ya; Liang Ai-Ji; Peng Ying-Ying; He Shao-Long; Zhao Lin; Liu Guo-Dong; Dong Xiao-Li; Zhang Jun; Zhou Xing-Jiang; Chen Chuang-Tian; Xu Zu-Yan; Gu Gen-Da

    2015-01-01

    Cu_xBi_2Se_3 is a superconductor that is a potential candidate for topological superconductors. We report our laser-based angle-resolved photoemission measurement on the electronic structure of the Cu_xBi_2Se_3 superconductor, and a detailed magneto-resistance measurement in both normal and superconducting states. We find that the topological surface state of the pristine Bi_2Se_3 topological insulator remains robust after the Cu-intercalation, while the Dirac cone location moves downward due to electron doping. Detailed measurements on the magnetic field-dependence of the resistance in the superconducting state establishes an irreversibility line and gives a value of the upper critical field at zero temperature of ∼4000 Oe for the Cu_0_._3Bi_2Se_3 superconductor with a middle point T_c of 1.9K. The relation between the upper critical field H_c_2 and temperature T is different from the usual scaling relation found in cuprates and in other kinds of superconductors. Small positive magneto-resistance is observed in Cu_0_._3Bi_2Se_3 superconductors up to room temperature. These observations provide useful information for further study of this possible candidate for topological superconductors. (paper)

  20. Electronic phase separation and high temperature superconductors

    International Nuclear Information System (INIS)

    Kivelson, S.A.

    1994-01-01

    The authors review the extensive evidence from model calculations that neutral holes in an antiferromagnet separate into hole-rich and hole-poor phases. All known solvable limits of models of holes in a Heisenberg antiferromagnet exhibit this behavior. The authors show that when the phase separation is frustrated by the introduction of long-range Coulomb interactions, the typical consequence is either a modulated (charge density wave) state or a superconducting phase. The authors then review some of the strong experimental evidence supporting an electronically-driven phase separation of the holes in the cuprate superconductors and the related Ni oxides. Finally, the authors argue that frustrated phase separation in these materials can account for many of the anomalous normal state properties of the high temperature superconductors and provide the mechanism of superconductivity. In particular, it is shown that the T-linear resistivity of the normal state is a paraconductivity associated with a novel composite pairing, although the ordered superconducting state is more conventional

  1. Kohn anomaly in phonon driven superconductors

    International Nuclear Information System (INIS)

    Das, M P; Chaudhury, R

    2014-01-01

    Anomalies often occur in the physical world. Sometimes quite unexpectedly anomalies may give rise to new insight to an unrecognized phenomenon. In this paper we shall discuss about Kohn anomaly in a conventional phonon-driven superconductor by using a microscopic approach. Recently Aynajian et al.'s experiment showed a striking feature; the energy of phonon at a particular wave-vector is almost exactly equal to twice the energy of the superconducting gap. Although the phonon mechanism of superconductivity is well known for many conventional superconductors, as has been noted by Scalapino, the new experimental results reveal a genuine puzzle. In our recent work we have presented a detailed theoretical analysis with the help of microscopic calculations to unravel this mystery. We probe this aspect of phonon behaviour from the properties of electronic polarizability function in the superconducting phase of a Fermi liquid metal, leading to the appearance of a Kohn singularity. We show the crossover to the standard Kohn anomaly of the normal phase for temperatures above the transition temperature. Our analysis provides a nearly complete explanation of this new experimentally discovered phenomenon. This report is a shorter version of our recent work in JPCM.

  2. Voltage current characteristics of type III superconductors

    Science.gov (United States)

    Dorofejev, G. L.; Imenitov, A. B.; Klimenko, E. Yu.

    1980-06-01

    An adequate description of voltage-current characteristics is important in order to understand the nature of high critical current for the electrodynamic construction of type-III superconductors and for commercial superconductor specification. Homogenious monofilament and multifilament Nb-Ti, Nb-Zr, Nb 3Sn wires were investigated in different ranges of magnetic field, temperature and current. The longitudinal electric field for homogenious wires may be described by E=J ρnexp- T c/T 0+ T/T 0+ B/B 0+ J/J 0, where To, Bo, Jo are the increasing parameters, which depend weakly on B and T, of the electric field. The shape of the voltage-current characteristics of multifilament wires, and the parameter's dependence on temperature and magnetic field may be explained qualitatively by the longitudinal heterogeneous nature of the filaments. A method of attaining the complete specification of the wire's electro-physical properties is proposed. It includes the traditional description of a critical surface (ie the surface corresponding to a certain conventional effective resistivity in T, B, J - space) and a description of any increasing parameter that depends on B and T.

  3. Exploring FeSe-based superconductors by liquid ammonia method

    International Nuclear Information System (INIS)

    Ying Tian-Ping; Wang Gang; Jin Shi-Feng; Shen Shi-Jie; Zhang Han; Zhou Ting-Ting; Lai Xiao-Fang; Wang Wan-Yan; Chen Xiao-Long

    2013-01-01

    Our recent progress on the preparation of a series of new FeSe-based superconductors and the clarification of SC phases in potassium-intercalated iron selenides are reviewed here. By the liquid ammonia method, metals Li, Na, Ca, Sr, Ba, Eu, and Yb are intercalated in between FeSe layers and form superconductors with transition temperatures of 30 K∼46 K, which cannot be obtained by high-temperature routes. In the potassium-intercalated iron selenides, we demonstrate that at least two SC phases exist, K x Fe 2 Se 2 (NH 3 ) y (x ≈ 0.3 and 0.6), determined mainly by the concentration of potassium. NH 3 has little, if any, effect on superconductivity, but plays an important role in stabilizing the structures. All these results provide a new starting point for studying the intrinsic properties of this family of superconductors, especially for their particular electronic structures. (topical review - iron-based high temperature superconductors)

  4. Iron-Based Superconductors as Odd-Parity Superconductors

    Directory of Open Access Journals (Sweden)

    Jiangping Hu

    2013-07-01

    Full Text Available Parity is a fundamental quantum number used to classify a state of matter. Materials rarely possess ground states with odd parity. We show that the superconducting state in iron-based superconductors is classified as an odd-parity s-wave spin-singlet pairing state in a single trilayer FeAs/Se, the building block of the materials. In a low-energy effective model constructed on the Fe square bipartite lattice, the superconducting order parameter in this state is a combination of an s-wave normal pairing between two sublattices and an s-wave η pairing within the sublattices. The state has a fingerprint with a real-space sign inversion between the top and bottom As/Se layers. The results suggest that iron-based superconductors are a new quantum state of matter, and the measurement of the odd parity can help to establish high-temperature superconducting mechanisms.

  5. NSSEFF Designing New Higher Temperature Superconductors

    Science.gov (United States)

    2017-04-13

    AFRL-AFOSR-VA-TR-2017-0083 NSSEFF - DESIGINING NEW HIGHER TEMPERATURE SUPERCONDUCTORS Meigan Aronson THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF...2015 4. TITLE AND SUBTITLE NSSEFF - DESIGINING NEW HIGHER TEMPERATURE SUPERCONDUCTORS 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-10-1-0191 5c...materials, identifying the most promising candidates. 15. SUBJECT TERMS TEMPERATURE, SUPERCONDUCTOR 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  6. Applications of superconductors to electric motors

    International Nuclear Information System (INIS)

    McConnell, B.W.

    1988-01-01

    This paper reviews previous experience in applying superconductors to electric motors and examines the difficulties encountered. While motors and generators have a common basis, several significant differences exist. The application of high temperature superconductors to the major electric motor types is discussed and expected difficulties are presented. The limitations imposed by various motor designs are reflected in a statement of the desired material properties for high temperature superconductor electric motor applications

  7. Holographic complexity in gauge/string superconductors

    Directory of Open Access Journals (Sweden)

    Davood Momeni

    2016-05-01

    Full Text Available Following a methodology similar to [1], we derive a holographic complexity for two dimensional holographic superconductors (gauge/string superconductors with backreactions. Applying a perturbation method proposed by Kanno in Ref. [2], we study behaviors of the complexity for a dual quantum system near critical points. We show that when a system moves from the normal phase (T>Tc to the superconductor phase (T

  8. Melt processed high-temperature superconductors

    CERN Document Server

    1993-01-01

    The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high J c oxide superconductors. Using magnetic forces between such high J c oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, criti

  9. Photographing magnetic fields in superconductors

    International Nuclear Information System (INIS)

    Harrison, R.B.; Wright, L.S.

    Magneto-optic techniques coupled with high-speed photography are being used to study the destruction of superconductivity by a magnetic field. The phenomenon of superconductivity will be introduced with emphasis placed on the properties of type I and type II superconductors in a magnetic field. The Faraday effect and its application to the study of the penetration of magnetic fields into these superconductors will be described; the relative effectiveness of some types of paramagnetic glass will be demonstrated. A number of cinefilms will be shown to illustrate the versatility of the magneto-optic method for observing flux motion and patterns. The analysis of data obtained from a high speed film (10,200 fps) of a flux jump in Nb-Zr will be presented and discussed

  10. Oxygen diffusion in cuprate superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J.L.; Rothman, S.J.

    1995-01-01

    Superconducting properties of the cuprate superconductors depend on the oxygen content of the material; the diffusion of oxygen is thus an important process in the fabrication and application of these materials. This article reviews studies of the diffusion of oxygen in La{sub 2}{sub {minus}}{sub {times}}Sr{sub {times}}CuO{sub 4}, YBa{sub 2}Cu{sub 3}O{sub 7}{sub {minus}}{delta}, YBa{sub 2}Cu{sub 4}O{sub 8}, and the Bi{sub 2}Sr{sub 2}Ca{sub n}{sub {minus}}{sub 1}Cu{sub n}O{sub 2}{sub +}{sub 4} (n = 1, and 2) superconductors, and attempt to elucidate the atomic mechanisms responsible.

  11. QCD as a dual superconductor

    International Nuclear Information System (INIS)

    Zachariasen, F.

    1986-01-01

    The author describes the construction of an effective action describing long-range Yang-Mills theory. This action is motivated by a study of the system of Dyson equations and Ward identities, but cannot (yet) be derived from the underlying quantum theory. The effective action turns out to describe a medium very much like a dual relativistic superconductor; that is, with electric and magnetic fields interchanged. There is a dual Meissner effect, which serves to compress color electric fields into flux tubes, containing quantized units of color electric flux. This produces electric confinement. There is a magnetic condensate, resulting from a spontaneous symmetry breaking analogous to that in the relativistic superconductor, as in the Abelian Higgs model. He gives the motivation leading to the effective action, and describes the quantized electric flux tube solutions. Finally, he mentions briefly some other applications

  12. Theoretical studies of unconventional superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Groensleth, Martin Sigurd

    2008-07-01

    This thesis presents four research papers. In the first three papers we have derived analytical results for the transport properties in unconventional superconductors and ferromagnetic systems with multiple broken symmetries. In Paper I and parts of Paper II we have studied tunneling transport between two non-unitary ferromagnetic spin-triplet superconductors, and found a novel interplay between ferromagnetism and superconductivity manifested in the Josephson effect as a spin- and charge-current in the absence of an applied voltage across the junction. The critical amplitudes of these currents can be adjusted by the relative magnetization direction on each side of the junction. Furthermore, in Paper II, we have found a way of controlling a spin-current between two ferromagnets with spin-orbit coupling. Paper III considers a junction consisting of a ferromagnet and a non-unitary ferromagnetic superconductor, and we show that the conductance spectra contains detailed information about the superconducting gaps and pairing symmetry of the Cooper-pairs. In the last paper we present a Monte Carlo study of an effective Hamiltonian describing orbital currents in the CuO2 layers of high-temperature superconductive cuprates. The model features two intrinsically anisotropic Ising models, coupled through an anisotropic next-nearest neighbor interaction, and an Ashkin-Teller nearest neighbor fourth order coupling. We have studied the specific heat anomaly, as well as the anomaly in the staggered magnetization associated with the orbital currents and its susceptibility. We have found that in a limited parameter regime, the specific heat anomaly is substantially suppressed, while the susceptibility has a non-analytical peak across the order-disorder transition. The model is therefore a candidate for describing the breakup of hidden order when crossing the pseudo-gap line on the under-doped side in the phase diagram of high-temperature superconductors. (Author) 64 refs., figs

  13. Interaction between light and superconductors

    Science.gov (United States)

    Gilabert, Alain

    In the first part of this review article we resume briefly the fundamental aspect of the photon-superconductor interaction. The emphase is focused on the characteristic times and on the phenomenological models (the T*, the μ* models and the model of the kinetics equations) describing the out of equilibrium superconductivity. The experiments made on classical illuminated superconductors especially on tunnel junctions are then reported. In the second part we present the applied aspect of the photon-superconductor interaction. The interaction of the light with the high Tc superconductors is reviewed in the last part. Dans la première partie de cet article de revue, on résume brièvement 1'aspect fondamental de l'action des photons sur les supraconducteurs en s'attachant surtout à rappeler les différents temps caractéristiques de cette interaction et les modèles phénoménologiques (le modèle T*, le modèle μ*, le modèle des équations cinétiques) décrivant la supraconductivité hors équilibre. La seconde partie rappelle les expériences réalisées sur les supraconducteurs classiques illuminés et spécialement les jonctions tunnel ainsi que certaines applications de la supraconductivité hors équilibre comme les liens faibles controllables par des moyens optiques. La dernière partie est consacrée aux nouvelles expériences qui démarrent concernant l'action de la lumière sur les supraconducteurs à hautes températures critiques.

  14. Negative magnetic relaxation in superconductors

    Directory of Open Access Journals (Sweden)

    Krasnoperov E.P.

    2013-01-01

    Full Text Available It was observed that the trapped magnetic moment of HTS tablets or annuli increases in time (negative relaxation if they are not completely magnetized by a pulsed magnetic field. It is shown, in the framework of the Bean critical-state model, that the radial temperature gradient appearing in tablets or annuli during a pulsed field magnetization can explain the negative magnetic relaxation in the superconductor.

  15. Coherent and correlated spin transport in nanoscale superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Morten, Jan Petter

    2008-03-15

    the system varies from e.g. ballistic conductors or tunnel barriers. In the tunneling case, we calculate the magnetization-dependent full counting statistics, which determines all noise properties including the cross-correlations that can resolve the contributions due to crossed Andreev reflection and direct electron transport. We evaluate the magnetization-dependent two-particle probability that the constituents of spin-entangled pairs from crossed Andreev reflection flow into different ferromagnetic contacts. This probability implies violation of a Bell inequality, and determines the performance of a superconductor-ferromagnet entangler. (author). 105 refs., 13 figs

  16. Theory of Nernst effect in layered superconductors

    International Nuclear Information System (INIS)

    Tinh, B D; Rosenstein, B

    2009-01-01

    We calculate, using the time-dependent Ginzburg-Landau (TDGL) equation with thermal noise, the transverse thermoelectric conductivity α xy , describing the Nernst effect, in type-II superconductor in the vortex-liquid regime. The method is an elaboration of the Hartree-Fock. An often made in analytical calculations additional assumption that only the lowest Landau level significantly contributes to α xy in the high field limit is lifted by including all the Landau levels. The resulting values in two dimensions (2D) are significantly lower than the numerical simulation data of the same model, but are in reasonably good quantitative agreement with experimental data on La 2 SrCuO 4 above the irreversibility line (below the irreversibility line at which α xy diverges and theory should be modified by including pinning effects).

  17. Second-Generation High-Temperature Superconductor Wires for the Electric Power Grid

    Science.gov (United States)

    Malozemoff, A. P.

    2012-08-01

    Superconductors offer major advantages for the electric power grid, including high current and power capacity, high efficiency arising from the lossless current flow, and a unique current-limiting functionality arising from a superconductor-to-resistive transition. These advantages can be brought to bear on equipment such as underground power cables, fault current limiters, rotating machinery, transformers, and energy storage. The first round of significant commercial-scale superconductor power-equipment demonstrations, carried out during the past decade, relied on a first-generation high-temperature superconductor (HTS) wire. However, during the past few years, with the recent commercial availability of high-performance second-generation HTS wires, power-equipment demonstrations have increasingly been carried out with these new wires, which bring important advantages. The foundation is being laid for commercial expansion of this important technology into the power grid.

  18. Correlations, dimensionality and instabilities in organic superconductors

    International Nuclear Information System (INIS)

    Jerome, D.; Wzietek, P.; Bourbonnais, C.

    1995-01-01

    We discuss the role of Coulombic repulsion in organic superconductors exhibiting quasi-one-dimensional transport properties. A recent investigation in high magnetic fields shows that the charge localization occurring at low temperature in a 1-D half-fillled band is suppressed by the 1-D to 2-D (3-D) cross-over in selenium compounds. However, a localization around 30K in the non-ordered phase can be reactivated by the application of a high transverse magnetic field. This phenomenon provides an interpretation for the large transverse magnetoresistance observed in quasi-1-D conductors with open Fermi surfaces. The intermediate (strong) coupling limit is valid for the spin degree of freedom whereas the charge is governed by the strength of the Umklapp scattering varying by a large factor from sulfur to selenium compounds and under pressure. ((orig.))

  19. Low critical temperature superconductors for electromagnets

    International Nuclear Information System (INIS)

    Devred, A.

    2002-01-01

    After a brief history of the main discoveries in applied superconductivity (section 1), we discuss the structure and properties of NbTi and Nb3 Sn (section 2). Then, we explain why low critical-temperature superconductors are produced under the form of multifilamentary composites (section 3), and we review the manufacturing processes of NbTi and Nb3Sn wires (section 4). We follow by a description of the transition from the superconducting to the normal resistive state of multifilamentary composite wires (section 5) and we detail their magnetization properties section 6). Last, we present the most commonly used cable configurations (section 7) and we provide simple formulae illustrating on a few examples the computation of losses generated under time-varying magnetic fields (section 8). (author)

  20. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  1. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  2. Hexatic vortex glass in disordered superconductors

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.

    1989-01-01

    It is shown that interaction of the flux-line lattice with randomly arranged pinning centers should destroy the long-range positional order in the lattice, but not the long-range orientational order. A new phase: hexatic vortex glass, is suggested for the mixed state of disordered, type-II superconductors. Relevance to amorphous and high-T c superconductors is discussed

  3. Neutron-scattering studies of magnetic superconductors

    International Nuclear Information System (INIS)

    Sinha, S.K.; Crabtree, G.W.; Hinks, D.G.; Mook, H.A.; Pringle, O.A.

    1982-01-01

    Results obtained in the last few years obtained by neutron diffraction on the nature of the magnetic ordering in magnetic superconductors are reviewed. Emphasis is given to studies of the complex intermediate phase in ferromagnetic superconductors where both superconductivity and ferromagnetism appear to coexist

  4. The critical current of granular superconductor

    International Nuclear Information System (INIS)

    Ignat'ev, V.K.

    1998-01-01

    A mechanism of hyper vortex pinning in granular superconductors is proposed to describe the field dependence of the critical current density and pinning potential. The results are in a good agreement with the experiment. The model represents the peak effect and the percolation mechanism of conductivity in ceramic superconductors

  5. A novel heat engine for magnetizing superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T A; Hong, Z; Zhu, X [Cambridge University Engineering Department, Trumpington Street, CB2 1PZ (United Kingdom); Krabbes, G [IFW Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2008-03-01

    The potential of bulk melt-processed YBCO single domains to trap significant magnetic fields (Tomita and Murakami 2003 Nature 421 517-20; Fuchs et al 2000 Appl. Phys. Lett. 76 2107-9) at cryogenic temperatures makes them particularly attractive for a variety of engineering applications including superconducting magnets, magnetic bearings and motors (Coombs et al 1999 IEEE Trans. Appl. Supercond. 9 968-71; Coombs et al 2005 IEEE Trans. Appl. Supercond. 15 2312-5). It has already been shown that large fields can be obtained in single domain samples at 77 K. A range of possible applications exist in the design of high power density electric motors (Jiang et al 2006 Supercond. Sci. Technol. 19 1164-8). Before such devices can be created a major problem needs to be overcome. Even though all of these devices use a superconductor in the role of a permanent magnet and even though the superconductor can trap potentially huge magnetic fields (greater than 10 T) the problem is how to induce the magnetic fields. There are four possible known methods: (1) cooling in field; (2) zero field cooling, followed by slowly applied field; (3) pulse magnetization; (4) flux pumping. Any of these methods could be used to magnetize the superconductor and this may be done either in situ or ex situ. Ideally the superconductors are magnetized in situ. There are several reasons for this: first, if the superconductors should become demagnetized through (i) flux creep, (ii) repeatedly applied perpendicular fields (Vanderbemden et al 2007 Phys. Rev. B 75 (17)) or (iii) by loss of cooling then they may be re-magnetized without the need to disassemble the machine; secondly, there are difficulties with handling very strongly magnetized material at cryogenic temperatures when assembling the machine; thirdly, ex situ methods would require the machine to be assembled both cold and pre-magnetized and would offer significant design difficulties. Until room temperature superconductors can be prepared, the

  6. A novel heat engine for magnetizing superconductors

    International Nuclear Information System (INIS)

    Coombs, T A; Hong, Z; Zhu, X; Krabbes, G

    2008-01-01

    The potential of bulk melt-processed YBCO single domains to trap significant magnetic fields (Tomita and Murakami 2003 Nature 421 517-20; Fuchs et al 2000 Appl. Phys. Lett. 76 2107-9) at cryogenic temperatures makes them particularly attractive for a variety of engineering applications including superconducting magnets, magnetic bearings and motors (Coombs et al 1999 IEEE Trans. Appl. Supercond. 9 968-71; Coombs et al 2005 IEEE Trans. Appl. Supercond. 15 2312-5). It has already been shown that large fields can be obtained in single domain samples at 77 K. A range of possible applications exist in the design of high power density electric motors (Jiang et al 2006 Supercond. Sci. Technol. 19 1164-8). Before such devices can be created a major problem needs to be overcome. Even though all of these devices use a superconductor in the role of a permanent magnet and even though the superconductor can trap potentially huge magnetic fields (greater than 10 T) the problem is how to induce the magnetic fields. There are four possible known methods: (1) cooling in field; (2) zero field cooling, followed by slowly applied field; (3) pulse magnetization; (4) flux pumping. Any of these methods could be used to magnetize the superconductor and this may be done either in situ or ex situ. Ideally the superconductors are magnetized in situ. There are several reasons for this: first, if the superconductors should become demagnetized through (i) flux creep, (ii) repeatedly applied perpendicular fields (Vanderbemden et al 2007 Phys. Rev. B 75 (17)) or (iii) by loss of cooling then they may be re-magnetized without the need to disassemble the machine; secondly, there are difficulties with handling very strongly magnetized material at cryogenic temperatures when assembling the machine; thirdly, ex situ methods would require the machine to be assembled both cold and pre-magnetized and would offer significant design difficulties. Until room temperature superconductors can be prepared, the

  7. Quench properties of high current superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Garber, M; Sampson, W B

    1980-01-01

    A technique has been developed which allows the simultaneous determination of most of the important parameters of a high current superconductor. The critical current, propagation velocity, normal state resistivity, magnetoresistance, and enthalpy are determined as a function of current and applied field. The measurements are made on non-inductive samples which simulate conditions in full scale magnets. For wide, braided conductors the propagation velocity was found to vary approximately quadratically with current in the 2 to 5 kA region. A number of conductors have been tested including some Nb/sub 3/Sn braids which have critical currents in excess of 10 kA at 5 T, 4.2 K.

  8. Topological surface states in nodal superconductors

    International Nuclear Information System (INIS)

    Schnyder, Andreas P; Brydon, Philip M R

    2015-01-01

    Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states. (topical review)

  9. Melting of the Abrikosov flux lattice in anisotropic superconductors

    Science.gov (United States)

    Beck, R. G.; Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.; Kogan, V. G.

    1992-01-01

    It has been proposed that the Abrikosov flux lattice in high-Tc superconductors is melted over a significant fraction of the phase diagram. A thermodynamic argument is provided which establishes that the angular dependence of the melting temperature is controlled by the superconducting mass anisotropy. Using a low-frequency torsional-oscillator technique, this relationship has been tested in untwinned single-crystal YBa2Cu3O(7-delta). The results offer decisive support for the melting proposal.

  10. Interaction between fractional Josephson vortices in multi-gap superconductor tunnel junctions

    Science.gov (United States)

    Kim, Ju H.

    In a long Josephson junction (LJJ) with two-band superconductors, fractionalization of Josephson vortices (fluxons) can occur in the broken time reversal symmetry state when spatial phase textures (i-solitons) are excited. Excitation of i-solitons in each superconductor layer of the junction, arising due to the presence of two condensates and the interband Josephson effect, leads to spatial variation of the critical current density between the superconductor layers. Similar to the situation in a YBa2 Cu3O7 - x superconductor film grain boundary, this spatial dependence of the crtitical current density can self-generate magnetic flux in the insulator layer, resulting in fractional fluxons with large and small fraction of flux quantum. Similar to fluxons in one-band superconductor LJJ, these fractional fluxons are found to interact with each other. The interaction between large and small fractional fluxons determines the size of a fluxon which includes two (one large and one small) fractional fluxons. We discuss the nature of interaction between fractional fluxons and suggest that i-soliton excitations in multi-gap superconductor LJJs may be probed by using magnetic flux measurements.

  11. Superconductors Enable Lower Cost MRI Systems

    Science.gov (United States)

    2013-01-01

    The future looks bright, light, and green, especially where aircraft are concerned. The division of NASA s Fundamental Aeronautics Program called the Subsonic Fixed Wing Project is aiming to reach new heights by 2025-2035, improving the efficiency and environmental impact of air travel by developing new capabilities for cleaner, quieter, and more fuel efficient aircraft. One of the many ways NASA plans to reach its aviation goals is by combining new aircraft configurations with an advanced turboelectric distributed propulsion (TeDP) system. Jeff Trudell, an engineer at Glenn Research Center, says, "The TeDP system consists of gas turbines generating electricity to power a large number of distributed motor-driven fans embedded into the airframe." The combined effect increases the effective bypass ratio and reduces drag to meet future goals. "While room temperature components may help reduce emissions and noise in a TeDP system, cryogenic superconducting electric motors and generators are essential to reduce fuel burn," says Trudell. Superconductors provide significantly higher current densities and smaller and lighter designs than room temperature equivalents. Superconductors are also able to conduct direct current without resistance (loss of energy) below a critical temperature and applied field. Unfortunately, alternating current (AC) losses represent the major part of the heat load and depend on the frequency of the current and applied field. A refrigeration system is necessary to remove the losses and its weight increases with decreasing temperature. In 2001, a material called magnesium diboride (MgB2) was discovered to be superconducting. The challenge, however, has been learning to manufacture MgB2 inexpensively and in long lengths to wind into large coils while meeting the application requirements.

  12. The role of oxygen in quinternary superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, D.R.; Jamieson, D.N. [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1996-12-31

    The oxygen composition of the new generation of high temperature superconductors (HTSC) has been found to play a crucial role in determining the superconductivity of these materials. However, measurement of the oxygen stoichiometry in such samples has proven difficult due to the small scattering cross section of oxygen, a light element, which has caused the oxygen scattering signal to be overwhelmed by the far larger signals generated off the heavier elements present in the HTSC samples. It is for this reason that previous ion beam analysis of oxide crystals has often either made no attempt to determine the oxygen content or has used O({alpha},{alpha})O resonances such as that at {approx} 3.05 MeV to probe the crystal. This work continues tests of a new technique for probing oxygen which overcomes the problem of an insignificant O BS signal by exploiting the large nuclear resonance found to occur in the O(p,p)O cross-section near an energy of 3.5 MeV in order to produce a significant oxygen edge in the H{sup +} BS spectrum obtained for the HTSC sample. The use of a H{sup +} beam is preferable to a He{sup 2+} beam for such work due to its enhanced sensitivity to light elements. The quinternary superconductor used for this investigation was a good quality pure Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} (BISCO, 2212) crystal. The size of this crystal was 5x5xl mm{sup 3} with the [001] face perpendicular to the surface. Measurements were performed using the University of Melbourne nuclear microprobe. The sample was mounted on an aluminium target holder using a carbon base adhesive which provided good electrical contact and it was oriented inside the target chamber by means of a four axis precision eucentric goniometer. 6 refs., 3 figs.

  13. The role of oxygen in quinternary superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Beckman, D R; Jamieson, D N [Melbourne Univ., Parkville, VIC (Australia). School of Physics

    1997-12-31

    The oxygen composition of the new generation of high temperature superconductors (HTSC) has been found to play a crucial role in determining the superconductivity of these materials. However, measurement of the oxygen stoichiometry in such samples has proven difficult due to the small scattering cross section of oxygen, a light element, which has caused the oxygen scattering signal to be overwhelmed by the far larger signals generated off the heavier elements present in the HTSC samples. It is for this reason that previous ion beam analysis of oxide crystals has often either made no attempt to determine the oxygen content or has used O({alpha},{alpha})O resonances such as that at {approx} 3.05 MeV to probe the crystal. This work continues tests of a new technique for probing oxygen which overcomes the problem of an insignificant O BS signal by exploiting the large nuclear resonance found to occur in the O(p,p)O cross-section near an energy of 3.5 MeV in order to produce a significant oxygen edge in the H{sup +} BS spectrum obtained for the HTSC sample. The use of a H{sup +} beam is preferable to a He{sup 2+} beam for such work due to its enhanced sensitivity to light elements. The quinternary superconductor used for this investigation was a good quality pure Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x} (BISCO, 2212) crystal. The size of this crystal was 5x5xl mm{sup 3} with the [001] face perpendicular to the surface. Measurements were performed using the University of Melbourne nuclear microprobe. The sample was mounted on an aluminium target holder using a carbon base adhesive which provided good electrical contact and it was oriented inside the target chamber by means of a four axis precision eucentric goniometer. 6 refs., 3 figs.

  14. Common phase diagram for low-dimensional superconductors

    International Nuclear Information System (INIS)

    Michalak, Rudi

    2003-01-01

    A phenomenological phase diagram which has been derived for high-temperature superconductors from NMR Knight-shift measurements of the pseudogap is compared to the phase diagram that is obtained for organic superconductors and spin-ladder superconductors, both low-dimensional systems. This is contrasted to the phase diagram of some Heavy Fermion superconductors, i.e. superconductors not constrained to a low dimensionality

  15. Passivation of high temperature superconductors

    Science.gov (United States)

    Vasquez, Richard P. (Inventor)

    1991-01-01

    The surface of high temperature superconductors such as YBa2Cu3O(7-x) are passivated by reacting the native Y, Ba and Cu metal ions with an anion such as sulfate or oxalate to form a surface film that is impervious to water and has a solubility in water of no more than 10(exp -3) M. The passivating treatment is preferably conducted by immersing the surface in dilute aqueous acid solution since more soluble species dissolve into the solution. The treatment does not degrade the superconducting properties of the bulk material.

  16. Microgravity Processing of Oxide Superconductors

    Science.gov (United States)

    Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus; McCallum, William; Peters, Palmer (Technical Monitor)

    2000-01-01

    The primary goal is to understand the microstructures which develop under the nonequilibrium solidification conditions achieved by melt processing in copper oxide superconductor systems. More specifically, to define the liquidus at the Y- 1:2:3 composition, the Nd-1:2:3 composition, and several intermediate partial substitution points between pure Y-1:2:3 and Nd-1:2:3. A secondary goal has been to understand resultant solidification morphologies and pathways under a variety of experimental conditions and to use this knowledge to better characterize solidification phenomena in these systems.

  17. Intrinsic stability of technical superconductors

    International Nuclear Information System (INIS)

    Veringa, H.J.

    1981-10-01

    For the operation of technical superconductors under high current density conditions, the superconducting wires composing high current cables should be intrinsically stabilized. In this report the various important stability criteria are derived and investigated on their validity. An experimental set up is made to check the occurrence of magnetic instabilities if the different applicable criteria are violated. It is found that the observed instabilities can be predicted on the basis of the model given in this report. Production of high current cables based upon composites made by the ECN technique seems to be possible. (Auth.)

  18. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  19. Peak effect in twinned superconductors

    International Nuclear Information System (INIS)

    Larkin, A.I.; Marchetti, M.C.; Vinokur, V.M.

    1995-01-01

    A sharp maximum in the critical current J c as a function of temperature just below the melting point of the Abrikosov flux lattice has recently been observed in both low- and high-temperature superconductors. This peak effect is strongest in twinned crystals for fields aligned with the twin planes. We propose that this peak signals the breakdown of the collective pinning regime and the crossover to strong pinning of single vortices on the twin boundaries. This crossover is very sharp and can account for the steep drop of the differential resistivity observed in experiments. copyright 1995 The American Physical Society

  20. Superconductor devices useful for disk drives and the like

    International Nuclear Information System (INIS)

    Barnes, F.S.

    1989-01-01

    This patent describes an apparatus for exchanging information with a circular media and which includes a drive mechanism for radially positioning a head relative to the media with the head including structure for imparting information to the media, for detecting information on the media, or both, comprising: an arm having at least one head attached thereto wherein the head is capable of interchanging information with the media; and bearing means for suspending the arm, the bearing means including a superconductor layer element, a magnetic field source element and means mounting one of the elements on the arm and the other the element in interfacing relationship to the one of the elements so that the interfacing relationship is maintained throughout the radial travel of the arm. A drive for exchanging information between a circular media mounted on a spindle and a head comprising an elongated arm having the head attached thereto and a layer of superconductor material on one side thereof, the arm being radially positionable over the surface of the circular media, an annular magnet means in peripheral relation to the circular media and oriented to direct a magnetic field towards the arm superconductor layer for maintaining a relatively constant spacing between the arm and the media throughout the radial travel of the arm relative to the circular media

  1. What can Andreev bound states tell us about superconductors?

    Science.gov (United States)

    Millo, Oded; Koren, Gad

    2018-08-06

    Zero-energy Andreev bound states, which manifest themselves in the tunnelling spectra as zero-bias conductance peaks (ZBCPs), are abundant at interfaces between superconductors and other materials and on the nodal surface of high-temperature superconductors. In this review, we focus on the information such excitations can provide on the properties of superconductor systems. First, a general introduction to the physics of Andreev bound states in superconductor/normal metal interfaces is given with a particular emphasis on why they appear at zero energy in d -wave superconductors. Then, specific spectroscopic tunnelling studies of thin films, bilayers and junctions are described, focusing on the corresponding ZBCP features. Scanning tunnelling spectroscopy (STS) studies show that the ZBCPs on the c -axis YBa 2 Cu 3 O 7- δ (YBCO) films are correlated with the surface morphology and appear only in proximity to (110) facets. STS on c -axis La 1.88 Sr 0.12 CuO 4 (LSCO) films exhibiting the 1/8 anomaly shows spatially modulated peaks near zero bias associated with the anti-phase ordering of the d -wave order parameter predicted at this doping level. ZBCPs were also found in micrometre-size edge junctions of YBCO/SrRuO 3 /YBCO, where SrRuO 3 is ferromagnetic. Here, the results are consistent with a crossed Andreev reflection effect (CARE) at the narrow domain walls of the SrRuO 3 ZBCPs measured in STS studies of manganite/cuprate bilayers could not be attributed to CARE because the manganite's domain wall is much larger than the coherence length in YBCO, and instead are attributed to proximity-induced triplet-pairing superconductivity with non-conventional symmetry. And finally, ZBCPs found in junctions of non-intentionally doped topological insulator films of Bi 2 Se 3 and the s -wave superconductor NbN are attributed to proximity-induced p x  + ip y triplet order parameter in the topological material.This article is part of the theme issue 'Andreev bound states'.

  2. Nanostructuring superconductors by ion beams: A path towards materials engineering

    Energy Technology Data Exchange (ETDEWEB)

    Gerbaldo, Roberto; Ghigo, Gianluca; Gozzelino, Laura; Laviano, Francesco [Department of Applied Science and Technology, Politecnico di Torino c.so Duca degli Abruzzi 24, 10129 Torino, Italy and INFN Sez. Torino, via P. Giuria 1, 10125 Torino (Italy); Amato, Antonino; Rovelli, Alberto [INFN Laboratori Nazionali del Sud, via S. Sofia 62, 95125 Catania (Italy); Cherubini, Roberto [INFN Laboratori Nazionali di Legnaro, viale dell' Universita 2, 35020 Legnaro (Italy)

    2013-07-18

    The paper deals with nanostructuring of superconducting materials by means of swift heavy ion beams. The aim is to modify their structural, optical and electromagnetic properties in a controlled way, to provide possibility of making them functional for specific applications. Results are presented concerning flux pinning effects (implantation of columnar defects with nanosize cross section to enhance critical currents and irreversibility fields), confined flux-flow and vortex guidance, design of devices by locally tailoring the superconducting material properties, analysis of disorder-induced effects in multi-band superconductors. These studies were carried out on different kinds of superconducting samples, from single crystals to thin films, from superconducting oxides to magnesium diboride, to recently discovered iron-based superconductors.

  3. The phenomenon of voltage controlled switching in disordered superconductors

    International Nuclear Information System (INIS)

    Ghosh, Sanjib; De Munshi, D

    2014-01-01

    The superconductor-to-insulator transition (SIT) is a phenomenon occurring in highly disordered superconductors and may be useful in the development of superconducting switches. The SIT has been demonstrated to be induced by different external parameters: temperature, magnetic field, electric field, etc. However, the electric field induced SIT (ESIT), which has been experimentally demonstrated for some specific materials, holds particular promise for practical device development. Here, we demonstrate, from theoretical considerations, the occurrence of the ESIT. We also propose a general switching device architecture using the ESIT and study some of its universal behavior, such as the effects of sample size, disorder strength and temperature on the switching action. This work provides a general framework for the development of such a device. (paper)

  4. Two-band superconductor magnesium diboride

    International Nuclear Information System (INIS)

    Xi, X X

    2008-01-01

    This review focuses on the most important features of the 40 K superconductor MgB 2 -the weakly interacting multiple bands (the σ and π bands) and the distinct multiple superconducting energy gaps (the σ and π gaps). Even though the pairing mechanism of superconductor MgB 2 is the conventional electron-phonon coupling, the prominent influence of the two bands and two gaps on its properties sets it apart from other superconductors. It leads to markedly different behaviors in upper critical field, vortex structure, magnetoresistance and many other superconducting and normal-state properties in MgB 2 from single-band superconductors. Further, it gives rise to new physics that does not exist in single-band superconductors, such as the internal Josephson effects between the two order parameters. These unique phenomena depend sensitively on scattering inside and between the two bands, and the intraband and interband scattering can be modified by chemical substitution and irradiation. MgB 2 has brought unprecedented attention to two-band superconductivity, which has been found to exist in other old and new superconductors. The legacy of MgB 2 will be long lasting because of this, as well as the lessons it teaches in terms of the search for new phonon-mediated higher T c superconductors

  5. Flux-pinning-induced stress and magnetostriction in bulk superconductors

    International Nuclear Information System (INIS)

    Johansen, Tom H.

    2000-01-01

    The development of bulk high-temperature superconductors (HTSs) and their applications has today come to a point where the mechanical response to high magnetic fields may be more important than their critical-current density and large-grain property. Reviewed in this article are the recent studies of the magneto-elastic effects which are caused by flux pinning in the superconductors. This includes the work on the giant irreversible magnetostriction and internal stress, which often cause fatal cracking of the HTS bulks as they become magnetized. The cracking is a problem that today accompanies the quest for the highest trapped field values, and the latest development in this area is also presented. While the first part is an overview of experimental efforts, the second summarizes the work done to model the pinning-induced stress and strain under various magnetic and geometrical conditions. (author)

  6. Superconductor Requirements and Characterization for High Field Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, E.; Zlobin, A. V.

    2015-05-01

    The 2014 Particle Physics Project Prioritization Panel (P5) strategic plan for U.S. High Energy Physics (HEP) endorses a continued world leadership role in superconducting magnet technology for future Energy Frontier Programs. This includes 10 to 15 T Nb3Sn accelerator magnets for LHC upgrades and a future 100 TeV scale pp collider, and as ultimate goal that of developing magnet technologies above 20 T based on both High Temperature Superconductors (HTS) and Low Temperature Superconductors (LTS) for accelerator magnets. To achieve these objectives, a sound conductor development and characterization program is needed and is herein described. This program is intended to be conducted in close collaboration with U.S. and International labs, Universities and Industry.

  7. Dielectric and diamagnetic susceptibilities near percolative superconductor-insulator transitions.

    Science.gov (United States)

    Loh, Yen Lee; Karki, Pragalv

    2017-10-25

    Coarse-grained superconductor-insulator composites exhibit a superconductor-insulator transition governed by classical percolation, which should be describable by networks of inductors and capacitors. We study several classes of random inductor-capacitor networks on square lattices. We present a unifying framework for defining electric and magnetic response functions, and we extend the Frank-Lobb bond-propagation algorithm to compute these quantities by network reduction. We confirm that the superfluid stiffness scales approximately as [Formula: see text] as the superconducting bond fraction p approaches the percolation threshold p c . We find that the diamagnetic susceptibility scales as [Formula: see text] below percolation, and as [Formula: see text] above percolation. For models lacking self-capacitances, the electric susceptibility scales as [Formula: see text]. Including a self-capacitance on each node changes the critical behavior to approximately [Formula: see text].

  8. Superconductor homopolar machines with liquid-metal contacts

    International Nuclear Information System (INIS)

    Aliyevsky, B.L.; Bazarnov, B.A.; Oktyabrsky, A.M.; Popov, N.N.; Sherstuk, A.G.; Shopen, D.P.

    1992-01-01

    Alongside with the power increase of Electric Superconductor (SC) Machines including Homopolar Machines (HM) there is a strong need of improving their working characteristics, raising the efficiency, reducing the superconductor consumption. In the paper, the results of investigating the mass, dimensional and energetic properties of SCHM are given which are illustrated by the calculation of homopolar generators in the band of nominal power per unit P n = (2-250) MW at the voltage of 12, 24, 60, 230 V and rotation frequency of 25 and 50 rps. Screened and unscreened HM of a cylindrical type with liquid-metal current collector devices (LCD) and inductor consisting of 2 opposing SC coils mounted in a fixed cryostat inside the rotating armature are investigated

  9. Processing of high-temperature superconductors at high strain rates

    International Nuclear Information System (INIS)

    Mamalis, A.G.; Pantazsopoulos, G.; Manolakos, D.E.; Szalay, A.

    2000-01-01

    This new book provides, for the first time, a systematic, unified presentation of all steps in the processing of high-temperature superconductor materials, ranging from synthesis of various systems to fabrication and industrial applications. Also covered are characterization techniques and current directions in research and development. The authors are leading specialists who bring to this new book their many years of experience in research, education and industrial engineering work in superconductor materials. This book is primarily focused on the bulk-fabrication techniques of high-temperature ceramic superconducting components, especially on the combination of dynamic powder-consolidation and subsequent deformation processing. The properties of these ceramics, which are difficult-to-form materials by applying conventional techniques, are combined for the net-shape manufacturing of such components for the construction of HTS deviceshor e llipsis. However, very important topics such as superconducting structures, chemical synthesis, film fabrication and characterization techniques are also reviewedhor e llipsis to provide a complete, comprehensive view of superconductors engineering

  10. Superconductors made of niobium germanide

    International Nuclear Information System (INIS)

    Newkirk, L.R.; Valencia, F.A.

    1976-01-01

    This invention concerns the superconductors and particularly the mass coatings of niobium germanide (Nb 3 Ge) exhibiting superconductor properties, as well as the compositions enabling them to be obtained, having transition temperatures of around 20 0 K or more. The invention proposes a composition of a material of the general formula Nb 3 Ge, containing from around 1 to around 10 at. % oxygen. Preferably, the material contains around 5 at. % of oxygen. The invention also proposes fabricated articles in which the compositions described above are associated with and joined to a metallic substrate. Hence, for instance, the present studies involving a superconducting power transmission line for direct current make it possible to envisage the use of conductors placed in a double envelope, enabling the superconducting element transmitting the current to be carried, whilst containing the cryogenic coolant. In this type of design, the coat of superconducting material surrounds a tube containing liquid helium or possibly liquid hydrogen if a sufficiently high superconduction transition temperature can be reached. The tube must be a good heat and electricity conductor in order to achieve good stability of the superconducting coating [fr

  11. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Riedel, T; Goebel, B; Wippich, D; Schirrmeister, P

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN 2 . More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  12. Raman spectra of SDW superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Rout, G.C. [Condensed Matter Physics Group, Department of Physics, Government Science College, Chatrapur, Orissa 761 020 (India)]. E-mail: gcr@iopb.res.in; Bishoyi, K.C. [P.G. Department of Physics, F.M. College (Autonomous), Balasore, Orissa 756 001 (India); Behera, S.N. [Institute of Physics, Bhubaneswar 751 005 (India)

    2005-03-15

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations.

  13. Raman spectra of SDW superconductors

    International Nuclear Information System (INIS)

    Rout, G.C.; Bishoyi, K.C.; Behera, S.N.

    2005-01-01

    We report the calculation of the phonon response of the coexistent spin density wave (SDW) and superconducting (SC) state and predict the observation of SC gap in the Raman spectra of rare-earth nickel borocarbide superconductors. The SDW state normally does not couple to the lattice and hence, the phonons in the system are not expected to be affected by the SDW state. But there is a possibility of observing SC gap mode in the Raman spectra of a SDW superconductor due to the coupling of the SC gap excitation to the Raman active phonons in the system via the electron-phonon (e-p) interaction. A theoretical model is used for the coexistent phase and electron-phonon interaction. Phonon Green's function is calculated by Zubarev's technique and the phonon self-energy due to e-p interaction which is given by electron density response function in the coexistent state corresponding to the SDW wave vector q = Q is evaluated. The results so obtained exhibit agreement with the experimental observations

  14. Modified entropic gravitation in superconductors

    International Nuclear Information System (INIS)

    Matos, Clovis Jacinto de

    2012-01-01

    Verlinde recently developed a theoretical account of gravitation in terms of an entropic force. The central element in Verlinde’s derivation is information and its relation with entropy through the holographic principle. The application of this approach to the case of superconductors requires to take into account that information associated with superconductor’s quantum vacuum energy is not stored on Planck size surface elements, but in four volume cells with Planck-Einstein size. This has profound consequences on the type of gravitational force generated by the quantum vacuum condensate in superconductors, which is closely related with the cosmological repulsive acceleration responsible for the accelerated expansion of the Universe. Remarkably this new gravitational type force depends on the level of breaking of the weak equivalence principle for cooper pairs in a given superconducting material, which was previously derived by the author starting from similar principles. It is also shown that this new gravitational force can be interpreted as a surface force. The experimental detection of this new repulsive gravitational-type force appears to be challenging.

  15. Position-sensitive superconductor detectors

    International Nuclear Information System (INIS)

    Kurakado, M.; Taniguchi, K.

    2016-01-01

    Superconducting tunnel junction (STJ) detectors and superconducting transition- edge sensors (TESs) are representative superconductor detectors having energy resolutions much higher than those of semiconductor detectors. STJ detectors are thin, thereby making it suitable for detecting low-energy X rays. The signals of STJ detectors are more than 100 times faster than those of TESs. By contrast, TESs are microcalorimeters that measure the radiation energy from the change in the temperature. Therefore, signals are slow and their time constants are typically several hundreds of μs. However, TESs possess excellent energy resolutions. For example, TESs have a resolution of 1.6 eV for 5.9-keV X rays. An array of STJs or TESs can be used as a pixel detector. Superconducting series-junction detectors (SSJDs) comprise multiple STJs and a single-crystal substrate that acts as a radiation absorber. SSJDs are also position sensitive, and their energy resolutions are higher than those of semiconductor detectors. In this paper, we give an overview of position-sensitive superconductor detectors.

  16. Radiation Limits for Nb3Sn Superconductors for ITER Magnets: A literature review

    International Nuclear Information System (INIS)

    Simon, N.J.

    1995-01-01

    The data base on radiation damage to Nb 3 Sn superconductors is compiled from the literature and assessed in this report. Nb 3 Sn superconductors are currently under procurement for use in ITER magnet prototypes. In contrast to the data base on insulation materials proposed for use in ITER magnets, the data base on the radiation damage of Nb 3 Sn is much more complete. Key results have often been confirmed by several groups at different institutions. The investigation of variables that influence radiation damage has also been much more complete for Nb 3 Sn than for insulators. Furthermore, in situ testing of superconducting parameters is much easier than in situ mechanical testing of insulators, and in situ testing has invariably been performed after cryogenic irradiation of Nb 3 Sn. However, in recent years, Nb 3 Sn testing has also suffered from the lack of 4-K irradiation facilities. Just as new processing methods to obtain more economical Nb 3 Sn conductor products in large quantity were being developed, cryogenic irradiation sources were being phased out. Therefore, this brief introductory section presents some basic information on the properties and structure of Nb 3 Sn superconducting composites and the distinctions between different fabrication processes. This provides a background to assess the adequacy of the current cryogenic data base on radiation damage, Also, since synergistic effects of strain and irradiation have recently been investigated, a brief discussion of the effects of strain on Nb 3 Sn properties is included in this introduction

  17. Superconductors and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Fahlenbrach, H

    1976-05-01

    A brief introduction is given to the physics and technology of superconductivity, covering the proposed application of V/sub 3/Ga and Nb/sub 3/Sn which have a Tc at 20K and of Nb/sub 3/Ge (in thin layers) with a Tc of up to 23K. A table is given of the latest materials with Tc values around 11K, and high Hc values (up to 440 kA/cm), all based on molybdenum compounds. A brief discussion of practical applications includes a Hover vehicle with linear motor propulsion and low current usage in measuring and computing devices based on the Josephson effect.

  18. Synthesis of highly phase pure BSCCO superconductors

    Science.gov (United States)

    Dorris, S.E.; Poeppel, R.B.; Prorok, B.C.; Lanagan, M.T.; Maroni, V.A.

    1995-11-21

    An article and method of manufacture (Bi, Pb)-Sr-Ca-Cu-O superconductor are disclosed. The superconductor is manufactured by preparing a first powdered mixture of bismuth oxide, lead oxide, strontium carbonate, calcium carbonate and copper oxide. A second powdered mixture is then prepared of strontium carbonate, calcium carbonate and copper oxide. The mixtures are calcined separately with the two mixtures then combined. The resulting combined mixture is then subjected to a powder in tube deformation and thermal processing to produce a substantially phase pure (Bi, Pb)-Sr-Ca-Cu-O superconductor. 5 figs.

  19. Two-dimensional Semiconductor-Superconductor Hybrids

    DEFF Research Database (Denmark)

    Suominen, Henri Juhani

    This thesis investigates hybrid two-dimensional semiconductor-superconductor (Sm-S) devices and presents a new material platform exhibiting intimate Sm-S coupling straight out of the box. Starting with the conventional approach, we investigate coupling superconductors to buried quantum well....... To overcome these issues we integrate the superconductor directly into the semiconducting material growth stack, depositing it in-situ in a molecular beam epitaxy system under high vacuum. We present a number of experiments on these hybrid heterostructures, demonstrating near unity interface transparency...

  20. Electromagnetic properties of metals and superconductors

    International Nuclear Information System (INIS)

    Sinha, K.P.

    1977-01-01

    Part 1: Metals. 1. Introduction. 1.1. Normal and anomalous skin effects. 2. Helicons and magneto-plasma waves. 3. Helicon-phonon interaction. 3.1. Magneto-plasma (Alfven) waves. 4. Cyclotron waves. 5. Spin waves in electron system. Part 2: Superconductors. 6. Introduction. 6.1. Response to weak electromagnetic fields. 7. Effect of strong radiation field on superconductors. 8. Laser-induced non-equilibrium state in superconductors. 9. Possibility of photon-induced electron pairing - one-boson processes. 10. Possibility of photon-induced electron pairing -two-boson processes. (author)

  1. Rf and microwave measurements at Los Alamos on oxide superconductors

    International Nuclear Information System (INIS)

    Migliori, A.; Reagor, D.W.; Peterson, D.E.; Willis, J.O.; Fisk, Z.; Smith, R.C.

    1988-01-01

    Los Alamos National Laboratory has made a substantial commitment to develop oxide superconductors for RF and microwave cavity applications. The program involves materials development, complete microstructure characterization, static thermal and electrical characterization, RF loss measurements and microwave complex-conductivity measurements. Of the high-frequency techniques, three are nearing completion and one has produced preliminary results. Those still under development include a 3 GHz Nb cavity capable of 4 K operation, a LN 2 -cooled 2.25 GHz copper cavity having a Q of 2 x 10 4 , capable of operation from 15 K to 300 K, and a picosecond-laser/photo-diode driven microstripline technique which will provide complex conductivity information from 20 GHz to 200 GHz and from 10 K to 300 K. Because all of the techniques employed sense the impedance of the samples, their sensitivity to intrinsic properties such as conductivity or surface resistance is dependent on sample geometry. However, for easily handled samples, the Nb cavity can detect losses at least four order of magnitude lower than copper, the copper cavity can detect losses two orders of magnitude lower than copper and the microstripline can detect losses comparable to copper. The technique which has produced results is a coaxial microwave bridge. In this work they report results of measurements on sintered samples using the bridge; future work will concentrate on films. 2 references, 1 figure

  2. Two classes of superconductors discovered in our material research: Iron-based high temperature superconductor and electride superconductor

    International Nuclear Information System (INIS)

    Hosono, Hideo

    2009-01-01

    We discovered two new classes of superconductors in the course of material exploration for electronic-active oxides. One is 12CaO . 7Al 2 O 3 crystal in which electrons accomodate in the crystallographic sub-nanometer-sized cavities. This material exhibiting metal-superconductor transition at 0.2 K is the first electride superconductor. The other is iron oxypnicitides with a layered structure. This superconductor is rather different from high T c cuprates in several respects. The high T c is emerged by doping carriers to the metallic parent phases which undergo crystallographic transition (tetra to ortho) and Pauli para to antiferromagnetic transition at ∼150 K. The T c is robust to impurity doping to the Fe sites or is induced by partial substitution of the Fe 2+ sites with Co 2+ or Ni 2+ . This article gives a brief summary of these discoveries and recent advances.

  3. An overview of the Fe-chalcogenide superconductors

    International Nuclear Information System (INIS)

    Wu, M K; Wen, Y C; Chen, T K; Chang, C C; Wu, P M; Wang, M J; Lin, P H; Lee, W C

    2015-01-01

    This review intends to summarize recent advancements in FeSe and related systems. The FeSe and related superconductors are currently receiving considerable attention for the high critical temperature (T C ) observed and for many similar features to the high T C cuprate superconductors. These similarities suggest that understanding the FeSe-based compounds could potentially help our understanding of the cuprates. We begin the review by presenting common features observed in the FeSe- and FeAs-based systems. Then we discuss the importance of careful control of the material preparation allowing for a systematic structure characterization. With this control, numerous rich phases have been observed. Importantly, we suggest that the Fe-vacancy ordered phases found in the FeSe-based compounds, which are non-superconducting magnetic Mott insulators, are the parent compounds of the superconductors. Superconductivity can emerge from the parent phases by disordering the Fe vacancy order, often by a simple annealing treatment. Then we review physical properties of the Fe chalcogenides, specifically the optical properties and angle-resolved photoemission spectroscopy (ARPES) results. From the literature, strong evidence points to the existence of orbital modification accompanied by a gap-opening, prior to the structural phase transition, which is closely related to the occurrence of superconductivity. Furthermore, strong lattice to spin coupling are important for the occurrence of superconductivity in FeSe. Therefore, it is believed that the iron selenides and related compounds will provide essential information to understand the origin of superconductivity in the iron-based superconductors, and possibly the superconducting cuprates. (topical review)

  4. Tunneling processes into localized subgap states in superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Ruby, Michael; Heinrich, Benjamin W.; Franke, Katharina J. [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Pientka, Falko; Peng, Yang; Oppen, Felix von [Freie Universitaet Berlin, Arnimallee 14, 14195 Berlin (Germany); Dahlem Center for Complex Quantum Systems, Freie Universitaet Berlin, 14195 Berlin (Germany)

    2016-07-01

    The Yu-Shiba-Rusinov states bound by magnetic impurities in conventional s-wave superconductors are a simple model system for probing the competition between superconducting and magnetic correlations. Shiba states can be observed in scanning tunneling spectroscopy (STS) as a pair of resonances at positive and negative bias voltages in the superconducting gap. These resonances have been interpreted in terms of single-electron tunneling into the localized sub-gap states. This requires relaxation mechanisms that depopulate the state after an initial tunneling event. Recently, theory suggests that the current can also be carried by Andreev processes which resonantly transfer a Cooper pair into the superconductor. We performed high-resolution STS experiments on single adatom Shiba states on the superconductor Pb, and provide evidence for the existence of two transport regimes. The single-electron processes dominate at large tip-sample distances and small tunneling currents, whereas Andreev processes become important at stronger tunneling. Our conclusions are based on a careful comparison of experiment and theory.

  5. Simulation of ion-beam induced defects in cuprate superconductors

    International Nuclear Information System (INIS)

    Dineva, M.; Marksteiner, M.; Lang, W.

    2005-01-01

    Full text: Heavy-ion irradiation of cuprate superconductors is well known to produce columnar defect tracks along which magnetic vortices can be pinned. Hence, this effect has a large potential for practical applications and can enhance the critical current of the high-temperature superconducting materials. On the other hand, little work has been devoted to light-ion irradiation of the new superconductors. Our previous experimental results have indicated a systematic change of electric transport properties when irradiating YBa 2 Cu 3 O 7 (YBCO) with 75 KEXV He + ions. The purpose of the present study is the investigation of the ion-target interactions with computer simulation programs based on the binary collision approximation. The program package SRIM (Stopping and Range of Ions in Matter) is widely used to simulate the impact of energetic ions (10 eV to 2 GeV) on a solid target using a quantum mechanical treatment of ion-atom collisions under the assumption of an unstructured target material. A similar program, MARLOWE, includes the exact crystalline structure of the target and, thus, is able to calculate ion channeling effects and angle dependences. Detailed results of the penetration range of ions into YBCO, scattering cascades, creation of vacancies and interstitials, are reported for various kinds of ions. One of the central results is that light ions with energy of about 80 KEXV can penetrate through thin films of the cuprate superconductors and create point defects, mainly by oxygen displacement. (author)

  6. Unconventional superconductors. Anisotropy and multiband effects

    Energy Technology Data Exchange (ETDEWEB)

    Askerzade, Iman [Ankara Univ. (Turkey). Center of Excellence of Superconductivity Research of Turkey; Azerbaijan National Academy of Sciences (Azerbaijan). Inst. of Physics

    2012-07-01

    This book deals with the new class of materials unconventional superconductors, cuprate compounds, borocarbides, magnesium-diboride and oxypnictides. It gives a systematical review of physical properties of novel superconductors. There is an increasing number of fundamental properties of these compounds which are relevant to future applications, opening new possibilities. The theoretical explanation is presented as generalization of Ginzburg-Landau phenomenology and microscopical Eliashberg theory for multiband and anisotropic superconductors. Various applications of this approaches and time dependent version of two-band Ginzburg-Landau theory are considered. An important topic are fluctuations in two-band and anisotropic superconductors. Significant new results on current problems are presented to stimulate further research. Numerous illustrations, diagrams and tables make this book useful as a reference for students and researchers. (orig.)

  7. Performance boundaries in Nb3Sn superconductors

    NARCIS (Netherlands)

    Godeke, A.

    2005-01-01

    Superconducting magnets for High Energy Physics, Fusion, Magnetic Resonance Imaging (NMR) and Nuclear Magnetic Resonance, benefit from the extremely high current densities that can be achieved in superconductors compared to normal conducting materials. These magnets are usually constructed starting

  8. Unconventional superconductors anisotropy and multiband effects

    CERN Document Server

    Askerzade, Iman

    2012-01-01

    This book deals with the new class of materials unconventional superconductors, cuprate compounds, borocarbides, magnesium-diboride and oxypnictides. It gives a systematical review of physical properties of novel  superconductors. There is an increasing number of fundamental properties of these compounds which are relevant to future applications, opening new possibilities. The theoretical explanation is presented as generalization of Ginzburg-Landau phenomenology and microscopical Eliashberg theory for multiband and anisotropic superconductors. Various applications of this approachs and time dependent version of two-band Ginzburg-Landau theory are considered. An important topic are fluctuations in two-band and anisotropic superconductors. Significant  new results on current problems are presented to stimulate further research. Numerous illustrations, diagrams and tables make this book useful as a reference for students and researchers.

  9. High Temperature Superconductor Bolometers for Planetary Science

    Data.gov (United States)

    National Aeronautics and Space Administration — This work is a design study of an instrument optimized for JPL's novel high temperature superconductor bolometers. The work involves designing an imaging...

  10. Progress of metallic superconductors in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji, E-mail: tacsuper@keyaki.cc.u-tokai.ac.jp [Faculty of Engineering, Tokai University, 4-1-1, Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan)

    2013-01-15

    Highlights: ► Japanese contributions on the R and D of different metallic superconductors are summarized. ► Nb–Ti wires have been developed for MRI, accelerator, MAGLEV train and other applications. ► Multifilamentary Nb{sub 3}Sn wires with excellent performance have been developed for high-field use. ► Long-length Nb{sub 3}Al wires with promising strain tolerance have been fabricated by a new process. -- Abstract: This article overviews the development of metallic superconductors in Japan covering different kinds of alloys and intermetallic compounds. Metallic superconductors have opened many new application areas in science and technology. Japan has been one of the leading countries in the world, both in the research and development and in large-scale manufacturing of metallic superconductors.

  11. High temperature superconductors and other superfluids

    CERN Document Server

    Alexandrov, A S

    2017-01-01

    Written by eminent researchers in the field, this text describes the theory of superconductivity and superfluidity starting from liquid helium and a charged Bose-gas. It also discusses the modern bipolaron theory of strongly coupled superconductors, which explains the basic physical properties of high-temperature superconductors. This book will be of interest to fourth year graduate and postgraduate students, specialist libraries, information centres and chemists working in high-temperature superconductivity.

  12. Searching for superconductors with high critical temperature

    Energy Technology Data Exchange (ETDEWEB)

    Chao, C

    1977-08-18

    Critical temperature of superconductors can be and must be raised so that their range of application can be broadened. It was estimated that, in 3 to 5 years, superconductor electric generators might be used in nuclear submarines and/or other applications where the requirements of small volume and light weight are critical. The BCS theory was recapitulated. Possible methods of achieving higher critical temperature were proposed and discussed.

  13. Force measurements for levitated bulk superconductors

    International Nuclear Information System (INIS)

    Tachi, Y.; Sawa, K.; Iwasa, Y.; Nagashima, K.; Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M.

    2000-01-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  14. Force measurements for levitated bulk superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Tachi, Y. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan). E-mail: tachi at istec.or.jp; Uemura, N. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan); Sawa, K. [Department of Electrical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama (Japan); Iwasa, Y. [Francis Bitter Magnet Laboratory, Massachusetts Institute of Technology, Cambridge, MA (United States); Nagashima, K. [Railway Technical Research Institute, Hikari-cho, Kokubunji-shi, Tokyo (Japan); Otani, T.; Miyamoto, T.; Tomita, M.; Murakami, M. [ISTEC, Superconductivity Research Laboratory, 1-16-25 Shibaura, Minato-ku, Tokyo (Japan)

    2000-06-01

    We have developed a force measurement system which enables us to directly measure the levitation force of levitated bulk superconductors. Experimental data of the levitation forces were compared with the results of numerical simulation based on the levitation model that we deduced in our previous paper. They were in fairly good agreement, which confirms that our levitation model can be applied to the force analyses for levitated bulk superconductors. (author)

  15. Electromagnetic theory for filamentary superconductors

    International Nuclear Information System (INIS)

    Carr, W.J. Jr.

    1975-01-01

    It is shown that a multifilament superconductor, made up of a bundle of twisted filaments embedded in a normal matrix, can be treated as a new state of matter with anisotropic electrical and magnetic properties. Macroscopic electromagnetic field vectors, which satisfy Maxwell's equations, are defined in terms of averages over the ''microscopic'' fields. However, the sources for the field, i.e., the current and charge densities and the magnetization and polarization, differ in some respects from those for ordinary matter. In particular, since the elementary magnetic dipole moments are distributed along lines rather than located at fixed points, the definition of the magnetization transverse to the filaments differs by a factor of 2 from that for ordinary matter, and the definition of the macroscopic current density is also slightly modified. Constitutive relationships among the field vectors in terms of permeabilities, dielectric constants, and conductivities are examined in the limits of strong and weak fields

  16. New possibilities for superconductor electronics

    International Nuclear Information System (INIS)

    Likharev, K.K.; Semenov, V.K.; Zorin, A.B.

    1989-01-01

    Situation in the superconducting electronics, the field being developed since mid '60s has changed drastically recently as a result of not only discovery of the high-T c superconductivity, but also of the nearly simultaneous invention of several novel electronic devices. A detailed analysis of the new situation and prospects of this important field was carried out recently by the present authors of this paper. A complete report on our analysis is being published elsewhere, while in this paper we are presenting a brief summary of its results. The analysis has shown that the virtually only advantage which can arise from applications of the high-T c superconductors in electronics is a drastic reduction of the refrigeration costs, rather than an improvement of the device performance

  17. Plutonium helps probe protein, superconductor

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Scientists are finding that plutonium can be a useful research tool that may help them answer important questions in fields as diverse as biochemistry and solid-state physics. This paper reports that U.S. research involving plutonium is confined to the Department of Energy's national laboratories and centers around nuclear weapons technology, waste cleanup and disposal, and health effects. But at Los Alamos National Laboratory, scientists also are using plutonium to probe the biochemical behavior of calmodulin, a key calcium-binding protein that mediates calcium-regulated processes in biological systems. At Argonne National Laboratory, another team is trying to learn how a superconductor's properties are affected by the 5f electrons of an actinide like plutonium

  18. Studies on advanced superconductors for fusion device. Pt. 2. Metallic superconductors other than Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, K.; Yamamoto, J.; Mito, T. [eds.

    1997-03-01

    A comprehensive report on the present status of the development of Nb{sub 3}Sn superconductors was published as the NIFS-MEMO-20 in March, 1996 (Part 1 of this report series). The second report of this study covers various progress so far achieved in the research and development on advanced metallic superconductors other than Nb{sub 3}Sn. Among different A15 crystal-type compounds, Nb{sub 3}Al has been fabricated into cables with large current-carrying capacity for fusion device referring its smaller sensitivity to mechanical strain than Nb{sub 3}Sn. Other high-field A15 superconductors, e.g. V{sub 3}Ga, Nb{sub 3}Ge and Nb{sub 3}(Al,Ge), have been also fabricated through different novel processes as promising alternatives to Nb{sub 3}Sn conductors. Meanwhile, B1 crystal-type NbN and C15 crystal-type V{sub 2}(Hf,Zr) high-field superconductors are characterized by their excellent tolerance to mechanical strain and neutron irradiation. Chevrel-type PbMo{sub 6}S{sub 8} compound has gained much interests due to its extremely high upper critical field. In addition, this report includes the recent progress in ultra-fine filamentary NbTi wires for AC use, and that in NbTi/Cu magnetic shields necessary in the application of high magnetic field. The data on the decay of radioactivity in a variety of metals relating to fusion superconducting magnet are also attached as appendices. We hope that this report might contribute substantially as a useful reference for the planning of fusion apparatus of next generation as well as that of other future superconducting devices. (author)

  19. Search for Majorana fermions in topological superconductors.

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Wei [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Shi, Xiaoyan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hawkins, Samuel D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Klem, John Frederick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).

  20. Magnetic properties of layered superconductors

    International Nuclear Information System (INIS)

    Mansky, P.A.

    1993-01-01

    The organic superconductors (BEDT-TTF) 2 Cu(SNC) 2 and (TMTSF) 2 ClO 4 , with T c = 10K and 1.2K, have layered and highly anisotropic crystal structures. This thesis describes AC magnetic susceptibility measurements on these materials which illustrate the consequences of the discrete layered structure for the magnetic properties of the superconducting state. A DC magnetic field applied parallel to the layers of either material causes the rapid suppression of the AC screening response, and this indicates that the pinning restoring force for vortex motion parallel to the layers is anomalously weak in this orientation. This is believed to be due to the small size of the interlayer coherence length relative to the layer spacing. A simple estimate based on the energy and length scales relevant to Josephson coupled layers gives the correct order of magnitude for the pinning force. Pinning for vortices oriented perpendicular to the layers is larger by a factor of 500 for BEDT and 25 for TMTSF. When the DC field is applied at an angle to the layers, the initial suppression of the susceptibility is identical to that for a field parallel to the layers; when the field component normal to the layers exceeds a threshold, a sharp recovery of screening occurs. These observations indicate that the field initially enters the sample only in the direction parallel to the layers. The recovery of screening signals field penetration in the perpendicular direction at higher field strength, and is due to the onset of pinning by in-plane vortex cores. This magnetic open-quotes lock-inclose quotes effect is a qualitatively new behavior and is a direct consequence of weak interlayer coupling. The London penetration depth associated with interlayer currents is found to be on the order of hundreds of microns, comparable to that of a Josephson junction, and two to three orders of magnitude larger than for conventional superconductors

  1. Coincident photoelectron spectroscopy on superconductors

    International Nuclear Information System (INIS)

    Voss, Stefan

    2011-01-01

    Aim of the performed experiments of this thesis was to attempt to detect Cooper pairs as carriers of the superconducting current directly by means of the photoelectric effect. The method of the coincident photoelectron spectroscopy aims thereby at the detection of two coherently emitted electrons by the interaction with a photon. Because electrostatic analyzers typically cover only a very small spatial angle, which goes along with very low coincidence rates, in connection with this thesis a time-of-flight projection system has been developed, which maps nearly the whole spatial angle on a position-resolving detector. The pulsed light source in form of special synchrotron radiation necessary for the measurement has been adjusted so weak, that only single photons could arrive at the sample. Spectroscoped were beside test measurements on silver layers both a lead monocrystal as representative of the classical BCS superconductors and monocrystalline Bi 2 Sr 2 CaCu 2 O 8 from the family of the high-temperature superconductors. With excitation energies up to 40 eV could be shown that sufficiently smooth and clean surfaces in the superconducting phase exhibit within the resolving power of about 0.5 eV no recognizable differences in comparison to the normally conducting phase. Beside these studies furthermore the simple photoemission at the different samples and especially in the case of the lead crystal is treated, because here no comparable results are known. Thereby the whole momentum space is discussed and the Fermi surface established as three-dimensional model, by means of which the measurement results are discussed. in the theoretical descriptions different models for the Cooper-pair production are presented, whereby to the momentum exchange with the crystal a special role is attributed, because this can only occur in direct excitations via discrete lattice vectors.

  2. Fundamental studies of superconductors using scanning magnetic imaging

    Science.gov (United States)

    Kirtley, J. R.

    2010-12-01

    In this review I discuss the application of scanning magnetic imaging to fundamental studies of superconductors, concentrating on three scanning magnetic microscopies—scanning SQUID microscopy (SSM), scanning Hall bar microscopy (SHM) and magnetic force microscopy (MFM). I briefly discuss the history, sensitivity, spatial resolution, invasiveness and potential future developments of each technique. I then discuss a selection of applications of these microscopies. I start with static imaging of magnetic flux: an SSM study provides deeper understanding of vortex trapping in narrow strips, which are used to reduce noise in superconducting circuitry. Studies of vortex trapping in wire lattices, clusters and arrays of rings and nanoholes show fascinating ordering effects. The cuprate high-Tc superconductors are shown to have predominantly d-wave pairing symmetry by magnetic imaging of the half-integer flux quantum effect. Arrays of superconducting rings act as a physical analog for the Ising spin model, with the half-integer flux quantum effect helping to eliminate one source of disorder in antiferromagnetic arrangements of the ring moments. Tests of the interlayer tunneling model show that the condensation energy available from this mechanism cannot account for the high critical temperatures observed in the cuprates. The strong divergence in the magnetic fields of Pearl vortices allows them to be imaged using SSM, even for penetration depths of a millimeter. Unusual vortex arrangements occur in samples comparable in size to the coherence length. Spontaneous magnetization is not observed in Sr2RuO4, which is believed to have px ± ipy pairing symmetry, although effects hundreds of times bigger than the sensitivity limits had been predicted. However, unusual flux trapping is observed in this superconductor. Finally, unusual flux arrangements are also observed in magnetic superconductors. I then turn to vortex dynamics: imaging of vortices in rings of highly underdoped

  3. Fundamental studies of superconductors using scanning magnetic imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kirtley, J R [Center for Probing the Nanoscale, Stanford University, Stanford, CA (United States)

    2010-12-01

    In this review I discuss the application of scanning magnetic imaging to fundamental studies of superconductors, concentrating on three scanning magnetic microscopies-scanning SQUID microscopy (SSM), scanning Hall bar microscopy (SHM) and magnetic force microscopy (MFM). I briefly discuss the history, sensitivity, spatial resolution, invasiveness and potential future developments of each technique. I then discuss a selection of applications of these microscopies. I start with static imaging of magnetic flux: an SSM study provides deeper understanding of vortex trapping in narrow strips, which are used to reduce noise in superconducting circuitry. Studies of vortex trapping in wire lattices, clusters and arrays of rings and nanoholes show fascinating ordering effects. The cuprate high-T{sub c} superconductors are shown to have predominantly d-wave pairing symmetry by magnetic imaging of the half-integer flux quantum effect. Arrays of superconducting rings act as a physical analog for the Ising spin model, with the half-integer flux quantum effect helping to eliminate one source of disorder in antiferromagnetic arrangements of the ring moments. Tests of the interlayer tunneling model show that the condensation energy available from this mechanism cannot account for the high critical temperatures observed in the cuprates. The strong divergence in the magnetic fields of Pearl vortices allows them to be imaged using SSM, even for penetration depths of a millimeter. Unusual vortex arrangements occur in samples comparable in size to the coherence length. Spontaneous magnetization is not observed in Sr{sub 2}RuO{sub 4}, which is believed to have p{sub x} {+-} ip{sub y} pairing symmetry, although effects hundreds of times bigger than the sensitivity limits had been predicted. However, unusual flux trapping is observed in this superconductor. Finally, unusual flux arrangements are also observed in magnetic superconductors. I then turn to vortex dynamics: imaging of vortices

  4. Strong nonequilibrium coherent states in mesoscopic superconductor-semiconductor-superconductor junctions

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Wildt, Morten; Taboryski, Rafael Jozef

    1999-01-01

    A biased superconductor-normal metal-superconductor junction is known to be a strong nonequilibrium system, where Andreev scattering at the interfaces creates a quasiparticle distribution function far from equilibrium, a manifestation of this is the well-known subgap structure in the I...

  5. Superconductor-semiconductor-superconductor planar junctions of aluminium on DELTA-doped gallium arsenide

    DEFF Research Database (Denmark)

    Taboryski, Rafael Jozef; Clausen, Thomas; Kutchinsky, jonatan

    1997-01-01

    We have fabricated and characterized planar superconductor-semiconductor-superconductor (S-Sm-S) junctions with a high quality (i.e. low barrier) interface between an n++ modulation doped conduction layer in MBE grown GaAs and in situ deposited Al electrodes. The Schottky barrier at the S...

  6. Superconductors

    International Nuclear Information System (INIS)

    Newkirk, L.R.; Valencia, F.A.

    1977-01-01

    The structural quality of niobium germanide as a high-transition-temperature superconducting material is substantially improved by the presence of about 5 at. percent oxygen. Niobium germanide having this oxygen content may readily be prepared as a bulk coating bonded to a metallic substrate by chemical vapor deposition techniques. 2 figures, 1 table

  7. Superconductors

    Science.gov (United States)

    Newkirk, Lawrence R.; Valencia, Flavio A.

    1977-02-01

    The structural quality of niobium germanide as a high-transition-temperature superconducting material is substantially improved by the presence of about 5 at. % oxygen. Niobium germanide having this oxygen content may readily be prepared as a bulk coating bonded to a metallic substrate by chemical vapor deposition techniques.

  8. Maglev system concept using 20-K high-temperature superconductors and hyperconductors

    Science.gov (United States)

    Hull, J. R.; He, Jianliang

    A magnetically levitated high-speed ground transportation concept is proposed that uses high-temperature superconductors or hyperconductors, cooled by liquid hydrogen at 20 K, to provide levitation. An on-board hydrogen-powered turbine/generator provides electricity for propulsion by linear induction motors. The liquid hydrogen is used to cool the superconductors and the windings of the generator and motors before combusting in the turbine. The principal advantage of this system is the potential to greatly reduce the cost of the guideway, which is completely passive.

  9. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  10. Manipulatable Andreev reflection due to the interplay between the DIII-class topological and s-wave superconductors

    Science.gov (United States)

    Wang, Xiao-Qi; Yi, Guang-Yu; Han, Yu; Jiang, Cui; Gong, Wei-Jiang

    2018-07-01

    We construct one mesoscopic circuit in which one quantum dot couples to one DIII-class topological superconductor and one s-wave superconductor, in addition to its connection with the metallic lead. And then, the Andreev reflection current in the metallic lead is evaluated. It is found that the two kinds of superconductors drive the Andreev reflection in the constructive manner. Next as finite superconducting phase difference is taken into account, the Andreev reflection oscillates in period π/2, and it can be suppressed in the low-energy region if the superconducting phase difference is (n + 1/2) π/2 (n ∈ Integer). Such a result is almost independent of the increase of the intradot Coulomb interaction. Therefore, this structure can assist to realize the manipulation of the Andreev reflection. Also, the result in this work provides useful information for understanding the property of the DIII-class topological superconductor.

  11. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning x-ray microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ruoss, Stephen; Stahl, Claudia; Weigand, Markus; Schuetz, Gisela [Max-Planck-Institut fuer Intelligente Systeme, Stuttgart (Germany); Albrecht, Joachim [Research Institute for Innovative Surfaces, FINO, Aalen University (Germany)

    2015-07-01

    The penetration of magnetic flux into the high-temperature superconductor YBCO has been observed using a new high-resolution technique based on X-ray magnetic circular dichroism (XMCD). Superconductors coated with thin soft magnetic layers of CoFeB are observed in a scanning x-ray microscope providing cooling of the sample down to 83 K under the influence of external magnetic fields. Resulting electrical currents create an inhomogeneous magnetic field distribution above the superconductor which leads to a local reorientation of the ferromagnetic layer. X-ray absorption measurements with circular polarized radiation allows the analysis of the magnetic flux distribution in the superconductor via the ferromagnetic layer. In this work we present first images taken at 83K with high spatial resolution in the nanoscale.

  12. First-principles calculation of the transition temperature Tc for HgBa2CuO4+δ high-temperature superconductors via dipolon theory

    International Nuclear Information System (INIS)

    Downs, D.; Sharma, R.R.

    1995-01-01

    First numerical evaluations of T c for oxygenated and argon-reduced single-layered HgBa 2 CuO 4+δ superconductors have been presented. Our calculations are based on the dipolon theory and are found to provide an explanation for the occurrence of superconductivity in single-layered high-T c superconductors. Relevant expressions useful for the evaluation of T c have been given. Since the polarizabilities of the ions are not known exactly for the present systems we have performed calculations making use of Pauling's as well as Tessman, Kahn, and Shockley's polarizabilities in order to estimate the uncertainties in the calculated values of T c associated with uncertainties in the polarizabilities. The effective charges on the ions required for the evaluation of dipoles and dipolon frequencies have been obtained by means of the bond-valence sums. Without fitting with any parameters, our calculations yield T c values equal to 80±21 K for the oxygenated and 50±27 K for the argon-reduced HgBa 2 CuO 4+δ superconductors, in agreement with the corresponding experimental values 95 and 59 K. The uncertainties in the calculated values of T c arise because of the uncertainties in various physical parameters (including polarizabilities) used and due to errors involved in the calculations. The present results are consistent with the observed electronic Raman-scattering intensities which show anomalously broad peaks extended up to several electron volts in cuprate high-T c superconductors. Our calculated dipolon density of states predict four optical absorption peaks at about 77 cm -1 , 195 cm -1 , 1.6 eV, and 2.5 eV

  13. Superconductors, analysis and applications, with special reference to the utilisation of bulk (Re)BCO materials

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A., E-mail: tac1000@cam.ac.u [University of Cambridge, Department of Engineering, Trumpington Street, Cambridge CB2 1PZ (United Kingdom)

    2010-11-01

    The Electrical Power and Energy Conversion (EPEC) superconductivity group at Cambridge University has been working on the application of superconductivity to large scale devices. This work is taking place over a range of areas which cover FCLs, motors and generators, SMES, accelerator magnets and MRI. The research is underpinned by advanced modelling techniques using both pure Critical State models and E-J models to analyse the behaviour of the superconductors. As part of the device design we are concentrating on the analysis of AC losses in complicated geometries such as are found in motor windings and the magnetisation of bulk superconductors to enable their full potential to be realised. We are interested in the full range of high-temperature superconductors and have measured and predicted the performance of YBCO, MgB{sub 2} and BSCCO at a range of temperatures and in wire, tape and bulk forms. This paper concentrates on recent work which includes: modelling of coils using formulations based on H and A. A critical state model for the analysis of coils in SMES; crossed field effects in bulk superconductors; a magnetic model together with experimental results which explain and describe the method of flux pumping whereby a bulk superconductor can be magnetised to a high flux density using a repeatedly applied field of low flux density and finally a new configuration for MRI magnets

  14. Spatially resolved electronic structure inside and outside the vortex cores of a high-temperature superconductor

    Science.gov (United States)

    Mitrović, V. F.; Sigmund, E. E.; Eschrig, M.; Bachman, H. N.; Halperin, W. P.; Reyes, A. P.; Kuhns, P.; Moulton, W. G.

    2001-10-01

    Puzzling aspects of high-transition-temperature (high-Tc) superconductors include the prevalence of magnetism in the normal state and the persistence of superconductivity in high magnetic fields. Superconductivity and magnetism generally are thought to be incompatible, based on what is known about conventional superconductors. Recent results, however, indicate that antiferromagnetism can appear in the superconducting state of a high-Tc superconductor in the presence of an applied magnetic field. Magnetic fields penetrate a superconductor in the form of quantized flux lines, each of which represents a vortex of supercurrents. Superconductivity is suppressed in the core of the vortex and it has been suggested that antiferromagnetism might develop there. Here we report the results of a high-field nuclear-magnetic-resonance (NMR) imaging experiment in which we spatially resolve the electronic structure of near-optimally doped YBa2Cu3O7-δ inside and outside vortex cores. Outside the cores, we find strong antiferromagnetic fluctuations, whereas inside we detect electronic states that are rather different from those found in conventional superconductors.

  15. Design study of SMES system using high temperature superconductors

    International Nuclear Information System (INIS)

    Yoshihara, T.; Masuda, M.; Shintomi, T.; Hasegawa, J.

    1988-01-01

    Various studies of high Tc superconductors are being energetically pursued all over the world, since IBM Zurich Research Laboratory reported on the superconducting oxide. A new design using a high Tc superconductor is under study for 5000 MWh, on the assumption that it is available like conventional superconductors. Problems related to the Tc SMES system, mainly thermal insulation, refrigeration system, stability of superconductors, etc., are considered. Some design examples of high Tc SMES system are proposed

  16. Dynamics of superconductor bearings in a cryogenic failure

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Amit [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)]. E-mail: Amit.Rastogi@avizatechnology.com; Campbell, A.M. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom); Coombs, T.A. [Department of Engineering, Cambridge University, Cambridge CB2 1PZ (United Kingdom)

    2006-08-01

    The dynamics of superconductor bearings in a cryogenic failure scenario have been analyzed. As the superconductor warms up, the rotor goes through multiple resonance frequencies, begins to slow down and finally touches down when the superconductor goes through its transition temperature. The bearing can be modelled as a system of springs with axial, radial and cross stiffness. These springs go through various resonant modes as the temperature of the superconductor begins to rise. We have presented possible explanations for such behaviour.

  17. Proximity coupling in superconductor-graphene heterostructures

    Science.gov (United States)

    Lee, Gil-Ho; Lee, Hu-Jong

    2018-05-01

    This review discusses the electronic properties and the prospective research directions of superconductor-graphene heterostructures. The basic electronic properties of graphene are introduced to highlight the unique possibility of combining two seemingly unrelated physics, superconductivity and relativity. We then focus on graphene-based Josephson junctions, one of the most versatile superconducting quantum devices. The various theoretical methods that have been developed to describe graphene Josephson junctions are examined, together with their advantages and limitations, followed by a discussion on the advances in device fabrication and the relevant length scales. The phase-sensitive properties and phase-particle dynamics of graphene Josephson junctions are examined to provide an understanding of the underlying mechanisms of Josephson coupling via graphene. Thereafter, microscopic transport of correlated quasiparticles produced by Andreev reflections at superconducting interfaces and their phase-coherent behaviors are discussed. Quantum phase transitions studied with graphene as an electrostatically tunable 2D platform are reviewed. The interplay between proximity-induced superconductivity and the quantum-Hall phase is discussed as a possible route to study topological superconductivity and non-Abelian physics. Finally, a brief summary on the prospective future research directions is given.

  18. Pinning and creep in high-Tc superconductors

    International Nuclear Information System (INIS)

    Ovchinnikov, Yu.N.; Ivlev, B.I.

    1992-01-01

    The angular and magnetic field dependence of a critical current parallel to the layers in the layered superconductors is studied. The critical current value is found for a superconductor with strong pinning centers. Quantum flux creep in sufficiently perfect layered high-Tc superconductors is discussed. The cross-over temperature between activated and quantum creep is found. (orig.)

  19. Effect of shear stress on electromagnetic behaviors in superconductor-ferromagnetic bilayer structure

    Science.gov (United States)

    Yong, Huadong; Zhao, Meng; Jing, Ze; Zhou, Youhe

    2014-09-01

    In this paper, the electromagnetic response and shielding behaviour of superconductor-ferromagnetic bilayer structure are studied. The magnetomechanical coupling in ferromagnetic materials is also considered. Based on the linear piezomagnetic coupling model and anti-plane shear deformation, the current density and magnetic field in superconducting strip are obtained firstly. The effect of shear stress on the magnetization of strip is discussed. Then, we consider the magnetic cloak for superconductor-ferromagnetic bilayer structure. The magnetic permeability of ferromagnetic material is obtained for perfect cloaking in uniform magnetic field with magnetomechanical coupling in ferromagnet. The simulation results show that the electromagnetic response in superconductors will change by applying the stress only to the ferromagnetic material. In addition, the performance of invisibility of structure for non-uniform field will be affected by mechanical stress. It may provide a method to achieve tunability of superconducting properties with mechanical loadings.

  20. Prediction of inorganic superconductors with quasi-one-dimensional crystal structure

    International Nuclear Information System (INIS)

    Volkova, L M; Marinin, D V

    2013-01-01

    Models of superconductors having a quasi-one-dimensional crystal structure based on the convoluted into a tube Ginzburg sandwich, which comprises a layered dielectric–metal–dielectric structure, have been suggested. The critical crystal chemistry parameters of the Ginzburg sandwich determining the possibility of the emergence of superconductivity and the T c value in layered high-T c cuprates, which could have the same functions in quasi-one-dimensional fragments (sandwich-type tubes), have been examined. The crystal structures of known low-temperature superconductors, in which one can mark out similar quasi-one-dimensional fragments, have been analyzed. Five compounds with quasi-one-dimensional structures, which can be considered as potential parents of new superconductor families, possibly with high transition temperatures, have been suggested. The methods of doping and modification of these compounds are provided. (paper)

  1. Block copolymer self-assembly–directed synthesis of mesoporous gyroidal superconductors

    Science.gov (United States)

    Robbins, Spencer W.; Beaucage, Peter A.; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G.; Sethna, James P.; DiSalvo, Francis J.; Gruner, Sol M.; Van Dover, Robert B.; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly–directed sol-gel–derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (Tc) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (Jc) of 440 A cm−2 at 100 Oe and 2.5 K. We expect block copolymer self-assembly–directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies. PMID:27152327

  2. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    Science.gov (United States)

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  3. Phase transitions and transport in anisotropic superconductors with large thermal fluctuations

    International Nuclear Information System (INIS)

    Fisher, D.S.

    1991-01-01

    Fluctuation effects in conventional superconductors such as broadening of phase transitions and flux creep tend to be very small primarily because of the large coherence lengths. Thus mean field theory, with only small fluctuation corrections, usually provides an adequate description of these systems. Regimes in which fluctuation effects cause qualitatively different physics are very difficult to study as they typically occur in very small regions of the phase diagram or, in transport, require measuring extremely small voltages. In striking contrast, in the high temperature cuprate superconductors a combination of factors - short coherence lengths, anisotropy and higher temperatures - make fluctuation effects many orders of magnitude larger. The current understanding of transport and phase transitions in the cuprate superconductors-particularly YBCO and BSCCO-is reviewed. New results are presented on the two-dimensional regimes and 2D-3D crossover in the strongly anisotropic case of BSCCO. The emphasis is on pinning and vortex glass behavior

  4. Triplet superconductors as the basis for solid-state quantum computing

    International Nuclear Information System (INIS)

    Gulian, A M; Wood, K S

    2003-01-01

    We propose triplet superconductors, such as ruthenates, as prospective materials for qubit construction. The vectorial nature of the order parameter in triplet superconductors makes it conceptually easy to estimate the performance of the qubits. The Cooper condensate of pairs in triplet superconductors has all the attributes of Bose-Einstein condensates and should facilitate long decoherence times for these qubits, relative to other vectorial schemes for qubits, such as small ferromagnets. There are other benefits, which the superconducting state provides for requirements such as entanglement between qubits via the proximity effect, etc. We consider these benefits in detail, although our consideration is only preliminary and further experimental and theoretical research will undoubtedly introduce correctives

  5. Interaction of a Bose–Einstein condensate and a superconductor via eddy currents

    International Nuclear Information System (INIS)

    Sapina, Igor; Dahm, Thomas

    2013-01-01

    We study center-of-mass oscillations of a dipolar Bose–Einstein condensate in the vicinity of a superconducting surface. We show that the magnetic field of the magnetic dipoles induces eddy currents in the superconductor, which act back on the Bose–Einstein condensate. This leads to a shift of its oscillation frequency and to an anharmonic coupling of the Bose–Einstein condensate with the superconductor. The anharmonicity creates a coupling to one of the collective modes of the condensate that can be resonantly enhanced if the parameters of the condensate are chosen properly. This provides a new physical mechanism to couple a Bose–Einstein condensate and a superconductor, which becomes significant for 52 Cr, 168 Er or 164 Dy condensates in superconducting microtraps. (paper)

  6. The design of high-Tc superconductors - Room-temperature superconductivity?

    International Nuclear Information System (INIS)

    Tallon, J.L.; Storey, J.G.; Mallett, B.

    2012-01-01

    This year is the centennial of the discovery of superconductivity and the 25th anniversary of the discovery of high-T c superconductors (HTS). Though we still do not fully understand how HTS work, the basic rules of design can be determined from studying their systematics. We know what to do to increase T c and, more importantly, what to do to increase critical current density J c . This in turn lays down a challenge for the chemist. Can the ideal design be synthesized? More importantly, what are the limits? Can one make a room-temperature superconductor? In fact fluctuations place strict constraints on this objective and provide important guidelines for the design of the ideal superconductor.

  7. High temperature superconductors at optimal doping

    Directory of Open Access Journals (Sweden)

    W. E. Pickett

    2006-09-01

    Full Text Available   Intensive study of the high temperature superconductors has been ongoing for two decades. A great deal of this effort has been devoted to the underdoped regime, where the new and difficult physics of the doped Mott insulator has met extra complications including bilayer coupling/splitting, shadow bands, and hot spots. While these complications continue to unfold, in this short overview the focus is moved to the region of actual high-Tc, that of optimal doping. The focus here also is not on the superconducting state itself, but primarily on the characteristics of the normal state from which the superconducting instability arises, and even these can be given only a broad-brush description. A reminder is given of two issues,(i why the “optimal Tc” varies,for n-layered systems it increases for n up to 3, then decreases for a given n, Tc increases according to the ‘basis’ atom in the order Bi, Tl, Hg (ii how does pressure, or a particular uniaxial strain, increase Tc when the zero-strain system is already optimally doped?

  8. Terahertz Generation & Vortex Motion Control in Superconductors

    Science.gov (United States)

    Nori, Franco

    2005-03-01

    A grand challenge is to controllably generate electromagnetic waves in layered superconducting compounds because of its Terahertz frequency range. We propose [1] four experimentally realizable devices for generating continuous and pulsed THz radiation in a controllable frequency range. We also describe [2-4] several novel devices for controlling the motion of vortices in superconductors, including a reversible rectifier made of a magnetic-superconducting hybrid structure [4]. Finally, we summarize a study [5] of the friction force felt by moving vortices. 1) S. Savel'ev, V. Yampol'skii, A. Rakhmanov, F. Nori, Tunable Terahertz radiation from Josephson vortices, preprint 2) S. Savel'ev and F. Nori, Experimentally realizable devices for controlling the motion of magnetic flux quanta, Nature Mat. 1, 179 (2002) 3) S. Savel'ev, F. Marchesoni, F. Nori, Manipulating small particles, PRL 92, 160602 (2004); B. Zhu, F. Marchesoni, F. Nori, Controlling the motion of magnetic flux quanta, PRL 92, 180602 (2004) 4) J.E. Villegas, et al., Reversible Rectifier that Controls the Motion of Magnetic Flux Quanta, Science 302, 1188 (2003) 5) A. Maeda, et al., Nano-scale friction: kinetic friction of magnetic flux quanta and charge density waves, preprint

  9. Growth and characterization of bulk superconductor material

    CERN Document Server

    Chen, Dapeng; Maljuk, Andrey; Zhou, Fang

    2016-01-01

    This book focuses on recently developed crystal growth techniques to grow large and high quality superconducting single crystals. The techniques applied are traveling solvent floating zone (TSFZ) with infrared image furnace, Bridgeman, solution/flux and top seeded solution growth (TSSG) methods. The materials range from cuprates, cobaltates to pnictides including La2CuO4-based (LCO), YBa2Cu3O7-d (YBCO), Bi2Sr2Can−1CunO2n+4+δ (n=1,2,3) (BSCCO) to NaxCoO2. The modified Bridgman “cold finger” method is devoted to the pnictide system with the best quality (transition width DTc~0.5 K) with highest Tc~38.5 K of Ba0.68K0.32Fe2A2. The book presents various iron-based superconductors with different structures, such as 1111, 122, 111, 11 and 42622,10-3-8. Detailed single crystal growth methods (fluxes, Bridgman, floating zone), the associated procedures and their impact to crystal size and quality are presented. The book also describes the influence of doping on the structure and the electric, magnetic, and supe...

  10. Lifshitz scaling effects on holographic superconductors

    International Nuclear Information System (INIS)

    Lu, Jun-Wang; Wu, Ya-Bo; Qian, Peng; Zhao, Yue-Yue; Zhang, Xue; Zhang, Nan

    2014-01-01

    Via numerical and analytical methods, the effects of the Lifshitz dynamical exponent z on the holographic superconductor models are studied in some detail, including s-wave and p-wave models. Working in the probe limit, we calculate the condensation and conductivity in both Lifshitz black hole and soliton backgrounds with a general z. For both the s-wave and p-wave models in the black hole backgrounds, as z increases, the phase transition becomes difficult and the conductivity is suppressed. For the Lifshitz soliton background, when z increases, the critical chemical potential increases in both the s-wave model (with a fixed mass of the scalar field) and p-wave model. For the p-wave model in both the Lifshitz black hole and soliton backgrounds, the anisotropy between the AC conductivity in different spatial directions is suppressed when z increases. In all cases, we find that the critical exponent of the condensation is always 1/2, independent of z and spacetime dimension. The analytical results from the Sturm–Liouville variational method uphold the numerical calculations. The implications of these results are discussed

  11. The color of polarization in cuprate superconductors

    International Nuclear Information System (INIS)

    Hoff, H.A.; Osofsky, M.S.; Lechter, W.L.; Pande, C.S.

    1991-01-01

    A technique for the identification of individual anisotropic grains in a heterogeneous and opaque material involves the observation of grain color in reflected light through crossed polarizers (color of polarization). Such colors are generally characteristic of particular phases. When grains of many members of the class of hole carrier cuprate superconductors are so viewed at room temperature with a 'daylight' source, a characteristic color of polarization is observed. This color was studied in many of these cuprate superconductors and a strong correlation was found between color and the existence of superconductivity. Two members were also examined of the electron cuprate superconductors and it was found that they possess the same color of polarization as the hole carrier cuprate superconductors so far examined. The commonality of the characteristic color regardless of charge carrier indicates that the presence of this color is independent of carrier type. The correlation of this color with the existence of superconductivity in the cuprate superconductors suggests that the origin of the color relates to the origin of superconductivity. Photometric techniques are also discussed

  12. Low-temperature rapid synthesis and superconductivity of Fe-based oxypnictide superconductors.

    Science.gov (United States)

    Fang, Ai-Hua; Huang, Fu-Qiang; Xie, Xiao-Ming; Jiang, Mian-Heng

    2010-03-17

    Fe-based oxypnictide superconductors were successfully synthesized at lower reaction temperatures and with shorter reaction times made possible by starting with less stable compounds, which provide a larger driving force for reactions. Using ball-milled powders of intermediate compounds, phase-pure superconductors with T(c) above 50 K were synthesized at 1173 K in 20 min. This method is particularly advantageous for retaining F, a volatile dopant that enhances superconductivity. Bulk superconductivity and high upper critical fields up to 392 T in Sm(0.85)Nd(0.15)FeAsO(0.85)F(0.15) were demonstrated.

  13. Cold atoms near superconductors: atomic spin coherence beyond the Johnson noise limit

    International Nuclear Information System (INIS)

    Kasch, B; Hattermann, H; Cano, D; Judd, T E; Zimmermann, C; Kleiner, R; Koelle, D; Fortagh, J; Scheel, S

    2010-01-01

    We report on the measurement of atomic spin coherence near the surface of a superconducting niobium wire. As compared to normal conducting metal surfaces, the atomic spin coherence is maintained for time periods beyond the Johnson noise limit. The result provides experimental evidence that magnetic near-field noise near the superconductor is strongly suppressed. Such long atomic spin coherence times near superconductors open the way towards the development of coherently coupled cold atom/solid state hybrid quantum systems with potential applications in quantum information processing and precision force sensing.

  14. Force balance on two-dimensional superconductors with a single moving vortex

    Science.gov (United States)

    Chung, Chun Kit; Arahata, Emiko; Kato, Yusuke

    2014-03-01

    We study forces on two-dimensional superconductors with a single moving vortex based on a recent fully self-consistent calculation of DC conductivity in an s-wave superconductor (E. Arahata and Y. Kato, arXiv:1310.0566). By considering momentum balance of the whole liquid, we attempt to identify various contributions to the total transverse force on the vortex. This provides an estimation of the effective Magnus force based on the quasiclassical theory generalized by Kita [T. Kita, Phys. Rev. B, 64, 054503 (2001)], which allows for the Hall effect in vortex states.

  15. Magnetization hysteresis and history effects in conventional and high temperature superconductors

    International Nuclear Information System (INIS)

    Chaddah, P.

    1990-01-01

    The magnetization in hard superconductors is irreversible and history-dependent, and cannot be a priori compared with the equilibrium magnetization. These features have gained prominence in the high T c superconductors (HTSC) where the short coherence length presumably leads to intrinsic pinning. Various experimental features, first noticed in the HTSC, are explained by an extension of Bean's macroscopic model to include temperature variations and the field dependence of J c . This paper discusses recent measurements of history effects in niobium and show their similarities with other published data on HTSC. The authors also present our calculations of magnetization behaviour in hard superconductors of sample-shapes having a non-zero demagnetization factor

  16. Tunneling Conductance in Ferromagnetic Metal/Normal Metal/Spin-Singlet -Wave Ferromagnetic Superconductor Junctions

    Directory of Open Access Journals (Sweden)

    Hamidreza Emamipour

    2013-01-01

    Full Text Available In the framework of scattering theory, we study the tunneling conductance in a system including two junctions, ferromagnetic metal/normal metal/ferromagnetic superconductor, where ferromagnetic superconductor is in spin-singlet -wave pairing state. The non-magnetic normal metal is placed in the intermediate layer with the thickness ( which varies from 1 nm to 10000 nm. The interesting result which we have found is the existence of oscillations in conductance curves. The period of oscillations is independent of FS and FN exchange field while it depends on . The obtained results can serve as a useful tool to determine the kind of pairing symmetry in ferromagnetic superconductors.

  17. Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures.

    Science.gov (United States)

    Shaw, G; Brisbois, J; Pinheiro, L B G L; Müller, J; Blanco Alvarez, S; Devillers, T; Dempsey, N M; Scheerder, J E; Van de Vondel, J; Melinte, S; Vanderbemden, P; Motta, M; Ortiz, W A; Hasselbach, K; Kramer, R B G; Silhanek, A V

    2018-02-01

    We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data are complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.

  18. Quantitative magneto-optical investigation of superconductor/ferromagnet hybrid structures

    Science.gov (United States)

    Shaw, G.; Brisbois, J.; Pinheiro, L. B. G. L.; Müller, J.; Blanco Alvarez, S.; Devillers, T.; Dempsey, N. M.; Scheerder, J. E.; Van de Vondel, J.; Melinte, S.; Vanderbemden, P.; Motta, M.; Ortiz, W. A.; Hasselbach, K.; Kramer, R. B. G.; Silhanek, A. V.

    2018-02-01

    We present a detailed quantitative magneto-optical imaging study of several superconductor/ferromagnet hybrid structures, including Nb deposited on top of thermomagnetically patterned NdFeB and permalloy/niobium with erasable and tailored magnetic landscapes imprinted in the permalloy layer. The magneto-optical imaging data are complemented with and compared to scanning Hall probe microscopy measurements. Comprehensive protocols have been developed for calibrating, testing, and converting Faraday rotation data to magnetic field maps. Applied to the acquired data, they reveal the comparatively weaker magnetic response of the superconductor from the background of larger fields and field gradients generated by the magnetic layer.

  19. Bulk Superconductors in Mobile Application

    Science.gov (United States)

    Werfel, F. N.; Delor, U. Floegel-; Rothfeld, R.; Riedel, T.; Wippich, D.; Goebel, B.; Schirrmeister, P.

    We investigate and review concepts of multi - seeded REBCO bulk superconductors in mobile application. ATZ's compact HTS bulk magnets can trap routinely 1 T@77 K. Except of magnetization, flux creep and hysteresis, industrial - like properties as compactness, power density, and robustness are of major device interest if mobility and light-weight construction is in focus. For mobile application in levitated trains or demonstrator magnets we examine the performance of on-board cryogenics either by LN2 or cryo-cooler application. The mechanical, electric and thermodynamical requirements of compact vacuum cryostats for Maglev train operation were studied systematically. More than 30 units are manufactured and tested. The attractive load to weight ratio is more than 10 and favours group module device constructions up to 5 t load on permanent magnet (PM) track. A transportable and compact YBCO bulk magnet cooled with in-situ 4 Watt Stirling cryo-cooler for 50 - 80 K operation is investigated. Low cooling power and effective HTS cold mass drives the system construction to a minimum - thermal loss and light-weight design.

  20. Coherent lattice vibrations in superconductors

    International Nuclear Information System (INIS)

    Kadin, Alan M.

    2008-01-01

    A recent analysis has shown that the pair wavefunction within the BCS theory may be represented in real-space as a spherical electronic orbital (on the scale of the coherence length ξ 0 ) coupled to a standing-wave lattice vibration with wavevector 2k F and a near-resonant phonon frequency. The present paper extends this picture to a coherent pattern of phonon standing-waves on the macroscopic scale, with electrons forming Bloch waves and an energy gap much like those in the classic band theory of crystals. These parallel planes form a diffractive waveguide permitting electron waves to traveling parallel to the planes, corresponding to lossless supercurrent. A similar picture may be extended to unconventional superconductors such as the cuprates, with an array of standing spin waves rather than phonons. Such coherent lattice vibrations should be universal indicators of the superconducting state, and should be observable below T c using X-ray and neutron diffraction techniques. Further implications of this picture are discussed

  1. Structural behavior of cable superconductors

    International Nuclear Information System (INIS)

    Becker, H.; Marston, P.

    1983-01-01

    The structural properties of cable superconductor coils, for particle accelerators such as the Tevatron and the CBA (Colliding Beam Accelerator), depend upon direction of loading. For compression perpendicular to the ''flat faces'' of the conductor, the coils exhibit nonlinear, inelastic and time dependent behavior. The same is true for ''inplane'' compression loading perpendicular to the conductor edges. In the lengthwise direction, the coils display tension and compression stress-strain curves typical of structural metals. The loading of primary concern is compression perpendicular to the conductor faces since deformations in that direction can have a major influence on magnetic field quality. However, the coil behavior under that condition is uncertain because of the nonlinear stress strain curve complicated by creep and relaxation at the stress levels induced by preloading and Lorentz forces. Furthermore, the stiffness of the loading fixture appears to influence the data as shown by results from tests run under different conditions at Berkeley, Brookhaven and MIT. The paper displays test data on stress-strain curves for all three loading directions. Results are presented for RT, 77 K and 4 K behavior. Data of various investigators are compared. The applicability of a relatively simple power law between stress and strain is depicted

  2. Neutron scattering studies of the heavy Fermion superconductors

    International Nuclear Information System (INIS)

    Goldman, A.I.

    1985-01-01

    Recent neutron scattering measurements of the heavy Fermion superconductors are described. Those materials offer an exciting opportunity for neutron scattering since the f-electrons, which couple directly to magnetic scattering measurements, seem to be the same electrons which form the superconducting state below T/sub c/. In addition, studies of the magnetic fluctuations in these, and other heavy Fermion systems, by inelastic magnetic neutron scattering can provide information about the nature of the low temperature Fermi liquid character of these novel compounds

  3. Theory of Josephson effect in d-wave superconductor/diffusive ferromagnet/d-wave superconductor junctions

    NARCIS (Netherlands)

    Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch

    2007-01-01

    We study Josephson effect in d-wave superconductor/diffusive ferromagnet/d-wave superconductor junctions, changing the exchange field and the angles between the normal to the interfaces and the crystal axes of d-wave superconductors. We find a 0–π transition at a certain value of the exchange field.

  4. Rugged Low-Resistance Contacts To High-Tc Superconductors

    Science.gov (United States)

    Caton, Randall; Selim, Raouf; Byvik, Charles E.; Buoncristiani, A. Martin

    1992-01-01

    Newly developed technique involving use of gold makes possible to fabricate low-resistance contacts with rugged connections to high-Tc superconductors. Gold diffused into specimen of superconducting material by melting gold beads onto surface of specimen, making strong mechanical contacts. Shear strength of gold bead contacts greater than epoxy or silver paste. Practical use in high-current-carrying applications of new high-Tc materials, including superconducting magnets, long-wavelength sensors, electrical ground planes at low temperatures, and efficient transmission of power.

  5. Harmonic generation and flux quantization in granular superconductors

    International Nuclear Information System (INIS)

    Lam, Q.H.; Jeffries, C.D.

    1989-01-01

    Simple dynamical models of granular superconductors are used to compute the generation of harmonic power in ac and dc magnetic fields. In zero order, the model is a single superconducting loop, with or without a weak link. The sample-average power is predicted by averaging over suitable distribution functions for loop areas and orientations in a dc magnetic field. In a first-order model, inductance and resistance are also included. In all models the power at high harmonics shows strikingly sharp dips periodic in the dc field, revealing flux quantization in the prototype loops

  6. Nonlocal thermoelectric symmetry relations in ferromagnet-superconductor proximity structures

    Energy Technology Data Exchange (ETDEWEB)

    Machon, Peter; Belzig, Wolfgang [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Eschrig, Matthias [Department of Physics, University of Konstanz, D-78457 Konstanz (Germany); Department of Physics, Royal Holloway, University of London, Egham Hill, EGHAM, TW20 0EX (United Kingdom)

    2012-07-01

    The symmetries of thermal and electric transport coefficients in quantum coherent structures are related to fundamental thermodynamic principles by the Onsager reciprocity. We generalize Onsager's symmetry relation to nonlocal thermoelectric currents in a three terminal ferromagnet-superconductor heterostructure including spin-dependent crossed Andreev reflection and direct electron transfer processes. We proof this general symmetry by applying spin-dependent boundary conditions for quasi-classical Green's functions in both the clean and the dirty limit. We predict an anomalously large local thermopower and a nonlocal Seebeck effect, which can be explained by the spin-dependent spectral properties.

  7. Spin–orbit coupling, minimal model and potential Cooper-pairing from repulsion in BiS2-superconductors

    Science.gov (United States)

    Cobo-Lopez, Sergio; Saeed Bahramy, Mohammad; Arita, Ryotaro; Akbari, Alireza; Eremin, Ilya

    2018-04-01

    We develop the realistic minimal electronic model for recently discovered BiS2 superconductors including the spin–orbit (SO) coupling based on the first-principles band structure calculations. Due to strong SO coupling, characteristic for the Bi-based systems, the tight-binding low-energy model necessarily includes p x , p y , and p z orbitals. We analyze a potential Cooper-pairing instability from purely repulsive interaction for the moderate electronic correlations using the so-called leading angular harmonics approximation. For small and intermediate doping concentrations we find the dominant instabilities to be {d}{x2-{y}2}-wave, and s ±-wave symmetries, respectively. At the same time, in the absence of the sizable spin fluctuations the intra and interband Coulomb repulsions are of the same strength, which yield the strongly anisotropic behavior of the superconducting gaps on the Fermi surface. This agrees with recent angle resolved photoemission spectroscopy findings. In addition, we find that the Fermi surface topology for BiS2 layered systems at large electron doping can resemble the doped iron-based pnictide superconductors with electron and hole Fermi surfaces maintaining sufficient nesting between them. This could provide further boost to increase T c in these systems.

  8. Fracture toughness for copper oxide superconductors

    Science.gov (United States)

    Goretta, K.C.; Kullberg, M.L.

    1993-04-13

    An oxide-based strengthening and toughening agent, such as tetragonal ZrO[sub 2] particles, has been added to copper oxide superconductors, such as superconducting YBa[sub 2]Cu[sub 3]O[sub x] (123) to improve its fracture toughness (K[sub IC]). A sol-gel coating which is non-reactive with the superconductor, such as Y[sub 2]BaCuO[sub 5] (211) on the ZrO[sub 2] particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO[sub 2] coated with 211 yielded a 123 composite with a K[sub IC] of 4.5 MPa(m)[sup 0.5].

  9. Fracture toughness for copper oxide superconductors

    Science.gov (United States)

    Goretta, Kenneth C.; Kullberg, Marc L.

    1993-01-01

    An oxide-based strengthening and toughening agent, such as tetragonal Zro.sub.2 particles, has been added to copper oxide superconductors, such as superconducting YBa.sub.2 Cu.sub.3 O.sub.x (123) to improve its fracture toughness (K.sub.IC). A sol-gel coating which is non-reactive with the superconductor, such as Y.sub.2 BaCuO.sub.5 (211) on the ZrO.sub.2 particles minimized the deleterious reactions between the superconductor and the toughening agent dispersed therethrough. Addition of 20 mole percent ZrO.sub.2 coated with 211 yielded a 123 composite with a K.sub.IC of 4.5 MPa(m).sup.0.5.

  10. Practical superconductor development for electrical power applications

    International Nuclear Information System (INIS)

    Goretta, K.C.

    1991-10-01

    Development of useful high-critical-temperature (high-T c ) superconductors requires synthesis of superconducting compounds; fabrication of wires, tapes, and films from these compounds; production of composite structures that incorporate stabilizers or insulators; and design and testing of efficient components. This report describes technical progress of research and development efforts aimed at producing superconducting components based on the Y-Ba-Cu, Bi-Sr-Ca-Cu, Bi-Pb-Sr-Ca-Cu, and Tl-Ba-Ca-Cu oxides systems. Topics discussed are synthesis and heat treatment of high-T c superconductors, formation of monolithic and composite wires and tapes, superconductor/metal connectors, characterization of structures and superconducting and mechanical properties, and fabrication and properties of thin films. Collaborations with industry and academia are also documented. 10 figs

  11. Stability of magnets levitated above superconductors

    International Nuclear Information System (INIS)

    Davis, L.C.; Logothetis, E.M.; Soltis, R.E.

    1988-01-01

    The stability of a permanent magnet levitated above a slab of hard superconductor is considered. The force on a dipole magnet over a perfectly diamagnetic disk is calculated. It is found that the radial component of the force is directed outward and is 10%--20% of the image (vertical) force near the edge. Estimates of the magnetic friction force due to flux motion in a hard superconductor are made using Bean's model. The magnitude of the magnetic friction is large enough to stabilize the magnet over most of the disk for typical values of the critical current in ceramic superconductors (∼10 3 A/cm 2 ), but too small for the highest values reported (>10 6 A/cm 2 ). It is conjectured that flux trapping due to inhomogeneities gives rise to transient restoring forces

  12. Charge and spin transport in mesoscopic superconductors

    Directory of Open Access Journals (Sweden)

    M. J. Wolf

    2014-02-01

    Full Text Available Background: Non-equilibrium charge transport in superconductors has been investigated intensely in the 1970s and 1980s, mostly in the vicinity of the critical temperature. Much less attention has been paid to low temperatures and the role of the quasiparticle spin.Results: We report here on nonlocal transport in superconductor hybrid structures at very low temperatures. By comparing the nonlocal conductance obtained by using ferromagnetic and normal-metal detectors, we discriminate charge and spin degrees of freedom. We observe spin injection and long-range transport of pure, chargeless spin currents in the regime of large Zeeman splitting. We elucidate charge and spin transport by comparison to theoretical models.Conclusion: The observed long-range chargeless spin transport opens a new path to manipulate and utilize the quasiparticle spin in superconductor nanostructures.

  13. Processing Y- and Bi-based superconductors

    International Nuclear Information System (INIS)

    Balachandran, U.; Dos Santos, D.I.; von Stumberg, A.W.; Graham, S.W.; Singh, J.P.; Youngdahl, C.A.; Goretta, K.C.; Shi, D.; Poeppel, R.B.

    1989-01-01

    This paper reports on bulk specimens of YBa 2 Cu 3 O x and Bi 2 Sr 2 CaCu 2 O y formed and then processed by sintering in the solid state, in the presence of a liquid phase, or by sinter forging. Both Y- and Bi-based superconductors are difficult to densify by solid-state sintering but easy to densify in the presence of a liquid phase. Effects of sintering conditions on superconducting properties are, however, different between the two materials. These differences will be discussed. Attempts to texture microstructures and increase J c by sinter-forging techniques have been successful for Y-based superconductors, but unsuccessful for Bi-based superconductors

  14. Energy gap of ferromagnet-superconductor bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Halterman, Klaus; Valls, Oriol T

    2003-10-15

    The excitation spectrum of clean ferromagnet-superconductor bilayers is calculated within the framework of the self-consistent Bogoliubov-de Gennes theory. Because of the proximity effect, the superconductor induces a gap in the ferromagnet spectrum, for thin ferromagnetic layers. The effect depends strongly on the exchange field in the ferromagnet. We find that as the thickness of the ferromagnetic layer increases, the gap disappears, and that its destruction arises from those quasiparticle excitations with wave vectors mainly along the interface. We discuss the influence that the interface quality and Fermi energy mismatch between the ferromagnet and superconductor have on the calculated energy gap. We also evaluate the density of states in the ferromagnet, and we find it in all cases consistent with the gap results.

  15. The superconductor revolutions and the (slow) applications evolution

    International Nuclear Information System (INIS)

    Foner, S.

    1990-01-01

    The discovery in the 1960's of type 2 superconductors with high critical current densities in high magnetic fields (and the development of NbTi in particular) led to the first revolution. The discovery of high temperature superconductors (HTS) started the second revolution. At this stage ceramists became involved with superconductors. I will assess the status of various superconductor applications, progress of HTS and their possible applications at 4.2K, and near-term needs for superconducting materials operating at 30T in specialized facilities. Reasons for the slow growth of superconductor applications will be reviewed

  16. Superfluid response in heavy fermion superconductors

    Science.gov (United States)

    Zhong, Yin; Zhang, Lan; Shao, Can; Luo, Hong-Gang

    2017-10-01

    Motivated by a recent London penetration depth measurement [H. Kim, et al., Phys. Rev. Lett. 114, 027003 (2015)] and novel composite pairing scenario [O. Erten, R. Flint, and P. Coleman, Phys. Rev. Lett. 114, 027002 (2015)] of the Yb-doped heavy fermion superconductor CeCoIn5, we revisit the issue of superfluid response in the microscopic heavy fermion lattice model. However, from the literature, an explicit expression for the superfluid response function in heavy fermion superconductors is rare. In this paper, we investigate the superfluid density response function in the celebrated Kondo-Heisenberg model. To be specific, we derive the corresponding formalism from an effective fermionic large- N mean-field pairing Hamiltonian whose pairing interaction is assumed to originate from the effective local antiferromagnetic exchange interaction. Interestingly, we find that the physically correct, temperature-dependent superfluid density formula can only be obtained if the external electromagnetic field is directly coupled to the heavy fermion quasi-particle rather than the bare conduction electron or local moment. Such a unique feature emphasizes the key role of the Kondo-screening-renormalized heavy quasi-particle for low-temperature/energy thermodynamics and transport behaviors. As an important application, the theoretical result is compared to an experimental measurement in heavy fermion superconductors CeCoIn5 and Yb-doped Ce1- x Yb x CoIn5 with fairly good agreement and the transition of the pairing symmetry in the latter material is explained as a simple doping effect. In addition, the requisite formalism for the commonly encountered nonmagnetic impurity and non-local electrodynamic effect are developed. Inspired by the success in explaining classic 115-series heavy fermion superconductors, we expect the present theory will be applied to understand other heavy fermion superconductors such as CeCu2Si2 and more generic multi-band superconductors.

  17. On the transition to the normal phase for superconductors surrounded by normal conductors

    DEFF Research Database (Denmark)

    Fournais, Søren; Kachmar, Ayman

    2009-01-01

    For a cylindrical superconductor surrounded by a normal material, we discuss transition to the normal phase of stable, locally stable and critical configurations. Associated with those phase transitions, we define critical magnetic fields and we provide a sufficient condition for which those...

  18. Neutron diffraction from the vortex lattice in the heavy-fermion superconductor UPt3

    DEFF Research Database (Denmark)

    Kleiman, R.N.; Broholm, C.; Aeppli, G.

    1992-01-01

    We have used neutron diffraction to observe the vortex lattice of UPt3. This is the first such measurement in a heavy-fermion system, a superconductor below 1 K, or in a system with such a long magnetic penetration depth (6000 +/- 75 angstrom). It also provides the first value for the pair...

  19. Proposed Spontaneous Generation of Magnetic Fields by Curved Layers of a Chiral Superconductor

    Science.gov (United States)

    Kvorning, T.; Hansson, T. H.; Quelle, A.; Smith, C. Morais

    2018-05-01

    We demonstrate that two-dimensional chiral superconductors on curved surfaces spontaneously develop magnetic flux. This geometric Meissner effect provides an unequivocal signature of chiral superconductivity, which could be observed in layered materials under stress. We also employ the effect to explain some puzzling questions related to the location of zero-energy Majorana modes.

  20. Iron chalcogenide superconductors at high magnetic fields

    Science.gov (United States)

    Lei, Hechang; Wang, Kefeng; Hu, Rongwei; Ryu, Hyejin; Abeykoon, Milinda; Bozin, Emil S; Petrovic, Cedomir

    2012-01-01

    Iron chalcogenide superconductors have become one of the most investigated superconducting materials in recent years due to high upper critical fields, competing interactions and complex electronic and magnetic phase diagrams. The structural complexity, defects and atomic site occupancies significantly affect the normal and superconducting states in these compounds. In this work we review the vortex behavior, critical current density and high magnetic field pair-breaking mechanism in iron chalcogenide superconductors. We also point to relevant structural features and normal-state properties. PMID:27877518

  1. Workshop on accelerator magnet superconductors. Proceedings

    International Nuclear Information System (INIS)

    2004-01-01

    The workshop on accelerator magnet superconductors has gathered 102 registered participants from research laboratories, universities and industry. 8 European companies, active in superconducting materials and cables were present. This workshop has been organized to deal with the status of the world research and development on superconducting materials and cables for high field magnets (B > 10 T). The workshop has also reviewed the status of high temperature superconductors and transmission line cables for potential use in low field superconducting magnets for injectors and beam transfer lines, as well as cables for pulsed magnets that might be used in future hadron colliders or injectors

  2. Aluminium stabilized Nb$-3$/Sn superconductors

    International Nuclear Information System (INIS)

    Thoener, M.; Krauth, H.; Rudolph, J.; Szulczyk, A.

    1988-01-01

    Composite superconductors made of reacted Nb 3 Sn stabilized with high purity Al were produced. Two methods were tested. The first involved soft soldering a Cu clad aluminum tape to the Nb 3 Sn conductor. In the second method the conductor, cable or monolith, was coextruded with the aluminum. Results obtained from using both methods indicated that mechanically reinforcing materials can be easily introduced into superconductors. Tests were conducted to determine magnetoresistance, electric contact resistance, yield strength, Young modulus, critical current, and other properties of the composites. Strengthening with Duratherm during coextrusion was also evaluated

  3. London limit for lattice model of superconductor

    International Nuclear Information System (INIS)

    Ktitorov, S.A.

    2004-01-01

    The phenomenological approach to the strong-bond superconductor, which is based on the Ginzburg-Landau equation in the London limit, is considered. The effect of the crystalline lattice discreteness on the superconductors electromagnetic properties is studied. The classic problems on the critical current and magnetic field penetration are studied within the frames of the lattice model for thin superconducting films. The dependence of the superconducting current on the thin film order parameter is obtained. The critical current dependence on the degree of deviation from the continual approximation is calculated [ru

  4. Workshop on accelerator magnet superconductors. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    The workshop on accelerator magnet superconductors has gathered 102 registered participants from research laboratories, universities and industry. 8 European companies, active in superconducting materials and cables were present. This workshop has been organized to deal with the status of the world research and development on superconducting materials and cables for high field magnets (B > 10 T). The workshop has also reviewed the status of high temperature superconductors and transmission line cables for potential use in low field superconducting magnets for injectors and beam transfer lines, as well as cables for pulsed magnets that might be used in future hadron colliders or injectors.

  5. Magnetic-flux dynamics of high-Tc superconductors in weak magnetic fields

    DEFF Research Database (Denmark)

    Il’ichev, E. V.; Jacobsen, Claus Schelde

    1994-01-01

    Aspects of magnetic-flux dynamics in different types of samples of the high-temperature superconductor YBa2Cu3Ox have been investigated in magnetic fields below 1 Oe and at 77 K. The experiments were carried out in an arrangement including a field coil, a flat sample perpendicular to the field...

  6. Clean bulk YBaCuO superconductors doped by paramagnetic ions of Sm and Yb

    Czech Academy of Sciences Publication Activity Database

    Jirsa, Miloš; Volochová, D.; Kováč, J.; Diko, P.

    2017-01-01

    Roč. 131, č. 4 (2017), s. 1027-1029 ISSN 0587-4246 Institutional support: RVO:68378271 Keywords : YBaCuO * bulk superconductors * paramagnetic ions * microstructure * vortex pinning Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016

  7. The effect of Sm addition on the microstructure and superconducting properties of YBCO bulk superconductors

    Czech Academy of Sciences Publication Activity Database

    Volochová, D.; Diko, P.; Piovarči, S.; Antal, V.; Kováč, J.; Jirsa, Miloš

    2017-01-01

    Roč. 131, č. 4 (2017), s. 1009-1011 ISSN 0587-4246 Institutional support: RVO:68378271 Keywords : YBaCuO * bulk superconductors * paramagnetic ions * microstructure * vortex pinning Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.469, year: 2016

  8. Microgravity Processing of Oxide Superconductors

    Science.gov (United States)

    Olive, James R.; Hofmeister, William H.; Bayuzick, Robert J.; Vlasse, Marcus

    1999-01-01

    Considerable effort has been concentrated on the synthesis and characterization of high T(sub c) oxide superconducting materials. The YBaCuO system has received the most intense study, as this material has shown promise for the application of both thin film and bulk materials. There are many problems with the application of bulk materials- weak links, poor connectivity, small coherence length, oxygen content and control, environmental reactivity, phase stability, incongruent melting behavior, grain boundary contamination, brittle mechanical behavior, and flux creep. The extent to which these problems are intrinsic or associated with processing is the subject of controversy. This study seeks to understand solidification processing of these materials, and to use this knowledge for alternative processing strategies, which, at the very least, will improve the understanding of bulk material properties and deficiencies. In general, the phase diagram studies of the YBaCuO system have concentrated on solid state reactions and on the Y2BaCuO(x) + liquid yields YBa2Cu3O(7-delta) peritectic reaction. Little information is available on the complete melting relations, undercooling, and solidification behavior of these materials. In addition, rare earth substitutions such as Nd and Gd affect the liquidus and phase relations. These materials have promising applications, but lack of information on the high temperature phase relations has hampered research. In general, the understanding of undercooling and solidification of high temperature oxide systems lags behind the science of these phenomena in metallic systems. Therefore, this research investigates the fundamental melting relations, undercooling, and solidification behavior of oxide superconductors with an emphasis on improving ground based synthesis of these materials.

  9. Flux flow and flux dynamics in high-Tc superconductors

    International Nuclear Information System (INIS)

    Bennett, L.H.; Turchinskaya, M.; Swartzendruber, L.J.; Roitburd, A.; Lundy, D.; Ritter, J.; Kaiser, D.L.

    1991-01-01

    Because high temperature superconductors, including BYCO and BSSCO, are type 2 superconductors with relatively low H(sub c 1) values and high H(sub c 2) values, they will be in a critical state for many of their applications. In the critical state, with the applied field between H(sub c 1) and H(sub c 2), flux lines have penetrated the material and can form a flux lattice and can be pinned by structural defects, chemical inhomogeneities, and impurities. A detailed knowledge of how flux penetrates the material and its behavior under the influence of applied fields and current flow, and the effect of material processing on these properties, is required in order to apply, and to improve the properties of these superconductors. When the applied field is changed rapidly, the time dependence of flux change can be divided into three regions, an initial region which occurs very rapidly, a second region in which the magnetization has a 1n(t) behavior, and a saturation region at very long times. A critical field is defined for depinning, H(sub c,p) as that field at which the hysteresis loop changes from irreversible to reversible. As a function of temperature, it is found that H(sub c,p) is well described by a power law with an exponent between 1.5 and 2.5. The behavior of H(sub c,p) for various materials and its relationship to flux flow and flux dynamics are discussed

  10. Quantum theory of an atom in proximity to a superconductor

    Science.gov (United States)

    Le Dall, Matthias; Diniz, Igor; Dias da Silva, Luis G. G. V.; de Sousa, Rogério

    2018-02-01

    The impact of superconducting correlations on localized electronic states is important for a wide range of experiments in fundamental and applied superconductivity. This includes scanning tunneling microscopy of atomic impurities at the surface of superconductors, as well as superconducting-ion-chip spectroscopy of neutral ions and Rydberg states. Moreover, atomlike centers close to the surface are currently believed to be the main source of noise and decoherence in qubits based on superconducting devices. The proximity effect is known to dress atomic orbitals in Cooper-pair-like states known as Yu-Shiba-Rusinov (YSR) states, but the impact of superconductivity on the measured orbital splittings and optical-noise transitions is not known. Here we study the interplay between orbital degeneracy and particle-number admixture in atomic states, beyond the usual classical spin approximation. We model the atom as a generalized Anderson model interacting with a conventional s -wave superconductor. In the limit of zero on-site Coulomb repulsion (U =0 ), we obtain YSR subgap energy levels that are identical to the ones obtained from the classical spin model. When Δ is large and U >0 , the YSR spectra are no longer quasiparticle-like, and the highly degenerate orbital subspaces are split according to their spin, orbital, and number-parity symmetry. We show that U >0 activates additional poles in the atomic Green's function, suggesting an alternative explanation for the peak splittings recently observed in scanning tunneling microscopy of orbitally-degenerate impurities in superconductors. We describe optical excitation and absorption of photons by YSR states, showing that many additional optical channels open up in comparison to the nonsuperconducting case. Conversely, the additional dissipation channels imply increased electromagnetic noise due to impurities in superconducting devices.

  11. The evidence of unconventional pairing in heavy fermion superconductors and high-Tc superconductors

    International Nuclear Information System (INIS)

    Tien, C.; Wur, C.S.; Jiang, I.M.

    1989-01-01

    Recently there has been a great deal of interest in two classes of superconductors, heavy fermion superconductors and high T c copper oxide superconductors. The behavior and nature of superconductivity in these two classes of materials are very similar. The temperature dependences of spin-lattice relaxation time (T 1 ) and spin-spin relaxation time (T 2 ) of 9 Be in UBe 13 are quite similar to those of 63 Cu and 89 Y in YBa 2 Cu 3 O 7-δ . The Knight shift of UBe 13 is unchanged during the superconducting phase transition. The Knight shift of YBa 2 Cu 3 O 7-δ changes from the value in the normal state K n /K s = 1 at T ≥ T c to K n /K s = 0.5 at T = 6 K. Both do not approach zero as expected in BCS theory. The acoustic attenuation is enhanced just below T c instead of rapid drop near T c for these two superconducting system. Neither the enhancement, the temperature variation, nor any other anomalous behaviors appear to be mirrored in EPR data for heavy Fermion superconductors and high T c superconductors. This strongly suggests that the unconventional pairing mechanism which induces superconductivity in heavy fermion materials might also involve in high T c superconductors

  12. EDITORIAL: The electromagnetic properties of iron-based superconductors The electromagnetic properties of iron-based superconductors

    Science.gov (United States)

    Prozorov, Ruslan; Gurevich, Alex; Luke, Graeme

    2010-05-01

    cuprates, a superconducting 'dome' is formed upon doping the parent compounds, which exhibits antiferromagnetic and structural transitions at temperatures well above the superconducting critical temperature. This special section touches on several key aspects of these new iron-based superconductors. These topics include materials synthesis and basic characterization, the role of impurities and pairing symmetry, and mapping of the superconducting phase diagram as a function of chemical doping and pressure. Studies of transport, magnetic and optical properties account for a substantial portion of this special section. Particular attention is devoted to the role of magnetic excitations and the issue of the possible coexistence of magnetism and superconductivity. Attempts to understand the nature of the superconducting pairing are discussed from several angles, including tunneling spectroscopy and the London penetration depth. The vortex state is probed by magnetization, transport and neutron scattering, while the irreversible state is probed by studies of magnetic and transport critical current density.

  13. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    Abstract. Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the dominant ...

  14. Development of superconductors for fusion technology

    International Nuclear Information System (INIS)

    Wilson, M.N.; Walters, C.R.

    1976-04-01

    A report is presented on the development of a 10 4 Amp NbTi cryogenically stabilized superconductor. The long term objective was the construction of a superconducting toroidal field magnet for a post JET Tokamak experiment. The report is in sections entitled: magnet reference parameters; specific conductor designs; theoretical studies; experimental measurements; fabrication techniques; discussion, summary, conclusions and recommendations. (U.K.)

  15. Anomalous infrared absorption in granular superconductors

    International Nuclear Information System (INIS)

    Carr, G.L.; Garland, J.C.; Tanner, D.B.

    1983-01-01

    Granular superconductors are shown to have a far-infrared absorption that is larger when the samples are superconducting than when they are normal. By constrast, theoretical models for these materials predict that when the samples become superconducting, the absorption should decrease

  16. Electronic structure of Fe-based superconductors

    Indian Academy of Sciences (India)

    2015-05-29

    May 29, 2015 ... Fe-based superconductors have drawn much attention during the last decade due to the presence of superconductivity in materials containing the magnetic element, Fe, and the coexistence of superconductivity and magnetism. Extensive study of the electronic structure of these systems suggested the ...

  17. Epitaxy of semiconductor-superconductor nanowires

    DEFF Research Database (Denmark)

    Krogstrup, P.; Ziino, N.L.B.; Chang, W.

    2015-01-01

    Controlling the properties of semiconductor/metal interfaces is a powerful method for designing functionality and improving the performance of electrical devices. Recently semiconductor/superconductor hybrids have appeared as an important example where the atomic scale uniformity of the interface...

  18. New superconductor LaRhSb

    International Nuclear Information System (INIS)

    Nishigori, S.; Moriwaki, H.; Suzuki, T.; Fujita, T.; Tanaka, H.; Takabatake, T.; Fujii, H.

    1994-01-01

    Superconductivity in LaRhSb was newly found below the transition temperature T c = 2.67 K by the measurements of the electrical resistivity, magnetic susceptibility and specific heat in magnetic fields. The characteristics of the superconductivity determined in this study indicate that LaRhSb is a type II superconductor following the BCS theory. (orig.)

  19. The Effective Coherence Length in Anisotropic Superconductors

    International Nuclear Information System (INIS)

    Polturak, E.; Koren, G.; Nesher, O

    1999-01-01

    If electrons are transmitted from a normal conductor(N) into a superconductor(S), common wisdom has it that the electrons are converted into Cooper pairs within a coherence length from the interface. This is true in conventional superconductors with an isotropic order parameter. We have established experimentally that the situation is rather different in high Tc superconductors having an anisotropic order parameter. We used epitaxial thin film S/N bilayers having different interface orientations in order to inject carriers from S into N along different directions. The distance to which these carriers penetrate were determined through their effect on the Tc of the bilayers. We found that the effective coherence length is 20A only along the a or b directions, while in other directions we find a length of 250dr20A out of plane, and an even larger value for in-plane, off high symmetry directions. These observations can be explained using the Blonder-Tinkham-Klapwijk model adapted to anisotropic superconductivity. Several implications of our results on outstanding problems with high Tc junctions will be discussed

  20. Deformation of high-temperature superconductors

    International Nuclear Information System (INIS)

    Goretta, K.C.; Routbort, J.L.; Miller, D.J.; Chen, N.; Dominguez-Rodriguez, A.; Jimenez-Melendo, M.; De Arellano-Lopez, A.R.

    1994-08-01

    Of the many families of high-temperature superconductors, only the properties of those discovered prior to 1989 - Y-Ba-Cu-O, Tl-Ba(Sr)-Ca-Cu-O, and Bi(Pb)-Sr-Ca-Cu-O - have been studied extensively. Deformation tests have been performed on YBa 2 Cu 3 O x (Y-123), YBa 2 Cu 4 O x (Y-124), TlBa 2 Ca 2 Cu 3 O x (Bi-2223). The tests have revealed that plasticity is generally limited in these compounds and that the rate-controlling diffusional kinetics for creep are very slow. Nevertheless, hot forming has proved to be quite successful for fabrication of bulk high-temperature superconductors, so long as deformation rates are low or large hydrostatic stresses are applied. Steady-state creep data have proved to be useful in designing optimal heat treatments for superconductors and in support of more-fundamental diffusion experiments. The high-temperature superconductors are highly complex oxides, and it is a challenge to understand their deformation responses. In this paper, results of interest and operant creep mechanisms will be reviewed

  1. Nonmonotonic critical temperature in superconductor ferromagnet bilayers

    NARCIS (Netherlands)

    Fominov, Ya. V.; Fominov, I.V.; Chtchelkatchev, N.M.; Golubov, Alexandre Avraamovitch

    2002-01-01

    The critical temperature Tc of a superconductor/ferromagnet (SF) bilayer can exhibit nonmonotonic dependence on the thickness df of the F layer. SF systems have been studied for a long time; according to the experimental situation, a ¿dirty¿ limit is often considered which implies that the mean free

  2. Scalar Condensation of Holographic Superconductors using ...

    Indian Academy of Sciences (India)

    Abstract. We study holographic superconductors analytically by using the Ginzburg–Landau action with the γ-quartic term | |4. Our results show that γ-term plays a role in the scalar condensation. It is found that the system displays two kinds of critical temperatures. One is independent of γ. But the other increases with ...

  3. Fabrication mechanism of FeSe superconductors with high-energy ball milling aided sintering process

    International Nuclear Information System (INIS)

    Zhang, Shengnan; Liu, Jixing; Feng, Jianqing; Wang, Yao; Ma, Xiaobo; Li, Chengshan; Zhang, Pingxiang

    2015-01-01

    FeSe Superconducting bulks with high content of superconducting PbO-type β-FeSe phase were prepared with high-energy ball milling (HEBM) aided sintering process. During this process, precursor powders with certain Fe/Se ratio were ball milled first then sintered. The influences of HEBM process as well as initial Fe/Se ratio on the phase evolution process were systematically discussed. With HEBM process and proper initial Fe/Se ratio, the formation of non-superconducting hexagonal δ-FeSe phase were effectively avoided. FeSe bulk with the critical temperature of 9.0 K was obtained through a simple one-step sintering process with lower sintering temperature. Meanwhile, the phase evolution mechanism of the HEBM precursor powders during sintering was deduced based on both the thermodynamic analysis and step-by-step sintering results. The key function of the HEBM process was to provide a high uniformity of chemical composition distribution, thus to successfully avoide the formation of intermediate product during sintering, including FeSe 2 and Fe 7 Se 8 . Therefore, the fundamental principal for the synthesis of FeSe superconductors were concluded as: HEBM aided sintering process, with the sintering temperature of >635 °C and a slow cooling process. - Highlights: • A novel synthesis technique was developed for FeSe based superconductors. • FeSe bulks with high Tc and high β-FeSe phase content has been obtained. • Phase evolution process for the HEBM aided sintering process was proposed

  4. The new Fe-based superconductors

    International Nuclear Information System (INIS)

    Mao, Zhiqiang

    2011-01-01

    The discovery of unconventional superconductivity in doped iron pnictides has ushered in a new era of high temperature superconductivity. The superconductivity of these materials occurs in close proximity to magnetic instability; superconductivity is achieved by suppressing a long-range antiferromagnetic (AFM) order through charge carrier doping or pressure. In this talk, I will first give a brief overview of the phase diagrams of iron-based superconductors, and then talk about our recent research on iron chalcogenide Fe 1+y (Te 1-x Se x ) superconductors, which is structurally the simplest of the Fe-based superconductors. Although the Fermi surface of iron chalcogenides is similar to iron pnictides, the parent compound Fe 1+y Te exhibits AFM order with in-plane magnetic wave-vector (π, 0). This contrasts the pnictide parent compounds where the magnetic order has an in-plane magnetic wave-vector (π, π) that connects hole and electron parts of the Fermi surface. Despite these differences, both the pnictide and chalcogenide Fe-superconductors exhibit superconducting spin resonances around (π, π), suggesting a common symmetry for their superconducting order parameter. A central question in this burgeoning field is therefore how (π, π) superconductivity can emerge from a (π, 0) magnetic instability. I will address this issue in my talk. I will show the phase diagram of electronic and magnetic properties we recently established for this system and discuss the relationship between magnetic coupling and electronic properties. Our results reveal that the magnetic soft mode evolving from the (π, 0)-type magnetic long-range order is associated with weak charge carrier localization. Bulk superconductivity occurs only as magnetic correlations near (π, 0) are strongly suppressed and the magnetic mode at (π, π) becomes dominant; this suggests a common magnetic origin for superconductivity in iron chalcogenide and pnictide superconductors. (author)

  5. Normal zone soliton in large composite superconductors

    International Nuclear Information System (INIS)

    Kupferman, R.; Mints, R.G.; Ben-Jacob, E.

    1992-01-01

    The study of normal zone of finite size (normal domains) in superconductors, has been continuously a subject of interest in the field of applied superconductivity. It was shown that in homogeneous superconductors normal domains are always unstable, so that if a normal domain nucleates, it will either expand or shrink. While testing the stability of large cryostable composite superconductors, a new phenomena was found, the existence of stable propagating normal solitons. The formation of these propagating domains was shown to be a result of the high Joule power generated in the superconductor during the relatively long process of current redistribution between the superconductor and the stabilizer. Theoretical studies were performed in investigate the propagation of normal domains in large composite super conductors in the cryostable regime. Huang and Eyssa performed numerical calculations simulating the diffusion of heat and current redistribution in the conductor, and showed the existence of stable propagating normal domains. They compared the velocity of normal domain propagation with the experimental data, obtaining a reasonable agreement. Dresner presented an analytical method to solve this problem if the time dependence of the Joule power is given. He performed explicit calculations of normal domain velocity assuming that the Joule power decays exponentially during the process of current redistribution. In this paper, the authors propose a system of two one-dimensional diffusion equations describing the dynamics of the temperature and the current density distributions along the conductor. Numerical simulations of the equations reconfirm the existence of propagating domains in the cryostable regime, while an analytical investigation supplies an explicit formula for the velocity of the normal domain

  6. Recrystallization of high temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kouzoudis, Dimitris [Iowa State Univ., Ames, IA (United States)

    1996-05-09

    Currently one of the most widely used high Tc superconductors is the Bi-based compounds Bi2Sr2CaCu2Oz and Bi2Sr2Ca2Cu3Oz (known as BSCCO 2212 and 2223 compounds) with Tc values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface.

  7. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, X.J.

    2010-04-30

    In addition to the record high superconducting transition temperature (T{sub c}), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T{sub c}, and anomalous normal state properties above T{sub c}. In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T{sub c}. As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T{sub c} superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not

  8. Angle-Resolved Photoemission Spectroscopy on Electronic Structure and Electron-Phonon Coupling in Cuprate Superconductors

    International Nuclear Information System (INIS)

    Zhou, X.J.

    2010-01-01

    In addition to the record high superconducting transition temperature (T c ), high temperature cuprate superconductors are characterized by their unusual superconducting properties below T c , and anomalous normal state properties above T c . In the superconducting state, although it has long been realized that superconductivity still involves Cooper pairs, as in the traditional BCS theory, the experimentally determined d-wave pairing is different from the usual s-wave pairing found in conventional superconductors. The identification of the pairing mechanism in cuprate superconductors remains an outstanding issue. The normal state properties, particularly in the underdoped region, have been found to be at odd with conventional metals which is usually described by Fermi liquid theory; instead, the normal state at optimal doping fits better with the marginal Fermi liquid phenomenology. Most notable is the observation of the pseudogap state in the underdoped region above T c . As in other strongly correlated electrons systems, these unusual properties stem from the interplay between electronic, magnetic, lattice and orbital degrees of freedom. Understanding the microscopic process involved in these materials and the interaction of electrons with other entities is essential to understand the mechanism of high temperature superconductivity. Since the discovery of high-T c superconductivity in cuprates, angle-resolved photoemission spectroscopy (ARPES) has provided key experimental insights in revealing the electronic structure of high temperature superconductors. These include, among others, the earliest identification of dispersion and a large Fermi surface, an anisotropic superconducting gap suggestive of a d-wave order parameter, and an observation of the pseudogap in underdoped samples. In the mean time, this technique itself has experienced a dramatic improvement in its energy and momentum resolutions, leading to a series of new discoveries not thought possible

  9. Fulleride salts: From polymers to superconductors

    International Nuclear Information System (INIS)

    Margadonna, S.

    2000-06-01

    In the present thesis I discuss some of the recent advances in research on fullerene solids with emphasis on their structural, electronic and superconducting properties. The systems studied include alkali and alkaline earth fullerides, characterised by varying interfullerene spacings and the higher fullerene C 84 . At small interfullerene separation, the superconducting primitive cubic phases of quaternary sodium fullerides, Na 2 (A,A')C 60 and of ternary lithium fullerides, Li x CsC 60 compete in stability with the formation of quasi-one-dimensional C-C bridged C 60 3- polymeric structures. A detailed study of the occurrence of the monomer → polymer transition as a function of temperature and pressure is undertaken with the synchrotron X-ray powder diffraction technique. In addition, the Li intercalated phases allow fine tuning of the doping level of the conduction band through the variation of the Li content, x. The synthesis of alkaline earth fullerides allows the population of the (LUMO+1)-derived band, opening the way to different energy scales and new criteria for the occurrence of superconductivity. The complementary use of X-ray and neutron powder diffraction and inelastic neutron scattering led to a detailed study of the structural and dynamical properties of the K 3 Ba 3 C 60 superconductor. A completely new trend in the variation of the superconducting transition temperature, T c with interfullerene separation is evident for the t 1g family of superconductors, A' x A 3-x Ba 3 C 60 . At large interfullerene separation, superconductivity is suppressed and magnetic origin effects dominate. Neutron powder diffraction measurements on (NH 3 )K 3 C 60 show that it adopts an orthorhombic structure. It is a narrow band metal at high temperature, but on cooling a transition to an insulating state occurs at 40 K before the onset of superconductivity. The muon-spin-relaxation technique has been used to characterise the low-temperature phase which has been

  10. Suppression of surface barriers in superconductors by columnar defects

    International Nuclear Information System (INIS)

    Koshelev, A. E.; Vinokur, V. M.

    2001-01-01

    We investigate the influence of columnar defects in layered superconductors on the thermally activated penetration of pancake vortices through the surface barrier. Columnar defects, located near the surface, facilitate penetration of vortices through the surface barrier, by creating ''weak spots,'' through which pancakes can penetrate into the superconductor. Penetration of a pancake mediated by an isolated column, located near the surface, is a two-stage process involving hopping from the surface to the column and the detachment from the column into the bulk; each stage is controlled by its own activation barrier. The resulting effective energy is equal to the maximum of those two barriers. For a given external field there exists an optimum location of the column for which the barriers for the both processes are equal and the reduction of the effective penetration barrier is maximal. At high fields the effective penetration field is approximately 2 times smaller than in unirradiated samples. We also estimate the suppression of the effective penetration field by column clusters. This mechanism provides further reduction of the penetration field at low temperatures

  11. Condensate localization by mesoscale disorder in high-Tc superconductors

    International Nuclear Information System (INIS)

    Kumar, N.

    1994-06-01

    We propose and solve approximately a phenomenological model for Anderson localization of the macroscopic wavefunction for an inhomogeneous superconductor quench-disordered on the mesoscale of the order of the coherence length ξ 0 . Our treatment is based on the non-linear Schroedinger equation resulting from the Ginzburg-Landau free-energy functional having a spatially random coefficient representing spatial disorder of the pairing interaction. Linearization of the equation, valid close to the critical temperature T c , or to the upper critical field H c2 (T c ) maps it to the Anderson localization problem with T c identified with the mobility edge. For the highly anisotropic high-T c materials and thin (2D) films in the quantum Hall geometry, we predict windows of re-entrant superconductivity centered at integrally spaced temperature values. Our model treatment also provides a possible explanation for the critical current J c perpendicular becoming non-zero on cooling before J c parallel does in some high-T c superconductors. (author). 18 refs

  12. Bringing Superconductor Digital Technology to the Market Place

    Science.gov (United States)

    Nisenoff, Martin

    The unique properties of superconductivity can be exploited to provide the ultimate in electronic technology for systems such as ultra-precise analogue-to-digital and digital-to-analogue converters, precise DC and AC voltage standards, ultra high speed logic circuits and systems (both digital and hybrid analogue-digital systems), and very high throughput network routers and supercomputers which would have superior electrical performance at lower overall electrical power consumption compared to systems with comparable performance which are fabricated using conventional room temperature technologies. This potential for high performance electronics with reduced power consumption would have a positive impact on slowing the increase in the demand for electrical utility power by the information technology community on the overall electrical power grid. However, before this technology can be successfully brought to the commercial market place, there must be an aggressive investment of resources and funding to develop the required infrastructure needed to yield these high performance superconductor systems, which will be reliable and available at low cost. The author proposes that it will require a concerted effort by the superconductor and cryogenic communities to bring this technology to the commercial market place or make it available for widespread use in scientific instrumentation.

  13. Nuclear magnetic resonance in low-symmetry superconductors

    Science.gov (United States)

    Cavanagh, D. C.; Powell, B. J.

    2018-01-01

    We consider the nuclear spin-lattice relaxation rate 1 /T1 in superconductors with accidental nodes, i.e., zeros of the order parameter that are not enforced by its symmetries. Such nodes in the superconducting gap are not constrained by symmetry to a particular position on the Fermi surface. We show, analytically and numerically, that a Hebel-Slichter-like peak occurs even in the absence of an isotropic component of the superconducting gap. For a gap with symmetry-required nodes the Fermi velocity at the node must point along the node. For accidental nodes this is not, in general, the case. This leads to additional terms in spectral function and hence the density of states. These terms lead to a logarithmic divergence in 1 /T1T at T →Tc- in models neglecting disorder and interactions [except for those leading to superconductivity; here T is temperature, Tc-=limδ→0(Tc-δ ) , and Tc is the critical temperature]. This contrasts with the usual Hebel-Slichter peak which arises from the coherence factors due to the isotropic component of the gap and leads to a divergence in 1 /T1T somewhat below Tc. The divergence in superconductors with accidental nodes is controlled by either disorder or additional electron-electron interactions. However, for reasonable parameters, neither of these effects removes the peak altogether. This provides a simple experimental method to distinguish between symmetry-required and accidental nodes.

  14. Orbitally limited pair-density-wave phase of multilayer superconductors

    Science.gov (United States)

    Möckli, David; Yanase, Youichi; Sigrist, Manfred

    2018-04-01

    We investigate the magnetic field dependence of an ideal superconducting vortex lattice in the parity-mixed pair-density-wave phase of multilayer superconductors within a circular cell Ginzburg-Landau approach. In multilayer systems, due to local inversion symmetry breaking, a Rashba spin-orbit coupling is induced at the outer layers. This combined with a perpendicular paramagnetic (Pauli) limiting magnetic field stabilizes a staggered layer dependent pair-density-wave phase in the superconducting singlet channel. The high-field pair-density-wave phase is separated from the low-field BCS phase by a first-order phase transition. The motivating guiding question in this paper is: What is the minimal necessary Maki parameter αM for the appearance of the pair-density-wave phase of a superconducting trilayer system? To address this problem we generalize the circular cell method for the regular flux-line lattice of a type-II superconductor to include paramagnetic depairing effects. Then, we apply the model to the trilayer system, where each of the layers are characterized by Ginzburg-Landau parameter κ0 and a Maki parameter αM. We find that when the spin-orbit Rashba interaction compares to the superconducting condensation energy, the orbitally limited pair-density-wave phase stabilizes for Maki parameters αM>10 .

  15. Recent results from superconductor R and D at CRPP

    International Nuclear Information System (INIS)

    Bruzzone, P.

    2002-01-01

    After a number of upgrades, the SULTAN high field test facility at CRPP-Villigen is today a unique tool for in depth characterization of the large, high current superconductors of next step fusion device. In the ITER EDA and CTA phases, many experiments have been carried out in SULTAN, both in short length and coiled samples, exploring the performance to the limit, without the operation risks unavoidable, for example, in a coil test. The most relevant results obtained in the scope of the R and D program for optimization of the conductor design are highlighted. The feedback in the ITER conductor design led to a substantial reduction of the engineering margin and conductor cost. Examples include the ac loss and stability at field transients, the use of copper segregation in Nb3Sn cables, the broad superconducting transition (low 'n' value) in large conductors and the fatigue load effects in Nb3Sn cable-in-conduit conductors. The R and D activity in SULTAN will continue in the next years to refine the conductor design and to broaden the database. An important role will be played during the construction of ITER, for the acceptance test of the large superconductors before winding the coils. (author)

  16. Application of internally cooled superconductors to tokamak fusion reactors

    International Nuclear Information System (INIS)

    Materna, P.A.

    1986-01-01

    Recent proposals for ignition tokamaks containing superconductors are reviewed. As the funding prospects for the U.S. fusion program have worsened, the proposed designs have been shrinking to smaller machines with less ambitious goals. The most recent proposal, the Tokamak Fusion Core Experiment (TFCX), was based on internally cooled cabled Nb 3 Sn conductors for the options which used superconductors. Internally cooled conductors are particularly advantageous in their electrical insulating properties and in the similarity of their winding procedures to those of conventional copper coils. Epoxy impregnation is possible and is advantageous both structurally and electrically. The allowable current density for this type of conductor was shown to be larger than the current density for more conventional superconducting technology. The TFCX effort identified research and development needed in advance of TFCX or any other large ignition machine. These topics include the metal used for the conduit; nuclear effects on materials; properties of electrical and thermal insulators; extension of superconducting technology to the sizes of coils envisioned and to the field level envisioned; pulsed coil superconducting technology; joints and insulating breaks in conductors; heat removal or flow path length limitations; mechanical behavior of potted conductor bundles; instrumentation; and fault modes and various questions integrated with overall machine design

  17. Higher-order topological insulators and superconductors protected by inversion symmetry

    Science.gov (United States)

    Khalaf, Eslam

    2018-05-01

    We study surface states of topological crystalline insulators and superconductors protected by inversion symmetry. These fall into the category of "higher-order" topological insulators and superconductors which possess surface states that propagate along one-dimensional curves (hinges) or are localized at some points (corners) on the surface. We provide a complete classification of inversion-protected higher-order topological insulators and superconductors in any spatial dimension for the 10 symmetry classes by means of a layer construction. We discuss possible physical realizations of such states starting with a time-reversal-invariant topological insulator (class AII) in three dimensions or a time-reversal-invariant topological superconductor (class DIII) in two or three dimensions. The former exhibits one-dimensional chiral or helical modes propagating along opposite edges, whereas the latter hosts Majorana zero modes localized to two opposite corners. Being protected by inversion, such states are not pinned to a specific pair of edges or corners, thus offering the possibility of controlling their location by applying inversion-symmetric perturbations such as magnetic field.

  18. PdTe: a 4.5 K type-II BCS superconductor

    International Nuclear Information System (INIS)

    Tiwari, Brajesh; Goyal, Reena; Jha, Rajveer; Awana, V P S; Dixit, Ambesh

    2015-01-01

    We report on the structure and physical properties of the polycrystalline PdTe superconductor, which is synthesized by the solid state reaction route via the quartz vacuum encapsulation technique at 750 °C. The as synthesized compound is crystallized in hexagonal crystal structure with P63/mmc space group. Both transport and magnetic measurements showed that PdTe is a bulk superconductor below 4.5 K. Isothermal magnetization (MH) and magneto-transport (R(T)H) measurements provided the values of the lower (H c1 ) and upper (H c2 ) critical fields as 250 Oe and 1200 Oe respectively at 2 K, establishing that the compound is clearly a type-II superconductor. The coherence length (ξ 0 ) and Ginzburg–Landau parameter (κ) are estimated from the experimentally determined upper and lower critical fields, and are 449 Å and 1.48 respectively. Thermodynamic heat capacity measurements under different magnetic fields, i.e. C p (T)H, showed a clear transition at 4.5 K (T c ), which shifts gradually to lower temperatures with application of field. The values of Debye temperature (Θ D ) and electronic specific heat coefficient (γ) obtained from C p (T) data are found to be 203 K and 6.01 mJ mol −1 K −2 . The observed specific heat jump (ΔC/γT c ) is 1.33, thus suggesting a possible weak coupling case for the PdTe superconductor. (paper)

  19. Unconventional Andreev reflection on the quasi-one-dimensional superconductor Nb2PdxSe5

    Directory of Open Access Journals (Sweden)

    Yeping Jiang

    2016-04-01

    Full Text Available We have carried out Andreev reflection measurements on point contact junctions between normal metal and single crystals of the quasi-one-dimensional (Q1D superconductor Nb2PdxSe5 (Tc ∼ 5.5 K. The contacts of the junctions were made on either self-cleaved surfaces or crystal edges so that the current flow directions in the two types of junctions are different, and the measurements provide a directional probe for the order parameter of the superconductor. Junctions made in both configurations show typical resistances of ∼20-30 Ohms, and a clear double-gap Andreev reflection feature was consistently observed at low temperatures. Quantitative analysis of the conductance spectrum based on a modified Blonder-Tinkham-Klapwijk (BTK model suggests that the amplitudes of two order parameters may have angular dependence in the a-c plane. Moreover, the gap to transition temperature ratio (Δ/TC for the larger gap is substantially higher than the BCS ratio expected for phonon-mediated s-wave superconductors. We argue that the anisotropic superconducting order parameter and the extremely large gap to transition temperature ratio may be associated with an unconventional pairing mechanism in the inorganic Q1D superconductor.

  20. Fabrication and study of hybrid molecule/superconductor assemblies

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Jurbergs, D.; Riley, D.R.; Zhao, J.; Zhou, J.P.; Lo, K.; Grassi, J.; Jones, C.

    1994-01-01

    The fabrication of electronic devices from molecular materials has attracted much attention recently. Schottky diodes, molecular transistors, metal-insulator-semiconductor diodes, MIS field effect transistors and light emitting diodes have all been prepared utilizing such substances. The active elements in these devices have been constructed by depositing the molecular phase onto the surface of a metal, semiconductor or insulating substrate. With the recent discovery of high temperature superconductivity, new opportunities now exist for the study of molecule/superconductor interactions as well as for the construction of novel hybrid molecule/superconductor devices. In this paper, methods for preparing the first two classes of composite molecule/superconductor devices are reported. Consequently, light sensors based on organic dye-coated superconductor junctions as well as molecular switches fashioned from organic conductive polymer-coated superconductor microbridges are discussed. Moreover, the initial results related to the study of molecule/superconductor energy and electron transfer phenomena are reported

  1. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    International Nuclear Information System (INIS)

    Maguire, J.F.; Yuan, J.

    2009-01-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  2. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.F., E-mail: jmaguire@amsc.co [American Superconductor Co., 64 Jackson Road, Devens, MA 01434 (United States); Yuan, J. [American Superconductor Co., 64 Jackson Road, Devens, MA 01434 (United States)

    2009-10-15

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  3. Status of high temperature superconductor cable and fault current limiter projects at American Superconductor

    Science.gov (United States)

    Maguire, J. F.; Yuan, J.

    2009-10-01

    This paper will describe the status of three key programs currently underway at American Superconductor Corp. The first program is the LIPA project which is a transmission voltage high temperature superconducting cable program, with funding support from the US Department of Energy. The 600 m cable, capable of carrying 574 MVA, was successfully installed and commissioned in LIPA grid on April 22, 2008. An overview of the project, system level design details and operational data will be provided. In addition, the status of the newly awarded LIPA II project will be described. The second program is Project Hydra, with funding support from the US Department of Homeland Security, to design, develop and demonstrate an HTS cable with fault current limiting functionality. The cable is 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The cable will be permanently installed and energized in Manhattan, New York in 2010. The initial status of Project Hydra will be presented. The final program to be discussed is a transmission voltage, high temperature superconducting fault current limiter funded by the US DOE. The project encompasses the design, construction and test of a 115 kV FCL for power transmission within a time frame of 4-5 years. Installation and testing are planned for a Southern California Edison substation. A project overview and progress under the first phase will be reported.

  4. Nonlinear vs. bolometric radiation response and phonon thermal conductance in graphene-superconductor junctions

    International Nuclear Information System (INIS)

    Vora, Heli; Nielsen, Bent; Du, Xu

    2014-01-01

    Graphene is a promising candidate for building fast and ultra-sensitive bolometric detectors due to its weak electron-phonon coupling and low heat capacity. In order to realize a practical graphene-based bolometer, several important issues, including the nature of radiation response, coupling efficiency to the radiation and the thermal conductance need to be carefully studied. Addressing these issues, we present graphene-superconductor junctions as a viable option to achieve efficient and sensitive bolometers, with the superconductor contacts serving as hot electron barriers. For a graphene-superconductor device with highly transparent interfaces, the resistance readout in the presence of radio frequency radiation is dominated by non-linear response. On the other hand, a graphene-superconductor tunnel device shows dominantly bolometric response to radiation. For graphene devices fabricated on SiO 2 substrates, we confirm recent theoretical predictions of T 2 temperature dependence of phonon thermal conductance in the presence of disorder in the graphene channel at low temperatures

  5. Far infrared spectroscopy of high-Tc superconductors at the National Synchrotron Light Source

    International Nuclear Information System (INIS)

    Perkowitz, S.; Williams, G.P.

    1989-01-01

    This paper reports the first far infrared transmission spectra for micron-thick films of high-T c rare-earth superconductors such as DyBaCuO, with implications for the superconducting gap. Spectra were obtained at Brookhaven's National Synchrotron Light Source, a new high-intensity, broad-band millimeter to infrared source. The National Synchrotron Light Source at Brookhaven National Laboratory, known for powerful X-ray and UV output, is also a high-intensity (10 to 1000 times above a black body), high-brightness (intensity per solid angle), broad-band, picosecond, millimeter to infrared source. These features make it valuable for far-infrared condensed matter experiments, especially those in highly absorbing or extremely small systems. A first application has been to measure very small infrared transmissions through thick bulk-like high-T c superconducting films. Preliminary measurements through films of the conventional superconductor Nb 3 Ge established techniques. These were followed by the first measurements (to the author's knowledge) through micron-thick films of high-T c rare-earth superconductors such as DyBaCuO over 10-300 cm -1 , which includes the superconducting gap according to BCS or moderately strong-coupled theory. The authors discuss the transmission evidence bearing on the existence of a gap and other important features of high-T c superconductors, and describe the synchrotron and instrumentation features which make possible these unusual measurements

  6. Predicted midgap states in unconventional superconductors and their numerous implications for high-Tc superconductors

    International Nuclear Information System (INIS)

    Hu, C.R.

    1998-01-01

    A fundamental topological consequence of the unconventional (i.e., non-s-wave) pairing symmetry of high-T c superconductors (HTSC's) is the existence of midgap (quasi-particle) states (MS's) bound to surface,m interfaces and other locations. This prediction by the author has most-likely solved a decade-old puzzle, viz., the ubiquitous observation of a zero-bias conductance peak (ZBCP) in tunneling experiments performed on HTSC's. There are also numerous other novel consequences of these MS's, predicted by various researchers, including a new Josephson critical current term; an (already observed) low-temperature splitting of the ZBCP due possibly to a spontaneous breaking of the time-reversal symmetry at a sample surface; a new explanation of the paramagnetic Meissner effect; and a giant magnetic moment, etc. Here the author will review the physical origin of the MS's, the several extensions of the original idea and the many novel consequences of these MS's, some of which have been investigated quantitatively and some others only deduced in qualitative terms so far

  7. Peculiar long-range supercurrent in superconductor-ferromagnet-superconductor junction containing a noncollinear magnetic domain in the ferromagnetic region

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Hao, E-mail: menghao1982@shu.edu.cn [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China); National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Wu, Xiuqiang [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Ren, Yajie [School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723001 (China)

    2015-01-14

    We study the supercurrent in clean superconductor-ferromagnet-superconductor heterostructure containing a noncollinear magnetic domain in the ferromagnetic region. It is demonstrated that the magnetic domain can lead to a spin-flip scattering process, which reverses the spin orientations of the singlet Cooper pair and simultaneously changes the sign of the corresponding electronic momentum. If the ferromagnetic layers on both sides of magnetic domain have the same features, the long-range proximity effect will take place. That is because the singlet Cooper pair will create an exact phase-cancellation effect and gets an additional π phase shift as it passes through the entire ferromagnetic region. Then, the equal spin triplet pair only exists in the magnetic domain region and can not diffuse into the other two ferromagnetic layers. So, the supercurrent mostly arises from the singlet Cooper pairs, and the equal spin triplet pairs are not involved. This result can provide a approach for generating the long-range supercurrent.

  8. Stiffness Evaluation of High Temperature Superconductor Bearing Stiffness for 10 kWh Superconductor Flywheel Energy Storage System

    International Nuclear Information System (INIS)

    Park, B. J.; Jung, S. Y.; Lee, J. P.; Park, B. C.; Kim, C. H.; Han, S. C.; Du, S. G.; Han, Y. H.; Sung, T. H.

    2009-01-01

    A superconductor flywheel energy storage(SFES) system is mainly act an electro-mechanical battery which transfers mechanical energy into electrical form and vice versa. SFES system consists of a pair of non-contacting High Temperature Superconductor (HTS) bearings with a very low frictional loss. But it is essential to design an efficient HTS bearing considering with rotor dynamic properties through correct calculation of stiffness in order to support a huge composite flywheel rotor with high energy storage density. Static properties of HTS bearings provide data to solve problems which may occur easily in a running system. Since stiffness to counter vibration is the main parameter in designing an HTS bearing system, we investigate HTS bearing magnetic force through static properties between the Permanent Magnet(PM) and HTS. We measured axial / radial stiffness and found bearing stiffness can be easily changed by activated vibration direction between PM and HTS bulk. These results are used to determine the optimal design for a 10 kWh SFES.

  9. Eliminating a Major Cause of Wire Drawing Breakage in A-15 High-Field Superconductors

    International Nuclear Information System (INIS)

    Austen, Alfred R.

    2003-01-01

    Eliminating a Major Cause of Wire Drawing Breakage in A-15 High-Field Superconductors Phase 1 Summary Purpose of the research: The Phase 1 goal was to make a significant improvement in the wire drawing technology used for difficult to draw superconductor precursor composites. Many ductile Nb-Al and Nb-Sn precursor wire composites have experienced the onset of wire drawing breakage at about 1.5 mm diameter. Phase 1 focused on evaluating the role that precision rigid guidance of the wire into the drawing die and the hydrostatic stress state at the die entrance played in preventing wire breakage. Research carried out: The research performed depended upon the construction of both a mechanical wire guide and a hydrostatic pressure stiffened wire guidance system. Innovare constructed the two wire guidance systems and tested them for their ability to reduce wire drawing breakage. One set of hardware provided rigid alignment of the wires to their wire drawing die axes within 0.35 degrees using ''hydrostatic pressure stiffening'' to enable the precision guidance strategy to be implemented for these highly flexible small diameter wires. This apparatus was compared to a guide arrangement that used short span mechanical guide alignment with a misalignment limit of about 0.75 degrees. Four A-15 composite wires with breakage histories were drawn to evaluate the use of these wire guiding systems to reduce and/or eliminate wire breakage. Research findings and results: In Phase 1, a breakthrough in wire drawing technology for A-15 superconductor composites was achieved by dramatically limiting or eliminating breakage in four different A-15 composite precursor wire designs during the drawing of these very desirable composites that previously could not be drawn to near final size. Research results showed that the proposed Phase 1 mechanical wire guides were sufficiently effective and successful in eliminating breakage when used along with other advanced wire drawing technology to

  10. Low resistivity contact to iron-pnictide superconductors

    Science.gov (United States)

    Tanatar, Makariy; Prozorov, Ruslan; Ni, Ni; Bud& #x27; ko, Sergey; Canfield, Paul

    2013-05-28

    Method of making a low resistivity electrical connection between an electrical conductor and an iron pnictide superconductor involves connecting the electrical conductor and superconductor using a tin or tin-based material therebetween, such as using a tin or tin-based solder. The superconductor can be based on doped AFe.sub.2As.sub.2, where A can be Ca, Sr, Ba, Eu or combinations thereof for purposes of illustration only.

  11. High temperature superconductor cable concepts for fusion magnets

    CERN Document Server

    AUTHOR|(CDS)2078397

    2013-01-01

    Three concepts of high temperature superconductor cables carrying kA currents (RACC, CORC and TSTC) are investigated, optimized and evaluated in the scope of their applicability as conductor in fusion magnets. The magnetic field and temperature dependence of the cables is measured; the thermal expansion and conductivity of structure, insulation and filling materials are investigated. High temperature superconductor winding packs for fusion magnets are calculated and compared with corresponding low temperature superconductor cases.

  12. On the electronegativity of the high-Tc oxide superconductor

    International Nuclear Information System (INIS)

    Zhang Liyuan.

    1991-08-01

    We employ a very useful quantity, the electronegativity, to classify the superconductor. The value of the group average electronegativity to separate superconductor into two categories is 2. Each category has unique chemical bond features. The high-T c oxide superconductor belongs to the second category with group average electronegativity being larger than 2. Their unusual bond nature also gives new insight into some essential factors beneficial to enhance superconductivity. (author). 9 refs, 2 tabs

  13. The iron pnictide superconductors an introduction and overview

    CERN Document Server

    Citro, Roberta

    2017-01-01

    This book covers different aspects of the physics of iron-based superconductors ranging from the theoretical, the numerical and computational, to the experimental ones. It starts from the basic theory modeling many-body physics in Fe-superconductors and other multi-orbital materials and drreaches up to the magnetic and Cooper pair fluctuations and nematic order. Finally, it offers a comprehensive overview of the most recent advancements in the experimental investigations of iron based superconductors. .

  14. Filters for mobile radio from high Tc ceramic superconductors

    International Nuclear Information System (INIS)

    Peterson, G.E.; Wong, E.; Alford, N.McN.

    1990-01-01

    Mobile radio frequencies lie between 30 MHz and 1,000 MHz. This frequency range is ideal for ceramic high T c superconductors. We have designed Chebyshev, Butterworth and interdigital filters that can employ high T c superconductors in the form of rods, tubes and helices. In general, the performance of these filters at milliwatt power levels is excellent. We will describe fabrication of the superconductors and filter design

  15. Optimization of superconductor--normal-metal--superconductor Josephson junctions for high critical-current density

    International Nuclear Information System (INIS)

    Golub, A.; Horovitz, B.

    1994-01-01

    The application of superconducting Bi 2 Sr 2 CaCu 2 O 8 and YBa 2 Cu 3 O 7 wires or tapes to electronic devices requires the optimization of the transport properties in Ohmic contacts between the superconductor and the normal metal in the circuit. This paper presents results of tunneling theory in superconductor--normal-metal--superconductor (SNS) junctions, in both pure and dirty limits. We derive expressions for the critical-current density as a function of the normal-metal resistivity in the dirty limit or of the ratio of Fermi velocities and effective masses in the clean limit. In the latter case the critical current increases when the ratio γ of the Fermi velocity in the superconductor to that of the weak link becomes much less than 1 and it also has a local maximum if γ is close to 1. This local maximum is more pronounced if the ratio of effective masses is large. For temperatures well below the critical temperature of the superconductors the model with abrupt pair potential on the SN interfaces is considered and its applicability near the critical temperature is examined

  16. Towards ferromagnet/superconductor junctions on graphene

    International Nuclear Information System (INIS)

    Pakkayil, Shijin Babu

    2015-01-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  17. Towards ferromagnet/superconductor junctions on graphene

    Energy Technology Data Exchange (ETDEWEB)

    Pakkayil, Shijin Babu

    2015-07-01

    Ever since A. Aspect et al. performed the famous 1982 experiment to prove the violation of Bell's inequality, there have been suggestions to conduct the same experiment in a solid state system. Some of those proposals involve superconductors as the source of entangled electron pair and spin depended interfaces as the optical analogue of polariser/filter. Semiconductors can serve as the best medium for such an experiment due to their long relaxation lengths. So far there are no reports on a ferromagnet/superconductor junctions on a semiconductor even though such junctions has been successfully realised in metallic systems. This thesis reports the successful fabrication of ferromagnet/superconductor junction along with characterising measurements in a perfectly two dimensional zero-gap semiconductor known as graphene. Since it's discovery in 2004, graphene has attracted prodigious interest from both academia and industry due to it's inimitable physical properties: very high mobility, high thermal and electrical conductivity, a high Young's modulus and impermeability. Graphene is also expected to have very long spin relaxation length and high spin life time because of it's low spin orbit coupling. For this reason and since researchers are always looking for novel materials and devices to comply with the high demands for better and faster data storage devices, graphene has emanated as a brand new material system for spin based devices. The very first spin injection and detection in graphene was realised in 2007 and ever since, the focal point of the research has been to improve the spin transport properties. A part of this thesis discusses a new fabrication recipe which has a high yield for successfully contacting graphene with a ferromagnet. A high starting yield for ferromagnetic contacts is a irremissible condition for combining superconducting contacts to the device to fabricate ferromagnet/superconductor junctions. Any fabrication recipe

  18. Impurities and conductivity in a D-wave superconductor

    International Nuclear Information System (INIS)

    Balatsky, A.V.

    1994-01-01

    Impurity scattering in the unitary limit produces low energy quasiparticles with anisotropic spectrum in a two-dimensional d-wave superconductor. The authors describe a new quasi-one-dimensional limit of the quasiparticle scattering, which might occur in a superconductor with short coherence length and with finite impurity potential range. The dc conductivity in a d-wave superconductor is predicted to be proportional to the normal state scattering rate and is impurity-dependent. They show that quasi-one-dimensional regime might occur in high-T c superconductors with Zn impurities at low temperatures T approx-lt 10 K

  19. Method and apparatus to trigger superconductors in current limiting devices

    Science.gov (United States)

    Yuan, Xing; Hazelton, Drew Willard; Walker, Michael Stephen

    2004-10-26

    A method and apparatus for magnetically triggering a superconductor in a superconducting fault current limiter to transition from a superconducting state to a resistive state. The triggering is achieved by employing current-carrying trigger coil or foil on either or both the inner diameter and outer diameter of a superconductor. The current-carrying coil or foil generates a magnetic field with sufficient strength and the superconductor is disposed within essentially uniform magnetic field region. For superconductor in a tubular-configured form, an additional magnetic field can be generated by placing current-carrying wire or foil inside the tube and along the center axial line.

  20. Surface electrostatic waves in bounded high temperature superconductors

    International Nuclear Information System (INIS)

    Averkov, Yu.O.; Yakovenko, V.M.

    2008-01-01

    The dispersion relations of surface electrostatic waves propagating along the surface of semi bounded layered superconductor and in the slab of layered superconductor are theoretically investigated. An arbitrary inclination of superconductor layers to the interface of a vacuum - crystal and an arbitrary direction of propagation of surface waves in the plane of the interface are taking into account. The possibility of initiation of an absolute instability during the propagation of a non-relativistic plasma stream above the surface of the layered superconductor is shown

  1. SQCRAMscope imaging of transport in an iron-pnictide superconductor

    Science.gov (United States)

    Yang, Fan; Kollar, Alicia; Taylor, Stephen; Palmstrom, Johanna; Chu, Jiun-Haw; Fisher, Ian; Lev, Benjamin

    2017-04-01

    Microscopic imaging of local magnetic fields provides a window into the organizing principles of complex and technologically relevant condensed matter materials. However, a wide variety of intriguing strongly correlated and topologically nontrivial materials exhibit poorly understood phenomena outside the detection capability of state-of-the-art high-sensitivity, high-resolution scanning probe magnetometers. We have recently introduced a quantum-noise-limited scanning probe magnetometer that can operate from room-to-cryogenic temperatures with unprecedented DC-field sensitivity and micron-scale resolution. The Scanning Quantum Cryogenic Atom Microscope (SQCRAMscope) employs a magnetically levitated atomic Bose-Einstein condensate (BEC), thereby providing immunity to conductive and blackbody radiative heating. We will report on the first use of the SQCRAMscope for imaging a strongly correlated material. Specifically, we will present measurements of electron transport in iron-pnictide superconductors across the electron nematic phase transition at T = 135 K.

  2. Non-centrosymmetric superconductors introduction and overview

    CERN Document Server

    Sigrist, Manfred

    2012-01-01

    Superconductivity in materials without inversion symmetry in the respective crystal structures occurs in the presence of antisymmetric spin-orbit coupling as a consequence of an emerging electric field gradient. The superconducting condensate is then a superposition of spin-singlet and spin-triplet Cooper pairs. This scenario accounts for various experimental findings such as nodes in the superconducting gap or extremely large upper critical magnetic fields. Spin-triplet pairing can occur in non-centrosymmetric superconductors in spite of Anderson’s theorem that spin-triplet pairing requires a crystal structure that exhibits inversion symmetry. This book, authored and edited by leading researchers in the field, is both an introduction to and overview on this exciting branch of novel superconductors. Its self-contained and tutorial style makes it particularly suitable for self-study and as source of teaching material for special seminars and courses. At the same time it constitutes an up-to-date and authorit...

  3. Method for fabrication of high temperature superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam [Hinsdale, IL; Ma, Beihai [Naperville, IL; Miller, Dean [Darien, IL

    2009-07-14

    A layered article of manufacture and a method of manufacturing same is disclosed. A substrate has a biaxially textured MgO crystalline layer having the c-axes thereof inclined with respect to the plane of the substrate deposited thereon. A layer of one or more of YSZ or Y.sub.2O.sub.3 and then a layer of CeO.sub.2 is deposited on the MgO. A crystalline superconductor layer with the c-axes thereof normal to the plane of the substrate is deposited on the CeO.sub.2 layer. Deposition of the MgO layer on the substrate is by the inclined substrate deposition method developed at Argonne National Laboratory. Preferably, the MgO has the c-axes thereof inclined with respect to the normal to the substrate in the range of from about 10.degree. to about 40.degree. and YBCO superconductors are used.

  4. A Fifth Force: Generalized through Superconductors

    Science.gov (United States)

    Robertson, Glen A.

    1999-01-01

    The connection between the Biefield-Brown Effect, the recent repeat of the 1902 Trouton-Noble (TN) experiments, and the gravity shielding experiments was explored. This connection is visualized through high capacitive electron concentrations. From this connection, a theory is proposed that connects mass energy to gravity and a fifth force. The theory called the Gravi-Atomic Energy theory presents two new terms: Gravi-atomic energy and quantum vacuum pressure (QVP). Gravi-atomic energy is defined as the radiated mass energy, which acts on vacuum energy to create a QVP about a mass, resulting in gravity and the fifth force. The QVP emission from a superconductor was discussed followed by the description of a test for QVP from a superconductor using a Cavendish balance.

  5. Local electromagnetic waves in layered superconductors

    International Nuclear Information System (INIS)

    Gvozdikov, V.M.; Vega-Monroy, R.

    1999-01-01

    A dispersion equation for electromagnetic waves localized on a defect layer of a layered superconductor is obtained in the frame of a model which neglects electron hopping between layers but assumes an arbitrary current-current response function within the layers. The defect layer differs from the rest of the layers by density and mass of charge carriers. It is shown that near the critical temperature in the London limit the local mode lies within the superconducting gap and has a wave vector threshold depending on the layered crystal and defect layer parameters. In the case of highly anisotropic layered superconductors, like Bi- or Tl-based high-T c cuprates, the local mode exists within a narrow range of positive variations of the mass and charge carriers. (author)

  6. Critical current enhancement in high Tc superconductors

    International Nuclear Information System (INIS)

    Jin, S.; Graebner, J.E.; Tiefel, T.H.

    1990-01-01

    Progress toward major technological applications of the bulk, high T c superconductors has been hindered by two major barriers, i.e., the Josephson weak-links at grain boundaries and the lack of sufficient intragrain flux pinning. It has been demonstrated that the weak link problem can be overcome by extreme alignment of grains such as in melt-textured-growth (MTG) materials. Modified or improved processing by various laboratories has produced further increased critical currents. However, the insufficient flux pinning seems to limit the critical current density in high fields to about 10 4 --10 5 A/cm 2 at 77K, which is not satisfactory for many applications. In this paper, processing, microstructure, and critical current behavior of the MTG type superconductors are described, and various processing possibilities for flux pinning enhancement are discussed

  7. Application of High Temperature Superconductors to Accelerators

    CERN Document Server

    Ballarino, A

    2000-01-01

    Since the discovery of high temperature superconductivity, a large effort has been made by the scientific community to investigate this field towards a possible application of the new oxide superconductors to different devices like SMES, magnetic bearings, flywheels energy storage, magnetic shielding, transmission cables, fault current limiters, etc. However, all present day large scale applications using superconductivity in accelerator technology are based on conventional materials operating at liquid helium temperatures. Poor mechanical properties, low critical current density and sensitivity to the magnetic field at high temperature are the key parameters whose improvement is essential for a large scale application of high temperature superconductors to such devices. Current leads, used for transferring currents from the power converters, working at room temperature, into the liquid helium environment, where the magnets are operating, represent an immediate application of the emerging technology of high t...

  8. Flux Tube Dynamics in the Dual Superconductor

    International Nuclear Information System (INIS)

    Lampert, M.; Svetitsky, B.

    1999-01-01

    We have studied plasma oscillations in a flux tube created in a dual superconductor. The theory contains an Abelian gauge field coupled magnetically to a Higgs field that confines electric charge via the dual Meissner effect. Starting from a static flux tube configuration, with electric charges at either end, we release a fluid of electric charges in the system that accelerate and screen the electric field. The weakening of the electric field allows the flux tube to collapse, and the inertia of the charges forces it open again. We investigate both Type I and Type II superconductors, with plasma frequencies both above and below the threshold for radiation into the Higgs vacuum. (The parameters appropriate to QCD are in the Type II regime; the plasma frequency depends on the mass taken for the fluid constituents.) The coupling of the plasma oscillations to the Higgs field making up the flux tube is the main new feature in our work

  9. Superconductors for W VII-X coils

    International Nuclear Information System (INIS)

    Maurer, W.

    1987-01-01

    Superconductor concepts are discussed with respect to operational current, cooling and bending behavior, and ac losses. The encouraging results for NbTi superconducting technology are recalled. It is argued that the WVII-X stellarator modular superconducting coils can be built just as the modular Cu coils for WVII-AS. Special attention must be paid to the dB/dt allowed for the conductor. Shape and price depend on the means used to avoid ac losses. Formula to elucidate the main physical parameters influencing ac loss behavior of superconductors are given. Configurations investigated with respect to plasma behavior are compared. Masses to be cooled were estimated for two configurations. The estimated cooling power is of the order of 3kW

  10. High-Tc ferroelectrics and superconductors

    International Nuclear Information System (INIS)

    Muller, K.A.

    1990-01-01

    The meaning of the title refers to transition temperatures T c in ferroelectrics (FE) and superconductors (S). The highest T c 's in either field are observed in oxides: 1770 K in the ferroelectric La 2 TiO 7 and 125 K in the superconductor Tl 2 Ca 2 Cu 3 O 10 . Therefore, the question can be asked whether the observed high T c 's in oxide FE and S are a pure coincidence or whether there may be an underlying reason for it. This question is addressed first by recalling recent advances concerning anharmonic FE-properties and then by reviewing S-findings in the new compounds related to these properties

  11. Electrical bushing for a superconductor element

    Science.gov (United States)

    Mirebeau, Pierre; Lallouet, Nicolas; Delplace, Sebastien; Lapierre, Regis

    2010-05-04

    The invention relates to an electrical bushing serving to make a connection at ambient temperature to a superconductor element situated in an enclosure at cryogenic temperature. The electrical bushing passes successively through an enclosure at intermediate temperature between ambient temperature and cryogenic temperature, and an enclosure at ambient temperature, and it comprises a central electrical conductor surrounded by an electrically insulating sheath. According to the invention, an electrically conductive screen connected to ground potential surrounds the insulating sheath over a section that extends from the end of the bushing that is in contact with the enclosure at cryogenic temperature at least as far as the junction between the enclosure at intermediate temperature and the enclosure at ambient temperature. The invention is more particularly applicable to making a connection to a superconductor cable.

  12. Vortex-antivortex patterns in mesoscopic superconductors

    International Nuclear Information System (INIS)

    Teniers, Gerd; Moshchalkov, V.V.; Chibotaru, L.F.; Ceulemans, Arnout

    2003-01-01

    We have studied the nucleation of superconductivity in mesoscopic structures of different shape (triangle, square and rectangle). This was made possible by using an analytical gauge transformation for the vector potential A which gives A n =0 for the normal component along the boundary line of the rectangle. As a consequence the superconductor-vacuum boundary condition reduces to the Neumann boundary condition. By solving the linearized Ginzburg-Landau equation with this boundary condition we have determined the field-temperature superconducting phase boundary and the corresponding vortex patterns. The comparison of these patterns for different structures demonstrates that the critical parameters of a superconductor can be manipulated and fine-tuned through nanostructuring

  13. Conductive polymer/superconductor bilayer structures

    International Nuclear Information System (INIS)

    McDevitt, J.T.; Haupt, S.G.; Riley, D.R.; Zhao, J.; Grassi, J.; Lo, R.K.; Jones, C.

    1994-01-01

    The preparation of a hybrid conducting polymer/high-temperature superconductor device consisting of a polypyrrole-coated YBa 2 Cu 3 O 7-∂ microbridge is reported. Electrochemical techniques are exploited to alter the oxidation state of the polymer and, in doing so, it is found for the first time that superconductivity can be modulated in a controllable and reproducible fashion by a polymer layer. Whereas the neutral (insulating) polypyrrole only slightly influences the electrical properties of the underlying YBa 2 Cu 3 O 7-∂ film, the oxidized (conductive) polymer depresses Tc by up to 50K. In a similar fashion, the oxidation state of the polymer is found to modulate reversibly the magnitude of J c , the superconducting critical current. Thus, a new type of molecular switch for controlling superconductivity is demonstrated. Electrochemical, resistance vs. temperature, conact resistance, atomic force microscopy and scanning electron microscopy measurements are utilized to explore the polymer/superconductor interactions

  14. Optical and electron microanalysis of cuprate superconductors

    International Nuclear Information System (INIS)

    Hoff, H.A.; Osofsky, M.S.; Toth, L.E.; Richards, L.E.; Pande, C.S.; Lechter, W.L.

    1990-01-01

    Individual anisotropic grains in heterogeneous and opaque cuprate materials, when viewed in a reflected-light optical microscope through crossed polarizers, often have characteristic colors, when a daylight source is used. Of the cuprate superconductors, regardless of charge carrier type, examined so far, only one characteristic color has been observed We have studied the presence of color and found a strong correlation with the existence of superconductivity. The change in color from insulator to metal to superconductor and the compositions corresponding to these changes found by quantitative energy dispersive x-ray spectroscopy on superconducting Tl-Sr-Ca-Cu-O and metallic but not superconducting La-Sr-Cu-O materials is discussed

  15. Alloy model for high temperature superconductors

    International Nuclear Information System (INIS)

    Weissmann, M.; Saul, A.

    1991-07-01

    An alloy model is proposed for the electronic structure of high temperature superconductors. It is based on the assumption that holes and extra electrons are localized in small copper oxygen clusters, that would be the components of such alloy. This model, when used together with quantum chemical calculations on small clusters, can explain the structure observed in the experimental densities of states of both hole and electron superconductors close to the Fermi energy. The main point is the strong dependence of the energy level distribution and composition on the number of electrons in a cluster. The alloy model also suggests a way to correlate Tc with the number of holes, or extra electrons, and the number of adequate clusters to locate them. (author). 21 refs, 4 figs, 1 tab

  16. Transmission formalism for supercurrent flow in multiprobe superconductor-semiconductor-superconductor devices

    International Nuclear Information System (INIS)

    van Wees, B.J.; Lenssen, K.H.; Harmans, C.J.P.M.

    1991-01-01

    A theoretical study is given of supercurrent flow in a one-dimensional semiconductor channel coupled to superconductors at both ends. In addition, the channel is coupled to a semiconductor reservoir by means of a junction with variable coupling strength var-epsilon. The supercurrent I(cphi) is calculated from the phase-coherent propagation of electronlike and holelike excitations emitted by the superconductor reservoirs, together with electron and hole excitations from the semiconductor reservoir. The effect of temperature and var-epsilon on I(cphi) is studied. It is shown that a voltage applied between the semiconductor reservoir and the superconductors modifies the I(cphi) relation, even in the limit var-epsilon →0

  17. Theory of tunneling in metal--superconductor devices: Supercurrents in the superconductor gap at zero temperature

    International Nuclear Information System (INIS)

    Garcia, N.; Flores, F.; Guinea, F.

    1988-01-01

    Tunneling experiments in metal-oxide superconductor have shown the existence of ''leakage'' currents for applied voltages V smaller than one-half of the superconductor gap Δ. These currents are independent of temperature T. Recently experiments with scanning tunneling microscopy (STM) and squeezable tunnel junctions have shown that the observation of the superconductor gap depends strongly on the resistance in the junction. In fact only for resistances larger than ∼10 6 Ω the gap is clearly observable. These experiments have been explained in terms of the perturbative Hamiltonian formalism of Bardeen. However, it may happen that this theory while applicable for very large resistances may not be so for small tunnel resistances. We present here a nonperturbative theory in all orders of the transmitivity chemical bondTochemical bond 2 and show the existence of supercurrents for values of V 2 . We believe that experiments in STM and other junctions should be interpreted in the frame of this theory

  18. The new superconductors. Les nouveaux supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Gervais, F

    1991-01-01

    The first half of the book is a scanning of superconductivity from 1911 to our days, with Bardeen-Cooper-Schrieffer theory in 1957, with the concept of phonons and the importance of the Brillouin zone, with the discovery of high-tc superconductors oxides by Bednortz and Mueller in 1986. The second part is dealing with physical investigation means for trying to explain this high-tc superconductivity.

  19. Far infrared reflectivity study of ceramic superconductors

    International Nuclear Information System (INIS)

    Memon, A.; Khan, M.N.; Al-Dallal, S.; Tanner, D.B.; Porter, C.D.

    1992-01-01

    In this paper, the authors report on a study of the far-infrared reflectivity of mixed rare earths and lanthnides ceramic superconductors RBa 2 Cu 3 O 7 in the normal state. The authors' results show that the strength of the phonon modes is reduced when yttrium is partially replaced by gadolinium and europium. Also the critical temperature of these mixed materials is reduced as indicated by the four probe technique

  20. Critical de Broglie wavelength in superconductors

    Science.gov (United States)

    Talantsev, E. F.

    2018-03-01

    There are growing numbers of experimental evidences that the self-field critical currents, Jc(sf,T), are a new instructive tool to investigate fundamental properties of superconductors ranging from atomically thin films [M. Liao et al., Nat. Phys. 6 (2018), https://doi.org/10.1038/s41567-017-0031-6; E. F. Talantsev et al., 2D Mater. 4 (2017) 025072; A. Fete et al., Appl. Phys. Lett. 109 (2016) 192601] to millimeter-scale samples [E. F. Talantsev et al., Sci. Rep. 7 (2017) 10010]. The basic empirical equation which quantitatively accurately described experimental Jc(sf,T) was proposed by Talantsev and Tallon [Nat. Commun. 6 (2015) 7820] and it was the relevant critical field (i.e. thermodynamic field, Bc, for type-I and lower critical field, Bc1, for type-II superconductors) divided by the London penetration depth, λL. In this paper, we report new findings relating to this empirical equation. It is that the critical wavelength of the de Broglie wave, λdB,c, of the superconducting charge carrier which within a numerical pre-factor is equal to the largest of two characteristic lengths of Ginzburg-Landau theory, i.e. the coherence length, ξ, for type-I superconductors or the London penetration depth, λL, for type-II superconductors. We also formulate a microscopic criterion for the onset of dissipative transport current flow: ps ṡ 2ṡλL ln(1+2ṡ(λL ξ )) ≥ 1 2 ṡ ( h 2π), where ps is the charge carrier momentum, h is Planck’s constant and the inequality sign “ <” is reserved for the dissipation-free flow.

  1. Magnetic properties of heavy-fermion superconductors

    International Nuclear Information System (INIS)

    Rauchschwalbe, U.

    1986-01-01

    In the present thesis the magnetic properties of heavy-fermion superconductors are investigated. The magnetoresistance and the critical magnetic fields show a variety of anomalous phenomena. The Kondo lattices CeCu 2 Si and CeAl 3 are analysed by magnetoresistance and the field dependence of the resistivitis of UBe 13 , UPt 3 , URu 2 Si 2 and CeRu 3 Si are measured for temperatures < or approx. 1 K. (BHO)

  2. High-Tc superconductor quantum interference devices

    International Nuclear Information System (INIS)

    1991-01-01

    This patent describes a superconductive quantum interferometric device for sensing a characteristic of a magnetic field. It comprises a substrate having a surface, the substrate being selected from the group which consists of strontium titanate, aluminum oxide, sapphire, ZrO 2 and mixtures thereof; a coating of MgO on the surface of the substrate; two identical thin-strip films of a high-critical temperature superconductor on the coating, each of the films having a pair of mutually parallel arms in the form of superconductor strips extending toward and aligned with super conductor strips forming corresponding arms of the other thin-strip film, and a crossbar strip connecting the arms of each thin-strip film at right angles to the arms, the high-critical-temperature superconductor being selected from the group which consists of yttrium-barium-calcium-copper-oxides, bismuth-strontium-calcium-copper-oxides, thallium-barium-copper-oxides, thallium-barium-calcium-copper-oxides, barium oxide: potassium oxide: bismuth oxides, and calcium oxide: zinc oxide: iron oxides; and insulating films on the coating between corresponding free ends of the arms thin-strip films, the insulating films being composed of a material selected from the group which consists of silicon dioxide, silicon nitride, magnesium oxide and mixture thereof

  3. Charge of a quasiparticle in a superconductor.

    Science.gov (United States)

    Ronen, Yuval; Cohen, Yonatan; Kang, Jung-Hyun; Haim, Arbel; Rieder, Maria-Theresa; Heiblum, Moty; Mahalu, Diana; Shtrikman, Hadas

    2016-02-16

    Nonlinear charge transport in superconductor-insulator-superconductor (SIS) Josephson junctions has a unique signature in the shuttled charge quantum between the two superconductors. In the zero-bias limit Cooper pairs, each with twice the electron charge, carry the Josephson current. An applied bias VSD leads to multiple Andreev reflections (MAR), which in the limit of weak tunneling probability should lead to integer multiples of the electron charge ne traversing the junction, with n integer larger than 2Δ/eVSD and Δ the superconducting order parameter. Exceptionally, just above the gap eVSD ≥ 2Δ, with Andreev reflections suppressed, one would expect the current to be carried by partitioned quasiparticles, each with energy-dependent charge, being a superposition of an electron and a hole. Using shot-noise measurements in an SIS junction induced in an InAs nanowire (with noise proportional to the partitioned charge), we first observed quantization of the partitioned charge q = e*/e = n, with n = 1-4, thus reaffirming the validity of our charge interpretation. Concentrating next on the bias region eVSD ~ 2Δ, we found a reproducible and clear dip in the extracted charge to q ~ 0.6, which, after excluding other possibilities, we attribute to the partitioned quasiparticle charge. Such dip is supported by numerical simulations of our SIS structure.

  4. Chemical stability of high-temperature superconductors

    Science.gov (United States)

    Bansal, Narottam P.

    1992-01-01

    A review of the available studies on the chemical stability of the high temperature superconductors (HTS) in various environments was made. The La(1.8)Ba(0.2)CuO4 HTS is unstable in the presence of H2O, CO2, and CO. The YBa2Cu3O(7-x) superconductor is highly susceptible to degradation in different environments, especially water. The La(2-x)Ba(x)CuO4 and Bi-Sr-Ca-Cu-O HTS are relatively less reactive than the YBa2Cu3O(7-x). Processing of YBa2Cu3O(7-x) HTS in purified oxygen, rather than in air, using high purity noncarbon containing starting materials is recommended. Exposure of this HTS to the ambient atmosphere should also be avoided at all stages during processing and storage. Devices and components made out of these oxide superconductors would have to be protected with an impermeable coating of a polymer, glass, or metal to avoid deterioration during use.

  5. Pair breaking and charge relaxation in superconductors

    International Nuclear Information System (INIS)

    Nielson, J.B.; Pethick, C.J.; Rammer, J.; Smith, H.

    1982-01-01

    We present a general formalism based on the quasiclassical Green's function for calculating charge imbalance in nonequilibrium superconductors. Our discussion is sufficiently general that it applies at arbitrary temperatures, and under conditions when the width of quasiparticle states are appreciable due to pair breaking processes, and when strong coupling effects are significant. As a first application we demonstrate in detail how in the limit of smallpair breaking and for a weak coupling superconductor the collision term in the formalism reduces to the one in the quasiparticle Boltzmann equation. We next treat the case of charge imbalance generated by tunnel injection, with pair breaking by phonons and magnetic impurities. Over the range of temperatures investigated exerimentally to date, the calculated charge imbalance is rather close to that evaluated using the Boltzmann equation, even if pair braeking is so strong as almost to destroy superconductivity. Finally we consider charge imbalance generated by the combined influence of a supercurrent and a temperature gradient. We give calculations for a dirty superconductor with scattering by phonons as the pair breaking mechanism, and the results give a reasonable account of the experimental data of Clarke, Fjordboge, and Lindelof. We carry out calculations for the case of impurity scattering along which are valid not only in the clean and dirty limits, but also for intermediate situations. These enable us to see how the large contribution to the charge imbalance found for energies close to the gap edge in the clean case is reduced with increasing impurity scattering

  6. Superconductor Digital-RF Receiver Systems

    Science.gov (United States)

    Mukhanov, Oleg A.; Kirichenko, Dmitri; Vernik, Igor V.; Filippov, Timur V.; Kirichenko, Alexander; Webber, Robert; Dotsenko, Vladimir; Talalaevskii, Andrei; Tang, Jia Cao; Sahu, Anubhav; Shevchenko, Pavel; Miller, Robert; Kaplan, Steven B.; Sarwana, Saad; Gupta, Deepnarayan

    Digital superconductor electronics has been experiencing rapid maturation with the emergence of smaller-scale, lower-cost communications applications which became the major technology drivers. These applications are primarily in the area of wireless communications, radar, and surveillance as well as in imaging and sensor systems. In these areas, the fundamental advantages of superconductivity translate into system benefits through novel Digital-RF architectures with direct digitization of wide band, high frequency radio frequency (RF) signals. At the same time the availability of relatively small 4K cryocoolers has lowered the foremost market barrier for cryogenically-cooled digital electronic systems. Recently, we have achieved a major breakthrough in the development, demonstration, and successful delivery of the cryocooled superconductor digital-RF receivers directly digitizing signals in a broad range from kilohertz to gigahertz. These essentially hybrid-technology systems combine a variety of superconductor and semiconductor technologies packaged with two-stage commercial cryocoolers: cryogenic Nb mixed-signal and digital circuits based on Rapid Single Flux Quantum (RSFQ) technology, room-temperature amplifiers, FPGA processing and control circuitry. The demonstrated cryocooled digital-RF systems are the world's first and fastest directly digitizing receivers operating with live satellite signals in X-band and performing signal acquisition in HF to L-band at ˜30GHz clock frequencies.

  7. Pressure effect on iron based superconductors

    International Nuclear Information System (INIS)

    Arumugam, S.; Kanagaraj, M.

    2011-01-01

    A tuning of macroscopic thermo dynamical parameters such as temperature, pressure and volume play a crucial role in strongly correlated electron systems especially high T c superconductors, which leads to increasing conductivity as well as effective way of reducing intrinsic magnetic moments. Application of chemical and external pressure exhibits significant increases of critical temperature of recently discovered iron pnictides and chalcogenides superconductors. In this present report, we have investigated hydrostatic pressure effects on resistivity and magnetization of some 1111 type based oxypnictide superconductors such as Co doped CeFeAsO, La 0.8 Th 0.2 FeAsO, Ce 0.6 Y 0.4 FeAsO 0.8 F 0.2 and Yb doped CeFeAsO systems respectively. The initially applied pressure increases the T c and its down to lower value when beyond increasing pressure also has been observed and pressure effects on crystal structure were also discussed. From that all the obtained results reveal that controlling of magnetic instability and structure distortion at higher pressure is a dominant way to further developing of T c of these new ferropnictides compounds. (author)

  8. Superconductivity and ceramic superconductors II; Proceedings of the Symposium, Orlando, FL, Nov. 12-15, 1990. Ceramic transactions. Vol. 18

    International Nuclear Information System (INIS)

    Nair, K.M.; Balachandran, U.; Chiang, Y.-M.; Bhalla, A.S.

    1991-01-01

    The present symposium on superconductivity and ceramic superconductors discusses fundamentals and general principles, powder processing and properties, fabrication and properties, and device reliability and applications. Attention is given to phase formation in the Tl-Ca-Ba-Cu-O system, comparative defect studies in La2CuO4 and La2NiO4, solid solution and defect behavior in high Tc oxides, oxygen ion transport and disorder in cuprates, and Sr-free Bi-Ln-Ca-Cu-O superconductors. Topics addressed include the preparation of superconductor Y-Ba-Cu-O powder by single-step calcining in air, low-temperature synthesis of YBa2Cu3O(7-x), synthesis of high-phase purity ceramic oxide superconductors by the xerogel method, and the preparation and characterization of the BYa2Cu4O8 superconductor. Also discussed are optical studies of humidity-based corrosion effects on thin film and bulk ceramic YBa2Cu3O(7-delta), thermomechanical processing of YBa2Cu3O(x)/Ag sheathed wires, and the expansion of high-Tc superconducting ceramics

  9. Thermodynamics of vortices in disordered superconductors

    International Nuclear Information System (INIS)

    Van der Beek, Cornelis Jacominus

    2009-01-01

    The emergence of the High Temperature Superconductors (HTSC) has not only profoundly affected solid state physics, it has also provoked a revolution in the understanding of the behaviour of quantified vortex lines that traverse the superconducting material when this is placed in a magnetic field. Owing to the conspiracy of extreme parameter values characterizing High Temperature Superconductors, all physical properties of flux vortices, their dynamics, and their phase diagram in the (B,T) plane could now be studied in hitherto inaccessible detail. Thus, it was established that the true phase transition to the superconducting state occurs nt at the upper critical field Bc2, but at the melting transition of the vortex ensemble. In disordered superconductors, an entirely new phenomenology, linked to flux line pinning by material defects, appeared. New thermodynamic vortex phases have been postulated, and sometimes found. The aim of this document is to take a critical look at the mechanism leading to the melting transition of the vortex ensemble in HTSC, as well as at the role played by material disorder on vortex physics. First and foremost, the materials under study are characterized. that is, not only are their fundamental parameters such as the critical temperature, critical fields, and penetration depth established, but also their purity and the nature of the disorder they contain. In this, the present work finds all its meaning in having been performed at the Laboratoire des Solides Irradies, whose primary goal is to investigate the role of material disorder introduced by irradiation on materials and physics. We then study the vortex melting transition in Bi 2 Sr 2 CaCu 2 O 8 by a method that is peculiar to layered superconductors: the Josephson Plasma Resonance. This technique will allow us to evaluate the average thermal displacements of the vortex lines in the vicinity of the transition, in as-grown as well as in irradiated crystals. The role of crystalline

  10. Magnetic excitations in iron chalcogenide superconductors.

    Science.gov (United States)

    Kotegawa, Hisashi; Fujita, Masaki

    2012-10-01

    Nuclear magnetic resonance and neutron scattering experiments in iron chalcogenide superconductors are reviewed to make a survey of the magnetic excitations in FeSe, FeSe 1- x Te x and alkali-metal-doped A x Fe 2- y Se 2 ( A = K, Rb, Cs, etc). In FeSe, the intimate relationship between the spin fluctuations and superconductivity can be seen universally for the variations in the off-stoichiometry, the Co-substitution and applied pressure. The isovalent compound FeTe has a magnetic ordering with different wave vector from that of other Fe-based magnetic materials. The transition temperature T c of FeSe increases with Te substitution in FeSe 1- x Te x with small x , and decreases in the vicinity of the end member FeTe. The spin fluctuations are drastically modified by the Te substitution. In the vicinity of the end member FeTe, the low-energy part of the spin fluctuation is dominated by the wave vector of the ordered phase of FeTe; however, the reduction of T c shows that it does not support superconductivity. The presence of same wave vector as that of other Fe-based superconductors in FeSe 1- x Te x and the observation of the resonance mode demonstrate that FeSe 1- x Te x belongs to the same group as most of other Fe-based superconductors in the entire range of x , where superconductivity is mediated by the spin fluctuations whose wave vector is the same as the nesting vector between the hole pockets and the electron pockets. On the other hand, the spin fluctuations differ for alkali-metal-doped A x Fe 2- y Se 2 and FeSe or other Fe-based superconductors in their wave vector and strength in the low-energy part, most likely because of the different Fermi surfaces. The resonance mode with different wave vector suggests that A x Fe 2- y Se 2 has an exceptional superconducting symmetry among Fe-based superconductors.

  11. Flux pinning enhancement by Y2BaCuO5 inclusions in melt processed YBaCuO superconductors

    International Nuclear Information System (INIS)

    Murakami, M.

    1991-01-01

    While nonsuperconducting particles are known to serve as effective pinning centers in conventional superconductors, their effect in high T c superconductors is still controversial. In this paper, the author gives evidence that nonsuperconducting Y 2 BaCuO 5 (21 1) inclusions can act as pinning centers in melt processed YBaCuO superconductors even when their size is orders of magnitude larger than the coherence length. In such a case, the interface provides pinning. Theoretical estimates based on direct summations agree well with the experimental results. The applications of direct summation for obtaining the bulk pinning force is justified by direct observation of the FLL (flux line lattice), where the FLL has no long range order and the fluxoids are pinned by 211 inclusions

  12. A theoretical study of the influence of superconductor and magnet dimensions on the levitation force and stability of maglev systems

    International Nuclear Information System (INIS)

    Del-Valle, Nuria; Sanchez, Alvaro; Navau, Carles; Chen Duxing

    2008-01-01

    The levitation force and stability of superconducting levitation devices are strongly dependent on both the geometry and dimensions of the components and the cooling process of the superconductor. In this work we study these effects in levitating systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. Using a model based on the critical-state model and a magnetic-energy minimization procedure, taking into account the demagnetization fields, we analyze the influence of parameters of the system such as the width and height of the superconductor and those of the permanent magnets on the levitation force and stability for two different cooling processes, field cooling and zero-field cooling. The theoretical predictions are compared with existing experimental data. From the results obtained, we provide some general trends on how the dimensions of the components of maglev systems could be chosen to improve both the levitation force and the stability.

  13. A theoretical study of the influence of superconductor and magnet dimensions on the levitation force and stability of maglev systems

    Energy Technology Data Exchange (ETDEWEB)

    Del-Valle, Nuria; Sanchez, Alvaro; Navau, Carles; Chen Duxing [Grup d' Electromagnetisme, Departament de Fisica, Universitat Autonoma Barcelona, 08193 Bellaterra (Barcelona), Catalonia (Spain)

    2008-12-15

    The levitation force and stability of superconducting levitation devices are strongly dependent on both the geometry and dimensions of the components and the cooling process of the superconductor. In this work we study these effects in levitating systems consisting of an infinitely long superconductor and a guideway of different arrangements of infinitely long parallel permanent magnets. Using a model based on the critical-state model and a magnetic-energy minimization procedure, taking into account the demagnetization fields, we analyze the influence of parameters of the system such as the width and height of the superconductor and those of the permanent magnets on the levitation force and stability for two different cooling processes, field cooling and zero-field cooling. The theoretical predictions are compared with existing experimental data. From the results obtained, we provide some general trends on how the dimensions of the components of maglev systems could be chosen to improve both the levitation force and the stability.

  14. Method for preparation of textured YBa.sub.2 Cu.sub.3 O.sub.x superconductor

    Science.gov (United States)

    Selvamanickam, Venkat; Goyal, Amit; Kroeger, Donald M.

    1998-01-01

    The present invention relate to textured YBa.sub.2 Cu.sub.3 O.sub.x (Y-123) superconductors and a process of preparing them by directional recrystallization of compacts fabricated from quenched YBCO powders at temperatures about 100.degree. C. below the peritectic temperature to provide a superconductor where more than 75% of the YBa.sub.2 Cu.sub.3 O.sub.x phase is obtained without any Y.sub.2 BaCuO.sub.5 .

  15. Experimental study of flux pinning in NbN films and multilayers: Ultimate limits on critical currents in superconductors

    International Nuclear Information System (INIS)

    Gray, K.E.; Kampwirth, R.T.; Capone, D.W. II; Murduck, J.M.

    1988-08-01

    A flux pinning model is presented which predicts the maximum critical current density attainable in superconductors. That such a limit must exist comes from the realization that flux pinning is strongest in regions of weak superconductivity, but these regions cannot carry a large supercurrent. Since the same regions within the superconductor cannot be used for both pinning and supercurrent conductions, there must be an optimum mix, leading to a maximum J/sub c/. Measurements on films and multilayers of NbN have verified many details of the model including anisotropy effects and a strong reduction in J/sub c/ for defect spacings smaller than the flux core diameter. In an optimized multilayer the pinning force reached /approximately/22% of the theoretical maximum. The implications of these results on the practical applications of NbN films and on the maximum critical current density in the new high temperature superconductors are also discussed. 24 refs., 4 figs

  16. The Origin of Tc Enhancement in Heterostructure Cuprate Superconductors

    Directory of Open Access Journals (Sweden)

    Doron L. Bergman

    2011-10-01

    Full Text Available Recent experiments on heterostructures composed of two or more films of cuprate superconductors of different oxygen doping levels have shown a remarkable Tc enhancement (up to 50% relative to single compound films. We provide a simple explanation of the enhancement which arises naturally from a collection of experimental works. We show that the enhancement could be caused by a structural change in the lattice, namely an increase in the distance of the apical oxygen from the copper-oxygen plane. This increase modifies the effective off-site interaction in the plane which in turn enhances the d-wave superconductivity order parameter. To illustrate this point we study the extended Hubbard model using the fluctuation exchange approximation.

  17. High field superconductor development and understanding project, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Larbalestier, David C.; Lee, Peter J.

    2009-07-15

    Over 25 years the Applied Superconductivity Center at the University of Wisconsin-Madison provided a vital technical resource to the High Energy Physics community covering development in superconducting strand for HEP accelerator magnet development. In particular the work of the group has been to develop the next generation of high field superconductors for high field application. Grad students Mike Naus, Chad Fischer, Arno Godeke and Matt Jewell improved our understanding of the microstructure and microchemistry of Nb3Sn and their impact on the physical and mechanical properties. The success of this work has led to the continued funding of this work at the ASC after it moved to the NHMFL and also to direct funding from BNL for some aspects of Nb3Sn cable evaluation.

  18. International Discussion Meeting on High-Tc Superconductors

    CERN Document Server

    1988-01-01

    In the past two years conferences on superconductivity have been characterized by the attendance of hundreds of scientists. Consequently, the organizers were forced to schedule numerous parallel sessions and poster presentations with an almost unsurveyable amount of information. It was, therefore, felt that a more informal get-together, providing ample time for a thourough discussion of some topics of current interest in high-temperature superconductivity, was timely and benefitial for leading scientists as well as for newcomers in the field. The present volume contains the majority of papers presented at the International Discussion Meeting on High-Tc Superconductors held at the Mauterndorf Castle in the Austrian Alps from February 7 to 11, 1988. Each subject was introduced in review form by a few invited speakers and then discussed together with the contributed poster presentations. These discussion sessions chaired by selected scientists turned out to be the highlights of the meeting, not only because all ...

  19. High-temperature superconductors in application - fight for the top

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    For the superconductor market two-digit growth rates are predicted until after the year 2000. The decrosslinking of the high temperature superconductors initiated a worldwide race for first applications. The report considers the situation of raw materials and the application potentials in the USA, Japan and Western Europe. (orig.) [de

  20. Creation of point defects in superconductors. A short review

    International Nuclear Information System (INIS)

    Quere, Yves; Rullier-Albenque, Florence.

    1981-11-01

    Many experiments have been published concerning the radiation damage in superconductors, but relatively few about the mechanisms of defect creation. A short review is presented of what is known on point defect creation in superconductors either by cold-work or by irradiation

  1. Five-fold way to new high Tc superconductors

    Indian Academy of Sciences (India)

    Discovery of high c superconductivity in La2−BaCuO4 by Bednorz and Muller in 1986 was a breakthrough in the 75-year long search for new superconductors. Since then new high c superconductors, not involving copper, have also been discovered. Superconductivity in cuprates also inspired resonating valence ...

  2. Unconventional superconductivity in heavy fermionic and high-Tc superconductors

    International Nuclear Information System (INIS)

    Volovik, G.E.

    1989-01-01

    Splitting of the superconducting transition and glass spectrum in heavy fermion companies and oxide superconductors are discussed. The multicomponent order parameter leads to splitting of transition due to magnetic field, impurities, orthorhombic distortion, etc... Linear specific heat in oxide superconductors may be explained in terms of the Fermi-surface arising in superconducting state if interband is pairing strong enough

  3. Holographic superconductor in a deformed four-dimensional STU model

    Energy Technology Data Exchange (ETDEWEB)

    Pourhassan, B.; Bagheri-Mohagheghi, M.M. [Damghan University, School of Physics, Damghan (Iran, Islamic Republic of)

    2017-11-15

    In this paper, we consider a deformed STU model in four dimensions including both electric and magnetic charges. Using the AdS/CFT correspondence, we study holographic superconductors and obtain transport properties like electrical and thermal conductivities. We obtain transport properties in terms of the magnetic charge of the black hole and interpret it as the magnetic monopole of dual field theory. We find that the presence of the magnetic charge is necessary to have maximum conductivities, and the existence of a magnetic monopole with a critical charge (137 e) to reach the maximum superconductivity is important. Also, we show that the thermal conductivity increases with increasing of the magnetic charge. It may be concluded that the origin of superconductivity is the magnetic monopole. (orig.)

  4. Microstructure and Properties of High-Temperature Superconductors

    CERN Document Server

    Parinov, Ivan A

    2007-01-01

    The main features of high-temperature superconductors (HTSC) that define their properties are intrinsic brittleness of oxide cuprates, the layered anisotropic structure and the supershort coherence length. Taking into account these features, this treatise presents research into HTSC microstructure and properties, and also explores the possibilities of optimization of the preparation techniques and superconducting compositions. The "composition-technique-experiment-theory-model," employed here, assumes considerable HTSC defectiveness and structure heterogeneity and helps to draw a comprehensive picture of modern representations of the microstructure, strength and the related structure-sensitive properties of the materials considered. Special attention is devoted to the Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O families, which currently offer the most promising applications. Including a great number of illustrations and references, this monograph addresses students, post-graduate students and specialists, taking part in the ...

  5. Superconductor-insulator transitions in 2D: the experimental situation

    International Nuclear Information System (INIS)

    Markovic, N.; Christiansen, C.; Mack, A.; Goldman, A.M.

    2000-01-01

    Superconductor-insulator (SI) transitions in ultrathin films have attracted significant attention over the last decade because of the possibility that they are quantum phase transitions. Magnetic field, film thickness, or carrier concentration can be used as control parameters. The bosonic pictures of these transitions proposed some years ago are only in qualitative agreement with experiment. In particular, the critical resistance appears not to be universal, and there are variations in the values of critical exponents. It has been concluded that in real films fermionic degrees of freedom must be taken into account. There are also indications that the phase diagram may include a significant metallic phase separating the superconducting and insulating phases, and that the transition may have a significant percolative aspect. The experimental situation will be broadly reviewed with attention paid to issues relating to materials and measurements. (orig.)

  6. Microstructure and Properties of High-Temperature Superconductors

    CERN Document Server

    Parinov, I A

    2012-01-01

    The main features of high-temperature superconductors (HTSC) that define their properties are intrinsic brittleness of oxide cuprates, the layered anisotropic structure and the supershort coherence length. Taking into account these features, this treatise presents research into HTSC microstructure and properties, and also explores the possibilities of optimization of the preparation techniques and superconducting compositions. The "composition-technique-experiment-theory-model," employed here, assumes considerable HTSC defectiveness and structure heterogeneity and helps to draw a comprehensive picture of modern representations of the microstructure, strength and the related structure-sensitive properties of the materials considered. Special attention is devoted to the Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O families, which currently offer the most promising applications. Including a great number of illustrations and references, this monograph addresses students, post-graduate students and specialists, taking part in the ...

  7. Quenched disorder and thermopower fluctuations in high temperature superconductors

    International Nuclear Information System (INIS)

    Khalil, A.E.

    1997-01-01

    Thermopower behavior in high temperature superconductors YBa 2 Cu 3 O 7-δ single crystals near the transition temperature was examined. An expression for the thermoelectric power containing the divergent term (1-T/T c ) -s , where s is a scaling exponent that does not appear in Maki's calculations, was derived. This divergent term is the result of contributions due to the flow of currents across disordered conduction paths in the sample. These currents are driven by the density gradients of the conductivity fluctuations as a result of the increased disorder due to the existence of amorphous regions in the two-dimensional lattice. The present calculations include the most divergent effects to the thermopower due to the conductivity fluctuations near the transition temperature. The model predictions are in good agreement with recent experimental measurements reported in the literature. (orig.)

  8. Magnetic Fluctuations in Pair-Density-Wave Superconductors

    Science.gov (United States)

    Christensen, Morten H.; Jacobsen, Henrik; Maier, Thomas A.; Andersen, Brian M.

    2016-04-01

    Pair-density-wave superconductivity constitutes a novel electronic condensate proposed to be realized in certain unconventional superconductors. Establishing its potential existence is important for our fundamental understanding of superconductivity in correlated materials. Here we compute the dynamical magnetic susceptibility in the presence of a pair-density-wave ordered state and study its fingerprints on the spin-wave spectrum including the neutron resonance. In contrast to the standard case of d -wave superconductivity, we show that the pair-density-wave phase exhibits neither a spin gap nor a magnetic resonance peak, in agreement with a recent neutron scattering experiment on underdoped La1.905 Ba0.095 CuO4 [Z. Xu et al., Phys. Rev. Lett. 113, 177002 (2014)].

  9. [Fluid dynamics of supercritical helium within internally cooled cabled superconductors

    International Nuclear Information System (INIS)

    Van Sciver, S.W.

    1995-01-01

    The Applied Superconductivity Center of the University of Wisconsin-Madison proposes to conduct research on low temperature helium fluid dynamics as it applies to the cooling of internally cooled cabled superconductors (ICCS). Such conductors are used in fusion reactor designs including most of the coils in ITER. The proposed work is primarily experimental involving measurements of transient and steady state pressure drop in a variety of conductor configurations. Both model and prototype conductors for actual magnet designs will be investigated. The primary goal will be to measure and model the friction factor for these complex geometries. In addition, an effort will be made to study transient processes such as heat transfer and fluid expulsion associated with quench conditions

  10. What is new in the world of superconductors?

    International Nuclear Information System (INIS)

    Das, M.P.

    2002-01-01

    Full text: Ever since its discovery in 1911 by Heike Kamerlingh-Onnes in Leiden, superconductivity has promised tantalising possibilities of widespread applications. After 1986 its occurrence in cuprates above the liquid nitrogen temperature reaffirmed its capabilities for very many practical uses. More recently a number of novel materials namely intercalated fullerenes (C-60) and n-cenes (anthra-cene, tetra-cene and penta-cenes), a simple bimetallic alloy (MgB2), and ferromagnetic materials under high pressure including Fe, ZrZn2, and UGe2 have surprised us with their peculiar superconducting properties. In this talk I shall give a pedagogic survey of some of our current understanding- how these novel materials superconduct. I shall highlight a host of observable anomalies associated with these superconductors and discuss if their occurrence throws any light on the microscopic understanding of the superconducting phenomenon. I shall illustrate with a number of practical applications accomplished to date

  11. Surface resistance of superconductors - examples from Nb - O systems

    International Nuclear Information System (INIS)

    Palmer, F.

    1988-01-01

    The observed surface resistance of most superconductors can be written as the sum of two terms. R/sub obs/ = R/sub BCS/ + R/sub res/. This paper is divided into three sections. The first section describes the BCS theory of surface resistance in terms of a simplified two-fluid model. The second section describes several possible causes of residual resistance including normal conducting materials, tunneling across cracks in the surface, and direct generation of phonons by the RF electric field. The last section describes recent experiments having to do with the effects of oxide layers on surface resistance. Layers grown in pure oxygen at room temperature were found to have little or no effect, but if these layers are heated to temperatures near 300 0 C, they can alter both the BCS resistance and the residual resistance. Heated oxide layers also increased the dependence of the residual resistance on ambient magnetic field. 31 references, 13 figures, 3 tables

  12. Flux motion and dissipation in high temperature superconductors

    International Nuclear Information System (INIS)

    Tinkham, M.

    1991-01-01

    Two quite different motivations spark the study of flux motion and resistance in the new high-temperature superconductors. Achievement of usefully low resistance at usefully large current densities is the key to most practical applications, but conceptual understanding of the idealized resistive behavior in the O current limit motivates much theoretical work. Some analyses emphasize the pinning of individual flux lines to inhomogeneities in the underlying material; others emphasize the collective aspects of the interacting flux lines, whether liquid, solid, crystalline, or glassy; still others emphasize the concept of percolative Josephson coupling between grains. In this paper an overview is given of these various approaches, their interrelation, and the experiment evidence, including some new results on flux motion in large SNS arrays, treated as a model system

  13. Current transfer between superconductor and normal layer in coated conductors

    International Nuclear Information System (INIS)

    Takacs, S

    2007-01-01

    The current transfer between superconducting stripes coated with normal layer is examined in detail. It is shown that, in present YBCO coated conductors with striations, a considerable amount of the current flowing in the normal layer is not transferred into the superconducting stripes. This effect also influences the eddy currents and the coupling currents between the stripes. The effective resistance for the coupling currents is calculated. The maximum allowable twist length of such a striated structure is given, which ensures lower losses than in the corresponding normal conductor of the same volume as the total YBCO cable (including substrate, buffer layer, superconductor and normal coating). In addition, a new simple method for determining the transfer resistance between superconducting and normal parts is proposed

  14. Majorana zero modes in superconductor-semiconductor heterostructures

    Science.gov (United States)

    Lutchyn, R. M.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Krogstrup, P.; Marcus, C. M.; Oreg, Y.

    2018-05-01

    Realizing topological superconductivity and Majorana zero modes in the laboratory is a major goal in condensed-matter physics. In this Review, we survey the current status of this rapidly developing field, focusing on proposals for the realization of topological superconductivity in semiconductor-superconductor heterostructures. We examine materials science progress in growing InAs and InSb semiconductor nanowires and characterizing these systems. We then discuss the observation of robust signatures of Majorana zero modes in recent experiments, paying particular attention to zero-bias tunnelling conduction measurements and Coulomb blockade experiments. We also outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation.

  15. Magnetic stripes in the UCoGe superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Mora, Pablo de la [Departemento de Fisica, Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-542, 04510 Mexico DF, Mexico and Institute de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Campus Morelia (Mexico); Navarro, O, E-mail: delamora@unam.m [Instituto de Investigacion en Materiales, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-360, 04510 Mexico DF (Mexico)

    2009-05-01

    The magnetic superconductor UCoGe is analyzed with an electronic structure package, spin-orbit coupling and intra-atomic repulsion (via Hubbard U{sub H}) were included. The possibility of an antiferromagnetic configuration is studied, but it is found to be unstable, also the non-collinear magnetization seems to be ruled out. The magnetization is given mainly by the Co-atoms with M = 0.6 mu{sub B}/f.u. The U-atoms have two magnetic moments; M = 0.07 and 0.32 mu{sub B}/f.u. arranged in an alternated planes along the b-direction forming magnetic stripes.

  16. Out-of-equilibrium spin transport in mesoscopic superconductors.

    Science.gov (United States)

    Quay, C H L; Aprili, M

    2018-08-06

    The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).

  17. Development of high temperature superconductors having high critical current density

    International Nuclear Information System (INIS)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H.

    2000-08-01

    Fabrication of high T c superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm 2 and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation

  18. Development of high temperature superconductors having high critical current density

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Gye Wong; Kim, C. J.; Lee, H.G.; Kwon, S. C.; Lee, H. J.; Kim, K. B.; Park, J. Y.; Jung, C. H

    2000-08-01

    Fabrication of high T{sub c} superconductors and its applications for electric power device were carried out for developing superconductor application technologies. High quality YBCO superconductors was fabricated by melt texture growth, top-seeded melt growth process and multi-seeded melt growth process and the properties was compared. The critical current density of the melt processed YBCO superconductors was about few 10,000 A/cm{sup 2} and the levitation force was 50 N. The processing time needed for the growth of the 123 single grain was greatly reduced by applying multi-seeding without no significant degradation of the levitation force. The multi-seeded melt growth process was confirmed as a time-saving and cost-effective method for the fabrication of bulk superconductors with controlled crystallographic orientation.

  19. A Double-Decker Levitation Experiment Using a Sandwich of Superconductors.

    Science.gov (United States)

    Jacob, Anthony T.; And Others

    1988-01-01

    Shows that the mutual repulsion that enables a superconductor to levitate a magnet and a magnet to levitate a superconductor can be combined into a single demonstration. Uses an overhead projector, two pellets of "1-2-3" superconductor, Nd-Fe-B magnets, liquid nitrogen, and paraffin. Offers superconductor preparation, hazards, and disposal…

  20. Electrochemical treatment of an oxide material, application to superconductors, and obtained superconductors

    International Nuclear Information System (INIS)

    Grenier, J.C.; Pouchard, M.; Wattiaux, A.

    1991-01-01

    The present invention describes the electrochemical treatment of a superconductor oxide so as to modify its stoichiometry. These materials comprise in their anionic lattice oxygenated and hydrogenated species. These treated materials are prepared by an electrochemical process in which the oxide is an electrode in a liquid electrolysis. 3 refs., 3 figs

  1. The improved damping of superconductor bearings for 35 kWh superconductor flywheel energy storage system

    International Nuclear Information System (INIS)

    Han, Y.H.; Park, B.J.; Jung, S.Y.; Han, S.C.; Lee, W.R.; Bae, Y.C.

    2013-01-01

    Highlights: ► We made a 35 kWh superconductor flywheel energy storage system. ► The damping coefficient of the superconductor bearing was increased over 3000 N s/m. ► The source of damping was discussed. -- Abstract: A 35 kWh Superconductor Flywheel Energy Storage system (SFES) using hybrid bearing sets, which is composed of a high temperature superconductor (HTS) bearing and an active magnet damper (AMD), has been developed at KEPCO Research Institute (KEPRI). Damping is a source of energy loss but necessary for the stability of the flywheel system. We found that the damping of HTS bearings can be improved by thermal insulating bolts, which play a role of passive type external damper. To investigate the source of the increased damping, damping coefficients were measured with HTS bearings using insulating bolts made of three kinds of polymer materials. The damping coefficient was raised over 3000 N s/m in the case of PEEK bolts. The value was almost a quarter of the AMD. In this study, thermoelastic and Coulomb friction damping mechanisms are discussed. The main damping mechanism was the thermoelastic damping of the bolts themselves. And interfacial gap between the insulating bolt and metal chamber, which increased during the cooling process, was considered to be the cause of the anisotropic damping coefficients. Finally, the effects of the HTS bearings on the first critical speed are shown

  2. Yu-Shiba-Rusinov states in phase-biased superconductor-quantum dot-superconductor junctions

    DEFF Research Database (Denmark)

    Kirsanskas, Gediminas; Goldstein, Moshe; Flensberg, Karsten

    2015-01-01

    supercurrent, and the differential conductance as measured by a normal-metal tunnel probe. In absence of a phase difference only one linear combination of the superconductor lead electrons couples to the spin, which gives a single YSR state. With finite phase difference, however, it is effectively a two...

  3. Effect of exciton pairing on the stationary Josephson current in superconductor-semimetal-superconductor junctions

    International Nuclear Information System (INIS)

    Itskovich, I.F.; Shekhter, R.I.

    1983-01-01

    The effect of exciton pairing of charge carriers in a semimetal on the stationary Josephson current in superconductor-semimetal-superconductor junctions is considered. It is shown that the phase transition of the semimetal interlayer into an exciton dielectric state for T/sub γ/< T/sub c/ (T/sub γ/, T/sub c/ are the superconducting and exciton transition temperatures, respectively) is accompanied by a kink on the critical current j/sub c/ versus temperature curve at the point T = T/sub γ/. A sharp nonmonotonic temperature dependence of the reduced current j/sub c//j/sub c/0 (j/sub c/0 is the critical current at T/sub γ/ = 0) is also possible in the range T< T/sub γ/. At low temperatures T<< v/sub 1,2//d<< T/sub γ/ (v/sub 1,2/ are the Fermi velocities of the carriers in the semimetal, d is the thickness of the interlayer) the critical current of the superconductor-semimetal-superconductor junction is exponentially smaller than the current in the absence of exciton pairing

  4. Microscopic model of quasiparticle wave packets in superfluids, superconductors, and paired Hall states.

    Science.gov (United States)

    Parameswaran, S A; Kivelson, S A; Shankar, R; Sondhi, S L; Spivak, B Z

    2012-12-07

    We study the structure of Bogoliubov quasiparticles, bogolons, the fermionic excitations of paired superfluids that arise from fermion (BCS) pairing, including neutral superfluids, superconductors, and paired quantum Hall states. The naive construction of a stationary quasiparticle in which the deformation of the pair field is neglected leads to a contradiction: it carries a net electrical current even though it does not move. However, treating the pair field self-consistently resolves this problem: in a neutral superfluid, a dipolar current pattern is associated with the quasiparticle for which the total current vanishes. When Maxwell electrodynamics is included, as appropriate to a superconductor, this pattern is confined over a penetration depth. For paired quantum Hall states of composite fermions, the Maxwell term is replaced by a Chern-Simons term, which leads to a dipolar charge distribution and consequently to a dipolar current pattern.

  5. Coherent diffusive transport mediated by Andreev reflections at V=Delta/e in a mesoscopic superconductor/semiconductor/superconductor junction

    DEFF Research Database (Denmark)

    Kutchinsky, Jonatan; Taboryski, Rafael Jozef; Kuhn, Oliver

    1997-01-01

    We present experiments revealing a singularity in the coherent current across a superconductor/semiconductor/superconductor (SSmS) junction at the bias voltage corresponding to the superconducting energy gap V=Delta/e. The SSmS structure consists of highly doped GaAs with superconducting electrodes...

  6. Charge transport in junctions between d-wave superconductors

    International Nuclear Information System (INIS)

    Barash, Y.S.; Galaktionov, A.V.; Zaikin, A.D.

    1995-01-01

    We develop a microscopic analysis of superconducting and dissipative currents in junctions between superconductors with d-wave symmetry of the order parameter. We study the proximity effect in such superconductors and show that for certain crystal orientations the superconducting order parameter can be essentially suppressed in the vicinity of a nontransparent specularly reflecting boundary. This effect strongly influences the value and the angular dependence of the dc Josephson current j S . At T∼T c it leads to a crossover between j S ∝T c -T and j S ∝(T c -T) 2 respectively for homogeneous and nonhomogeneous distribution of the order parameter in the vicinity of a tunnel junction. We show that at low temperatures the current-phase relation j S (cphi) for superconductor--normal-metal--superconductor junctions and short weak links between d-wave superconductors is essentially nonharmonic and contains a discontinuity at cphi=0. This leads to further interesting features of such systems which can be used for pairing symmetry tests in high-temperature superconductors (HTSC). We also investigated the low-temperature I-V curves of normal-metal--superconductor and superconductor-superconductor tunnel junctions and demonstrated that depending on the junction type and crystal orientation these curves show zero-bias anomalies I∝V 2 , I∝V 2 ln(1/V), and I∝V 3 caused by the gapless behavior of the order parameter in d-wave superconductors. Many of our results agree well with recent experimental findings for HTSC compounds

  7. Magnetic levitation on a type-I superconductor as a practical demonstration experiment for students

    OpenAIRE

    Osorio, M. R.; Lahera, D. E.; Suderow, H.

    2012-01-01

    We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 liter liquid helium dewar. We study the equilibrium position of a magnet that levitates over a lead bowl immersed in a liquid hand-held helium cryostat. We combine the measurement of the position of the magnet with simple analytical calculations. This provide...

  8. Photoemission study of Ca-intercalated graphite superconductor CaC6

    International Nuclear Information System (INIS)

    Okazaki, Hiroyuki; Yoshida, Rikiya; Iwai, Keisuke; Noami, Kengo; Muro, Takayuki; Nakamura, Tetsuya; Wakita, Takanori; Muraoka, Yuji; Hirai, Masaaki; Tomioka, Fumiaki; Takano, Yoshihiko; Takenaka, Asami; Toyoda, Masahiro; Oguchi, Tamio; Yokoya, Takayoshi

    2010-01-01

    In this work, we have performed resonant photoemission studies of Ca-intercalated graphite superconductor CaC 6 . Using photon energy of the Ca 2p-3d threshold, the photoemission intensity of the peak at Fermi energy (E F ) is resonantly enhanced. This result provides spectroscopic evidence for the existence of Ca 3d states at E F , and strongly supports that Ca 3d state plays a crucial role for the superconductivity of this material with relatively high T c .

  9. Concepts for using trapped-flux bulk high-temperature superconductor in motors and generators

    International Nuclear Information System (INIS)

    Hull, John R; Strasik, Michael

    2010-01-01

    We review previous concepts for using bulk high-temperature superconductors (HTSs) in motors and generators and discuss methods for using trapped-flux (TF) HTSs in motors and generators that have been recently investigated in our laboratory. We examine the expected performance of a brushless motor/generator that uses TF bulk HTSs to provide magnetomotive force, where the stator windings are used to create the TF. A key feature is the use of dysprosium for the stator and rotor cores.

  10. First-principles calculation of electronic transport in low-dimensional disordered superconductors

    Science.gov (United States)

    Conduit, G. J.; Meir, Y.

    2011-08-01

    We present a novel formulation to calculate transport through disordered superconductors connected between two metallic leads. An exact analytical expression for the current is derived and applied to a superconducting sample described by the negative-U Hubbard model. A Monte Carlo algorithm that includes thermal phase and amplitude fluctuations of the superconducting order parameter is employed, and a new efficient algorithm is described. This improved routine allows access to relatively large systems, which we demonstrate by applying it to several cases, including superconductor-normal interfaces and Josephson junctions. Moreover, we can link the phenomenological parameters describing these effects to the underlying microscopic variables. The effects of decoherence and dephasing are shown to be included in the formulation, which allows the unambiguous characterization of the Kosterlitz-Thouless transition in two-dimensional systems and the calculation of the finite resistance due to vortex excitations in quasi-one-dimensional systems. Effects of magnetic fields can be easily included in the formalism, and are demonstrated for the Little-Parks effect in superconducting cylinders. Furthermore, the formalism enables us to map the local super and normal currents, and the accompanying electrical potentials, which we use to pinpoint and visualize the emergence of resistance across the superconductor-insulator transition.

  11. Procedures for measuring the electrical properties of superconductors for accelerator magnets

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1986-01-01

    There are three important electrical properties associated with the superconductor used to fabricate accelerator magnets. The most important is the critical current since this determines the performance potential of the magnet. The normal state resistivity and the volume magnetization are the other principal electrical parameters. In this report methods for measuring these parameters are presented and procedures for including self field effect and magnetoresistance are discussed

  12. Theory of the low-voltage impedance of superconductor-- p insulator--normal metal tunnel junctions

    International Nuclear Information System (INIS)

    Lemberger, T.R.

    1984-01-01

    A theory for the low-voltage impedance of a superconductor-- p insulator--normal metal tunnel junction is developed that includes the effects of charge imbalance and of quasiparticle fluctuations. A novel, inelastic, charge-imbalance relaxation process is identified that is associated with the junction itself. This new process leads to the surprising result that the charge-imbalance component of the dc resistance of a junction becomes independent of the electron-phonon scattering rate as the insulator resistance decreases

  13. Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing

    International Nuclear Information System (INIS)

    Lee, J. P.; Kim, H. G.; Han, S. C.

    2012-01-01

    In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

  14. Condensation energy density in Bi-2212 superconductors

    International Nuclear Information System (INIS)

    Matsushita, Teruo; Kiuchi, Masaru; Haraguchi, Teruhisa; Imada, Takeki; Okamura, Kazunori; Okayasu, Satoru; Uchida, Satoshi; Shimoyama, Jun-ichi; Kishio, Kohji

    2006-01-01

    The relationship between the condensation energy density and the anisotropy parameter, γ a , has been derived for Bi-2212 superconductors in various anisotropic states by analysing the critical current density due to columnar defects introduced by heavy ion irradiation. The critical current density depended on the size of the defects, determined by the kind and irradiation energy of the ions. A significantly large critical current density of 17.0 MA cm -2 was obtained at 5 K and 0.1 T even for the defect density of a matching field of 1 T in a specimen irradiated with iodine ions. The dependence of the critical current density on the size of the defects agreed well with the prediction from the summation theory of pinning forces, and the condensation energy density could be obtained consistently from specimens irradiated with different ions. The condensation energy density obtained increased with decreasing γ a over the entire range of measurement temperature, and reached about 60% of the value for the most three-dimensional Y-123 observed by Civale et al at 5 K. This gives the reason for the very strong pinning in Bi-2212 superconductors at low temperatures. The thermodynamic critical field obtained decreased linearly with increasing temperature and extrapolated to zero at a certain characteristic temperature, T * , lower than the critical temperature, T c . T * , which seems to be associated with the superconductivity in the block layers, was highest for the optimally doped specimen. This shows that the superconductivity becomes more inhomogeneous as the doped state of a superconductor deviates from the optimum condition

  15. Interaction of gravitational waves with superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Inan, N.A.; Thompson, J.J. [University of California, Schools of Natural Sciences, Merced, CA (United States); Chiao, R.Y. [University of California, Schools of Natural Sciences and Engineering, Merced, CA (United States)

    2017-06-15

    Applying the Helmholtz Decomposition theorem to linearized General Relativity leads to a gauge-invariant formulation where the transverse-traceless part of the metric perturbation describes gravitational waves in matter. Gravitational waves incident on a superconductor can be described by a linear London-like constituent equation characterized by a ''gravitational shear modulus'' and a corresponding plasma frequency and penetration depth. Electric-like and magnetic-like gravitational tensor fields are defined in terms of the strain field of a gravitational wave. It is shown that in the DC limit, the magnetic-like tensor field is expelled from the superconductor in a gravitational Meissner-like effect. The Cooper pair density is described by the Ginzburg-Landau theory embedded in curved space-time. The ionic lattice is modeled by quantum harmonic oscillators coupled to gravitational waves and characterized by quasi-energy eigenvalues for the phonon modes. The formulation predicts the possibility of a dynamical Casimir effect since the zero-point energy of the ionic lattice phonons is found to be modulated by the gravitational wave, in a quantum analog of a ''Weber-bar effect.'' Applying periodic thermodynamics and the Debye model in the low-temperature limit leads to a free energy density for the ionic lattice. Lastly, we relate the gravitational strain of space to the strain of matter to show that the response to a gravitational wave is far less for the Cooper pair density than for the ionic lattice. This predicts a charge separation effect in the superconductor as a result of the gravitational wave. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Zeeman effects in heavy electron superconductors

    International Nuclear Information System (INIS)

    Michal, Vincent

    2012-01-01

    Understanding the properties of newly discovered strongly correlated electron compounds is a considerable challenge for both fundamental matters and long-term industrial impact. Experimental activity on heavy electron metals and superconductors has lead to highlighting effects that depart from current knowledge. The thesis is aimed at modelling effects that have been observed in response to magnetic field in the heavy electron superconductor CeCoIn 5 . This consists of two parts. In the first time we deal with the vortex lattice state anomalous local magnetic field space variations as highlighted by small angle neutron scattering and muon spin rotation experiment. On the basis of the Ginzburg-Landau theory with account of spin effect, we analyse the local field inhomogeneity in the vortex lattice and derive expressions for the neutron scattering form factors and muon spin rotation static linewidth. The anomalous experimental data are shown to be result of spin driven supercurrents which circulate around the vortex cores and lead to an increase with external field in the internal field inhomogeneity on a distance of the order of the superconducting coherence length from the vortex axis. The importance of the effect is controlled by a single quantity (the Maki parameter). The second part is on nearly commensurate spin density wave transition in a quasi two-dimensional superconductor. It is motivated by observation of the confinement of spin density wave ordering inside the superconducting state of CeCoIn 5 in magnetic field. In the frame of the spin-fermion formulation we propose a mechanism for the ground state transition consisting in the field-induced slowing down of a collective spin density fluctuation mode (spin-exciton) to static ordering. This represents a scenario by which the transition to spin ordering is intrinsically related to superconductivity. (author) [fr

  17. Collective excitations in unconventional superconductors and superfluids

    CERN Document Server

    Brusov, Peter

    2009-01-01

    This is the first monograph that strives to give a complete and detailed description of the collective modes (CMs) in unconventional superfluids and superconductors (UCSF&SC). Using the most powerful method of modern theoretical physics - the path (functional) integral technique - authors build the three- and two-dimensional models for s -, p - and d -wave pairing in neutral as well as in charged Fermi-systems, models of superfluid Bose-systems and Fermi-Bose-mixtures. Within these models they study the collective properties of such systems as superfluid 3 He, superfluid 4 He, superfluid 3 He-

  18. Potential aerospace applications of high temperature superconductors

    Science.gov (United States)

    Selim, Raouf

    1994-01-01

    The recent discovery of High Temperature Superconductors (HTS) with superconducting transition temperature, T(sub c), above the boiling point of liquid nitrogen has opened the door for using these materials in new and practical applications. These materials have zero resistance to electric current, have the capability of carrying large currents and as such have the potential to be used in high magnetic field applications. One of the space applications that can use superconductors is electromagnetic launch of payloads to low-earth-orbit. An electromagnetic gun-type launcher can be used in small payload systems that are launched at very high velocity, while sled-type magnetically levitated launcher can be used to launch larger payloads at smaller velocities. Both types of launchers are being studied by NASA and the aerospace industry. The use of superconductors will be essential in any of these types of launchers in order to produce the large magnetic fields required to obtain large thrust forces. Low Temperature Superconductor (LTS) technology is mature enough and can be easily integrated in such systems. As for the HTS, many leading companies are currently producing HTS coils and magnets that potentially can be mass-produced for these launchers. It seems that designing and building a small-scale electromagnetic launcher is the next logical step toward seriously considering this method for launching payloads into low-earth-orbit. A second potential application is the use of HTS to build sensitive portable devices for the use in Non Destructive Evaluation (NDE). Superconducting Quantum Interference Devices (SQUID's) are the most sensitive instruments for measuring changes in magnetic flux. By using HTS in SQUID's, one will be able to design a portable unit that uses liquid nitrogen or a cryocooler pump to explore the use of gradiometers or magnetometers to detect deep cracks or corrosion in structures. A third use is the replacement of Infra-Red (IR) sensor leads on

  19. An infrared view of high Tc superconductors

    International Nuclear Information System (INIS)

    Tanner, D.B.; Timusk, T.; McMaster Univ., Hamilton, ON

    1989-01-01

    Studies of the infrared properties of the high T c superconductors are reviewed, with particular emphasis on attempts to determine the energy gap by far infrared spectroscopy and on the properties of the strong absorption that occurs in the mid infrared. The authors argue that this mid-infrared absorption is a direct particle-hole excitation rather than a Holstein emission process. In addition, they conclude that although the energy gap is not easily observed, several recent experiments place it in the weak to moderate strong coupling range

  20. Critical state of anisotropic hard superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Salazar, C; Perez-RodrIguez, F [Instituto de FIsica, Universidad Autonoma de Puebla, Apdo Post J-48, Puebla, Pue 72570 (Mexico)

    2003-11-01

    The magnetic response of anisotropic irreversible type-II superconductors is investigated theoretically. Using an elliptic vertical law for the electric field E as a function of the current density J, we have reproduced available experimental magnetization curves of YBCO samples with the c axis lying in the sample plane. Specifically, we could reproduce quantitatively and interpret correctly the appearance of additional extrema and segments with relatively small slopes of the virgin magnetization curves when the direction of the applied magnetic field differs from the principal axes. The notable deformation of magnetization curves in a tilted magnetic field is connected to the strong coupling between the components of the magnetic induction.

  1. High Tc superconductors using solution techniques

    International Nuclear Information System (INIS)

    Barboux, P.; Valente, I.; Henry, M.; Morineau, R.; Tarascon, J.M.; Khan, S.; Shokoohi, F.; Bagley, B.G.

    1989-01-01

    The authors have investigated different solution techniques to synthesize the Cu-based superconductors in the thick film form. Thick films of YBa 2 Cu 3 O 7 have been produced using controlled precipitation techniques. Bi-based and Tl-based materials have been deposited by spraying of ionic solutions. The numerous difficulties encountered during each process are analyzed in order to propose new synthesis procedures such as a new method, based on the precipitation of hydroxides only, which is described as a prospective for lowering the synthesis temperature and shortening the reaction time

  2. Charge-imbalance fluctuations in superconductors

    International Nuclear Information System (INIS)

    Lemberger, T.R.

    1981-01-01

    We calculate that the mean-square amplitude of the fluctuations of the condensate chemical potential μ/sub s/ due to charge-imbalance fluctuations in the limit Δ/k/sub B/T 2 > = 2(k/sub B/T) 2 /πdeltaΩN(0) in a volume Ω of superconductor. We relate these fluctuations via Nyquist's theorem to measured values of the contribution of self-injected charge imbalance to the dc resistance of SIN tunnel junctions. In this relation the dynamic charge-imbalance relaxation rate is 1/tau/sub E/, the electron-phonon scattering rate

  3. Oxygen diffusion in high-Tc superconductors

    International Nuclear Information System (INIS)

    Rothman, S.J.; Routbort, J.L.

    1992-07-01

    The cuprate superconductors are fascinating not only because of their technical promise, but also because of their structures, especially the anisotropy of the crystal lattice. There are some structural similarities among these compounds, but also significant differences. Measurements of the oxygen tracer diffusion coefficients have been carried out as a function of temperature, oxygen partial pressure, crystal orientation, and doping in the La-Sr-Cu-0, Y-Ba-Cu-0, and Bi-Sr-Ca-Cu-0 systems. These measurements have revealed a variety of defect mechanisms operating in these compounds; the exact nature of the mechanism depends on the details of the structure

  4. DT fusion neutron irradiation of LLL Nb3Sn and LLL superconductor wires at 4.20K

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1977-01-01

    The DT fusion neutron irradiation of one LLL superconductor wire and one LLL Nb 3 Sn foil at 4.2 0 K is described. The sample position, beam-on time, and neutron dose record are given. The results from two ''profile'' dosimetry foils measuring the lateral variation in neutron flux are included

  5. Fracton pairing mechanism for unconventional superconductors: Self-assembling organic polymers and copper-oxide compounds

    DEFF Research Database (Denmark)

    Milovanov, A.V.; Juul Rasmussen, J.

    2002-01-01

    Self-assembling organic polymers and copper-oxide compounds are two classes of unconventional superconductors, whose challenging behavior does not comply with the traditional picture of Bardeen-Cooper-Schrieffer (BCS) superconductivity in regular crystals. In this paper, we propose a theoretical...... or holes) exchange fracton excitations, quantum oscillations of fractal lattices that mimic the complex microscopic organization of the unconventional superconductors. For the copper oxides, the superconducting transition temperature T-c as predicted by the fracton mechanism is of the order of similar to......150 K. We suggest that the marginal ingredient of the high-temperature superconducting phase is provided by fracton coupled holes that condensate in the conducting copper-oxygen planes owing to the intrinsic field-effect-transistor configuration of the cuprate compounds. For the gate...

  6. The magnetostriction in a superconductor-magnet system under non-uniform magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xueyi; Jiang, Lang; Wu, Hao [Key Laboratory of Mechanics on Disaster and Environment in Western China attached to the Ministry of Education of China, Lanzhou University, Lanzhou, Gansu 730000 (China); Gao, Zhiwen, E-mail: gaozhw@lzu.edu.cn [Department of Mechanics and Engineering Science, College of Civil Engineering and Mechanics, Lanzhou University, Lanzhou, Gansu 730000 (China)

    2017-03-15

    Highlights: • We studied firstly magnetostriction in HTS under non-uniform magnetic field. • The superconductors may be homogeneous and nonhomogeneous. • The magnetostrictions response of the HTS is sensitive to the critical current density and amplitude of the applied magnetic field. • The magnetostriction of nonhomogeneous HTS is larger than that of homogeneous HTS. - Abstract: This paper describes a numerical model to examine the magnetostriction of bulk high-temperature superconductor (HTS) under non-uniform magnetic field in conjunction with finite element analysis. Through this model, the magnetostriction of homogeneous and nonhomogeneous HTS can be implemented under non-uniform magnetic field. Further, the effects of critical current density, applied field frequency and amplitude are also considered. The computational study can provide a fundamental mechanistic understanding the effects of non-uniform magnetic field on magnetostriction of HTS.

  7. Magnetic levitation on a type-I superconductor as a practical demonstration experiment for students

    International Nuclear Information System (INIS)

    Osorio, M R; Lahera, D E; Suderow, H

    2012-01-01

    We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 l liquid helium dewar. We study the equilibrium position of a magnet that levitates over a lead bowl immersed in a liquid hand-held helium cryostat. We combine the measurement of the position of the magnet with simple analytical calculations. This provides a vivid visualization of magnetic levitation from the balance between pure flux expulsion and gravitation. The experiment contrasts and illustrates the case of magnetic levitation with high temperature type-II superconductors using liquid nitrogen, where levitation results from partial flux expulsion and vortex physics. (paper)

  8. Magnetic levitation on a type-I superconductor as a practical demonstration experiment for students

    Science.gov (United States)

    Osorio, M. R.; Lahera, D. E.; Suderow, H.

    2012-09-01

    We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 l liquid helium dewar. We study the equilibrium position of a magnet that levitates over a lead bowl immersed in a liquid hand-held helium cryostat. We combine the measurement of the position of the magnet with simple analytical calculations. This provides a vivid visualization of magnetic levitation from the balance between pure flux expulsion and gravitation. The experiment contrasts and illustrates the case of magnetic levitation with high temperature type-II superconductors using liquid nitrogen, where levitation results from partial flux expulsion and vortex physics.

  9. High temperature superconductor bulk materials. Fundamentals - processing - properties control - application aspects

    International Nuclear Information System (INIS)

    Krabbes, G.; Fuchs, G.; Canders, W.R.; May, H.; Palka, R.

    2006-01-01

    This book presents all the features of bulk high temperature superconducting materials. Starting from physical and chemical fundamentals, the authors move on to portray methods and problems of materials processing, thoroughly working out the characteristic properties of bulk superconductors in contrast to long conductors and films. The authors provide a wide range of specific materials characteristics with respect to the latest developments and future applications guiding from fundamentals to practical engineering examples. This book contains the following chapters: 1. Fundamentals 2. Growth and melt processing of YBCO 3. Pinning-relevant defects in bulk YBCO 4. Properties of bulk YBCO 5. Trapped fields 6. Improved YBCO based bulk superconductors and functional elements 7. Alternative systems 8. Peak effect 9. Very high trapped fields in YBCO permanent magnets 10. Engineering aspects: Field distribution in bulk HTSC 11. Inherently stable superconducting magnetic bearings 12. Application of bulk HTSCs in electromagnetic energy converters 13. Applications in magnet technologies and power supplies

  10. The refrigeration of high temperature superconductors between 25K and 65K

    International Nuclear Information System (INIS)

    Richardson, R.N.; Scurlock, R.G.; Tavner, A.C.R.

    1996-01-01

    The present state of the art indicates that acceptable j - H characteristics for power applications of the new high Tc superconductors will only be achieved using materials at temperatures below liquid nitrogen temperature. A boiling point of 27.1K and high specific cooling capacity make neon an eminently suitable choice of refrigerant at these temperatures. A cryostat has been constructed which employs a two stage Gifford-McMahon cooler to liquefy neon gas. The cryostat contains up to 5 litres of liquid neon which can be used for open-quote in-situ close-quote experiments or transfer to another cryostat. Another set of cryostats are being used with liquid nitrogen/oxygen mixtures at reduced pressure for temperatures down to 50K. All these cryostats provide a core facility for characterising and operating high T c superconductors at Southampton

  11. Calculation of TC in a normal-superconductor bilayer using the microscopic-based Usadel theory

    International Nuclear Information System (INIS)

    Martinis, John M.; Hilton, G.C.; Irwin, K.D.; Wollman, D.A.

    2000-01-01

    The Usadel equations give a theory of superconductivity, valid in the diffusive limit, that is a generalization of the microscopic equations of the BCS theory. Because the theory is expressed in a tractable and physical form, even experimentalists can analytically and numerically calculate detailed properties of superconductors in physically relevant geometries. Here, we describe the Usadel equations and review their solution in the case of predicting the transition temperature T C of a thin normal-superconductor bilayer. We also extend this calculation for thicker bilayers to show the dependence on the resistivity of the films. These results, which show a dependence on both the interface resistance and heat capacity of the films, provide important guidance on fabricating bilayers with reproducible transition temperatures

  12. Powder processing of high Tc oxide superconductors and their properties

    International Nuclear Information System (INIS)

    Vajpei, A.C.; Upadhyaya, G.S.

    1992-01-01

    Powder processing of ceramics is an established technology and in the area of high T c superconductors, its importance is felt even more significantly. The present monograph is an attempt in this direction to explore the perspectives and practice of powder processing routes towards control and optimization of the microstructure and pertinent properties of high T c oxide superconductors. The monograph consists of 6 chapters. After a very brief introduction (Chapter 1), Chapter 2 describes various classes of high T c oxide superconductors and their phase equilibria. Chapter 3 highlights the preparation of oxide superconductor powders through various routes and details their subtle distinctions. Chapter 4 briefly covers characterisation of the oxide superconductors, laying emphasis on the process-analysis and microstructure. Chapter 5 describes in detail various fabrication techniques for bulk superconductors through the powder routes. The last Chapter (Chapter 6) describing properties of bulk oxide superconductors, discusses the role of subtituents, compositional variations and processing methods on such properties. References are given at the end of each chapter. (orig.)

  13. Superconductors at the nanoscale. From basic research to applications

    Energy Technology Data Exchange (ETDEWEB)

    Woerdenweber, Roger [Forschungszentrum Juelich GmbH (Germany). Peter Gruenberg Inst.; Moshchalkov, Victor [KU Leuven (Belgium). Inst. for Nanoscale Physics and Chemistry; Bending, Simon [Bath Univ. (United Kingdom). School of Physics; Tafuri, Francesco (ed.) [Seconda Univ. di Napoli, Aversa (Italy)

    2017-07-01

    By covering theory, design, and fabrication of nanostructured superconducting materials, this monograph is an invaluable resource for research and development. This book contains the following chapters: Tutorial on nanostructured superconductors; Imaging vortices in superconductors: from the atomic scale to macroscopic distances; Probing vortex dynamics on a single vortex level by scanning ac-susceptibility microscopy; STM studies of vortex cores in strongly confined nanoscale superconductors; Type-1.5 superconductivity; Direct visualization of vortex patterns in superconductors with competing vortex-vortex interactions; Vortex dynamics in nanofabricated chemical solution deposition high-temperature superconducting films; Artificial pinning sites and their applications; Vortices at microwave frequencies; Physics and operation of superconducting single-photon devices; Josephson and charging effect in mesoscopic superconducting devices; NanoSQUIDs: Basics and recent advances; Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} intrinsic Josephson junction stacks as emitters of terahertz radiation; Interference phenomena in superconductor-ferromagnet hybrids; Spin-orbit interactions, spin currents, and magnetization dynamics in superconductor/ferromagnet hybrids; Superconductor/ferromagnet hybrids.

  14. GaN/NbN epitaxial semiconductor/superconductor heterostructures

    Science.gov (United States)

    Yan, Rusen; Khalsa, Guru; Vishwanath, Suresh; Han, Yimo; Wright, John; Rouvimov, Sergei; Katzer, D. Scott; Nepal, Neeraj; Downey, Brian P.; Muller, David A.; Xing, Huili G.; Meyer, David J.; Jena, Debdeep

    2018-03-01

    Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion onto a substrate crystal. The direct epitaxial growth of semiconductor heterostructures on top of crystalline superconductors has proved challenging. Here, however, we report the successful use of molecular beam epitaxy to grow and integrate niobium nitride (NbN)-based superconductors with the wide-bandgap family of semiconductors—silicon carbide, gallium nitride (GaN) and aluminium gallium nitride (AlGaN). We apply molecular beam epitaxy to grow an AlGaN/GaN quantum-well heterostructure directly on top of an ultrathin crystalline NbN superconductor. The resulting high-mobility, two-dimensional electron gas in the semiconductor exhibits quantum oscillations, and thus enables a semiconductor transistor—an electronic gain element—to be grown and fabricated directly on a crystalline superconductor. Using the epitaxial superconductor as the source load of the transistor, we observe in the transistor output characteristics a negative differential resistance—a feature often used in amplifiers and oscillators. Our demonstration of the direct epitaxial growth of high-quality semiconductor heterostructures and devices on crystalline nitride superconductors opens up the possibility of combining the macroscopic quantum effects of superconductors with the electronic, photonic and piezoelectric properties of the group III/nitride semiconductor family.

  15. Costs of magnets for large fusion power reactors: Phase I, cost of superconductors for dc magnets

    International Nuclear Information System (INIS)

    Powell, J.R.

    1972-01-01

    Projections are made for dc magnet conductor costs for large fusion power reactors. A mature fusion economy is assumed sometime after 2000 A. D. in which approximately 90,000 MW(e) of fusion reactors are constructed/year. State of the art critical current vs. field characteristics for superconductors are used in these projections. Present processing techniques are used as a basis for the design of large plants sized to produce approximately one-half of the conductor needed for the fusion magnets. Multifilamentary Nb-Ti, Pb-Bi in glass fiber, GE Nb 3 Sn tape, Linde plasma sprayed Nb 3 Sn tape, and V 3 Ga tape superconductors are investigated, together with high purity aluminum cryoconductor. Conductor costs include processing costs [capital (equipment plus buildings), labor, and operating] and materials costs. Conductor costs are compared for two sets of material costs: current (1971 A. D.) costs, and projected (after 2000 A. D.) costs. (U.S.)

  16. Kinetic equations for clean superconductors: Application to the flux flow hall effect

    International Nuclear Information System (INIS)

    Kopnin, N.B.

    1994-01-01

    The kinetic equations for clean superconductors (l>>ζ) are derived. expanding the equations for the time dependent Green functions in the quasiclassical parameter, the new contributions are found which contain the derivatives of the distribution functions with respect to the quasiparticle momentum. The transition from the ultra-clean case (no relaxation) to a relaxation-dominated behavior, for which the kinetic equations coincide with the usual quasiclassical approximation, occurs for the relaxation time of the order of ℎE F /Δ 2 . The kinetic equations can be used for various dynamic processes in superconductors including the flux-flow Hall effect. The derived equations, after necessary modifications for the p-wave pairing, are especially suitable for nonstationary problems in the theory of superfluidity of 3 He

  17. Modeling high-temperature superconductors and metallic alloys on the Intel iPSC/860

    International Nuclear Information System (INIS)

    Geist, G.A.; Peyton, B.W.; Shelton, W.A.; Stocks, G.M.

    1990-01-01

    Oak Ridge National Laboratory has embarked on several computational grand Challenges, which require the close cooperation of physicists, mathematicians, and computer scientists. One of these projects is the determination of the material properties of alloys form first principles and, in particular, the electronic structure of high-temperature superconductors. The physical basis for high Tc superconductivity is not well understood. The design of materials with higher critical temperatures and the ability to carry higher current densities can be greatly facilitated by the modeling and detailed study of the electronic structure of existing superconductors. This paper describes the progress to data on this project. We include a description of a self-consistent KKR-CPA method, parallelization of the model, and the incorporation of a dynamic load balancing scheme into the algorithm. We also describe the development and performance of a consolidated KKR-CPA code capable of running on CRAYs, workstations, and several parallel computers without source code modification

  18. ''Football'' test coil: a simulated service test of internally-cooled, cabled superconductor

    International Nuclear Information System (INIS)

    Marston, P.G.; Iwasa, Y.; Thome, R.J.; Hoenig, M.O.

    1981-01-01

    Internally-cooled, cabled superconductor, (ICCS), appears from small-scale tests to be a viable alternative to pool-boiling cooled superconductors for large superconducting magnets. Potential advantages may include savings in helium inventory, smaller structure and ease of fabrication. Questions remain, however, about the structural performance of these systems. The ''football'' test coil has been designed to simulate the actual ''field-current-stress-thermal'' operating conditions of a 25 ka ICCS in a commercial scale MHD magnet. The test procedure will permit demonstration of the 20 year cyclic life of such a magnet in less than 20 days. This paper describes the design, construction and test of that coil which is wound of copper-stabilized niobium-titanium cable in steel conduit. 2 refs

  19. Magnetic properties of high temperature superconductors and their interaction with high energy permanent magnets

    International Nuclear Information System (INIS)

    Agarwala, A.K.

    1990-01-01

    Magnetic properties of sintered samples of YBCO ceramic superconductors at various temperatures were measured using a vibrating sample magnetometer (VSM). Also, measurements of forces experienced by a well characterized rare earth-transition metal (RE-TM) permanent magnet (PM) interacting with the superconducting YBCO sample cooled in liquid nitrogen, were performed. Based upon the observed hysteretic magnetization properties of these high temperature superconductors (HTS), the HTS-PM interaction force at liquid nitrogen temperature was calculated from first principle, and finally correlated to the force measurement results. With this analysis, magnetic forces between the same HTS and PM system including the levitation as well as suspension effects at liquid-helium temperature are predicted

  20. Proceedings of the workshop on 'anomalous electronic states and physical properties in high-temperature superconductors'

    International Nuclear Information System (INIS)

    Arai, Masatoshi; Kajimoto, Ryoichi

    2007-03-01

    A workshop entitled 'Anomalous Electronic States and Physical Properties in High-Temperature Superconductors' was held on November 7-8, 2006 at Institute for Materials Research, Tohoku University. In the workshop, leading scientists in the field of high-T c superconductivity, both experimentalists and theorists, gathered in a hall to report the recent progress of the study, clarify the problems to be solved, and discuss the future prospects. The workshop was jointly organized by Specially Promoted Research of MEXT, Development of the 4D Spaces Access Neutron Spectrometer and Elucidation of the Mechanism of Oxide High-T c Superconductivity' (repr. by M. Arai, JAEA) and by the Inter-university Cooperative Research Program of the Institute for Materials Research, Tohoku University, 'Anomalous Electronic States and Physical Properties in High-Temperature Superconductors' (repr. by T. Tohyama, Kyoto Univ.). This report includes abstracts and materials of the presentations in the workshop. (author)