WorldWideScience

Sample records for superconductivity pilot center

  1. Superconducting microwave electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  2. Superconducting Microwave Electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    1991-01-01

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  3. Superconductivity

    International Nuclear Information System (INIS)

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  4. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  5. Superconductivity

    International Nuclear Information System (INIS)

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries

  6. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  7. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  8. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  9. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  10. Superconductivity

    International Nuclear Information System (INIS)

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  11. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  12. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  13. Brownfields Moran Center Sustainability Pilot Report

    Science.gov (United States)

    This Final Report summarizes consultant recommendations related to: Green infrastructure of the Moran Center site plan, Green building design of the proposed Moran Building, and Wetland restoration and enhancement.

  14. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  15. Superconductivity

    International Nuclear Information System (INIS)

    Narlikar, A.V.

    1993-01-01

    Amongst the numerous scientific discoveries that the 20th century has to its credit, superconductivity stands out as an exceptional example of having retained its original dynamism and excitement even for more than 80 years after its discovery. It has proved itself to be a rich field by continually offering frontal challenges in both research and applications. Indeed, one finds that a majority of internationally renowned condensed matter theorists, at some point of their career, have found excitement in working in this important area. Superconductivity presents a unique example of having fetched Nobel awards as many as four times to date, and yet, interestingly enough, the field still remains open for new insights and discoveries which could undeniably be of immense technological value. 1 fig

  16. Superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book profiles the research activity of 42 companies in the superconductivity field, worldwide. It forms a unique and comprehensive directory to this emerging technology. For each research site, it details the various projects in progress, analyzes the level of activity, pinpoints applications and R and D areas, reviews strategies and provides complete contact information. It lists key individuals, offers international comparisons of government funding, reviews market forecasts and development timetables and features a bibliography of selected articles on the subject

  17. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  18. Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits

    DEFF Research Database (Denmark)

    Marcos, D.; Wubs, Martijn; Taylor, J.M.

    2010-01-01

    We propose a method to achieve coherent coupling between nitrogen-vacancy (NV) centers in diamond and superconducting (SC) flux qubits. The resulting coupling can be used to create a coherent interaction between the spin states of distant NV centers mediated by the flux qubit. Furthermore......, the magnetic coupling can be used to achieve a coherent transfer of quantum information between the flux qubit and an ensemble of NV centers. This enables a long-term memory for a SC quantum processor and possibly an interface between SC qubits and light....

  19. Ferromagnetic artificial pinning centers in multifilamentary superconducting wires

    International Nuclear Information System (INIS)

    Wang, J.Q.; Rizzo, N.D.; Prober, D.E.

    1997-01-01

    The authors fabricated multifilamentary NbTi wires with ferromagnetic (FM) artificial pinning centers (APCs) to enhance the critical current density (J c ) in magnetic fields. They used a bundle and draw technique to process the APC wires with either Ni or Fe as the pinning centers. Both wires produced higher J c in the high field range (5-9 T) than previous non-magnetic APC wires similarly processed, even though the authors have not yet optimized pin percentage. Using a magnetometer they found that the pins remained ferromagnetic for the wires with maximum J c . However, they did observe a substantial loss of FM material for the wires where the pin diameter approached 3 nm. Thus, they expect further enhancement of J c with better pin quality

  20. Superconductivity

    International Nuclear Information System (INIS)

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  1. Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo [ed.

    2005-07-01

    Research on superconductivity at ENEA is mainly devoted to projects related to the ITER magnet system. In this framework, ENEA has been strongly involved in the design, manufacturing and test campaigns of the ITER toroidal field model coil (TFMC), which reached a world record in operating current (up to 80 kA). Further to this result, the activities in 2004 were devoted to optimising the ITER conductor performance. ENEA participated in the tasks launched by EFDA to define and produce industrial-scale advanced Nb3Sn strand to be used in manufacturing the ITER high-field central solenoid (CS) and toroidal field (TF) magnets. As well as contributing to the design of the new strand and the final conductor layout, ENEA will also perform characterisation tests, addressing in particular the influence of mechanical stress on the Nb3Sn performance. As a member of the international ITER-magnet testing group, ENEA plays a central role in the measurement campaigns and data analyses for each ITER-related conductor and coil. The next phase in the R and D of the ITER magnets will be their mechanical characterisation in order to define the fabrication route of the coils and structures. During 2004 the cryogenic measurement campaign on the Large Hadron Collider (LHC) by-pass diode stacks was completed. As the diode-test activity was the only LHC contract to be finished on schedule, the 'Centre Europeenne pour la Recherche Nucleaire' (CERN) asked ENEA to participate in an international tender for the cold check of the current leads for the LHC magnets. The contract was obtained, and during 2004, the experimental setup was designed and realised and the data acquisition system was developed. The measurement campaign was successfully started at the end of 2004 and will be completed in 2006.

  2. Condition for the occurrence of phase slip centers in superconducting nanowires under applied current or voltage

    DEFF Research Database (Denmark)

    Michotte, S.; Mátéfi-Tempfli, Stefan; Piraux, L.

    2004-01-01

    Experimental results on the phase slip process in superconducting lead nanowires are presented under two different experimental conditions: constant applied current or constant voltage. Based on these experiments we established a simple model which gives us the condition of the appearance of phase...... slip centers in a quasi-one-dimensional wire. The competition between two relaxations times (relaxation time of the absolute value of the order parameter τ and relaxation time of the phase of the order parameter in the phase slip center τ) governs the phase slip process. Phase slips, as periodic...... oscillations in time of the order parameter, are only possible if the gradient of the phase grows faster than the value of the order parameter in the phase slip center, or equivalently if τ≤ τ....

  3. Single-nitrogen-vacancy-center quantum memory for a superconducting flux qubit mediated by a ferromagnet

    Science.gov (United States)

    Lai, Yen-Yu; Lin, Guin-Dar; Twamley, Jason; Goan, Hsi-Sheng

    2018-05-01

    We propose a quantum memory scheme to transfer and store the quantum state of a superconducting flux qubit (FQ) into the electron spin of a single nitrogen-vacancy (NV) center in diamond via yttrium iron garnet (YIG), a ferromagnet. Unlike an ensemble of NV centers, the YIG moderator can enhance the effective FQ-NV-center coupling strength without introducing additional appreciable decoherence. We derive the effective interaction between the FQ and the NV center by tracing out the degrees of freedom of the collective mode of the YIG spins. We demonstrate the transfer, storage, and retrieval procedures, taking into account the effects of spontaneous decay and pure dephasing. Using realistic experimental parameters for the FQ, NV center and YIG, we find that a combined transfer, storage, and retrieval fidelity higher than 0.9, with a long storage time of 10 ms, can be achieved. This hybrid system not only acts as a promising quantum memory, but also provides an example of enhanced coupling between various systems through collective degrees of freedom.

  4. Charge imbalance waves and nonequilibrium dynamics near a superconducting phase-slip center

    International Nuclear Information System (INIS)

    Kadin, A.M.; Smith, L.N.; Skocpol, W.J.

    1980-01-01

    Using a generalized two-fluid picture to describe a quasi-one-dimensional superconductor near T/sub c/, we provide a heuristic derivation for a set of equations governing the temporal and spatial evolution of the charge imbalance (or branch imbalance) in the quasiparticles. We show that these equations are isomorphic to those that describe a simple electrical transmission line, so that charge imbalance waves may propagate in the superconductor in analogy with electrical signals that propagate down the transmission line. We propose as a model for a phase-slip center in a superconducting filament a localized Josephson oscillator coupled to the transmission line. Applying standard transmission-line theory to solve the problem, we show that the Josephson oscillations in the center generate charge imbalance waves that the propagate out to a frequency-dependent distance of the order of the quasiparticle diffusion length GAMMA/sub Q/*= (Dtau/sub Q/*)/sup 1/2/ before they damp out. The time-averaged behavior of the model reduces to the earlier model of Skocpol, Beasley, and Tinkham. A novel consequence of the model is a prediction of intrinsic hysteresis in the dc current--voltage relation. The model also provides a convenient framework for dealing with ac effects in phase-slip centers, including resonance and synchronization in systems of closely spaced phase-slip centers and microbridges

  5. JETC (Japanese Technology Evaluation Center) Panel Report on High Temperature Superconductivity in Japan

    Science.gov (United States)

    Shelton, Duane; Gamota, George

    1989-01-01

    The Japanese regard success in R and D in high temperature superconductivity as an important national objective. The results of a detailed evaluation of the current state of Japanese high temperature superconductivity development are provided. The analysis was performed by a panel of technical experts drawn from U.S. industry and academia, and is based on reviews of the relevant literature and visits to Japanese government, academic and industrial laboratories. Detailed appraisals are presented on the following: Basic research; superconducting materials; large scale applications; processing of superconducting materials; superconducting electronics and thin films. In all cases, comparisons are made with the corresponding state-of-the-art in the United States.

  6. Superconductivity program for electric systems, Superconductivity Technology Center, Los Alamos National Laboratory, annual progress report for fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.O.; Newnam, B.E. [eds.; Peterson, D.E.

    1999-03-01

    Development of high-temperature superconductors (HTS) has undergone tremendous progress during the past year. Kilometer tape lengths and associated magnets based on BSCCO materials are now commercially available from several industrial partners. Superconducting properties in the exciting YBCO coated conductors continue to be improved over longer lengths. The Superconducting Partnership Initiative (SPI) projects to develop HTS fault current limiters and transmission cables have demonstrated that HTS prototype applications can be produced successfully with properties appropriate for commercial applications. Research and development activities at LANL related to the HTS program for Fiscal Year 1997 are collected in this report. LANL continues to support further development of Bi2223 and Bi2212 tapes in collaboration with American Superconductor Corporation (ASC) and Oxford Superconductivity Technology, Inc. (OSTI), respectively. The tape processing studies involving novel thermal treatments and microstructural characterization have assisted these companies in commercializing these materials. The research on second-generation YBCO-coated conductors produced by pulsed-laser deposition (PLD) over buffer template layers produced by ion beam-assisted deposition (IBAD) continues to lead the world. The applied physics studies of magnetic flux pinning by proton and heavy ion bombardment of BSCCO and YBCO tapes have provided many insights into improving the behavior of these materials in magnetic fields. Sections 4 to 7 of this report contain a list of 29 referred publications and 15 conference abstracts, a list of patent and license activities, and a comprehensive list of collaborative agreements in progress and completed.

  7. Impact on Seniors of the Patient-Centered Medical Home: Evidence from a Pilot Study

    Science.gov (United States)

    Fishman, Paul A.; Johnson, Eric A.; Coleman, Kathryn; Larson, Eric B.; Hsu, Clarissa; Ross, Tyler R.; Liss, David; Tufano, James; Reid, Robert J.

    2012-01-01

    Purpose: To assess the impact on health care cost and quality among seniors of a patient-centered medical home (PCMH) pilot at Group Health Cooperative, an integrated health care system in Washington State. Design and Methods: A prospective before-and-after evaluation of the experience of seniors receiving primary care services at 1 pilot clinic…

  8. Coupling a single nitrogen-vacancy center with a superconducting qubit via the electro-optic effect

    Science.gov (United States)

    Li, Chang-Hao; Li, Peng-Bo

    2018-05-01

    We propose an efficient scheme for transferring quantum states and generating entangled states between two qubits of different nature. The hybrid system consists of a single nitrogen-vacancy (NV) center and a superconducting (SC) qubit, which couple to an optical cavity and a microwave resonator, respectively. Meanwhile, the optical cavity and the microwave resonator are coupled via the electro-optic effect. By adjusting the relative parameters, we can achieve high-fidelity quantum state transfer as well as highly entangled states between the NV center and the SC qubit. This protocol is within the reach of currently available techniques, and may provide interesting applications in quantum communication and computation with single NV centers and SC qubits.

  9. Business intelligence design for live piloting of order fulfilment centers

    NARCIS (Netherlands)

    Ashayeri, J.; Montreuil, B.; Lagerwaard, J.; Janssen, G.; Ellis, K.; Meller, R.; Ogle, M.K.; Peters, B.A.; Taylor, G.D.; Usher, J.

    2008-01-01

    Other fulfillment centers focus on fast paced timely preparation and outbound shipment of customer orders from a large mix of temporarily stored inbound products acquired to satisfy these orders. In order to be both price and service competitive, such fulfillers thrive on real-time synchronization

  10. [Clinical safety audits for primary care centers. A pilot study].

    Science.gov (United States)

    Ruiz Sánchez, Míriam; Borrell-Carrió, Francisco; Ortodó Parra, Cristina; Fernàndez I Danés, Neus; Fité Gallego, Anna

    2013-01-01

    To identify organizational processes, violations of rules, or professional performances that pose clinical levels of insecurity. Descriptive cross-sectional survey with customized externally-behavioral verification and comparison of sources, conducted from June 2008 to February 2010. Thirteen of the 53 primary care teams (PCT) of the Catalonian Health Institute (ICS Costa de Ponent, Barcelona). Employees of 13 PCT classified into: director, nurse director, customer care administrators, and general practitioners. Non-random selection, teaching (TC)/non-teaching, urban (UC)/rural and small/large (LC) health care centers (HCC). A total of 33 indicators were evaluated; 15 of procedures, 9 of attitude, 3 of training, and 6 of communication. Level of uncertainty: <50% positive answers for each indicator. no collaboration. A total of 55 professionals participated (84.6% UC, 46.2% LC and 76.9% TC). Rank distribution: 13 customer care administrators, 13 nurse directors, 13 HCC directors, and 16 general practitioners. Levels of insecurity emerged from the following areas: reception of new medical professionals, injections administration, nursing weekend home calls, urgent consultations to specialists, aggressive patients, critical incidents over the agenda of the doctors, communication barriers with patients about treatment plans, and with immigrants. Clinical safety is on the agenda of the health centers. Identified areas of uncertainty are easily approachable, and are considered in the future system of accreditation of the Catalonian Government. General practitioners are more critical than directors, and teaching health care centers, rural and small HCC had a better sense of security. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  11. Depairing critical current achieved in superconducting thin films with through-thickness arrays of artificial pinning centers

    International Nuclear Information System (INIS)

    Dinner, Rafael B; Wimbush, Stuart C; MacManus-Driscoll, Judith L; Blamire, Mark G; Robinson, Adam P

    2011-01-01

    Large area arrays of through-thickness nanoscale pores have been milled into superconducting Nb thin films via a process utilizing anodized aluminum oxide thin film templates. These pores act as artificial flux pinning centers, increasing the superconducting critical current, J c , of the Nb films. By optimizing the process conditions including anodization time, pore size and milling time, J c values approaching and in some cases matching the Ginzburg-Landau depairing current of 30 MA cm -2 at 5 K have been achieved-a J c enhancement over as-deposited films of more than 50 times. In the field dependence of J c , a matching field corresponding to the areal pore density has also been clearly observed. The effect of backfilling the pores with magnetic material has then been investigated. While backfilling with Co has been successfully achieved, the effect of the magnetic material on J c has been found to be largely detrimental compared to voids, although a distinct influence of the magnetic material in producing a hysteretic J c versus applied field behavior has been observed. This behavior has been tested for compatibility with currently proposed models of magnetic pinning and found to be most closely explained by a model describing the magnetic attraction between the flux vortices and the magnetic inclusions.

  12. Centering prayer for women receiving chemotherapy for recurrent ovarian cancer: a pilot study.

    Science.gov (United States)

    Johnson, Mary E; Dose, Ann M; Pipe, Teri Britt; Petersen, Wesley O; Huschka, Mashele; Gallenberg, Mary M; Peethambaram, Prema; Sloan, Jeff; Frost, Marlene H

    2009-07-01

    To explore the feasibility of implementing centering prayer in chemotherapy treatment and assess its influence on mood, spiritual well-being, and quality of life in women with recurrent ovarian cancer. Descriptive pilot study. Outpatient chemotherapy treatment suite in a large cancer center in the midwestern United States. A convenience sample of 10 women receiving outpatient chemotherapy for recurrent ovarian cancer. A centering prayer teacher led participants through three one-hour sessions over nine weeks. Data were collected prior to the first session, at the conclusion of the final session, and at three and six months after the final session. Feasibility and influence of centering prayer on mood, spiritual well-being, and quality of life. Most participants identified centering prayer as beneficial. Emotional well-being, anxiety, depression, and faith scores showed improvement. Centering prayer can potentially benefit women with recurrent ovarian cancer. Additional research is needed to assess its feasibility and effectiveness. Nurses may promote or suggest centering prayer as a feasible intervention for the psychological and spiritual adjustment of patients with recurrent ovarian cancer.

  13. Piloting CenteringParenting in Two Alberta Public Health Well-Child Clinics.

    Science.gov (United States)

    Johnston, Jennifer Cyne; McNeil, Deborah; van der Lee, Germaeline; MacLeod, Cheryl; Uyanwune, Yvonne; Hill, Kaitlyn

    2017-05-01

    To pilot a group health service delivery model, CenteringParenting, for new parents, to assess its feasibility and impact on maternal and infant outcomes. Families attended six, 2-hr group sessions in their child's first year of life with three to seven other families. Health assessments, parent-led discussions, and vaccinations occurred within the group. Demographic, breastfeeding, vaccination, maternal psychosocial health, parenting, and satisfaction data were collected and compared to a representative cohort. Four groups ran in two clinics. Four to eight parent/infant dyads participated in each group, 24 total dyads. Most participating parents were mothers. Dyads in the group model received 12 hr of contact with Public Health over the year compared to 3 hr in the typical one-on-one model. Participants were younger, more likely to have lower levels of education, and lower household income than the comparison group. Parents reported improvements in parenting experiences following the program. At 4 months, all CenteringParenting babies were vaccinated compared to 95% of babies in the comparison group. The pilot was successfully completed. Additional research is required to examine the effectiveness of CenteringParenting. Data collected provide insight into potential primary outcomes of interest and informs larger, rigorously designed longitudinal studies. © 2016 Wiley Periodicals, Inc.

  14. Influence of the introduction and formation of artificial pinning centers on the transport properties of nanostructured Nb{sub 3}Sn superconducting wires

    Energy Technology Data Exchange (ETDEWEB)

    Da Silva, L B S; Rodrigues, C A; Bormio-Nunes, C; Oliveira, N F Jr; Rodrigues, D Jr, E-mail: lucas_sarno@ppgem.eel.usp.b, E-mail: durval@demar.eel.usp.b [Superconductivity Group, Department of Materials Engineering (DEMAR) Escola de Engenharia de Lorena (EEL), Universidade de Sao Paulo - USP Polo Urbo-Industrial, Gleba AI-6 - PO Box 116 - Lorena, SP (Brazil)

    2009-05-01

    The formation of nanostructures projected to act as pinning centers is presented as a highly promising technique for the transport properties optimization of superconductors. However, due to the necessity of nanometric dimensions of these pinning centers, the heat treatment (HT) profiles must be carefully analyzed. The present work describes a methodology to optimize the HT profiles in respect to diffusion, reaction and formation of the superconducting phases. After the HT, samples were removed for micro structural characterization. Measurements of transport properties were performed to analyze the influence of the introduction of artificial pinning centers (APC) on the superconducting phase and to find the flux pinning mechanism acting in these wires. Fitting the volumetric pinning force vs. applied magnetic field (F{sub p} vs. mu{sub o}H) curves of transport properties, we could determine the type and influence of flux pinning mechanism acting in the global behavior of the samples. It was concluded that the maximum current densities were obtained when normal phases (due to the introduction of the APCs) are the most efficient pinning centers in the global behavior of the samples. The use of HT with profile 220{sup 0}C/100h+575{sup 0}C/50h+650{sup 0}C/100h was found as the best treatment for these nanostructured superconducting wires.

  15. Reliability centered maintenance pilot system implementation 241-AP-tank farm primary ventilation system final report

    International Nuclear Information System (INIS)

    MOORE TL

    2001-01-01

    When the Hanford Site Tank Farms' mission was safe storage of radioactive waste in underground storage tanks, maintenance activities focused on time-based preventive maintenance. Tank Farms' new mission to deliver waste to a vitrification plant where the waste will be processed into a form suitable for permanent storage requires a more efficient and proactive approach to maintenance. Systems must be maintained to ensure that they are operational and available to support waste feed delivery on schedule with a minimum of unplanned outages. This report describes the Reliability Centered Maintenance (RCM) pilot system that was implemented in the 241-AP Tank Farm Primary Ventilation System under PI-ORP-009 of the contract between the U.S. Department of Energy, Office of River Protection and CH2M HILL Hanford Group Inc. (CHG). The RCM analytical techniques focus on monitoring the condition of operating systems to predict equipment failures so that maintenance activities can be completed in time to prevent or mitigate unplanned equipment outages. This approach allows maintenance activities to be managed with minimal impact on plant operations. The pilot demonstration provided an opportunity for CHG staff-training in RCM principles and tailoring of the RCM approach to the Hanford Tank Farms' unique needs. This report details the implementation of RCM on a pilot system in Tank Farms

  16. The effect of fast neutron irradiation on the superconducting properties of REBCO coated conductors with and without artificial pinning centers

    Science.gov (United States)

    Fischer, D. X.; Prokopec, R.; Emhofer, J.; Eisterer, M.

    2018-04-01

    Superconductors are essential components of future fusion power plants. The magnet coils responsible for producing the field required for confining the fusion plasma are exposed to considerable neutron radiation. This makes irradiation studies necessary for understanding the radiation response of the superconductor. High temperature superconductors are promising candidates as magnet coil materials. YBCO and GdBCO tapes of several manufacturers were irradiated to fast neutron fluences of up to 3.9 × 1022 m-2 in the research reactor at the Atominstitut. Low energy neutrons contribute to the fission reactor spectrum but not to the expected spectrum at the fusion magnets. Low energy neutrons have to be shielded in irradiation experiments to avoid their substantial effect on the superconducting properties of tapes containing gadolinium. The critical current (I c) of the tapes in this study was examined at fields of up to 15 T and down to a temperature of 30 K. I c first increases upon irradiation and reaches a maximum at a certain fluence, which depends highly on temperature, being highest at low temperature. I c declines at high fluences and eventually degrades with respect to its initial value. Tapes with artificial pinning centers (APCs) degrade at lower fluences than tapes without them. The n-values decrease in all types of tapes after irradiation even when the critical currents are increased. The field dependence of the volume pinning force differs in pristine tapes with and without APCs but shows the same behavior after irradiation.

  17. CenteringPregnancy-Africa: a pilot of group antenatal care to address Millennium Development Goals.

    Science.gov (United States)

    Patil, Crystal L; Abrams, Elizabeth T; Klima, Carrie; Kaponda, Chrissie P N; Leshabari, Sebalda C; Vonderheid, Susan C; Kamanga, Martha; Norr, Kathleen F

    2013-10-01

    severe health worker shortages and resource limitations negatively affect quality of antenatal care (ANC) throughout sub-Saharan Africa. Group ANC, specifically CenteringPregnancy (CP), may offer an innovative approach to enable midwives to offer higher quality ANC. our overarching goal was to prepare to conduct a clinical trial of CenteringPregnancy-Africa (CP-Africa) in Malawi and Tanzania. In Phase 1, our goal was to determine the acceptability of CP as a model for ANC in both countries. In Phase 2, our objective was to develop CP-Africa session content consistent with the Essential Elements of CP model and with national standards in both Malawi and Tanzania. In Phase 3, our objective was to pilot CP-Africa in Malawi to determine whether sessions could be conducted with fidelity to the Centering process. Phases 1 and 2 took place in Malawi and Tanzania. Phase 3, the piloting of two sessions of CP-Africa, occurred at two sites in Malawi: a district hospital and a small clinic. we used an Action Research approach to promote partnerships among university researchers, the Centering Healthcare Institute, health care administrators, health professionals and women attending ANC to develop CP-Africa session content and pilot this model of group ANC. for Phases 1 and 2, members of the Ministries of Health, health professionals and pregnant women in Malawi and Tanzania were introduced to and interviewed about CP. In Phase 2, we finalised CP-Africa content and trained 13 health professionals in the Centering Healthcare model. In Phase 3, we conducted a small pilot with 24 pregnant women (12 at each site). participants enthusiastically embraced CP-Africa as an acceptable model of ANC health care delivery. The CP-Africa content met both CP and national standards. The pilot established that the CP model could be implemented with process fidelity to the 13 Essential Elements. Several implementation challenges and strategies to address these challenges were identified

  18. Using clinical simulation centers to test design interventions: a pilot study of lighting and color modifications.

    Science.gov (United States)

    Gray, Whitney Austin; Kesten, Karen S; Hurst, Stephen; Day, Tama Duffy; Anderko, Laura

    2012-01-01

    The aim of this pilot study was to test design interventions such as lighting, color, and spatial color patterning on nurses' stress, alertness, and satisfaction, and to provide an example of how clinical simulation centers can be used to conduct research. The application of evidence-based design research in healthcare settings requires a transdisciplinary approach. Integrating approaches from multiple fields in real-life settings often proves time consuming and experimentally difficult. However, forums for collaboration such as clinical simulation centers may offer a solution. In these settings, identical operating and patient rooms are used to deliver simulated patient care scenarios using automated mannequins. Two identical rooms were modified in the clinical simulation center. Nurses spent 30 minutes in each room performing simulated cardiac resuscitation. Subjective measures of nurses' stress, alertness, and satisfaction were collected and compared between settings and across time using matched-pair t-test analysis. Nurses reported feeling less stressed after exposure to the experimental room than nurses who were exposed to the control room (2.22, p = .03). Scores post-session indicated a significant reduction in stress and an increase in alertness after exposure to the experimental room as compared to the control room, with significance levels below .10. (Change in stress scores: 3.44, p = .069); (change in alertness scores: 3.6, p = .071). This study reinforces the use of validated survey tools to measure stress, alertness, and satisfaction. Results support human-centered design approaches by evaluating the effect on nurses in an experimental setting.

  19. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  20. Rational drug use in Cambodia: study of three pilot health centers in Kampong Thom Province.

    Science.gov (United States)

    Chareonkul, Chanin; Khun, Va Luong; Boonshuyar, Chaweewon

    2002-06-01

    This study obtained baseline information for the design of a strategy to address irrational prescribing practices in three health centers in Kampong Thom Province, Cambodia. Indicators of rational drug use have been measured and compared with Standard Guidelines. Data were collected from patients' registers and by interviewing patients immediately after patient-prescriber and patient-dispenser encounters. Checklists and pre-designed forms were used to collect data regarding the World Health Organization drug use indicators and some additional indices. Of the 330 prescriptions analyzed, the results showed that the average number of drugs per prescription was 2.35 and that a large proportion of the prescriptions contained two or more drugs that could result in adverse drug interactions. Prescribing by generic names (99.8%) was encouraging. The exposure of patients to antibiotics (66% to 100%) was high, and injection use (2.4%) was often unnecessary. Prescribing from the Essential Drugs List (99.7%) was satisfactory. The average consultation and dispensing times were short and not sufficient for patients to get health information. All the prescribed drugs were supplied, but all were inadequately labeled. Some 55% of patients knew the correct dosage of their drugs. The availability of key essential drugs (86.6%) was below the Standard. The percentages of appropriate prescriptions for treating malaria, diarrhea and acute respiratory infection treatment were 68.3%, 3.3%, and 45%, respectively. Inappropriate prescriptions were mostly due to unsuitable dosages, incorrect drugs, and the improper duration of treatment. The results suggest a need for intervention to curb the irrational use of drugs in prescribing at the three pilot health centers. Continuing education of prescribers and healthcare providers, monitoring, supervision, public education would be beneficial.

  1. A pilot assessment of relapse prevention for heroin addicts in a Chinese rehabilitation center.

    Science.gov (United States)

    Min, Zhao; Xu, Li; Chen, Hanhui; Ding, Xu; Yi, Zhang; Mingyuang, Zhang

    2011-05-01

    To conduct a pilot assessment of relapse prevention (RP) group therapy for heroin-dependent patients in a drug rehabilitation center in China. A randomized case-control study was conducted to assess the efficacy of RP delivered over a 2-month period to male heroin addicts (n = 50, RP group) in the Shanghai Labor Drug Rehabilitation Center (LDRC) compared with an equal number of participants (n = 50, labor rehabilitation (LR) group) in the LDRC program receiving standard-of-care treatment. Outcomes were assessed by the Beck Depression Inventory (BDI), the Self-Rating Anxiety Scale (SAS), the Self-Efficacy Scale (SE), and the Self-Esteem Scale (SES) after completion of RP, and by the Addiction Severity Index (ASI) and abstinence rates of heroin use at 3-month follow-up post release from the LDRC for both groups. Significant improvements in scores on SAS, SE, and SES were found in the RP group after completion of the 2-month RP group therapy compared with the LR group (SAS 7.85 ± 6.20 vs 1.07 ± 5.42, SE 3.88 ± 3.60 vs .08 ± 2.89, and SES 3.83 ± 3.31 vs .78 ± 2.55). At 3-month follow-up, the RP group participants had more improvements on ASI scores in most domains and had higher abstinence rates than that in the LR group (37.2% vs 16.7%). An RP component can be effective in increasing abstinence rates among post-program heroin-dependent individuals and may help reduce anxiety and improve self-esteem and self-efficacy during and following treatment. This study suggests RP as a potentially effective component of treatment for heroin addicts.

  2. Disbursement of $65 million to the State of Texas for construction of a Regional Medical Technology Center at the former Superconducting Super Collider Site, Waxahachie, Texas

    International Nuclear Information System (INIS)

    1995-05-01

    As part of a settlement agreement between the US DOE and the State of Texas, DOE proposes to transfer $65 million of federal funds to the Texas National Research Laboratory Commission (TNLRC) for construction of the Regional Medical Technology Center (RMTC) to be located in Ellis County, Texas. The RMTC would be a state-of-the-art medical facility for proton cancer therapy, operated by the State of Texas in conjunction with the University of Texas Southwestern Medical Center. The RMTC would use the linear accelerator assets of the recently terminated DOE Superconducting Super Collider Project to accelerate protons to high energies for the treatment of cancer patients. The current design provides for treatment areas, examination rooms, support laboratories, diagnostic imaging equipment, and office space as well as the accelerators (linac and synchrotron) and beam steering and shaping components. The potential environmental consequences of the proposed action are expected to be minor

  3. FY2017 Pilot Project Plan for the Nuclear Energy Knowledge and Validation Center Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Weiju [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-30

    To prepare for technical development of computational code validation under the Nuclear Energy Knowledge and Validation Center (NEKVAC) initiative, several meetings were held by a group of experts of the Idaho National Laboratory (INL) and the Oak Ridge National Laboratory (ORNL) to develop requirements of, and formulate a structure for, a transient fuel database through leveraging existing resources. It was concluded in discussions of these meetings that a pilot project is needed to address the most fundamental issues that can generate immediate stimulus to near-future validation developments as well as long-lasting benefits to NEKVAC operation. The present project is proposed based on the consensus of these discussions. Analysis of common scenarios in code validation indicates that the incapability of acquiring satisfactory validation data is often a showstopper that must first be tackled before any confident validation developments can be carried out. Validation data are usually found scattered in different places most likely with interrelationships among the data not well documented, incomplete with information for some parameters missing, nonexistent, or unrealistic to experimentally generate. Furthermore, with very different technical backgrounds, the modeler, the experimentalist, and the knowledgebase developer that must be involved in validation data development often cannot communicate effectively without a data package template that is representative of the data structure for the information domain of interest to the desired code validation. This pilot project is proposed to use the legendary TREAT Experiments Database to provide core elements for creating an ideal validation data package. Data gaps and missing data interrelationships will be identified from these core elements. All the identified missing elements will then be filled in with experimental data if available from other existing sources or with dummy data if nonexistent. The resulting hybrid

  4. Superconductivity - applications

    International Nuclear Information System (INIS)

    The paper deals with the following subjects: 1) Electronics and high-frequency technology, 2) Superconductors for energy technology, 3) Superconducting magnets and their applications, 4) Electric machinery, 5) Superconducting cables. (WBU) [de

  5. Superconducting nanostructured materials

    International Nuclear Information System (INIS)

    Metlushko, V.

    1998-01-01

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines

  6. [Implementation of the EndoCert system for certification of arthroplasty centers. Experiences from the pilot phase].

    Science.gov (United States)

    Haas, H; Mittelmeier, W

    2014-06-01

    EndoCert is an initiative of the Deutschen Gesellschaft für Orthopädie und Orthopädische Chirurgie (DGOOC, German Society for Orthopedics and Orthopedic Surgery) which has been available since October 2012 and is the first system worldwide for certification of specialized arthroplasty centers. Before implementation of this certification concept two sequential pilot phases were carried out with representative treatment institutions. The results from these pilot clinics are presented with respect to quality improvement effects. Early effects on the quality of treatment have been achieved by rectification of nonconformities determined in the audit with respect to structural and process quality. A total of 172 nonconformities found in the 23 participating pilot clinics could be rectified. Long-term effects on the quality of results will in future be analyzed in cooperation with the German endoprosthesis register (EPRD) and by accompanying evaluations. A close feedback of the collated experiences and results to the certification committee, which is responsible for the procedure together with the DGOOC, allows continuous further development of the system EndoCert represents a substantial step towards a nationwide safety and improvement of the quality in arthroplasty treatment within the preoperative, perioperative and postoperative framework and can in future represent a decisive tool together with the EPRD in quality management.

  7. The World Center for Computing's Pilot Videodisc Project for French Language Instruction.

    Science.gov (United States)

    Eastmond, J. Nicholls, Jr.; Mosenthal, Richard

    1985-01-01

    Describes a pilot videodisc project for French language instruction. Unique features include (1) learner control of instruction by a mouse or touch-sensitive screen, (2) extensive cultural interaction, and (3) an elaborate lexicon of word meanings portrayed visually for selected key words. (Author/SED)

  8. Production of highly charged heavy ions by 18 GHz superconducting electron cyclotron resonance at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, Tetsuhiko; Hatanaka, Kichiji; Fukuda, Mitsuhiro; Kibayashi, Mitsuru; Morinobu, Shunpei; Okamura, Hiroyuki; Tamii, Atsushi

    2010-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source has been installed as a subject of the azimuthally varying field cyclotron upgrade project (K. Hatanaka et al., in Proceedings of the 17th International Conference on Cyclotrons and Their Applications, Tokyo, Japan, 18-22 October 2004, pp. 115-117), in order to increase beam currents and to extend the variety of ions. The production development of several ions has been performed since 2006 and some of them have already been used for user experiments [T. Yorita et al., Rev. Sci. Instrum. 79, 02A311 (2008)]. Further optimizations for each component such as the material of plasma electrode, material, and shape of bias probe and mirror field have been continued and more intense ion beams have been obtained for O, N, and Ar. For the purpose of obtaining highly charged Xe with several microamperes, the optimization of position and shape of plasma electrode and bias disk has also been done and highly charged Xe(32+) beam has been obtained successfully.

  9. Superconductivity revisited

    CERN Document Server

    Dougherty, Ralph

    2013-01-01

    While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.

  10. Superconducting cosmic strings

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.; Field, G.B.; Spergel, D.N.; Vilenkin, A.

    1986-01-01

    Superconducting loops of string formed in the early Universe, if they are relatively light, can be an important source of relativistic particles in the Galaxy. They can be observed as sources of synchrotron radiation at centimeter wavelengths. We propose a string model for two recently discovered radio sources, the ''thread'' in the galactic center and the source G357.7-0.1, and predict that the filaments in these sources should move at relativistic speeds. We also consider superheavy superconducting strings, and the possibility that they be observed as extragalactic radio sources

  11. Superconducting cermets

    International Nuclear Information System (INIS)

    Goyal, A.; Funkenbusch, P.D.; Chang, G.C.S.; Burns, S.J.

    1988-01-01

    Two distant classes of superconducting cermets can be distinguished, depending on whether or not a fully superconducting skeleton is established. Both types of cermets have been successfully fabricated using non-noble metals, with as high as 60wt% of the metal phase. The electrical, magnetic and mechanical behavior of these composites is discussed

  12. Studies of extraction and transport system for highly charged ion beam of 18 GHz superconducting electron cyclotron resonance ion source at Research Center for Nuclear Physics.

    Science.gov (United States)

    Yorita, T; Hatanaka, K; Fukuda, M; Ueda, H; Yasuda, Y; Morinobu, S; Tamii, A; Kamakura, K

    2014-02-01

    An 18 GHz superconducting electron cyclotron resonance ion source is installed to increase beam currents and to extend the variety of ions especially for highly charged heavy ions which can be accelerated by cyclotrons of Research Center for Nuclear Physics (RCNP), Osaka University. The beam production developments of several ions from B to Xe have been already done [T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 79, 02A311 (2008) and T. Yorita, K. Hatanaka, M. Fukuda, M. Kibayashi, S. Morinobu, H.Okamura, and A. Tamii, Rev. Sci. Instrum. 81, 02A332 (2010)] and the further studies for those beam extraction and its transport have been done in order to increase the beam current more. The plasma electrode, extraction electrode, and einzel lens are modified. Especially extraction electrode can be applied minus voltage for the beam extraction and it works well to improve the extracted beam current. The extraction voltage dependences of transmission and emittance also have been studied for beam current improvement which is injected into azimuthally varying field cyclotron at RCNP.

  13. Superconducting technology

    International Nuclear Information System (INIS)

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  14. Interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gariglio, S., E-mail: stefano.gariglio@unige.ch [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland); Gabay, M. [Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud 11, Centre d’Orsay, 91405 Orsay Cedex (France); Mannhart, J. [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Triscone, J.-M. [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland)

    2015-07-15

    Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3} are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3}. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO{sub 3} and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3}.

  15. Integrating a Nurse-Midwife-Led Oral Health Intervention Into CenteringPregnancy Prenatal Care: Results of a Pilot Study.

    Science.gov (United States)

    Adams, Sally H; Gregorich, Steven E; Rising, Sharon S; Hutchison, Margaret; Chung, Lisa H

    2017-07-01

    National and professional organizations recommend oral health promotion in prenatal care to improve women's oral health. However, few prenatal programs include education about oral health promotion. The objective of this study was to determine if women receiving a brief, low-cost, and sustainable educational intervention entitled CenteringPregnancy Oral Health Promotion had clinically improved oral health compared to women receiving standard CenteringPregnancy care. Women attending CenteringPregnancy, a group prenatal care model, at 4 health centers in the San Francisco Bay Area, participated in this nonrandomized controlled pilot study in 2010 to 2011. The intervention arm received the CenteringPregnancy Oral Health Promotion intervention consisting of two 15-minute skills-based educational modules addressing maternal and infant oral health, each module presented in a separate CenteringPregnancy prenatal care session. The present analysis focused on the maternal module that included facilitated discussions and skills-building activities including proper tooth brushing. The control arm received standard CenteringPregnancy prenatal care. Dental examinations and questionnaires were administered prior to and approximately 9 weeks postintervention. Primary outcomes included the Plaque Index, percent bleeding on probing, and percent of gingival pocket depths 4 mm or greater. Secondary outcomes were self-reported oral health knowledge, attitudes (importance and self-efficacy), and behaviors (tooth brushing and flossing). Regression models tested whether pre to post changes in outcomes differed between the intervention versus the control arms. One hundred and one women participated in the study; 49 were in the intervention arm, and 52 were in the control arm. The control and intervention arms did not vary significantly at baseline. Significant pre to post differences were noted between the arms with significant improvements in the intervention arm for the Plaque Index

  16. Influence of artificial pinning centers on structural and superconducting properties of thick YBCO films on ABAD-YSZ templates

    Science.gov (United States)

    Pahlke, Patrick; Sieger, Max; Ottolinger, Rick; Lao, Mayraluna; Eisterer, Michael; Meledin, Alexander; Van Tendeloo, Gustaaf; Hänisch, Jens; Holzapfel, Bernhard; Schultz, Ludwig; Nielsch, Kornelius; Hühne, Ruben

    2018-04-01

    Recent efforts in the development of YBa2Cu3O7-x (YBCO) coated conductors are devoted to the increase of the critical current I c in magnetic fields. This is typically realized by growing thicker YBCO layers as well as by the incorporation of artificial pinning centers. We studied the growth of doped YBCO layers with a thickness of up to 7 μm using pulsed laser deposition with a growth rate of about 1.2 nm s-1. Industrially fabricated ion-beam textured YSZ templates based on metal tapes were used as substrates for this study. The incorporation of BaHfO3 (BHO) or Ba2Y(Nb0.5Ta0.5)O6 (BYNTO) secondary phase additions leads to a denser microstructure compared to undoped films. A purely c-axis-oriented YBCO growth is preserved up to a thickness of about 4 μm, whereas misoriented texture components were observed in thicker films. The critical temperature is slightly reduced compared to undoped films and independent of film thickness. The critical current density J c of the BHO- and BYNTO-doped YBCO layers is lower at 77 K and self-field compared to pure YBCO layers; however, I c increases up to a thickness of 5 μm. A comparison between films with a thickness of 1.3 μm revealed that the anisotropy of the critical current density J c(θ) strongly depends on the incorporated pinning centers. Whereas BHO nanorods lead to a strong B∣∣c-axis peak, the overall anisotropy is significantly reduced by the incorporation of BYNTO forming a mixture of short c-axis-oriented nanorods and small (a-b)-oriented platelets. As a result, the J c values of the doped films outperform the undoped samples at higher fields and lower temperatures for most magnetic field directions.

  17. Organic superconductivity

    International Nuclear Information System (INIS)

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  18. Superconductivity and magnet technology

    International Nuclear Information System (INIS)

    Lubell, M.S.

    1975-01-01

    The background theory of superconducting behavior is reviewed. Three parameters that characterize superconducting materials with values of commercial materials as examples are discussed. More than 1000 compounds and alloy systems and 26 elements are known to exhibit superconducting properties under normal conditions at very low temperatures. A wide variety of crystal structures are represented among the known superconductors. The most important ones do seem to have cubic symmetry such as the body-centered cubic (NbZr and NbTi), face-centered cubic (NbN), and the A15 or β-tungsten structures (Nb 3 Sn), V 3 Ga, Nb 3 Ge, Nb 3 Al, and V 3 Si). Attempts to understand some of the particular phenomena associated with superconductors as a necessary prelude to constructing superconducting magnets are discussed by the author. The origin of degradation is briefly discussed and methods to stabilize magnets are illustrated. The results of Oak Ridge National Laboratory design studies of toroidal magnet systems for fusion reactors are described

  19. 78 FR 20924 - Center for Biologics Evaluation and Research eSubmitter Pilot Evaluation Program for...

    Science.gov (United States)

    2013-04-08

    ..., Office of Blood Research and Review, Center for Biologics Evaluation and Research (HFM-375), Food and... assist CBER in the final development and release of this electronic program for use by industry. III... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-0248...

  20. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  1. Superconducting materials

    International Nuclear Information System (INIS)

    Kormann, R.; Loiseau, R.; Marcilhac, B.

    1989-01-01

    The invention concerns superconducting ceramics containing essentially barium, calcium and copper fluorinated oxides with close offset and onset temperatures around 97 K and 100 K and containing neither Y nor rare earth [fr

  2. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  3. Superconducted tour

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-09-15

    Superconductivity - the dramatic drop in electrical resistance in certain materials at very low temperatures - has grown rapidly in importance over the past two or three decades to become a key technology for high energy particle accelerators. It was in this setting that a hundred students and 15 lecturers met in Hamburg in June for a week's course on superconductivity in particle accelerators, organized by the CERN Accelerator School and the nearby DESY Laboratory.

  4. Superconductivity: Phenomenology

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect

  5. The Effect of Depo Medroxyprogesterone Acetate (DMPA) on Cerebral Food Motivation Centers: A Pilot Study using Functional Magnetic Resonance Imaging.

    Science.gov (United States)

    Basu, Tania; Bao, Pinglei; Lerner, Alexander; Anderson, Lindsey; Page, Kathleen; Stanczyk, Frank; Mishell, Daniel; Segall-Gutierrez, Penina

    2016-10-01

    The primary objective is to examine activation of food motivation centers in the brain before and 8 weeks after depo medroxyprogesterone acetate (DMPA) administration. This prospective experimental pilot study examined the effects of DMPA on food motivation centers utilizing functional magnetic resonance imaging (fMRI) in eight nonobese, ovulatory subjects. fMRI blood oxygen level dependent (BOLD) signal was measured using a 3-Tesla Scanner while participants viewed images of high-calorie foods, low-calorie foods and nonfood objects. fMRI scans were performed at baseline and 8 weeks after participants received one intramuscular dose of DMPA 150 mg. fMRI data were analyzed using the FMRIB Software Library. Changes in adiposity and circulating leptin and ghrelin levels were also measured. There was a greater BOLD signal response to food cues in brain regions associated with food motivation (anterior cingulate gyrus, orbitofrontal cortex) 8 weeks after DMPA administration compared to baseline (z>2.3, pmotivation may guide the development of interventions to prevent weight gain in DMPA users. These data support a neural origin as one of the mechanisms underlying weight gain in DMPA users and may guide future research examining weight gain and contraception. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Sodium bicarbonate infusion in patients undergoing orthotopic liver transplantation: a single center randomized controlled pilot trial.

    Science.gov (United States)

    Weinberg, Laurence; Broad, Jeremy; Pillai, Param; Chen, Guangjun; Nguyen, Micheline; Eastwood, Glenn M; Scurrah, Nick; Nikfarjam, Mehrdad; Story, David; McNicol, Larry; Bellomo, Rinaldo

    2016-05-01

    Liver transplantation-associated acute kidney injury (AKI) carries significant morbidity and mortality. We hypothesized that sodium bicarbonate would reduce the incidence and/or severity of liver transplantation-associated AKI. In this double-blinded pilot RCT, adult patients undergoing orthotopic liver transplantation were randomized to an infusion of either 8.4% sodium bicarbonate (0.5 mEq/kg/h for the first hour; 0.15 mEq/kg/h until completion of surgery); (n = 30) or 0.9% sodium chloride (n = 30). AKI within the first 48 h post-operatively. There were no significant differences between the two treatment groups with regard to baseline characteristics, model for end-stage liver disease and acute physiology and chronic health evaluation (APACHE) II scores, and pre-transplantation renal function. Intra-operative factors were similar for duration of surgery, blood product requirements, crystalloid and colloid volumes infused and requirements for vasoactive therapy. Eleven patients (37%) in the bicarbonate group and 10 patients (33%) in the sodium chloride group developed a post-operative AKI (p = 0.79). Bicarbonate infusion attenuated the degree of immediate post-operative metabolic acidosis; however, this effect dissipated by 48 h. There were no significant differences in ventilation hours, ICU or hospital length of stay, or mortality. The intra-operative infusion of sodium bicarbonate did not decrease the incidence of AKI in patients following orthotopic liver transplantation. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Assurance of Myeloid Growth Factor Administration in an Infusion Center: Pilot Quality Improvement Initiative.

    Science.gov (United States)

    Ramirez, Pamela Maree; Peterson, Barry; Holtshopple, Christine; Borja, Kristina; Torres, Vincent; Valdivia-Peppers, Lucille; Harriague, Julio; Joe, Melanie D

    2017-12-01

    Four incident reports involving missed doses of myeloid growth factors (MGFs) triggered the need for an outcome-driven initiative. From March 1, 2015, to February 29, 2016, at University of California Irvine Health Chao Infusion Center, 116 of 3,300 MGF doses were missed (3.52%), including pegfilgrastim, filgrastim, and sargramostim. We hypothesized that with the application of Lean Six Sigma methodology, we would achieve our primary objective of reducing the number of missed MGF doses to < 0.5%. This quality improvement initiative was conducted at Chao Infusion Center as part of a Lean Six Sigma Green Belt Certification Program. Therefore, Lean Six Sigma principles and tools were used throughout each phase of the project. Retrospective and prospective medical record reviews and data analyses were performed to evaluate the extent of the identified problem and impact of the process changes. Improvements included systems applications, practice changes, process modifications, and safety-net procedures. Preintervention, 24 missed doses (20.7%) required patient supportive care measures, resulting in increased hospital costs and decreased quality of care. Postintervention, from June 8, 2016, to August 7, 2016, zero of 489 MGF doses were missed after 2 months of intervention ( P < .001). Chao Infusion Center reduced missed doses from 3.52% to 0%, reaching the goal of < 0.5%. The establishment of simplified and standardized processes with safety checks for error prevention increased quality of care. Lean Six Sigma methodology can be applied by other institutions to produce positive outcomes and implement similar practice changes.

  8. Meaning-centered dream work with hospice patients: A pilot study.

    Science.gov (United States)

    Wright, Scott T; Grant, Pei C; Depner, Rachel M; Donnelly, James P; Kerr, Christopher W

    2015-10-01

    Hospice patients often struggle with loss of meaning, while many experience meaningful dreams. The purpose of this study was to conduct a preliminary exploration into the process and therapeutic outcomes of meaning-centered dream work with hospice patients. A meaning-centered variation of the cognitive-experiential model of dream work (Hill, 1996; 2004) was tested with participants. This variation was influenced by the tenets of meaning-centered psychotherapy (Breitbart et al., 2012). A total of 12 dream-work sessions were conducted with 7 hospice patients (5 women), and session transcripts were analyzed using the consensual qualitative research (CQR) method (Hill, 2012). Participants also completed measures of gains from dream interpretation in terms of existential well-being and quality of life. Participants' dreams generally featured familiar settings and living family and friends. Reported images from dreams were usually connected to feelings, relationships, and the concerns of waking life. Participants typically interpreted their dreams as meaning that they needed to change their way of thinking, address legacy concerns, or complete unfinished business. Generally, participants developed and implemented action plans based on these interpretations, despite their physical limitations. Participants described dream-work sessions as meaningful, comforting, and helpful. High scores on a measure of gains from dream interpretation were reported, consistent with qualitative findings. No adverse effects were reported or indicated by assessments. Our results provided initial support for the feasibility and helpfulness of dream work in this population. Implications for counseling with the dying and directions for future research were also explored.

  9. Family centered brief intensive treatment: a pilot study of an outpatient treatment for acute suicidal ideation.

    Science.gov (United States)

    Anastasia, Trena T; Humphries-Wadsworth, Terresa; Pepper, Carolyn M; Pearson, Timothy M

    2015-02-01

    Family Centered Brief Intensive Treatment (FC BIT), a hospital diversion treatment program for individuals with acute suicidal ideation, was developed to treat suicidal clients and their families. Individuals who met criteria for hospitalization were treated as outpatients using FC BIT (n = 19) or an intensive outpatient treatment without the family component (IOP; n = 24). Clients receiving FC BIT identified family members or supportive others to participate in therapy. FC BIT clients had significantly greater improvement at the end of treatment compared to IOP clients on measures of depression, hopelessness, and suicidality. Further research is needed to test the efficacy of FC BIT. © 2014 The American Association of Suicidology.

  10. Pilot project for a commercial buildings Energy Analysis and Diagnostic Center (EADC) program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Capehart, B.L.

    1996-02-01

    Commercial energy use costs businesses around $70 billion annually. Many of these businesses are small and medium sized organizations that do not have the resources to help themselves, or to pay for professional engineering services to help reduce their energy costs and improve their economic competitiveness. Energy cost reduction actions with payback times of around two years could save the commercial sector 15--20%, or $10--$15 billion per year. This project was initially intended to evaluate the feasibility of performing commercial energy audits as an adjunct to the industrial audit program run by the US Department of Energy Industrial Office. This program is housed in 30 universities throughout the United States. Formerly known as Energy Analysis and Diagnostic Centers (EADC`s), the university programs are now called Industrial Assessment Centers (IAC`s) to reflect their expansion from energy use analyses to include waste and productivity analyses. The success of the EADC/IAC program in helping the manufacturing sector provides an excellent model for a similar program in the commercial buildings sector. This project has investigated using the EADC/IAC approach to performing energy audits for the commercial sector, and has determined that such an approach is feasible and cost effective.

  11. Superconducting TlCa2Ba2Cu3O9 thick films

    International Nuclear Information System (INIS)

    1994-01-01

    GE Corporate Research and Development's (GE-CRD) program to develop the two-zone silver addition (TZSA) process for fabricating superconducting films of TlCa 2 Ba 2 Cu 3 O 9 has activities in the areas of (1) precursor preparation, (2) the thallium oxide vapor process, (3) the effects of post-synthesis annealing ambient and temperature on superconducting properties, (4) the influence of film stoichiometry and composition on superconducting properties, (5) microstructure and film growth mechanism, (6) the preparation of thicker films, (7) the fabrication of films on flexible substrates, and (8) process scale-up. As part of its effort under the ANL Pilot Center Agreement, GE-CRD has supplied to ANL a complete two-zone furnace, has provided consultation on its use and on the planning of experiments, has processed ANL samples in GE's furnaces to help define optimum process conditions, and has provided precursor and finished films as requested. These contributions are described more fully in the descriptions of the work performed at ANL presented elsewhere in this report. Under the Pilot Center Agreement work at GE-CRD has been directed toward the optimization of the TZSA process with emphasis on (A) process improvement, (B) effects of silver content on film properties, (C) the relationship between microstructure and J c , and (D) toward the assessment of the compatibility of silver substrates with the process chemistry

  12. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  13. Restless leg syndrome in different types of demyelinating neuropathies: a single-center pilot study.

    Science.gov (United States)

    Luigetti, Marco; Del Grande, Alessandra; Testani, Elisa; Bisogni, Giulia; Losurdo, Anna; Giannantoni, Nadia Mariagrazia; Mazza, Salvatore; Sabatelli, Mario; Della Marca, Giacomo

    2013-09-15

    to determine the prevalence of restless legs syndrome (RLS) in a cohort of patients with demyelinating neuropathies. Patients were retrospectively recruited from our cohort of different forms of demyelinating neuropathies, including chronic inflammatory demyelinating neuropathy (CIDP), Charcot-Marie-Tooth 1A (CMT1A), and hereditary neuropathy with liability to pressure palsies (HNPP) referred to our Department of Neurology in a 10-year period. The validated 4-item RLS questionnaire was used for diagnosis of RLS. All patients with RLS who fulfilled criteria underwent a suggested immobilization test to confirm the diagnosis. A group of outpatients referred to the sleep disorders unit and data from published literature were used as controls. Prevalence of RLS in demyelinating neuropathy group was higher than prevalence observed in control population (p = 0.0142) or in the literature data (p = 0.0007). In particular, in comparison with both control population and literature data, prevalence of RLS was higher in CIDP group (p = 0.0266 and p = 0.0063, respectively) and in CMT1A group (p = 0.0312 and p = 0.0105, respectively), but not in HNPP (p = 1.000 and p = 0.9320, respectively). our study confirms a high prevalence of RLS in inflammatory neuropathies as CIDP and, among inherited neuropathies, in CMT1A but not in HNPP. Considering that this is only a small cohort from a single-center retrospective experience, the link between RLS and neuropathy remains uncertain, and larger multicenter studies are probably needed to clarify the real meaning of the association between RLS and neuropathy.

  14. Advanced superconducting power cable for MV urban power supply

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Frank [Nexans Deutschland GmbH, Hannover (Germany); Merschel, Frank [RWE Deutschland AG, Essen (Germany); Noe, Mathias [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-07-01

    In recent years the technology of superconducting power cable systems has progressed such that the technical hurdles preparing for commercial applications have been mastered. Several field tests of large scale prototypes for the applications of superconducting cables as well as superconducting fault current limiters have been successfully accomplished and the technology of such systems is ready for commercialization. The presentation will give a detailed overview of the German AmpaCity project. An overview will be given on the development, manufacturing and installation of the 10 kV, 40 MVA HTS system consisting of a fault current limiter and of a 1 km cable in the city of Essen. Since it is the first time that a one kilometer HTS cable system is installed together with an HTS fault current limiter in a real grid application between two substations within a city center area, AmpaCity serves as a lighthouse project. In addition it is worldwide the longest installed HTS cable system so far. It is expected that relatively large technical advances will be made in the future of the comparatively new HTS technology, which in turn will bring associated cost reductions. For this reason, the AmpaCity pilot project in the downtown area of Essen in Germany will be an important step on the way to achieving more widespread application of HTS technology.

  15. Superconducting materials

    International Nuclear Information System (INIS)

    Ruvalds, J.

    1990-01-01

    This report discusses the following topics: Fermi liquid nesting in high temperature superconductors; optical properties of high temperature superconductors; Hall effect in superconducting La 2-x Sr x CuO 4 ; source of high transition temperatures; and prospects for new superconductors

  16. Superconducting transformer

    International Nuclear Information System (INIS)

    Murphy, J.H.

    1982-01-01

    A superconducting transformer having a winding arrangement that provides for current limitation when subjected to a current transient as well as more efficient utilization of radial spacing and winding insulation. Structural innovations disclosed include compressed conical shaped winding layers and a resistive matrix to promote rapid switching of current between parallel windings

  17. Superconducting magnets

    International Nuclear Information System (INIS)

    1994-08-01

    This report discusses the following topics on superconducting magnets: D19B and -C: The next steps for a record-setting magnet; D20: The push beyond 10 T: Beyond D20: Speculations on the 16-T regime; other advanced magnets for accelerators; spinoff applications; APC materials development; cable and cabling-machine development; and high-T c superconductor at low temperature

  18. Superconducting magnets

    International Nuclear Information System (INIS)

    Willen, E.

    1996-01-01

    Superconducting dipole magnets for high energy colliders are discussed. As an example, the magnets recently built for the Relativistic Heavy Ion Collider at Brookhaven are reviewed. Their technical performance and the cost for the industry-built production dipoles are given. The cost data is generalized in order to extrapolate the cost of magnets for a new machine

  19. Bipolar superconductivity

    International Nuclear Information System (INIS)

    Pankratov, S.G.

    1987-01-01

    A model of bipolaron superconductivity suggested by Soviet scientist Alexandrov A.S. and French scientist Ranninger is presentes in a popular way. It is noted that the bipolaron theory gives a good explanation of certain properties of new superconductors, high critical temperature, in particular

  20. Superconducting transistor

    International Nuclear Information System (INIS)

    Gray, K.E.

    1978-01-01

    A three film superconducting tunneling device, analogous to a semiconductor transistor, is presented, including a theoretical description and experimental results showing a current gain of four. Much larger current gains are shown to be feasible. Such a development is particularly interesting because of its novelty and the striking analogies with the semiconductor junction transistor

  1. Theory of superconductivity

    International Nuclear Information System (INIS)

    Crisan, M.

    1988-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity

  2. Barriers to physical activity in chronic hemodialysis patients: a single-center pilot study in an Italian dialysis facility.

    Science.gov (United States)

    Fiaccadori, Enrico; Sabatino, Alice; Schito, Franco; Angella, Francesca; Malagoli, Martina; Tucci, Marco; Cupisti, Adamasco; Capitanini, Alessandro; Regolisti, Giuseppe

    2014-01-01

    In patients on chronic dialysis a sedentary lifestyle is a strong, yet potentially modifiable, predictor of mortality. The present single-center pilot study evaluated social, psychological and clinical barriers that may hinder physical activity in this population. We explored the association between barriers to physical activity and sedentarism in adult patients at a chronic dialysis facility in Parma, Italy. We used different questionnaries exploring participation in physical activity, physical functioning, patient attitudes and preferences, and barriers to physical activity perceived by either patients or dialysis doctors and nurses. We enrolled 104 patients, (67 males, 65%), mean age 69 years (79% of patients older than 60 years); median dialysis vintage 60 months (range 8-440); mean Charlson score 5.55, ADL (Activities of Daily Living) score 5.5. Ninety-two participants (88.5%) reported at least one barrier to physical activity. At multivariable analysis, after adjusting for age and sex, feeling to have too many medical problems (OR 2.99, 95% CI 1.27 to 7.07; P=0.012), chest pain (OR 10.78, 95% CI 1.28 to 90.28; P=0.029) and sadness (OR 2.59, 95% CI 1.10 to 6.09; P=0.030) were independently associated with physical inactivity. Lack of time for exercise counseling and the firm belief about low compliance/interest by the patients toward exercise were the most frequent barriers reported by doctors and nurses. We identified a number of patient-related and health personnel-related barriers to physical activity in patients on chronic dialysis. Solutions for these barriers should be addressed in future studies aimed at increasing the level of physical activity in this population. © 2014 S. Karger AG, Basel.

  3. Superconducting pipes and levitating magnets.

    Science.gov (United States)

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  4. Color superconductivity

    International Nuclear Information System (INIS)

    Wilczek, F.

    1997-01-01

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken

  5. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  6. Superconducting magnet

    Science.gov (United States)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  7. Melt formed superconducting joint between superconducting tapes

    International Nuclear Information System (INIS)

    Benz, M.G.; Knudsen, B.A.; Rumaner, L.E.; Zaabala, R.J.

    1992-01-01

    This patent describes a superconducting joint between contiguous superconducting tapes having an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound, the joint comprising: a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes

  8. Research on superconducting generator and materials in Japan

    International Nuclear Information System (INIS)

    Uyeda, K.; Maki, N.; Kurihara, S.; Ueda, A.; Hirose, S.; Itoh, K.

    1988-01-01

    As a first step of application of superconducting technology to electric power equipment, the practical use of superconducting generator is sucessfully developed, enhanced generation efficiency, reduced construction cost, improved stability limit. For the development, it is required to integrated such technical assets as new generator design technology based on detailed analysis of techniques and high strength material for with standing intensive electro-magnetic force. This paper describes history and results of research and development of superconducting generator for experimental machines, the results of feasibility study of pilot generator, and master plan for research and development of superconducting technology for applications to generator and the other power apparatus

  9. Superconductivity at disordered interfaces

    International Nuclear Information System (INIS)

    Simanek, E.

    1979-01-01

    The increase of the superconducting transition temperature Tsub(c) due to the tunneling of conduction electrons into negative-u centers at a disordered metal-semiconductor interface is calculated. The strong dependence of the experimental increase of Tsub(c) on the Fermi energy of the metal is accounted for by the polaronic reduction of the tunneling matrix elements. The latter reduction is dynamically suppressed by the decreasing lifetime of the localized state as Esub(F) increases. The theoretical enhancement is sufficiently strong to explain the increase of Tsub(c) observed in eutectic alloys. (author)

  10. Mentored peer review of standardized manuscripts as a teaching tool for residents: a pilot randomized controlled multi-center study.

    Science.gov (United States)

    Wong, Victoria S S; Strowd, Roy E; Aragón-García, Rebeca; Moon, Yeseon Park; Ford, Blair; Haut, Sheryl R; Kass, Joseph S; London, Zachary N; Mays, MaryAnn; Milligan, Tracey A; Price, Raymond S; Reynolds, Patrick S; Selwa, Linda M; Spencer, David C; Elkind, Mitchell S V

    2017-01-01

    There is increasing need for peer reviewers as the scientific literature grows. Formal education in biostatistics and research methodology during residency training is lacking. In this pilot study, we addressed these issues by evaluating a novel method of teaching residents about biostatistics and research methodology using peer review of standardized manuscripts. We hypothesized that mentored peer review would improve resident knowledge and perception of these concepts more than non-mentored peer review, while improving review quality. A partially blinded, randomized, controlled multi-center study was performed. Seventy-eight neurology residents from nine US neurology programs were randomized to receive mentoring from a local faculty member or not. Within a year, residents reviewed a baseline manuscript and four subsequent manuscripts, all with introduced errors designed to teach fundamental review concepts. In the mentored group, mentors discussed completed reviews with residents. Primary outcome measure was change in knowledge score between pre- and post-tests, measuring epidemiology and biostatistics knowledge. Secondary outcome measures included level of confidence in the use and interpretation of statistical concepts before and after intervention, and RQI score for baseline and final manuscripts. Sixty-four residents (82%) completed initial review with gradual decline in completion on subsequent reviews. Change in primary outcome, the difference between pre- and post-test knowledge scores, did not differ between mentored (-8.5%) and non-mentored (-13.9%) residents ( p  = 0.48). Significant differences in secondary outcomes (using 5-point Likert scale, 5 = strongly agree) included mentored residents reporting enhanced understanding of research methodology (3.69 vs 2.61; p  = 0.001), understanding of manuscripts (3.73 vs 2.87; p  = 0.006), and application of study results to clinical practice (3.65 vs 2.78; p  = 0.005) compared to non

  11. Superconducting plasmas

    International Nuclear Information System (INIS)

    Ohnuma, Toshiro; Ohno, J.

    1994-01-01

    Superconducting (SC) plasmas are proposed and investigated. The SC plasmas are not yet familiar and have not yet been studied. However, the existence and the importance of SC plasmas are stressed in this report. The existence of SC plasmas are found as follows. There is a fundamental property of Meissner effect in superconductors, which shows a repulsive effect of magnetic fields. Even in that case, in a microscopic view, there is a region of magnetic penetration. The penetration length λ is well-known as London's penetration depth, which is expressed as δ = (m s /μ 0 n s q s 2 ) 1/2 where m s , n s , q s and μ o show the mass, the density, the charge of SC electron and the permeability in free space, respectively. Because this expression is very simple, no one had tried it into more simple and meaningful form. Recently, one of the authors (T.O.) has found that the length can be expressed into more simple and understandable fundamental form as λ = c/ω ps where c = (ε 0 μ 0 ) -1/2 and ω ps = (n s q s 2 /m s ε 0 ) 1/2 are the light velocity and the superconducting plasma frequency. From this simple expression, the penetration depth of the magnetic field to SC is found as a SC plasma skin depth, that is, the fundamental property of SC can be expressed by the SC plasmas. This discovery indicates an importance of the studies of superconducting plasmas. From these points, several properties (propagating modes et al) of SC plasmas, which consist of SC electrons, normal electrons and lattice ions, are investigated in this report. Observations of SC plasma frequency is also reported with a use of Terahertz electromagnet-optical waves

  12. Jet Propulsion Laboratory/NASA Lewis Research Center space qualified hybrid high temperature superconducting/semiconducting 7.4 GHz low-noise downconverter for NRL HTSSE-II program

    International Nuclear Information System (INIS)

    Javadi, H.H.S.; Bowen, J.G.; Rascoe, D.L.; Chorey, C.M.

    1996-01-01

    A deep space satellite downconverter receiver was proposed by Jet Propulsion Laboratory (JPL) and NASA Lewis Research Center (LeRC) for the Naval Research Laboratory's (NRL) high temperature superconductivity space experiment, phase-II (HTSSE-II) program. Space qualified low-noise cryogenic downconverter receivers utilizing thin-film high temperature superconducting (HTS) passive circuitry and semiconductor active devices were developed and delivered to NRL. The downconverter consists of an HTS preselect filter, a cryogenic low-noise amplifier, a cryogenic mixer, and a cryogenic oscillator with an HTS resonator. HTS components were inserted as the front-end filter and the local oscillator resonator for their superior 77 K performance over the conventional components. The semiconducting low noise amplifier also benefited from cooling to 77 K. The mixer was designed specifically for cryogenic applications and provided low conversion loss and low power consumption. In addition to an engineering model, two space qualified units (qualification, flight) were built and delivered to NRL. Manufacturing, integration and test of the space qualified downconverters adhered to the requirements of JPL class-D space instruments and partially to MIL-STD-883D specifications. The qualification unit has ∼50 K system noise temperature which is a factor of three better than a conventional downconverter at room temperature

  13. The state of superconductivity

    International Nuclear Information System (INIS)

    Clark, T.D.

    1981-01-01

    The present status of applications based on the phenomena of superconductivity are reviewed. Superconducting materials, large scale applications, the Josephson effect and its applications, and superconductivity in instrumentation, are considered. The influence that superconductivity has had on modern theories of elementary particles, such as gauge symmetry breaking, is discussed. (U.K.)

  14. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  15. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  16. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  17. Florida State University superconducting linac

    International Nuclear Information System (INIS)

    Myers, E.G.; Fox, J.D.; Frawley, A.D.; Allen, P.; Faragasso, J.; Smith, D.; Wright, L.

    1988-01-01

    As early as the fall of 1977 it was decided that the future research needs of their nuclear structure laboratory required an increase in energy capability to at least 8 MeV per nucleon for the lighter ions, and that these needs could be met by the installation of a 17 MV tandem Van de Graaff accelerator. The chief problem with this proposal was the high cost. It became apparent that a far less expensive option was to construct a linear accelerator to boost the energy from their existing 9 MV tandem. The options open to them among linac boosters were well represented by the room temperature linac at Heidelberg and the superconducting Stony Brook and Argonne systems. By the Spring of 1979 it had been decided that both capital cost and electric power requirements favored a superconducting system. As regards the two superconducting resonator technologies - the Argonne niobium-copper or the Caltech-Stony Brook lead plated copper - the Argonne resonators, though more expensive to construct, had the advantages of more boost per resonator, greater durability of the superconducting surface and less stringent beam bunching requirements. In 1980 pilot funding from the State of Florida enabled the construction of a building addition to house the linac and a new target area, and the setting up of a small, three resonator, test booster. Major funding by the NSF for the laboratory upgrade started in 1984. With these funds they purchased their present helium liquefaction and transfer system and constructed three large cryostats, each housing four Argonne beta = 0.105 resonators and two superconducting solenoids. The last large cryostat was completed and installed on-line early this year and the linac was dedicated on March 20. Nuclear physics experiments using the whole linac began in early June. 4 references, 6 figures, 1 table

  18. Superconducting RF activities at Cornell University

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Moffat, D.; Padamsee, H.; Rubin, D.; Sears, J.; Shu, Q.S.

    1990-01-01

    This paper outlines the RF superconductivity research and development work that has taken place at Cornell Laboratory of Nuclear Studies over the past years. The work that has been performed since the last RF superconductivity workshop is emphasized together with a discussion of the direction of future efforts. Past work is summarized first, focusing on research and development activities in the area of RF superconductivity. Superconducting TeV linear collider is then discussed focusing on the application of superconducting RF to a future TeV linear collider. Linear collider structure development is then described centering on the development of a simpler (thereby cheaper) structure for a TeV linear collider. B-factory with superconducting RF is outlined focusing on the formulation of a conceptual design for a B-factory. B-factory structure development is discussed in relation to the advancement in the capability of SC cavities to carry beam currents of several amperes necessary for a high luminosity storage ring. High gradients are discussed as the key to the realization of a high energy superconducting linac or a superconducting RF B-factory. (N.K.)

  19. Could Values and Social Structures in Singapore Facilitate Attainment of Patient-Focused, Cultural, and Linguistic Competency Standards in a Patient-Centered Medical Home Pilot?

    Science.gov (United States)

    Shih, Jenny A; Shiow, Sue-Anne Toh Ee; Wee, Hwee-Lin

    2015-01-01

    Primary care practices in the United States are transforming into patient-centered medical homes (PCMHs) at a rapid pace. Newer PCMH standards have emphasized culturally and linguistically appropriate services (CLAS), but at this time, only some states in the United States have proposed or passed cultural competency training for health care professionals. Other countries are moving to PCMH models. Singapore, a small, ethnically diverse island nation, has national values and social structures that emphasize cultural and linguistic cohesion. In this piece, we examine Singapore’s first PCMH pilot with a national academic center and primary care practice group. Features such as common shared values, self-reliance, racial and religious harmony, patient experience surveillance, and incorporation of CLAS standards in routine health care transactions may predict success for the PCMH in Singapore, with some implications for the United States. PMID:28725822

  20. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  1. Understanding and application of superconducting materials

    International Nuclear Information System (INIS)

    Moon, Byeong Mu; Lee, Chun Heung

    1997-02-01

    This book deals with superconducting materials, which contains from basic theory to application of superconducting materials. The contents of this book are mystery of superconducting materials, properties of superconducting materials, thermodynamics of superconducting materials, theoretical background of superconducting materials, tunnelling and quantum interference, classification and properties of superconducting materials, high temperature superconducting materials, production and analysis of superconducting materials and application of superconducting materials.

  2. Survey of domestic research on superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Dresner, L.

    1991-09-01

    This report documents the results of a survey of domestic research on superconducting magnetic energy storage (SMES) undertaken with the support of the Oak Ridge National Laboratory (ORNL) Superconductivity Pilot Center. Each survey entry includes the following: Name, address, and other telephone and facsimile numbers of the principal investigator and other staff members; funding for fiscal year 1991, 1992, 1993; brief descriptions of the program, the technical progress to date, and the expected technical progress; a note on any other collaboration. Included with the survey are recommendations intended to help DOE decide how best to support SMES research and development (R ampersand D). To summarize, I would say that important elements of a well-rounded SMES research program for DOE are as follows. (1) Construction of a large ETM. (2) Development of SMES as an enabling technology for solar and wind generation, especially in conjunction with the ETM program, if possible. (3) Development of small SMES units for electric networks, for rapid transit, and as noninterruptible power supplies [uses (2), (3), and (4) above]. In this connection, lightweight, fiber-reinforced polymer structures, which would be especially advantageous for space and transportation applications, should be developed. (4) Continued study of the potential impacts of high-temperature superconductors on SMES, with construction as soon as feasible of small SMES units using high-temperature superconductors (HTSs)

  3. ac superconducting articles

    International Nuclear Information System (INIS)

    Meyerhoff, R.W.

    1977-01-01

    A noval ac superconducting cable is described. It consists of a composite structure having a superconducting surface along with a high thermally conductive material wherein the superconducting surface has the desired physical properties, geometrical shape and surface finish produced by the steps of depositing a superconducting layer upon a substrate having a predetermined surface finish and shape which conforms to that of the desired superconducting article, depositing a supporting layer of material on the superconducting layer and removing the substrate, the surface of the superconductor being a replica of the substrate surface

  4. Comparison of tissue plasminogen activator administration management between Telestroke Network hospitals and academic stroke centers: the Telemedical Pilot Project for Integrative Stroke Care in Bavaria/Germany.

    Science.gov (United States)

    Audebert, Heinrich J; Kukla, Christian; Vatankhah, Bijan; Gotzler, Berthold; Schenkel, Johannes; Hofer, Stephan; Fürst, Andrea; Haberl, Roman L

    2006-07-01

    Systemic thrombolysis is the only therapy proven to be effective for ischemic stroke. Telemedicine may help to extend its use. However, concerns remain whether management and safety of tissue plasminogen activator (tPA) administration after telemedical consultation are equivalent in less experienced hospitals compared with tPA administration in academic stroke centers. During the second year of the ongoing Telemedical Pilot Project for Integrative Stroke Care, all systemic thrombolyses in stroke patients of the 12 regional clinics and the 2 stroke centers were recorded prospectively. Patients' demographics, stroke severity (National Institutes of Health Stroke Scale), frequency of administration, time management, protocol violations, and safety were included in the analysis. In 2004, 115 of 4727 stroke or transient ischemic attack patients (2.4%) in the community hospitals and 110 of 1889 patients in the stroke centers (5.8%) received systemic thrombolysis. Prehospital latencies were shorter in the regional hospitals despite longer distances. Door to needle times were shorter in the stroke centers. Although blood pressure was controlled more strictly in community hospitals, symptomatic intracerebral hemorrhage rate (7.8%) was higher (P=0.14) than in stroke centers (2.7%) but still within the range of the National Institute of Neurological Disorders and Stroke trial. In-hospital mortality rate was low in community hospitals (3.5%) and in stroke centers (4.5%). Although with a lower rate of systemic thrombolysis, there was no evidence of lower treatment quality in the remote hospitals. With increasing numbers of tPA administration and growing training effects, the telestroke concept promises better coverage of systemic thrombolysis in nonurban areas.

  5. WORKSHOPS: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991

  6. WORKSHOPS: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-01-15

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991.

  7. De-hospitalization of the pediatric day surgery by means of a freestanding surgery center: pilot study in the lazio region

    Directory of Open Access Journals (Sweden)

    Mangia Giovanni

    2012-02-01

    Full Text Available Abstract Background Day surgery should take place in appropriate organizational settings. In the presence of high volumes, the organizational models of the Lazio Region are represented by either Day Surgery Units within continuous-cycle hospitals or day-cycle Day Surgery Centers. This pilot study presents the regional volumes provided in 2010 and the additional volumes that could be provided based on the best performance criterion with a view to suggesting the setting up of a regional Freestanding Center of Pediatric Day Surgery. Methods This is an observational retrospective study. The activity volumes have been assessed by means of a DRG (Diagnosis Related Group-specific indicator that measures the ratio of outpatients to the total number of treated patients (freestanding indicator, FI. The included DRGs had an FI exceeding the 3rd quartile present in at least a health-care facility and a volume exceeding 0.5% of the total patients of the pediatric surgery and urology facilities of the Lazio Region. The relevant data have been provided by the Public Health Agency and relate to 2010. The best performance FI has been used to calculate the theoretical volume of transferability of the remaining facilities into freestanding surgery centers. Patients under six months of age and DRGs common to other disciplines have been excluded. The Chi Square test has been used to compare the FI of the health-care facilities and the FI of the places of origin of the patients. Results The DRG provided in 2010 amounted to a total of 5768 belonging to 121 types of procedures. The application of the criteria of inclusion have led to the selection of seven final DRG categories of minor surgery amounting to 3522 cases. Out of this total number, there were 2828 outpatients and 694 inpatients. The recourse of the best performance determines a potential transfer of 497 cases. The total outpatient volume is 57%. The Chi Square test has pointed to a statistically significant

  8. Superconducting current in a bisoliton superconductivity model

    International Nuclear Information System (INIS)

    Ermakov, V.N.; Kruchinin, S.P.; Ponezha, E.A.

    1991-01-01

    It is shown that the transition into a superconducting state with the current which is described by a bisoliton superconductivity model is accompanied by the deformation of the spectrum of one-particle states of the current carriers. The deformation value is proportional to the conducting current force. The residuaby resistance in such state is absent

  9. Superconductivity in Washington, D.C

    International Nuclear Information System (INIS)

    Ritter, D.

    1988-01-01

    The author provides insights into the federal government's activity in superconductors. He says the President's most important legislative proposal is a change in anti-trust laws to allow businesses to cooperate on joint production ventures. The President has also directed the Department of Energy, the Department of Commerce, the National Aeronautics and Space Administration, the National Science Foundation, and the Department of Defense to establish Superconductivity Research Centers to conduct research and disseminate information. The author says he thinks it is worthwhile to pursue the President's proposal for cooperation with Japan in superconductivity research and development. The author explains why he supports this and other key legislation related to superconductivity. He says if the United States does not do all that it can, as fast as it can, both domestically and internationally, the U.S. could lose the cutting edge of technological and commercial leadership in the latter 20th century and the 21st century. This is what superconductivity represents

  10. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  11. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  12. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Outpatient presentations to burn centers: data from the Burns Registry of Australia and New Zealand outpatient pilot project.

    Science.gov (United States)

    Gabbe, Belinda J; Watterson, Dina M; Singer, Yvonne; Darton, Anne

    2015-05-01

    Most studies about burn injury focus on admitted cases. To compare outpatient and inpatient presentations at burn centers in Australia to inform the establishment of a repository for outpatient burn injury. Data for sequential outpatient presentations were collected at seven burn centers in Australia between December 2010 and May 2011 and compared with inpatient admissions from these centers recorded by the Burns Registry of Australia and New Zealand for the corresponding period. There were 788 outpatient and 360 inpatient presentations. Pediatric outpatients included more children burns (39% vs 24%). Adult outpatients included fewer males (58% vs 73%) and intentional injuries (3.3% vs 10%), and more scald (46% vs 30%) and contact burns (24% vs 13%). All pediatric, and 98% of adult, outpatient presentations involved a %TBSAburns presenting to burn centers differed to inpatient admission data, particularly with respect to etiology and burn severity, highlighting the importance of the need for outpatient data to enhance burn injury surveillance and inform prevention. Copyright © 2014 Elsevier Ltd and ISBI. All rights reserved.

  14. The Language of Engagement: "Aha!" Moments from Engaging Patients and Community Partners in Two Pilot Projects of the Patient-Centered Outcomes Research Institute.

    Science.gov (United States)

    Tai-Seale, Ming; Sullivan, Greer; Cheney, Ann; Thomas, Kathleen; Frosch, Dominick

    2016-01-01

    Compared with people living in the community, researchers often have different frameworks or paradigms for thinking about health and wellness. These differing frameworks are often accompanied by differences in terminology or language. The purpose of this commentary is to describe some of our "Aha!" moments from conducting two pilot studies funded by the Patient-Centered Outcomes Research Institute. Over time, we came to understand how our language and word choices may have been acting as a wedge between ourselves and our community research partners. We learned that fruitful collaborative work must attend to the creation of a common language, which we refer to as the language of engagement. Such patient-centered language can effectively build a bridge between researchers and community partners. We encourage other researchers to think critically about their cultural competency, to be mindful of the social power dynamics between patient and physician, to reflect on how their understanding might differ from those of their patient partners, and to find ways to use a common language that engages patients and other community partners.

  15. Bergamot (Citrus bergamia) Essential Oil Inhalation Improves Positive Feelings in the Waiting Room of a Mental Health Treatment Center: A Pilot Study.

    Science.gov (United States)

    Han, Xuesheng; Gibson, Jacob; Eggett, Dennis L; Parker, Tory L

    2017-05-01

    Mental health issues have been increasingly recognized as public health problems globally. Their burden is projected to increase over the next several decades. Additional therapies for mental problems are in urgent need worldwide due to the limitations and costs of existing healthcare approaches. Essential oil aromatherapy can provide a cost-effective and safe treatment for many mental problems. This pilot study observed the effects of bergamot essential oil inhalation on mental health and well-being, as measured by the Positive and Negative Affect Scale, in a mental-health treatment center located in Utah, USA. Fifty-seven eligible participants (50 women, age range: 23-70 years) were included for analysis. Fifteen minutes of bergamot essential oil exposure improved participants' positive feelings compared with the control group (17% higher). Unexpectedly, more participants participated in experimental periods rather than control periods, suggesting even brief exposure to essential oil aroma may make people more willing to enroll in clinical trials. This study provides preliminary evidence of the efficacy and safety of bergamot essential oil inhalation on mental well-being in a mental health treatment center, suggesting that bergamot essential oil aromatherapy can be an effective adjunct treatment to improve individuals' mental health and well-being. © 2017 The Authors. Phytotherapy Research published by John Wiley & Sons Ltd. © 2017 The Authors. Phytotherapy Research published by John Wiley & Sons Ltd.

  16. Patient experiences with self-monitoring renal function after renal transplantation: results from a single-center prospective pilot study.

    Science.gov (United States)

    van Lint, Céline L; van der Boog, Paul Jm; Wang, Wenxin; Brinkman, Willem-Paul; Rövekamp, Ton Jm; Neerincx, Mark A; Rabelink, Ton J; van Dijk, Sandra

    2015-01-01

    After a kidney transplantation, patients have to visit the hospital often to monitor for early signs of graft rejection. Self-monitoring of creatinine in addition to blood pressure at home could alleviate the burden of frequent outpatient visits, but only if patients are willing to self-monitor and if they adhere to the self-monitoring measurement regimen. A prospective pilot study was conducted to assess patients' experiences and satisfaction. For 3 months after transplantation, 30 patients registered self-measured creatinine and blood pressure values in an online record to which their physician had access to. Patients completed a questionnaire at baseline and follow-up to assess satisfaction, attitude, self-efficacy regarding self-monitoring, worries, and physician support. Adherence was studied by comparing the number of registered with the number of requested measurements. Patients were highly motivated to self-monitor kidney function, and reported high levels of general satisfaction. Level of satisfaction was positively related to perceived support from physicians (Pself-efficacy (Pmonitoring of creatinine and blood pressure after transplantation offers a promising strategy. Important prerequisites for safe implementation in transplant care seem to be support from physicians and patients' confidence in both their own self-monitoring skills and the accuracy of the devices used.

  17. Nanostructure characterization of Ni and B layers as artificial pinning centers in multilayered MgB2/Ni and MgB2/B superconducting thin films

    International Nuclear Information System (INIS)

    Sosiati, H.; Hata, S.; Doi, T.; Matsumoto, A.; Kitaguchi, H.; Nakashima, H.

    2013-01-01

    Highlights: ► Nanostructure characterization of Ni and B layers as artificial pinning centers (APCs). ► Relationship between nanostructure and J c property. ► Enhanced J c in parallel field by parallel APCs within the MgB 2 film. -- Abstract: Research on the MgB 2 /Ni and MgB 2 /B multilayer films fabricated by an electron beam (EB) evaporation technique have been extensively carried out. The critical current density, J c of MgB 2 /Ni and MgB 2 /B multilayer films in parallel fields has been suggested to be higher than that of monolayer MgB 2 film due to introducing the artificial pinning centers of nano-sized Ni and B layers. Nanostructure characterization of the artificial pinning centers in the multilayer films were examined by transmission electron microscopy (TEM) and scanning TEM (STEM-energy dispersive X-ray spectroscopy (STEM-EDS))–EDS to understand the mechanism of flux pinning. The growth of columnar MgB 2 grains along the film-thickness direction was recognized in the MgB 2 /Ni multilayer film, but not in the MgB 2 /B multilayer film. Nano-sized Ni layers were present as crystalline epitaxial layers which is interpreted that Ni atoms might be incorporated into the MgB 2 lattice to form (Mg,Ni)B 2 phase. On the other hand, nano-sized B layers were amorphous layers. Crystalline (Mg,Ni)B 2 layers worked more effectively than amorphous B-layers, providing higher flux-pinning force that resulted in higher J c of the MgB 2 /Ni multilayer film than the MgB 2 /B multilayer film

  18. Joint Applications Pilot of the National Climate Predictions and Projections Platform and the North Central Climate Science Center: Delivering climate projections on regional scales to support adaptation planning

    Science.gov (United States)

    Ray, A. J.; Ojima, D. S.; Morisette, J. T.

    2012-12-01

    The DOI North Central Climate Science Center (NC CSC) and the NOAA/NCAR National Climate Predictions and Projections (NCPP) Platform and have initiated a joint pilot study to collaboratively explore the "best available climate information" to support key land management questions and how to provide this information. NCPP's mission is to support state of the art approaches to develop and deliver comprehensive regional climate information and facilitate its use in decision making and adaptation planning. This presentation will describe the evolving joint pilot as a tangible, real-world demonstration of linkages between climate science, ecosystem science and resource management. Our joint pilot is developing a deliberate, ongoing interaction to prototype how NCPP will work with CSCs to develop and deliver needed climate information products, including translational information to support climate data understanding and use. This pilot also will build capacity in the North Central CSC by working with NCPP to use climate information used as input to ecological modeling. We will discuss lessons to date on developing and delivering needed climate information products based on this strategic partnership. Four projects have been funded to collaborate to incorporate climate information as part of an ecological modeling project, which in turn will address key DOI stakeholder priorities in the region: Riparian Corridors: Projecting climate change effects on cottonwood and willow seed dispersal phenology, flood timing, and seedling recruitment in western riparian forests. Sage Grouse & Habitats: Integrating climate and biological data into land management decision models to assess species and habitat vulnerability Grasslands & Forests: Projecting future effects of land management, natural disturbance, and CO2 on woody encroachment in the Northern Great Plains The value of climate information: Supporting management decisions in the Plains and Prairie Potholes LCC. NCCSC's role in

  19. Person-Centered Care in the Home Setting for Parkinson’s Disease: Operation House Call Quality of Care Pilot Study

    Directory of Open Access Journals (Sweden)

    Nawaz Hack

    2015-01-01

    Full Text Available Objective. (1 To evaluate the feasibility of implementing and evaluating a home visit program for persons with Parkinson’s disease (PD in a rural setting. (2 To have movement disorders fellows coordinate and manage health care delivery. Background. The University of Florida, Center for Movement Disorders and Neurorestoration established Operation House Call to serve patients with PD who could not otherwise afford to travel to an expert center or to pay for medical care. PD is known to lead to significant disability, frequent hospitalization, early nursing home placement, and morbidity. Methods. This was designed as a quality improvement project. Movement disorders fellows travelled to the home(s of underserved PD patients and coordinated their clinical care. The diagnosis of Parkinson’s disease was confirmed using standardized criteria, and the Unified Parkinson’s Disease Rating Scale was performed and best treatment practices were delivered. Results. All seven patients have been followed up longitudinally every 3 to 6 months in the home setting, and they remain functional and independent. None of the patients have been hospitalized for PD related complications. Each patient has a new updatable electronic medical record. All Operation House Call cases are presented during video rounds for the interdisciplinary PD team to make recommendations for care (neurology, neurosurgery, neuropsychology, psychiatry, physical therapy, occupational therapy, speech therapy, and social work. One Operation House Call patient has successfully received deep brain stimulation (DBS. Conclusion. This program is a pilot program that has demonstrated that it is possible to provide person-centered care in the home setting for PD patients. This program could provide a proof of concept for the construction of a larger visiting physician or nurse program.

  20. Direct visualization of the vortex distributions in a superconducting film with a Penrose array of magnetic pinning centers: Symmetry induced giant vortex state

    International Nuclear Information System (INIS)

    Kramer, R.B.G.; Silhanek, A.V.; Van de Vondel, J.; Raes, B.; Moshchalkov, V.V.

    2010-01-01

    Using scanning Hall probe microscopy a direct visualization of the flux distribution in a Pb film covering a fivefold Penrose array of Co dots is obtained. We demonstrate that stable vortex configurations can be found for fields H ∼ 0.8H 1 , H 1 and 1.6H 1 , where H 1 corresponds to one flux quantum per pinning site. The vortex pattern at 0.8H 1 corresponds to one vacancy in one of the vertices of the thin tiles whereas at 1.6H 1 the vortex structure can be associated with one interstitial vortex inside each thick tile. Strikingly, for H = 1.6H 1 interstitial and pinned vortices arrange themselves in ring-like structures ('vortex corrals') which favor the formation of a giant vortex state at their center.

  1. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  2. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  3. Superconductivity and their applications

    OpenAIRE

    Roque, António; Sousa, Duarte M.; Fernão Pires, Vítor; Margato, Elmano

    2017-01-01

    Trabalho apresentado em International Conference on Renewable Energies and Power Quality (ICREPQ’17), 4 a 6 de Abril de 2017, Málaga, Espanha The research in the field of superconductivity has led to the synthesis of superconducting materials with features that allow you to expand the applicability of this kind of materials. Among the superconducting materials characteristics, the critical temperature of the superconductor is framing the range and type of industrial applications that can b...

  4. Superconducting machines. Chapter 4

    International Nuclear Information System (INIS)

    Appleton, A.D.

    1977-01-01

    A brief account is given of the principles of superconductivity and superconductors. The properties of Nb-Ti superconductors and the method of flux stabilization are described. The basic features of superconducting d.c. machines are illustrated by the use of these machines for ship propulsion, steel-mill drives, industrial drives, aluminium production, and other d.c. power supplies. Superconducting a.c. generators and their design parameters are discussed. (U.K.)

  5. Superconductivity in the actinides

    International Nuclear Information System (INIS)

    Smith, J.L.; Lawson, A.C.

    1985-01-01

    The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials

  6. WORKSHOP: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators.

  7. WORKSHOP: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators

  8. Patient-centered professional practice models for managing low back pain in older adults: a pilot randomized controlled trial.

    Science.gov (United States)

    Goertz, Christine M; Salsbury, Stacie A; Long, Cynthia R; Vining, Robert D; Andresen, Andrew A; Hondras, Maria A; Lyons, Kevin J; Killinger, Lisa Z; Wolinsky, Fredric D; Wallace, Robert B

    2017-10-13

    Low back pain is a debilitating condition for older adults, who may seek healthcare from multiple providers. Few studies have evaluated impacts of different healthcare delivery models on back pain outcomes in this population. The purpose of this study was to compare clinical outcomes of older adults receiving back pain treatment under 3 professional practice models that included primary medical care with or without chiropractic care. We conducted a pilot randomized controlled trial with 131 community-dwelling, ambulatory older adults with subacute or chronic low back pain. Participants were randomly allocated to 12 weeks of individualized primary medical care (Medical Care), concurrent medical and chiropractic care (Dual Care), or medical and chiropractic care with enhanced interprofessional collaboration (Shared Care). Primary outcomes were low back pain intensity rated on the numerical rating scale and back-related disability measured with the Roland-Morris Disability Questionnaire. Secondary outcomes included clinical measures, adverse events, and patient satisfaction. Statistical analyses included mixed-effects regression models and general estimating equations. At 12 weeks, participants in all three treatment groups reported improvements in mean average low back pain intensity [Shared Care: 1.8; 95% confidence interval (CI) 1.0 to 2.6; Dual Care: 3.0; 95% CI 2.3 to 3.8; Medical Care: 2.3; 95% CI 1.5 to 3.2)] and back-related disability (Shared Care: 2.8; 95% CI 1.6 to 4.0; Dual Care: 2.5; 95% CI 1.3 to 3.7; Medical Care: 1.5; 95% CI 0.2 to 2.8). No statistically significant differences were noted between the three groups on the primary measures. Participants in both models that included chiropractic reported significantly better perceived low back pain improvement, overall health and quality of life, and greater satisfaction with healthcare services than patients who received medical care alone. Professional practice models that included primary care and

  9. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  10. Superconductivity and its application

    International Nuclear Information System (INIS)

    Spadoni, M.

    1988-01-01

    This paper, after a short introduction to superconductivity and to multifilamentary superconducting composites is aiming to review the state of the art and the future perspective of some of the applications of the superconducting materials. The main interest is focussed to large scale applications like, for istance, magnets for accelerators or fusion reactors, superconducting system for NMR thomography, etc. A short paragraph is dedicated to applications for high sensitivity instrumentation. The paper is then concluded by some considerations about the potentialities of the newly discovered high critical temperature materials

  11. Superconducting quantum electronics

    International Nuclear Information System (INIS)

    Kose, V.

    1989-01-01

    This book reviews recent accomplishments, presents new results and discusses possible future developments of superconducting quantum electronics and high T c superconductivity. The three main parts of the book deal with fundamentals, sensitive detectors, and precision metrology. New results reported include: correct equivalent circuits modelling superconducting electronic devices; exact solution of the Mattis-Bardeen equations describing various experiments for thin films; complete theoretical description and experimental results for a new broad band spectrum analyzer; a new Josephson junction potentiometer allowing tracing of unknown voltage ratios back to well-known frequency ratios; and fast superconducting SQUID shift registers enabling the production of calculable noise power spectra in the microwave region

  12. Superconducting linear accelerator cryostat

    International Nuclear Information System (INIS)

    Ben-Zvi, I.; Elkonin, B.V.; Sokolowski, J.S.

    1984-01-01

    A large vertical cryostat for a superconducting linear accelerator using quarter wave resonators has been developed. The essential technical details, operational experience and performance are described. (author)

  13. Basic Study of Superconductive Actuator

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    2000-01-01

    There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...

  14. Implementation of baby boomer hepatitis C screening and linking to care in gastroenterology practices: a multi-center pilot study.

    Science.gov (United States)

    Younossi, Zobair M; LaLuna, Louis L; Santoro, John J; Mendes, Flavia; Araya, Victor; Ravendhran, Natarajan; Pedicone, Lisa; Lio, Idania; Nader, Fatema; Hunt, Sharon; Racila, Andrei; Stepanova, Maria

    2016-04-04

    Estimates suggest that only 20 % of HCV-infected patients have been identified and gastroenterology practices in patients previously unscreened for HCV. After obtaining patient informed consent, demographics, clinical and health-related quality of life (HRQOL) data were collected. A blood sample was screened for HCV antibody (HCV AB) using the OraQuick HCV Rapid Antibody Test. HCV AB-positive patients were tested for presence of HCV RNA and, if HCV RNA positive, patients underwent treatment discussions. We screened 2,000 individuals in 5 gastroenterology centers located close to large metropolitan areas on the East Coast (3 Northeast, 1 Mid-Atlantic and 1 Southeast). Of the screened population, 10 individuals (0.5 %) were HCV AB-positive. HCV RNA testing was performed in 90 % (9/10) of HCV AB-positive individuals. Of those, 44.4 % (4/9) were HCV RNA-positive, and all 4 (100 %) were linked to caregiver. Compared to HCV AB negative subjects, HCV AB-positive individuals tended to be black (20.0 vs. 5.2 %, p = 0.09) and reported significantly higher rates of depression: 60.0 vs. 21.5 %, p = 0.009. These individuals also reported a significantly lower HRQOL citing having more fatigue, poorer concentration, and a decreased level of energy (p gastroenterology centers, the linkage to care was very high. The sample of patients used in this study may be biased, so further studies are needed to assess the effectiveness of the CDC screening recommendations. Implementation of the Baby Boomer Screening for HCV requires identifying screening environement with high prevalence of HCV+ individuals as well as an efficient process of linking them to care.

  15. Patient education and rehabilitation after hip arthroplasty in an Italian spa center: a pilot study on its feasibility

    Science.gov (United States)

    Musumeci, Alfredo; Pranovi, Giulia; Masiero, Stefano

    2018-05-01

    Nowadays, some spa centers are suitable for providing rehabilitative and preventive treatment in association with traditional spa therapy. This study aims to evaluate the feasibility and the effectiveness of an intensive rehabilitation program after hip arthroplasty in an Italian spa center. Early after total hip arthroplasty for severe osteoarthritis (≤ 10 days after the intervention), 12 consecutive patients (5 males and 7 females) aged between 50 and 85 years were enrolled for this study. All the patients performed a 2-week thermal multimodal rehabilitation program, which consisted of education and physical rehabilitative measures. Patients had 2-h and half/day session of land-based and hydrokinesitherapy (aquatic therapy) consisted in active and passive joint mobilization, respiratory and functional re-education exercises, gait and balance training, resistance exercise, and power training mainly for the upper limb associated to physical therapy modalities (electrotherapy and low-level laser therapy). An educational program was performed to both patients and families. Both before and after the rehabilitation treatment, patients underwent clinical evaluation, hip flexion/abduction range of motion, and Numeric Pain Rating Scale. Harris Hip Score (HHS) and SF-12 questionnaires (physical—PCS-12—and mental health component—MCS-12) were also administered. After the 2-week thermal spa treatment, hip flexion/abduction improved significantly (p < 0.05), but there was no statistically significant reduction in pain (p = 0.350). The HHS score improved significantly from 62.6 ± 12.8 to 82.15 ± 12.7 (p < 0.05), and the PCS-12 score from 36.37 ± 8.4 to 43.61 ± 8.95 (p < 0.05). There was no adverse event during spa treatment. After total hip arthroplasty, patients who underwent an intensive post-acute multimodal rehabilitation program showed an improvement in motor and functional recovery and a positive impact on quality of life. Therefore, we believe that the

  16. Obstetric and perinatal outcomes in IVF versus ICSI-conceived pregnancies at a tertiary care center--a pilot study.

    Science.gov (United States)

    Nouri, Kazem; Ott, Johannes; Stoegbauer, Lucia; Pietrowski, Detlef; Frantal, Sophie; Walch, Katharina

    2013-08-31

    Although most pregnancies after IVF result in normal healthy outcomes, an increased risk for a number of obstetric and neonatal complications, compared to naturally conceived pregnancies, has been reported. While there are many studies that compare pregnancies after assisted reproductive techniques with spontaneously conceived pregnancies, fewer data are available that evaluate the differences between IVF and ICSI-conceived pregnancies. The aim of our present study was, therefore, to compare obstetric and perinatal outcomes in pregnancies conceived after in vitro fertilization (IVF) versus intracytoplasmatic sperm injection (ICSI). Three-hundred thirty four women who had become pregnant after an IVF or ICSI procedure resulted in a total of 530 children referred between 2003 und 2009 to the Department of Obstetrics and Gynecology of the Medical University of Vienna, a tertiary care center, and were included in this retrospective cohort study. We assessed maternal and fetal parameters in both groups (IVF and ICSI). The main study outcomes were preterm delivery, the need for neonatal intensive care, and congenital malformations. Moreover, we compared the course of pregnancy between both groups and the occurrence of complications that led to maternal hospitalization during pregnancy. There were 80 children conceived via ICSI and 450 children conceived via IVF.Mean gestational age was significantly lower in the ICSI group (p = 0.001). After ICSI, the birth weight (p = 0.008) and the mean APGAR values after 1 minute and after 10 minutes were lower compared to that of the IVF group (p = 0.016 and p = 0.047, respectively). Moreover, ICSI-conceived children had to be hospitalized more often at a neonatal intensive care unit (p = 0.004). There was no difference in pH of the umbilical artery or in major congenital malformations between the two groups. Pregnancy complications (i.e., premature rupture of membranes, cervical insufficiency, and premature

  17. Surgical outcomes of robot-assisted rectal cancer surgery using the da Vinci Surgical System: a multi-center pilot Phase II study.

    Science.gov (United States)

    Tsukamoto, Shunsuke; Nishizawa, Yuji; Ochiai, Hiroki; Tsukada, Yuichiro; Sasaki, Takeshi; Shida, Dai; Ito, Masaaki; Kanemitsu, Yukihide

    2017-12-01

    We conducted a multi-center pilot Phase II study to examine the safety of robotic rectal cancer surgery performed using the da Vinci Surgical System during the introduction period of robotic rectal surgery at two institutes based on surgical outcomes. This study was conducted with a prospective, multi-center, single-arm, open-label design to assess the safety and feasibility of robotic surgery for rectal cancer (da Vinci Surgical System). The primary endpoint was the rate of adverse events during and after robotic surgery. The secondary endpoint was the completion rate of robotic surgery. Between April 2014 and July 2016, 50 patients were enrolled in this study. Of these, 10 (20%) had rectosigmoid cancer, 17 (34%) had upper rectal cancer, and 23 (46%) had lower rectal cancer; six underwent high anterior resection, 32 underwent low anterior resection, 11 underwent intersphincteric resection, and one underwent abdominoperineal resection. Pathological stages were Stage 0 in 1 patient, Stage I in 28 patients, Stage II in 7 patients and Stage III in 14 patients. Pathologically complete resection was achieved in all patients. There was no intraoperative organ damage or postoperative mortality. Eight (16%) patients developed complications of all grades, of which 2 (4%) were Grade 3 or higher, including anastomotic leakage (2%) and conversion to open surgery (2%). The present study demonstrates the feasibility and safety of robotic rectal cancer surgery, as reflected by low morbidity and low conversion rates, during the introduction period. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  18. Applying JIT principles to resident education to reduce patient delays: a pilot study in an academic medical center pain clinic.

    Science.gov (United States)

    Williams, Kayode A; Chambers, Chester G; Dada, Maqbool; Christo, Paul J; Hough, Douglas; Aron, Ravi; Ulatowski, John A

    2015-02-01

    This study investigated the effect on patient waiting times, patient/doctor contact times, flow times, and session completion times of having medical trainees and attending physicians review cases before the clinic session. The major hypothesis was that review of cases prior to clinic hours would reduce waiting times, flow times, and use of overtime, without reducing patient/doctor contact time. Prospective quality improvement. Specialty pain clinic within Johns Hopkins Outpatient Center, Baltimore, MD, United States. Two attending physicians participated in the intervention. Processing times for 504 patient visits are involved over a total of 4 months. Trainees were assigned to cases the day before the patient visit. Trainees reviewed each case and discussed it with attending physicians before each clinic session. Primary measures were activity times before and after the intervention. These were compared and also used as inputs to a discrete event simulation to eliminate differences in the arrival process as a confounding factor. The average time that attending physicians spent teaching trainees while the patient waited was reduced, but patient/doctor contact time was not significantly affected. These changes reduced patient waiting times, flow times, and clinic session times. Moving some educational activities ahead of clinic time improves patient flows through the clinic and decreases congestion without reducing the times that trainees or patients interact with physicians. Wiley Periodicals, Inc.

  19. EFFECT OF NEBULIZED COLISTIN ON THE VENTILATOR CIRCUIT: A PROSPECTIVE PILOT CASE-CONTROL STUDY FROM A SINGLE CANCER CENTER

    Directory of Open Access Journals (Sweden)

    Iyad M Ghonimat

    2015-04-01

    Full Text Available Nebulized colistin (NC is used for the treatment of pneumonia due to multidrug-resistant Gram-negative bacteria. In this one-year case-control study, our objective was to evaluate the effect of NC on the ventilator circuit (VC components. The case group consisted of 25 mechanically-ventilated patients who received NC, while the control group was 25 mechanically-ventilated patients who did not receive NC. Respiratory therapists inspected the VC every 4 hrs and whenever a ventilator alarm was reported. The VC component was changed if the alarm did not subside after necessary measures were performed. Patients from both groups were treated at the adult ICU in King Hussein Cancer Center (KHCC. In the case group, 22(88% patients required changing at least one of the circuit components (flow sensor, exhalation membrane, or nebulizer kit. The median number of changes (range per patient of the flow sensor, exhalation membrane, and nebulizer kit were: 2(1-3, 2(1-6, and 1(1-2, respectively. Large amounts of white crystals, which resembled the colistin powder, were reported on the replaced VC components. The flow sensor was changed in 2 control patients, but white crystals were absent. Crystals obtained from one case subject were confirmed to be colistin by chromatographic mass spectroscopy. Further studies are needed to evaluate the effect of crystal formation on the efficacy of NC and clinical outcomes.

  20. Inorganic nitrate as a treatment for acute heart failure: a protocol for a single center, randomized, double-blind, placebo-controlled pilot and feasibility study.

    Science.gov (United States)

    Falls, Roman; Seman, Michael; Braat, Sabine; Sortino, Joshua; Allen, Jason D; Neil, Christopher J

    2017-08-08

    Acute heart failure (AHF) is a frequent reason for hospitalization worldwide and effective treatment options are limited. It is known that AHF is a condition characterized by impaired vasorelaxation, together with reduced nitric oxide (NO) bioavailability, an endogenous vasodilatory compound. Supplementation of inorganic sodium nitrate (NaNO 3 ) is an indirect dietary source of NO, through bioconversion. It is proposed that oral sodium nitrate will favorably affect levels of circulating NO precursors (nitrate and nitrite) in AHF patients, resulting in reduced systemic vascular resistance, without significant hypotension. We propose a single center, randomized, double-blind, placebo-controlled pilot trial, evaluating the feasibility of sodium nitrate as a treatment for AHF. The primary hypothesis that sodium nitrate treatment will result in increased systemic levels of nitric oxide pre-cursors (nitrate and nitrite) in plasma, in parallel with improved vasorelaxation, as assessed by non-invasively derived systemic vascular resistance index. Additional surrogate measures relevant to the known pathophysiology of AHF will be obtained in order to assess clinical effect on dyspnea and renal function. The results of this study will provide evidence of the feasibility of this novel approach and will be of interest to the heart failure community. This trial may inform a larger study.

  1. Associations Among Depressive Symptoms, Wellness, Patient Involvement, Provider Cultural Competency, and Treatment Nonadherence: A Pilot Study Among Community Patients Seen at a University Medical Center.

    Science.gov (United States)

    Hooper, Lisa M; Huffman, Lauren E; Higginbotham, John C; Mugoya, George C T; Smith, Annie K; Dumas, Tia N

    2018-02-01

    Treatment nonadherence is a pernicious problem associated with increasing rates of chronic diseases, escalating healthcare costs, and rising mortality in some patients. Although researchers have suggested numerous factors related to treatment nonadherence, several understudied aspects warrant attention, such as primary-care settings, provider cultural competence, and patient involvement. Adding to the research base, the present pilot study examined 88 primarily Black American and White American community patients from a large university medical center in the southern part of the United States. The study explored two research questions: (a) To what extent are there associations among depressive symptoms, wellness, patient involvement, cultural competency, and treatment nonadherence in a racially diverse community patient population? And (b) to what extent do the study exploratory variables and background characteristics predict treatment nonadherence, both separately and jointly? Depressive symptoms, the patient's perception of a provider's cultural competence, and marital/partnered status were found to be statistically significantly associated with treatment nonadherence, but not entirely in the directions expected.

  2. Nature of inhomogeneous states in superconducting junctions

    International Nuclear Information System (INIS)

    Ivlev, B.I.; Kopnin, N.B.

    1982-01-01

    A superconducting structure which arises in a superconducting film under a strong injection of a current through a tunnel junction is considered. If the current density in the film exceeds the critical Ginzburg-Landau value, an inhomogeneous resistive state with phase-slip centers can arise in it. This state is charcterized by the presence of regions with different chemical potentials of the Cooper pairs. These shifts of the pair chemical potential and the nonuniform structure of the order parameter may account for the so-called multigap states which have been observed experimentally

  3. Midwest Superconductivity Consortium: 1994 Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1995-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high {Tc} superconductivity. During the past year, 27 projects produced over 123 talks and 139 publications. Group activities and interactions involved 2 MISCON group meetings (held in August and January); with the second MISCON Workshop held in August; 13 external speakers; 79 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 48 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temperature superconductors.

  4. Midwest Superconductivity Consortium: 1994 Progress report

    International Nuclear Information System (INIS)

    1995-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high T c superconductivity. During the past year, 27 projects produced over 123 talks and 139 publications. Group activities and interactions involved 2 MISCON group meetings (held in August and January); with the second MISCON Workshop held in August; 13 external speakers; 79 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 48 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temperature superconductors

  5. Motivation and competence of participants in a learner-centered student-run clinic: an exploratory pilot study.

    Science.gov (United States)

    Schutte, Tim; Tichelaar, Jelle; Dekker, Ramon S; Thijs, Abel; de Vries, Theo P G M; Kusurkar, Rashmi A; Richir, Milan C; van Agtmael, Michiel A

    2017-01-25

    The Learner-Centered Student-run Clinic (LC-SRC) was designed to teach and train prescribing skills grounded in a real-life context, to provide students with early clinical experience and responsibility. The current studies' theoretical framework was based on the Self-determination Theory. According to the Self-determination Theory, early involvement in clinical practice combined with a high level of responsibility makes the LC-SRC an environment that can stimulate intrinsic motivation. We investigated the different types of motivation and the proficiency in CanMEDS competencies of the participating students. Type of motivation was measured using the Academic Motivation Scale and Intrinsic Motivation Inventory. CanMEDS competencies were evaluated by faculty using a mini-clinical examination and by the students themselves using a post-participation questionnaire. The 29 participating students were highly intrinsic motivated for this project on all subscales of the Intrinsic Motivation Inventory. Motivation for medical school on the Academic Motivation Scale was high before and was not significantly changed after participation. Students considered that their CanMEDS competencies "Collaborator", "Communicator", "Academic", and "Medical expert" had improved. Their actual clinical team competence was judged by faculty to be at a junior doctor level. Students showed a high level of intrinsic motivation to participate in the LC-SRC and perceived an improvement in competence. Furthermore their actual clinical competence was at junior doctor level in all CanMEDS competencies. The stimulating characteristics of the LC-SRC, the high levels of intrinsic motivation and the qualitative comments of the students in this study makes the LC-SRC an attractive place for learning.

  6. Pilot Study on Early Postoperative Discharge in Pituitary Adenoma Patients: Effect of Socioeconomic Factors and Benefit of Specialized Pituitary Centers.

    Science.gov (United States)

    Sarkiss, Christopher A; Lee, James; Papin, Joseph A; Geer, Eliza B; Banik, Rudrani; Rucker, Janet C; Oudheusden, Barbara; Govindaraj, Satish; Shrivastava, Raj K

    2015-08-01

    Introduction Pituitary neoplasms are benign entities that require distinct diagnostic and treatment considerations. Recent advances in endoscopic transsphenoidal surgery have resulted in shorter lengths of stay (LOS). We implemented a postoperative day (POD) 1 discharge paradigm involving a multidisciplinary approach and detailed preoperative evaluation and review of both medical and socioeconomic factors. Methods The experience of a single neurosurgeon/ears, nose, throat (ENT) team was reviewed, generating a preliminary retrospective database of the first 30 patients who underwent resection of pituitary lesions under the POD 1 discharge paradigm. We assessed multiple axes from their preoperative, in-house, and postoperative care. Results There were 14 men and 16 women with an average age of 53.8 years (range: 27-76 years). There were 22 nonsecretory and 8 secretory tumors with average size of 2.80 cm (range: 1.3-5.0 cm). All 30 patients underwent preoperative ENT evaluation. Average LOS was 1.5 ± 0.7 days. A total of 18 of 30 patients were discharged on POD 1. The insurance status included 15 with public insurance such as emergency Medicaid and 15 with private insurance. Four patients had transient diabetes insipidus (DI); none had permanent DI. Overall, 28 of 30 patients received postoperative steroids. Factors that contributed to LOS > 1 day included public insurance status, two or more medical comorbidities, diabetes mellitus, transient panhypopituitarism, and DI. Conclusion The implementation of a POD 1 discharge plan for pituitary tumors is feasible and safe for elective patients. This implementation requires the establishment of a dedicated Pituitary Center model with experienced team members. The consistent limitation to early discharge was socioeconomic status. Efforts that incorporate the analysis of social disposition parameters with proper management of clinical sequelae are crucial to the maintenance of ideal LOS and optimal patient

  7. Radiation effects on superconductivity

    International Nuclear Information System (INIS)

    Brown, B.S.

    1975-01-01

    The effect of radiation on the superconducting transition temperature (T/sub c/), upper critical field (H/sub c2/), and volume-pinning-force density (F/sub p/) were discussed for the three kinds of superconducting material (elements, alloys, and compounds). 11 figures, 3 tables, 86 references

  8. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  9. Superconductivity in technology

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Physics, especially high energy physics and solid state physics was the first area in which superconducting magnets were used but in the long run, the most extensive application of superconductivity will probably be in energy technology. Superconducting power transmission cables, magnets for energy conversion in superconducting electrical machines, MHD-generators and fusion reactors and magnets for energy storage are being investigated. Magnets for fusion reactors will have particularly large physical dimensions, which means that much development effort is still needed, for there is no economic alternative. Superconducting surfaces in radio frequency cavities can give Q-values up to a factor of 10 6 higher than those of conventional resonators. Particle accelerators are the important application. And for telecommunication, simple coaxial superconducting radio frequency cables seem promising. The tunnel effect in superconducting junctions is now being developed commercially for sensitive magnetometers and may soon possibly feature in the memory cells of computer devices. Hence superconductivity can play an important role in the technological world, solving physical and technological problems and showing economic advantages as compared with possible conventional techniques, bearing also in mind the importance of reliability and safety. (author)

  10. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  11. Superconducting rotating machines

    International Nuclear Information System (INIS)

    Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.

    1975-01-01

    The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed

  12. Superconductivity in bad metals

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is argued that many synthetic metals, including high temperature superconductors are ''bad metals'' with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described

  13. Submicron superconducting structures

    International Nuclear Information System (INIS)

    Golovashkin, A.I.; Lykov, A.N.

    1986-01-01

    An overview of works concerning superconducting structures of submicron dimensions and a system of such structures is given. It is noted that usage of the above structures in superconducting microelectronics permits, first, to increase the element packing density, to decrease the signal transmission time, capacity, power dissipated in high-frequency applications. Secondly, negligible coherence length in transition metals, their alloys and high-temperature compounds also restrict the dimensions of superconducting weak couplings when the 'classical' Josephson effect is displayed. The most effective methods for production of submicron superconducting structures are the following: lithography, double scribering. Recently the systems of superconducting submicron elements are extensively studied. It is shown that such systems can be phased by magnetic field

  14. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10......We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...

  15. Superconducting Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Yunying Pan

    2016-08-01

    Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty  in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.

  16. [Geriatric Trauma Center DGU®: Evaluation of clinical and economic parameters : A pilot study in a german university hospital].

    Science.gov (United States)

    Knobe, M; Böttcher, B; Coburn, M; Friess, T; Bollheimer, L C; Heppner, H J; Werner, C J; Bach, J-P; Wollgarten, M; Poßelt, S; Bliemel, C; Bücking, B

    2018-04-19

    Previous studies on orthogeriatric models of care suggest that there is substantial variability in how geriatric care is integrated in the patient management and the necessary intensity of geriatric involvement is questionable. The aim of the current prospective cohort study was the clinical and economic evaluation of fragility fracture treatment pathways before and after the implementation of a geriatric trauma center in conformity with the guidelines of the German Trauma Society (DGU). A comparison of three different treatment models (6 months each) was performed: A: Standard treatment in Orthopaedic Trauma; B: Special care pathways with improvement of the quality management system and implementation of standard operating procedures; C: Interdisciplinary treatment with care pathways and collaboration with geriatricians (ward round model). In the 151 examined patients (m/w 47/104; 83.5 (70-100) years; A: n = 64, B: n = 44, C: n = 43) pathways with orthogeriatric comanagement (C) improved frequency of postoperative mobilization (p = 0.021), frequency of osteoporosis prophylaxis (p = 0.001) and the discharge procedure (p = 0.024). In comparison to standard treatment (A), orthogeriatric comanagement (C) was associated with lower rates of mortality (9% vs. 2%; p = 0.147) and cardio-respiratory complications (39% vs. 28%; p = 0.235) by trend. In this context, there were low rates of myocardial infarction (6% vs. 0%), dehydration (6% vs. 0%), cardiac dysrhythmia (8% vs. 0%), pulmonary decompensation (28% vs. 16%), electrolyt dysbalance (34% vs. 19%) and pulmonary edema (11% vs. 2%). Duration of stay in an intensive care unit was 29 h (A) and 18 h (C) respectively (p = 0.205), with consecutive reduction in costs. A sole establishment of a special care pathway for older hip fracture patients (B) showed a lower rate of myocardial infarction (A: 11%, B: 0%, C: 0%; p = 0.035). There was a clear tendency to a better overall

  17. Crystallography of color superconductivity

    International Nuclear Information System (INIS)

    Bowers, Jeffrey A.; Rajagopal, Krishna

    2002-01-01

    We develop the Ginzburg-Landau approach to comparing different possible crystal structures for the crystalline color superconducting phase of QCD, the QCD incarnation of the Larkin-Ovchinnikov-Fulde-Ferrell phase. In this phase, quarks of different flavor with differing Fermi momenta form Cooper pairs with nonzero total momentum, yielding a condensate that varies in space like a sum of plane waves. We work at zero temperature, as is relevant for compact star physics. The Ginzburg-Landau approach predicts a strong first-order phase transition (as a function of the chemical potential difference between quarks) and for this reason is not under quantitative control. Nevertheless, by organizing the comparison between different possible arrangements of plane waves (i.e., different crystal structures) it provides considerable qualitative insight into what makes a crystal structure favorable. Together, the qualitative insights and the quantitative, but not controlled, calculations make a compelling case that the favored pairing pattern yields a condensate which is a sum of eight plane waves forming a face-centered cubic structure. They also predict that the phase is quite robust, with gaps comparable in magnitude to the BCS gap that would form if the Fermi momenta were degenerate. These predictions may be tested in ultracold gases made of fermionic atoms. In a QCD context, our results lay the foundation for a calculation of vortex pinning in a crystalline color superconductor, and thus for the analysis of pulsar glitches that may originate within the core of a compact star

  18. Prospective cohort pilot study of 2-visit CAD/CAM monolithic complete dentures and implant-retained overdentures: Clinical and patient-centered outcomes.

    Science.gov (United States)

    Bidra, Avinash S; Farrell, Kimberly; Burnham, David; Dhingra, Ajay; Taylor, Thomas D; Kuo, Chia-Ling

    2016-05-01

    Presently, no studies have evaluated clinical outcomes or patient-centered outcomes for complete dentures fabricated with computer-aided design and computer aided manufacturing (CAD/CAM) technology. The purpose of this prospective cohort pilot study was to evaluate the clinical and patient-centered outcomes for CAD/CAM monolithic dentures fabricated in 2 visits. Twenty participants with an existing set of maxillary complete dentures opposing either mandibular complete dentures or implant-retained overdentures that required replacement were recruited in this study. A 2-visit duplicate denture protocol was used to fabricate 40 arches of monolithic dentures with CAD/CAM technology. A 100-mm visual analog scale (VAS) instrument was then used to record 12 outcomes at baseline and at 1-year follow-up. Predetermined values were assigned to grade the VAS rating of each outcome as favorable (70.1-100) and unfavorable (≤70). Favorable ratings were sub-divided as excellent (90.1-100), good (80.1-90), and fair (70.1-80). The clinical outcomes were evaluated independently by 2 experienced prosthodontists at baseline and at 1-year follow-up. Patients evaluated the corresponding patient-centered outcomes during the same time intervals. Additional descriptive variables were also recorded. Each clinical and patient-centered outcome was summarized by medians and ranges. Differences in all ratings recorded at baseline and at 1 year were tested by 1-sided sign test (α=.05). Of 20 participants, 3 were lost to follow-up, and 3 were unsatisfied with the digital dentures and withdrew from the study. These 3 participants were considered treatment failures. Of the 14 remaining participants, 9 had implant-retained mandibular overdentures, and 5 had conventional mandibular complete dentures. For clinical outcomes, the 12 studied outcomes were favorably evaluated by the 2 prosthodontist judges at the 1-year follow-up. Evaluations showed minimal differences between baseline and 1 year. An

  19. Implementing the competences-based students-centered learning approach in Architectural Design Education. The case of the T MEDA Pilot Architectural Program at the Hashemite University (Jordan

    Directory of Open Access Journals (Sweden)

    Ahmad A. S. Al Husban

    2016-11-01

    Full Text Available Higher educational systems become increasingly oriented towards the competences-based student-centered learning and outcome approach. Worldwide, these systems are focusing on the students as a whole: focusing on their dimensional, intellectual, professional, psychological, moral, and spiritual. This research was conducted in an attempt to answer the main research question: how can the architectural design courses be designed based on the required competences and how can the teaching, learning activities and assessment methods be structured and aligned in order to allow students to achieve and reach the intended learning outcomes? This research used a case study driven best practice research method to answer the research questions based on the T MEDA pilot architectural program that was implemented at the Hashemite University, Jordan. This research found that it is important for architectural education to adapt the students-centered learning method. Such approach increases the effectiveness of teaching and learning methods, enhances the design studio environment, and focuses on students’ engagement to develop their design process and product. Moreover, this research found that using different assessment methods in architectural design courses help students to develop their learning outcomes; and inform teachers about the effectiveness of their teaching process. Furthermore, the involvement of students in assessment produces effective learning and enhances their design motivation. However, applying competences-based students-centered learning and outcome approach needs more time and staff to apply. Another problem is that some instructors resist changing to the new methods or approaches because they prefer to use their old and traditional systems. The application for this method at the first time needs intensive recourses, more time, and good cooperation between different instructors and course coordinator. However, within the time this method

  20. Beam tests and operation of superconducting cavities

    International Nuclear Information System (INIS)

    Akai, Kazunori

    1990-01-01

    Beam tests and operation of superconducting cavities conducted since the third workshop on RF superconductivity (Argonne, Sep. 1987) are reported in this paper. The paper is concerned particularly with electron machines. Storage and acceleration of the beam are discussed, focusing on the CERN test in SPS, the DESY test in PETRA, the superconducting injector at Darmstadt, and the KEK beam tests in T-AR. Then, long-term performance of the cavity in the ring is discussed focusing on Eacc (max) and O-value, environmental conditions, and operational experience in T-MR. RF controllability is addressed, centering on the Robinson stability, cavity tuning loop, quench detection and interlocks, recovery procedure, field calibration, and phase adjustment. Higher order modes are also discussed. Superconducting cavities have been operated successfully in accelerators. It has been confirmed that the superconducting cavities can be used stably for experimental use. For more than 5000 hours the cavities have indicated no essential degradation of the cavity performance. The study of long-term performance should be continued in longer range of period. (N.K.)

  1. Development of high field superconducting magnet

    International Nuclear Information System (INIS)

    Irie, Fujio; Takeo, Masakatsu.

    1986-01-01

    Recently, in connection with nuclear fusion research, the development of high field superconducting magnets showed rapid progress. The development of high field magnets of 15 T class by the techniques of winding after heat treatment has been continued in various places, as these techniques are suitable to make large magnets. In 1985, Kyushu University attained the record of 15.5 T. However in high field magnets, there are many problems peculiar to them, and the basic research related to those is demanded. In this report, these general problems, the experience of the design and manufacture in Kyushu University and the related problems are described. The superconducting magnet installed in the Superconducting Magnet Research Center of Kyushu University attained the record of 15.5 T for the first time in March, 1985. In superconducting magnets, very difficult problem must be solved since superconductivity, heat and mechanical force are inter related. The problems of the wire materials for high field, the scale of high field magnets, the condition limiting mean current density, and the development of high field magnets in Kyushu University are described. (Kako, I.)

  2. Superconductivity and electron microscopy

    International Nuclear Information System (INIS)

    Hawkes, P.W.; Valdre, U.

    1977-01-01

    In this review article, two aspects of the role of superconductivity in electron microscopy are examined: (i) the development of superconducting devices (mainly lenses) and their incorporation in electron microscopes; (ii) the development of electron microscope techniques for studying fundamental and technological problems associated with superconductivity. The first part opens with a brief account of the relevant properties of conventional lenses, after which the various types of superconducting lenses are described and their properties compared. The relative merits and inconveniences of superconducting and conventional lenses are examined, particular attention being paid to the spherical and chromatic aberration coefficients at accelerating voltages above a megavolt. This part closes with a survey of the various microscope designs that have been built or proposed, incorporating superconducting components. In the second part, some methods that have been or might be used in the study of superconductivity in the electron microscope are described. A brief account of the types of application for which they are suitable is given. (author)

  3. Can family-centered programing mitigate HIV risk factors among orphaned and vulnerable adolescents? Results from a pilot study in South Africa.

    Science.gov (United States)

    Thurman, Tonya Renee; Nice, Johanna; Luckett, Brian; Visser, Maretha

    2018-04-01

    Let's Talk is a structured, family-centered adolescent HIV prevention program developed for use in South Africa using key components adapted from programs successfully implemented in the US and South Africa. It is designed to address individual HIV transmission risk factors common among orphaned and vulnerable adolescents, including elevated risk for poor psychological health and sexual risk behavior. These efforts are accentuated through parallel programing to support caregivers' mental health and parenting skills. Twelve Let's Talk groups, each serving approximately 10 families, were piloted by two local community-based organizations in Gauteng and Kwa-Zulu Natal provinces, South Africa. Face-to-face interviews were conducted among participating caregivers and adolescents at baseline and three months post-intervention to explore the potential effects of the program on intermediate outcomes that may support HIV preventive behavior. Specifically, generalized estimation equations were used to estimate average change on HIV prevention knowledge and self-efficacy, caregiver and adolescent mental health, and family dynamics. Among the 105 adolescents and their 95 caregivers who participated in Let's Talk and completed both surveys, statistically significant improvements were found for adolescents' HIV and condom use knowledge as well as condom negotiation self-efficacy, but not sexual refusal self-efficacy. Both caregivers and adolescents demonstrated significantly better mental health at post-test. Adolescent/caregiver connection and communication about healthy sexuality also improved. These preliminary results highlight the potential of HIV prevention interventions that engage caregivers alongside the vulnerable adolescents in their care to mitigate adolescent HIV risk factors. A more rigorous evaluation is warranted to substantiate these effects and identify their impact on adolescents' risk behavior and HIV incidence.

  4. Superconducting materials and magnets

    International Nuclear Information System (INIS)

    1991-04-01

    The Technical Committee Meeting on Superconducting Materials and Magnets was convened by the IAEA and held by invitation of the Japanese government on September 4-6, 1989 in Tokyo. The meeting was hosted by the National Research Institute for Metals. Topics of the conference related to superconducting magnets and technology with particular application to fusion and the superconducting supercollider. Technology using both high and low-temperature superconductors was discussed. This document is a compendium of the papers presented at the meeting. Refs, figs and tabs

  5. 'Speedy' superconducting circuits

    International Nuclear Information System (INIS)

    Holst, T.

    1994-01-01

    The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)

  6. ESCAR superconducting magnet system

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Meuser, R.B.; Pope, W.L.; Green, M.A.

    1975-01-01

    Twenty-four superconducting dipoles, each about 1 meter long, provide the guide field for the Experimental Superconducting Accelerator Ring proton accelerator--storage ring. Injection of 50 MeV protons corresponds to a 3 kG central dipole field, and a peak proton energy of 4.2 GeV corresponds to a 46 kG central field. Thirty-two quadrupoles provide focusing. The 56 superconducting magnets are contained in 40 cryostats that are cryogenically connected in a novel series ''weir'' arrangement. A single 1500 W refrigeration plant is required. Design and testing of the magnet and cryostat system are described. (U.S.)

  7. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  8. Superconductivity in doped insulators

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is shown that many synthetic metals, including high temperature superconductors are ''bad metals'', with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described

  9. Superconducting active impedance converter

    International Nuclear Information System (INIS)

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures

  10. Introduction to superconductivity

    CERN Document Server

    Darriulat, Pierre

    1998-01-01

    The lecture series will address physicists, such as particle and nuclear physicists, familiar with non-relativistic quantum mechanics but not with solid state physics. The aim of this introduction to low temperature superconductivity is to give sufficient bases to the student for him/her to be able to access the scientific literature on this field. The five lectures will cover the following topics : 1. Normal metals, free electron gas, chambers equation. 2. Cooper pairs, the BCS ground state, quasi particle excitations. 3. DC superconductivity, Meissner state, dirty superconductors.4. Self consistent approach, Ginsburg Landau equations, Abrikosov fluxon lattice. 5. Josephson effects, high temperature superconductivity.

  11. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    The work concentrates on few important tasks in enabling techniques for search of superconducting compressed hydrogen compounds and pure hydrogen, investigation of mechanisms of high-Tc superconductivity, and exploring new superconducting materials. Along that route we performed several challenging tasks, including discovery of new forms of polyhydrides of alkali metal Na at very high pressures. These experiments help us to establish the experimental environment that will provide important information on the high-pressure properties of hydrogen-rich compounds. Our recent progress in RIXS measurements opens a whole field of strongly correlated 3d materials. We have developed a systematic approach to measure major electronic parameters, like Hubbard energy U, and charge transfer energy Δ, as function of pressure. This technique will enable also RIXS studies of magnetic excitations in iridates and other 5d materials at the L edge, which attract a lot of interest recently. We have developed new magnetic sensing technique based on optically detected magnetic resonance from NV centers in diamond. The technique can be applied to study superconductivity in high-TC materials, to search for magnetic transitions in strongly correlated and itinerant magnetic materials under pressure. Summary of Project Activities; development of high-pressure experimentation platform for exploration of new potential superconductors, metal polyhydrides (including newly discovered alkali metal polyhydrides), and already known superconductors at the limit of static high-pressure techniques; investigation of special classes of superconducting compounds (high-Tc superconductors, new superconducting materials), that may provide new fundamental knowledge and may prove important for application as high-temperature/high-critical parameter superconductors; investigation of the pressure dependence of superconductivity and magnetic/phase transformations in 3d transition metal compounds, including

  12. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  13. Hybrid superconducting magnetic suspensions

    International Nuclear Information System (INIS)

    Tixador, P.; Hiebel, P.; Brunet, Y.; Chaud, X.; Gautier-Picard, P.

    1996-01-01

    Superconductors, especially high T c ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO

  14. Superconducting Technology Assessment

    National Research Council Canada - National Science Library

    2005-01-01

    This Superconducting Technology Assessment (STA) has been conducted by the National Security Agency to address the fundamental question of a potential replacement for silicon complementary metal oxide semiconductor (CMOS...

  15. Superconductivity: materials and applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Kircher, F.; Leveque, J.; Tixador, P.

    2008-01-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  16. Superconductivity and its devices

    International Nuclear Information System (INIS)

    Forbes, D.S.

    1981-01-01

    Among the more important developments that are discussed are cryotrons, superconducting motors and generators, and high-field magnets. Cryotrons will create faster and more economical computer systems. Superconducting motors and generators will cost much less to build than conventional electric generators and cut fuel consumption. Moreover, high-field magnets are being used to confine plasma in connection with nuclear fusion. Superconductors have a vital role to play in all of these developments. Most importantly, though, are the magnetic properties of superconductivity. Superconducting magnets are an integral part of nuclear fusion. In addition, high-field magnets are necessary in the use of accelerators, which are needed to study the interactions between elementary particles

  17. Superconductivity: Heike's heritage

    NARCIS (Netherlands)

    van der Marel, D.; Golden, M.

    2011-01-01

    A century ago, Heike Kamerlingh Onnes discovered superconductivity. And yet, despite the conventional superconductors being understood, the list of unconventional superconductors is growing — for which unconventional theories may be required.

  18. RADIOFREQUENCY SUPERCONDUCTIVITY: Workshop

    International Nuclear Information System (INIS)

    Lengeler, Herbert

    1989-01-01

    Superconducting radiofrequency is already playing an important role in the beam acceleration system for the TRISTAN electron-positron collider at the Japanese KEK Laboratory and new such systems are being prepared for other major machines. Thus the fourth Workshop on Radiofrequency Superconductivity, organized by KEK under the chairmanship of local specialist Yuzo Kojima and held just before the International Conference on High Energy Accelerators, had much progress to review and even more to look forward to

  19. Stacked magnet superconducting bearing

    International Nuclear Information System (INIS)

    Rigney, T.K. II; Saville, M.P.

    1993-01-01

    A superconducting bearing is described, comprising: a plurality of permanent magnets magnetized end-to-end and stacked side-by-side in alternating polarity, such that flux lines flow between ends of adjacent magnets; isolating means, disposed between said adjacent magnets, for reducing flux leakage between opposing sides of said adjacent magnets; and a member made of superconducting material having at least one surface in communication with said flux lines

  20. Superconductivity at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, N B; Ginzburg, N I

    1969-07-01

    Work published during the last 3 or 4 yrs concerning the effect of pressure on superconductivity is reviewed. Superconducting modifications of Si, Ge, Sb, Te, Se, P and Ce. Change of Fermi surface under pressure for nontransition metals. First experiments on the influence of pressure on the tunneling effect in superconductors provide new information on the nature of the change in phonon and electron energy spectra of metals under hydrostatic compression. 78 references.

  1. Superconductivity: A critical analysis

    International Nuclear Information System (INIS)

    Sacchetti, Nicola

    1997-01-01

    It is some forty years now that superconductivity has entered into the field of applied Physics. Countless applications have been proposed some of which have been successfully tested in the form of prototypes and relatively few have become widely used products. This article offers an objective examination of what applied superconductivity represents in the area of modern technology highlighting its exclusive advantages and its inevitable limitations

  2. Generalized Superconductivity. Generalized Levitation

    International Nuclear Information System (INIS)

    Ciobanu, B.; Agop, M.

    2004-01-01

    In the recent papers, the gravitational superconductivity is described. We introduce the concept of generalized superconductivity observing that any nongeodesic motion and, in particular, the motion in an electromagnetic field, can be transformed in a geodesic motion by a suitable choice of the connection. In the present paper, the gravitoelectromagnetic London equations have been obtained from the generalized Helmholtz vortex theorem using the generalized local equivalence principle. In this context, the gravitoelectromagnetic Meissner effect and, implicitly, the gravitoelectromagnetic levitation are given. (authors)

  3. Superconducting magnets for accelerators

    International Nuclear Information System (INIS)

    Denisov, Yu.N.

    1979-01-01

    Expediency of usage and possibilities arising in application of superconducting devices in magnetic systems of accelerators and experimental nuclear-physical devices are studied. Parameters of specific devices are given. It is emphasized that at the existing level of technological possibilities, construction and usage of superconducting magnetic systems in experimental nuclear physics should be thought of as possible, from the engineering, and expedient, from the economical viewpoints [ru

  4. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  5. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  6. High-current applications of superconductivity

    International Nuclear Information System (INIS)

    Komarek, P.

    1995-01-01

    The following topics were dealt with: superconducting materials, design principles of superconducting magnets, magnets for research and engineering, superconductivity for power engineering, superconductivity in nuclear fusion technology, economical considerations

  7. A Single-Center Pilot Prospective Study of Topical Application of Platelet-Derived Eye Drops for Patients with Ocular Chronic Graft-versus-Host Disease.

    Science.gov (United States)

    Zallio, Francesco; Mazzucco, Laura; Monaco, Federico; Astori, Maria Rosa; Passera, Roberto; Drago, Giovanna; Tamiazzo, Stefania; Rapetti, Manuela; Dolcino, Daniela; Guaschino, Roberto; Pini, Massimo; Ladetto, Marco

    2016-09-01

    Ocular involvement of chronic graft-versus-host disease (cGVHD) is a complication that occurs in up to 60% of patients after allogeneic hematopoietic stem cell transplantation. Conventional therapeutic options include medical and surgical procedures that are administered depending on the severity of the condition, but most of them have provided unsatisfactory results and, to date, there is no consensus about treatment. We considered that topical application of a platelet lysate, administered as eye drops, might be considered an alternative worthwhile of investigation to treat ocular surface disorders in patients suffering from cGVHD. Therefore, we conducted a single-center prospective pilot study to assess the efficacy and safety of using eye drops made from reconstituted lysed platelet concentrate. Twenty-six patients with ocular cGVHD were eligible for the study; all but 2 completed their scheduled 1-year treatment and complied with the hematologic and ophthalmic regimen. At their first assessment interviews, after 30 days of treatment, 91% of patients reported an improvement in their symptoms and for 32%, substantive objective differences were measured. Remission of corneal damage was seen for 86% of our cohort, and improved National Institutes of Health scores for 73%, of whom 8% achieved the best score of 0 (ie, non-dry eye). Similar results were seen at later time points. Comparing outcomes for our patient cohort to those determined retrospectively for patients in our institutional database revealed a 5-year overall survival (OS) of 65%. This OS is comparable to patients with limited cGVHD (75%) and is superior to that of patients with nonocular extensive cGVHD or without cGVHD (30% and 59%, respectively) (P = .013). Our results suggest that platelet-derived eye drops are a safe, practical, and well-tolerated therapeutic option that offers substantial benefits for most patients affected by ocular cGVHD at onset. The favorable OS of our patient cohort

  8. Superconducting wind turbine generators

    International Nuclear Information System (INIS)

    Abrahamsen, A B; Seiler, E; Zirngibl, T; Andersen, N H; Mijatovic, N; Traeholt, C; Pedersen, N F; Oestergaard, J; Noergaard, P B

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  9. Superconductivity and macroscopic quantum phenomena

    International Nuclear Information System (INIS)

    Rogovin, D.; Scully, M.

    1976-01-01

    It is often asserted that superconducting systems are manifestations of quantum mechanics on a macroscopic scale. In this review article it is demonstrated that this quantum assertion is true within the framework of the microscopic theory of superconductivity. (Auth.)

  10. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  11. Fullerides - Superconductivity at the limit

    NARCIS (Netherlands)

    Palstra, Thomas T. M.

    The successful synthesis of highly crystalline Cs3C60, exhibiting superconductivity up to a record temperature for fullerides of 38 K, demonstrates a powerful synthetic route for investigating the origin of superconductivity in this class of materials.

  12. Rf superconducting devices

    International Nuclear Information System (INIS)

    Hartwig, W.H.; Passow, C.

    1975-01-01

    Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines

  13. Superconducting Ferromagnetic Nanodiamond.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  14. Superconductive analogue of spin glasses

    International Nuclear Information System (INIS)

    Feigel'man, M.; Ioffe, L.; Vinokur, V.; Larkin, A.

    1987-07-01

    The properties of granular superconductors in magnetic fields, namely the existence of a new superconductive state analogue of the low-temperature superconductive state in spin glasses are discussed in the frame of the infinite-range model and the finite-range models. Experiments for elucidation of spin-glass superconductive state in real systems are suggested. 30 refs

  15. Quenches in large superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Alston-Garnjost, M.; Green, M.A.; Lecomte, P.; Smits, R.G.; Taylor, J.D.; Vuillemin, V.

    1977-08-01

    The development of large high current density superconducting magnets requires an understanding of the quench process by which the magnet goes normal. A theory which describes the quench process in large superconducting magnets is presented and compared with experimental measurements. The use of a quench theory to improve the design of large high current density superconducting magnets is discussed

  16. Pilot 2006 Environmental Performance Index (EPI)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Pilot 2006 Environmental Performance Index (EPI) centers on two broad environmental protection objectives: (1) reducing environmental stresses on human health,...

  17. On anyon superconductivity--

    International Nuclear Information System (INIS)

    Chen, Y.-H.; Wilczek, F.; Witten, E.; Halperin, B.I.

    1989-01-01

    We investigate the statistical mechanics of a gas of fractional statistics particles in 2 + 1 dimensions. In the case of statistics very close to Fermi statistics (statistical parameter θ = π(1 - 1/n), for large n), the effect of the statistics is a weak attraction. Building upon earlier RPA calculation for the case n = 2, the authors argue that for large n perturbation theory is reliable and exhibits superfluidity (or superconductivity after coupling to electromagnetism). They describe the order parameter for this superconductng phase in terms of spontaneous breaking of commutativity of translations as opposed to the usual pairing order parameters. The vortices of the superconducting anyon gas are charged, and superconducting order parameters of the usual type vanish. They investigate the characteristic P and T violating phenomenology

  18. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  19. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  20. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  1. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb$_{3}$Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  2. Superconducting super collider

    International Nuclear Information System (INIS)

    Limon, P.J.

    1987-01-01

    The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures

  3. Crystalline color superconductivity

    International Nuclear Information System (INIS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    2001-01-01

    In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena

  4. Large Superconducting Magnet Systems

    Energy Technology Data Exchange (ETDEWEB)

    Védrine, P [Saclay (France)

    2014-07-01

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  5. Novel Approach to Linear Accelerator Superconducting Magnet System

    International Nuclear Information System (INIS)

    Kashikhin, Vladimir

    2011-01-01

    Superconducting Linear Accelerators include a superconducting magnet system for particle beam transportation that provides the beam focusing and steering. This system consists of a large number of quadrupole magnets and dipole correctors mounted inside or between cryomodules with SCRF cavities. Each magnet has current leads and powered from its own power supply. The paper proposes a novel approach to magnet powering based on using superconducting persistent current switches. A group of magnets is powered from the same power supply through the common, for the group of cryomodules, electrical bus and pair of current leads. Superconducting switches direct the current to the chosen magnet and close the circuit providing the magnet operation in a persistent current mode. Two persistent current switches were fabricated and tested. In the paper also presented the results of magnetic field simulations, decay time constants analysis, and a way of improving quadrupole magnetic center stability. Such approach substantially reduces the magnet system cost and increases the reliability.

  6. Superconducting current generators

    International Nuclear Information System (INIS)

    Genevey, P.

    1970-01-01

    After a brief summary of the principle of energy storage and liberation with superconducting coils,two current generators are described that create currents in the range 600 to 1400 A, used for two storage experiments of 25 kJ and 50 kJ respectively. The two current generators are: a) a flux pump and b) a superconducting transformer. Both could be developed into more powerful units. The study shows the advantage of the transformer over the flux pump in order to create large currents. The efficiencies of the two generators are 95 per cent and 40 to 60 per cent respectively. (author) [fr

  7. Materials for superconducting cavities

    International Nuclear Information System (INIS)

    Bonin, B.

    1996-01-01

    The ideal material for superconducting cavities should exhibit a high critical temperature, a high critical field, and, above all, a low surface resistance. Unfortunately, these requirements can be conflicting and a compromise has to be found. To date, most superconducting cavities for accelerators are made of niobium. The reasons for this choice are discussed. Thin films of other materials such as NbN, Nb 3 Sn, or even YBCO compounds can also be envisaged and are presently investigated in various laboratories. It is shown that their success will depend critically on the crystalline perfection of these films. (author)

  8. Today's markets for superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The worldwide market for superconductive products may exceed $1 billion in 1987. These products are expanding the frontiers of science, revolutionizing the art of medical diagnosis, and developing the energy technology of the future. In general, today's customers for superconductive equipment want the highest possible performance, almost regardless of cost. The products operate within a few degrees of absolute zero, and virtually all are fabricated from niobium or niobium alloys-so far the high-temperature superconductors discovered in 1986 and 1987 have had no impact on these markets. The industry shows potential and profound societal impact, even without the new materials

  9. Gambling with Superconducting Fluctuations

    Science.gov (United States)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  10. Superconducting Electronic Film Structures

    Science.gov (United States)

    1991-02-14

    Segmuller, A., Cooper, E.I., Chisholm, M.F., Gupta, A. Shinde, S., and Laibowitz, R.B. Lanthanum gallate substrates for epitaxial high-T superconducting thin...M. F. Chisholm, A. Gupta, S. Shinde, and R. B. Laibowitz, " Lanthanum Gallate Substrates for Epitaxial High-T c Superconducting Thin Films," Appl...G. Forrester and J. Talvacchio, " Lanthanum Copper Oxide Buffer Layers for Growth of High-T c Superconductor Films," Disclosure No. RDS 90-065, filed

  11. Superconductivity in doped semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Bustarret, E., E-mail: Etienne.bustarret@neel.cnrs.fr

    2015-07-15

    A historical survey of the main normal and superconducting state properties of several semiconductors doped into superconductivity is proposed. This class of materials includes selenides, tellurides, oxides and column-IV semiconductors. Most of the experimental data point to a weak coupling pairing mechanism, probably phonon-mediated in the case of diamond, but probably not in the case of strontium titanate, these being the most intensively studied materials over the last decade. Despite promising theoretical predictions based on a conventional mechanism, the occurrence of critical temperatures significantly higher than 10 K has not been yet verified. However, the class provides an enticing playground for testing theories and devices alike.

  12. Technology of RF superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This work has several parts, two of which are collaborative development projects with the majority of the work being performed at Argonne. The first is the development of a superconducting RFQ structure in collaboration with AccSys Technology Inc. of Pleasanton, California, funded as a Phase II SBIR grant. Another is a collaborative project with the Nuclear Science Centre, New Delhi, India (who are funding the work) to develop new superconducting ion accelerating structures. Other initiatives are developing various aspects of the technology required to utilize ATLAS as a secondary beam linac for radioactive beams

  13. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  14. PTSD: National Center for PTSD

    Medline Plus

    Full Text Available ... Special Groups Caregivers Combat Veterans & their Families Readjustment Counseling (Vet Centers) War Related Illness & Injury Study Center ... Advanced Search Where to Get Help PTSD Coach Online Tools to help you manage stress. Search Pilots ...

  15. Inhomogeneous superconductivity in a ferromagnet

    International Nuclear Information System (INIS)

    Kontos, T.; Aprili, M.; Lesueur, J.; Genet, F.; Boursier, R.; Grison, X.

    2003-01-01

    We have studied a new superconducting state where the condensate wave function resulting from conventional pairing, is modified by an exchange field. Superconductivity is induced into a ferromagnetic thin film (F) by the proximity effect with a superconducting reservoir (S). We observed oscillations of the superconducting order parameter induced in F as a function of the distance from the S/F interface. They originate from the finite momentum transfer provided to Cooper pairs by the splitting of the spin up and down bands. We measured the superconducting density of states in F by tunneling spectroscopy and the Josephson critical current when F is coupled with a superconducting counter-electrode. Negative values of the superconducting order parameter are revealed by capsized tunneling spectra in F and a negative Josephson coupling (π-junction)

  16. PTSD: National Center for PTSD

    Medline Plus

    Full Text Available ... Community Providers and Clergy Co-Occurring Conditions Continuing Education Publications List of Center Publications Articles by Center Staff Clinician’s Trauma Update PTSD Research Quarterly Publications Search Using the PILOTS Database What is PILOTS? Quick Search Tips Modify ...

  17. Assessment of micro-superconducting magnetic energy storage (SMES) utility in railroad applications : a report to Congress

    Science.gov (United States)

    1997-07-01

    At the direction of the U.S. Congress, the Federal Railroad Administration (FRA), with technical support from the Volpe National Transportation Systems Center (Volpe Center), investigated the feasibility of using micro-Superconducting Magnetic Energy...

  18. High temperature interface superconductivity

    International Nuclear Information System (INIS)

    Gozar, A.; Bozovic, I.

    2016-01-01

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T_c superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T_c Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  19. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  20. Forecasting of superconducting compounds

    International Nuclear Information System (INIS)

    Savitskii, E.M.; Gribulya, V.G.; Kiseleva, N.N.

    1981-01-01

    In forecasting new superconducting intermetallic compounds of the A15 and Mo 3 Se types most promising from the viewpoint of high critical temperature Tsub(c), high critical magnetic fields Hsub(c), and high critical currents and in estimating their transition temperature it is proposed to apply cybernetic methods of computer learning

  1. Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-04-01

    The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs

  2. Checking BEBC superconducting magnet

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  3. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  4. Superconducting magnets 1992

    International Nuclear Information System (INIS)

    1993-06-01

    This report discusses the following topics on Superconducting Magnets; SSC Magnet Industrialization; Collider Quadrupole Development; A Record-Setting Magnet; D20: The Push Beyond 10T; Nonaccelerator Applications; APC Materials Development; High-T c at Low Temperature; Cable and Cabling-Machine Development; and Analytical Magnet Design

  5. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  6. Electrical Conduction and Superconductivity

    Indian Academy of Sciences (India)

    When an electric field is applied, this electron can be lifted to this higher energy ... By such a virtual process two electrons .... using superconducting coils has come to be a reality. ... nance imaging techniques used in medical diagnostics. Com ...

  7. Superconducting magnets for HERA

    International Nuclear Information System (INIS)

    Wolff, S.

    1987-01-01

    The Hadron-Electron-Ring Accelerator (HERA) presently under construction at DESY, Hamburg, consists of an electron storage ring of 30 GeV and a proton storage ring of 820 GeV. Superconducting magnets are used for the proton ring. There are 416 superconducting bending magnets of 4.698 T central field and 8.824 m magnetic length, 224 superconducting quadrupoles of 91.2 T/m central gradient and many superconducting correction dipoles, quadrupoles and sextupoles. The main dipoles and quadrupoles consist of two-layer coils of 75 mm inner diameter clammed with aluminium (for the dipoles) or stainless steel laminations (for the quadrupoles). The collared coils are surrounded by a laminated cold iron yoke and supported inside a low loss cryostat. The protection system uses cold diodes to bypass the current around a quenching magnet. The magnets are cooled with one phase helium supplied by a 3 block central refrigeration system of 20 kW refrigeration power at 4.3 K. Two helium is returned through the magnets in good thermal contact with the one phase helium in the dipoles for temperature control. This paper describes the magnet system and gives the results obtained for prototype magnets

  8. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  9. Gossamer superconductivity, new paradigm?

    Energy Technology Data Exchange (ETDEWEB)

    Won, Hyekyung [Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Haas, Stephan; Parker, David [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Maki, Kazumi [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Max-Planck Institute for the Physics of Complex Systems, Noethnitzer Str. 38, 01187 Dresden (Germany); Dora, Balazs [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Virosztek, Attila [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary); Research Institute for Solid State Physics and Optics, P.O. Box 49, 1525 Budapest (Hungary)

    2006-01-01

    We review our recent works on d-wave density wave (dDW) and gossamer superconductivity (i.e. d-wave superconductivity in the presence of dDW) in high-T{sub c} cuprates and CeCoIn{sub 5}. a) We show that both the giant Nernst effect and the angle dependent magnetoresistance (ADMR) in the pseudogap phases of the cuprates and CeCoIn{sub 5} are manifestations of dDW. b) The phase diagram of high-T{sub c} cuprates is understood in terms of mean field theory, which includes two order parameters {delta}{sub 1} and {delta}{sub 2}, where one order paremeter is from dDW and the other from d-wave superconductivity. c) In the optimally to the overdoped region we find the spatially periodic dDW, an analogue of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state, becomes more stable. d) In the underdoped region where {delta}{sub 2}/{delta}{sub 1}<<1 the Uemera relation is obtained within the present model. We speculate that the gossamer superconductivity is at the heart of high-T{sub c} cuprate superconductors, the heavy-fermion superconductor CeCoIn{sub 5} and the organic superconductors {kappa}-(ET){sub 2}Cu(NCS){sub 2} and (TMTSF){sub 2}PF{sub 6}. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Superconductivity : Controlling magnetism

    NARCIS (Netherlands)

    Golubov, Alexandre Avraamovitch; Kupriyanov, Mikhail Yu.

    Manipulation of the magnetic state in spin valve structures by superconductivity has now been achieved, opening a new route for the development of ultra-fast cryogenic memories. Spintronics is a rapidly developing field that allows insight into fundamental spin-dependent physical properties and the

  11. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Lynn, J.W.

    1990-01-01

    This book discusses development in oxide materials with high superconducting transition temperature. Systems with Tc well above liquid nitrogen temperature are already a reality and higher Tc's are anticipated. The author discusses how the idea of a room-temperature superconductor appears to be a distinctly possible outcome of materials research

  12. Magnetic levitation and superconductivity

    International Nuclear Information System (INIS)

    Albrecht, C.

    1989-01-01

    The paper explains the impressive advances made in the development of superconducting magnets, in cryogenic engineering, and in the development of drive and vehicle concepts in Japan in the period following termination of West German development work for the electrodynamical system (MLU 001, MLU 002). The potentials engineering due to the development of high-Tc superconductors are discussed. (orig./MM) [de

  13. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, G [Jefferson Lab (United States)

    2014-07-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  14. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  15. Midwest Superconductivity Consortium: 1995 Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high Tc superconductivity. During the past year, 26 projects produced over 133 talks and 127 publications. Three Master`s Degrees and 9 Doctor`s of Philosophy Degrees were granted to students working on MISCON projects. Group activities and interactions involved 2 MISCON group meetings (held in January and July); the third MISCON Summer School held in July; 12 external speakers; 81 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 54 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temp superconductors.

  16. Superconducting MRI system, MRT-50A

    International Nuclear Information System (INIS)

    Sugimoto, Hiroshi; Asahina, Kiyotaka

    1987-01-01

    The writers' developmental work on MRI (magnetic resonance imaging) was started in 1983. The model used first was MRT-15A (0.15 T). The next model was MRT-22A (0.22 T) which had a magnetic self-shield. As for the development of superconducting MRI system, they started clinical evaluation at Toshiba Central Hospital MRI Center in 1984 and got the official approval in 1985. For the model, use was made of MRT-50A (0.5 T) employing a superconducting magnet made by Toshiba. Herein represented are the basis of the images obtained through MRT-50 and the fact that the application fields of MRI are going on increasing (not only to brain and spine areas but also to the areas of the chest, abdomen and joints), and also the results of the work-in-progress of application software. (author)

  17. Midwest Superconductivity Consortium: 1995 Progress report

    International Nuclear Information System (INIS)

    1996-01-01

    The mission of the Midwest Superconductivity Consortium, MISCON, is to advance the science and understanding of high Tc superconductivity. During the past year, 26 projects produced over 133 talks and 127 publications. Three Master's Degrees and 9 Doctor's of Philosophy Degrees were granted to students working on MISCON projects. Group activities and interactions involved 2 MISCON group meetings (held in January and July); the third MISCON Summer School held in July; 12 external speakers; 81 collaborations (with universities, industry, Federal laboratories, and foreign research centers); and 54 exchanges of samples and/or measurements. Research achievements this past year focused on understanding the effects of processing phenomena on structure-property interrelationships and the fundamental nature of transport properties in high-temp superconductors

  18. Extended Operations of the Pratt & Whitney Rocketdyne Pilot-Scale Compact Reformer: Year 6 - Activity 3.2 - Development of a National Center for Hydrogen Technology

    Energy Technology Data Exchange (ETDEWEB)

    Almlie, Jay

    2011-10-01

    U.S. and global demand for hydrogen is large and growing for use in the production of chemicals, materials, foods, pharmaceuticals, and fuels (including some low-carbon biofuels). Conventional hydrogen production technologies are expensive, have sizeable space requirements, and are large carbon dioxide emitters. A novel sorbent-based hydrogen production technology is being developed and advanced toward field demonstration that promises smaller size, greater efficiency, lower costs, and reduced to no net carbon dioxide emissions compared to conventional hydrogen production technology. Development efforts at the pilot scale have addressed materials compatibility, hot-gas filtration, and high-temperature solids transport and metering, among other issues, and have provided the basis for a preliminary process design with associated economics. The process was able to achieve a 93% hydrogen purity on a purge gasfree basis directly out of the pilot unit prior to downstream purification.

  19. Pilot Implementations

    DEFF Research Database (Denmark)

    Manikas, Maria Ie

    by conducting a literature review. The concept of pilot implementation, although commonly used in practice, is rather disregarded in research. In the literature, pilot implementations are mainly treated as secondary to the learning outcomes and are presented as merely a means to acquire knowledge about a given...... objective. The prevalent understanding is that pilot implementations are an ISD technique that extends prototyping from the lab and into test during real use. Another perception is that pilot implementations are a project multiple of co-existing enactments of the pilot implementation. From this perspective......This PhD dissertation engages in the study of pilot (system) implementation. In the field of information systems, pilot implementations are commissioned as a way to learn from real use of a pilot system with real data, by real users during an information systems development (ISD) project and before...

  20. Properties of selected superconductive materials, 1978 supplement. Technical note

    International Nuclear Information System (INIS)

    Roberts, B.W.

    1978-10-01

    This report includes data on additional superconductive materials extracted from the world literature up to fall 1977 and is an addendum to the data set published in J. Phys. Chem. Ref. Data 5, no. 3, 581-821 (1976) (Reprint no. 84). The data presented are new values and have not been selected or compared to values (except for selected values of the elements) previously assembled by the Superconductive Materials Data Center. The properties included are composition, critical temperature, critical magnetic field, crystal structure and the results of negative experiments. Special tabulations of high magnetic field materials with Type II behavior and materials with organic components are included. All entries are keyed to the literature. A list of recent reviews centered on superconductive materials is included

  1. Two band superconductivity for MgB{sub 2}: T{sub c} and isotope exponent {alpha} as a function of the carrier number n and the role of the center of the band

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Nunez, J J [Lab. SUPERCOMP, Departamento de Fisica - FACYT - UC, Valencia (Venezuela) and Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Schmidt, A A [Departamento de Matematica, UFSM, Santa Maria, RS (Brazil); Bianconi, A [Physics Department, Universita di Roma, Rome (Italy); Perali, A [Physics Department, University of Camerino, Camerino - MC (Italy)

    2005-08-15

    We study a two band superconducting, assuming that we have two tight binding bands, {epsilon}{sub 2}(k-vector) = {epsilon}{sub 2}{sup (0)} - t{sub 2}[cos(k{sub x}) + cos(k{sub y}) + s{sub 2} cos(k{sub z})] - {mu} and {epsilon}{sub 3}(k-vector) {epsilon}{sub 3}{sup (0)} - t{sub 3} [cos(k{sub x}) + cos(k{sub y})+s{sub 3} cos(k{sub z})] - {mu}. We solve the two gap equations at T = T{sub c} and calculate T{sub c} x n and {mu} x n for various values of pairing interaction, V, and Debye frequency, {omega}{sub D}. Also, from an expression developed in a previous paper by two of the present authors, we calculate {alpha} x n, where n is the number of carriers per site per band and {alpha} is the isotope exponent. We take only interband scattering, V, as a first approach. We find that in order to have superconductivity (T{sub c} {ne} 0), large values of V are necessary. Also, for V/{omega}{sub D} > 1, we obtain {alpha} > 1.00 and for V/{omega}{sub D}>1.00, the isotope exponent becomes less than 1. (author)

  2. Two band superconductivity for MgB2: Tc and isotope exponent α as a function of the carrier number n and the role of the center of the band

    International Nuclear Information System (INIS)

    Rodriguez-Nunez, J.J.; Schmidt, A.A.; Bianconi, A.; Perali, A.

    2005-08-01

    We study a two band superconducting, assuming that we have two tight binding bands, ε 2 (k-vector) = ε 2 (0) - t 2 [cos(k x ) + cos(k y ) + s 2 cos(k z )] - μ and ε 3 (k-vector) ε 3 (0) - t 3 [cos(k x ) + cos(k y )+s 3 cos(k z )] - μ. We solve the two gap equations at T = T c and calculate T c x n and μ x n for various values of pairing interaction, V, and Debye frequency, ω D . Also, from an expression developed in a previous paper by two of the present authors, we calculate α x n, where n is the number of carriers per site per band and α is the isotope exponent. We take only interband scattering, V, as a first approach. We find that in order to have superconductivity (T c ≠ 0), large values of V are necessary. Also, for V/ω D > 1, we obtain α > 1.00 and for V/ω D >1.00, the isotope exponent becomes less than 1. (author)

  3. 2017 Gordon Conference on Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey [Univ. of Minnesota, Twin Cities, MN (United States)

    2017-11-14

    The DOE award was for a 2017 Gordon Research conference on Superconductivity (GRC). The objective of GRC is to interchange the information about the latest theoretical and experimental developments in the area of superconductivity and to select most perspective directions for future research in this area.The goal of the Gordon Conference on Superconductivity is to present and discuss the latest results in the field of modern superconductivity, discuss new ideas and new directions of research in the area. It is a long-standing tradition of the Gordon conference on Superconductivity that the vast majority of participants are junior scientists. Funding for the conference would primarily be used to support junior researchers, particularly from under-represented groups. We had more 10 female speakers, some of them junior researchers, and some funding was used to support these speakers. The conference was held together with Gordon Research Seminar on Superconductivity, where almost all speakers and participants were junior scientists.

  4. Vector superconductivity in cosmic strings

    International Nuclear Information System (INIS)

    Dvali, G.R.; Mahajan, S.M.

    1992-03-01

    We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs

  5. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  6. Infrared Quenched Photoinduced Superconductivity

    Science.gov (United States)

    Federici, J. F.; Chew, D.; Guttierez-Solana, J.; Molina, G.; Savin, W.; Wilber, W.

    1996-03-01

    Persistant photoconductivity (PPC) and photoinduced superconductivity (PISC) in oxygen deficient YBa_2Cu_3O_6+x have received recent attention. It has been suggested that oxygen vacancy defects play an important role in the PISC/PPC mechanism.(J. F. Federici, D. Chew, B. Welker, W. Savin, J. Gutierrez-Solana, and T. Fink, Phys. Rev. B), December 1995 Supported by National Science Foundation In this model, defects trap photogenerated electrons so that electron-hole recombination can not occur thereby allowing photogenerated holes to contribute to the carrier density. Nominally, the photoinduced state is long-lived, persisting for days at low temperature. Experiment results will be presented demonstrating that the photoinduced superconductivity state can be quenched using infrared radiation. Implications for the validity of the PISC/PCC defect model will be discussed.

  7. Superconductivity an introduction

    CERN Document Server

    Kleiner, Reinhold

    2016-01-01

    The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An e...

  8. Variable temperature superconducting microscope

    Science.gov (United States)

    Cheng, Bo; Yeh, W. J.

    2000-03-01

    We have developed and tested a promising type of superconducting quantum interference device (SQUID) microscope, which can be used to detect vortex motion and can operate in magnetic fields over a large temperature range. The system utilizes a single-loop coupling transformer, consisting of a patterned high Tc superconducting thin film. At one end of the transformer, a 20 μm diam detecting loop is placed close to the sample. At the other end, a large loop is coupled to a NbTi coil, which is connected to a low Tc SQUID sensor. Transformers in a variety of sizes have been tested and calibrated. The results show that the system is capable of detecting the motion of a single vortex. We have used the microscope to study the behavior of moving vortices at various positions in a YBa2Cu3O7 thin film bridge.

  9. Superconducting energy store

    International Nuclear Information System (INIS)

    Elsel, W.

    1986-01-01

    The advantages obtained by the energy store device according to the invention with a superconducting solenoid system consist of the fact that only relatively short superconducting forward and return leads are required, which are collected into cables as far as possible. This limits the coolant losses of the cables. Only one relatively expensive connecting part with a transition of its conductors from room temperature to a low temperature is required, which, like the normal conducting current switch, is easily accessible. As the continuation has to be cooled independently of the upper part solenoid, cooling of this continuation part can prevent the introduction of large quantities of heat into the connected part solenoid. Due to the cooling of the forward and return conductors of the connecting cable with the coolant of the lower part solenoid, there are relatively few separations between the coolant spaces of the part solenoids. (orig./MM) [de

  10. Statistical mechanics of superconductivity

    CERN Document Server

    Kita, Takafumi

    2015-01-01

    This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...

  11. Superconductivity in Chevrel phases

    International Nuclear Information System (INIS)

    Fischer, O.; Seeber, B.

    1979-01-01

    In the last years several ternary superconductors have been discovered, which possess unusual physical properties. Among them the molybdenum chalcogenides, which are often called Chevrel phases, have a special position. Some of these compounds have very high critical fields, which is of special interest for a technical application. In these substances the coexistence of magnetic ordering and superconductivity has been found for the first time, too. Recently it has become possible to prepare new compounds, which are interesting for superconductivity, by the appropriate coalescence of Mo 6 clusters. In the case of Tl 2 Mo 6 Se 6 (Tsub(c) = 3K) this development leads to a quasi-one-dimensional metallic system. (orig.)

  12. Metastable superconducting alloys

    International Nuclear Information System (INIS)

    Johnson, W.L.

    1978-07-01

    The study of metastable metals and alloys has become one of the principal activities of specialists working in the field of superconducting materials. Metastable crystalline superconductors such as the A15-type materials have been given much attention. Non-crystalline superconductors were first studied over twenty years ago by Buckel and Hilsch using the technique of thin film evaporation on a cryogenic substrate. More recently, melt-quenching, sputtering, and ion implantation techniques have been employed to produce a variety of amorphous superconductors. The present article presents a brief review of experimental results and a survey of current work on these materials. The systematics of superconductivity in non-crystalline metals and alloys are described along with an analysis of the microscopic parameters which underlie the observed trends. The unique properties of these superconductors which arise from the high degree of structural disorder in the amorphous state are emphasized

  13. Superconducting frustration bit

    International Nuclear Information System (INIS)

    Tanaka, Y.

    2014-01-01

    Highlights: • A frustration bit element is proposed for a conventional superconducting circuit. • It is composed of π-junctions. • It mimics the multiband superconductor. - Abstract: A basic design is proposed for a classical bit element of a superconducting circuit that mimics a frustrated multiband superconductor and is composed of an array of π-Josephson junctions (π-junction). The phase shift of π provides the lowest energy for one π-junction, but neither a π nor a zero phase shift gives the lowest energy for an assembly of π-junctions. There are two chiral states that can be used to store one bit information. The energy scale for reading and writing to memory is of the same order as the junction energy, and is thus in the same order of the driving energy of the circuit. In addition, random access is also possible

  14. Superconductivity and spin fluctuations

    International Nuclear Information System (INIS)

    Scalapino, D.J.

    1999-01-01

    The organizers of the Memorial Session for Herman Rietschel asked that the author review some of the history of the interplay of superconductivity and spin fluctuations. Initially, Berk and Schrieffer showed how paramagnon spin fluctuations could suppress superconductivity in nearly-ferromagnetic materials. Following this, Rietschel and various co-workers wrote a number of papers in which they investigated the role of spin fluctuations in reducing the Tc of various electron-phonon superconductors. Paramagnon spin fluctuations are also believed to provide the p-wave pairing mechanism responsible for the superfluid phases of 3 He. More recently, antiferromagnetic spin fluctuations have been proposed as the mechanism for d-wave pairing in the heavy-fermion superconductors and in some organic materials as well as possibly the high-Tc cuprates. Here the author will review some of this early history and discuss some of the things he has learned more recently from numerical simulations

  15. Stabilized superconducting materials and fabrication process

    International Nuclear Information System (INIS)

    Chevallier, B.; Dance, J.M.; Etourneau, J.; Lozano, L.; Tressaud, A.; Tournier, R.; Sulpice, A.; Chaussy, J.; Lejay, P.

    1989-01-01

    Superconducting ceramics are fluorinated at a temperature ≤ 120 0 C. Are also claimed new superconducting materials with a fluorine concentration gradient decreasing from the surface to the core. Superconductivity is stabilized and/or improved [fr

  16. Superconductivity in MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, Takahiro; Akimitsu, Jun [Aoyama Gakuin Univ., Kanagawa (Japan). Dept. of Physics and Mathematics

    2011-07-01

    We review superconductivity in MgB{sub 2} in terms of crystal and electronic structure, electron-phonon coupling, two-gap superconductivity and application. Finally, we introduce the development of new superconducting materials in related compounds. (orig.)

  17. Topological confinement and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  18. Unconventional superconductivity near inhomogeneities

    International Nuclear Information System (INIS)

    Poenicke, A.F.

    2008-01-01

    After the presentation of a quasi-classical theory the specific heat of Sr 2 RuO 4 is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO 2 as example, and an interface model. (HSI)

  19. Unconventional superconductivity near inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Poenicke, A F

    2008-01-25

    After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)

  20. Superconduction at 77 K

    International Nuclear Information System (INIS)

    Mueller, H.G.

    1989-01-01

    This general paper deals with the advantages which may result from the use of ceramic high-temperature superconductors. The use of these new superconductors for generators and electric motors for ship propulsion is regarded as a promising potential defense application. Furthermore, SMES (Superconducting Magnetic Energy Storage) can be used as a 'power compressor' for future high-performance weapon systems such as electromagnetic cannons, high-energy lasers, and high power microwaves. (MM) [de

  1. Advanced superconducting materials

    International Nuclear Information System (INIS)

    Fluekiger, R.

    1983-11-01

    The superconducting properties of various materials are reviewed in view of their use in high field magnets. The critical current densities above 12 T of conductors based on NbN or PbMo 6 S 8 are compared to those of the most advanced practical conductors based on alloyed by Nb 3 Sn. Different aspects of the mechanical reinforcement of high field conductors, rendered necessary by the strong Lorentz forces (e.g. in fusion magnets), are discussed. (orig.) [de

  2. Superconducting magnet wire

    Science.gov (United States)

    Schuller, Ivan K.; Ketterson, John B.; Banerjee, Indrajit

    1986-01-01

    A superconducting tape or wire with an improved critical field is formed of alternating layers of a niobium-containing superconductor such as Nb, NbTi, Nb.sub.3 Sn or Nb.sub.3 Ge with a thickness in the range of about 0.5-1.5 times its coherence length, supported and separated by layers of copper with each copper layer having a thickness in the range of about 170-600 .ANG..

  3. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    Chaddah, P.; Dande, Y.D.; Dasannacharya, B.A.; Malik, M.K.; Raghavan, R.V.

    1987-01-01

    The advantages of low power loss, high magnetic fields and compactness of size of superconducting magnets have generated world-wide interest in using them for MHD generators, Tokamak fusion reactors, energy storage systems etc. With a view to assess the feasibility of using the technology in power engineering in India, the status of the efforts in the country is reviewed and the areas of R and D required are indicated. 13 figures, 15 refs. (author)

  4. Superconducting linear colliders

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The advantages of superconducting radiofrequency (SRF) for particle accelerators have been demonstrated by successful operation of systems in the TRISTAN and LEP electron-positron collider rings respectively at the Japanese KEK Laboratory and at CERN. If performance continues to improve and costs can be lowered, this would open an attractive option for a high luminosity TeV (1000 GeV) linear collider

  5. Superconducting Ferromagnetic Nanodiamond

    Czech Academy of Sciences Publication Activity Database

    Zhang, G.; Samuely, T.; Xu, Z.; Jochum, J. K.; Volodin, A.; Zhou, S. Q.; May, P. W.; Onufriienko, O.; Kacmarik, J.; Steele, J. A.; Li, J.; Vanacken, J.; Vacík, Jiří; Szabo, P.; Yuan, H. F.; Roeffaers, M. B. J.; Cerbu, D.; Samuely, P.; Hofkens, J.; Moshchalkov, V.V.

    2017-01-01

    Roč. 11, č. 6 (2017), s. 5358-5366 ISSN 1936-0851 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA MŠk LM2015056 Institutional support: RVO:61389005 Keywords : nanodiamond * superconductivity and ferromagnetism * spin fluctuations * giant positive magnetoresistance * anamalous Hall effect Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders OBOR OECD: Nano-materials (production and properties ) Impact factor: 13.942, year: 2016

  6. Superconducting cavities for HERA

    International Nuclear Information System (INIS)

    Dwersteg, B.; Ebeling, W.; Moeller, W.D.; Renken, D.; Proch, D.; Sekutowicz, J.; Susta, J.; Tong, D.

    1988-01-01

    Superconducting 500 MHz cavities are developed to demonstrate the feasibility of upgrading the e-beam energy of the HERA storage ring. A prototype module with 2 x 4 cell resonators and appropriate fundamental and higher mode couplers has been designed at DESY and is being built by industrial firms. The design and results of RF and cryogenic measurements are reported in detail. 17 references, 10 figures, 2 tables

  7. Superconductivity is pair work

    International Nuclear Information System (INIS)

    Wengenmayr, Roland

    2011-01-01

    Electric cables that routinely conduct electricity without loss - physicists have been motivated by this idea ever since superconductivity was discovered 100 years ago. Researchers working with Bernhard Keimer at the Max Planck Institute for Solid State Research in Stuttgart and Frank Steglich at the Max Planck Institute for Chemical Physics of Solids in Dresden want to gain a detailed understanding of how unconventional superconductors lose their resistivity. (orig.)

  8. Superconducting Panofsky quadrupoles

    International Nuclear Information System (INIS)

    Harwood, L.H.

    1981-01-01

    A design for a rectangular aperture quadrupole magnet without pole-tips was introduced by Hand and Panofsky in 1959. This design was quite radical but simple to construct. Few magnets of this design were ever built because of the large power needed. With the advent of superconducting coils there has been a renewed interest in them. The mathematical basis, field characteristics, and present and future construction of these magnets are described

  9. Cooldown of superconducting magnet strings

    International Nuclear Information System (INIS)

    Yuecel, A.; Carcagno, R.H.

    1995-01-01

    A numerical model for the cooldown of the superconducting magnet strings in the Accelerator System String Test (ASST) Facility at the Superconducting Super Collider (SSC) Laboratory is presented. Numerical results are compared with experimental data from the ASST test runs. Agreement between the numerical predictions and experiments is very good over the entire range from room temperature to liquid helium temperatures. The model can be readily adapted to predict the cooldown and warmup behavior of other superconducting magnets or cold masses

  10. Superconductivity in borides and carbides

    International Nuclear Information System (INIS)

    Muranaka, Takahiro

    2007-01-01

    It was thought that intermetallic superconductors do not exhibit superconductivity at temperatures over 30 K because of the Bardeen-Cooper-Schrieffer (BCS) limit; therefore, researchers have been interested in high-T c cuprates. Our group discovered high-T c superconductivity in MgB 2 at 39 K in 2001. This discovery has initiated a substantial interest in the potential of high-T c superconductivity in intermetallic compounds that include 'light' elements (borides, carbides, etc.). (author)

  11. Superconducting energy storage magnet

    International Nuclear Information System (INIS)

    Eyssa, Y.M.; Boom, R.W.; Young, W.C.; McIntosh, G.E.; Abdelsalam, M.K.

    1986-01-01

    A superconducting magnet is described comprising: (a) a first, outer coil of one layer of conductor including at least a superconducting composite material; (b) a second, inner coil of one layer of conductor including at least a superconducting composite material. The second coil disposed adjacent to the first coil with each turn of the second inner coil at substantially the same level as a turn on the first coil; (c) an inner support structure between the first and second coils and engaged to the conductors thereof, including support rails associated with each turn of conductor in each coil and in contact therewith along its length at positions on the inwardly facing periphery of the conductor. The rail associated with each conductor is electrically isolated from other rails in the inner support structure. The magnetic field produced by a current flowing in the same direction through the conductors of the first and second coils produces a force on the conductors that are directed inwardly toward the inner support structure

  12. Magnetically leviated superconducting bearing

    Science.gov (United States)

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  13. Lighting up superconducting stripes

    Science.gov (United States)

    Ergeçen, Emre; Gedik, Nuh

    2018-02-01

    Cuprate superconductors display a plethora of complex phases as a function of temperature and carrier concentration, the understanding of which could provide clues into the mechanism of superconductivity. For example, when about one-eighth of the conduction electrons are removed from the copper oxygen planes in cuprates such as La2‑xBaxCuO4 (LBCO), the doped holes (missing electrons) organize into one-dimensional stripes (1). The bulk superconducting transition temperature (Tc) is greatly reduced, and just above Tc, electrical transport perpendicular to the planes (along the c axis) becomes resistive, but parallel to the copper oxygen planes, resistivity remains zero for a range of temperatures (2). It was proposed a decade ago (3) that this anisotropic behavior is caused by pair density waves (PDWs); superconducting Cooper pairs exist along the stripes within the planes but cannot tunnel to the adjacent layers. On page 575 of this issue, Rajasekaran et al. (4) now report detection of this state in LBCO using nonlinear reflection of high-intensity terahertz (THz) light.

  14. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  15. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  16. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-04-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  17. The development of superconducting equipment

    CERN Document Server

    Ueda, T; Hiue, H

    2003-01-01

    Fuji Electric has been developing various types of superconducting equipment for over a quarter of a century. This paper describes the development results achieved for superconducting equipment and especially focuses on large-capacity current leads and superconducting transmission systems, the development of which is being promoted for application to the field of nuclear fusion. High temperature superconductor (HTS) is becoming the mainstream in the field of superconductivity, and the HTS floating coil and conduction-cooled HTS transformed are also introduced as recent developments for devices that utilize this technology. (author)

  18. Superconducting magnet development in Japan

    International Nuclear Information System (INIS)

    Yasukochi, K.

    1983-01-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb 3 Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting μ meson channel and π meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration

  19. Superconducting Nonlinear Kinetic Inductance Devices

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting quantum interference devices, or SQUIDs, are by far the most sensitive magnetometers available, but two issues limit their commercial potential:...

  20. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  1. Cryogenic testing of the TPC superconducting solenoid

    International Nuclear Information System (INIS)

    Green, M.A.; Smits, R.G.; Taylor, J.D.

    1983-06-01

    This report describes the results of a series of tests on the TPC superconducting magnet cryogenic system which occurred during the winter and spring of 1983. The tests occurred at interaction region 2 of the PEP colliding beam facility at the Stanford Linear Accelerator Center (SLAC). The TPC Magnet Cryogenic System which was tested includes the following major components: a remote helium compressor with a full flow liquid nitrogen purification station, 400 meters of high pressure supply and low pressure return lines; and locally a CTi Model 2800 refrigerator with two Sulzer gas bearing turbines, the TPC magnet control dewar, 70 meters of transfer lines, and the TPC thin superconducting solenoid magnet. In addition, there is a conditioner (liquid nitrogen heat exchangers and gas heaters) system for cooldown and warmup of the magnet. This report describes the local cryogenic system and describes the various steps in the cooldown and operation of the TPC magnet. The tests were successful in that they showed that the TPC magnet could be cooled down in 24 hours and the magnet could be operated on the refrigerator or a helium pump with adequate cooling margin. The tests identified problems with the cryogenic system and the 2800 refrigerator. Procedures for successful operation and quenching of the superconducting magnet were developed. 19 references

  2. Process for producing clad superconductive materials

    International Nuclear Information System (INIS)

    Cass, R.B.; Ott, K.C.; Peterson, D.E.

    1992-01-01

    This patent describes a process for fabricating superconducting composite wire. It comprises placing a superconductive precursor admixture capable of undergoing self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within an oxygen-porous metal tube; sealing one end of the tube; igniting the superconductive precursor admixture whereby the superconductive precursor admixture endburns along the length of the admixture; and cross-section reducing the tube at a rate substantially equal to the rate of burning of the superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ

  3. Superconductive magnetic-field-trapping device

    Science.gov (United States)

    Hildebrandt, A. F.; Elleman, D. D.; Whitmore, F. C. (Inventor)

    1965-01-01

    An apparatus which enables the establishment of a magnetic field in air that has the same intensity as the ones in ferromagnetic materials is described. The apparatus is comprised of a core of ferromagnetic material and is surrounded by a cylinder made of a material that has superconducting properties when cooled below a critical temperature. A method is provided for producing a magnetic field through the ferromagnetic core. The core can also be split and pulled apart when it is required that the center of the cavity be left empty.

  4. Nanoscale constrictions in superconducting coplanar waveguide resonators

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, Mark David; Naether, Uta; Ciria, Miguel; Zueco, David; Luis, Fernando, E-mail: fluis@unizar.es [Instituto de Ciencia de Materiales de Aragón, CSIC—Universidad de Zaragoza, 50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Sesé, Javier [Instituto de Nanociencia de Aragón, Universidad de Zaragoza, E-50009 Zaragoza (Spain); Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50009 Zaragoza (Spain); Atkinson, James; Barco, Enrique del [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Sánchez-Azqueta, Carlos [Dpto. de Ingeniería Electrónica y Telecomunicaciones, Universidad de Zaragoza, 50009 Zaragoza (Spain); Majer, Johannes [Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna (Austria)

    2014-10-20

    We report on the design, fabrication, and characterization of superconducting coplanar waveguide resonators with nanoscopic constrictions. By reducing the size of the center line down to 50 nm, the radio frequency currents are concentrated and the magnetic field in its vicinity is increased. The device characteristics are only slightly modified by the constrictions, with changes in resonance frequency lower than 1% and internal quality factors of the same order of magnitude as the original ones. These devices could enable the achievement of higher couplings to small magnetic samples or even to single molecular spins and have applications in circuit quantum electrodynamics, quantum computing, and electron paramagnetic resonance.

  5. Superconductivity in ThPd2Ge2

    Science.gov (United States)

    Domieracki, Krzysztof; Wiśniewski, Piotr; Wochowski, Konrad; Romanova, Tetiana; Hackemer, Alicja; Gorzelniak, Roman; Pikul, Adam; Kaczorowski, Dariusz

    2018-05-01

    Our on-going search for unconventional superconductors among the ThTE2Ge2 phases (TE is a d-electron transition metal) revealed that ThPd2Ge2, which crystallizes with a body-centered tetragonal ThCr2Si2-type structure, exhibits superconductivity at low temperatures. In this paper, we report on the electrical transport and thermodynamic properties of a polycrystalline sample of this new superconductor, extended down to 50 mK. The experimental data indicates weakly-coupled type-II superconductivity with Tc = 0.63(2) K and μ0Hc2(0) = 32(2) mT.

  6. A multicenter, open-label, pilot study evaluating the functionality of an integrated call center for a digital medicine system to optimize monitoring of adherence to oral aripiprazole in adult patients with serious mental illness

    Directory of Open Access Journals (Sweden)

    Kopelowicz A

    2017-10-01

    Full Text Available Alex Kopelowicz,1 Ross A Baker,2 Cathy Zhao,2 Claudette Brewer,3 Erica Lawson,3 Timothy Peters-Strickland2 1David Geffen School of Medicine, University of California, Los Angeles, CA, 2Otsuka Pharmaceutical Development and Commercialization Inc., Princeton, NJ, 3Otsuka Pharmaceutical Development and Commercialization Inc., Rockville, MD, USA Background: Medication nonadherence is common in the treatment of serious mental illness (SMI and leads to poor outcomes. The digital medicine system (DMS objectively measures adherence with oral aripiprazole in near-real time, allowing recognition of adherence issues. This pilot study evaluated the functionality of an integrated call center in optimizing the use of the DMS. Materials and methods: An 8-week, open-label, single-arm trial at four US sites enrolled adults with bipolar I disorder, major depressive disorder, and schizophrenia on stable oral aripiprazole doses and willing to use the DMS (oral aripiprazole + ingestible event marker [IEM], IEM-detecting skin patch, and software application. Integrated call-center functionality was assessed based on numbers and types of calls. Ingestion adherence with prescribed treatment (aripiprazole + IEM during good patch wear and proportion of time with good patch wear (days with ≥80% patch data or detected IEM were also assessed. Results: All enrolled patients (n=49 used the DMS and were included in analyses; disease duration overall approached 10 years. For a duration of 8 weeks, 136 calls were made by patients, and a comparable 160 calls were made to patients, demonstrating interactive communication. The mean (SD number of calls made by patients was 2.8 (3.5. Approximately half of the inbound calls made by patients occurred during the first 2 weeks and were software application- or patch-related. Mean ingestion adherence was 88.6%, and corresponding good patch wear occurred on 80.1% of study days. Conclusion: In this pilot study, the integrated call center

  7. Heavy-ion superconducting linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs

  8. Heavy-ion superconducting linacs

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs.

  9. Meissner effect in superconducting microtraps

    OpenAIRE

    Cano, Daniel

    2009-01-01

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the...

  10. Superconducting magnet for 'ML-100'

    Energy Technology Data Exchange (ETDEWEB)

    Saito, R; Fujinaga, T; Tada, N; Kimura, H

    1974-07-01

    A magneticaly levitated experimental vehicle (Ml-100) was designed and constructed in commemoration of the centenary of the Japanese National Railways. For magnetic levitation the vehicle is provided with two superconducting magnets. In the test operation of the vehicle, these superconducting magnets showed stable performance in levitating vehicle body.

  11. Superconducting bearings for flywheel applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, Asger Bech

    2001-05-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found on the applications of superconducting bearings in flywheels. (au)

  12. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  13. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    parts on optical signals and any quasiparticle loss caused by optical photons on microwave signals. Using a superconducting 3D cavity as the microwave...plasmonic and quasiparticle losses. 3. The electro-optic material should be easily integrable with superconducting circuits. A fully integrated

  14. The Danish Superconducting Cable Project

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1997-01-01

    The design and construction of a superconducting cable is described. The cable has a room temperature dielectric design with the cryostat placed inside the electrical insulation.BSCCO 2223 superconducting tapes wound in helix form around a former are used as the cable conductor. Results from...

  15. the tj model and superconductivity

    African Journals Online (AJOL)

    DJFLEX

    Perhaps that in the reason why their explanations of the superconductivity have had limited scope . A proper theory and mechanism of superconductivity in the ceramic cuprates should take account of magnetism inherent in the compounds. For the (214) compound experiment have revealed strong antiferromagnetic (AF).

  16. Superconducting cavities for beauty factories

    International Nuclear Information System (INIS)

    Lengeler, H.

    1992-01-01

    The possibilities and merits of superconducting accelerating cavities for Beauty-factories are considered. There exist already large sc systems of size and frequency comparable to the ones needed for Beauty-factories. Their status and operation experience is discussed. A comparison of normal conducting and superconducting systems is done for two typical Beauty-factory rings

  17. A superconducting magnetic gear

    International Nuclear Information System (INIS)

    Campbell, A M

    2016-01-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844–46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further. (paper)

  18. Superconductivity at the industrial scale

    International Nuclear Information System (INIS)

    Tixador, P.; Lebrun, Ph.

    2011-01-01

    The discovery of superconductivity is 100 years old but theoretical works are still necessary: the BCS theory does not apply to the new families of high temperature superconducting materials discovered after 1986. In 2001 it was discovered that MgB 2 is superconducting at 39 K, this critical temperature is not the highest but MgB 2 is easy to produce and cheap. Today's highest critical temperature under atmospheric pressure is that of the HgTlBaCaCuO compound: 138 K. The complexity and the cost of cryogenic systems restrain the applications of superconductivity. The author reviews the applications of superconducting in medical imaging, particle detectors, and in the safety systems of power networks. (A.C.)

  19. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  20. Three-terminal superconducting devices

    International Nuclear Information System (INIS)

    Gallagher, W.J.

    1985-01-01

    The transistor has a number of properties that make it so useful. The authors discuss these and the additional properties a transistor would need to have for high performance applications at temperatures where superconductivity could contribute advantages to system-level performance. These properties then serve as criteria by which to evaluate three-terminal devices that have been proposed for applications at superconducting temperatures. FETs can retain their transistor properties at low temperatures, but their power consumption is too large for high-speed, high-density cryogenic applications. They discuss in detail why demonstrated superconducting devices with three terminals -Josephson effect based devices, injection controlled weak links, and stacked tunnel junction devices such as the superconducting transistor proposed by K. Gray and the quiteron -- each fail to have true transistor-like properties. They conclude that the potentially very rewarding search for a transistor compatible with superconductivity in high performance applications must be in new directions

  1. Review of superconducting linacs

    International Nuclear Information System (INIS)

    Bollinger, L.M.

    1992-01-01

    This paper summarizes the status of the technology of superconducting (SC) linacs designed for the acceleration of ions. The emphasis is on the technical issues involved, with only brief descriptions of the numerous linacs now in operation or under construction. Recent developments of special interest are treated in more detail, and remaining technical challenges are outlined. The technology required for acceleration of ions with velocity β ∼ 1 is not discussed because it is almost the same as for relativistic electrons. That is, this paper is mainly about SC linacs for low-velocity heavy ions. (Author) 5 tabs., 6 figs., 29 refs

  2. A superconducting electron spectrometer

    International Nuclear Information System (INIS)

    Guttormsen, M.; Huebel, H.; Grumbkow, A. von

    1983-03-01

    The set-up and tests of an electron spectrometer for in-beam conversion electron measurements are described. A superconducting solenoid is used to transport the electrons from the target to cooled Si(Li) detectors. The solenoid is designed to produce either a homogeneous axially symmetric field of up to 2 Tesla or a variety of field profiles by powering the inner and outer set of coils of the solenoid separately. The electron trajectories resulting for various field profiles are discussed. In-beam electron spectra taken in coincidence with electrons, gammas and alpha-particles are shown. (Auth.)

  3. Superconducting ac cable

    Science.gov (United States)

    Schmidt, F.

    1980-11-01

    The components of a superconducting 110 kV ac cable for power ratings or = 2000 MVA were developed. The cable design is of the semiflexible type, with a rigid cryogenic envelope containing a flexible hollow coaxial cable core. The cable core consists of spirally wound Nb-A1 composite wires electrically insulated by high pressure polyethylene tape wrappings. A 35 m long single phase test cable with full load terminals rated at 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of this cable design.

  4. Superconductivity in nanostructured lead

    Science.gov (United States)

    Lungu, Anca; Bleiweiss, Michael; Amirzadeh, Jafar; Saygi, Salih; Dimofte, Andreea; Yin, Ming; Iqbal, Zafar; Datta, Timir

    2001-01-01

    Three-dimensional nanoscale structures of lead were fabricated by electrodeposition of pure lead into artificial porous opal. The size of the metallic regions was comparable to the superconducting coherence length of bulk lead. Tc as high as 7.36 K was observed, also d Tc/d H was 2.7 times smaller than in bulk lead. Many of the characteristics of these differ from bulk lead, a type I superconductor. Irreversibility line and magnetic relaxation rates ( S) were also studied. S( T) displayed two maxima, with a peak value about 10 times smaller than that of typical high- Tc superconductors.

  5. Remarks on superconductive networks

    International Nuclear Information System (INIS)

    Dominguez, D.; Lopez, A.R.N.; Simonin, J.M.

    1989-01-01

    Some remarks on the determination of the normal-superconductor phase boundary in random superconductive networks are made. A recently reported work by Soukoulis, Grest and Li which introduces weak links between nodes as these are removed in the site percolation problem is discussed. By the analysis of two simple geometries, it is shown that this procedure introduces spurious effects which mask the physical properties of the system. These affect in particular the field slope critical index and the sharpness of the normal-superconductor boundary. (Author)

  6. Superconducting magnet cooling system

    Science.gov (United States)

    Vander Arend, Peter C.; Fowler, William B.

    1977-01-01

    A device is provided for cooling a conductor to the superconducting state. The conductor is positioned within an inner conduit through which is flowing a supercooled liquid coolant in physical contact with the conductor. The inner conduit is positioned within an outer conduit so that an annular open space is formed therebetween. Through the annular space is flowing coolant in the boiling liquid state. Heat generated by the conductor is transferred by convection within the supercooled liquid coolant to the inner wall of the inner conduit and then is removed by the boiling liquid coolant, making the heat removal from the conductor relatively independent of conductor length.

  7. Introduction to superconductivity

    CERN Document Server

    Rose-Innes, A C

    1978-01-01

    Introduction to Superconductivity differs from the first edition chiefly in Chapter 11, which has been almost completely rewritten to give a more physically-based picture of the effects arising from the long-range coherence of the electron-waves in superconductors and the operation of quantum interference devices. In this revised second edition, some further modifications have been made to the text and an extra chapter dealing with """"high-temperature"""" superconductors has been added. A vast amount of research has been carried out on these since their discovery in 1986 but the results, both

  8. Ruthenates: simple superconducting qubits

    International Nuclear Information System (INIS)

    Gulian, Armen M.; Wood, Kent S.

    2004-01-01

    We propose triplet superconductors, such as ruthenates, as a prospective material for qubit construction. The vectorial nature of the order parameter in triplet superconductors makes it conceptually very easy to imagine the performance of the qubits. The Cooper condensate of pairs in triplet superconductors has all the attributes of the Bose-Einstein condensates and should facilitate long decoherence times of these qubits versus other 'vectorial' schemes for qubits, such as small ferromagnets. There are other benefits, which the superconducting state provides for a requirement like entanglement between qubits via the proximity effect

  9. Superconductivity in nanowires

    CERN Document Server

    Bezryadin, Alexey

    2012-01-01

    The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine.One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so i

  10. New theory of superconductivity

    International Nuclear Information System (INIS)

    Bell, A.B.; Bell, D.M.

    1978-01-01

    Based on three earlier papers which treat electromagnetic, elastogravitational, and radiant-nonradiant thermal phenomena in terms of six types of electric or nonelectric charges, the authors classify states of matter as hyperefficient, efficient, semiefficient, and hypoefficient in transmitting a particular type of charge, by means of a generalization of Ohm's law to two or three dimensions. Conventional states of matter (solid, liquid, gas, vacuum) are associated with torsional (gravitational) charges. Applications are made to electric superconductivity of crystals at elevated temperatures, and to frequency shift

  11. AGS superconducting bending magnets

    International Nuclear Information System (INIS)

    Robins, K.E.; Sampson, W.B.; McInturff, A.D.; Dahl, P.F.; Abbatiello, F.; Aggus, J.; Bamberger, J.; Brown, D.; Damm, R.; Kassner, D.; Lasky, C.; Schlafke, A.

    1976-01-01

    Four large aperture superconducting bending magnets are being built for use in the experimental beams at the AGS. Each of these magnets is 2.5 m long and has a room temperature aperture of 20 cm. The magnets are similar in design to the dipoles being developed for ISABELLE and employ a low temperature iron core. Results are presented on the ''training'' behavior of the magnets and a comparison will be made with the smaller aperture versions of this design. The magnet field measurements include end fields and leakage fields as well as the harmonic components of the straight section of the magnet

  12. High gradient superconducting quadrupoles

    International Nuclear Information System (INIS)

    Lundy, R.A.; Brown, B.C.; Carson, J.A.; Fisk, H.E.; Hanft, R.H.; Mantsch, P.M.; McInturff, A.D.; Remsbottom, R.H.

    1987-07-01

    Prototype superconducting quadrupoles with a 5 cm aperture and gradient of 16 kG/cm have been built and tested as candidate magnets for the final focus at SLC. The magnets are made from NbTi Tevatron style cable with 10 inner and 14 outer turns per quadrant. Quench performance and multipole data are presented. Design and data for a low current, high gradient quadrupole, similar in cross section but wound with a cable consisting of five insulated conductors are also discussed

  13. Stabilized superconductive wires

    International Nuclear Information System (INIS)

    Randall, R.N.; Wong, J.

    1976-01-01

    A stable, high field, high current conductor is produced by packing multiple, multi-layer rods of a bronze core and niobium or vanadium inner jacket and copper outer jacket into a pure copper tube or other means for forming a pure copper matrix, sealing, working the packed tube to a wire, and by diffusion, heat treating to form a type II superconducting, Beta-Wolfram structure, intermetallic compound as a layer within each of several filaments derived from the rods. The layer of Beta-Wolfram structure compound may be formed in less than 2 h of diffusion heat treatment in a thickness of 0.5--2μ

  14. Superconducting ac cable

    International Nuclear Information System (INIS)

    Schmidt, F.

    1980-01-01

    The components of a superconducting 110 kV ac cable for power ratings >= 2000 MVA have been developed. The cable design especially considered was of the semiflexible type, with a rigid cryogenic envelope and flexible hollow coaxial cable cores pulled into the former. The cable core consists of spirally wound Nb-Al composite wires and a HDPE-tape wrapped electrical insulation. A 35 m long single phase test cable with full load terminations for 110 kV and 10 kA was constructed and successfully tested. The results obtained prove the technical feasibility and capability of our cable design. (orig.) [de

  15. Modern high-temperature superconductivity

    International Nuclear Information System (INIS)

    Ching Wu Chu

    1988-01-01

    Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs

  16. Interplay between superconductivity and magnetism in iron-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey V [University of Wisconsin

    2015-06-10

    This proposal is for theoretical work on strongly correlated electron systems, which are at the center of experimental and theoretical activities in condensed-matter physics. The interest to this field is driven fascinating variety of observed effects, universality of underlying theoretical ideas, and practical applications. I propose to do research on Iron-based superconductors (FeSCs), which currently attract high attention in the physics community. My goal is to understand superconductivity and magnetism in these materials at various dopings, the interplay between the two, and the physics in the phase in which magnetism and superconductivity co-exist. A related goal is to understand the origin of the observed pseudogap-like behavior in the normal state. My research explores the idea that superconductivity is of electronic origin and is caused by the exchange of spin-fluctuations, enhanced due to close proximity to antiferromagnetism. The multi-orbital/multi-band nature of FeSCs opens routes for qualitatively new superconducting states, particularly the ones which break time-reversal symmetry. By all accounts, the coupling in pnictdes is below the threshold for Mott physics and I intend to analyze these systems within the itinerant approach. My plan is to do research in two stages. I first plan to address several problems within weak-coupling approach. Among them: (i) what sets stripe magnetic order at small doping, (ii) is there a preemptive instability into a spin-nematic state, and how stripe order affects fermions; (iii) is there a co-existence between magnetism and superconductivity and what are the system properties in the co-existence state; (iv) how superconductivity emerges despite strong Coulomb repulsion and can the gap be s-wave but with nodes along electron FSs, (v) are there complex superconducting states, like s+id, which break time reversal symmetry. My second goal is to go beyond weak coupling and derive spin-mediated, dynamic interaction between

  17. Optimization of the powering tests of the LHC superconducting circuits

    CERN Document Server

    Bellesia, B; Denz, R; Fernandez-Robles, C; Pojer, M; Saban, R; Schmidt, R; Solfaroli Camillocci, M; Thiesen, H; Vergara Fernández, A

    2010-01-01

    The Large Hadron Collider has (LHC) 1572 superconducting circuits which are distributed along the eight 3.5 km LHC sectors [1]. Time and resources during the commissioning of the LHC technical systems were mostly consumed by the powering tests of each circuit. The tests consisted in carrying out several powering cycles at different current levels for each superconducting circuit. The Hardware Commissioning Coordination was in charge of planning, following up and piloting the execution of the test program. The first powering test campaign was carried out in summer 2007 for sector 7-8 with an expected duration of 12 weeks. The experience gained during these tests was used by the commissioning team for minimising the duration of the following powering campaigns to comply with the stringent LHC project deadlines. Improvements concerned several areas: strategy, procedures, control tools, automatization, and resource allocation led to an average daily test rate increase from 25 to 200 tests per day. This paper desc...

  18. Inventory of Information Resources; A Comparison of the American Geological Institute (AGI) Pilot Project with the National Referral Center (NRC) Inventory.

    Science.gov (United States)

    Price, John F.

    The National Referral Center (NRC) and its many services to the scientific and technical community are discussed in some detail as a preamble to a proposal of a cooperative arrangement between NRC and the American Geological Institute (AGI), its supporting societies, and all geoscientists in a combined effort to enlarge and maintain a…

  19. Psychometric Evaluation of the Knowledge, Skills, and Attitudes-Part I: Patient-Centered Care Scale (KSAI-PCCS): A Pilot Study

    Science.gov (United States)

    Esslin, Patricia E.

    2016-01-01

    Recognition that adverse events are a significant cause for morbidity and mortality has led to a rise in global efforts to improve patient safety. Adaptations are needed in healthcare institutions and at the educational preparatory level for all healthcare providers. One change surrounds the significance of patient-centered care, an important…

  20. Stability of superconducting cables for use in large magnet systems

    International Nuclear Information System (INIS)

    Tateishi, Hiroshi; Schmidt, C.

    1992-01-01

    The construction of large superconducting magnets requires the development of complicated conductor types, which can fulfill the specific requirements of different types of magnets. A rather hard boundary condition for large magnets is the presence of fast changing magnetic fields. In the Institute of Technical Physics of the Karlsruhe Nuclear Research Center, Germany, a superconducting cable was developed for use in poloidal field coils in Tokamak experiments. This 'POLO'-cable exhibits low losses in a magnetic ac-field and a high stability margin. In the present article the requirements on a superconducting cable are described, as well as the mechanisms of ac-losses and the calculation of the stability limit. Calculated values are compared with experimental data. Some unresolved problems concerning the stability of large magnets are discussed taking the example of the POLO-cable. (author)

  1. A superconducting large-angle magnetic suspension. Final report

    International Nuclear Information System (INIS)

    Downer, J.R.; Anastas, G.V. Jr.; Bushko, D.A.; Flynn, F.J.; Goldie, J.H.; Gondhalekar, V.; Hawkey, T.J.; Hockney, R.L.; Torti, R.P.

    1992-12-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible

  2. Overview on superconducting photoinjectors

    CERN Document Server

    Arnold, A

    2011-01-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...

  3. Superconducting composites materials

    International Nuclear Information System (INIS)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M.

    1991-01-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa 2 Cu 3 O 7-δ material. We first realized a composite material glass/YBa 2 Cu 3 O 7-δ , by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa 2 Cu 3 O 7-δ material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs [fr

  4. Superconducting magnetic energy storage

    International Nuclear Information System (INIS)

    Rogers, J.D.; Boenig, H.J.

    1978-01-01

    Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for diurnal load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. Superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks are being developed. In the fusion area, inductive energy transfer and storage is also being developed by LASL. Both 1-ms fast-discharge theta-pinch and 1-to-2-s slow tokamak energy transfer systems have been demonstrated. The major components and the method of operation of an SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given for a 1-GWh reference design load-leveling unit, for a 30-MJ coil proposed stabilization unit, and for tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are also presented. The common technology base for the systems is discussed

  5. Lightweight superconducting alternators

    International Nuclear Information System (INIS)

    Keim, T.A.

    1988-01-01

    One of the most efficient and most lightweight means of converting high-temperature heat energy to electricity is a turboalternator set. Turboalternators are potentially important components of burst-mode power systems, either chemical or nuclear powered. Also, they are probable key components in future electric propulsion systems. Existing examples of multimegawatt turbomachines have been optimized for a variety of aerospace uses, ranging from aircraft propulsion to rocket engine fuel pump drives. There is no corresponding history of multimegawatt alternators built to aerospace standards of mass, performance, and reliability. This paper discusses one of the few such development efforts presently in progress, and gives an indication of possible future potential. In large power ratings, superconducting generators offer substantial power density, specific weight, and efficiency advantages over competing technologies. A program at GE has led to the construction of a lightweight high-voltage 20-MW generator with a superconducting field winding. The first part of this paper describes the design of the generator. The second projects the capabilities of the generator to other ratings

  6. Superconducting magnet for MAGLEV

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Fumio; Miyairi,; Komei,; Goto, Fumihiko [Hitachi, Ltd., Tokyo, (Japan)

    1989-07-25

    In the superconducting magnet for MAGLEV , the magnet itself travels. It is, therefore, important to know the dynamic behavior which accompanies the traveling; and for the designing of a superconducting magnet, analysis of mechanical characteristics as well as electromagnetic characteristics is required. This is a report on the recent analyzing technology of mechanical characteristics by CAE(Computer Aided Engineering). The analysis is conducted by an on-line system of finite element method. Most important for the analysis are that the analysis model is appropriate and that basic data coincide with the actual condition. Recent analysis results are as follows. Equivalent rigidity of coils can be calculated by an analysis model and the calculated value agrees with the experiment value. Structure of the internal drum can be optimized with the parameter of deformation or stress. Analysis result of a load supporting material agrees with the experiment value when a correction coefficient (0.5) is introduced to the elastic modulus of FRP. 2 refs., 10 figs.

  7. Superconducting Magnets for Accelerators

    Science.gov (United States)

    Brianti, G.; Tortschanoff, T.

    1993-03-01

    This chapter describes the main features of superconducting magnets for high energy synchrotrons and colliders. It refers to magnets presently used and under development for the most advanced accelerators projects, both recently constructed or in the preparatory phase. These magnets, using the technology mainly based on the NbTi conductor, are described from the aspect of design, materials, construction and performance. The trend toward higher performance can be gauged from the doubling of design field in less than a decade from about 4 T for the Tevatron to 10 T for the LHC. Special properties of the superconducting accelerator magnets, such as their general layout and the need of extensive computational treatment, the limits of performance inherent to the available conductors, the requirements on the structural design are described. The contribution is completed by elaborating on persistent current effects, quench protection and the cryostat design. As examples the main magnets for HERA and SSC, as well as the twin-aperture magnets for LHC, are presented.

  8. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  9. Superconductivity and future accelerators

    International Nuclear Information System (INIS)

    Danby, G.T.; Jackson, J.W.

    1963-01-01

    For 50 years particle accelerators employing accelerating cavities and deflecting magnets have been developed at a prodigious rate. New accelerator concepts and hardware ensembles have yielded great improvements in performance and GeV/$. The great idea for collective acceleration resulting from intense auxiliary charged-particle beams or laser light may or may not be just around the corner. In its absence, superconductivity (SC) applied both to rf cavities and to magnets opened up the potential for very large accelerators without excessive energy consumption and with other economies, even with the cw operation desirable for colliding beams. HEP has aggressively pioneered this new technology: the Fermilab single ring 1 TeV accelerator - 2 TeV collider is near the testing stage. Brookhaven National Laboratory's high luminosity pp 2 ring 800 GeV CBA collider is well into construction. Other types of superconducting projects are in the planning stage with much background R and D accomplished. The next generation of hadron colliders under discussion involves perhaps a 20 TeV ring (or rings) with 40 TeV CM energy. This is a very large machine: even if the highest practical field B approx. 10T is used, the radius is 10x that of the Fermilab accelerator. An extreme effort to get maximum GeV/$ may be crucial even for serious consideration of funding

  10. Superconducting current transducer

    International Nuclear Information System (INIS)

    Kuchnir, M.; Ozelis, J.P.

    1990-10-01

    The construction and performance of an electric current meter that operates in liquid He and mechanically splits apart to permit replacement of the current carrying conductor is described. It permits the measurement of currents induced in a loop of superconducting cable and expeditious exchange of such loops. It is a key component for a short sample cable testing facility that requires no high current power supplies nor high current leads. Its superconducting pickup circuit involves a non-magnetic core toroidal split-coil that surrounds the conductor and a solenoid whose field is sensed by a Hall probe. This toroidal split-coil is potted inside another compensating toroidal split-coil. The C shaped half toroids can be separated and brought precisely together from outside the cryostat. The Hall probe is energized and sensed by a lock-in amplifier whose output drives a bipolar power supply which feeds the compensating coil. The output is the voltage across a resistor in this feedback circuit. Currents of up to 10 kA can be measured with a precision of 150 mA. 3 refs., 4 figs

  11. Structural phase transitions and superconductivity in lanthanum copper oxides

    International Nuclear Information System (INIS)

    Crawford, M.K.; Harlow, R.L.; McCarron, E.M.

    1996-01-01

    Despite the enormous effort expended over the past ten years to determine the mechanism underlying high temperature superconductivity in cuprates there is still no consensus on the physical origin of this fascinating phenomenon. This is a consequence of a number of factors, among which are the intrinsic difficulties in understanding the strong electron correlations in the copper oxides, determining the roles played by antiferromagnetic interactions and low dimensionality, analyzing the complex phonon dispersion relationships, and characterizing the phase diagrams which are functions of the physical parameters of temperature and pressure, as well as the chemical parameters of stoichiometry and hole concentration. In addition to all of these intrinsic difficulties, extrinsic materials issues such as sample quality and homogeneity present additional complications. Within the field of high temperature superconductivity there exists a subfield centered around the material originally reported to exhibit high temperature superconductivity by Bednorz and Mueller, Ba doped La 2 CuO 4 . This is structurally the simplest cuprate superconductor. The authors report on studies of phase differences observed between such base superconductors doped with Ba or Sr. What these studies have revealed is a fascinating interplay of structural, magnetic and superconducting properties which is unique in the field of high temperature superconductivity and is summarized in this paper

  12. Pilot implementation

    DEFF Research Database (Denmark)

    Hertzum, Morten; Bansler, Jørgen P.; Havn, Erling C.

    2012-01-01

    A recurrent problem in information-systems development (ISD) is that many design shortcomings are not detected during development, but first after the system has been delivered and implemented in its intended environment. Pilot implementations appear to promise a way to extend prototyping from...... the laboratory to the field, thereby allowing users to experience a system design under realistic conditions and developers to get feedback from realistic use while the design is still malleable. We characterize pilot implementation, contrast it with prototyping, propose a iveelement model of pilot...... implementation and provide three empirical illustrations of our model. We conclude that pilot implementation has much merit as an ISD technique when system performance is contingent on context. But we also warn developers that, despite their seductive conceptual simplicity, pilot implementations can be difficult...

  13. Meissner effect in superconducting microtraps

    International Nuclear Information System (INIS)

    Cano, Daniel

    2009-01-01

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  14. Superconductivity in the 1990's

    International Nuclear Information System (INIS)

    Stekly, Z.J.J.

    1990-01-01

    Superconducting magnets, coils or windings are the basis for a range of major applications in the energy area such as energy storage in superconducting coils, magnets for fusion research, and rotating machinery. Other major applications of superconductivity include high energy physics where 1000 superconducting magnets are operated continuously in the Tevatron at Fermilab in Illinois, over 12,000 superconducting magnets will be required for the superconducting Super Collider being build near Dallas. The largest commercial application of superconductors is in magnets for magnetic resonance imaging (MRI) - a new medical diagnostic imaging technique with about 2,000 systems installed worldwide. These form a sizable technology base on which to evaluate and push forward applications such as magneto hydrodynamic propulsion of seagoing vessels. The attractiveness of which depends ultimately on the characteristics of the superconducting magnet. The magnet itself is a combination of several technology areas - the conductors, magnetics, structures and cryogenics. This paper reviews state-of-the-art in each of the technology areas as they relate to superconductors

  15. Meissner effect in superconducting microtraps

    Energy Technology Data Exchange (ETDEWEB)

    Cano, Daniel

    2009-04-30

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  16. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  17. Signatures of topological superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yang

    2017-07-19

    The prediction and experimental discovery of topological insulators brought the importance of topology in condensed matter physics into the limelight. Topology hence acts as a new dimension along which more and more new states of matter start to emerge. One of these topological states of matter, namely topological superconductors, comes into the focus because of their gapless excitations. These gapless excitations, especially in one dimensional topological superconductors, are Majorana zero modes localized at the ends of the superconductor and exhibit exotic nonabelian statistics, which can be potentially applied to fault-tolerant quantum computation. Given their highly interesting physical properties and potential applications to quantum computation, both theorists and experimentalists spend great efforts to realize topological supercondoctors and to detect Majoranas. In two projects within this thesis, we investigate the properties of Majorana zero modes in realistic materials which are absent in simple theoretical models. We find that the superconducting proximity effect, an essential ingredient in all existing platforms for topological superconductors, plays a significant role in determining the localization property of the Majoranas. Strong proximity coupling between the normal system and the superconducting substrate can lead to strongly localized Majoranas, which can explain the observation in a recent experiment. Motivated by experiments in Molenkamp's group, we also look at realistic quantum spin Hall Josephson junctions, in which charge puddles acting as magnetic impurities are coupled to the helical edge states. We find that with this setup, the junction generically realizes an exotic 8π periodic Josephson effect, which is absent in a pristine Josephson junction. In another two projects, we propose more pronounced signatures of Majoranas that are accessible with current experimental techniques. The first one is a transport measurement, which uses

  18. PTSD: National Center for PTSD

    Medline Plus

    Full Text Available ... by Center Staff Clinician’s Trauma Update PTSD Research Quarterly Publications Search Using the PILOTS Database What is ... Advisory Boards History and Achievements Divisions and Staff Leadership Divisions Executive Behavioral Science Clinical Neurosciences Dissemination & Training ...

  19. PTSD: National Center for PTSD

    Medline Plus

    Full Text Available ... and Coping Treatment Self-Help and Coping PTSD Research Where to Get Help for PTSD Help with ... Articles by Center Staff Clinician’s Trauma Update PTSD Research Quarterly Publications Search Using the PILOTS Database What ...

  20. PTSD: National Center for PTSD

    Medline Plus

    Full Text Available ... Budget, & Performance VA Center for Innovation (VACI) Agency Financial Report (AFR) Budget Submission Recovery Act Resources Business ... Search Where to Get Help PTSD Coach Online Tools to help you manage stress. Search Pilots Search ...

  1. Patient-centered feedback on the results of personality testing increases early engagement in residential substance use disorder treatment: a pilot randomized controlled trial.

    Science.gov (United States)

    Blonigen, Daniel M; Timko, Christine; Jacob, Theodore; Moos, Rudolf H

    2015-03-14

    Patient-centered models of assessment have shown considerable promise for increasing patients' readiness for mental health treatment in general, but have not been used to facilitate patients' engagement in substance use disorder (SUD) treatment. We developed a brief patient-centered intervention using assessment and feedback of personality data and examined its acceptability and efficacy to increase early engagement in residential SUD treatment. Thirty patients entering a 90-day residential SUD treatment program were randomly assigned to a feedback (n = 17) or control (n = 13; assessment-only) condition. Normal-range personality was assessed with the NEO Personality Inventory-Revised (NEO PI-R). Patients were re-interviewed one month after treatment entry to obtain information on their satisfaction with the intervention, as well as their adjustment to the residential milieu. Electronic medical records were reviewed to obtain information on patients' length of stay in the program and discharge status. Univariate ANOVAs and chi-square tests were conducted to examine group differences on outcomes. Patients' ratings indicated strong satisfaction with the feedback intervention and expectations that it would have a positive impact on their treatment experiences. Among patients who had not previously been treated in the residential program, the feedback intervention was associated with more positive relationships with other residents in treatment and a stronger alliance with the treatment program one month after treatment entry. The feedback intervention was also associated with a longer length of stay in treatment, although this effect did not reach statistical significance. The findings highlight the clinical utility of providing SUD patients with patient-centered feedback based on the results of personality testing, and provide preliminary support for the acceptability and efficacy of this intervention to facilitate early engagement in residential SUD treatment.

  2. Superconducting pulsed magnets

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  3. UNK superconducting dipole development

    International Nuclear Information System (INIS)

    Ageev, A.I.; Andreev, N.I.; Balbekov, V.I.

    1987-01-01

    For choozing the design of superconducting dipoles (SCD) for the IHEP UNK the test results for SCD with warm and cold iron are given. The main parameters of dipoles are presented. The SCD designs are described. At present works on SP magnet simulation for UNK are carried out in two directions. Tests are conducted on a rig with a chain of series dipoles with a warm magnetic screen. The purpose of these tests is to study heat exchange and hydraulics in magnets, energy and helium evacuation in emergency magnet transition into normal conditions, simulation of possible cooling and heating schemes. Another direction involves production of short and full-scale dipole models with cold iron and their testing on rigs. The final choice of the dipole design for commercial production is planned for 1987

  4. Superconducting thin films

    International Nuclear Information System (INIS)

    Hebard, A.F.; Vandenberg, J.M.

    1982-01-01

    This invention relates to granular metal and metal oxide superconducting films formed by ion beam sputter deposition. Illustratively, the films comprise irregularly shaped, randomly oriented, small lead grains interspersed in an insulating lead oxide matrix. The films are hillock-resistant when subjected to thermal cycling and exhibit unusual josephson-type switching characteristics. Depending on the oxygen content, a film may behave in a manner similar to that of a plurality of series connected josephson junctions, or the film may have a voltage difference in a direction parallel to a major surface of the film that is capable of being switched from zero voltage difference to a finite voltage difference in response to a current larger than the critical current

  5. Superconducting magnetic coil

    Science.gov (United States)

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  6. Superconducting Magnetic Energy Storage

    International Nuclear Information System (INIS)

    Hassenzahl, W.

    1989-01-01

    Recent programmatic developments in Superconducting Magnetic Energy Storage (SMES) have prompted renewed and widespread interest in this field. In mid 1987 the Defense Nuclear Agency, acting for the Strategic Defense Initiative Office issued a request for proposals for the design and construction of SMES Engineering Test Model (ETM). Two teams, one led by Bechtel and the other by Ebasco, are now engaged in the first phase of the development of a 10 to 20 MWhr ETM. This report presents the rationale for energy storage on utility systems, describes the general technology of SMES, and explains the chronological development of the technology. The present ETM program is outlined; details of the two projects for ETM development are described in other papers in these proceedings. The impact of high Tc materials on SMES is discussed

  7. Superconducting magnets for ISABELLE

    International Nuclear Information System (INIS)

    Sampson, W.B.

    1976-01-01

    The application of superconducting magnet technology to high-energy accelerators has been studied at BNL for many years. Recently this effort has focused on the magnet system for the proposed Intersecting Storage Accelerator, ISABELLE. Several full-sized dipole and quadrupole magnets were fabricated and tested. A dipole was successfully operated using a high pressure forced circulation refrigeration system similar to that proposed for the accelerator. This magnet reached a maximum central field of 4.9 T, considerably above the design field of 3.9 T. A quadrupole of similar design was equally successful, achieving a gradient of 71 T/m compared to the design value of 53 T/m. A summary is given of the present status of the magnet development program, and the direction of future work is outlined

  8. The LHC superconducting cavities

    CERN Document Server

    Boussard, Daniel; Häbel, E; Kindermann, H P; Losito, R; Marque, S; Rödel, V; Stirbet, M

    1999-01-01

    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported.

  9. Superconducting coil protection

    International Nuclear Information System (INIS)

    Woods, E.L.

    1975-01-01

    The protection system is based on a two-phase construction program. Phase I is the development of a reliable hardwired relay control system with a digital loop utilizing firmware and a microprocessor controller. Phase II is an expansion of the digital loop to include many heretofore unmonitored coil variables. These new monitored variables will be utilized to establish early quench detection and to formulate confirmation techniques of the quench detection mechanism. Established quench detection methods are discussed and a new approach to quench detection is presented. The new circuit is insensitive to external pulsed magnetic fields and the associated induced voltages. Reliability aspects of the coil protection system are discussed with respect to shutdowns of superconducting coil systems. Redundance and digital system methods are presented as related topics

  10. Overview on superconducting photoinjectors

    Directory of Open Access Journals (Sweden)

    A. Arnold

    2011-02-01

    Full Text Available The success of most of the proposed energy recovery linac (ERL based electron accelerator projects for future storage ring replacements (SRR and high power IR–free-electron lasers (FELs largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004PSISDG0277-786X10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1  μmrad, and high average current (hundreds of mA are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun. SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University. Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang et al., in Proceedings of the 31st International Free Electron Laser Conference (FEL 09, Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009, p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  11. Summary of existing superconducting magnet experience and its relevance to the safety of fusion magnet

    International Nuclear Information System (INIS)

    Hsieh, S.Y.; Allinger, J.; Danby, G.; Keane, J.; Powell, J.; Prodell, A.

    1975-01-01

    A comprehensive summary of experience with over twenty superconducting magnet systems has been collected through visits to and discussions about existing facilities including, for example, the bubble chamber magnets at Brookhaven National Laboratory, Argonne National Laboratory and Fermi National Accelerator Laboratory, and the large superconducting spectrometer at Stanford Linear Accelerator Center. This summary includes data relating to parameters of these magnets, magnet protection methods, and operating experiences. The information received is organized and presented in the context of its relevance to the safe operation of future, very large superconducting magnet systems for fusion power plants

  12. Can magnetism and superconductivity coexist

    International Nuclear Information System (INIS)

    Ishikawa, M.

    1982-01-01

    Recent syntheses of rare earth (RE) ternary superconductors such as (RE)Mo 6 X 8 (X=S or Se) and (RE)Rh 4 B 4 have provided the first opportunity to explore the interaction between magnetism and superconductivity in detail owing to their particular crystal structure. The regular sublattice of the rare-earth ions in these new ternary compounds undergoes a ferro- or antiferromagnetic phase transition in the superconducting state. If the transition is antiferromagnetic, the superconductivity is preserved so that true coexistence results. If it is ferromagnetic, on the other hand, the superconductivity eventually gives way to uniform ferromagnetism at low temperatures. However, recent theories predict several possible states of coexistence even in ferromagnetic superconductors. This article reviews aspects of these new phase transitions in ternary superconductors. (author)

  13. Superconductivity, energy storage and switching

    International Nuclear Information System (INIS)

    Laquer, H.L.

    1974-01-01

    The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand the zero resistivity of the superconductor can produce essentially infinite time constants so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy. (U.S.)

  14. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  15. Superconductivity in all its states

    CERN Multimedia

    Globe Info

    2011-01-01

    Temporary exhibition at the Saint-Genis-Pouilly Tourist Office. For the 100th anniversary of its discovery, take a plunge into the amazing world of superconductivity. Some materials, when cooled down to extreme temperatures, acquire a remarkable property -  they become superconducting. Superconductivity is a rare example of a quantum effect that can be witnessed on the macroscopic scale and is today at the heart of much research. In laboratories, researchers try to gain a better understanding of its origins, study new superconducting materials, explore the phenomenon at the nanometric scale and pursue their indefatigable search for new applications. Monday to Friday: 09:00 a.m. to 12:00 and 2:30 p.m. to 6:30 p.m. Saturday: 10:00 a.m. to 12:00 noon » Open to all – Admission free For further information: +33 (0)4 50 42 29 37

  16. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  17. The future of superconducting technology

    International Nuclear Information System (INIS)

    Kolm, H.H.

    1974-01-01

    As soon as cryogenic engineering problems are convincingly solved, superconducting technology is destined to play a vital role in mining, pollution control, medicine, power generation and transmission, and metallurgy. (author)

  18. Interplay of magnetism and superconductivity

    International Nuclear Information System (INIS)

    Akhavan, M.

    2006-01-01

    After about two decades of intense research since the discovery of high-temperature superconductivity (HTSC) in cuprates, although many aspects of the physics and chemistry of these cuprate superconductors are now well understood, the underlying pairing mechanism remains elusive. Magnetism and superconductivity are usually thought as incompatible, but in number of special materials including HTSCs these two mutually excluding mechanisms are found to coexist. The presence in a system of superconductivity and magnetism, gives rise to a large number of interesting phenomenon. This article provides perspective on recent developments and their implications for our understanding of the interplay between magnetism and superconductivity in new materials. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  19. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  20. New world of Gossamer superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Kazumi; Haas, Stephan; Parker, David [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Won, Hyekyung [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str. 38, 01187, Dresden (Germany); Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Dora, Balazs; Virosztek, Attila [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary)

    2006-09-15

    Since the discovery of the high-T {sub c} cuprate superconductor La{sub 2-x}BaCuO{sub 4} in 1986 by Bednorz and Mueller, controversy regarding the nature or origin of this remarkable superconductivity has continued. However, d-wave superconductivity in the hole-doped cuprates, arising due to the anti-paramagnon exchange, was established around 1994. More recently we have shown that the mean field theory, like the BCS theory of superconductivity and Landau's Fermi liquid theory are adequate to describe the cuprates. The keys for this development are the facts that a) the pseudogap phase is d-wave density wave (dDW) and that the high-T{sub c} cuprate superconductivity is gossamer (i.e. it exists in the presence of dDW). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. New world of Gossamer superconductivity

    International Nuclear Information System (INIS)

    Maki, Kazumi; Haas, Stephan; Parker, David; Won, Hyekyung; Dora, Balazs; Virosztek, Attila

    2006-01-01

    Since the discovery of the high-T c cuprate superconductor La 2-x BaCuO 4 in 1986 by Bednorz and Mueller, controversy regarding the nature or origin of this remarkable superconductivity has continued. However, d-wave superconductivity in the hole-doped cuprates, arising due to the anti-paramagnon exchange, was established around 1994. More recently we have shown that the mean field theory, like the BCS theory of superconductivity and Landau's Fermi liquid theory are adequate to describe the cuprates. The keys for this development are the facts that a) the pseudogap phase is d-wave density wave (dDW) and that the high-T c cuprate superconductivity is gossamer (i.e. it exists in the presence of dDW). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Positron annihilation in superconductive metals

    Energy Technology Data Exchange (ETDEWEB)

    Dekhtjar, I.J.

    1969-03-10

    A correlation is shown between the parameters of superconductive metals and those of positron annihilation. Particular attention is paid to the density states obtained from the electron specific heat.

  3. Superconducting linacs used with tandems

    International Nuclear Information System (INIS)

    Ben-Zvi, I.

    1984-01-01

    The main features of superconducting linacs used as post-accelerators of tandems are reviewed. Various aspects of resonators, cryogenics and electronics are discussed, and recent advances in the field are presented. (orig.)

  4. A Pilot Study of a 6-Week Parenting Program for Mothers of Pre-school Children Attending Family Health Centers in Karachi, Pakistan

    Directory of Open Access Journals (Sweden)

    Yasmin Khowaja

    2016-02-01

    Full Text Available Background Recently, parenting programs to address behavioural and emotional problems associated with child maltreatment in developing countries have received much attention. There is a paucity of literature on effective parent education interventions in the local context of Pakistan. This study aimed to assess the feasibility of offering a 6-week parenting program for mothers of pre-school children attending family health centres (FHCs in Karachi, the largest metropolitan city of Pakistan. Methods A pilot quasi-experimental trial was conducted. Two FHCs were selected, one as the intervention and the second as the control. A total of 57 mothers of pre-school children (n = 30 intervention; n = 27 control participated in this study. Mothers in the intervention group received SOS Help for parents module, while mothers in the control group received information about routine childcare. A parenting scale (PS was administered before the program was implemented and repeated 2 weeks after the program was completed in both groups. Statistical analysis was performed to compare participants’ attributes. Descriptive analysis was conducted to compare pre- and post-test mean scores along with standard deviation for parenting subscales in the intervention and control groups. Results A total of 50 mothers (n = 25 intervention; n = 25 control completed the 6-week program. Attrition was observed as 5/30 (17% in the intervention arm and 2/27 (2% in the control arm. Mothers commonly reported the burden of daily domestic and social responsibilities as the main reason for dropping out. Furthermore, the majority of participants in the control group recommended increasing the duration of weekly sessions from 1 to 1.5 hours, thereby decreasing the program period from 6 to 4 weeks. Mothers in intervention group reported substantial improvement in parenting skills as indicated by mean difference in their pre- and post-test scores for laxness and over

  5. Superconductive energy storage magnet study

    International Nuclear Information System (INIS)

    Rhee, S.W.

    1982-01-01

    Among many methods of energy storages the superconducting energy storage has been considered as the most promising method. Many related technical problems are still unsolved. One of the problems is the magnetizing and demagnetizing loss of superconducting coil. This loss is mainly because of hysteresis of pinning force. In this paper the hysteresis loss is calculated and field dependence of the a.c. losses is explained. The ratio of loss and stored energy is also calculated. (Author)

  6. Cryostat for TRISTAN superconducting cavity

    International Nuclear Information System (INIS)

    Mitsunobu, S.; Furuya, T.; Hara, K.

    1990-01-01

    Superconducting cavities generate rather high heat load of hundreds watts in one cryostat and have high sensitivity for pressure. We adopted usual pool-boiling type cooling for its stable pressure operation. Two 5-cell Nb cavities were installed in one flange type cryostat. Tuning mechanics actuated by a pulse-motor and a Piezo-electric element are set at outside of vacuum end flange. The design and performance of the cryostat for TRISTAN superconducting cavities are described. (author)

  7. Radiation resistant ducted superconductive coil

    International Nuclear Information System (INIS)

    Schleich, A.

    1976-01-01

    The radiation-resistant ducted superconductive coil consists of a helically wound electrical conductor constituted by an electrically conductive core of superconductive material provided with a longitudinally extending cooling duct. The core is covered with a layer of inorganic insulating material and the duct is covered by an electrically conductive metallic gas-tight sheath. The metallic sheaths on adjacent turns of the coil are secured together. 2 Claims, 4 Drawing Figures

  8. Superconductivity in inhomogeneous granular metals

    International Nuclear Information System (INIS)

    McLean, W.L.

    1980-01-01

    A model of elongated metal ellipsoids imbedded in a granular metal is treated by an effective medium approach to explain the observed temperature dependence of the normal-state conductivity of superconducting granular aluminum. Josephson tunneling is thus still required to account for the superconductivity. The model predicts the same kind of contrasting behavior on opposite sides of the metal-insulator transition as is found in the recent scaling treatment of Anderson localization

  9. Superconducting magnet applications in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Berglund, P; Collan, H K; Lounasmaa, O V

    1983-01-01

    A short review of superconducting magnet applications in Finland is presented. The development work was done in areas that seem to offer potential for a significant break-through technology. So far our efforts have covered magnetic separation, electric DC machinery and medical NMR imaging, and it is now being extended to biological NMR on living tissue and to particle physics experiments. Our work has been facilitated by the recently started fabrication of domestic superconducting wire.

  10. Superconducting Radio-Frequency Cavities

    Science.gov (United States)

    Padamsee, Hasan S.

    2014-10-01

    Superconducting cavities have been operating routinely in a variety of accelerators with a range of demanding applications. With the success of completed projects, niobium cavities have become an enabling technology, offering upgrade paths for existing facilities and pushing frontier accelerators for nuclear physics, high-energy physics, materials science, and the life sciences. With continued progress in basic understanding of radio-frequency superconductivity, the performance of cavities has steadily improved to approach theoretical capabilities.

  11. Hermetically sealed superconducting magnet motor

    Science.gov (United States)

    DeVault, Robert C.; McConnell, Benjamin W.; Phillips, Benjamin A.

    1996-01-01

    A hermetically sealed superconducting magnet motor includes a rotor separated from a stator by either a radial gap, an axial gap, or a combined axial and radial gap. Dual conically shaped stators are used in one embodiment to levitate a disc-shaped rotor made of superconducting material within a conduit for moving cryogenic fluid. As the rotor is caused to rotate when the field stator is energized, the fluid is pumped through the conduit.

  12. Superconducting composite for magnetic bearings

    International Nuclear Information System (INIS)

    Rigney, T.K. II.

    1995-01-01

    A composite includes granules of Type II superconducting material and granules of rare-earth permanent magnets that are distributed in a binder. The composite is a two-phase structure that combines the properties of the superconductor and magnets with the flexibility and toughness of a polymeric material. A bearing made from this composite has the load capacity and stiffness of a permanent magnet bearing with added stability from a Type II superconducting material. 7 figs

  13. Superconducting versus normal conducting cavities

    CERN Document Server

    Podlech, Holger

    2013-01-01

    One of the most important issues of high-power hadron linacs is the choice of technology with respect to superconducting or room-temperature operation. The favour for a specific technology depends on several parameters such as the beam energy, beam current, beam power and duty factor. This contribution gives an overview of the comparison between superconducting and normal conducting cavities. This includes basic radiofrequency (RF) parameters, design criteria, limitations, required RF and plug power as well as case studies.

  14. Conceptual design report: superconducting booster

    International Nuclear Information System (INIS)

    1983-01-01

    The Superconducting Booster project includes the construction of a new high-voltage injector and buncher for the existing tandem, a magnetic transport system, an rf linac with superconducting resonators, and a rebuncher-debuncher. The booster will fit in existing space so that a new building is not required. The layout of the accelerator is given in Fig. I-1. The University of Washington is contributing approximately $1 M to this project

  15. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  16. Superconductivity in domains with corners

    DEFF Research Database (Denmark)

    Bonnaillie-Noel, Virginie; Fournais, Søren

    2007-01-01

    We study the two-dimensional Ginzburg-Landau functional in a domain with corners for exterior magnetic field strengths near the critical field where the transition from the superconducting to the normal state occurs. We discuss and clarify the definition of this field and obtain a complete...... asymptotic expansion for it in the large $\\kappa$ regime. Furthermore, we discuss nucleation of superconductivity at the boundary....

  17. The superconducting bending magnets 'CESAR'

    CERN Document Server

    Pérot, J

    1978-01-01

    In 1975, CERN decided to build two high precision superconducting dipoles for a beam line in the SPS north experimental area. The aim was to determine whether superconducting magnets of the required accuracy and reliability can be built and what their economies and performances in operation will be. Collaboration between CERN and CAE /SACLAY was established in order to make use of the knowledge and experience already acquired in the two laboratories. (0 refs).

  18. Similarity in the superconducting properties of chalcogenides, cuprate oxides and fullerides

    International Nuclear Information System (INIS)

    Tsendin, K.D.; Popov, B.P.; Denisov, D.V.

    2004-01-01

    The idea of Anderson pairs has been put forward for explanation of many extraordinary properties of chalcogenides glassy semiconductors. Recent decades made obvious that these pairs localized on the centers with negative effective correlation energy (negative-U centers) really exist in chalcogenides. If the concentration of negative-U centers is enough to create the pair band states, this can lead to superconductivity because Anderson pairs are Bose particles. In the present paper we show that several puzzling superconductivity properties of chalcogenides, high-temperature cuprate superconductors and fullerides are similar for these three groups of materials and can be naturally explained in the frame of negative-U centers model of superconductivity

  19. Patient experiences with self-monitoring renal function after renal transplantation: results from a single-center prospective pilot study

    Directory of Open Access Journals (Sweden)

    van Lint CL

    2015-12-01

    Full Text Available Céline L van Lint,1 Paul JM van der Boog,1 Wenxin Wang,2,3 Willem-Paul Brinkman,2 Ton JM Rövekamp,3 Mark A Neerincx,2 Ton J Rabelink,1 Sandra van Dijk1,4 1Department of Nephrology, Leiden University Medical Centre (LUMC, Leiden, 2Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, 3Department of Technology in Healthcare, Prevention and Health, Dutch Organization for Applied Scientific Research (TNO, Leiden, 4Department of Health, Medical and Neuropsychology, Faculty of Social and Behavioural Sciences, Leiden University, Leiden, the Netherlands Background: After a kidney transplantation, patients have to visit the hospital often to monitor for early signs of graft rejection. Self-monitoring of creatinine in addition to blood pressure at home could alleviate the burden of frequent outpatient visits, but only if patients are willing to self-monitor and if they adhere to the self-monitoring measurement regimen. A prospective pilot study was conducted to assess patients’ experiences and satisfaction.Materials and methods: For 3 months after transplantation, 30 patients registered self-measured creatinine and blood pressure values in an online record to which their physician had access to. Patients completed a questionnaire at baseline and follow-up to assess satisfaction, attitude, self-efficacy regarding self-monitoring, worries, and physician support. Adherence was studied by comparing the number of registered with the number of requested measurements.Results: Patients were highly motivated to self-monitor kidney function, and reported high levels of general satisfaction. Level of satisfaction was positively related to perceived support from physicians (P<0.01, level of self-efficacy (P<0.01, and amount of trust in the accuracy of the creatinine meter (P<0.01. The use of both the creatinine and blood pressure meter was considered pleasant and useful, despite the level of trust in the

  20. Process of producing superconducting bar magnets

    International Nuclear Information System (INIS)

    Wilson, M.A.

    1988-01-01

    A method of forming a magnet having an established magnetic field is described comprising; (1) establishing a magnetic field of the desired extent and shape; (2) providing a superconducting material of desired shape; (3) positioning the material of (2) in field (1) while at a temperature above the critical temperature of the superconducting material so as to apply a magnetic field on the superconducting material; (4) cooling the superconducting material while in magnetic field (1) to below the critical temperature of the superconducting material; (5) removing the superconducting material from the magnetic field while in the supercooled condition; and (6) maintaining the material at or below the critical temperature

  1. Elevated cranial ultrasound resistive indices are associated with improved neurodevelopmental outcomes one year after pediatric cardiac surgery: A single center pilot study.

    Science.gov (United States)

    Jenks, Christopher L; Hernandez, Ana; Stavinoha, Peter L; Morris, Michael C; Tian, Fenghua; Liu, Hanli; Garg, Parvesh; Forbess, Joseph M; Koch, Joshua

    To determine if a non-invasive, repeatable test can be used to predict neurodevelopmental outcomes in patients with congenital heart disease. This was a prospective study of pediatric patients less than two months of age undergoing congenital heart surgery at the Children's Health Children's Medical Center at Dallas. Multichannel near-infrared spectroscopy (NIRS) was utilized during the surgery, and ultrasound (US) resistive indices (RI) of the major cranial vessels were obtained prior to surgery, immediately post-operatively, and prior to discharge. Pearson's correlation, Fischer exact t test, and Fischer r to z transformation were used where appropriate. A total of 16 patients were enrolled. All had US data. Of the sixteen patients, two died prior to the neurodevelopmental testing, six did not return for the neurodevelopmental testing, and eight patients completed the neurodevelopmental testing. There were no significant correlations between the prior to surgery and prior to discharge US RI and neurodevelopmental outcomes. The immediate post-operative US RI demonstrated a strong positive correlation with standardized neurodevelopmental outcome measures. We were able to demonstrate qualitative differences using multichannel NIRS during surgery, but experienced significant technical difficulties implementing consistent monitoring. A higher resistive index in the major cerebral blood vessels following cardiac surgery in the neonatal period is associated with improved neurological outcomes one year after surgery. Obtaining an ultrasound with resistive indices of the major cerebral vessels prior to and after surgery may yield information that is predictive of neurodevelopmental outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. The YMCA Healthy, Fit, and Strong Program: a community-based, family-centered, low-cost obesity prevention/treatment pilot study.

    Science.gov (United States)

    Schwartz, Robert P; Vitolins, Mara Z; Case, L Douglas; Armstrong, Sarah C; Perrin, Eliana M; Cialone, Josephine; Bell, Ronny A

    2012-12-01

    Many resources are available for adults, but there are few community-based programs for overweight and obese children. Community engagement may be instrumental in overcoming barriers physicians experience in managing childhood obesity. Our objective was to design and test the feasibility of a community-based (YMCA), family-centered, low-cost intervention for overweight and obese children. Children 6-11 years over the 85th BMI percentile for age and sex were recruited to YMCA sites in four North Carolina communities. The children had physical activity sessions three times weekly for 3 months (one activity session weekly was family night). The parents received a once-weekly nutrition education class conducted by a registered dietitian using the NC Eat Smart Move More curriculum (10 sessions). Changes in BMI were measured at 3, 6, and 12 months and diet and activity behaviors at 3 and 12 months after baseline. Significant reductions were observed in BMI percentile for age and BMI z-scores at 3, 6, and 12 months. Improvements occurred in dietary and physical activity behaviors, including drinking fewer sugar-sweetened beverages, spending more time in physically active behaviors, and spending less time in sedentary behaviors. The program was low-cost, and qualitative comments suggest the parents and children benefited from the experience. This low-cost YMCA-based intervention was associated with BMI reductions and positive nutritional and activity behavior changes, providing an additional strategy for addressing childhood obesity in community settings.

  3. Helping Hand: The Salin Kaalaman Tungo sa Kaunlaran Extension Program of Polytechnic University of the Philippines Among the Beneficiaries of the Pilot Centers in Sta. Mesa, Manila, Philippines

    Directory of Open Access Journals (Sweden)

    Junnette B. Hasco

    2016-11-01

    Full Text Available One of the four-fold functions of State Universities and Colleges in accordance by their mandates was to provide assistance to communities; this was achieved thru conducting different skills and development trainings in partnership with Local Government Units (LGU’s. This study was conducted to assess the current Extension program of the Polytechnic University of the Philippines (PUP. Some 74 beneficiaries from the 23 centers of Sta. Mesa, Manila were identified through the use of purposive sampling. The data gathering made use of aided surveys. Weighted Mean and Pearson Product Moment of Correlation was used to treat and process statistical data. Findings revealed that the Extension Services conducted by the PUP Salin Kaalaman Tungo sa Kaunlaran Extension Program (SALIN were highly effective regarding Information Dissemination, Staff and Officials, Trainings and Programs, Trainers and Speakers, Programs, Accommodation and Venue and the personal impact of the Extension Program to the Beneficiaries. Satisfaction rating on the extension program was also high. Further, this study found out that as respondents are satisfied with the implementation of SALIN, the greater the chance of positive assessment on the effectiveness of the project. The study also disclosed problems and recommendations identified by the respondents. In addressing the research gaps, this study further identified recommendations to enhance capabilities of program implementers such as better execution in the delivery of extension services, fund sourcing and forging linkages or networking.

  4. How are the temporary workers? Quality of life and burn-out in a call center temporary employment in Italy: a pilot observational study

    Directory of Open Access Journals (Sweden)

    Alice Mannocci

    2014-06-01

    Full Text Available OBJECTIVES. The aim of this study was to quantify the level of health related quality of life and burnout in a call centers sample of precarious workers. METHODS. An observational study was carried out in Italy. A self-reported anonymous questionnaire was administered to temporary workers in order to estimate burn-out and quality of life levels. RESULTS. 227 questionnaires were collected. 78% of the sample was female and the mean age was 35.48 years (SD = 9.91. Among the participants, 40% were smokers, 42% regularly drinkers, 65% changed the body weight (more than 5 kg, in 1 year. The mental component score (MCS was significantly better in subject that have a regularly life style, for example in those no change their body weight (p = 0.001, sleep more than 7 hours (p = 0.018 and followed a diet (p = 0.035. The DP (depersonalization is significant higher in former smokers (p = 0.031, in underweight subjects (p = 0.025 and in the group that have a precarious employment of over 2 years (p = 0.013. CONCLUSIONS. This investigation shows that in this particular category of atypical workers depressive symptoms and quality of life were lower than the general population. It is important to underline that the interpretation of the results is limited partly by the observational character of the study.

  5. Medicare and Medicaid programs: Hospital Outpatient Prospective Payment and Ambulatory Surgical Center Payment Systems and Quality Reporting Programs; electronic reporting pilot; Inpatient Rehabilitation Facilities Quality Reporting Program; revision to Quality Improvement Organization regulations. Final rule with comment period.

    Science.gov (United States)

    2012-11-15

    This final rule with comment period revises the Medicare hospital outpatient prospective payment system (OPPS) and the Medicare ambulatory surgical center (ASC) payment system for CY 2013 to implement applicable statutory requirements and changes arising from our continuing experience with these systems. In this final rule with comment period, we describe the changes to the amounts and factors used to determine the payment rates for Medicare services paid under the OPPS and those paid under the ASC payment system. In addition, this final rule with comment period updates and refines the requirements for the Hospital Outpatient Quality Reporting (OQR) Program, the ASC Quality Reporting (ASCQR) Program, and the Inpatient Rehabilitation Facility (IRF) Quality Reporting Program. We are continuing the electronic reporting pilot for the Electronic Health Record (EHR) Incentive Program, and revising the various regulations governing Quality Improvement Organizations (QIOs), including the secure transmittal of electronic medical information, beneficiary complaint resolution and notification processes, and technical changes. The technical changes to the QIO regulations reflect CMS' commitment to the general principles of the President's Executive Order on Regulatory Reform, Executive Order 13563 (January 18, 2011).

  6. A 3-Month Randomized Controlled Pilot Trial of a Patient-Centered, Computer-Based Self-Monitoring System for the Care of Type 2 Diabetes Mellitus and Hypertension.

    Science.gov (United States)

    Or, Calvin; Tao, Da

    2016-04-01

    This study was performed to evaluate the effects of a patient-centered, tablet computer-based self-monitoring system for chronic disease care. A 3-month randomized controlled pilot trial was conducted to compare the use of a computer-based self-monitoring system in disease self-care (intervention group; n = 33) with a conventional self-monitoring method (control group; n = 30) in patients with type 2 diabetes mellitus and/or hypertension. The system was equipped with a 2-in-1 blood glucose and blood pressure monitor, a reminder feature, and video-based educational materials for the care of the two chronic diseases. The control patients were given only the 2-in-1 monitor for self-monitoring. The outcomes reported here included the glycated hemoglobin (HbA1c) level, fasting blood glucose level, systolic blood pressure, diastolic blood pressure, chronic disease knowledge, and frequency of self-monitoring. The data were collected at baseline and at 1-, 2-, and 3-month follow-up visits. The patients in the intervention group had a significant decrease in mean systolic blood pressure from baseline to 1 month (p computer-assisted and conventional disease self-monitoring appear to be useful to support/maintain blood pressure and diabetes control. The beneficial effects of the use of electronic self-care resources and support provided via mobile technologies require further confirmation in longer-term, larger trials.

  7. Development of superconducting tunnel junction radiation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Katagiri, Masaki; Kishimoto, Maki; Ukibe, Masahiro; Nakamura, Tatsuya; Nakazawa, Masaharu [Japan Atomic Energy Research Inst., Tokyo (Japan); Kurakado, Masahiko; Ishibashi, Kenji; Maehata, Keisuke

    1998-07-01

    Study on development of high energy resolution X-ray detector using superconducting tunnel junction (STJ) for radiation detection was conducted for 5 years under cooperation of University of Tokyo group and Kyushu University group by Quantum measurement research group of Advanced fundamental research center of JAERI. As the energy resolution of STJ could be obtained better results than that of Si semiconductor detector told to be actually best at present, this study aimed to actualize an X-ray detector usable for the experimental field and to elucidate radiation detection mechanism due to STJ. The STJ element used for this study was the one developed by Kurakado group of Nippon Steel Corp. As a results, some technical problems were almost resolved, which made some trouble when using the STJ element to detection element of X-ray spectrometer. In order to make the X-ray detector better, it is essential to manufacture a STJ element and develop serial junction type STJ element on the base of optimization of the element structure and selection and single crystallization of new superconducting materials such as Ta and others, activating the research results. (G.K.)

  8. Stability of high field superconducting dipole magnets

    International Nuclear Information System (INIS)

    Allinger, J.; Danby, G.; Foelsche, H.; Jackson, J.; Prodell, A.; Stevens, A.

    1977-01-01

    Superconducting dipole magnets of the window-frame type were constructed and operated successfully at Brookhaven National Laboratory. Examples of this type of magnet are the 6 T ''Model T'' magnet, and the 4 T 8 0 superconducting bending magnet. The latter magnet operated reliably since October 1973 as part of the proton beam transport to the north experimental area at the BNL AGS with intensities of typically 8 x 10 12 protons at 28.5 GeV/c passing through the magnet in a curved trajectory with the proton beam center only 2.0 cm from the beam pipe at both ends and the middle of each of the two units comprising the magnet. The energy in the beam is approximately 40 kJ per 3 μsec pulse. Targets were inserted in the beam at locations 2 m and 5.6 m upstream of the first magnet unit to observe the effects of radiation heating. The 8 0 magnet demonstrated ultrastability, surviving 3 μsec thermal pulses delivering up to 1 kJ into the cold magnet at repetition periods as short as 1.3 sec

  9. Structural materials for large superconducting magnets for tokamaks

    International Nuclear Information System (INIS)

    Long, C.J.

    1976-12-01

    The selection of structural materials for large superconducting magnets for tokamak-type fusion reactors is considered. The important criteria are working stress, radiation resistance, electromagnetic interaction, and general feasibility. The most advantageous materials appear to be face-centered-cubic alloys in the Fe-Ni-Cr system, but high-modulus composites may be necessary where severe pulsed magnetic fields are present. Special-purpose structural materials are considered briefly

  10. Direct visualization of the Campbell regime in superconducting stripes

    OpenAIRE

    Kramer, R. B. G.; Ataklti, G. W.; Moshchalkov, V. V.; Silhanek, Alejandro

    2010-01-01

    A combination of scanning Hall microscopy and scanning ac-susceptibility measurements in superconducting stripes (ribbons) of width w < 10 mu m was used to observe the dimensional phase transitions of the vortex lattice and its stability under alternating fields. At low dc magnetic fields applied perpendicularly to the plane of the stripes, vortices form a one-dimensional chain at the center of the stripes. Above a certain field H*(w), the vortex chain splits in two parallel rows displaced la...

  11. Superconducting permanent magnets

    International Nuclear Information System (INIS)

    Wipf, S.L.; Laquer, H.L.

    1989-01-01

    The concept of superconducting permanent magnets with fields trapped in shells or cylinders of Type II superconductors is an old one. Unfortunately, the low values of 0.5 to 1T for the first flux jump field, which is independent of the actual current density, have frustrated its implementation with classical Type II superconductors. The fact that the flux jump fields for high temperature superconductors should be an order of magnitude larger at liquid nitrogen temperatures allows us to reconsider these options. Analysis of the hysteresis patterns, based on the critical state model, shows that, if the dimensions are chosen so that the sample is penetrated at a field B/sub p/, which is equal to or just less than the first flux jump field, B/sub fj/, a temporarily applied field of 2B/sub fj/ will trap 0.5 B/sub fj/. Thus for a 90 K superconductor with a B/sub fj/ of 6T, a permanent field of 3 T should be trapped, with an energy product of 1.8 MJ/m/sup 3/ (225 MG . Oe). This is five times as large as for the best permanent magnet materials. The authors discuss means to verify the analysis and the limitations imposed by the low critical current densities in presently available high temperature superconductors

  12. SNS superconducting linac

    International Nuclear Information System (INIS)

    Sundelin, Ronald M.

    2001-01-01

    The Spallation Neutron Source (SNS) decided in early 2000 to use superconducting RF (SRF) in the linac at energies above 185 MeV. Since the SNS duty cycle is 6%, the SRF and normal conducting approaches have capital costs which are about the same, but operating costs and future upgradability are improved by using SRF. The current status of cavity and cryomodule development and procurement, including the basis for decisions made, is discussed. The current plan includes use of 805 MHz, 6-cell cavities with geometrical betas of 0.61 and 0.81. There are 33 medium beta and 60 high beta cavities in 11 and 15 cryomodules, respectively. Each cavity (except the 93rd) is powered by a 550 kW pulsed klystron. Issues addressed include choice of peak surface gradient, optimization of cavity shape, selection of a scaled KEK input power coupler, selection of scaled TESLA higher mode couplers, and control of the effects of higher order modes on the beam. (author)

  13. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  14. RF superconductivity at CEBAF

    International Nuclear Information System (INIS)

    1990-01-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) is a 4 GeV continuous beam electron accelerator being constructed to perform nuclear physics research. Construction began in February 1987 and initial operation is scheduled for February 1994. The present report describes its prototyping, problems/solutions, further development, facilities, design status, production and upgrade potential. The accelerator is 1.4 km in circumference, and has a race-track shape. It is of the recirculated linear accelerator type, and employs a total of five passes. Two linacs on opposite sides of the race-track each provide 400 MeV per pass. Beams of various energies are transported by separated arcs at each end of the straight sections to provide the recirculation. There are 4 recirculation arcs at the injector end, and 5 arcs at the other end. The full energy beam is routed by an RF separator to between one and three end stations, as desired, on a bucket-by-bucket basis. The average output beam current is 200 microamperes. Acceleration is provided by 338 superconducting cavities, which are arranged in pairs, each of which is enclosed in a helium vessel and suspended inside a vacuum jacket without ends. (N.K.)

  15. Superconductivity of small particles

    International Nuclear Information System (INIS)

    Leavens, C.R.; Fenton, E.W.

    1981-01-01

    The Eliashberg gap equations are used to investigate the contribution of surface-phonon softening to the size dependence of the superconducting transition temperature (T/sub c/) of small metallic particles. Because of our limited quantitative knowledge of phonon spectra and electron-phonon coupling in the surface region, the effect cannot be calculated with certainty. Previous calculations which agree with experiment depend on a fortuitous choice of input parameters which cannot be justified at present. For this reason the absence of any observable size effect for T/sub c/ in Pb is especially important. This null effect is obtained in Pb if the electron-phonon coupling strength is the same in the surface region as in the bulk. This assumption can be tested experimentally because it means that the energy gap of Pb should not be independent of particle size but rather should increase significantly with decreasing radius. Hence, measurement of the size dependence of the energy gap for well-characterized small particles of Pb could provide information regarding the importance of the phonon-softening mechanism, at least for Pb

  16. Superconducting bearings in flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A.; Campbell, A.M.; Ganney, I.; Lo, W. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Twardowski, T. [International Energy Systems, Chester High Road, Neston, South Wirral (United Kingdom); Dawson, B. [British Nuclear Fuels, Capenhurst, South Wirral (United Kingdom)

    1998-05-01

    Investigations are being carried out into the use of superconducting magnetic bearings to levitate energy storage flywheels. In a planned program of work, Cambridge University are aiming to produce a practical bearing system for Pirouette(TM). The Pirouette(TM) system is designed to provide 5 kWh of recoverable energy which is currently recoverable at a rate of 5 kW (future revisions will provide up to 50 kW). IES (a British Nuclear Fuels subsidiary) the owners of the Pirouette(TM) machine have supplied Cambridge with a flywheel. This flywheel weighs >40 kg and is being levitated using an Evershed-type arrangement in which the superconductor is being used to stabilize the interaction between two magnets. To date we have demonstrated stable levitation in static and low speed tests in a rig designed for low speeds of rotation in air. A second rig which is currently under construction at BNFL will run in vacuum at speeds of up to 50 (orig.) 5 refs.

  17. Improved superconducting magnet wire

    Science.gov (United States)

    Schuller, I.K.; Ketterson, J.B.

    1983-08-16

    This invention is directed to a superconducting tape or wire composed of alternating layers of copper and a niobium-containing superconductor such as niobium of NbTi, Nb/sub 3/Sn or Nb/sub 3/Ge. In general, each layer of the niobium-containing superconductor has a thickness in the range of about 0.05 to 1.5 times its coherence length (which for Nb/sub 3/Si is 41 A) with each copper layer having a thickness in the range of about 170 to 600 A. With the use of very thin layers of the niobium composition having a thickness within the desired range, the critical field (H/sub c/) may be increased by factors of 2 to 4. Also, the thin layers of the superconductor permit the resulting tape or wire to exhibit suitable ductility for winding on a magnet core. These compositions are also characterized by relatively high values of critical temperature and therefore will exhibit a combination of useful properties as superconductors.

  18. Superconducting energy storage magnet

    Science.gov (United States)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  19. Superconducting magnet safety

    International Nuclear Information System (INIS)

    Arendt, F.; Komarek, P.

    1983-01-01

    One of the major components in a fusion reactor for which a safety analysis must be carried out is the magnet system. Most of the possible disturbances influencing the operation of superconducting magnets lead only to a quench, defined as an ''abnormal operating condition'' which causes just a temporary shut down of the magnet system without damage, if the system is well designed. More unlikely are accidental events which are associated with the generation of high power arcs. In these cases, single current arcs, e.g. at broken current leads, will lead to moderate damage only, but with the necessity of a longer shut down period for repair or replacing. Severe damage can only occur if in a multiple current arcing, starting by broken conductors, a wide-spread rupture of the winding occurs and the final high power arc burns through the coil case damaging other coils and reactor components. In a very hypothetical event the simultaneous rupture of the complete winding at two locations at least 1 m apart leads to missile generation due to the electromagnetic forces in the background field. The kinetic energy which the flying piece can get will be less than the values assumed for airplane crashes with the containment of modern fission power plants. (author)

  20. Superconducting digital logic amplifier

    International Nuclear Information System (INIS)

    Przybysz, J.X.

    1989-01-01

    This paper describes a superconducting digital logic amplifier for interfacing between a Josephson junction logic circuit having output current and a higher voltage semiconductor circuit input. The amplifier comprising: an input terminal for connection to a; an output terminal for connection to a semiconductor circuit input; an input, lower critical current, Josephson junction having first and second terminals; a first series string of at least three lower critical current Josephson junctions. The first series string being connected to the first terminal of the input Josephson junction such that the first series string is in series with the input Josephson junction to provide a series combination. The input terminal being connected to the first terminal of the input Josephson junction, and with the critical current of the lower critical current Josephson junctions of the input Josephson junction and the first series Josephson junctions being less than the output current of the low voltage Josephson junction circuit; a second series string of at least four higher critical current Josephson junctions. The second string being connected in parallel with the series combination to provide parallel strings having an upper common connection and a lower common connection. The lower common connection being connected to the second terminal of the input Josephson junction and the upper common connection being connected to the output terminal; and a pulsed DC current source connected the parallel strings at the upper common connection. The DC current source having a current at least equal to the critical current of the higher critical current Josephson junctions

  1. Superconductivity in doped fullerenes

    International Nuclear Information System (INIS)

    Hebard, A.F.

    1992-01-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C 60 , further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I h , its high symmetry alone invites special attention. The publication in September 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C 60 (and the higher fullerenes, such as C 70 and C 84 ) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. 23 refs., 6 figs

  2. Superconductivity in doped fullerenes

    International Nuclear Information System (INIS)

    Herbard, A.F.

    1996-01-01

    While there is not complete agreement on the microscopic mechanism of superconductivity in alkali-metal-doped C sup 0, further research may well lead to the production of analogous materials that lose resistance at even higher temperatures. Carbon 60 is a fascinating and arrestingly beautiful molecule. With 12 pentagonal and 20 hexagonal faces symmetrically arrayed in a soccer-ball-like structure that belongs to the icosahedral point group, I sub h, its high symmetry alone invites special attention. The publication in september 1990 of a simple technique for manufacturing and concentrating macroscopic amounts of this new form of carbon announced to the scientific community that enabling technology had arrived. Macroscopic amounts of C sub 6 sub 0 (and the higher fullerenes, such as C sub 7 sub 0 and C sub 8 sub 4) can now be made with an apparatus as simple as an arc furnace powered with an arc welding supply. Accordingly, chemists, physicists and materials scientists have joined forces in an explosion of effort to explore the properties of this unusual molecular building block. (author). 23 refs., 6 figs

  3. Superconductive AC current limiter

    International Nuclear Information System (INIS)

    Bekhaled, M.

    1987-01-01

    This patent describes an AC current limiter for a power transport line including a power supply circuit and feeding a load circuit via an overload circuit-breaker member. The limiter comprises a transformer having a primary winding connected in series between the power supply circuit and the load circuit and at least one secondary winding of superconductor material contained in a cryogenic enclosure and short-circuited on itself. The leakage reactance of the transformer as seen from the primary winding is low, and the resistance of the at least one secondary winding when in the non-superconducting state and as seen from the primary is much greater than the nominal impedance of the transformer. The improvement whereby the at least one secondary winding of the transformer comprises an active winding in association with a set of auxiliary windings. The set of auxiliary windings is constituted by an even number of series-connected auxiliary windings wound in opposite directions, with the total number of turns in one direction being equal to the total number of turns in the opposite direction, and with the thermal capacity of the secondary winding as a whole being sufficiently high to limit the expansion thereof to a value which remains small during the time it takes the circuit-breaking member to operate

  4. Superconducting quantum bits

    International Nuclear Information System (INIS)

    Mooij, Hans

    2005-01-01

    Superconducting devices can be used to explore the boundaries between the quantum and classical worlds, and could also have applications in quantum information. The quantum world looks very different to the ordinary world. A quantum particle can, for instance, be in two places simultaneously, while its speed and position cannot both be measured with complete accuracy at the same time. Moreover, if its mass is small enough, a quantum particle can tunnel through energy barriers that its classical counterparts could never cross. Physicists are comfortable with the use of quantum mechanics to describe atomic and subatomic particles. However, in recent years we have discovered that micron-sized objects that have been produced using standard semiconductor-fabrication techniques - objects that are small on everyday scales but large compared with atoms - can also behave as quantum particles. These artificial quantum objects might one day be used as 'quantum bits' in a quantum computer that could perform certain computational tasks much faster than any classical computing device. Before then, however, these devices will allow us to explore the interface between the quantum and classical worlds, and to study how interactions with external degrees of freedom lead to a gradual disappearance of quantum behaviour. (U.K.)

  5. Superconductivity and the environment: a Roadmap

    International Nuclear Information System (INIS)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Keenan, Shane; Foley, Cathy P; Febvre, Pascal; Mukhanov, Oleg; Cooley, Lance D; Hassenzahl, William V; Izumi, Mitsuru

    2013-01-01

    caused severe impacts such as the explosion in 1969 in the waters of Kent in the UK that caused a reading of 4.5 on the Richter scale for earthquake monitors. Another example was a land-based detonation of a 500 kg World War II bomb in Germany killing three people in 2010. There is countless UXO from recent conflicts worldwide. Detection and accurate location with 100% reliability is required to return land to safe civilian use. Keenan provides details of a prototype magnetic gradiometer developed for this purpose. Reducing power needs for high-end IT. Supercomputers are so large that they are close to requiring their own small power plant to support the energy needed to run the computer. For example, in 2011 Facebook data centers and operations used 532 million kW hours of energy. Mukhanov explores the potential of reducing the power dissipation for future supercomputers from more than 500 MW for Exascale systems to 0.2 MW by using superconducting-ferromagnetic Josephson junctions for magnetic memory and programmable logic. Clearly superconductivity is an ultimate energy-saving technology, and its practical implementation will contribute to the reduction of CO 2 emissions, improved water purification, reduction of waste and timely preparedness for natural disasters or significant events. This Roadmap shows how the application of superconducting technologies will have a significant impact when they are adopted. (topical review)

  6. Superconductivity and the environment: a Roadmap

    Science.gov (United States)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    severe impacts such as the explosion in 1969 in the waters of Kent in the UK that caused a reading of 4.5 on the Richter scale for earthquake monitors. Another example was a land-based detonation of a 500 kg World War II bomb in Germany killing three people in 2010. There is countless UXO from recent conflicts worldwide. Detection and accurate location with 100% reliability is required to return land to safe civilian use. Keenan provides details of a prototype magnetic gradiometer developed for this purpose. Reducing power needs for high-end IT. Supercomputers are so large that they are close to requiring their own small power plant to support the energy needed to run the computer. For example, in 2011 Facebook data centers and operations used 532 million kW hours of energy. Mukhanov explores the potential of reducing the power dissipation for future supercomputers from more than 500 MW for Exascale systems to 0.2 MW by using superconducting-ferromagnetic Josephson junctions for magnetic memory and programmable logic. Clearly superconductivity is an ultimate energy-saving technology, and its practical implementation will contribute to the reduction of CO2 emissions, improved water purification, reduction of waste and timely preparedness for natural disasters or significant events. This Roadmap shows how the application of superconducting technologies will have a significant impact when they are adopted.

  7. [The effects of the traffic restriction fee (Ecopass) in the center of Milan on urban pollution with particulate matter: the results of a pilot study].

    Science.gov (United States)

    Ruprecht, Ario A; Invernizzi, Giovanni

    2009-01-01

    the city of Milan introduced a traffic charging zone in city center in January 2008, named Ecopass. to compare PM1, PM2,5 and PM10 levels in and outside the restricted area before and after the enforcement of the charging scheme. PM1, PM2,5 and PM10 exposures were measured by means of pre-calibrated portable laser-operated particle analyzers. PM10 data from the ARPA official monitoring stations were also evaluated. during a walking trip from Piazza Loreto (outside) to Piazza Duomo (inside Ecopass zone) and back, mean (SD) PM1, PM2,5 and PM10 were 31 (6), 68 (24) and 93 (37) microg/m3 inside the Ecopass zone, and 32 (6), 70 (37), 98 (48) microg/m3 in the outer area, respectively (not significant, ns). In another trip walking from Piazza Buonarroti to Piazza Duomo and back, PM1, PM2,5 and PM10 levels were 56 (2), 183 (14) and 245 (28) microg/m3 inside the Ecopass zone, and 58 (3), 197 (13) and 247 (24) microg/m3 in the outer area, respectively (ns). In the measurements taken from a car moving in three ring belts--one inside the restricted zone, and two outer radial orbitals--PM1, PM2,5 and PM10 levels were found 41 (1), 110 (8) and 148 (16) microg/m3 inside the Ecopass area, 42 (3), 116 (14) and 152 (28) microg/m3 along the middle belt, and 39 (4), 102 (15) and 127 (23) microg/m3 along the greater Milan orbital ("Tangenziale"), respectively (ns). Mean (SD) PM10 levels from ARPA in the two months before the enforcement were 71.2 (32.6) and 74.8 (38.4) microg/m3, in the Ecopass zone and outside, respectively while after the enforcement were 67.3 (36.4) and 70.9 (38.3) microg/m3 of PM10, respectively (ns). no signficant improvement in air quality was observed after the enforcement of the Ecopass charging zone in Milan. In spite of their limitations, the present data confirm that small scale reductions in particle emissions are not sufficient to reach the goal of an improvement in air quality. Large scale, coordinated interventions on an inter-regional basis are

  8. Superconductivity from magnetic elements under high pressure

    International Nuclear Information System (INIS)

    Shimizu, Katsuya; Amaya, Kiichi; Suzuki, Naoshi; Onuki, Yoshichika

    2006-01-01

    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors

  9. Superconducting materials for large scale applications

    International Nuclear Information System (INIS)

    Dew-Hughes, D.

    1975-01-01

    Applications of superconductors capable of carrying large current densities in large-scale electrical devices are examined. Discussions are included on critical current density, superconducting materials available, and future prospects for improved superconducting materials. (JRD)

  10. Some theories of high temperature superconductivity

    International Nuclear Information System (INIS)

    Cohen, M.L.

    1990-01-01

    In this paper a brief review is given of some historical aspects of theoretical research on superconductivity including a discussion of BCS theory and some theoretical proposals for mechanisms which can cause superconductivity at high temperatures

  11. Last LEP superconducting module travels to surface

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    The last superconducting module is raised from the Large Electron-Positron (LEP) collider tunnel, through the main shaft, to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  12. Preparing last LEP superconducting module for removal

    CERN Multimedia

    Patrice Loïez

    2000-01-01

    The last superconducting module travels along the LEP tunnel towards one of the shafts where it will be lifted to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  13. Superconductivity basics and applications to magnets

    CERN Document Server

    Sharma, R G

    2015-01-01

    This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.

  14. Working on an LHC superconducting cavity

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The delicate superconducting equipment for CERN’s LHC collider has to be assembled in ultra-clean conditions to safeguard performance. Here we see the power supply being installed on one of the superconducting cavities.

  15. Superconductivity research in the Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Jirsa, Miloš

    -, č. 1 (2007), s. 1-6 ISSN N Institutional research plan: CEZ:AV0Z10100520 Keywords : superconductivity * research to superconductivity * financial support of the research Subject RIV: BM - Solid Matter Physics ; Magnetism

  16. Development of superconducting equipment for fusion device

    International Nuclear Information System (INIS)

    Konno, Masayuki; Ueda, Toshio; Hiue, Hisaaki; Ohgushi, Kouzou

    1993-01-01

    At Fuji Electric Co., Ltd., the development of superconductivity was started from 1960, and superconducting equipment for fusion device has been developed for ten years. The superconducting equipment, which is developed for fusion by Fuji Electric Co., Ltd., are able to be grouped in three categories which are current lead, superconducting coil and superconducting bus-line. The current lead is an electrical feeder between a superconducting coil and an electrical power supply. The rated current of developed current lead is 30kA at continuous use and 100kA at short time use respectively. The advanced disk type coil is developed for the toroidal field coil and some coils are developed for critical current measurement. Superconductor is applied to the superconducting bus-line between the superconducting coils and the current leads, and the bus-line is being developed for the Large Helical Device. This report describes an abstract of these equipment. (author)

  17. A pilot study of a Community Health Agent-led type 2 diabetes self-management program using Motivational Interviewing-based approaches in a public primary care center in São Paulo, Brazil.

    Science.gov (United States)

    do Valle Nascimento, Thais Moura Ribeiro; Resnicow, Ken; Nery, Marcia; Brentani, Alexandra; Kaselitz, Elizabeth; Agrawal, Pooja; Mand, Simanjit; Heisler, Michele

    2017-01-13

    Rates of noncommunicable diseases (NCDs) such as type 2 diabetes are escalating in low and middle-income countries such as Brazil. Scalable primary care-based interventions are needed to improve self-management and clinical outcomes of adults with diabetes. This pilot study examines the feasibility, acceptability, and outcomes of training community health agents (CHAs) in Motivational Interviewing (MI)-based counseling for patients with poorly controlled diabetes in a primary care center in São Paulo, Brazil. Nineteen salaried CHAs participated in 32 h of training in MI and behavioral action planning. With support from booster training sessions, they used these skills in their regular monthly home visits over a 6 month period with 57 diabetes patients with baseline HbA1cs > 7.0%. The primary outcome was patients' reports of the quality of diabetes care as measured by the Portuguese version of the Patient Assessment of Chronic Illness Care (PACIC) scale. Secondary outcomes included changes in patients' reported diabetes self-management behaviors and in A1c, blood pressure, cholesterol and triglycerides. We also examined CHAs' fidelity to and experiences with the intervention. Patients reported improvements over the 6 month period in quality of diabetes care received (PACIC score improved 33 (+/-19) to 68 (+/-21) (p < .001)). They reported increases in physical activity (p = .001), consumption of fruits and vegetables (p < .001) and medication adherence (p = .002), but no decreases in consumption of high-fat foods (p = .402) or sweets (p = .436). Participants had mean 6-month A1c levels 0.34% points lower than at baseline (p = .08) and improved mean LDL (-16.1 mg/dL, p = .005) and triglyceride levels (-38.725 mg/dL, p = .002). Of the 16 CHAs observed in fidelity assessments, 13 were categorized as medium- or high-performing on MI skills, while 3 were low-performing. CHAs expressed enthusiasm about learning new skills, and many

  18. Superconducting six-axis accelerometer

    Science.gov (United States)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  19. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  20. Liquid phase sintered superconducting cermet

    International Nuclear Information System (INIS)

    Ray, S.P.

    1990-01-01

    This patent describes a method of making a superconducting cermet having superconducting properties with improved bulk density, low porosity and in situ stabilization. It comprises: forming a structure of a superconducting ceramic material having the formula RM 2 Cu 3 O (6.5 + x) wherein R is one or more rare earth elements capable of reacting to form a superconducting ceramic, M is one or more alkaline earth metal elements selected from barium and strontium capable of reacting to form a superconducting ceramic, x is greater than 0 and less than 0.5; and a precious metal compound in solid form selected from the class consisting of oxides, sulfides and halides of silver; and liquid phase sintering the mixture at a temperature wherein the precious metal of the precious metal compound is molten and below the melting point of the ceramic material. The liquid phase sintering is carried out for a time less than 36 hours but sufficient to improve the bulk density of the cermet

  1. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  2. High-Tc superconducting electric motors

    International Nuclear Information System (INIS)

    Schiferl, R.; Stein, J.

    1992-01-01

    In this paper, the advantages and limitations of using superconductors in motors are discussed. A synchronous motor with a high temperature superconducting field winding for pump and fan drive applications is described and some of its unique design features are identified. A 10,000 horsepower superconducting motor design is presented. The critical field and current density requirements for high temperature superconducting wire in motors is discussed. Finally, recent progress in superconducting wire performance is presented

  3. WE-G-BRE-07: Proton Therapy Enhanced by Tumor-Targeting Gold Nanoparticles: A Pilot in Vivo Experiment at The Proton Therapy Center at MD Anderson Cancer Center

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe, T; Grant, J; Wolfe, A; Gillin, M; Krishnan, S [MD Anderson Cancer Ctr., Houston, TX (United States)

    2014-06-15

    Purpose: Assess tumor-growth delay and survival in a mouse model of prostate cancer treated with tumor-targeting gold nanoparticles (AuNPs) and proton therapy. Methods: We first examined the accumulation of targeting nanoparticles within prostate tumors by imaging AuNPs with ultrasound-guided photoacoustics at 24h after the intravenous administration of goserelin-conjugated AuNPs (gAuNP) in three mice. Nanoparticles were also imaged at the cellular level with TEM in PC3 cells incubated with gAuNP for 24h. Pegylated AuNPs (pAuNP) were also imaged in vivo and in vitro for comparison. PC3 cells were then implanted subcutaneously in nude mice; 51mice with 8–10mm tumors were included. AuNPs were injected intravenously at 0.2%w/w final gold concentration 24h before irradiation. A special jig was designed to facilitate tumor irradiation perpendicular to the proton beam. Proton energy was set to 180MeV, the radiation field was 18×18cm{sup 2}, and 9cm or 13.5cm thick solid-water compensators were used to position the tumors at either the beam entrance (BE) or the SOBP. Physical doses of 5Gy were delivered to all tumors on a patient beam line at MD Anderson's Proton Therapy Center. Results: The photoacoustic experiment reveled that our nanoparticles leak from the tumor-feeding vasculature and accumulate within the tumor volume over time. Additionally, TEM images showed gAuNP are internalized in cancer cells, accumulating within the cytoplasm, whereas pAuNP are not. Tumor-growth was delayed by 11 or 32days in mice receiving gAuNP irradiated at the BE or the SOBP, relative to proton radiation alone. Survival curves (ongoing experiment) reveal that gAuNPs improved survival by 36% or 74% for tumors irradiated at the BE or SOBP. Conclusion: These important, albeit preliminary, in vivo findings reveal nanoparticles to be potent sensitizers to proton therapy. Further, conjugation of AuNPs to tumor-specific antigens that promote enhanced cellular internalization improved

  4. Ultimate Performance of the ATLAS Superconducting Solenoid

    CERN Document Server

    Ruber, R; Kawai, M; Kondo, Y; Doi, Y; Haruyama, T; Haug, F; Kate, H ten; Kondo, T; Pirotte, O; Metselaar, J; Mizumaki, S; Olesen, G; Sbrissa, E; Yamamoto, A

    2007-01-01

    A 2 tesla, 7730 ampere, 39 MJ, 45 mm thin superconducting solenoid with a 2.3 meters warm bore and 5.3 meters length, is installed in the center of the ATLAS detector and successfully commissioned. The solenoid shares its cryostat with one of the detector's calorimeters and provides the magnetic field required for the inner detectors to accurately track collision products from the LHC at CERN. After several years of a stepwise construction and test program, the solenoid integration 100 meters underground in the ATLAS cavern is completed. Following the on-surface acceptance test, the solenoid is now operated with its final cryogenic, powering and control system. A re-validation of all essential operating parameters is completed. The performance and test results of underground operation are reported and compared to those previously measured.

  5. ATLAS superconducting solenoid on-surface test

    CERN Document Server

    Ruber, Roger J M Y; Doi, Y; Haruyama, T; Haug, F; ten Kate, H H J; Kawai, M; Kondo, T; Kondo, Y; Makida, Y; Mizumaki, S; Olesen, G; Pavlov, O V; Pezzetti, M; Pirotte, O; Sbrissa, E; Yamamoto, A

    2005-01-01

    The ATLAS detector is presently under construction as one of the five LHC experiment set-ups. It relies on a sophisticated magnet system for the momentum measurement of charged particle tracks. The superconducting solenoid is at the center of the detector, the magnet system part nearest to the proton-proton collision point. It is designed for a 2 Tesla strong axial magnetic field at the collision point, while its thin-walled construction of 0.66 radiation lengths avoids degradation of energy measurements in the outer calorimeters. The solenoid and calorimeter have been integrated in their common cryostat, cooled down and tested on-surface. We review the on-surface set-up and report the performance test results.

  6. Problems pilots face involving wind shear

    Science.gov (United States)

    Melvin, W. W.

    1977-01-01

    Educating pilots and the aviation industry about wind shears presents a major problem associated with this meteorological phenomenon. The pilot's second most pressing problem is the need for a language to discuss wind shear encounters with other pilots so that the reaction of the aircraft to the wind shear encounter can be accurately described. Another problem is the flight director which gives a centered pitch command for a given angular displacement from the glide slope. It was suggested that they should instead be called flight path command and should not center unless the aircraft is actually correcting to the flight path.

  7. Predicting Active Duty Air Force Pilot Attrition Given an Anticipated Increase in Major Airline Pilot Hiring

    Science.gov (United States)

    2015-01-01

    the Air Force in addressing some quality-of-life issues, such as updating 3,800 family housing units, 21 dormitories, and building three child ...of pilots into the airlines (Air Force Personnel Center, FY 07). By allowing this crop of pilots to leave on the Air Force’s terms, the service felt...attrition rates compared with pilots with more general skills (flying mobility aircraft) (Stephen P. Barrows, 1993). This may be due to the phenomenon in

  8. Superconducting devices at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1978-04-01

    The various ongoing programs in applied superconductivity supported by BNL are summarized, including the development of high field ac and dc superconducting magnets for accelerators and other applications, of microwave deflecting cavities for high energy particle beam separators, and of cables for underground power transmission, and materials research on methods of fabricating new superconductors and on metallurgical properties affecting the performance of superconducting devices

  9. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  10. Superconducting magnets technologies for large accelerator

    International Nuclear Information System (INIS)

    Ogitsu, Toru

    2017-01-01

    The first hadron collider with superconducting magnet technologies was built at Fermi National Accelerator Laboratory as TEVATRON. Since then, the superconducting magnet technologies are widely used in large accelerator applications. The paper summarizes the superconducting magnet technologies used for large accelerators. (author)

  11. WORKSHOP: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Tückmantel, Joachim

    1993-01-01

    Full text: With superconducting radiofrequency playing a major role in the push for new machines to break fresh physics frontiers, it has become a tradition for experts and newcomers in this field from all over the world to meet every second year to hear progress reports from laboratories and to discuss common problems and possible solutions. The sixth such workshop was held from 4-8 October under the chairmanship of Ron Sundelin at the Continuous Electron Beam Accelerator Facility (CEBAF) under construction in Newport News, Virginia. With 170 participants from 14 countries including Eastern Europe and China, it reflected the growing interest in the field - looking back to 1984, when CERN was the host laboratory, the second workshop had less than 100 participants. The CEBAF meeting began with laboratory status reports, covering both high beam energy ('high beta') applications with 'spherical' cavities (as with CERN's LEP200), all using niobium as superconductor and working between 352 MHz and 3 GHz, and lower energy (low beta') applications with geometrically more complicated shapes such as quarter or half wave, split ring or spoke resonators, some using electrodeposited lead as superconductor and working around 100 MHz. During these talks it became clear that more and more laboratories have focused on routine problems, such as reliable series production and testing, running cavities with ancillaries in the machines, or building complete prototypes for projects to be approved by critical funding authorities. This contrasts with the heady days just a few years ago when - at least in the high beta community - the main objective was to explore new ideas. State-of-the-art summaries showed how at 1.3 and 3 GHz 25-30 MV/m have been reached by several laboratories using different preparation methods. Newer developments for common problems included r.f. windows, couplers, controls, and especially field emission, public enemy number one for

  12. Superconducting ECR ion source system

    International Nuclear Information System (INIS)

    Sharma, S.C.; Gore, J.A.; Gupta, A.K.; Saxena, A.

    2017-01-01

    In order to cover the entire mass range of the elements across the periodic table, an ECR based heavy ion accelerator programme, consisting of a superconducting ECR (Electron Cyclotron Resonance) source and a room temperature RFQ (Radio Frequency Quadrupole) followed by low and high beta superconducting resonator cavities has been proposed. The 18 GHz superconducting ECR ion source system has already been commissioned and being operated periodically at FOTIA beam hall. This source is capable of delivering ion beams right from proton to uranium with high currents and high charge states over a wide mass range (1/7 ≤ q/m ≤ 1/2) across the periodic table, including U"3"4"+ (q/m∼1/7) with 100 pna yield. The normalized transverse beam emittance from ECR source is expected to be <1.0 pi mm mrad. ECR ion sources are quite robust, making them suitable for operating for weeks continuously without any interruption

  13. Superconductivity in Spain. Midas program

    International Nuclear Information System (INIS)

    Yndurain, F.

    1996-01-01

    The different activities in the field of applied superconductivity carried out in Spain under the auspices of the MIDAS program are reported. Applications using both low- and high-temperature superconductors are considered. In the low temperature superconductors case, the design and construction of a 1 mega joule SMES (Superconducting Magnetic Energy Storage) unit, as well as the fabrication of voltage and resistance standards, are reviewed. Developments involving the design and fabrication of an inductive current fault limited and mono- and multi-filamentary wires and tapes using high-temperature superconductors are discussed. Finally, the prospects for the application of superconductivity technology to electric power systems for the electric utilities is considered. (author)

  14. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  15. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  16. Superconducting TESLA cavities

    Directory of Open Access Journals (Sweden)

    B. Aune

    2000-09-01

    Full Text Available The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of E_{acc}≥25 MV/m at a quality factor Q_{0}≥5×10^{9}. The design goal for the cavities of the TESLA Test Facility (TTF linac was set to the more moderate value of E_{acc}≥15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q_{0}=5×10^{9} was measured to be 20.1±6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q_{0}=5×10^{9} amounts to 25.0±3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  17. Crystal structure of 200 K-superconducting phase in sulfur hydride system

    Energy Technology Data Exchange (ETDEWEB)

    Einaga, Mari; Sakata, Masafumi; Ishikawa, Takahiro; Shimizu, Katsuya [KYOKUGEN, Graduate School of Engineering Science, Osaka Univ. (Japan); Eremets, Mikhail; Drozdov, Alexander; Troyan, Ivan [Max Planck Institut fuer Chemie, Mainz (Germany); Hirao, Naohisa; Ohishi, Yasuo [JASRI/SPring-8, Hyogo (Japan)

    2016-07-01

    Superconductivity with the critical temperature T{sub c} above 200 K has been recently discovered by compression of H{sub 2}S (or D{sub 2}S) under extreme pressure. It was proposed that these materials decompose under high pressure to elemental sulfur and hydride with higher content of hydrogen which is responsible for the high temperature superconductivity. In this study, we have investigated that the crystal structure of the superconducting compressed H{sub 2}S and D{sub 2}S by synchrotron x-ray diffraction measurements combined with electrical resistance measurements at room and low temperatures. We found that the superconducting phase is in good agreement with theoretically predicted body-centered cubic structure, and coexists with elemental sulfur, which claims that the formation of 3H{sub 2}S → 2H{sub 3}S + S is occured under high pressure.

  18. WTEC Panel on Power applications of superconductivity in Japan and Germany. Final report

    International Nuclear Information System (INIS)

    Shelton, R.D.; Larbalestier, David; Blaugher, Richard D.; Schwall, Robert E.; Sokolowski, Robert S.; Suenaga, Masaki; Willis, JefFR-ey O.

    1997-01-01

    In early 1996, the U.S. Department of Energy and National Science Foundation asked the World Technology Evaluation Center (WTEC) to assemble a panel to assess, relative to the United States, how Japan and Germany are responding to the challenge of applying superconductivity to power and energy applications. Although the study was focused mostly on the impact of high-temperature superconductors (HTS) on the power applications field, the WTEC panel also looked at many applications for low-temperature superconductors (LTS). The market for low-temperature superconductor applications is well established, as is that for superconducting electronics, for which there is a separate WTEC panel. The panel on power applications of superconductivity was commissioned to identify the roles of public organizations, industry, and academia for advancing power applications of superconductivity, taking both a present and a long-term view

  19. Origin of Superconductivity and Latent Charge Density Wave in NbS2

    Science.gov (United States)

    Heil, Christoph; Poncé, Samuel; Lambert, Henry; Schlipf, Martin; Margine, Elena R.; Giustino, Feliciano

    2017-08-01

    We elucidate the origin of the phonon-mediated superconductivity in 2 H -NbS2 using the ab initio anisotropic Migdal-Eliashberg theory including Coulomb interactions. We demonstrate that superconductivity is associated with Fermi surface hot spots exhibiting an unusually strong electron-phonon interaction. The electron-lattice coupling is dominated by low-energy anharmonic phonons, which place the system on the verge of a charge density wave instability. We also provide definitive evidence for two-gap superconductivity in 2 H -NbS2 , and show that the low- and high-energy peaks observed in tunneling spectra correspond to the Γ - and K -centered Fermi surface pockets, respectively. The present findings call for further efforts to determine whether our proposed mechanism underpins superconductivity in the whole family of metallic transition metal dichalcogenides.

  20. WTEC Panel on Power applications of superconductivity in Japan and Germany. Final report

    CERN Document Server

    Shelton, R D; Larbalestier, D; Schwall, R E; Sokolowski, R S; Suenaga, M; Willis, J E O

    1997-01-01

    In early 1996, the U.S. Department of Energy and National Science Foundation asked the World Technology Evaluation Center (WTEC) to assemble a panel to assess, relative to the United States, how Japan and Germany are responding to the challenge of applying superconductivity to power and energy applications. Although the study was focused mostly on the impact of high-temperature superconductors (HTS) on the power applications field, the WTEC panel also looked at many applications for low-temperature superconductors (LTS). The market for low-temperature superconductor applications is well established, as is that for superconducting electronics, for which there is a separate WTEC panel. The panel on power applications of superconductivity was commissioned to identify the roles of public organizations, industry, and academia for advancing power applications of superconductivity, taking both a present and a long-term view.

  1. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Bottura, Luca; Yamamoto, Akira; Zlobin, Alexander V

    2016-01-01

    In this paper we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.

  2. Cooling device of superconducting coils

    International Nuclear Information System (INIS)

    Duthil, R.; Lottin, J.C.

    1985-01-01

    This device is rotating around an horizontal axis. The superconducting coils are contained in a cryogenic enclosure feeded in liquid helium forced circulation. They are related to an electric generator by electric mains each of them comprising a gas exchanger, and an exchanger-evaporator set between the cryogenic device and those exchangers. The exchanger-evaporator is aimed at dissipating the heat arriving by conductors connected to the superconducting coils. According to the invention, the invention includes an annular canalization with horizontal axis in which the connection conductors bathe in liquid helium [fr

  3. Superconducting augmented rail gun (SARG)

    International Nuclear Information System (INIS)

    Homan, C.G.; Cummings, C.E.; Fowler, C.M.

    1986-01-01

    Superconducting augmentation consists of a superconducting coil operating in the persistent mode closely coupled magnetically with a normally conducting rail gun. A theoretical investigation of the effect of this system on a rail gun has shown that two benefits occur. Projectile velocities and launch efficiencies increase significantly depending on the magnetic coupling between the rail and augmentation circuits. Previous work evaluated an idealized system by neglecting energy dissipation effects. In this paper, the authors extend the analysis to include the neglected terms and show improved actual launch efficiencies for the SARG configuration. In this paper, the authors discuss details of projectile design in depth and present preliminary results of rail gun performance

  4. Diamagnetism in quasicrystalline superconducting networks

    International Nuclear Information System (INIS)

    Qian Niu; Nori, F.

    1990-01-01

    In this paper, we review recent results on superconducting structures with quasicrystalline geometry. Specifically, we consider the superconducting-normal phase boundaries of a variety of wire networks and Josephson junction arrays. We have computed the mean field phase diagrams for a number of geometries and compared them to the corresponding experimental data. We have introduced an analytical approach to the analysis of the structures present in the phase boundaries. Furthermore, we have shown in great detail how the gross structure is determined by the statistical distributions of the cell areas, and how the fine structures are determined by correlations among neighboring cells in the lattices. (author). 12 refs, 2 figs

  5. Electromagnetic design of superconducting quadrupoles

    Directory of Open Access Journals (Sweden)

    L. Rossi

    2006-10-01

    Full Text Available We study how the critical gradient depends on the coil layout in a superconducting quadrupole for particle accelerators. We show that the results relative to a simple sector coil are well representative of the coil layouts that have been used to build several quadrupoles in the past 30 years. Using a semianalytical approach, we derive a formula that gives the critical gradient as a function of the coil cross-sectional area, of the magnet aperture, and of the superconducting cable parameters. This formula is used to evaluate the efficiency of several types of coil layouts (shell, racetrack, block, open midplane.

  6. Current leads for superconducting magnets

    International Nuclear Information System (INIS)

    Ishibashi, Kenji

    1989-01-01

    Current leads for superconducting magnets have been studied since 1960's. The technology of current leads may seem to have been established both in theory and experiment before the middle of 1970's. Nevertheless, a wide variety of superconducting magnets have been introduced in the last 15 years, and the demands for special current leads have increased in accordance to the variety. A steady advance has been made in the design theory and fabrication of current leads. This paper describes the recent current lead technology regarding the design theory, safety in accidents, and high current capability. (author)

  7. Freely oriented portable superconducting magnet

    Science.gov (United States)

    Schmierer, Eric N [Los Alamos, NM; Prenger, F Coyne [Los Alamos, NM; Hill, Dallas D [Los Alamos, NM

    2010-01-12

    A freely oriented portable superconducting magnet is disclosed. Coolant is supplied to the superconducting magnet from a repository separate from the magnet, enabling portability of the magnet. A plurality of support assemblies structurally anchor and thermally isolate the magnet within a thermal shield. A plurality of support assemblies structurally anchor and thermally isolate the thermal shield within a vacuum vessel. The support assemblies restrain movement of the magnet resulting from energizing and cooldown, as well as from changes in orientation, enabling the magnet to be freely orientable.

  8. Four-junction superconducting circuit

    Science.gov (United States)

    Qiu, Yueyin; Xiong, Wei; He, Xiao-Ling; Li, Tie-Fu; You, J. Q.

    2016-01-01

    We develop a theory for the quantum circuit consisting of a superconducting loop interrupted by four Josephson junctions and pierced by a magnetic flux (either static or time-dependent). In addition to the similarity with the typical three-junction flux qubit in the double-well regime, we demonstrate the difference of the four-junction circuit from its three-junction analogue, including its advantages over the latter. Moreover, the four-junction circuit in the single-well regime is also investigated. Our theory provides a tool to explore the physical properties of this four-junction superconducting circuit. PMID:27356619

  9. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    and the rotation speed is lowered in order to limit the tip speed of the blades. The ability of superconducting materials to carry high current densities with very small losses might facilitate a new class of generators operating with an air gap flux density considerably higher than conventional generators...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...

  10. Tight aspect ratio tokamak power reactor with superconducting TF coils

    International Nuclear Information System (INIS)

    Nishio, S.; Tobita, K.; Konishi, S.; Ando, T.; Hiroki, S.; Kuroda, T.; Yamauchi, M.; Azumi, M.; Nagata, M.

    2003-01-01

    Tight aspect ratio tokamak power reactor with super-conducting toroidal field (TF) coils has been proposed. A center solenoid coil system and an inboard blanket were discarded. The key point was how to find the engineering design solution of the TF coil system with the high field and high current density. The coil system with the center post radius of less than 1 m can generate the maximum field of ∼ 20 T. This coil system causes a compact reactor concept, where the plasma major and minor radii of 3.75 m and 1.9 m, respectively and the fusion power of 1.8 GW. (author)

  11. Pilot Greenhouse

    CERN Multimedia

    1983-01-01

    This pilot greenhouse was built in collaboration with the "Association des Maraichers" of Geneva in the frame of the study for making use of the heat rejected as warm water by CERN accelerators and experiments. Among other improvements, more automated and precise regulation systems for heating and ventilation were developed. See also 8305598X.

  12. Tuning the electronic and the crystalline structure of LaBi by pressure: From extreme magnetoresistance to superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Tafti, F. F.; Torikachvili, M. S.; Stillwell, R. L.; Baer, B.; Stavrou, E.; Weir, S. T.; Vohra, Y. K.; Yang, H. -Y.; McDonnell, E. F.; Kushwaha, S. K.; Gibson, Q. D.; Cava, R. J.; Jeffries, J. R.

    2017-01-01

    Extreme magnetoresistance (XMR) in topological semimetals is a recent discovery which attracts attention due to its robust appearance in a growing number of materials. To search for a relation between XMR and superconductivity, we study the effect of pressure on LaBi. By increasing pressure, we observe the disappearance of XMR followed by the appearance of superconductivity at P ≈ 3.5 GPa. We find a region of coexistence between superconductivity and XMR in LaBi in contrast to other superconducting XMR materials. The suppression of XMR is correlated with increasing zero-field resistance instead of decreasing in-field resistance. At higher pressures, P ≈ 11 GPa, we find a structural transition from the face-centered cubic lattice to a primitive tetragonal lattice, in agreement with theoretical predictions. The relationship between extreme magnetoresistance, superconductivity, and structural transition in LaBi is discussed.

  13. Short, frequent, 5-days-per-week, in-center hemodialysis versus 3-days-per week treatment: a randomized crossover pilot trial through the Midwest Pediatric Nephrology Consortium.

    Science.gov (United States)

    Laskin, Benjamin L; Huang, Guixia; King, Eileen; Geary, Denis F; Licht, Christoph; Metlay, Joshua P; Furth, Susan L; Kimball, Tom; Mitsnefes, Mark

    2017-08-01

    No controlled trials in children with end-stage kidney disease have assessed the benefits of more frequently administered hemodialysis (HD). We conducted a multicenter, crossover pilot trial to determine if short, more frequent (5 days per week) in-center HD was feasible and associated with improvements in blood pressure compared with three conventional HD treatments per week. Because adult studies have not controlled for the weekly duration of dialysis, we fixed the total treatment time at 12 h a week of dialysis during two 3-month study periods; only frequency varied from 5 to 3 days per week between study periods. Eight children (median age 16.7 years) consented at three children's hospitals. The prespecified primary composite outcome was a sustained 10% decrease in systolic blood pressure and/or a decrease in antihypertensive medications relative to each study period's baseline. Among the six patients completing both study periods, five (83.3%) experienced the primary outcome during HD performed 5 days per week but not 3 days per week; one of the six (16.7%) achieved that outcome during 3-day but not 5-day (p = 0.22) per week HD. During 5-day HD, all patients had significantly more treatments during which their pre-HD systolic (p = 0.01) or diastolic (p = 0.01) blood pressure was 10% lower than baseline. We observed that more frequent HD sessions per week was feasible and associated with improved blood pressure control, but barriers to changing thrice-weekly standard of care include financial reimbursement and the time demands associated with more frequent treatments.

  14. New insights into frequency and contents of fear of cancer progression/recurrence (FOP/FCR) in outpatients with colorectal carcinoma (CRC) receiving oral capecitabine: a pilot study at a comprehensive cancer center.

    Science.gov (United States)

    Hefner, Jochen; Berberich, Sara; Lanvers, Elena; Sanning, Maria; Steimer, Ann-Kathrin; Kunzmann, Volker

    2017-01-01

    Fear of cancer progression/recurrence (FOP/FCR) is considered one of the most prevalent sources of distress in cancer survivors and associated with lower quality of life and functional impairment. Detailed measures of FOP/FCR are needed because little is known about the knowledge of FOP/FCR, its associations with the patient-doctor relationship, and the rate of adequate therapy. Colorectal cancer (CRC) is one of the most prevalent cancer entities, and oral capecitabine is widely prescribed as treatment. Therefore, we initiated a pilot study to expand the literature on FOP/FCR in CRC outpatients receiving capecitabine and to generate hypotheses for future investigations. This study included 58 patients treated at a comprehensive cancer center. FOP/FCR was assessed with the Fear of Progression Questionnaire (FOP-Q-SF). Satisfaction with the relationships with doctors was assessed with the Patient-Doctor Relationship Questionnaire-9 (PRDQ-9). Levels of side effects were rated by the patients on a visual analog scale. Clinical data were extracted from the charts. A total of 19 out of 58 patients (36%) suffered from FOP/FCR according to our assessment. Levels of FOP/FCR seemed to be mostly moderate to high. Only four out of the 19 distressed patients (21%) were treated accordingly. Typical side effects of oncological treatment were associated with higher FOP/FCR. Satisfaction with doctor-patient relationships was not associated with FOP/FCR. Regarding single items of FOP/FCR, three out of the five most prevalent fears were associated with close relatives. FOP/FCR occurred frequently in more than one in three patients, but was mostly untreated in this sample of consecutive outpatients with CRC receiving oral capecitabine. In detail, most fears were related to family and friends. In addition to an unmet need of patients, our data indicate sources of distress not considered thus far. If replicated in larger studies, results may help to inform intervention development and

  15. Controllable manipulation of superconductivity using magnetic vortices

    International Nuclear Information System (INIS)

    Villegas, J E; Schuller, Ivan K

    2011-01-01

    The magneto-transport of a superconducting/ferromagnetic hybrid structure, consisting of a superconducting thin film in contact with an array of magnetic nanodots in the so-called 'magnetic vortex state', exhibits interesting properties. For certain magnetic states, the stray magnetic field from the vortex array is intense enough to drive the superconducting film into the normal state. In this fashion, the normal-to-superconducting phase transition can be controlled by the magnetic history. The strong coupling between superconducting and magnetic subsystems allows characteristically ferromagnetic properties, such as hysteresis and remanence, to be dramatically transferred into the transport properties of the superconductor.

  16. Status of superconducting power transformer development

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.C.; McConnell, B.W.; Mehta, S.P. [and others

    1996-03-01

    Development of the superconducting transformer is arguably the most difficult of the ac power applications of superconductivity - this is because of the need for very low ac losses, adequate fault and surge performance, and the rigors of the application environment. This paper briefly summarizes the history of superconducting transformer projects, reviews the key issues for superconducting transformers, and examines the status of HTS transformer development. Both 630-kVA, three-phase and 1-MVA single phase demonstration units are expected to operate in late 1996. Both efforts will further progress toward the development of economical and performance competitive superconducting transformers.

  17. Fusion pilot plant scoping study

    International Nuclear Information System (INIS)

    Gierszewski, P.J.; Blevins, P.J.; Brunnader, H.; Natalizio, A.; Cumyn, P.; Dean, B.; Smith, S.; Galambos, J.; Holloway, C.; Stremlaw, J.; Williams, G.

    1994-05-01

    CFFTP Pilot is representative of a class of machines that, like NPD in the CANDU development program, could test the key reactor core technologies on an integrated power reactor relevant system (materials, conditions, configuration). But in order to reduce costs, the machine would operate at reduced neutron flux relative to a power reactor, would not produce electricity, and would not test superconducting magnets. This design shows research directions towards a machine that could provide integrated nuclear testing (but not ignition physics) at a cost of about 1/3 ITER CDA. The test volume - the outboard blanket volume - would be comparable to the test port volume on ITER CDA, while the fluence and power density would be about 1/4 ITER CDA. 91 refs., 43 tabs., 45 figs

  18. Fusion pilot plant scoping study

    Energy Technology Data Exchange (ETDEWEB)

    Gierszewski, P J; Blevins, P J; Brunnader, H; Natalizio, A [Canadian Fusion Fuels Technology Project, Toronto, ON (Canada); Cumyn, P [Canatom Ltd., Montreal, PQ (Canada); Dean, B; Smith, S [Wardrop (W.L.) and Associates Ltd., Winnipeg, MB (Canada); Galambos, J [Oak Ridge National Lab., TN (United States); Holloway, C [Spar Aerospace Ltd., Toronto, ON (Canada); Stremlaw, J [Monenco AGRA Inc., Calgary, AB (Canada); Williams, G [Spectrum Engineering Corp., Peterborough, ON (Canada)

    1994-05-01

    CFFTP Pilot is representative of a class of machines that, like NPD in the CANDU development program, could test the key reactor core technologies on an integrated power reactor relevant system (materials, conditions, configuration). But in order to reduce costs, the machine would operate at reduced neutron flux relative to a power reactor, would not produce electricity, and would not test superconducting magnets. This design shows research directions towards a machine that could provide integrated nuclear testing (but not ignition physics) at a cost of about 1/3 ITER CDA. The test volume - the outboard blanket volume - would be comparable to the test port volume on ITER CDA, while the fluence and power density would be about 1/4 ITER CDA. 91 refs., 43 tabs., 45 figs.

  19. Superconductivity and antiferromagnetism in heavy-electron systems

    International Nuclear Information System (INIS)

    Konno, R.; Ueda, K.

    1989-01-01

    Superconductivity and antiferromagnetism in heavy-electron systems are investigated from a general point of view. First we classify superconducting states in a simple cubic lattice, a body-centered tetragonal lattice, and a hexagonal close-packed lattice, having URu 2 Si 2 and UPt 3 in mind. For that purpose we take an approach to treat the effective couplings in real space. The approach is convenient to discuss the relation between the nature of fluctuations in the system and the superconducting states. When we assume that the antiferromagnetic fluctuations reported by neutron experiments are dominant, the most promising are some of the anisotropic singlet states and there remains the possibility for some triplet states too. Then we discuss the coupling between the two order parameters based on a Ginzburg-Landau theory. We derive a general expression of the coupling term. It is pointed out that the coupling constant can be large in heavy-electron systems. The general trend of the coexistence of the superconductivity and antiferromagnetism is discussed, and it is shown that the anisotropic states are generally more favorable to the coexistence than the conventional isotropic singlet. Experimental data of URu 2 Si 2 and UPt 3 are analyzed by the Ginzburg-Landau theory. According to the analysis URu 2 Si 2 has a small coupling constant and a large condensation energy of the antiferromagnetism. On the other hand, UPt 3 has a large coupling constant and a small condensation energy. It means that the specific-heat anomaly at T N should be small in UPt 3 and its superconductivity is easily destroyed when a large moment is formed

  20. Superconducting wires and methods of making thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    2018-03-13

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current density (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.

  1. Influence of calcium on transport properties, band spectrum and superconductivity of YBa{sub 2}Cu{sub 3}O{sub y} and YBa{sub 1.5}La{sub 0.5}Cu{sub 3}O{sub y}{sup {center_dot}}

    Energy Technology Data Exchange (ETDEWEB)

    Gasumyants, V.E.; Vladimirskaya, E.V. [State Technical Univ., St. Petersburg (Russian Federation); Patrina, I.B. [Institute of Silicate Chemistry, St. Petersburg (Russian Federation)

    1994-12-31

    The comparative investigation of transport phenomena in Y{sub 1-x}Ca{sub x}Ba{sub 2}Cu{sub 3}O{sub y} (0y>6.87 and 6.73y>6.96) and YBa{sub 2-x}La{sub x}Cu{sub 3}O{sub y} (0superconductive properties of YBa{sub 2}Cu{sub 3}O{sub y}{sup {center_dot}}. The results obtained suggest that Ca gives rise to some peculiarities in band spectrum of this compound.

  2. Superconducting magnets for a muon collider

    International Nuclear Information System (INIS)

    Green, M.A.

    1996-01-01

    The existence of a muon collider will be dependent on the use of superconducting magnets. Superconducting magnets for the μ - μ + collider will be found in the following locations: the π - π + capture system, the muon phase rotation system, the muon cooling system, the recirculating acceleration system, the collider ring, and the collider detector system. This report describes superconducting magnets for each of these sections except the detector. In addition to superconducting magnets, superconducting RF cavities will be found in the recirculating accelerator sections and the collider ring. The use of superconducting magnets is dictated by the need for high magnetic fields in order to reduce the length of various machine components. The performance of all of the superconducting magnets will be affected the energy deposited from muon decay products. (orig.)

  3. Cryotribological applications in superconducting magnets

    International Nuclear Information System (INIS)

    Michael, P.C.; Iwasa, Y.; Rabinowicz, E.

    1993-01-01

    The authors have previously advocated the development of materials selection guidelines for high-performance superconducting magnets on the basis of steady-state sliding stability. Theoretical and experimental evidence suggests that inherently stable friction materials may be physically impossible at cryogenic temperatures. The authors propose an alternate strategy for improving low-temperature sliding stability within the framework of available material behaviors

  4. Flux trapping in superconducting cavities

    International Nuclear Information System (INIS)

    Vallet, C.; Bolore, M.; Bonin, B.; Charrier, J.P.; Daillant, B.; Gratadour, J.; Koechlin, F.; Safa, H.

    1992-01-01

    The flux trapped in various field cooled Nb and Pb samples has been measured. For ambient fields smaller than 3 Gauss, 100% of the flux is trapped. The consequences of this result on the behavior of superconducting RF cavities are discussed. (author) 12 refs.; 2 figs

  5. Superconducting microphone for photoacoustic spectroscopy

    International Nuclear Information System (INIS)

    Ribeiro, P.C.; Labrunie, M.; Weid, J.P. von der; Symko, O.G.

    1982-07-01

    A superconducting microphone has been developed for photoacoustic spectroscopy at low temperatures. The microphone consists of a thin mylar membrane coated with a film of lead whose motion is detected by a SQUID magnetometer. For the simple set-up presented here, the limiting pressure sensitivity is 7.5x10 -14 atmospheres/√Hz. (Author) [pt

  6. Modern technologies in rf superconductivity

    International Nuclear Information System (INIS)

    Lengeler, H.

    1994-01-01

    The development and application of superconducting rf cavities in particle accelerators is a fine example of advanced technology and of close cooperation with industry. This contribution examines the theoretical and present-day practical limitations of sc cavities and describes some advanced technologies needed for their large scale applications. (orig.)

  7. Discovering superconductivity an investigative approach

    CERN Document Server

    Ireson, Gren

    2012-01-01

    The highly-illustrated text will serve as excellent introduction for students, with and without a physics background, to superconductivity. With a strong practical, experimental emphasis, it will provide readers with an overview of the topic preparing them for more advanced texts used in more advanced undergraduate and post-graduate courses.

  8. Superconducting magnets and cryogenics: proceedings

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1986-01-01

    Separate abstracts were prepared for 70 papers in these workshop proceeedings. Topics covered include: superconducting accelerator magnet research and development; superconductor development; electrical measurements; magnet design and construction methods; field correction methods; power schemes and quench protection; cryogenic systems; and magnet measurements

  9. Ultrasonic attenuation in superconducting zinc

    International Nuclear Information System (INIS)

    Auluck, S.

    1978-01-01

    The differences in the Zn ultrasonic attenuation data of different workers are analyzed. The superconducting energy gaps deduced from our analysis of the ultrasonic-attenuation data of Cleavelin and Marshall are consistent with the gaps deduced from the knowledge of the Fermi surface and the electron-phonon mass enhancement factor

  10. Monolayer Superconductivity in WS2

    NARCIS (Netherlands)

    Zheliuk, Oleksandr; Lu, Jianming; Yang, Jie; Ye, Jianting

    Superconductivity in monolayer tungsten disulfide (2H-WS2) is achieved by strong electrostatic electron doping of an electric double-layer transistor (EDLT). Single crystals of WS2 are grown by a scalable method - chemical vapor deposition (CVD) on standard Si/SiO2 substrate. The monolayers are

  11. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  12. Physics at the superconducting supercollider

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1988-01-01

    Summary of lectures presented in the Shell Seminar Series at the national convention of the National Science Teachers Association, April 7-10, 1988. Topics covered are: The Standard model, symmetry breaking, the superconducting supercollider, physics at the TEV scale, and the early universe

  13. Vacuum Technology for Superconducting Devices

    Energy Technology Data Exchange (ETDEWEB)

    Chiggiato, P [European Organization for Nuclear Research, Geneva (Switzerland)

    2014-07-01

    The basic notions of vacuum technology for superconducting applications are presented, with an emphasis on mass and heat transport in free molecular regimes. The working principles and practical details of turbomolecular pumps and cryopumps are introduced. The specific case of the Large Hadron Collider’s cryogenic vacuum system is briefly reviewed.

  14. Theory of high temperature superconductivity

    International Nuclear Information System (INIS)

    Srivastava, C.M.

    1989-01-01

    This paper develops a semi-empirical electronic band structure for a high T c superconductor like YBa 2 Cu 3 O 6 - δ . The author accounts for the electrical transport properties on the model based on the correlated electron transfer arising from the electron-phonon interaction. The momentum pairing leading to the superconducting phase amongst the mobile charge carriers is shown

  15. Tailoring Superconductivity with Quantum Dislocations.

    Science.gov (United States)

    Li, Mingda; Song, Qichen; Liu, Te-Huan; Meroueh, Laureen; Mahan, Gerald D; Dresselhaus, Mildred S; Chen, Gang

    2017-08-09

    Despite the established knowledge that crystal dislocations can affect a material's superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material's superconducting transition temperature (T c ) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T c . These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T c reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T c . This provides a new pathway for engineering a material's superconducting properties by using dislocations as an additional degree of freedom.

  16. MICROSTRUCTURE OF SUPERCONDUCTING MGB(2).

    Energy Technology Data Exchange (ETDEWEB)

    ZHU,Y.; LI,Q.; WU,L.; VOLKOV,V.; GU,G.; MOODENBAUGH,A.R.

    2001-07-12

    Recently, Akimitsu and co-workers [1] discovered superconductivity at 39 K in the intermetallic compound MgB{sub 2}. This discovery provides a new perspective on the mechanism for superconductivity. More specifically, it opens up possibilities for investigation of structure/properties in a new class of materials. With the exceptions of the cuprate and C{sub 60} families of compounds, MgB{sub 2} possesses the highest superconducting transition temperature T{sub c}. Its superconductivity appears to follow the BCS theory, apparently being mediated by electron-phonon coupling. The coherence length of MgB{sub 2} is reported to be longer than that of the cuprates [2]. In contrast to the cuprates, grain boundaries are strongly coupled and current density is determined by flux pinning [2,3]. Presently, samples of MgB{sub 2} commonly display inhomogeneity and porosity on the nanoscale, and are untextured. In spite of these obstacles, magnetization and transport measurements show that polycrystalline samples may carry large current densities circulating across many grains [3,4]. Very high values of critical current densities and critical fields have been recently observed in thin films [5,6]. These attributes suggest possible large scale and electronic applications. The underlying microstructure can be intriguing, both in terms of basic science and in applied areas. Subsequent to the discovery, many papers were published [1-13], most dealing with synthesis, physical properties, and theory. There have yet been few studies of microstructure and structural defects [11, 14]. A thorough understanding of practical superconducting properties can only be developed after an understanding of microstructure is gained. In this work we review transmission electron microscopy (TEM) studies of sintered MgB{sub 2} pellets [14]. Structural defects, including second phase particles, dislocations, stacking faults, and grain boundaries, are analyzed using electron diffraction, electron

  17. New superconducting cyclotron driven scanning proton therapy systems

    International Nuclear Information System (INIS)

    Klein, Hans-Udo; Baumgarten, Christian; Geisler, Andreas; Heese, Juergen; Hobl, Achim; Krischel, Detlef; Schillo, Michael; Schmidt, Stefan; Timmer, Jan

    2005-01-01

    Since one and a half decades ACCEL is investing in development and engineering of state of the art particle-therapy systems. A new medical superconducting 250 MeV proton cyclotron with special focus on the present and future beam requirements of fast scanning treatment systems has been designed. The first new ACCEL medical proton cyclotron is under commissioning at PSI for their PROSCAN proton therapy facility having undergone successful factory tests especially of the closed loop cryomagnetic system. The second cyclotron is part of ACCEL's integrated proton therapy system for Europe's first clinical center, RPTC in Munich. The cyclotron, the energy selection system, the beamline as well as the four gantries and patient positioners have been installed. The scanning system and major parts of the control software have already been tested. We will report on the concept of ACCEL's superconducting cyclotron driven scanning proton therapy systems and the current status of the commissioning work at PSI and RPTC

  18. On-chip quantum interference of a superconducting microsphere

    Science.gov (United States)

    Pino, H.; Prat-Camps, J.; Sinha, K.; Prasanna Venkatesh, B.; Romero-Isart, O.

    2018-04-01

    We propose and analyze an all-magnetic scheme to perform a Young’s double slit experiment with a micron-sized superconducting sphere of mass ≳ {10}13 amu. We show that its center of mass could be prepared in a spatial quantum superposition state with an extent of the order of half a micrometer. The scheme is based on magnetically levitating the sphere above a superconducting chip and letting it skate through a static magnetic potential landscape where it interacts for short intervals with quantum circuits. In this way, a protocol for fast quantum interferometry using quantum magnetomechanics is passively implemented. Such a table-top earth-based quantum experiment would operate in a parameter regime where gravitational energy scales become relevant. In particular, we show that the faint parameter-free gravitationally-induced decoherence collapse model, proposed by Diósi and Penrose, could be unambiguously falsified.

  19. High coherence plane breaking packaging for superconducting qubits

    Science.gov (United States)

    Bronn, Nicholas T.; Adiga, Vivekananda P.; Olivadese, Salvatore B.; Wu, Xian; Chow, Jerry M.; Pappas, David P.

    2018-04-01

    We demonstrate a pogo pin package for a superconducting quantum processor specifically designed with a nontrivial layout topology (e.g., a center qubit that cannot be accessed from the sides of the chip). Two experiments on two nominally identical superconducting quantum processors in pogo packages, which use commercially available parts and require modest machining tolerances, are performed at low temperature (10 mK) in a dilution refrigerator and both found to behave comparably to processors in standard planar packages with wirebonds where control and readout signals come in from the edges. Single- and two-qubit gate errors are also characterized via randomized benchmarking, exhibiting similar error rates as in standard packages, opening the possibility of integrating pogo pin packaging with extensible qubit architectures.

  20. Pilot study

    International Nuclear Information System (INIS)

    Hofmeester, G.H.; Swart, A.; Dijk, E. van

    1984-01-01

    In May 1980 it was decided to organize an intercomparison of personal dosimeters for photon radiations. The Commission of the European Communities initiated the intercomparison by starting a pilot study in which three laboratories NPL (United Kingdom), PTB (Germany) and RIV (The Netherlands) were asked to irradiate a series of personal dosemeters from institutes, GSF (Muenchen), CEA (Fontenay-aux-Roses), CNEN (Bologna) and CEGB (Berkeley). The latter institutes are secondary standard laboratories and have a radiation protection service as well. A new aspect of this pilot study is the fact that the irradiations also take place in front of a phantom. Irradiations took place in July and August 1980. The results of 4 institutes show that the personal dosemeters are quite capable of measuring the backscattered photon components

  1. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  2. Advanced composite materials and processes for the manufacture of SSC [Superconducting Super Collider] and RHIC [Relativistic Heavy Ion Collider] superconducting magnets used at cryogenic temperatures in a high radiation environment

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs

  3. Basic principles of RF superconductivity and superconducting cavities

    OpenAIRE

    Schmüser, P

    2006-01-01

    The basics of superconductivity are outlined with special emphasis on the features which are relevant for the application of superconductors in radio frequency cavities for particle acceleration. For a cylindrical resonator (“pill box cavity”) the electromagnetic field in the cavity and important parameters such as resonance frequency, quality factor and shunt impedance are calculated analytically. The design and performance of practical cavities is shortly addressed.

  4. Voltage-carrying states in superconducting microstrips

    International Nuclear Information System (INIS)

    Stuivinga, M.E.C.

    1983-01-01

    When the critical current is exceeded in a superconducting microstrip, voltage-carrying states with a resistance significantly below the normal state resistance can occur. Phase-slip centers (PSC) appear at about the critical temperature. These are successive local voltage units which manifest themselves as strip-like increments in voltage in the I-V characteristic. For temperatures off the critical temperature the PSC regime degenerates into a region of normal material, a so-called hot spot. These two phenomena, PSC and hot spots, form the subject of this thesis. To gain a better understanding of the phase-slip center process, an experiment was designed to measure local values of the quasi-particle and pair potential. The results of local potential and gap measurements at a PSC in aluminium are presented and discussed. Special attention is paid to pair-breaking interactions which can shorten the relaxation time. A non-linear differential equation is derived which describes the development of a PSC into a normal hot spot under the influence of Joule heating. It incorporates the temperature rise due to the dissipative processes occurring in the charge imbalance tails. Numerical solutions are presented for a set of parameters, including those for aluminium and tin. Subsequently, they are compared with experiments. (Auth.)

  5. Capacitor energy needed to induce transitions from the superconducting to the normal state

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Ross, R.R.

    1985-08-01

    The purpose of this paper is to describe a technique to turn a long length of superconducting wire normal by dumping a charged capacitor into it and justify some formulae needed in the design. The physical phenomenon is described. A formula for the energy to be stored in the capacitor is given. There are circumstances where the dc in an electrical circuit containing superconducting elements has to be turned off quickly and where the most convenient way to switch the current off is to turn a large portion or all of the superconducting wire normal. Such was the case of the Time Projection Chamber (TPC) superconducting magnet as soon as a quench was detected. The technique used was the discharge of a capacitor into the coil center tap. It turned the magnet winding normal in ten milliseconds or so and provided an adequate quench protection. The technique of discharging a capacitor into a superconducting wire should have many other applications whenever a substantial resistance in a superconducting circuit has to be generated in that kind of time scale. The process involves generating a pulse of large currents in some part of the circuit and heating the wire up by ac losses until the value of the wire critical current is smaller than the dc current. Use of low inductance connections to the circuit is necessary. Then the dc gets turned off due to the resistance of the wire as in a magnet quench

  6. Acoustic wave spread in superconducting-normal-superconducting sandwich

    International Nuclear Information System (INIS)

    Urushadze, G.I.

    2004-01-01

    The acoustic wave spread, perpendicular to the boundaries between superconducting and normal metals in superconducting-normal-superconducting (SNS) sandwich has been considered. The alternate current flow sound induced by the Green function method has been found and the coefficient of the acoustic wave transmission through the junction γ=(S 1 -S 2 )/S 1 , (where S 1 and S 2 are average energy flows formed on the first and second boundaries) as a function of the phase difference between superconductors has been investigated. It is shown that while the SNS sandwich is almost transparent for acoustic waves (γ 0 /τ), n=0,1,2, ... (where τ 0 /τ is the ratio of the broadening of the quasiparticle energy levels in impurity normal metal as a result of scattering of the carriers by impurities 1/τ to the spacing between energy levels 1/τ 0 ), γ=2, (S 2 =-S 1 ), which corresponds to the full reflection of the acoustic wave from SNS sandwich. This result is valid for the limit of a pure normal metal but in the main impurity case there are two amplification and reflection regions for acoustic waves. The result obtained shows promise for the SNS sandwich as an ideal mirror for acoustic wave reflection

  7. Coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compound

    International Nuclear Information System (INIS)

    Lu, T.P.; Wu, C.C.; Chou, W.H.; Lan, M.D.

    2010-01-01

    The magnetic and superconducting properties of the Sm-doped FeAs-based superconducting compound were investigated under wide ranges of temperature and magnetic field. After the systematical magnetic ion substitution, the superconducting transition temperature decreases with increasing magnetic moment. The hysteresis loop of the La 0.87-x Sm x Sr 0.13 FeAsO sample shows a superconducting hysteresis and a paramagnetic background signal. The paramagnetic signal is mainly attributed to the Sm moments. The experiment demonstrates that the coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compounds is possible. Unlike the electron doped FeAs-based superconducting compounds SmFeAsOF, the hole doped superconductivity is degraded by the substitution of La by Sm. The hole-doped and electron-doped sides are not symmetric.

  8. Materials and mechanisms of hole superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, J.E., E-mail: jhirsch@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)

    2012-01-15

    We study the applicability of the model of hole superconductivity to materials. Both conventional and unconventional materials are considered. Many different classes of materials are discussed. The theory is found suitable to describe all of them. No other theory of superconductivity can describe all these classes of materials. The theory of hole superconductivity proposes that there is a single mechanism of superconductivity that applies to all superconducting materials. This paper discusses several material families where superconductivity occurs and how they can be understood within this theory. Materials discussed include the elements, transition metal alloys, high T{sub c} cuprates both hole-doped and electron-doped, MgB{sub 2}, iron pnictides and iron chalcogenides, doped semiconductors, and elements under high pressure.

  9. Development of superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2013-01-01

    In this paper, the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors; one is based on high temperature superconductors......; and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are, however, not without their challenges. The superconductors have to be cooled down to somewhere...

  10. Development of Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2012-01-01

    In this paper the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors (LTS); one is based on high temperature superconductors...... (HTS); and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are however not without their challenges. The superconductors have to be cooled down...

  11. Fluctuation current in superconducting loops

    International Nuclear Information System (INIS)

    Berger, Jorge

    2012-01-01

    A superconducting loop that encloses noninteger flux holds a permanent current. On the average, this current is also present above T c , and has been measured in recent years. We are able to evaluate the permanent current within the TDGL or the Kramer-Watts-Tobin models for loops of general configuration, i.e., we don't require uniform cross section, material or temperature. We can also consider situations in which the width is not negligible in comparison to the radius. Our results agree with experiments. The situations with which we deal at present include fluctuation superconductivity in two-band superconductors, equilibrium thermal fluctuations of supercurrent along a weak link, and ratchet effects.

  12. Technical tasks in superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kenji [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    The feature of superconducting rf cavities is an extremely small surface resistance on the wall. It brings a large energy saving in the operation, even those are cooled with liquid helium. That also makes possible to operate themselves in a higher field gradient comparing to normal conducting cavities, and brings to make accelerators compact. These merits are very important for the future accelerator engineering which is planed at JAERI for the neutron material science and nuclear waste transmutation. This machine is a high intensity proton linac and uses sc cavities in the medium and high {beta} sections. In this paper, starting R and D of proton superconducting cavities, several important technical points which come from the small surface resistance of sc cavities, are present to succeed it and also differences between the medium and high - {beta} structures are discussed. (author)

  13. Siting the superconducting super collider

    International Nuclear Information System (INIS)

    Price, R.; Rooney, R.C.

    1988-01-01

    At the request of the Department of Energy, the National Academy of Sciences and the National Academy of Engineering established the Super Collider Site Evaluation Committee to evaluate the suitability of proposed sites for the Superconducting Super Collider. Thirty-six proposals were examined by the committee. Using the set of criteria announced by DOE in its Invitation for Site Proposals, the committee identified eight sites that merited inclusion on a ''best qualified list.'' The list represents the best collective judgment of 21 individuals, carefully chosen for their expertise and impartiality, after a detailed assessment of the proposals using 19 technical subcriteria and DOE's life cycle cost estimates. The sites, in alphabetical order, are: Arizona/Maricopa; Colorado; Illinois; Michigan/Stockbridge; New York/Rochester; North Carolina; Tennessee; and Texas/Dallas-Fort Worth. The evaluation of these sites and the Superconducting Super Collider are discussed in this book

  14. Characterizing Ensembles of Superconducting Qubits

    Science.gov (United States)

    Sears, Adam; Birenbaum, Jeff; Hover, David; Rosenberg, Danna; Weber, Steven; Yoder, Jonilyn L.; Kerman, Jamie; Gustavsson, Simon; Kamal, Archana; Yan, Fei; Oliver, William

    We investigate ensembles of up to 48 superconducting qubits embedded within a superconducting cavity. Such arrays of qubits have been proposed for the experimental study of Ising Hamiltonians, and efficient methods to characterize and calibrate these types of systems are still under development. Here we leverage high qubit coherence (> 70 μs) to characterize individual devices as well as qubit-qubit interactions, utilizing the common resonator mode for a joint readout. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under Air Force Contract No. FA8721-05-C-0002. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of ODNI, IARPA, or the US Government.

  15. Venture investing opportunities in superconductivity

    International Nuclear Information System (INIS)

    Zschau, E.

    1987-01-01

    The authors provide an assessment of the venture investing opportunities in superconductivity and some guidelines to follow. There were many elements that made Silicon Valley a leader in technology, not the least of which were the distinguished research universities located here. However, the application of the research results that they produced was done by groups of extraordinary people--people who had ideas, who were willing to take risks, and who inspired others to follow them into the unknown. They sometimes succeeded, but they often didn't. However, they never stopped trying. People like that will be the key to success in advancing and applying superconductivity technology just as they have been in semiconductors

  16. Superconducting magnets and leads thereto

    International Nuclear Information System (INIS)

    Biltcliffe, M.N.; Hanley, P.E.; McKinnon, J.B.; Wheatley, R.W.

    1975-01-01

    The magnet described comprises a cryostat containing a superconducting coil for the generation of a magnetic field, with a short-circuiting superconducting link connected across the coil, and electrical leads extending through the cryostat to the coil; these leads are provided with joints within the cryostat to enable them to be detached from the coil and removed from the cryostat without interrupting the current through the coil, thus reducing heat conduction to the cryostat through the leads. The joints are arranged so that the leads can be readily detached and re-attached to the coil from outside the cryostat. Gas-tight seals are provided where the leads pass through the outer wall of the cryostat, with caps that can be secured after removal of the leads. This kind of magnet can provide a stable magnetic field continuously over long periods, such as is required in nuclear magnetic resonance spectrometers. (U.K.)

  17. Superconducting endcap toroid design report

    Energy Technology Data Exchange (ETDEWEB)

    Walters, C.R.; Baynham, D.E.; Holtom, E.; Coombs, R.C.

    1992-10-01

    The Atlas Experiment proposed for the LHC machine will use toroidal magnet systems to achieve high muon momentum resolutions. One of the options under consideration is an air cored superconducting toroidal magnet system consisting of a long barrel toroid with small and cap toroids inserted in it to provide high resolution at high pseudorapidity. The design of the barrel toroid has been studied over the past two years and the design outline is given in a Saclay Report. More recently consideration has been given to an end cap toroid system which is based on air cored superconducting coils. This report presents the basic engineering design of such a system, the proposals for fabrication, assembly and installation, and an outline cost estimate for one end cap is presented in Appendix 1.

  18. Superconducting magnet systems for MRI

    International Nuclear Information System (INIS)

    Hawksworth, D.G.

    1988-01-01

    MRI is the first large scale commercial application of superconductivity and has not achieved the status of a mature industry with an annual turnover in the magnet industry alone in excess of $150M. Conservative estimates put the investment of the medical industry in MRI as a whole at more than a billion dollars. In the nine years since shipment of the first superconducting whole body imaging magnets of 0.3 Tesla field the standard product of the industry has become a system of 1 meter bore and field strength 0.5 Tesla to 1.5 Tesla. In this paper the evolution of present day MRI magnets from small bore but high field spectrometer magnets is reviewed and the direction of future developments discussed

  19. Quantum memory for superconducting qubits

    International Nuclear Information System (INIS)

    Pritchett, Emily J.; Geller, Michael R.

    2005-01-01

    Many protocols for quantum computation require a memory element to store qubits. We discuss the speed and accuracy with which quantum states prepared in a superconducting qubit can be stored in and later retrieved from an attached high-Q resonator. The memory fidelity depends on both the qubit-resonator coupling strength and the location of the state on the Bloch sphere. Our results show that a quantum memory demonstration should be possible with existing superconducting qubit designs, which would be an important milestone in solid-state quantum information processing. Although we specifically focus on a large-area, current-biased Josesphson-junction phase qubit coupled to the dilatational mode of a piezoelectric nanoelectromechanical disk resonator, many of our results will apply to other qubit-oscillator models

  20. Stabilization of superconducting dry solenoids

    International Nuclear Information System (INIS)

    Urata, M.; Maeda, H.

    1989-01-01

    Premature quenches in superconducting solenoids, wound with Formvar coated NbTi conductors, have been studied. Some model coils were tested wound with various winding tensions. The experimental results are discussed considering the calculated stress distribution for coil winding, cool-down to liquid helium temperature, and energization at 4.2 K. /Some mechanisms of premature quenches are classified by the winding tension. Some stabilization methods are presented based on these quench mechanisms