WorldWideScience

Sample records for superconductive thin-film bridge

  1. Amorphous molybdenum silicon superconducting thin films

    Directory of Open Access Journals (Sweden)

    D. Bosworth

    2015-08-01

    Full Text Available Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using WxSi1−x, though other amorphous superconductors such as molybdenum silicide (MoxSi1−x offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc reaches a maximum of 7.6 K at a composition of Mo83Si17. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz, there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  2. On Ginzburg-Landau Vortices of Superconducting Thin Films

    Institute of Scientific and Technical Information of China (English)

    Shi Jin DING; Qiang DU

    2006-01-01

    In this paper, we discuss the vortex structure of the superconducting thin films placed in a magnetic field. We show that the global minimizer of the functional modelling the superconducting thin films has a bounded number of vortices when the applied magnetic field hex < Hc1 + K log |log ε|where Hc1 is the lower critical field of the film obtained by Ding and Du in SIAM J. Math. Anal.,2002. The locations of the vortices are also given.

  3. Optimisation of superconducting thin films by TEM

    NARCIS (Netherlands)

    Bals, S.; van Tendeloo, G.; Rijnders, Augustinus J.H.M.; Blank, David H.A.; Leca, V.; Salluzzo, M.

    2002-01-01

    High-resolution electron microscopy is used to study the initial growth of different REBa2Cu3O7−δ thin films. In DyBa2Cu3O7−δ ultra-thin films, deposited on TiO2 terminated SrTiO3, two different types of interface arrangements occur: bulk–SrO–TiO2–BaO–CuO–BaO–CuO2–Dy–CuO2–BaO–bulk and bulk–SrO–TiO2–

  4. Studies to Enhance Superconductivity in Thin Film Carbon

    Science.gov (United States)

    Pierce, Benjamin; Brunke, Lyle; Burke, Jack; Vier, David; Steckl, Andrew; Haugan, Timothy

    2012-02-01

    With research in the area of superconductivity growing, it is no surprise that new efforts are being made to induce superconductivity or increase transition temperatures (Tc) in carbon given its many allotropic forms. Promising results have been published for boron doping in diamond films, and phosphorus doping in highly oriented pyrolytic graphite (HOPG) films show hints of superconductivity.. Following these examples in the literature, we have begun studies to explore superconductivity in thin film carbon samples doped with different elements. Carbon thin films are prepared by pulsed laser deposition (PLD) on amorphous SiO2/Si and single-crystal substrates. Doping is achieved by depositing from (C1-xMx) single-targets with M = B4C and BN, and also by ion implantation into pure-carbon films. Previous research had indicated that Boron in HOPG did not elicit superconducting properties, but we aim to explore that also in thin film carbon and see if there needs to be a higher doping in the sample if trends were able to be seen in diamond films. Higher onset temperatures, Tc , and current densities, Jc, are hoped to be achieved with doping of the thin film carbon with different elements.

  5. A Method for Suppressing Superconductivity of Thin Films

    Science.gov (United States)

    Suppula, Tarmo; Pekola, Jukka; Kauppinen, Juha

    2003-03-01

    We have developed a method for suppressing superconductivity of thin films. Thin stripes of cobalt grown by e-gun evaporation and patterned by e-beam lithography were placed in the vicinity of aluminium thin film structures. The cobalt stripes were magnetized at 4.2 K with a superconducting coil and the remanence suppressed superconductivity of the Al stripe at temperatures down to 50 mK at least. The magnetization remained in thermal cycling and in a longer storage at room temperature. Motivation for this work is the Coulomb Blockade Thermometer(CBT)^1 which has to be in a normal state to operate. The CBT sensor contains aluminium which is superconducting at temperatures below 1.4 K. An external magnetic field is not always available or acceptable in cryostats. A small grain of permanent magnet mounted to the sensor is another solution, but suspicious if the sensor is put in strong magnetic fields or if "zero field" environment is required. We have shown that suitably patterned and magnetized Co stripes in the vicinity of tunnel junctions of the CBT can solve this problem. The amount of magnetic material in the sensor, as well as the stray field, is very small. This technique may be useful in other low temperature thin film devices also. 1) Product of Nanoway Ltd.

  6. Enhanced pinning in superconducting thin films with graded pinning landscapes

    Science.gov (United States)

    Motta, M.; Colauto, F.; Ortiz, W. A.; Fritzsche, J.; Cuppens, J.; Gillijns, W.; Moshchalkov, V. V.; Johansen, T. H.; Sanchez, A.; Silhanek, A. V.

    2013-05-01

    A graded distribution of antidots in superconducting a-Mo79Ge21 thin films has been investigated by magnetization and magneto-optical imaging measurements. The pinning landscape has maximum density at the sample border, decreasing linearly towards the center. Its overall performance is noticeably superior than that for a sample with uniformly distributed antidots: For high temperatures and low fields, the critical current is enhanced, whereas the region of thermomagnetic instabilities in the field-temperature diagram is significantly suppressed. These findings confirm the relevance of graded landscapes on the enhancement of pinning efficiency, as recently predicted by Misko and Nori [Phys. Rev. B 85, 184506 (2012)].

  7. New Fast Response Thin Film-Based Superconducting Quench Detectors

    CERN Document Server

    Dudarev, A; van de Camp, W; Ravaioli, E; Teixeira, A; ten Kate, H H J

    2014-01-01

    Quench detection on superconducting bus bars and other devices with a low normal zone propagation velocity and low voltage build-up is quite difficult with conventional quench detection techniques. Currently, on ATLAS superconducting bus bar sections, superconducting quench detectors (SQD) are mounted to detect quench events. A first version of the SQD essentially consists of an insulated superconducting wire glued to a superconducting bus line or windings, which in the case of a quench rapidly builds up a relatively high resistance that can be easily and quietly detected. We now introduce a new generation of drastically improved SQDs. The new version makes the detection of quenches simpler, more reliable, and much faster. Instead of a superconducting wire, now a superconducting thin film is used. The layout of the sensor shows a meander like pattern that is etched out of a copper coated 25 mu m thick film of Nb-Ti glued in between layers of Kapton. Since the sensor is now much smaller and thinner, it is easi...

  8. Local imaging of magnetic flux in superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shapoval, Tetyana

    2010-01-26

    Local studies of magnetic flux line (vortex) distribution in superconducting thin films and their pinning by natural and artificial defects have been performed using low-temperature magnetic force microscopy (LT-MFM). Taken a 100 nm thin NbN film as an example, the depinning of vortices from natural defects under the influence of the force that the MFM tip exerts on the individual vortex was visualized and the local pinning force was estimated. The good agreement of these results with global transport measurements demonstrates that MFM is a powerful and reliable method to probe the local variation of the pinning landscape. Furthermore, it was demonstrated that the presence of an ordered array of 1-{mu}m-sized ferromagnetic permalloy dots being in a magneticvortex state underneath the Nb film significantly influences the natural pinning landscape of the superconductor leading to commensurate pinning effects. This strong pinning exceeds the repulsive interaction between the superconducting vortices and allows vortex clusters to be located at each dot. Additionally, for industrially applicable YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films the main question discussed was the possibility of a direct correlation between vortices and artificial defects as well as vortex imaging on rough as-prepared thin films. Since the surface roughness (droplets, precipitates) causes a severe problem to the scanning MFM tip, a nanoscale wedge polishing technique that allows to overcome this problem was developed. Mounting the sample under a defined small angle results in a smooth surface and a monotonic thickness reduction of the film along the length of the sample. It provides a continuous insight from the film surface down to the substrate with surface sensitive scanning techniques. (orig.)

  9. Loss mechanisms in superconducting thin film microwave resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan, E-mail: jan.goetz@wmi.badw.de; Haeberlein, Max; Wulschner, Friedrich; Zollitsch, Christoph W.; Meier, Sebastian; Fischer, Michael; Fedorov, Kirill G.; Menzel, Edwin P. [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Deppe, Frank; Eder, Peter; Xie, Edwar; Gross, Rudolf, E-mail: rudolf.gross@wmi.badw.de [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, Technische Universität München, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Marx, Achim [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-01-07

    We present a systematic analysis of the internal losses of superconducting coplanar waveguide microwave resonators based on niobium thin films on silicon substrates. In particular, we investigate losses introduced by Nb/Al interfaces in the center conductor, which is important for experiments where Al based Josephson junctions are integrated into Nb based circuits. We find that these interfaces can be a strong source for two-level state (TLS) losses, when the interfaces are not positioned at current nodes of the resonator. In addition to TLS losses, for resonators including Al, quasiparticle losses become relevant above 200 mK. Finally, we investigate how losses generated by eddy currents in conductive material on the backside of the substrate can be minimized by using thick enough substrates or metals with high conductivity on the substrate backside.

  10. Superconducting thin films. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The bibliography contains citations concerning the design, fabrication, structures, and properties of superconducting thin films used in microelectronics and optoelectronics. References discuss high temperature superconductors, oxide superconductors, superconducting transition temperatures, critical current density, yttrium barium copper oxide thin films, and yttrium stabilized substrates. Superconducting devices, filters, resonators, and circuits are also reviewed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Superconducting thin films of (100) and (111) oriented indium doped topological crystalline insulator SnTe

    Energy Technology Data Exchange (ETDEWEB)

    Si, Weidong, E-mail: wds@bnl.gov, E-mail: qiangli@bnl.gov; Zhang, Cheng; Wu, Lijun; Ozaki, Toshinori; Gu, Genda; Li, Qiang, E-mail: wds@bnl.gov, E-mail: qiangli@bnl.gov [Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2015-08-31

    Recent discovery of the topological crystalline insulator SnTe has triggered a search for topological superconductors, which have potential application to topological quantum computing. The present work reports on the superconducting properties of indium doped SnTe thin films. The (100) and (111) oriented thin films were epitaxially grown by pulsed-laser deposition on (100) and (111) BaF{sub 2} crystalline substrates, respectively. The onset superconducting transition temperatures are about 3.8 K for (100) and 3.6 K for (111) orientations, slightly lower than that of the bulk. Magneto-resistive measurements indicate that these thin films may have upper critical fields higher than that of the bulk. With large surface-to-bulk ratio, superconducting indium doped SnTe thin films provide a rich platform for the study of topological superconductivity and potential device applications based on topological superconductors.

  12. Highly textured oxypnictide superconducting thin films on metal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kazumasa, E-mail: iida@nuap.nagoya-u.ac.jp; Kurth, Fritz; Grinenko, Vadim; Hänisch, Jens [Institute for Metallic Materials, IFW Dresden, D-01171 Dresden (Germany); Chihara, Masashi; Sumiya, Naoki; Hatano, Takafumi; Ikuta, Hiroshi [Department of Crystalline Materials Science, Nagoya University, Chikusa, Nagoya 464-8603 (Japan); Ichinose, Ataru; Tsukada, Ichiro [Central Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196 (Japan); Matias, Vladimir [iBeam Materials, Inc., 2778A Agua Fria Street, Santa Fe, New Mexico 87507 (United States); Holzapfel, Bernhard [Institute for Technical Physics, Karlsruhe Institute of Technology, Hermann von Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen (Germany)

    2014-10-27

    Highly textured NdFeAs(O,F) thin films have been grown on ion beam assisted deposition-MgO/Y{sub 2}O{sub 3}/Hastelloy substrates by molecular beam epitaxy. The oxypnictide coated conductors showed a superconducting transition temperature (T{sub c}) of 43 K with a self-field critical current density (J{sub c}) of 7.0×10{sup 4} A/cm{sup 2} at 5 K, more than 20 times higher than powder-in-tube processed SmFeAs(O,F) wires. Albeit higher T{sub c} as well as better crystalline quality than Co-doped BaFe{sub 2}As{sub 2} coated conductors, in-field J{sub c} of NdFeAs(O,F) was lower than that of Co-doped BaFe{sub 2}As{sub 2}. These results suggest that grain boundaries in oxypnictides reduce J{sub c} significantly compared to that in Co-doped BaFe{sub 2}As{sub 2} and, hence biaxial texture is necessary for high J{sub c.}.

  13. High temperature superconducting thin films for microwave filters

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Xinjie(赵新杰); LI; Lin(李林); LEI; Chong(雷冲); TIAN; Ybngjun(田永军)

    2002-01-01

    YBa2Cu3O7-δ and Tl2Ba2CaCu2O8 thin films for microwave filters were synthesized by pulsed laser deposition and the two-step thalliation process. Substrate quality requirements and the relation of thin film morphology, microstructure with microwave surface resistance were discussed.

  14. Impact of Edge-Barrier Pinning in Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Jones, W. A.; Barnes, P.N.; Mullins, M. J.; Baca, F. J.; Emergo, R. L. S.; Wu, J.; Haugan, T. J.; Clem, J. R.

    2010-12-30

    It has been suggested that edge-barrier pinning might cause the critical current density (J{sub c}) in bridged superconducting films to increase. Subsequent work indicated that this edge-barrier effect does not impact bridges larger than 1 {micro}m. However, we provide a theoretical assessment with supporting experimental data suggesting edge-barrier pinning can significantly enhance J{sub c} for bridges of a few microns or even tens of microns thus skewing any comparisons among institutions. As such, when reporting flux pinning and superconductor processing improvements for J{sub c} comparisons, the width of the sample has to be taken into consideration as is currently done with film thickness.

  15. High- T_c superconducting thin film/GaAs MESFET hybrid microwave oscillator

    Institute of Scientific and Technical Information of China (English)

    金飚兵; 康琳; 伍瑞新; 张健羽; 程其恒; 吴培亨; 经东; 焦刚; 邵凯; 蒋明明; 张家宗; 孙敏松; 王蕴仪; 周岳亮; 吕惠宾; 许世发; 何萌; 王小平; 杨秉川; 卢剑; 张其邵

    1997-01-01

    A high- Tc superconducting (HTSC) thin film/GaAs MESFET hybrid microwave oscillator operated at 10 6 GHz has been designed, fabricated and characterized. Microstrip line structures were used throughout the circuit with superconducting thin film YBaiCuiO7 8(YBCO) as the conductor material. The YBCO thin films were deposited on 15 mm×10 mm×0. 5 mm LaAlO3 substrates. The oscillator was common-source, series feedback type using a GaAs-MESFET (NE72084) as the active device and a superconducting microstrip resonator as the frequency stabilizing element. By improving the unloaded quality factor Q0 of the superconducting microstrip resonator and adjusting the coupling coefficient between the resonator and the gate of the MESFET, the phase noise of the oscillator was decreased At 77 K, the phase noise of the oscillator at 10 kHz offset from carrier was - 87 dBc/Hz.

  16. Use of thin films in high-temperature superconducting bearings.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.; Cansiz, A.

    1999-09-30

    In a PM/HTS bearing, locating a thin-film HTS above a bulk HTS was expected to maintain the large levitation force provided by the bulk with a lower rotational drag provided by the very high current density of the film. For low drag to be achieved, the thin film must shield the bulk from inhomogeneous magnetic fields. Measurement of rotational drag of a PM/HTS bearing that used a combination of bulk and film HTS showed that the thin film is not effective in reducing the rotational drag. Subsequent experiments, in which an AC coil was placed above the thin-film HTS and the magnetic field on the other side of the film was measured, showed that the thin film provides good shielding when the coil axis is perpendicular to the film surface but poor shielding when the coil axis is parallel to the surface. This is consistent with the lack of reduction in rotational drag being due to a horizontal magnetic moment of the permanent magnet. The poor shielding with the coil axis parallel to the film surface is attributed to the aspect ratio of the film and the three-dimensional nature of the current flow in the film for this coil orientation.

  17. Josephson soliton oscillators in a superconducting thin film resonator

    DEFF Research Database (Denmark)

    Holm, J.; Mygind, Jesper; Pedersen, Niels Falsig

    1993-01-01

    . Different modes of half-wave resonances in the thin-film structure impose different magnetic field configurations at the boundaries of the junctions. The DC I-V characteristic shows zero-field steps with a number of resonator-induced steps. These structures are compared to RF-induced steps generated...

  18. Quench-condensing superconducting thin films using the Fab on a Chip approach

    Science.gov (United States)

    Han, Han; Imboden, Matthias; Del Corro, Pablo; Stark, Thomas; Lally, Richard; Pardo, Flavio; Bolle, Cristian; Bishop, David

    Micro-electromechanical systems (MEMS) being manufactured in a macroscopic fab inspires the idea of getting the process further down to fabricate even smaller structures, namely nano-structures, using MEMS. The Fab on a Chip concept was proposed based on such ideas. By implementing the final-step, additive fabrication approach, manufacturing, characterization and experiments of nano-structures are integrated in-situ. Due to the miniature size of MEMS, the thickness precision is significantly improved while the power consumption is significantly depressed, making the quench-condensation of very thin films well controlled and easily achievable. Among various types of nano-structures, quench-condensed superconducting thin films are of great interest for physicists. Here we present such experiments done on superconducting thin films quench-condensed using the Fab on a Chip. We show that we are able to fabricate very thin films with its thickness precisely controlled, and the base temperature kept under ~3K during the process. The resistivity data demonstrates the high purity and uniformity of the film, as well as the annealing effect when cycling to higher temperatures. Based on the tremendous results obtained from the superconducting thin films, more complex nano-circuits can be fabricated and investigated using the Fab on a Chip, enabling a new approach for novel condensed matter physics experiments. This research is funded by the NSF through their CMMI division. This research is funded by the NSF through their CMMI division.

  19. Influence of hydrostatic pressure on superconducting properties of niobium thin film

    Energy Technology Data Exchange (ETDEWEB)

    Pristáš, Gabriel; Gabáni, Slavomír; Gažo, Emil [Centre of Low Temperature Physics, Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice (Slovakia); Komanický, Vladimír; Orendáč, Matúš [Centre of Low Temperature Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, SK-04154 Košice (Slovakia); You, Hoydoo [Materials Science Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2014-04-01

    We have studied superconducting properties of niobium thin films under hydrostatic pressures up to 3 GPa. The films with thickness of 100 nm were prepared in the high vacuum DC magnetron sputtering system (with critical temperature TC = 8.95 K at ambient pressure). The produced high quality films have been characterized using electrical resistivity and magnetization measurements, X-ray diffraction, and atomic force microscope imaging. We have observed increase of TC with increasing value of applied pressure (dTC/dp = 73 mK/GPa) up to 3 GPa. This observation is different to pressure effect observed on bulk sample of Nb. In this paper we are discussing the origin of this discrepancy. - Highlights: • We have studied superconducting properties of niobium thin films under pressure. • The 100 nm thick films were prepared in DC magnetron sputtering system. • We have observed different behavior of T{sub C} for thin film and for bulk sample.

  20. Development of Strontium Titanate Thin films on Technical Substrates for Superconducting Coated Conductors

    DEFF Research Database (Denmark)

    Pallewatta, Pallewatta G A P; Yue, Zhao; Grivel, Jean-Claude

    2012-01-01

    SrTiO3 is a widely studied perovskite material due to its advantages as a template for high temperature superconducting tapes. Heteroepitaxial SrTiO3 thin films were deposited on Ni/W tapes using dip-coating in a precursor solution followed by drying and annealing under reducing conditions. Nearl...

  1. MgB{sub 2} superconducting thin films sequentially fabricated using DC magnetron sputtering and thermionic vacuum arc method

    Energy Technology Data Exchange (ETDEWEB)

    Okur, S. [Physics Department, Izmir Institute of Technology (Turkey)], E-mail: salihokur@iyte.edu.tr; Kalkanci, M. [Material Science Program, Izmir Institute of Technology (Turkey); Pat, S.; Ekem, N.; Akan, T. [Physics Department, Osmangazi University (Turkey); Balbag, Z. [Department of Science and Mathematics Education, Osmangazi University (Turkey); Musa, G. [Plasma and Radiation, National Institute for Physics of Laser (Romania); Tanoglu, M. [Mechanical Engineering Department, Izmir Institute of Technology (Turkey)

    2007-11-01

    In this work, we discuss fabrication and characterization of MgB{sub 2} thin films obtained by sequential deposition and annealing of sandwich like Mg/B/Mg thin films on glass substrates. Mg and B films were prepared using DC magnetron sputtering and thermionic vacuum arc techniques, respectively. The MgB{sub 2} thin films showed superconducting critical transition at 33 K after annealing at 650 deg. C.

  2. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Science.gov (United States)

    Sharma, Shilpam; Amaladass, E. P.; Sharma, Neha; Harimohan, V.; Amirthapandian, S.; Mani, Awadhesh

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples.

  3. Stoichiometry and thickness dependence of superconducting properties of niobium nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Beebe, Melissa R., E-mail: mrbeebe@email.wm.edu; Beringer, Douglas B.; Burton, Matthew C.; Yang, Kaida; Lukaszew, R. Alejandra [Department of Physics, The College of William & Mary, Small Hall, 300 Ukrop Way, Williamsburg, Virginia 23185 (United States)

    2016-03-15

    The current technology used in linear particle accelerators is based on superconducting radio frequency (SRF) cavities fabricated from bulk niobium (Nb), which have smaller surface resistance and therefore dissipate less energy than traditional nonsuperconducting copper cavities. Using bulk Nb for the cavities has several advantages, which are discussed elsewhere; however, such SRF cavities have a material-dependent accelerating gradient limit. In order to overcome this fundamental limit, a multilayered coating has been proposed using layers of insulating and superconducting material applied to the interior surface of the cavity. The key to this multilayered model is to use superconducting thin films to exploit the potential field enhancement when these films are thinner than their London penetration depth. Such field enhancement has been demonstrated in MgB{sub 2} thin films; here, the authors consider films of another type-II superconductor, niobium nitride (NbN). The authors present their work correlating stoichiometry and superconducting properties in NbN thin films and discuss the thickness dependence of their superconducting properties, which is important for their potential use in the proposed multilayer structure. While there are some previous studies on the relationship between stoichiometry and critical temperature T{sub C}, the authors are the first to report on the correlation between stoichiometry and the lower critical field H{sub C1}.

  4. Tuning Superconductivity in FeSe Thin Films via Magnesium Doping.

    Science.gov (United States)

    Qiu, Wenbin; Ma, Zongqing; Liu, Yongchang; Shahriar Al Hossain, Mohammed; Wang, Xiaolin; Cai, Chuanbing; Dou, Shi Xue

    2016-03-01

    In contrast to its bulk crystal, the FeSe thin film or layer exhibits better superconductivity performance, which recently attracted much interest in its fundamental research as well as in potential applications around the world. In the present work, tuning superconductivity in FeSe thin films was achieved by magnesium-doping technique. Tc is significantly enhanced from 10.7 K in pure FeSe films to 13.4 K in optimized Mg-doped ones, which is approximately 1.5 times higher than that of bulk crystals. This is the first time achieving the enhancement of superconducting transition temperature in FeSe thin films with practical thickness (120 nm) via a simple Mg-doping process. Moreover, these Mg-doped FeSe films are quite stable in atmosphere with Hc2 up to 32.7 T and Tc(zero) up to 12 K, respectively, implying their outstanding potential for practical applications in high magnetic fields. It was found that Mg enters the matrix of FeSe lattice, and does not react with FeSe forming any other secondary phase. Actually, Mg first occupies Fe-vacancies, and then substitutes for some Fe in the FeSe crystal lattices when Fe-vacancies are fully filled. Simultaneously, external Mg-doping introduces sufficient electron doping and induces the variation of electron carrier concentration according to Hall coefficient measurements. This is responsible for the evolution of superconducting performance in FeSe thin films. Our results provide a new strategy to improve the superconductivity of 11 type Fe-based superconductors and will help us to understand the intrinsic mechanism of this unconventional superconducting system.

  5. Enhanced superconductivity and superconductor to insulator transition in nano-crystalline molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shilpam; Amaladass, E.P. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Sharma, Neha [Surface & Nanoscience Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Harimohan, V. [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Amirthapandian, S. [Materials Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India); Mani, Awadhesh, E-mail: mani@igcar.gov.in [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Disorder driven superconductor to insulator transition via intermediate metallic regime is reported in nano-crystalline thin films of molybdenum. The nano-structured thin films have been deposited at room temperature using DC magnetron sputtering at different argon pressures. The grain size has been tuned using deposition pressure as the sole control parameter. A variation of particle sizes, room temperature resistivity and superconducting transition has been studied as a function of deposition pressure. The nano-crystalline molybdenum thin films are found to have large carrier concentration but very low mobility and electronic mean free path. Hall and conductivity measurements have been used to understand the effect of disorder on the carrier density and mobilities. Ioffe-Regel parameter is shown to correlate with the continuous metal-insulator transition in our samples. - Highlights: • Thin films of molybdenum using DC sputtering have been deposited on glass. • Argon background pressure during sputtering was used to tune the crystallite sizes of films. • Correlation in deposition pressure, disorder and particle sizes has been observed. • Disorder tuned superconductor to insulator transition along with an intermediate metallic phase has been observed. • Enhancement of superconducting transition temperature and a dome shaped T{sub C} vs. deposition pressure phase diagram has been observed.

  6. Morphology of superconducting FeSe thin films grown by MBE and RF-sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, Alexander; Venzmer, Eike; Haaf, Sebastian ten; Jourdan, Martin [Institut fuer Physik, Johannes Gutenberg Universitaet Mainz (Germany); Maletz, Janek [Institut fuer Physik, Johannes Gutenberg Universitaet Mainz (Germany); Leibniz-Institut fuer Festkoerper- und Werkstoffforschung, Dresden (Germany)

    2013-07-01

    Tunneling spectroscopy on planar junctions is the most direct approach for the investigation of superconducting coupling mechanisms. However, it requires smooth interfaces at the tunneling barrier. The morphology of superconducting thin films of FeSe grown by MBE and co-sputtering (RF) from an iron and a selenium target are compared. MBE deposited films show an extreme sensitivity to stoichiometry, deposition temperature and choice of substrate. These films exhibit macroscopic crevices and a pronounced roughness, rendering the preparation of tunneling junctions impossible. However, sputter deposited epitaxial FeSe thin films clearly show a more favorable morphology. Optical microscopy, AFM and SEM demonstrate a smooth surface with segregations which are eliminated by proper choice of the deposition parameters.

  7. Molecular-Beam Epitaxially Grown MgB2 Thin Films and Superconducting Tunnel Junctions

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Laloë

    2011-01-01

    Full Text Available Since the discovery of its superconducting properties in 2001, magnesium diboride has generated terrific scientific and engineering research interest around the world. With a of 39 K and two superconducting gaps, MgB2 has great promise from the fundamental point of view, as well as immediate applications. Several techniques for thin film deposition and heterojunction formation have been established, each with its own advantages and drawbacks. Here, we will present a brief overview of research based on MgB2 thin films grown by molecular beam epitaxy coevaporation of Mg and B. The films are smooth and highly crystalline, and the technique allows for virtually any heterostructure to be formed, including all-MgB2 tunnel junctions. Such devices have been characterized, with both quasiparticle and Josephson tunneling reported. MgB2 remains a material of great potential for a multitude of further characterization and exploration research projects and applications.

  8. High quality YBCO superconductive thin films fabricated by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    High quality YBa2Cu3O6+x (YBCO) superconductive thin films have been fabricated on the SrTiO3(100) substrate using laser molecular beam epitaxy (laser-MBE).The active oxygen source was used,which made the necessary ambient oxygen pressure be 2-3 orders lower than that in pulsed laser deposition (PLD).Tc0 is 85-87 K,and Jc~1.0×106 A/cm2.Atomic force microscopy (AFM) measurements show that no obvious particulates can be observed and the root mean square roughness is 7.8 nm.High stability DC superconducting quantum interference devices (DC-SQUID) was fabricated using this YBCO thin film.

  9. Direct detection of the Josephson radiation emitted from superconducting thin-film microbridges

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sørensen, O. H.; Mygind, Jesper;

    1976-01-01

    We report direct measurements of the Josephson radiation emitted in X band from a superconducting thin-film microbridge coupled to a resonance cavity. Power is emitted if one of the harmonics of the Josephson frequency is in the bandwidth of the receiver. The maximum power emitted during our expe...... experiment was 10−13 W. The Josephson radiation could easily be detected at frequencies off resonance. Applied Physics Letters is copyrighted by The American Institute of Physics....

  10. Growth of YBCO superconducting thin films on CaF sub 2 buffered silicon

    CERN Document Server

    Bhagwat, S S; Patil, J M; Shirodkar, V S

    2000-01-01

    CaF sub 2 films were grown on silicon using the neutral cluster beam deposition technique. These films were highly crystalline and c-axis oriented. Superconducting YBCO thin films were grown on the Ca F sub 2 buffered silicon using the laser ablation technique. These films showed T sub c (onset) at 90 K and Tc(zero) at 86 K. X-ray diffraction analysis showed that the YBCO films were also oriented along the c-axis.

  11. Vortex pinning in superconducting Nb thin films deposited on nanoporous alumina templates

    DEFF Research Database (Denmark)

    Vinckx, W.; Vanacken, J.; Moshchalkov, V.V.

    2006-01-01

    We present a study of magnetization and transport properties of superconducting Nb thin films deposited on nanoporous aluminium oxide templates. Periodic oscillations in the critical temperature vs. field, matching effects in fields up to 700 mT and strongly enhanced critical currents were observ...... centers, which enhances vortex pinning in broad field and temperature ranges. © EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006....

  12. Thin-film superconducting resonator tunable to the ground-state hyperfine splitting of $^{87}$Rb

    CERN Document Server

    Kim, Z; Hoffman, J E; Grover, J A; Voigt, K D; Cooper, B K; Ballard, C J; Palmer, B S; Hafezi, M; Taylor, J M; Anderson, J R; Dragt, A J; Lobb, C J; Orozco, L A; Rolston, S L; Wellstood, F C

    2011-01-01

    We describe a thin-film superconducting Nb microwave resonator, tunable to within 0.3 ppm of the hyperfine splitting of $^{87}$Rb at $f_{Rb}=6.834683$ GHz. We coarsely tuned the resonator using electron-beam lithography, decreasing the resonance frequency from 6.8637 GHz to 6.8278 GHz. For \\emph{in situ} fine tuning at 15 mK, the resonator inductance was varied using a piezoelectric stage to move a superconducting pin above the resonator. We found a maximum frequency shift of about 8.7 kHz per 60-nm piezoelectric step and a tuning range of 18 MHz.

  13. Superconductivity of very thin films: The superconductor–insulator transition

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Yen-Hsiang; Nelson, J.; Goldman, A.M., E-mail: goldman@physics.umn.edu

    2015-07-15

    Highlights: • This manuscript reviews work on the superconductor–insulator transitions of investigated in metallic film, cuprates and metallic interfaces. • Superconductor–insulator transitions are examples of quantum phase transitions. • The systems discussed serve as model systems for behaviors found in more complex systems of contemporary interest. • The concept of a quantum phase transition is an important paradigm in condensed matter physics. • The review also includes discussions of open issues. - Abstract: The study of thin superconducting films has been an important component of the science of superconductivity for more than six decades. It played a major role in the development of currently accepted views of the macroscopic and microscopic nature of the superconducting state. In recent years the focus of research in the field has shifted to the study of ultrathin films and surface and interface layers. This has permitted the exploration of one of the important topics of condensed matter physics, the superconductor–insulator transition. This review will discuss this phenomenon as realized in the study of metallic films, cuprates, and metallic interfaces. These are in effect model systems for behaviors that may be found in more complex systems of contemporary interest.

  14. Fault Current Limitation with Superconducting YBCO Thin Films

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The behavior of YBCO/metal bilayers under transport currents was explored in the framework of fault current limitation (FCL). Properties of the superconducting-normal transition were first studied phenomenologically during sweep current experiments. For current rates higher than 500 A/s, the transition into the normal state was based on non-thermal phenomena and was characterized by a flux creep regime ended by a jump into the normal state. At lower sweep rates, a total diversion of the current in the metallic shunt was observed for temperatures higher than 85 K. In this regime, a partial recovery of the superconducting state took place due to a finite thermal resistance between the superconductingand the metallic films. These two properties of partial diversion into the shunt and of fast switching for a quick rise of the current during a default were exploited for current limitation at 77 K. FCL experiments at 50 Hz show that YBCO/Au bilayers limit the current in about 1 ms at a valueof 2.5Ic by developing electrical fields as high as 3 kV/m. Moreover, a recovery of the zero resistance state could occur under rated mode. A straightforward application of this property would be the transformer connection. Finally, results on DC current limitation and recovery under nominal mode were presented for the first time.

  15. Growth and superconductivity characteristics of MgB sub 2 thin films

    CERN Document Server

    Chen, K; Nie Rui Juan; Yang, T; Xie, F X; Liu, L Y; Wang, S Z; Dai, Y D; Wang, F

    2002-01-01

    We attempt to make MgB sub 2 thin films by using a pulsed-laser-deposition (PLD) and a magnetron sputtering method. We have deposited metal magnesium and boron on various substrates under different vacuum conditions. The PLD method has been employed to fabricate layers of magnesium and boron sandwiches under room temperature and the multi-layer system was then annealed in-situ under different temperatures. We also attempted to co-deposit magnesium and boron under high vacuum (5 x 10 sup - sup 5 Pa) on heated substrates with PLD. We have successfully grown superconducting MgB sub 2 thin films on an STO (100) substrate by magnetron sputtering. The onset transition temperature was 37 K and zero resistance temperature was 34 K.

  16. Superconducting MgB2 Thin Films with Tc ≈ 39 K Grown by Pulsed Laser Deposition

    Institute of Scientific and Technical Information of China (English)

    王淑芳; 戴守愚; 周岳亮; 陈正豪; 崔大复; 许佳迪; 何萌; 吕惠宾; 杨国桢

    2001-01-01

    Superconducting MgB2 thin films were fabricated on Al2 O3 (0001) substrates under ex situ processing conditions.Boron thin films were deposited by pulsed laser deposition followed by a post-annealing process. Resistance measurements of the deposited MgB2 films show Tc of ~39 K, while scanning electron microscopy and x-ray vdiffraction analysis indicate that the films consist of well-crystallized grains with a highly c-axis-oriented structure.

  17. Enhancement of high-TC superconducting thin film devices by nanoscale polishing

    Science.gov (United States)

    Michalowski, P.; Shapoval, T.; Meier, D.; Katzer, C.; Schmidl, F.; Schultz, L.; Seidel, P.

    2012-11-01

    The effects of mechanical nanoscale polishing on the superconducting parameters of YBa2Cu3O7-δ (YBCO) thin films and bi-crystal grain boundary Josephson junctions have been investigated. We prepared samples with additional gold nanocrystallites in the YBCO film. As they are distributed throughout the whole YBCO film, they provide a low-resistance ohmic contact even if parts of the film are removed. Polishing was performed either before or after the patterning and did not change the properties of the grain boundary. However, nanopolishing reduces the film roughness in a significant way, which makes it an indispensable tool for the preparation of integrated superconducting circuits. We also succeeded in tuning the IC and RN of the Josephson junctions of direct current superconducting quantum interference devices (dc-SQUIDs) by systematically reducing the film thickness, which opens up new possibilities in the application of magnetic field sensors.

  18. Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films

    Science.gov (United States)

    Schoenhuber, P.; Moon, F. C.

    1995-01-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation

  19. Aspects of passive magnetic levitation based on high-T(sub c) superconducting YBCO thin films

    Science.gov (United States)

    Schoenhuber, P.; Moon, F. C.

    1995-04-01

    Passive magnetic levitation systems reported in the past were mostly confined to bulk superconducting materials. Here we present fundamental studies on magnetic levitation employing cylindrical permanent magnets floating above high-T(sub c) superconducting YBCO thin films (thickness about 0.3 mu m). Experiments included free floating rotating magnets as well as well-established flexible beam methods. By means of the latter, we investigated levitation and drag force hysteresis as well as magnetic stiffness properties of the superconductor-magnet arrangement. In the case of vertical motion of the magnet, characteristic high symmetry of repulsive (approaching) and attractive (withdrawing) branches of the pronounced force-displacement hysteresis could be detected. Achievable force levels were low as expected but sufficient for levitation of permanent magnets. With regard to magnetic stiffness, thin films proved to show stiffness-force ratios about one order of magnitude higher than bulk materials. Phenomenological models support the measurements. Regarding the magnetic hysteresis of the superconductor, the Irie-Yamafuji model was used for solving the equation of force balance in cylindrical coordinates allowing for a macroscopic description of the superconductor magnetization. This procedure provided good agreement with experimental levitation force and stiffness data during vertical motion. For the case of (lateral) drag force basic qualitative characteristics could be recovered, too. It is shown that models, based on simple asymmetric magnetization of the superconductor, describe well asymptotic transition of drag forces after the change of the magnet motion direction. Virgin curves (starting from equilibrium, i.e. symmetric magnetization) are approximated by a linear approach already reported in literature only. This paper shows that basic properties of superconducting thin films allow for their application to magnetic levitation or - without need of levitation

  20. Construction of sputtering system and preparation of high temperature superconducting thin films

    CERN Document Server

    Kaynak, E

    2000-01-01

    The preparation of high T sub c superconducting thin film is important both for the understanding of fundamental behaviours of these materials and for the investigations on the usefulness of technological applications. High quality thin films can be prepared by various kinds of techniques being used today. Among these, sputtering is the most preferred one. The primary aim of this work is the construction of a r. f. and c. magnetron sputtering system. For this goal, a magnetron sputtering system was designed and constructed having powers up to 500W (r.f.) and 1KW (d.c.) that enables to deposit thin films of various kinds of materials: metals, ceramics and magnetic materials. The temperature dependence of the electrical resistance of the films was investigated by using four-point probe method. The zero resistance and the transition with of the films were measured as 80-85 K, and 2-9 K, respectively. The A.C. susceptibility experiments were done by utilising the system that was designed and constructed. The appl...

  1. Research on Y-Ba-Cu-O superconducting thin films at liquid nitrogen temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Li Yuan; Yang Senzu; Ji Zhengming; Sun Zhijian; Jing Dong; Wu Peiheng; Zhang Shiyan; Wang Hao; Zhou Ningsheng; Fan Depei; and others

    1988-12-01

    The Y-Ba-Cu-O superconducting thin films on several kinds of substrates of single crystal ZrO/sub 2/, YSZ and polycrystalline SrTiO/sub 3/ have been successfully prepared by mean of /ital rf/ reactive magnetron sputtering. The zero resistance temperature obtained is 81 K. The thickness of the films is about 1--2 ..mu..m. In this paper the composition of the films, the substrates, /ital R/-/ital T/ curves, X-ray diffraction patterns and the heat treatment process of the films are described.

  2. A novel electron beam evaporation technique for the deposition of superconducting thin films

    Science.gov (United States)

    Krishna, M. G.; Muralidhar, G. K.; Rao, K. N.; Rao, G. M.; Mohan, S.

    1991-05-01

    Superconducting thin films of BiSrCaCuO have been deposited using a novel electron beam evaporation technique. In this technique the crucible has a groove around its circumference and rotates continuously during deposition. The source material is loaded in the form of pellets of the composite. Both oxides as well as flourides have been used in the starting material and a comparison of the film properties has been made. The best film was obtained on a MgO(100) substrate with a Tc onset at 85 K and Tc zero at 77 K using calcium flouride in the source material.

  3. Structural and superconducting properties of ion beam sputtered Nb thin films and Nb/Cu bilayers

    Science.gov (United States)

    Nath, S. K.; Dhawan, R.; Rai, S.; Lodha, G. S.; Sokhey, K. J. S.

    2012-01-01

    We present the results of a study of structural and superconducting properties of polycrystalline Nb thin films (200 Å, 300 Å, 400 Å, 700 Å and 1000 Å) and Nb/Cu bilayers (300 Å/300 Å and 400 Å/300 Å) prepared on Si substrates by ion beam sputtering at room temperature. The thicknesses, roughnesses at the surfaces and interfaces were determined by X-ray reflectivity whereas the grain sizes were determined from grazing incidence X-ray diffraction and transmission electron microscopic studies. The superconducting transition temperature ( T C) of Nb thin films are smaller than T C of bulk Nb. The Nb-200 Å sample does not show T C down to 2.3 K. The average size of the grains varies from 42 Å for Nb-200 Å sample to 69 Å for Nb-1000 Å sample. Our results show that the T C in these polycrystalline films is not only limited by its thickness but also by the size of the grains. The Nb films deposited in situ on the Cu layer (Nb/Cu) show a marginal increase in average sizes of the grains as compare to their respective values in Nb films of same thicknesses. As a result a marginal increase in T C of these films is also observed. The maximum decrease in T C due to oxygen intake during deposition should be about 0.5 K from its bulk value (9.28 K). We have attributed the large decrease in T C in our case on the basis of decrease in the Debye temperature and density of states at the Fermi level for Nb thin films as compared to their respective values for bulk Nb.

  4. Influence of preparation conditions on superconducting properties of Bi-2223 thin films

    Indian Academy of Sciences (India)

    N T Mua; A Sundaresan; N K Man; D D Dung

    2014-02-01

    We report electrical transport properties of Bi2Sr2Ca2Cu3O10+ (Bi-2223) superconducting thin films fabricated by pulsed-laser deposition on SrTiO3 substrate. The aim of the study was to investigate the influence of preparation conditions such as deposition temperature (S), annealing time (A) and deposition rate (). A critical temperature (c) as high as 110 K and critical current density (c) of 6.2 × 106 A/cm2 at 20 K were obtained for S = 760° C, A = 4h and = 1.5 Å/s. We also investigated the effect of Li doping on Bi-2223 thin films. Li intercalation results in high resistive onset transition temperature and the resistivity shows broadening in magnetic field that increases with field. The large broadening of resistivity curve in magnetic field suggests that this phenomenon is directly related to the intrinsic superconducting properties of the copper oxide superconductors. The sudden drop in c at relatively low magnetic field ( < 0.5 tesla) is due to the effect of Josephson weak-links at the grain boundaries.

  5. Granular superconductivity in metallic and insulating nanocrystalline boron-doped diamond thin films

    Energy Technology Data Exchange (ETDEWEB)

    Willems, B L; Zhang, G; Vanacken, J; Moshchalkov, V V [INPAC-Institute for Nanoscale Physics and Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200-D, 3000-Leuven (Belgium); Janssens, S D; Haenen, K; Wagner, P, E-mail: bramleo@hotmail.co [Institute for Materials Research (IMO), Hasselt University, BE-3590 Diepenbeek (Belgium)

    2010-09-22

    The low-temperature electrical transport properties of nanocrystalline boron-doped diamond (b-NCD) thin films have been found to be strongly affected by the system's granularity. The important differences between the high and low-temperature behaviour are caused by the inhomogeneous nucleation of superconductivity in the samples. In this paper we will discuss the experimental data obtained on several b-NCD thin films, which were studied by either varying their thickness or boron concentration. It will be shown that the low-temperature properties are influenced by the b-NCD grain boundaries as well as by the appearance of an intrinsic granularity inside these granules. Moreover, superconducting effects have been found to be present even in insulating b-NCD films and are responsible for the negative magnetoresistance regime observed at low temperatures. On the other hand, the low-temperature electrical transport properties of b-NCD films show important similarities with those observed for granular superconductors.

  6. In situ epitaxial MgB2 thin films for superconducting electronics.

    Science.gov (United States)

    Zeng, Xianghui; Pogrebnyakov, Alexej V; Kotcharov, Armen; Jones, James E; Xi, X X; Lysczek, Eric M; Redwing, Joan M; Xu, Shengyong; Li, Qi; Lettieri, James; Schlom, Darrell G; Tian, Wei; Pan, Xiaoqing; Liu, Zi-Kui

    2002-09-01

    The newly discovered 39-K superconductor MgB2 holds great promise for superconducting electronics. Like the conventional superconductor Nb, MgB2 is a phonon-mediated superconductor, with a relatively long coherence length. These properties make the prospect of fabricating reproducible uniform Josephson junctions, the fundamental element of superconducting circuits, much more favourable for MgB2 than for high-temperature superconductors. The higher transition temperature and larger energy gap of MgB2 promise higher operating temperatures and potentially higher speeds than Nb-based integrated circuits. However, success in MgB2 Josephson junctions has been limited because of the lack of an adequate thin-film technology. Because a superconducting integrated circuit uses a multilayer of superconducting, insulating and resistive films, an in situ process in which MgB2 is formed directly on the substrate is desirable. Here we show that this can be achieved by hybrid physical-chemical vapour deposition. The epitaxially grown MgB2 films show a high transition temperature and low resistivity, comparable to the best bulk samples, and their surfaces are smooth. This advance removes a major barrier for superconducting electronics using MgB2.

  7. Numerical simulation on the flux avalanche behaviors of microstructured superconducting thin films

    Science.gov (United States)

    Jing, Ze; Yong, Huadong; Zhou, Youhe

    2017-01-01

    Controlling and suppressing the propagation of magnetic flux avalanches is an important issue for the application of type-II superconductors. The effects of engineered pinning centers (antidots) on the guidance of flux avalanche propagation paths in type-II superconducting thin films are numerically investigated by solving the coupled nonlinear Maxwell's equations and the thermal diffusion equations. The field dependence of critical current density is considered in the simulation in this paper. Dynamic propagations of the thermomagnetic avalanches within the superconducting films patterned with different arrangements of antidots (like random, periodic square, and conformal mapping arrays) are presented. We reveal that presence of the antidots significantly modifies the propagation paths of the avalanches. The flux avalanche patterns of the superconducting films change with the variation of the arrangements of antidots. The patterned antidots in the form of conformal mapping arrays within the superconducting film exhibit strong guidance to the thermomagnetic avalanches. In addition, introducing the antidots in the form of conformal mapping arrays into the superconducting film can effectively lower the magnetic flux jump sizes.

  8. High critical current density and enhanced irreversibility field in superconducting MgB2 thin films.

    Science.gov (United States)

    Eom, C B; Lee, M K; Choi, J H; Belenky, L J; Song, X; Cooley, L D; Naus, M T; Patnaik, S; Jiang, J; Rikel, M; Polyanskii, A; Gurevich, A; Cai, X Y; Bu, S D; Babcock, S E; Hellstrom, E E; Larbalestier, D C; Rogado, N; Regan, K A; Hayward, M A; He, T; Slusky, J S; Inumaru, K; Haas, M K; Cava, R J

    2001-05-31

    The discovery of superconductivity at 39 K in magnesium diboride offers the possibility of a new class of low-cost, high-performance superconducting materials for magnets and electronic applications. This compound has twice the transition temperature of Nb3Sn and four times that of Nb-Ti alloy, and the vital prerequisite of strongly linked current flow has already been demonstrated. One possible drawback, however, is that the magnetic field at which superconductivity is destroyed is modest. Furthermore, the field which limits the range of practical applications-the irreversibility field H*(T)-is approximately 7 T at liquid helium temperature (4.2 K), significantly lower than about 10 T for Nb-Ti (ref. 6) and approximately 20 T for Nb3Sn (ref. 7). Here we show that MgB2 thin films that are alloyed with oxygen can exhibit a much steeper temperature dependence of H*(T) than is observed in bulk materials, yielding an H* value at 4.2 K greater than 14 T. In addition, very high critical current densities at 4.2 K are achieved: 1 MA cm-2 at 1 T and 105 A cm-2 at 10 T. These results demonstrate that MgB2 has potential for high-field superconducting applications.

  9. Superconducting energy scales and anomalous dissipative conductivity in thin films of molybdenum nitride

    Science.gov (United States)

    Simmendinger, Julian; Pracht, Uwe S.; Daschke, Lena; Proslier, Thomas; Klug, Jeffrey A.; Dressel, Martin; Scheffler, Marc

    2016-08-01

    We report investigations of molybdenum nitride (MoN) thin films with different thickness and disorder and with superconducting transition temperature 9.89 K ≥Tc≥2.78 K . Using terahertz frequency-domain spectroscopy we explore the normal and superconducting charge carrier dynamics for frequencies covering the range from 3 to 38 cm-1 (0.1 to 1.1 THz). The superconducting energy scales, i.e., the critical temperature Tc, the pairing energy Δ , and the superfluid stiffness J , and the superfluid density ns can be well described within the Bardeen-Cooper-Schrieffer theory for conventional superconductors. At the same time, we find an anomalously large dissipative conductivity, which cannot be explained by thermally excited quasiparticles, but rather by a temperature-dependent normal-conducting fraction, persisting deep into the superconducting state. Our results on this disordered system constrain the regime, where discernible effects stemming from the disorder-induced superconductor-insulator transition possibly become relevant, to MoN films with a transition temperature lower than at least 2.78 K.

  10. Broadband microwave response of superconducting NbN and TaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Felger, M. Maximilian; Pracht, Uwe S.; Dressel, Martin; Scheffler, Marc [1. Physikalisches Institut, Universitaet Stuttgart, D-70669 Stuttgart (Germany); Ilin, Konstantin; Siegel, Michael [Institut fuer Mikro- und Nanoelektronische Systeme, Karlsruher Institut fuer Technologie, D-76187 Karlsruhe (Germany)

    2015-07-01

    Ultrathin NbN and TaN films with their peculiar superconducting behavior are of interest both for fundamental physics (e.g. concerning the superconductor-insulator transition) and novel applications (e.g. for single-photon detectors). Here microwave spectroscopy is a powerful tool to characterize essential superconducting properties and to investigate the charge dynamics (Cooper pairs and quasiparticles). We have prepared by sputtering thin films of NbN (thickness between 3 nm and 20 nm; T{sub c} between 5 K and 13 K) and TaN (thickness 5 nm; T{sub c} between 8.5 K and 9.5 K) on sapphire substrates. We performed broadband microwave spectroscopy on these samples using a Corbino spectrometer at temperatures down to 1.1 K and at frequencies up to 50 GHz. From these data we determine the superconducting penetration depth and we evaluate the frequency-dependent conductivity. While many of the observed features can be described within expectations of conventional BCS theory, we also find deviations that are caused by fluctuations near the superconducting transition.

  11. Interplay of spin-orbit coupling and superconducting correlations in germanium telluride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Vijay; Nguyen, Thuy-Anh; Mansell, Rhodri; Ritchie, David [Cavendish Laboratory, Department of Physics, University of Cambridge, J. J. Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Mussler, Gregor [Peter Gruenberg Institute (PGI-9), Forschungszentrum Juelich, 52425, Juelich (Germany)

    2016-03-15

    There is much current interest in combining superconductivity and spin-orbit coupling in order to induce the topological superconductor phase and associated Majorana-like quasiparticles which hold great promise towards fault-tolerant quantum computing. Experimentally these effects have been combined by the proximity-coupling of super-conducting leads and high spin-orbit materials such as InSb and InAs, or by controlled Cu-doping of topological insu-lators such as Bi{sub 2}Se{sub 3}. However, for practical purposes, a single-phase material which intrinsically displays both these effects is highly desirable. Here we demonstrate coexisting superconducting correlations and spin-orbit coupling in molecular-beam-epitaxy-grown thin films of GeTe. The former is evidenced by a precipitous low-temperature drop in the electrical resistivity which is quelled by a magnetic field, and the latter manifests as a weak antilocalisation (WAL) cusp in the magnetotransport. Our studies reveal several other intriguing features such as the presence of two-dimensional rather than bulk transport channels below 2 K, possible signatures of topological superconductivity, and unexpected hysteresis in the magnetotransport. Our work demonstrates GeTe to be a potential host of topological SC and Majorana-like excitations, and to be a versatile platform to develop quantum information device architectures. (copyright 2016 The Authors. Phys. Status Solidi RRL published by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. l/f Noise in the Superconducting Transition of a MgB2 Thin Film

    Science.gov (United States)

    Lakew, B.; Aslam, S.; Jones, H.; Stevenson, T.; Cao, N.

    2010-01-01

    The noise voltage spectral density in the superconducting transition of a MgB2 thin film on a SiN-coated Si thick substrate was measured over the frequency range 1 Hz-to-1 KHz. Using established bolometer noise theory the theoretical noise components due to Johnson, 1/f(excess) and phonon noise are modeled to the measured data. It is shown that for the case of a MgB2 thin film in the vicinity of the mid-point of transition, coupled to a heat sink via a fairly high thermal conductance (approximately equal to 10(sup -1) W/K)) that the measured noise voltage spectrum is 1/f limited and exhibits lit dependence with a varying between 0.3 and 0.5 in the measured frequency range. At a video frame rate frequency of 30 Hz the measured noise voltage density in the film is approximately equal to 61 nV /the square root of HZ, using this value an upper limit of electrical NEP approximately equal to 0.67pW / the square root of Hz is implied for a practical MgB2 bolometer operating at 36.1 K.

  13. High-J{sub c} superconducting YBCO thin films for SQUIDs

    Energy Technology Data Exchange (ETDEWEB)

    Katsaros, A.; Savvides, N.; Foley, C. [CSIRO, Sydney, NSW (Australia). Applied Physics

    1996-12-31

    Full text: High critical current density, J{sub c}, and reproducibility of film quality are major issues in high-T{sub c} superconducting device technology. Because many factors such as substrate quality, deposition parameters and film stoichiometry impact on film quality the growth of high-J{sub c} YBa{sub 2}Cu{sub 3}O{sub 7} thin films suitable for devices is a demanding task. For optimum device performance c-axis epitaxial films are required with smooth surfaces, controlled microstructure and crystalline orientation, high T{sub c} (> 87 K) and high J{sub c} (> 1x10{sup 6} A cm{sup -2}). Consequently a stable platform in film quality is critical in developing and maintaining world class device technology. In previous Wagga meetings and elsewhere we presented details of our thin film deposition system, results of film growth studies, techniques of film characterisation and SQUID performance. In this paper we present transport properties and lattice parameters for a large number of films deposited over a period of ten months using a single target and under similar sputtering conditions. The data serve to illustrate the level of reproducibility of our deposition technology while closer examination of the data reveal some interesting `correlations` among properties. We have used these correlations to assist us to control both the deposition of films and subsequent processing into test structures and SQUIDs 5 refs.

  14. High quality YBCO superconductive thin films fabricated by laser molecular beam epitaxy

    Institute of Scientific and Technical Information of China (English)

    CHEN; Fan

    2001-01-01

    [1]Hirata,K.,Yamamoto,K.,Iijinma,J.et al.,Tunneling measurements on superconductor/insulator/superconductor junctions using single-crystal YBa2Cu3O7-x thin films,Appl.Phys.Lett.,1990,56(7):683-685.[2]Kingston,J.J.,Wellstood,F.C.,Lerch,P.et al.,Multilayer YBa2Cu3Ox-SrTiO3-YBa2Cu3Ox films for insulating crossovers,Appl.Phys.Lett.,1990,56(2):189-191.[3]Grundler,D.,Krumme,J.P.,David,B.et al.,YBa2Cu3O7 ramp-type junctions and superconducting quantum interference devices with an ultra thin barrier of NdGaO3,Appl.Phys.Lett.,1994,65(14):1841-1843.[4]Yang Guozhen,Lu Huibin,Chen Zhenghao et al.,Laser molecular beam epitaxy system and its key technologies,Science in China (in Chinese),Ser.A,1998,28(3):260-265.[5]Wang Ning,Lu Huibin,Chen,W.Z.et al.,Morphology and microstructure of BaTiO3/SrTiO3 superlattices grown on SrTiO3 by laser molecular-beam epitaxy,Appl.Phys.Lett.,1999,75(22):3464-3466.[6]Chen Li-Chyng,Particulates generated by pulsed laser ablation,in Pulsed Laser Deposition of Thin Films (eds.Chrisey,D.B.,Hulber,G.K.),New York:John Wiley & Sons,Inc.,1994,167-198.[7]Wang,H.S.,Dietsche,W.,Eissler,D.et al.,Molecular beam epitaxial growth and structure properties of DyBa2Cu3O7-y,J.Crys.Growth,1993,126:565-577.[8]Kita,R.,Hase,T.,Itti,R.et al.,Synthesis of CuO films using mass-separated,low-energy O+ ion beams,Appl.Phys.Lett.,1992,60(21):2684-2685.[9]Lu Huibin,Zhou Yueliang,Yang Guozhen et al.,Active gas source for thin film preparation,Chinese Patent (in Chinese),1996,No.ZL 96219046.2.[10]Wang Jing,Chen Fan,Zhao Tong et al.,Fabrication of high stable DC-SQUIDS with L-MBE YBCO thin films,Chinese Journal of Low Temperature Physics (in Chinese),1999,21(1):13-16.

  15. Magnetic shielding performance of superconducting YBCO thin film in a multilayer device structure

    Energy Technology Data Exchange (ETDEWEB)

    Uzun, Y., E-mail: uzunyigitcan@gmail.com; Avci, I.

    2014-12-15

    Highlights: • A multilayer structure was fabricated in the form of YBCO/STO/YBCO. • Bottom layer was used as a magnetic shield. • The top layer was patterned as a microbridge. • Magnetic shielding performance of the bottom layer onto the microbridge was tested. • I{sub c} of the microbridge was kept constant under the various magnetic fields. - Abstract: Magnetic shielding performance of superconducting YBaCu{sub 2}O{sub 7−x} (YBCO) thin film on an YBCO microbridge was analyzed in a multilayer structure. A sandwich type multilayer structure was fabricated onto a single crystal (1 0 0) SrTiO{sub 3} (STO) substrate in the form of YBCO/STO/YBCO by depositing a thin STO interlayer in between two YBCO layers. The top YBCO was patterned as 20 μm width meander-type microbridges and the bottom layer YBCO was used as magnetic shield. YBCO and STO thin films were deposited by dc and rf magnetron sputtering respectively, and the patterning was performed by using standard photolithography and wet etching. In order to enhance long-term stability of the final device, an additional STO thin film was deposited onto the device as an encapsulation layer. Electrical and magnetic characterizations of the YBCO thin film layers were carried out by means of ac magnetic susceptibility (χ–T) and resistance vs. temperature (R–T) measurements. The current–voltage (I–V) measurements were performed on the microbridges at 77 K by observing the shielding performance of the bottom YBCO layer under various applied magnetic fields. The results were compared with that of a same-type single layer YBCO device without a shielding layer. The zero field critical current value of the single layer 20 μm wide YBCO device was measured as 30 mA and decreased down to 20 mA as the field increased up to 100 mT. The same measurements on the multilayer device showed that the critical current values remained almost constant around 27 mA as the applied field increased.

  16. Anisotropy of superconductivity of as-grown MgB$_2$ thin films by molecular beam epitaxy

    OpenAIRE

    Harada, Y.; Udsuka, M.; Nakanishi, Y.; Yoshizawa, M.

    2004-01-01

    Superconducting thin films of magnesium diboride (MgB$_2$) were prepared on MgO (001) substrate by a molecular beam epitaxy (MBE) method with the co-evaporation conditions of low deposition rate in ultra-high vacuum. The structural and physical properties of the films were studied by RHEED, XRD, XPS, resistivity and magnetization measurements.All films demonstrated superconductivity without use of any post-annealing process.The highest {\\it T}$_{c,onset}$ determined by resistivity measurement...

  17. Prediction of IV curves for a superconducting thin film using artificial neural networks

    Science.gov (United States)

    Kamran, M.; Haider, S. A.; Akram, T.; Naqvi, S. R.; He, S. K.

    2016-07-01

    We propose a framework using artificial neural networks that predicts the IV characteristics of a superconducting thin film with square array of nano-engineered periodic antidots, called holes. We adopt the conventionally used commercial physical properties measurement system to obtain a dataset comprising transport measurements, and use this dataset to train our artificial neural network. Once trained, the model is capable of predicting the curve for varying temperature and magnetic flux values, which are cross validated by the physical properties measurement system. Consistent with the works in literature, our framework suggests Josephson Junctions like behavior near transition temperature and at stronger magnetic fields. Our study is important since repeated measurements using the conventional method are time consuming and costly; we demonstrate that the proposed method may be effectively used to classify the IV characteristics over a wide range of temperature and magnetic field values.

  18. Strain and High Temperature Superconductivity: Unexpected Results from Direct Electronic Structure Measurements in Thin Films

    Science.gov (United States)

    Abrecht, M.; Ariosa, D.; Cloetta, D.; Mitrovic, S.; Onellion, M.; Xi, X.; Margaritondo, G.; Pavuna, D.

    2003-07-01

    Angle-resolved photoemission spectroscopy reveals very surprising strain-induced effects on the electronic band dispersion of epitaxial La2-xSrxCuO4-δ thin films. In strained films we measure a band that crosses the Fermi level (EF) well before the Brillouin zone boundary. This is in contrast to the flat band reported in unstrained single crystals and in our unstrained films, as well as in contrast to the band flattening predicted by band structure calculations for in-plane compressive strain. In spite of the density of states reduction near EF, the critical temperature increases in strained films with respect to unstrained samples. These results require a radical departure from commonly accepted notions about strain effects on high temperature superconductors, with possible general repercussions on superconductivity theory.

  19. Levitation force from high-Tc superconducting thin-film disks

    Science.gov (United States)

    Riise, Anjali B.; Johansen, T. H.; Bratsberg, H.; Koblischka, M. R.; Shen, Y. Q.

    1999-10-01

    Experimental studies and theoretical modeling of the levitation force between a permanent magnet and superconducting thin film are reported. Measurements of the force Fz and magnetic stiffness κz=\\|δFz/δz\\| as functions of the magnet-superconductor separation z, show several features contrasting all previous levitation force data for bulk superconductors. In particular, the Fz(z) curves measured for decreasing and increasing separation form hysteresis loops of nearly symmetrical shape, also displaying a peak in the repulsive force branch. Recent theories for flux penetration in thin type-II superconductors in transverse magnetic fields are invoked to explain the results, which were obtained using a cylindrical Nd-Fe-B magnet and a YBa2Cu3O7-δ circular disk made by laser ablation. We derive explicit formulas for both Fz and κz, reproducing quantitatively all the features seen experimentally.

  20. Imaging of current distributions in superconducting thin film structures; Abbildung von Stromverteilungen in supraleitenden Duennfilmstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Doenitz, D.

    2006-10-31

    Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tuebingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference

  1. Characterization of 3-dimensional superconductive thin film components for gravitational experiments in space

    Energy Technology Data Exchange (ETDEWEB)

    Hechler, S.; Nawrodt, R.; Nietzsche, S.; Vodel, W.; Seidel, P. [Friedrich-Schiller-Univ. Jena (Germany). Inst. fuer Festkoerperphysik; Dittus, H. [ZARM, Univ. Bremen (Germany); Loeffler, F. [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany)

    2007-07-01

    Superconducting quantum interference devices (SQUIDs) are used for high precise gravitational experiments. One of the most impressive experiments is the satellite test of the equivalence principle (STEP) of NASA/ESA. The STEP mission aims to prove a possible violation of Einstein's equivalence principle at an extreme level of accuracy of 1 part in 10{sup 18} in space. In this contribution we present an automatically working measurement equipment to characterize 3-dimensional superconducting thin film components like i.e. pick-up coils and test masses for STEP. The characterization is done by measurements of the transition temperature between the normal and the superconducting state using a special built anti-cryostat. Above all the setup was designed for use in normal LHe transport Dewars. The sample chamber has a volume of 150 cm{sup 3} and can be fully temperature controlled over a range from 4.2 K to 300 K with a resolution of better then 100 mK. (orig.)

  2. Quasiparticle state density on the surface of superconducting thin films of MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Bobba, F [Groupe de Physique des Solides, UMR75-88 au CNRS, Universities Paris 6 et 7, Paris (France); Roditchev, D [Groupe de Physique des Solides, UMR75-88 au CNRS, Universities Paris 6 et 7, Paris (France); Lamy, R [Groupe de Physique des Solides, UMR75-88 au CNRS, Universities Paris 6 et 7, Paris (France); Choi, E-M [NCRICS, Department of Physics, Pohang University, Pohang (Korea, Republic of); Kim, H-J [NCRICS, Department of Physics, Pohang University, Pohang (Korea, Republic of); Kang, W N [NCRICS, Department of Physics, Pohang University, Pohang (Korea, Republic of); Ferrando, V [Department of Physics, University of Genoa, Genoa (Italy); Ferdeghini, C [Department of Physics, University of Genoa, Genoa (Italy); Giubileo, F [Department of Physics, University of Salerno, Salerno (Italy); Sacks, W [Groupe de Physique des Solides, UMR75-88 au CNRS, Universities Paris 6 et 7, Paris (France); Lee, S-I [NCRICS, Department of Physics, Pohang University, Pohang (Korea, Republic of); Klein, J [Groupe de Physique des Solides, UMR75-88 au CNRS, Universities Paris 6 et 7, Paris (France); Cucolo, A M [Department of Physics, University of Salerno, Salerno (Italy)

    2003-02-01

    High-speed scanning tunnelling spectroscopy (STS) was used at low temperature to study the quasiparticle excitation spectrum on the surface of c-axis-oriented superconducting thin films of MgB{sub 2}. The tunnelling spectra measured on as-grown films were compared with those acquired on chemically etched samples. In most cases the STS reveals only one small superconducting gap to be present in the tunnelling spectra, consistent with c-axis tunnelling and the particular electronic band structure of MgB{sub 2}. We found that the etching leads to the enhancement of the gap energy by 25% from 2.2 {+-} 0.3 meV to 2.8 {+-} 0.3 meV, and to the modification of the temperature dependence of the superconducting gap which, in both cases, has clearly a non-BCS shape. We argue that the modification of the electronic structure at the surface of the material due to the etching is responsible for these changes and discuss the possible origins of the effect.

  3. Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition

    Science.gov (United States)

    Hazra, D.; Tsavdaris, N.; Jebari, S.; Grimm, A.; Blanchet, F.; Mercier, F.; Blanquet, E.; Chapelier, C.; Hofheinz, M.

    2016-10-01

    Niobium nitride (NbN) is widely used in high-frequency superconducting electronics circuits because it has one of the highest superconducting transition temperatures ({T}{{c}}˜ 16.5 {{K}}) and largest gap among conventional superconductors. In its thin-film form, the T c of NbN is very sensitive to growth conditions and it still remains a challenge to grow NbN thin films (below 50 nm) with high T c. Here, we report on the superconducting properties of NbN thin films grown by high-temperature chemical vapor deposition (HTCVD). Transport measurements reveal significantly lower disorder than previously reported, characterized by a Ioffe-Regel parameter ({k}{{F}}{\\ell }) ˜ 12. Accordingly we observe {T}{{c}}˜ 17.06 {{K}} (point of 50% of normal state resistance), the highest value reported so far for films of thickness 50 nm or less, indicating that HTCVD could be particularly useful for growing high quality NbN thin films.

  4. Synthesis of novel strontium-based cuprate superconducting thin films, and the relationship between their crystal structures and electrical properties

    Science.gov (United States)

    Chang, Kuo-Wei

    2000-12-01

    Novel Sr-based cuprate thin films were investigated to explore their potential as next generation superconducting materials. Thin films of infinite-layer compound (Sr,Ca)CuO2 (no blocking layer), cuprate oxycarbonate Sr2CuO2(CO3) (carbonate blocking layer), and Tl(Sr,Ba)2Can-1CunOy (n = 2 and 3) (thin blocking layer) were synthesized using metal-organic chemical vapor deposition. The structure and defect chemistry of the blocking layers of these cuprate compounds were found to have profound effects on the transport properties both in the normal state and the superconducting state. Phase pure, epitaxial infinite-layer compound (Sr1-xCa x)CuO2 thin films were deposited on SrTiO3(100) substrates. However, these films were always semiconducting with resistivities of the order of 1 ohm- cm and with carrier concentrations of 1017~10 19cm-3, which is two to four orders of magnitude lower than the typical superconducting cuprates. The low carrier concentration was attributed to the absence of blocking layers containing a sufficient concentration of charged defects. Transport was via variable range hopping conduction. By annealing in air, the infinite-layer compound SrCuO2 thin films reacted with the CO2 in air to generate Sr 2CuO2(CO3) thin films. Upon formation of carbonate blocking layers, charger carriers were introduced into the Sr2CuO 2(CO3) thin films through the partial substitution of carbon by copper or boron in the SrCO3 blocking layers. After oxygen annealing or upon boron substitution, the carrier concentration increased up to 10 21 cm-3. A superconducting onset temperature of 34K and a zero resistivity temperature of 20K have been observed for Sr 2CuO2(C1-xBx)O3 thin films. A critical carrier density of 0.10~0.12 holes/Cu was required to render superconductivity. The effect of crystal structure on the critical current density was investigated by measuring the vortex pinning energies of Tl2Ba2CaCu 2Oy (Tl-2212) and Tl(Sr,Ba)2Ca Cu2O y (Tl- (Sr,Ba)1212) thin

  5. Electric field-induced superconducting transition of insulating FeSe thin film at 35 K.

    Science.gov (United States)

    Hanzawa, Kota; Sato, Hikaru; Hiramatsu, Hidenori; Kamiya, Toshio; Hosono, Hideo

    2016-04-12

    It is thought that strong electron correlation in an insulating parent phase would enhance a critical temperature (Tc) of superconductivity in a doped phase via enhancement of the binding energy of a Cooper pair as known in high-Tc cuprates. To induce a superconductor transition in an insulating phase, injection of a high density of carriers is needed (e.g., by impurity doping). An electric double-layer transistor (EDLT) with an ionic liquid gate insulator enables such a field-induced transition to be investigated and is expected to result in a high Tc because it is free from deterioration in structure and carrier transport that are in general caused by conventional carrier doping (e.g., chemical substitution). Here, for insulating epitaxial thin films (∼10 nm thick) of FeSe, we report a high Tc of 35 K, which is 4× higher than that of bulk FeSe, using an EDLT under application of a gate bias of +5.5 V. Hall effect measurements under the gate bias suggest that highly accumulated electron carrier in the channel, whose area density is estimated to be 1.4 × 10(15) cm(-2) (the average volume density of 1.7 × 10(21) cm(-3)), is the origin of the high-Tc superconductivity. This result demonstrates that EDLTs are useful tools to explore the ultimate Tc for insulating parent materials.

  6. Proximity effect of iron-based superconductor in conventional s-wave superconducting thin films

    Science.gov (United States)

    Groll, Nick; Proslier, Thomas; Koshelev, Alex; Stantev, Valentin; Chung, Duck-Young

    2012-02-01

    The proximity effect has been proposed as a mechanism to unambiguously identify the possible s±-state in iron-based superconductors.ootnotetextA. E. Koshelev, V. Stanev, Europhysics Letters, Vol. 96, 27014 (2011) With a thin s-wave superconductor atop a s±-superconductor it is suggested that the s-wave order parameter will couple to the s±-gaps differently, inducing a correction to the s-wave density of states that can be probed using electron tunneling spectroscopy. In this talk, we will present recent results of the superconducting proximity effect in s-wave MoGe thin films sputtered on top of bulk superconducting Ba0.6K0.4Fe2As2 (Tc=35K) pnictide. Electron tunneling spectroscopy measurements were performed for several MoGe film thicknesses using a homemade point contact setup. Finally, results will also be presented for similar measurements using two conventional s-wave superconductors.

  7. Subharmonic energy gap structure in the Josephson radiation at 35 GHz from a superconducting thin-film microbridge

    DEFF Research Database (Denmark)

    Hansen, Jørn Bindslev; Levinsen, M. T.; Lindelof, Poul Erik;

    1979-01-01

    Nonresonant detection of the Josephson radiation 35 GHz from a superconducting thin-film microbridge is reported. The high frequency and the accuracy of these measurements lead to a new important observation: subharmonic energy gap structure in the detected integral power. The maximum integral po...... power measured was as large as 8×10−11 W. Applied Physics Letters is copyrighted by The American Institute of Physics....

  8. In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD

    Science.gov (United States)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P. E.; Kear, B.; Gallois, B.

    1991-01-01

    Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  9. In Situ deposition of YBCO high-T(sub c) superconducting thin films by MOCVD and PE-MOCVD

    Science.gov (United States)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P.; Gallois, B.; Kear, B.

    1990-01-01

    Metalorganic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T( sub c) greater than 90 K and Jc approx. 10 to the 4th power A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metalorganic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  10. Superconducting thin films of BiSrCaCuO made by sequential electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Anderson, A.C.; Tsauer, B.Y.; Strauss, A.J.

    1989-03-01

    Superconducting thin films of Bi/sub 2/Sr/sub 2/Ca/sub 1/Cu/sub 2/O/sub x/ have been made by sequential electron-beam evaporation of multiple layers of Bi and Cu metals and (Sr,Ca)F/sub 2/ on MgO substrates. The films were annealed at high temperature, first in wet O/sub 2/ and then in dry O/sub 2/, and cooled to room temperature in dry O/sub 2/. The resulting films which are -- 1 ..mu..m thick, have transition temperatures of -- 85 K. X-ray diffraction shows that the films are preferentially oriented with their c-axis perpendicular to the MgO substrate. The authors' best film has a zero-resistance temperature of 90 K and critical current densities of 8 x 10/sup 4/ A/cm/sup 2/ at 77 K and 2.5 x 10/sup 5/ A/cm/sup 2/ at 4.2 K.

  11. Analysis of the proximity function in electron-beam lithography on high-? superconducting thin-films

    Science.gov (United States)

    Gueorguiev, Y. M.; Vutova, K. G.; Mladenov, G. M.

    1996-07-01

    In this paper we approximate by the combination of double Gaussian and exponential functions the radial distributions of the absorbed electron energy density in a 125 nm PMMA resist layer on 0953-2048/9/7/009/img2 thin-film/substrate targets obtained by means of Monte Carlo simulation for a zero-width 0953-2048/9/7/009/img3-function and the following variables (i) the substrate material (0953-2048/9/7/009/img4 and MgO), (ii) the electron beam energy 0953-2048/9/7/009/img5 (25, 50 and 75 keV) and (iii) the 0953-2048/9/7/009/img2 film thickness d (0, 100, 200 and 300 nm). The values of the parameters of the analytical function are calculated using an original Monte Carlo technique. These values are presented in the form of 3D diagrams which show their dependences on beam energy and on high-temperature superconducting film thickness and can also be used for approximate determination of the parameters at different initial conditions.

  12. Continued improvment of large area, in situ sputter deposition of superconducting YBCO thin films

    Science.gov (United States)

    Truman, J. K.; White, W. R.; Ballentine, P. H.; Mallory, D. S.; Kadin, A. M.

    1993-01-01

    The deposition of thin films of superconducting YBa2Cu3O7-x onto substrates of up to 3-in diameter by an integrated off-axis sputtering is reported. The substrate is located above the center of an 8-in-diameter YBCO planar target, and, in conjunction with a negative ion shield, negative ion effects are avoided. A large radiant heater provides backside, noncontact heating of the bare substrates. YBCO films have been grown on polished 1-cm2 MgO and LaAlO3 substrates with Tc = 90 K or greater, Jc = 2.5 x 10 exp 6 A/sq cm or greater at 77 K, and microwave surface resistance Rs less than 0.4 micro-ohm at 77 K and 10 GHz. The films have a very smooth surface morphology. Uniformity data for LaAlO3 substrates are less than +/-5 percent in Rs. Thickness uniformity results for 3-in substrates indicate less than 10 percent variation. The growth of epitaxial insulating films for use with YBCO films and application of the YBCO films in microwave devices are briefly discussed.

  13. High temperature superconducting thin films and quantum interference devices (SQUIDs) for gradiometers

    CERN Document Server

    Graf zu Eulenburg, A

    1999-01-01

    the best balance and gradient sensitivity at 1kHz were 3x10 sup - sup 3 and 222fT/(cm sq root Hz))) respectively. The measured spatial response to a current carrying wire was in good agreement with a theoretical model. A significant performance improvement was obtained with the development of a single layer gradiometer with 13mm baseline, fabricated on 30x10mm sup 2 bicrystals. For such a device, the gradient sensitivity at 1kHz was 50fT/(cm sq root Hz)) and the gradiometer was used successfully for unshielded magnetocardiography. A parasitic effective area compensation scheme was employed with two neighbouring SQUIDs coupled in an opposite sense to the same gradiometer loop. This improved the balance from the intrinsic value of 10 sup - sup 3 to 3x10 sup - sup 5. This thesis describes several aspects of the development of gradiometers using high temperature Superconducting Quantum Interference Devices (SQUID). The pulsed laser deposition of thin films of YBa sub 2 Cu sub 3 O sub 7 sub - subdelta (YBCO) on Sr...

  14. Reactive magnetron sputter deposition of superconducting niobium titanium nitride thin films with different target sizes

    CERN Document Server

    Bos, B G C; Haalebos, E A F; Gimbel, P M L; Klapwijk, T M; Baselmans, J J A; Endo, A

    2016-01-01

    The superconducting critical temperature (Tc>15 K) of niobium titanium nitride (NbTiN) thin films allows for low-loss circuits up to 1.1 THz, enabling on-chip spectroscopy and multi-pixel imaging with advanced detectors. The drive for large scale detector microchips is demanding NbTiN films with uniform properties over an increasingly larger area. This article provides an experimental comparison between two reactive d.c. sputter systems with different target sizes: a small target (100 mm diameter) system and a large target (127 mm x 444.5 mm) one, with the aim of improving the film uniformity using the large target system. We focus on the Tc of the films and I-V characteristics of the sputter plasma, and we find that both systems are capable of depositing films with Tc>15 K. We find that these films are deposited within the transition from metallic to compound sputtering, at the point where target nitridation most strongly depends on nitrogen flow. Key in the deposition optimization is to increase the system'...

  15. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    Science.gov (United States)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  16. Quantum and superconducting fluctuations effects in disordered Nb 1- xTa x thin films above Tc

    Science.gov (United States)

    Giannouri, M.; Papastaikoudis, C.

    1999-05-01

    Disordered Nb 1- xTa x thin films are prepared with e-gun coevaporation. The influence of the β-phase of tantalum in the critical temperature Tc is observed as a function of the substrate temperature. The measurements of transverse magnetoresistance at various isothermals are interpreted in terms of weak-localization and superconducting fluctuations. From the fitting procedure, the phase breaking rate τφ-1 and the Larkin parameter βL are estimated as a function of temperature. Conclusions about the dominant inelastic scattering mechanisms at various temperature regions as well as for the dominant mechanism of superconducting fluctuations near the transition temperature are extracted.

  17. X-ray Photoelectron Spectroscopy on Superconducting Tl2CaBa2Cu2O8 Thin Film

    Science.gov (United States)

    Zeng, Wensheng; Qiu, Ping; Yan, Shaolin; Li, Zengfa; Zhang, Guangyin

    1991-06-01

    We have prepared single-phase superconducting Tl2CaBa2Cu2O8 thin film by dc magnetron sputtering process and measured x-ray photoelectron spectra of the film at room and liquid nitrogen temperatures. From the relative intensities of the Ba3d, Tl4f. O1s and Cu2p spectra taken at different take-off angles, we have concluded that there is an adventitious contamination (nonsuperconducting phase) surface layer. After excluding contributions from these spurious phases, we have tentatively assigned which core-level shifts should be caused by the superconducting phase transition.

  18. Quasi-two-dimensional superconductivity in FeSe0.3Te0.7 thin films and electric-field modulation of superconducting transition.

    Science.gov (United States)

    Lin, Zhu; Mei, Chenguang; Wei, Linlin; Sun, Zhangao; Wu, Shilong; Huang, Haoliang; Zhang, Shu; Liu, Chang; Feng, Yang; Tian, Huanfang; Yang, Huaixin; Li, Jianqi; Wang, Yayu; Zhang, Guangming; Lu, Yalin; Zhao, Yonggang

    2015-09-18

    We report the structural and superconducting properties of FeSe0.3Te0.7 (FST) thin films with different thicknesses grown on ferroelectric Pb(Mg1/3Nb2/3)0.7Ti0.3O3 substrates. It was shown that the FST films undergo biaxial tensile strains which are fully relaxed for films with thicknesses above 200 nm. Electrical transport measurements reveal that the ultrathin films exhibit an insulating behavior and superconductivity appears for thicker films with Tc saturated above 200 nm. The current-voltage curves around the superconducting transition follow the Berezinskii-Kosterlitz-Thouless (BKT) transition behavior and the resistance-temperature curves can be described by the Halperin-Nelson relation, revealing quasi-two-dimensional phase fluctuation in FST thin films. The Ginzburg number decreases with increasing film thickness indicating the decrease of the strength of thermal fluctuations. Upon applying electric field to the heterostructure, Tc of FST thin film increases due to the reduction of the tensile strain in FST. This work sheds light on the superconductivity, strain effect as well as electric-field modulation of superconductivity in FST films.

  19. Fabricating superconducting interfaces between artificially grown LaAlO3 and SrTiO3 thin films

    Directory of Open Access Journals (Sweden)

    Danfeng Li

    2014-01-01

    Full Text Available Realization of a fully metallic two-dimensional electron gas (2DEG at the interface between artificially grown LaAlO3 and SrTiO3 thin films has been an exciting challenge. Here we present for the first time the successful realization of a superconducting 2DEG at interfaces between artificially grown LaAlO3 and SrTiO3 thin films. Our results highlight the importance of two factors—the growth temperature and the SrTiO3 termination. We use local friction force microscopy and transport measurements to determine that in normal growth conditions the absence of a robust metallic state at low temperature in the artificially grown LaAlO3/SrTiO3 interface is due to the nanoscale SrO segregation occurring on the SrTiO3 film surface during the growth and the associated defects in the SrTiO3 film. By adopting an extremely high SrTiO3 growth temperature, we demonstrate a way to realize metallic, down to the lowest temperature, and superconducting 2DEG at interfaces between LaAlO3 layers and artificially grown SrTiO3 thin films. This study paves the way to the realization of functional LaAlO3/SrTiO3 superlattices and/or artificial LaAlO3/SrTiO3 interfaces on other substrates.

  20. Influence of Fe Buffer Layer on Co-Doped BaFe2As2 Superconducting Thin Films

    Directory of Open Access Journals (Sweden)

    C. Bonavolontà

    2015-01-01

    Full Text Available A systematic characterization of Co-doped BaFe2As2 (Ba-122 thin films has been carried out. Two samples were available, one grown on CaF2 substrate and the other on MgO with an Fe buffer layer. The goal was to investigate films’ magnetic and superconducting properties, their reciprocal interplay, and the role played by the Fe buffer layer in modifying them. Morphological characterization and Energy Dispersive X-ray analyses on the Fe-buffered sample demonstrate the presence of diffused Fe close to the Co-doped Ba-122 outer surface as well as irregular holes in the overlying superconducting film. These results account for hysteresis loops obtained with magneto-optic Kerr effect measurements and observed at both room and low temperatures. The magnetic pattern was visualized by magneto-optical imaging with an indicator film. Moreover, we investigated the onset of superconductivity through a measure of the superconducting energy gap. The latter is strictly related to the decay time of the excitation produced by an ultrashort laser pulse and has been determined in a pump-probe transient reflectivity experiment. A comparison of results relative to Co-doped Ba-122 thin films with and without Fe buffer layer is finally reported.

  1. Superconducting NbTiN Thin Films with Highly Uniform Properties over a 100 mm diameter Wafer

    CERN Document Server

    Thoen, D J; Haalebos, E A F; Klapwijk, T M; Baselmans, J J A; Endo, A

    2016-01-01

    Uniformity in thickness and electronic properties of superconducting niobium titanium nitride (NbTiN) thin films is a critical issue for upscaling superconducting electronics, such as microwave kinetic inductance detectors for submillimeter wave astronomy. In this article we make an experimental comparison between the uniformity of NbTiN thin films produced by two DC magnetron sputtering systems with vastly different target sizes: the Nordiko 2000 equipped with a circular 100mm diameter target, and the Evatec LLS801 with a rectangular target of 127 mm x 444.5 mm. In addition to the films deposited staticly in both systems, we have also deposited films in the LLS801 while shuttling the substrate in front of the target, with the aim of further enhancing the uniformity. Among these three setups, the LLS801 system with substrate shuttling has yielded the highest uniformity in film thickness (+/-2%), effective resistivity (decreasing by 5% from center to edge), and superconducting critical temperature (T_c = 15.0 ...

  2. Synthesis of as-grown superconducting MgB_2 thin films by molecular beam epitaxy in UHV conditions

    OpenAIRE

    Harada, Y.; Udsuka, M.; Nakanishi, Y.; Yoshizawa, M.

    2004-01-01

    As-grown superconducting MgB_2 thin films have been grown on SrTiO_3(001), MgO(001), and Al_2O_3(0001) substrates by a molecular beam epitaxy (MBE) method with novel co-evaporation conditions of low deposition rate in ultra-high vacuum. The structural and physical properties of the films were studied by RHEED, XRD, electrical resistivity measurements, and SQUID magnetometer. The RHEED patterns indicate three-dimensional growth for MgB_2. The highest T_c determined by resistivity measurement w...

  3. Properties of Superconducting Mo, Mo2n and Trilayer Mo2n-Mo-Mo2n Thin Films

    Science.gov (United States)

    Barrentine, E. M.; Stevenson, T. R.; Brown, A. D.; Lowitz, A. E.; Noroozian, O.; U-Yen, K.; Eshan, N.; Hsieh, W. T.; Moseley, S. H.; Wollack, E. J.

    2014-01-01

    We present measurements of the properties of thin film superconducting Mo, Mo2N and Mo2N/Mo/Mo2N trilayers of interest for microwave kinetic inductance detector (MKID) applications. Using microwave resonator devices, we investigate the transition temperature, energy gaps, kinetic inductance, and internal quality factors of these materials. We present an Usadel-based interpretation of the trilayer transition temperature as a function of trilayer thicknesses, and a 2-gap interpretation to understand the change in kinetic inductance and internal resonance quality factor (Q) as a function of temperature.

  4. Flexible superconducting Nb transmission lines on thin film polyimide for quantum computing applications

    Science.gov (United States)

    Tuckerman, David B.; Hamilton, Michael C.; Reilly, David J.; Bai, Rujun; Hernandez, George A.; Hornibrook, John M.; Sellers, John A.; Ellis, Charles D.

    2016-08-01

    We describe progress and initial results achieved towards the goal of developing integrated multi-conductor arrays of shielded controlled-impedance flexible superconducting transmission lines with ultra-miniature cross sections and wide bandwidths (dc to >10 GHz) over meter-scale lengths. Intended primarily for use in future scaled-up quantum computing systems, such flexible thin-film niobium/polyimide ribbon cables could provide a physically compact and ultra-low thermal conductance alternative to the rapidly increasing number of discrete coaxial cables that are currently used by quantum computing experimentalists to transmit signals between the several low-temperature stages (from ˜4 K down to ˜20 mK) of a dilution refrigerator. We have concluded that these structures are technically feasible to fabricate, and so far they have exhibited acceptable thermo-mechanical reliability. S-parameter results are presented for individual 2-metal layer Nb microstrip structures having 50 Ω characteristic impedance; lengths ranging from 50 to 550 mm were successfully fabricated. Solderable pads at the end terminations allowed testing using conventional rf connectors. Weakly coupled open-circuit microstrip resonators provided a sensitive measure of the overall transmission line loss as a function of frequency, temperature, and power. Two common microelectronic-grade polyimide dielectrics, one conventional and the other photo-definable (PI-2611 and HD-4100, respectively) were compared. Our most striking result, not previously reported to our knowledge, was that the dielectric loss tangents of both polyimides, over frequencies from 1 to 20 GHz, are remarkably low at deep cryogenic temperatures, typically 100× smaller than corresponding room temperature values. This enables fairly long-distance (meter-scale) transmission of microwave signals without excessive attenuation, and also permits usefully high rf power levels to be transmitted without creating excessive dielectric

  5. Y1Ba2Cu3O(7-delta) thin film dc SQUIDs (superconducting quantum interference device)

    Science.gov (United States)

    Racah, Daniel

    1991-03-01

    Direct current superconducting quantum interferometers (SQUIDs) based on HTSC thin films have been measured and characterized. The thin films used were of different quality: (1) Granular films on Sapphire substrates, prepared either by e-gun evaporation, by laser ablation or by MOCVD (metal oxide chemical vapor deposition), (2) Epitaxial films on MgO substrates. Modulations of the voltage on the SQUIDs as a function of the applied flux have been observed in a wide range of temperatures. The nature of the modulation was found to be strongly dependent on the morphology of the film and on its critical current. The SQUIDs based on granular films were relatively noisy, hysteretic and with a complicated V-phi shape. Those devices based on low quality (lowIc) granular films could be measured only at low temperatures (much lower than 77 K). While those of higher quality (granular films with high Ic) could be measured near to the superconductive transition. The SQUID based on high quality epitaxial film was measured near Tc and showed an anomalous, time dependent behavior.

  6. Dopant rearrangement and superconductivity in Bi(2)Sr(2-x)La(x)CuO(6) thin films under annealing.

    Science.gov (United States)

    Cancellieri, C; Lin, P H; Ariosa, D; Pavuna, D

    2007-06-20

    By combining x-ray diffraction (XRD), x-ray photoemission spectroscopy (XPS) and AC susceptibility measurements we investigate the evolution of structural and superconducting properties of La-doped Bi-2201 thin films grown by pulsed laser deposition (PLD) under different annealing conditions. We find that the main effect of oxygen annealing is to improve the crystal coherence by enabling La cation migration to the Sr sites. This activates the desired hole doping. Short-time Ar annealing removes the interstitial oxygen between the BiO layers, fine adjusting the effective hole doping. The superconducting critical temperature is consequently enhanced. However, longer annealings result in phase separation and segregation of the homologous compound Bi-1201. We attribute this effect to the loss of Bi during the annealing.

  7. Dopant rearrangement and superconductivity in Bi2Sr2-xLaxCuO6 thin films under annealing

    Science.gov (United States)

    Cancellieri, C.; Lin, P. H.; Ariosa, D.; Pavuna, D.

    2007-06-01

    By combining x-ray diffraction (XRD), x-ray photoemission spectroscopy (XPS) and AC susceptibility measurements we investigate the evolution of structural and superconducting properties of La-doped Bi-2201 thin films grown by pulsed laser deposition (PLD) under different annealing conditions. We find that the main effect of oxygen annealing is to improve the crystal coherence by enabling La cation migration to the Sr sites. This activates the desired hole doping. Short-time Ar annealing removes the interstitial oxygen between the BiO layers, fine adjusting the effective hole doping. The superconducting critical temperature is consequently enhanced. However, longer annealings result in phase separation and segregation of the homologous compound Bi-1201. We attribute this effect to the loss of Bi during the annealing.

  8. Superconducting fluctuations: paraconductivity, excess Hall effect and magnetoconductivity in 2223-BiSrCaCuO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lang, W. (Ludwig Boltzmann Inst. fuer Festkoerperphysik, Wien (Austria) Inst. fuer Festkoerperphysik, Univ. Wien (Austria)); Kula, W. (Dept. of Electrical Engineering and Lab. for Laser Energetics, Univ. of Rochester, NY (United States) Inst. of Physics, Polish Academy of Sciences, Warszawa (Poland)); Sobolewski, R. (Dept. of Electrical Engineering and Lab. for Laser Energetics, Univ. of Rochester, NY (United States) Inst. of Physics, Polish Academy of Sciences, Warszawa (Poland))

    1994-02-01

    We report a detailed study of the influence of thermodynamic fluctuations of the superconducting order parameter on various normal-state transport properties in 2223-(Bi,Pb)SrCaCuO thin films at temperatures near the superconducting transition. Measurements of the electrical resistivity, the magnetoresistance and the Hall effect were analyzed with regard to fluctuation contributions, using theories for 2-dimensional, layered superconductors. We obtained a consistent set of parameters, which fit all magneto-transport measurements above 118 K, but observed a remarkable enhancement of both excess Hall effect and negative magnetoconductivity closer to T[sub c], whereas the zero-field fluctuation conductivity follows the theoretical predictions down to 110 K. No significant contributions from the indirect (Maki-Thompson) fluctuations process were found. (orig.)

  9. Superconductivity in FeSe Thin Films Driven by the Interplay between Nematic Fluctuations and Spin-Orbit Coupling

    Science.gov (United States)

    Kang, Jian; Fernandes, Rafael M.

    2016-11-01

    The origin of the high-temperature superconducting state observed in FeSe thin films, whose phase diagram displays no sign of magnetic order, remains a hotly debated topic. Here we investigate whether fluctuations arising due to the proximity to a nematic phase, which is observed in the phase diagram of this material, can promote superconductivity. We find that nematic fluctuations alone promote a highly degenerate pairing state, in which both s -wave and d -wave symmetries are equally favored, and Tc is consequently suppressed. However, the presence of a sizable spin-orbit coupling or inversion symmetry breaking at the film interface lifts this harmful degeneracy and selects the s -wave state, in agreement with recent experimental proposals. The resulting gap function displays a weak anisotropy, which agrees with experiments in monolayer FeSe and intercalated Li1 -x(OH )xFeSe .

  10. Superconductivity and x-ray photoemission study of MgB2 thin films

    Institute of Scientific and Technical Information of China (English)

    王淑芳; 周岳亮; 朱亚彬; 张芹; 谢侃; 陈正豪; 吕惠宾; 杨国桢

    2002-01-01

    Highly c-axis oriented MgB2 thin films with Tconset of 39.6K were fabricated by magnesium diffusing into pulsed-laser-deposited boron precursors. The estimation of critical current density Jc, using hysteresis loops and the Bean model, has given the value of 107A/cm2 (15K, 0T), which is one of the highest values ever reported. The x-ray photoemission study of the MgB2 thin films has revealed that the binding energies of Mg 2p and B 1s are at 49.4eV and 186.9eV, which are close to those of metallic Mg and transition-metal diborides, respectively.

  11. Superconducting YBa2Cu3O(7-delta) thin films on GaAs with conducting indium-tin-oxide buffer layers

    Science.gov (United States)

    Kellett, B. J.; Gauzzi, A.; James, J. H.; Dwir, B.; Pavuna, D.

    1990-12-01

    Superconducting YBa2Cu3O(7-delta) (YBCO) thin films have been grown in situ on GaAs with conducting indium-tin-oxide (ITO) buffer layers. Superconducting onset is about 92 K with zero resistance at 60 K. ITO buffer layers usually form Schottky-like barriers on GaAs. The YBCO film and ITO buffer layer, grown by ion beam sputter codeposition, are textured and polycrystalline with a combined room-temperature resistivity of about 1 milliohm cm.

  12. Synthesis of as-grown superconducting MgB{sub 2} thin films by molecular beam epitaxy in UHV conditions

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Y.; Uduka, M.; Nakanishi, Y.; Yoshimoto, N.; Yoshizawa, M

    2004-10-01

    As-grown superconducting MgB{sub 2} thin films have been grown on SrTiO{sub 3}(0 0 1), MgO(0 0 1), and Al{sub 2}O{sub 3}(0 0 0 1) substrates by a molecular beam epitaxy (MBE) method with novel co-evaporation conditions of low deposition rate in ultra-high vacuum. The structural and physical properties of the films were studied by RHEED, XRD, electrical resistivity measurements, and SQUID magnetometer. The RHEED patterns indicate three-dimensional growth for MgB{sub 2}. The highest T{sub c} determined by resistivity measurement was about 36 K in these samples. And a clear Meissner effect below T{sub c} was observed using magnetic susceptibility measurement. We will discuss the influence of B buffer layer on the structural and physical properties.

  13. High-efficiency superconducting nanowire single-photon detectors fabricated from MoSi thin-films

    CERN Document Server

    Verma, V B; Bussières, F; Horansky, R D; Dyer, S D; Lita, A E; Vayshenker, I; Marsili, F; Shaw, M D; Zbinden, H; Mirin, R P; Nam, S W

    2015-01-01

    We demonstrate high-efficiency superconducting nanowire single-photon detectors (SNSPDs) fabricated from MoSi thin-films. We measure a maximum system detection efficiency (SDE) of 87 +- 0.5 % at 1542 nm at a temperature of 0.7 K, with a jitter of 76 ps, maximum count rate approaching 10 MHz, and polarization dependence as low as 3.4 +- 0.7 % The SDE curves show saturation of the internal efficiency similar to WSi-based SNSPDs at temperatures as high as 2.3 K. We show that at similar cryogenic temperatures, MoSi SNSPDs achieve efficiencies comparable to WSi-based SNSPDs with nearly a factor of two reduction in jitter.

  14. Microwave Response of MgB2/Al2O3 Superconducting Thin Films by Microstrip Resonator Technique

    Institute of Scientific and Technical Information of China (English)

    SHI Li-Bin; ZHENG Yan; REN Jun-Yuan; LI Ming-Biao; ZHANG Feng-Yun; LI Bo-Xin; DONG Hai-Kuan

    2007-01-01

    Double-sided superconducting MgB2 thin films are deposited onto c-Al2O3 substrates by the hybrid physical chemical vapour deposition method. The microwave response of MgBz/Al2O3 is investigated by microstrip resonator technique. A grain-size model is introduced to the theory of microstrip resonators to analyse microwave properties of the films. We obtain effective penetration depth of the films at 0K (λe0 = 463 nm) and surface resistance (R3 = 1.52mΩ at 11 K and 8.73 GHz) by analysing the resonant frequency and unload quality factor of the microstrip resonator, which suggests that the impurities and disorders of grain boundaries of MgB2/Al2O3 result in increasing penetration depth and surface resistance of the films.

  15. Interpretation of transmission through type II superconducting thin film on dielectric substrate as observed by laser thermal spectroscopy

    Science.gov (United States)

    Šindler, M.; Tesař, R.; Koláček, J.; Skrbek, L.

    2012-12-01

    We provide a thorough analysis of THz properties of BCS-like superconducting thin films. Temperature and frequency dependence of complex conductivity in zero magnetic field is discussed by utilizing the Zimmerman et al. explicit BCS based formula [Physica C 183 (1991) 99]. We extend this approach by employing the effective medium theory and develop a phenomenological model capable of accounting for the influence of external magnetic field. Using Yeh powerful formalism [Surface Sci. 96 (1980) 41] we calculate optical transmission of linearly polarized laser beam normally incident to a multilayered sample consisting of a thin NbN film grown on birefringent sapphire substrate, entirely covering ranges of interest in temperature and frequency. A proposal to exploit linear polarization of the incident beam parallel with principal axes of conductivity tensor is explained and theoretical predictions for a realistic NbN sample are computed and discussed.

  16. Effects of α-particle beam irradiation on superconducting properties of thin film MgB2 superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Bum; Duong, Pham van; Ha, Dong Hyup; Oh, Young Hoon; Kang, Won Nam; Chai, Jong Seo [Sungkunkwan Univeversity, Suwon (Korea, Republic of); Hong, Seung Pyo; Kim, Ran Young [Kore Institute of Radiological and Medical Science, Seoul (Korea, Republic of)

    2016-06-15

    Superconducting properties of thin film MgB2 superconductors irradiated with 45 MeV α-particle beam were studied. After the irradiation, enhancement of the critical current density and pinning force was observed, scaling close to strong pinning formula. Double logarithmic plots of the maximum pinning force density with irreversible magnetic field show a power law behavior close to carbon-doped MgB2 film or polycrystals. Variation of normalized pinning force density in the reduced magnetic field suggests scaling formulas for strong pinning mechanism like planar defects. We also observed a rapid decay of critical current density as the vortex lattice constant decreases, due to the strong interaction between vortices and increasing magnetic field.

  17. Characterization Of Superconducting Samples With SIC System For Thin Film Developments: Status And Recent Results

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, H. Lawrence [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Reece, Charles E. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Valente-Feliciano, Anne-Marie [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States); Xiao, Binping [Brookhaven National Lab, Upton, NY (United States); Eremeev, Grigory V. [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States)

    2014-02-01

    Within any thin film development program directed towards SRF accelerating structures, there is a need for an RF characterization device that can provide information about RF properties of small samples. The current installation of the RF characterization device at Jefferson Lab is Surface Impedance Characterization (SIC) system. The data acquisition environment for the system has recently been improved to allow for automated measurement, and the system has been routinely used for characterization of bulk Nb, films of Nb on Cu, MgB{sub 2}, NbTiN, Nb{sub 3}Sn films, etc. We present some of the recent results that illustrate present capabilities and limitations of the system.

  18. Observation of Double-Dome Superconductivity in Potassium-Doped FeSe Thin Films.

    Science.gov (United States)

    Song, Can-Li; Zhang, Hui-Min; Zhong, Yong; Hu, Xiao-Peng; Ji, Shuai-Hua; Wang, Lili; He, Ke; Ma, Xu-Cun; Xue, Qi-Kun

    2016-04-15

    We report on the emergence of two disconnected superconducting domes in alkali-metal potassium- (K-)doped FeSe ultrathin films grown on graphitized SiC(0001). The superconductivity exhibits hypersensitivity to K dosage in the lower-T_{c} dome, whereas in the heavily electron-doped higher-T_{c} dome it becomes spatially homogeneous and robust against disorder, supportive of a conventional Cooper-pairing mechanism. Furthermore, the heavily K-doped multilayer FeSe films all reveal a large superconducting gap of ∼14  meV, irrespective of film thickness, verifying the higher-T_{c} superconductivity only in the topmost FeSe layer. The unusual finding of a double-dome superconducting phase is a step towards the mechanistic understanding of superconductivity in FeSe-derived superconductors.

  19. Pinning effects on the vortex critical velocity in type-II superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Leo, A., E-mail: antoleo@sa.infn.i [CNR-SPIN-Salerno and Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, via Ponte Don Melillo, 84084 Fisciano (Italy); Grimaldi, G.; Nigro, A.; Pace, S. [CNR-SPIN-Salerno and Dipartimento di Fisica ' E R Caianiello' , Universita di Salerno, via Ponte Don Melillo, 84084 Fisciano (Italy); Verellen, N.; Silhanek, A.V.; Gillijns, W.; Moshchalkov, V.V. [INPAC-Institute for Nanoscale Physics and Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven B-3001 (Belgium); Metlushko, V. [Department of Electrical and Computer Engineering, University of Illinois at Chicago, Chicago, IL 60607 (United States); Ilic, B. [Cornell Nanofabrication Facility, Cornell University, Ithaca, NY 14853 (United States)

    2010-10-01

    We study the influence of artificial pinning centers on the vortex critical velocity in Al thin films deposited on top of a periodic array of Permalloy (FeNi) square rings. We demonstrate that the field dependence of the flux flow velocity strongly depends on the particular magnetic state of the rings. In particular, we find that, even when the rings are in a flux closure state, i.e. with little stray field, the vortex critical velocity shows a non-monotonic magnetic field dependence. This behaviour is in sharp contrast with the results obtained in a reference plain film, with no rings underneath. A comparison with the intrinsic strong pinning Nb films previously studied, suggests an interpretation in terms of a channel-like motion of vortices, here induced by the artificial pinning structure.

  20. High field transport properties of MBE processed Fe-based superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kazumasa [Nagoya University (Japan); IFW Dresden (Germany)

    2015-07-01

    It has been reported that Fe-based superconductors show high upper critical fields with low anisotropies at low temperatures. Hence these materials may offer a unique possibility for high field magnet applications. However, only a few reports on high-field transport properties of Co-doped Ba-122 and Fe(Se,Te) have been published and the only one for SmFeAs(O,F) thin films to date. In order to use this material class for applications, the knowledge of in-field and its orientation dependence of transport properties in a wide range of external fields need to be clarified. In this talk, I will report on high-field (up to dc 45 T) transport properties of P-doped Ba-122, SmFeAs(O,F) and NdFeAs(O,F) thin films prepared by MBE. Although P-doped Ba-122 has the lowest T{sub c}, self-field J{sub c} of over 6 MA/cm{sup 2} at 4.2 K is recorded, which is the highest value ever reported in Fe-based superconductors. Additionally, in-field performance of P-doped Ba-122 shows comparable to those of NdFeAs(O,F) and SmFeAs(O,F) for Hc. On the other hand, both NdFeAs(O,F) and SmFeAs(O,F) exhibited higher J{sub c} for H parallel ab due to the intrinsic pinning. These results indicate that P-doped Ba-122 is the most promising candidates for high-field magnet applications.

  1. Experimental evidence of non-linear behaviour in YBCO superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Palenque, E.R.; Appleyard, N.J.; Jackson, T.J.; Palmer, S.B. [Dept. of Phys., Warwick Univ., Coventry (United Kingdom)

    1995-05-01

    Preliminary measurements of the non-linear dynamics of a thin (two dimensional) YBa{sub 2}Cu{sub 3}O{sub 7} superconducting film in a small AC magnetic field are presented, a peak in third harmonic generation which may provide evidence of the Kosterlitz-Thouless transition is found just below the superconducting transition temperature. (author)

  2. Enhanced superconductivity, Kondo behavior, and negative-curvature resistivity of oxygen-irradiated thin films of aluminium

    Science.gov (United States)

    Sinnecker, E. H. C. P.; Sant'Anna, M. M.; ElMassalami, M.

    2017-02-01

    We followed the evolution of the normal and superconducting properties of Al thin films after each session of various successive oxygen irradiations at ambient temperature. Such irradiated films, similar to the granular ones, exhibit enhanced superconductivity, Kondo behavior, and negative-curvature resistivity. Two distinct roles of oxygen are identified: as a damage-causing projectile and as an implanted oxidizing agent. The former gives rise to the processes involved in the conventional recovery stages. The latter, considered within the context of the Cabrera-Mott model, gives rise to a multistep process which involves charges transfer and creation of stabilized vacancies and charged defects. Based on the outcome of this multistep process, we consider (i) the negative-curvature resistivity as a manifestation of a thermally assisted liberation of trapped electric charges, (ii) the Kondo contribution as a spin-flip scattering from paramagnetic, color-center-type defects, and (iii) the enhancement of Tc as being due to a lattice softening facilitated by the stabilized defects and vacancies. The similarity in the phase diagrams of granular and irradiated films as well as the aging effects are discussed along the same line of reasoning.

  3. Superconducting fluctuations in Bi2Sr2Ca2Cu3Ox thin films: Paraconductivity, excess Hall effect, and magnetoconductivity

    Science.gov (United States)

    Lang, W.; Heine, G.; Kula, W.; Sobolewski, Roman

    1995-04-01

    A detailed study of normal-state magnetotransport properties in (Bi,Pb)2Sr2Ca2Cu3Ox thin films with a zero-resistance critical temperature Tc0=105 K prepared by dc-magnetron sputtering on MgO substrates is reported. Measurements of the electrical resistivity, the magnetoresistance, and the Hall effect are analyzed with regard to contributions of the superconducting order-parameter thermodynamic fluctuations, using theories for two-dimensional, layered superconductors. We have obtained a consistent set of parameters, i.e., the in-plane coherence length ξab(0)=1.6 nm, the out-of-plane coherence length ξc(0)=0.14 nm, and the electron-hole asymmetry parameter β=-0.38. At temperatures below 118 K, we observe a remarkable enhancement (above theoretical predictions) of both the excess Hall effect and magnetoconductivity, whereas no such effect is detected for the zero-field paraconductivity. The above anomalies are attributed to a nonuniform critical temperature distribution inside our samples and can be well explained assuming a Gaussian distribution of Tc's with a standard deviation δTc=2.3 K. The excess Hall effect caused by superconducting fluctuations is negative in the entire accessible temperature range, which indicates, together with the paraconductivity and magnetoconductivity results that the indirect (Maki-Thompson) fluctuation process for (Bi,Pb)2Sr2Ca2Cu3Ox is vanishingly small at temperatures from Tc to 130 K.

  4. Preparation of 3 Inch Double-Sided YBa2Cu3O7-X High Temperature Superconducting Thin Films

    Institute of Scientific and Technical Information of China (English)

    TAO Bo-wan

    2005-01-01

    @@ Owing to its excellent electrical property,YBCO thin film is much better than metal in the application for microwave devices. It makes the devices smaller, lighter, and with higher quality factor and lower insertion loss. YBCO thin film has attracted attentions for many years. Aiming at the uniformity and property of 3-inch double-sided YBCO thin film, the following aspects is considered in this dissertation:

  5. The development of Tl-2212 based superconducting thin films for microwave applications

    CERN Document Server

    Hyland, D M C

    2001-01-01

    This thesis attempts to develop the understanding of the two-stage ex-situ processing of Tl sub 2 Ba sub 2 CaCu sub 2 O (Tl-2212) thin films on LaAlO sub 3 substrates. Initially a thallium-free precursor film is deposited by sputtering, this is then annealed in a sealed crucible containing a thallium source to produce the final crystalline film. An investigation into the correlation of physical characteristics of the films with their microwave properties is presented. High reproducibility of processing was achieved for 1cm sup 2 size films with measured R sub s < 0.5m OMEGA. Strong dependence of the microwave properties was found with film thickness and growth morphology of the crystalline film. A good correlation of R sub s was seen with defect density, greater numbers of defects giving higher R sub s values. Problems were encountered in scaling up the process to fabricate 2-inch diameter films, initially limited by the increased defect density associated with a larger surface area. Additionally when usin...

  6. Plasma processing of niobium for the production of thin-film superconducting devices

    Energy Technology Data Exchange (ETDEWEB)

    Tugwell, A.J.; Hutson, D.; Pegrum, C.M.; Donaldson, G.B.

    1987-01-01

    Josephson junctions, which are regions of weak electrical connection between two superconductors, are the active elements of very sensitive thin-film magnetometers. Junctions are fabricated by growing barriers of native oxide on thin Nb films and depositing a layer of PbIn alloy on top. High sensitivity magnetometers require junctions of small area, and to achieve this, edge junctions are fabricated in which one dimension is defined by the thickness of the Nb and the other is set by the limit of optical lithography. An edge with a suitable angle is produced by reactive ion etching using 5 vol % O/sub 2/ in CF/sub 4/ in a parallel plate rf plasma etcher. Details of etch rates and edge profiles are given. The barrier is formed by a cleaning and oxidation process in an rf plasma at a pressure of 10/sup -6/ bar. Details of the design of a purpose built rf cathode and the run-to-run reproducibility of junction characteristics are given. Different oxidation times and bias voltages are necessary to produce a given oxide thickness on a sloping edge of Nb, as compared to a planar surface, and an explanation for this is proposed. Examples are described of magnetometers made using the above processes.

  7. The relationship between open volume defects and deposition conditions of superconducting thin-film YBa sub 2 Cu sub 3 O sub 7 sub - sub x

    CERN Document Server

    Zhou, X Y; Jiang, H; Bauer-Kugelmann, W; Duffy, J A; Koegel, G; Triftshaeuser, W

    1997-01-01

    The relationship between the open volume defects and the deposition conditions of superconducting thin-film YBa sub 2 Cu sub 3 O sub 7 sub - sub x was studied by the position lifetime technique. Using a low-energy pulsed positron system, positron lifetime as a function of implantation energy was measured on epitaxial superconducting thin-film YBa sub 2 Cu sub 3 O sub 7 sub - sub x deposited on yttrium stabilized cubic zirconia substrates (YSZ) with pulsed laser deposition in a partial pressure of air under different conditions. The results show that the type of open volume defect is independent of deposition conditions such as the substrate temperature, T sub s , and the air pressure, P sub a. The defect concentration increases with decreasing T sub s and increasing P sub a. (author). Letter-to-the-editor

  8. High-temperature superconductivity in potassium-coated multilayer FeSe thin films.

    Science.gov (United States)

    Miyata, Y; Nakayama, K; Sugawara, K; Sato, T; Takahashi, T

    2015-08-01

    The recent discovery of possible high-temperature (T(c)) superconductivity over 65 K in a monolayer FeSe film on SrTiO3 (refs 1-6) triggered a fierce debate on how superconductivity evolves from bulk to film, because bulk FeSe crystal exhibits a T(c) of no higher than 10 K (ref. 7). However, the difficulty in controlling the carrier density and the number of FeSe layers has hindered elucidation of this problem. Here, we demonstrate that deposition of potassium onto FeSe films markedly expands the accessible doping range towards the heavily electron-doped region. Intriguingly, we have succeeded in converting non-superconducting films with various thicknesses into superconductors with T(c) as high as 48 K. We also found a marked increase in the magnitude of the superconducting gap on decreasing the FeSe film thickness, indicating that the interface plays a crucial role in realizing the high-temperature superconductivity. The results presented provide a new strategy to enhance and optimize T(c) in ultrathin films of iron-based superconductors.

  9. Scaling Laws for Thin Films near the Superconducting-to-Insulating Transition

    Science.gov (United States)

    Tao, Yong

    2016-03-01

    We propose a Lagrangian function, which combines Landau-Ginzburg term and Chern-Simons term, for describing the competition between disorder and superconductivity. To describe the normal-to-superconducting transition in the thin superconducting films, we apply Wilson’s renormalization group methods into this Lagrangian function. Finally, we obtain a scaling law between critical temperature (Tc), film thickness (d), sheet resistance of the film at the normal state (Rs), and number density of the electrons at the normal state (N). Such a scaling law is in agreement with recent experimental investigations [Ivry, Y. et al., Physical Review B 90, 214515 (2014)]. Our finding may have potential benefits for improving transition temperature Tc.

  10. Growth and characterization of superconducting spinel oxide LiTiO thin films

    Science.gov (United States)

    Chopdekar, Rajesh V.; Wong, Franklin J.; Takamura, Yayoi; Arenholz, Elke; Suzuki, Yuri

    2009-11-01

    Epitaxial films of LiTiO on single crystalline substrates of MgAlO, MgO, and SrTiO provide model systems to systematically explore the effects of lattice strain and microstructural disorder on the superconducting state. Lattice strain that affects bandwidth gives rise to variations in the superconducting and normal state properties. Microstructural disorder, such as antiphase boundaries that give rise to Ti network disorder, reduces the critical temperature, and Ti network disorder combined with Mg interdiffusion lead to a much more dramatic effect on the superconducting state. Surface sensitive X-ray absorption spectroscopy has identified Ti to retain site symmetry and average valence of the bulk material regardless of film thickness.

  11. Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements

    Science.gov (United States)

    Bhasin, K. B.; Warner, J. D.; Miranda, F. A.; Gordon, W. L.; Newman, H. S.

    1991-01-01

    A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approximately 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approximately 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approximately 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition superconducting thin films at microwave frequencies.

  12. Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements

    Science.gov (United States)

    Bhasin, K. B.; Warner, J. D.; Miranda, F. A.; Gordon, W. L.; Newman, H. S.

    1991-01-01

    A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approximately 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approximately 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approximately 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition superconducting thin films at microwave frequencies.

  13. Performance Enhancement of ZITO Thin-Film Transistors via Graphene Bridge Layer by Sol-Gel Combustion Process.

    Science.gov (United States)

    Zhang, Jianhua; Dong, Panpan; Gao, Yana; Sheng, Chenhang; Li, Xifeng

    2015-11-01

    In this article, we reported the stacked structure zinc-indium-tin oxide (ZITO) thin-film transistors (TFTs) with graphene nanosheets (GNSs) prepared by solution process. GNSs were used as bridge layer between dual-ZITO layers. The transmission of stacked ZITO/GNSs/ZITO films are more than 80% in the visible region and the resistivity of ZITO films with GNSs bridge layer decreased from 502.9 to 13.4 Ω cm. The solution-processed TFT devices with GNSs bridge layer exhibited a desirable characteristic with a subthreshold slope of 0.25 V/dec and current on-off ratio of 1 × 10(7), and the saturation filed effect mobility is improved to 45.9 cm(2)V(-1)s(-1), which exceeds the mobility values of the pristine ZITO TFTs by one order. These results demonstrate the solution-processed ZITO/GNSs/ZITO TFTs maybe make a further step to achieve high-performance TFTs and show the potential for next-generation applications.

  14. Electronic properties of high-temperature superconducting thin films grown by pulsed laser deposition

    Science.gov (United States)

    Abrecht, M.; Ariosa, Daniel; Cloetta, D.; Margaritondo, Giorgio; Pavuna, Davor

    2002-11-01

    We use a pulsed laser deposition (PLD) setup to grow ultra-thin films of high temperature superconductors (HTSC) and transfer them in-situ into a photoemission chamber. Photoemission measurements on such films allow us to study non-cleavable materials, but can also give insights into aspects never measured before, like the influence of strain on the low energy electronic structure. Systematic studies of many different materials grown as films showed that Bi2Sr2CaCu2O8+x, Bi2Sr2Cu1O6+x, Bi2Sr2Ca2Cu3O10+x and La2-xSrxCuO4 films exhibit a conductor-like Fermi edge, but materials containing chains (such as YBa2Cu3O7-x) are prone to very rapid surface degradation, possibly related to critical oxygen loss at the surface. Among HTSC materials, La2-xSrxCuO4 is extremely interesting because of its rather simple structure and the fact that its critical temperature Tc can be enhanced by epitaxial strain. Here we present our first high resolution angular resolved photoemission spectroscopy (ARPES) results on 8 unit-cell thin La2-xSrxCuO4 films on SrLaAlO4 [001] substrates. Due to the lattice mismatch, such films are compressed in the copper oxygen planes and expanded in the c-axis direction. Results show a surprisingly modified Fermi surface compared to the one of non-strained samples.

  15. Far-infrared conductivity measurements of pair breaking in superconducting Nb 0.5 Ti 0.5 N thin films induced by an external magnetic field.

    Science.gov (United States)

    Xi, Xiaoxiang; Hwang, J; Martin, C; Tanner, D B; Carr, G L

    2010-12-17

    We report the complex optical conductivity of a superconducting thin film of Nb 0.5 Ti 0.5 N in an external magnetic field. The field was applied parallel to the film surface and the conductivity extracted from far-infrared transmission and reflection measurements. The real part shows the superconducting gap, which we observe to be suppressed by the applied magnetic field. We compare our results with the pair-breaking theory of Abrikosov and Gor'kov and confirm directly the theory's validity for the optical conductivity.

  16. In situ growth of superconducting YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films on Si with conducting indium-tin-oxide buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, B.J.; James, J.H.; Gauzzi, A.; Dwir, B.; Pavuna, D.; Reinhart, F.K. (Institute of Micro and Optoelectronics, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland))

    1990-09-10

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) thin films have been grown {ital in} {ital situ} on Si with conducting indium-tin-oxide (ITO) buffer layers. ITO allows YBCO to be electrically connected to the underlying Si substrate. Both the YBCO film and ITO buffer layer, grown by ion beam sputtering, are textured and polycrystalline with a combined room- temperature resistivity of about 2 m{Omega} cm. Superconducting onsets are 92 K with zero resistance at 68 K.

  17. Co-Rich ZnCoO Nanoparticles Embedded in Wurtzite Zn1-xCoxO Thin Films: Possible Origin of Superconductivity.

    Science.gov (United States)

    Zeng, Yu-Jia; Gauquelin, Nicolas; Li, Dan-Ying; Ruan, Shuang-Chen; He, Hai-Ping; Egoavil, Ricardo; Ye, Zhi-Zhen; Verbeeck, Johan; Hadermann, Joke; Van Bael, Margriet J; Van Haesendonck, Chris

    2015-10-14

    Co-rich ZnCoO nanoparticles embedded in wurtzite Zn0.7Co0.3O thin films are grown by pulsed laser deposition on a Si substrate. Local superconductivity with an onset Tc at 5.9 K is demonstrated in the hybrid system. The unexpected superconductivity probably results from Co3+ in the Co-rich ZnCoO nanoparticles or from the interface between the Co-rich nanoparticles and the Zn0.7Co0.3O matrix.

  18. Superconducting YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films on GaAs with conducting indium-tin-oxide buffer layers

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, B.J.; Gauzzi, A.; James, J.H.; Dwir, B.; Pavuna, D.; Reinhart, F.K. (Institut de Micro et Optoelectronique, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (CH))

    1990-12-10

    Superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} (YBCO) thin films have been grown {ital in} {ital situ} on GaAs with conducting indium-tin-oxide (ITO) buffer layers. Superconducting onset is about 92 K with zero resistance at 60 K. ITO buffer layers usually form Schottky-like barriers on GaAs. The YBCO film and ITO buffer layer, grown by ion beam sputter codeposition, are textured and polycrystalline with a combined room-temperature resistivity of about 1 m{Omega} cm.

  19. Formation of the 110-K superconducting phase in Pb-doped Bi-Sr-Ca-Cu-O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kula, W.; Sobolewski, R.; Gorecka, J.; Lewandowski, S.J. (Instytut Fizyki, Polska Akademia Nauk, Al. Lotnikow 32/46, PL-02668 Warszawa (Poland))

    1991-09-15

    Investigation of the 110-K Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub {ital x}} phase formation in superconducting thin films of Bi-based cuprates is reported. The films were dc magnetron sputtered from single Bi(Pb)-Sr-Ca-Cu-O targets of various stoichiometries, and subsequently annealed in air at high temperatures. The influence of the initial Pb content, annealing conditions, as well as the substrate material on the growth of the 110-K phase was investigated. We found that the films, fully superconducting above 100 K could be reproducibly fabricated on various dielectric substrates from Pb-rich targets by optimizing annealing conditions for each initial Pb/Bi ratio. Heavy Pb doping considerably accelerated formation of the 110-K phase, reducing the film annealing time to less than 1 h. Films containing, according to the x-ray measurement, more than 90% of the 110-K phase were obtained on MgO substrates, after sputtering from the Bi{sub 2}Pb{sub 2.5}Sr{sub 2}Ca{sub 2.15}Cu{sub 3.3}O{sub {ital x}} target and annealing in air for 1 h at 870 {degree}C. The films were {ital c}-axis oriented, with 4.5-K-wide superconducting transition, and zero resistivity at 106 K. Their critical current density was 2 {times} 10{sup 2} A/cm{sup 2} at 90 K, and above 10{sup 4} A/cm{sup 2} below 60 K. The growth of the 110-K phase on epitaxial substrates, such as CaNdAlO{sub 4} and SrTiO{sub 3}, was considerably deteriorated, and the presence of the 80- and 10-K phases was detected. Nevertheless, the best films deposited on these substrates were fully superconducting at 104 K and exhibited critical current densities above 2 {times} 10{sup 5} A/cm{sup 2} below 60 K{minus}one order of magnitude greater than the films deposited on MgO.

  20. Resistive evaporation of superconducting Y-Ba-Cu-O thin films from a single source

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J.; Goldschmidt, D.

    1989-06-12

    A new evaporation method of high-temperature superconducting films, the /ital resistive vaporation/ /ital from/ /ital single/ /ital source/, isreported here for the first time. The source material, inserted into a tungstenboat in a conventional vacuum system, consisted of a pulverized mixture of Cu,YF/sub 3/, and BaF/sub 2/. The handling of the source material required only grindingand mixing of the raw materials. Its deposition onto SrTiO/sub 3/ substratesyielding superconducting films with properties very similar to those obtained ina layer-by-layer resistive evaporation of these materials. In particular, aresistive transition onset at 75 K and zero resistance at /similar to/40 K, and criticalcurrents of 2000 A/cm/sup 2/ at approx.10 K have been measured. The broad transition maybe attributed to a copper concentration gradient, as measured by Auger depthprofiling, or to a residual fluorine-rich phase.

  1. Full spin switch effect for the superconducting current in a superconductor/ferromagnet thin film heterostructure

    Science.gov (United States)

    Leksin, P. V.; Garif'yanov, N. N.; Garifullin, I. A.; Schumann, J.; Vinzelberg, H.; Kataev, V.; Klingeler, R.; Schmidt, O. G.; Büchner, B.

    2010-09-01

    Using the spin switch design F1/F2/S theoretically proposed by Oh et al., [Appl. Phys. Lett. 71, 2376 (1997)], that comprises a ferromagnetic bilayer as a ferromagnetic component, and an ordinary superconductor as the second interface component, we have realized a full spin switch effect for the superconducting current. An experimental realization of this spin switch construction was achieved for the CoOx/Fe1/Cu/Fe2/In multilayer.

  2. Superconductivity in CVD Diamond Thin Film Well-Above Liquid Helium Temperature

    OpenAIRE

    Takano, Y.; Nagao, M.; Kobayashi, K; Umezawa, H.; Sakaguchi, I.; Tachiki, M.; Hatano, T.; Kawarada, H.

    2004-01-01

    Diamond has always been adored as a jewel. Even more fascinating is its outstanding physical properties; it is the hardest material known in the world with the highest thermal conductivity. Meanwhile, when we turn to its electrical properties, diamond is a rather featureless electrical insulator. However, with boron doping, it becomes a p-type semiconductor, with boron acting as a charge acceptor. Therefore the recent news of superconductivity in heavily boron-doped diamond synthesized by hig...

  3. Thin-film superconducting rings in the critical state: the mixed boundary value approach

    Science.gov (United States)

    Brambilla, Roberto; Grilli, Francesco

    2015-02-01

    In this paper, we describe the critical state of a thin superconducting ring (and of a perfectly conducting ring as a limiting case) as a mixed boundary value problem. The disc is characterized by a three-part boundary division of the positive real axis, so this work is an extension of the procedure used in a previous work of ours for describing superconducting discs and strips, which are characterized by a two-part boundary division of the real axis. Here, we present the mathematical tools to solve this kind of problems—the Erdélyi-Kober operators—in a frame that can be immediately used. Contrary to the two-part problems considered in our previous work, three-part problems do not generally have analytical solutions and the numerical work takes on a significant heaviness. Nevertheless, this work is remunerated by three clear advantages: firstly, all the cases are afforded in the same way, without the necessity of any brilliant invention or ability; secondly, in the case of superconducting rings, the penetration of the magnetic field in the internal/external rims is a result of the method itself and does not have to be imposed, as it is commonly done with other methods presented in the literature; thirdly, the method can be extended to investigate even more complex cases (four-part problems). In this paper, we consider the cases of rings in uniform field and with transport current, with or without flux trapping in the hole and the case without net current, corresponding to a cut ring (washer), as used in some SQUID applications.

  4. Superconducting spin valves based on epitaxial Fe/V-hybrid thin film heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Gregor

    2010-12-10

    This study presents a systematic investigation of the SSV effect in FM/SC/FM and FM/N/FM/SC heterostructures. Before investigating the actual SSV effect, we first pre-analyzed structural, magnetic and superconducting properties of the Fe/V system. In these preliminary studies we demonstrated, that epitaxial Fe/V heterostructures of superior crystalline quality can be grown by DC sputter deposition. With a Fe/V interface thickness of only one monolayer, the chemical separation of the Fe and V layers is extremely sharp. Moreover, the magnetic investigation showed that from thicknesses of two Fe(001) monolayers on the Fe layers in the superlattice possess a magnetic moment. Furthermore, we demonstrated the interlayer exchange coupling as oscillatory function of the V interlayer thickness. The investigations of the superconducting parameters of the Fe/V system revealed a non-monotonic T{sub S} vs. d{sub Fe} dependence in sample series (1). This observation proves the presence of the FM/SC proximity effect. The studies of various heterostructures of the design AFM/FM/SC/FM revealed a strong counteracting influence on the SSV effect, the stray field effect. The sample containing Fe{sub 25}V{sub 75} alloy layers, has the highest ratio of Cooper pair coherence length and superconductor thickness (ξ{sub S})/(d{sub S}), and its superconducting transition temperature is comparable to the sample with Fe{sub 35}V{sub 65} alloy layers. Nevertheless, the SSV effect in sample Fe{sub 25}V{sub 75} with alloy layers is much smaller than in sample with Fe{sub 35}V{sub 65} alloy layers. For a high-performance superconducting spin valve based on a FM1/SC/FM2 heterostructure at least four parameters have to be optimized simultaneously. 1. The magnetic domain size in FM1 and FM2 has to be as large as possible in order to reduce the stray field effect resulting from magnetization components in the FM domain walls perpendicular to the SC layer. 2. When using ferromagnetic alloys as

  5. High quality superconducting NbN thin films on GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Marsili, Francesco; Fiore, Andrea [COBRA Research Institute, Eindhoven University of Technology, PO Box 513, NL-5600MB Eindhoven (Netherlands); Gaggero, Alessandro; Leoni, Roberto [Istituto di Fotonica e Nanotecnologie (IFN), CNR, via Cineto Romano 42, I-00156 Roma (Italy); Li, Lianhe H; Surrente, Alessandro [Institute of Photonics and Quantum Electronics (IPEQ), Ecole Polytechnique Federale de Lausanne (EPFL), Station 3, CH-1015 Lausanne (Switzerland); Levy, Francis, E-mail: francesco.marsili@epfl.c [Institute of Condensed Matter Physics (IPMC), Ecole Polytechnique Federale de Lausanne (EPFL), Station 3, CH-1015 Lausanne (Switzerland)

    2009-09-15

    A very promising way to increase the detection efficiency of nanowire superconducting single-photon detectors (SSPDs) consists in integrating them with advanced optical structures such as distributed Bragg reflectors (DBRs) and optical waveguides. This requires transferring the challenging SSPD technology from the usual substrates, i.e. sapphire and MgO, to an optical substrate like GaAs, on which DBRs and waveguides can be easily obtained. Therefore, we optimized the deposition process of few-nm thick superconducting NbN films on GaAs and AlAs/GaAs-based DBRs at low temperatures (substrate temperature T{sub S} = 400 {sup 0}C), in order to prevent As evaporation. NbN films ranging from 150 to 3 nm in thickness were then deposited on single-crystal MgO, GaAs, MgO-buffered GaAs and DBRs by current-controlled DC magnetron sputtering (planar, circular, balanced configuration) of Nb in an Ar+N{sub 2} plasma. 5.5 nm thick NbN films on GaAs exhibit T{sub C} = 10.7 K, {Delta}T{sub C} = 1.1 K and RRR = 0.7. The growth of such high quality thin NbN films on GaAs and DBRs has never been reported before.

  6. Kinetic Inductance Photodetectors Based on Nonequilibrium Response in Superconducting Thin-Film Structures

    Science.gov (United States)

    Sergeev, A. V.; Karasik, B. S.; Gogidze, I. G.; Mitin, V. V.

    2001-01-01

    While experimental studies of kinetic-inductance sensors have been limited so far by the temperature range near the superconducting transition, these detectors can be very sensitivity at temperatures well below the transition, where the number of equilibrium quasiparticles is exponentially small. In this regime, a shift of the quasiparticle chemical potential under radiation results in the change of the kinetic inductance, which can be measured by a sensitive SQUID readout. We modeled the kinetic inductance response of detectors made from disordered superconducting Nb, NbC, and MoRe films. Low phonon transparency of the interface between the superconductor and the substrate causes substantial re-trapping of phonons providing high quantum efficiency and the operating time of approximately 1 ms at 1 K. Due to the small number of quasiparticles, the noise equivalent power of the detector determined by the quasiparticle generation-recombination noise can be as small as approximately 10(exp -19) W/Hz(exp 1/2) at He4 temperatures.

  7. Superconducting YBCO thin film on multicrystalline Ag film evaporated on MgO substrate

    Science.gov (United States)

    Azoulay, Jacob; Verdyan, Armen; Lapsker, Igor

    Superconducting YBa 2Cu 3O 7-δ films were grown by resistive evaporation on multicrystalline silver film which was evaporated on MgO substrate. A simple inexpensive vacuum system equipped with resistively heated boat was used for the whole process. Silver film was first evaporated on MgO substrate kept at 400°C during the evaporation after which with no further annealing a precursor mixture of yttrium small grains and Cu and BaF2 in powder form weighed in the atomic proportion to yield stoichiometric YBa 2Cu 3O 7 was evaporated. The films thus obtained were annealed at 740°C under low oxygen partial pressure of about 1Pa for 30 minutes to form the superconducting phase. X-ray diffraction and scanning electron microscopy techniques were used for texture and surface analysis. Electrical properties were determined using a standard dc four-probe for electrical measurements. The physical and electrical properties of the YBCO films are discussed in light of the fact that X-ray diffraction measurements done on the silver film have revealed a multicrystalline structure

  8. Microwave properties of YBa2Cu3O(7-delta) high-transition-temperature superconducting thin films measured by the power transmission method

    Science.gov (United States)

    Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Heinen, V. O.; Warner, J. D.

    1991-01-01

    The microwave response of YBa2Cu3O(7-delta) superconducting thin films deposited on LaAlO3, MgO, YSZ, and LaGaO3 substrates are studied. It is found that the microwave transmission properties are very weakly dependent on temperature in the normal state but change drastically upon transition to the superconducting state. In particular, the transmission decreases and there is a negative phase shift with respect to the phase at room temperature when the sample is cooled through its transition temperature. The magnetic penetration depth for all the films was determined from the surface reactance of the films. The microwave complex conductivity is determined in both the normal and the superconducting state. It is observed that both sigma1 and sigma2 increase in transition to the superconducting state. The surface resistivity is calculated for all the films.

  9. THz investigations of the Higgs amplitude mode in superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dressel, Martin; Pracht, Uwe S. [1. Phys. Inst., Universtaet Stuttgart (Germany); Sherman, Daniel; Frydman, Aviad [Phys. Dept., Bar Ilan University, Ramat Gan (Israel); Gorshunov, Boris [1. Phys. Inst., Universtaet Stuttgart (Germany); General Physics Inst, RUS, Moscow (Russian Federation); Moscow Inst. Phys. and Techn., Dolgoprudny (Russian Federation); Raychaudhuri, Pratap [Tata Inst. Fund. Res., Mumbai (India); Trivedi, Nandini [Phys. Dept., Ohio State University, Columbus (United States); Auerbach, Assa [Phys. Dept., Technion, Haifa (Israel)

    2015-07-01

    We have measured thin superconducting films of various degrees of disorder by THz spectroscopy in order to investigate the optical conductivity at low temperatures. While the properties of weakly disordered superconductors, such as NbN or InO, can be well described by the BCS theory, significant deviations are observed as disorder increases towards the superconductor-insulator transition. On both sides of the transition, tunneling spectroscopy determines a finite pairing gap 2Δ. In contrast, the threshold frequency for the dynamical conductivity, which in BCS theory is associated with the gap, vanishes critically toward the superconductor insulator transition. Here we can identify an excess optical spectral weight below 2Δ as the first unambiguous evidence of a well-defined Higgs amplitude mode observed in a superconductor.

  10. An AFM study of the morphology and local mechanical properties of superconducting YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Soifer, Ya.M.; Verdyan, A.; Azoulay, J.; Kazakevich, M.; Rabkin, E

    2004-02-01

    The morphology of thin superconducting YBCO films deposited on sapphire and on SrTiO{sub 3} was studied with the help of atomic force and scanning electron microscopies. The intrinsic mechanical properties in the flat, particles-free and chemically homogeneous regions of the films were determined with the aid of nanoindenting atomic force microscope. Also the microscopy studies revealed the difference in topography of the films, the nanohardness and Young's modulus of two films were very close to each other. For the indents shallower than 0.2 of the film thickness the Young's modulus and hardness of the films on two different substrates converged to the values of 210 and 8.5 GPa, respectively. The possible deformation mechanisms determining the localized deformation of intrinsically brittle ceramic films are discussed.

  11. An AFM study of the morphology and local mechanical properties of superconducting YBCO thin films

    Science.gov (United States)

    Soifer, Ya. M.; Verdyan, A.; Azoulay, J.; Kazakevich, M.; Rabkin, E.

    2004-02-01

    The morphology of thin superconducting YBCO films deposited on sapphire and on SrTiO 3 was studied with the help of atomic force and scanning electron microscopies. The intrinsic mechanical properties in the flat, particles-free and chemically homogeneous regions of the films were determined with the aid of nanoindenting atomic force microscope. Also the microscopy studies revealed the difference in topography of the films, the nanohardness and Young’s modulus of two films were very close to each other. For the indents shallower than 0.2 of the film thickness the Young’s modulus and hardness of the films on two different substrates converged to the values of 210 and 8.5 GPa, respectively. The possible deformation mechanisms determining the localized deformation of intrinsically brittle ceramic films are discussed.

  12. Pulsed-laser deposition of vicinal and c-axis oriented high temperature superconducting thin films

    CERN Document Server

    Rössler, R

    2000-01-01

    respect to the temperature, oxygen pressure and laser fluence. (Re,Hg)Ba sub 2 Ca sub ( n-1)Cu sub n O sub x films are synthesized on (001) and vicinal SrTiO sub 3 substrates in a two step process employing pulsed-laser deposition of Hg-free precursor films and Hg-vapour annealing in a sealed quartz tube. The sealed quartz tube technique is described in detail and the thermodynamics and the phase formation are discussed. The influence of the Hg-vapour pressure and the annealing temperature on the film properties are investigated. The influence of Hg-vapour annealing on Bi sub 2 Sr sub 2 CaCu sub 2 O sub x films is described. YBa sub 2 Cu sub 3 O sub x films with thicknesses 20 to 480 nm are deposited on vicinal SrTiO sub 3 substrates (10 degrees tilt angle). Variation of the resistivities and changes in the film morphology depending on film thickness are described. The influence of post-annealing treatments on the film properties is discussed. Pulsed-laser deposition (PLD) of high temperature superconducting ...

  13. Protection of high temperature superconducting thin-films in a semiconductor processing environment

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yizi; Fiske, R.; Sanders, S.C.; Ekin, J.W. [National Institute of Standards and Technology, Boulder, CO (United States)

    1996-12-31

    Annealing studies have been carried out for high temperature superconductor YBaCuO{sub 7{minus}{delta}} in a reducing ambient, in order to identify insulator layer(s) that will effectively protect the superconducting film in the hostile environment. While a layer of magnesium oxide (MgO) sputter deposited directly on YBaCuO{sub 7{minus}{delta}} film provides some degree of protection, the authors found that a composite structure of YBCO/SrTiO{sub 3}/MgO, where the SrTiO{sub 3} was grown by laser ablation immediately following YBCO deposition (in-situ process), was much more effective. They also address the need for a buffer layer between YBCO and aluminum (Al) during annealing. Al is most commenly used for semiconductor metalization, but is known to react readily with YBCO at elevated temperatures. The authors found that the most effective buffer layers are platinum (Pt) and gold/platinum (Au/Pt).

  14. Localization and pair breaking parameter in superconducting molybdenum nitride thin films

    Science.gov (United States)

    Tsuneoka, Takuya; Makise, Kazumasa; Maeda, Sho; Shinozaki, Bunju; Ichikawa, Fusao

    2017-01-01

    We have investigated the superconductor-insulator transition in molybdenum nitride films prepared by deposition onto MgO substrates. It is indicated that the T c depression from ≈ 6.6 \\text{K} for thick films with increase of the normal state sheet resistance R\\text{sq}\\text{N} was well explained by the Finkel’stein formula from the localization theory. Present analysis suggests that the superconducting-insulator transition occurs at a critical sheet resistance {{R}\\text{c}}≈ 2 \\text{k} Ω . It is found that the {{R}\\text{sq}}(T) above {{R}\\text{c}} shows different characteristics of {{R}\\text{sq}}(T)={{R}\\text{sq,0}}-A\\ln T and {{R}\\text{sq}}(T)\\propto \\exp ≤ft[{≤ft({{T}0}/T\\right)}1/2}\\right] in the regions {{R}\\text{c}}\\text{sq}\\text{N}{{R}\\text{Q}} , respectively, where {{R}\\text{sq,0}} is the classical residual resistance and A is a constant. The excess conductance {{σ\\prime}{}(T) due to thermal fluctuation has been analyzed by the sum of the Aslamazov-Larkin and Maki-Thompson correction terms with use of the pair breaking parameter δ in the latter term. The sum agrees well with the data, although the experimental results of the R\\text{sq}\\text{N} dependence of δ , that is, δ \\propto {{≤ft(R\\text{sq}\\text{N}\\right)}≈ 1.7} shows the disagreement with a linear relation δ \\propto ≤ft(R\\text{sq}\\text{N}\\right) derived from the localization theory.

  15. Inflight resistance measurement on high-T(sub c) superconducting thin films exposed to orbital atomic oxygen on CONCAP-2 (STS-46)

    Science.gov (United States)

    Gregory, J. C.; Raiker, G. N.; Bijvoet, J. A.; Nerren, P. D.; Sutherland, W. T.; Mogro-Camperso, A.; Turner, L. G.; Kwok, Hoi; Raistrick, I. D.; Cross, J. B.

    1995-01-01

    In 1992, UAH (University of Alabama in Huntsville) conducted a unique experiment on STS-46 in which YBa2Cu3O7 (commonly known as '1-2-3' superconductor) high-T(c) superconducting thin film samples prepared at three different laboratories were exposed to 5 eV atomic oxygen in low Earth orbit on the ambient and 320 C hot plate during the first flight of the CONCAP-2 (Complex Autonomous Payload) experiment carrier. The resistance of the thin films was measured in flight during the atomic oxygen exposure and heating cycle. Superconducting properties were measured in the laboratory before and after the flight by the individual experimenters. Films with good superconducting properties, and which were exposed to the oxygen flux, survived the flight including those heated to 320 C (600 K) with properties essentially unchanged, while other samples which were heated but not exposed to oxygen were degraded. The properties of other flight controls held at ambient temperature appear unchanged and indistinguishable from those of ground controls, whether exposed to oxygen or not.

  16. Magnetic and superconductivity studies on (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sai Krishna, N. [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu (India); Kaleemulla, S., E-mail: skaleemulla@gmail.com [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu 603 104, Tamil Nadu (India); Madhusudhana Rao, N.; Krishnamoorthi, C.; Rigana Begam, M. [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore 632 014, Tamil Nadu (India); Omkaram, I. [Department of Electronics and Radio Engineering, Kyung Hee University, Yongin-si Gyeonggi-do 446-701 (Korea, Republic of); Sreekantha Reddy, D. [Department of Physics and Sungkyunkwan Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2015-07-15

    Highlights: • Fe doped In{sub 2}O{sub 3} thin films deposited using electron beam evaporation technique. • Characterization of the samples using XRD, SEM, EDAX, AES, Raman spectroscopy, FT-IR, VSM and magnetoresistance. • All Fe doped In{sub 2}O{sub 3} thin films exhibited the cubic structure of In{sub 2}O{sub 3}. • Pure and Fe doped In{sub 2}O{sub 3} samples exhibited room temperature ferromagnetism and superconductivity at 2 K. - Abstract: Magnetic, magnetoresistivity and superconductivity studies were carried out on (In{sub 1−x}Fe{sub x}){sub 2}O{sub 3} (x = 0.00, 0.03, 0.05 and 0.07) thin films (2D structures) grown on glass substrate by electron beam evaporation technique at 350 °C. The films have an average size of 120 nm particles. All the samples shown soft ferromagnetic hysteresis loops at room temperature and saturation magnetization increased with iron dopant concentration. Observed magnetization could be best interpreted by F-center mediated magnetic exchange interaction in the samples. Temperature dependent resistivity of the sample (x = 0.00 and 0.07) showed metallic behavior down to very low temperatures and superconductivity at 2 K for undoped In{sub 2}O{sub 3} whereas the In{sub 1.86}Fe{sub 0.14}O{sub 3} sample shows superconductivity below 2 K in the absence of magnetic fields. The reduction in transition temperature was attributed to increase electrical disorder with iron doping. Both samples showed positive magnetoresistivity (MR) in superconducting state due to increase of resistivity resulting from breaking of superconducting Cooper pairs upon application of magnetic field. In addition, both the samples show feeble negative MR in normal electrical state. The observed MR in normal state is not due to spin polarized tunneling instead it is due to suppression of scattering of charge carrier by single occupied localized states.

  17. Selective epitaxial growth for YBCO thin films

    NARCIS (Netherlands)

    Damen, C.A.J.; Smilde, H.-J.H.; Blank, D.H.A.; Rogalla, H.

    1998-01-01

    A novel selective epitaxial growth (SEG) technique for (YBCO) thin films is presented. The method involves the deposition of a thin (about 10 nm) metal layer, in the desired pattern, on a substrate before the deposition of the superconducting thin film. During growth the metal reacts with the YBCO,

  18. X-ray-absorption fine-structure studies of superconducting Tl2CaBa2Cu2Ox thin films

    Science.gov (United States)

    Dimarzio, D.; Wiesmann, H.; Chen, D. H.; Heald, S. M.

    1990-07-01

    Superconducting Tl-Ca-Ba-Cu-O thin films have been prepared by the technique of reactive magnetron sputtering using targets of Tl, Ca-Ba, and Cu. Three films with different quality superconducting transitions were fabricated and analyzed. X-ray-absorption fine-structure measurements were performed on the Cu K edge in order to determine orientation, bond lengths, number of nearest neighbors, and relative disorder as a function of the quality of their superconducting transition. Magnetically oriented powder samples of the appropriate superconducting phase were used for comparison. X-ray-absorption near-edge results reveal increasing CuO2 plane orientation parallel to the substrate as the quality of the superconducting transition improved, consistent with x-ray-diffraction data. Extended x-ray-absorption fine-structure (EXAFS) measurements also show this trend. EXAFS gives a Cu-O(1) bond length of 1.92+/-0.01 Å for all three films, and all three samples exhibit an increasing Debye-Waller disorder factor consistent with the deterioration in the quality of their superconducting transitions.

  19. The I{sub c}(H)-T{sub c}(H) phase boundary of superconducting Nb thin films with periodic and quasiperiodic antidot arrays

    Energy Technology Data Exchange (ETDEWEB)

    Bothner, D.; Kemmler, M.; Cozma, R.; Kleiner, R.; Koelle, D. [Physikalisches Institut and Center for Collective Quantum Phenomena, Universitaet Tuebingen (Germany); Misko, V.; Peeters, F. [Departement Fysica, Universiteit Antwerpen (Belgium); Nori, F. [Advanced Science Institute, RIKEN (Japan)

    2011-07-01

    The magnetic field dependent critical current I{sub c}(H) of superconducting thin films with artificial defects strongly depends on the symmetry of the defect arrangement. Likewise the critical temperature T{sub c}(H) of superconducting wire networks is heavily influenced by the symmetry of the system. Here we present experimental data on the I{sub c}(H)-T{sub c}(H) phase boundary of Nb thin films with artificial defect lattices of different symmetries. For this purpose we fabricated 60 nm thick Nb films with antidots in periodic (triangular) and five different quasiperiodic arrangements. The parameters of the antidot arrays were varied to investigate the influence of antidot diameter and array density. Experiments were performed with high temperature stability ({delta}T<1 mK) at 0.5{<=}T/T{sub c}{<=}1. From the I-V-characteristics at variable H and T we extract I{sub c}(H) and T{sub c}(H) for different voltage and resistance criteria. The experimental data for the critical current density are compared with results from numerical molecular dynamics simulations.

  20. Hysteresis in the I{sub c}(H) characteristics of high-temperature superconducting ceramics and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Altshuler, E.; Musa, J.; Hart, C.; Ares, O. [Univ. of Havana, La Habana (Cuba)] [and others

    1995-12-01

    The experimental hysteretic behavior of the transport critical current observed in ceramic Y-Ba-Cu-O and (Bi-Pb)-Sr-Ca-Cu-O, as well as thin film Y-Ba-Cu-O, are presented. The data are analyzed semiqualitatively. The results show certain similarities among the ceramic samples and the films.

  1. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  2. Superconducting YBa sub 2 Cu sub 3 O sub 7 thin films grown in-situ by ion beam CO-deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kellett, B.K.; James, J.H.; Gauzzi, A.; Dwir, B.; Pavuna, D. (Inst. of Micro and Optoelectronics, Dept. of Physics, Federal Inst. of Tech., Lausanne (Switzerland))

    1989-12-01

    Superconducting YBCO thin films have been grown in-situ by three ion beam co-deposition sputtering. Both metal and oxide targets of Cu and Y and BaF{sub 2} and BaCO{sub 3} targets have been investigated. Film composition was determined by RBS and AES analysis. Films grown using BaF{sub 2} show fluorine contamination, whereas the carbon concentration in films grown using BaCO{sub 3} is beneath the Auger detection limit. Superconducting films have been grown on SrTiO{sub 3} (T{sub co}=78K) and on Si with SiO{sub 2} or Y{sub 2}O{sub 3} buffer layers (T{sub co}=35K). (orig.).

  3. Dopant rearrangement and superconductivity in Bi{sub 2}Sr{sub 2-x}La{sub x}CuO{sub 6} thin films under annealing

    Energy Technology Data Exchange (ETDEWEB)

    Cancellieri, C [EPFL, Institute of Physics of Complex Matter, LPRX, Lausanne (Switzerland); Lin, P H [EPFL, Institute of Physics of Complex Matter, LPRX, Lausanne (Switzerland); Ariosa, D [EPFL, Institute of Physics of Complex Matter, LPRX, Lausanne (Switzerland); Pavuna, D [EPFL, Institute of Physics of Complex Matter, LPRX, Lausanne (Switzerland)

    2007-06-20

    By combining x-ray diffraction (XRD), x-ray photoemission spectroscopy (XPS) and AC susceptibility measurements we investigate the evolution of structural and superconducting properties of La-doped Bi-2201 thin films grown by pulsed laser deposition (PLD) under different annealing conditions. We find that the main effect of oxygen annealing is to improve the crystal coherence by enabling La cation migration to the Sr sites. This activates the desired hole doping. Short-time Ar annealing removes the interstitial oxygen between the BiO layers, fine adjusting the effective hole doping. The superconducting critical temperature is consequently enhanced. However, longer annealings result in phase separation and segregation of the homologous compound Bi-1201. We attribute this effect to the loss of Bi during the annealing.

  4. Superconducting YBa 2Cu 3O 7- δ thin film grown on metallic film evaporated on MgO

    Science.gov (United States)

    Verdyan, A.; Azoulay, J.; Lapsker, I.

    2001-03-01

    At present it is commonly accepted that thin film formation of YBa 2Cu 3O 7- δ (YBCO) on conducting substrate is one of the keys to further development of advanced devices in the microelectronic and other applications. We have grown YBCO thin films by resistive evaporation technique on MgO coated with metallic layers (Ni or Ag). A simple inexpensive vacuum system equipped with resistively heated boats for metal and precursor mixture of yttrium, copper and barium fluoride powders was used. X-ray diffraction (XRD) and scanning electron microscopy techniques were used for texture, morphology and surface analyses respectively. Electrical and magnetical properties were determined by a standard dc four-probe method. The way of heating process is shown to be critical parameter in the film quality. The physical and electrical properties of the YBCO films are discussed in light of the fact that XRD measurements done on the metallic buffer layers have revealed a multicrystalline structure.

  5. Superconducting thin films of Tl 2Ca 2Ba 2Cu 3O y and Tl 2CaBa 2Cu 2O y

    Science.gov (United States)

    Ginley, D. S.; Kwak, J. F.; Hellmer, R. P.; Baughman, R. J.; Venturini, E. L.; Mitchell, M. A.; Morosin, B.

    1988-11-01

    We present techniques for preparing unoriented polycrystalline and epitaxial superconducting thin films of the Tl 2CaBa 2Cu 2O y and Tl 2Ca 2Ba 2Cu 3O y phases on a wide variety of substrates. The crucial steps determining the properties of the films are shown to be the air sintering and oxygen annealing following the initial metal deposition by electron beam evaporation under a slight oxygen overpressure. A sintered Tl-Ca-Ba-Cu-O pellet is employed as a source of excess Tl during sintering and annealing of the thin film. The Tl concentration in the final films controls the nature of the intergrain connections. The films are characterized by their structural, chemical, magnetic and transport properties. Zero resistance typically occurs at 97 K for Tl 2CaBa 2Cu 2O and at 106 K for Tl 2Ca 2Ba 2Cu 3O y. Transport critical currents of up to 110 000 A/cm 2 have been obtained at 77 K for unoriented Tl 2CaBa 2Cu 2O y, up to 160 000 A/cm 2 for epitaxial Tl 2Ca 2Ba 2Cu 3O y and up to 240 000 A/cm 2 for unoriented Tl 2Ca 2Cu 3O y films with little field dependence of the critical current observed.

  6. Photoactive perylenediimide-bridged silsesquioxane functionalized periodic mesoporous organosilica thin films (PMO-SBA15): synthesis, self-assembly, and photoluminescent and enhanced mechanical properties.

    Science.gov (United States)

    Wahab, M Abdul; Hussain, H; He, Chaobin

    2009-04-21

    Well-organized periodic mesoporous organosilica thin films (designated as PMO-SBA15), having covalently bonded perylene-bridged silesquioxane (PTCDBS) inside their pore channels, are successfully synthesized via sol-gel self-assembly of 1,2-bis(triethoxysilyl)ethane and perylene-bridged silsesquioxane, using micelles of pluronic surfactant (P123) as a template for the first time. The surfactant is successfully removed from the pore channels of PMO-SBA15 by an acidic solvent extraction procedure. The final PMO-SBA15 thin films are characterized by high resolution X-ray diffraction (HRXRD), transmission electron microcopy (TEM), solid-state 29Si and 13C NMR CP/MAS NMR spectroscopy, nitrogen adsorption-desorption measurements, photoluminescence (PL) spectroscopy, and nanoindentation. HRXRD data reveal the formation of well-organized hexagonal channels in the pure PMO-SBA15 films. The intensity of the diffracted X-ray, however, systematically attenuates after incorporation of the perylene functionality inside the hexagonal channels. This is attributed to the low X-ray scattering contrast between the mesostructured organosilica walls and organic moieties (perylene) inside the channels, suggesting the successful incorporation of the photoactive perylene molecules inside the nanochannels. This was further confirmed by photoluminescence spectroscopy and nitrogen adsorption-desorption measurements. Additionally, the mechanical hardness of the functionalized PMO-SBA15 thin films, measured by nanoindentation, is significantly enhanced as compared with that of the pure PMO film. Thermogravimetric analysis (TGA) and elemental analysis suggested the functionalized PMO-SBA15 materials with PTCDBS.

  7. Superconducting nanowire single photon detectors fabricated from an amorphous Mo{sub 0.75}Ge{sub 0.25} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Verma, V. B.; Lita, A. E.; Vissers, M. R.; Marsili, F.; Pappas, D. P.; Mirin, R. P.; Nam, S. W. [National Institute of Standards and Technology, 325 Broadway, Boulder, Colorado 80305 (United States)

    2014-07-14

    We present the characteristics of superconducting nanowire single photon detectors (SNSPDs) fabricated from amorphous Mo{sub 0.75}Ge{sub 0.25} thin-films. Fabricated devices show a saturation of the internal detection efficiency at temperatures below 1 K, with system dark count rates below 500 cps. Operation in a closed-cycle cryocooler at 2.5 K is possible with system detection efficiencies exceeding 20% for SNSPDs which have not been optimized for high detection efficiency. Jitter is observed to vary between 69 ps at 250 mK and 187 ps at 2.5 K using room temperature amplifiers.

  8. Deposition by plasma-assisted laser ablation and maskless patterning of YBa[sub 2]Cu[sub 3]O[sub 7-x] superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tejedor, P. (Centro Nacional de Microelectronica, CSIC, Madrid (Spain)); Cagigal, M. (Dept. de Fisica de Materiales, Univ. Complutense, Madrid (Spain)); Vicent, J.L. (Dept. de Fisica de Materiales, Univ. Complutense, Madrid (Spain)); Briones, F. (Centro Nacional de Microelectronica, CSIC, Madrid (Spain))

    1994-04-01

    YBa[sub 2]Cu[sub 3]O[sub 7-x] superconducting thin films were deposited in situ by plasma-assisted laser ablation onto polycrystalline yttria-stabilized-zirconia (YSZ) substrates at 700 C in a low pressure (200-400 mTorr) O[sub 2] discharge (-300 V). The laser operated at 5-50 Hz repetition rate and was focused onto a superconducting target with a typical energy density of 2.5-4 J cm[sup -2]. An in situ annealing step in 1 Torr O[sub 2] atmosphere at 425 C for 1-2 h was followed by slow cooling of the films to room temperature. The YBa[sub 2]Cu[sub 3]O[sub 7-x] films grew preferentially oriented with the c-axis normal to the substrate surface. They exhibited metallic behaviour in the normal state and superconducting transitions with typical onset of 91 K and zero resistance between 82 and 87 K. The transport critical current densities J[sub c] were 10[sup 2] A cm[sup -2] for 1 [mu]m thick films and two orders of magnitude higher, J[sub c] = 3 x 10[sup 4] A cm[sup -2], for 0.08 [mu]m thick films. Maskless patterning was achieved by utilizing the ArF laser beam to induce etching selectivity of the superconducting thin films. For this purpose, the central part of the beam was apertured by a slit and focused onto the sample by means of a 15 x Schwarzschild microscope objective to give an irradiated area on the sample of approximately 10 x 150 [mu]m[sup 2]. The laser energy density on the sample was typically 10[sup 3] J cm[sup -2], while the repetition rate was varied between 10 and 20 Hz. Microbridges of different geometries with a maximum resolution of 10 [mu]m and high edge definition were obtained at 20 [mu]m s[sup -1] scan rate using this technique. (orig.)

  9. Study of superconducting a-axis oriented YBa 2Cu 3O 7-δ thin films deposited on Y 2O 3/YSZ/Si with PrBa 2Cu 3O 7-δ seed layer

    Science.gov (United States)

    Rosova, Alica; Chromik, Stefan; Benacka, Stefan; Wuyts, Bart

    1995-02-01

    Epitaxial a-axis oriented YBa 2Cu 3O 7-δ (YBCO) superconducting thin films have been grown by off-axis magnetron sputtering on Y 2O 3/YSZ/Si substrates with PrBa 2Cu 3O 7-δ (PBCO) seed layer. The YBCO thin films were deposited immediately after the on-axis magnetron sputtering of PBCO. XRD analyses show that the a-axis volume fraction for 120 nm thick YBCO films varies with substrate temperature during PBCO deposition and its maximum value is higher than 98%. The TEM study shows the clear dependence between the character of the R- T dependence and the microstructure of our YBCO thin films, which varies with the change of the volume ratio of a-axis to c-maxis oriented YBCO.

  10. Silicon superconducting quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F., E-mail: francois.lefloch@cea.fr [Université Grenoble Alpes, CEA - INAC - SPSMS, F-38000 Grenoble (France); Chiodi, F.; Débarre, D. [Université Paris-sud, CNRS - IEF, F-91405 Orsay - France (France); Hasselbach, K. [Université Grenoble Alpes, CNRS - Inst. Néel, F-38000 Grenoble (France); Kirtley, J. R. [Center for probing at nanoscale, Stanford University, Palo Alto, California 94305-4045 (United States)

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  11. Field Dependence of π-Band Superconducting Gap in MgB2 Thin Films from Point-Contact Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan; XI Xiao-Xing; WANG Yong-Lei; SHAN Lei; JIA Ying; YANG Huan; WEN Hai-Hu; ZHUANG Cheng-Gang; LI Qi; CUI Yi

    2008-01-01

    We present the results of point-contact spectroscopy measurements on high-quality epitaxial MgB2 thin films with injected current along the c-axis. The temperature and field dependences of л-band properties with the field parallel to (H‖) or perpendicular to (H┴ ) the c-axis are investigated in detail. When a magnetic field is applied, either parallel or perpendicular to the c-axis, the density of the quasiparticle state (DOS) of the л-band proliferates quickly with increasing field, while the gap amplitude of the л-band decreases slowly, which is different from the recent theoretical calculations, showing a field dependent competition between the interband scattering and the pair-breaking effects.

  12. Electrochemical cell for in situ electrodeposition of magnetic thin films in a superconducting quantum interference device magnetometer.

    Science.gov (United States)

    Topolovec, Stefan; Krenn, Heinz; Würschum, Roland

    2015-06-01

    An electrochemical cell is designed and applied for in situ electrodeposition of magnetic thin films in a commercial SQUID magnetometer system. The cell is constructed in such a way that any parasitic contribution of the cell and of the substrate for electrodeposition to the magnetic moment of the deposited film is reduced to a minimum. A remanent minor contribution is readily taken into account by a proper analysis of the detected signal. Thus, a precise determination of the absolute magnetic moment of the electrodeposited magnetic film during its growth and dissolution is achieved. The feasibility of the cell design is demonstrated by performing Co electrodeposition using cyclic voltammetry. For an average Co film thickness of (35.6 ± 3.0) atomic layers, a magnetic moment per Co atom of (1.75 ± 0.11) μ(B) was estimated, in good agreement with the literature bulk value.

  13. Structure and Superconducting Properties of TlCan-1Ba2CunO2n+3 Thin Films with Zero Resistance at Temperatures above 100 K

    Science.gov (United States)

    Huang, T. C.; Lee, W. Y.; Lee, V. Y.; Karimi, R.

    1988-08-01

    New superconducting TlCan-1Ba2CunO2n+3 thin films have been analyzed by the X-ray diffraction and four-point probe techniques. The films consist mainly of a single TlCa2Ba2Cu3O9 phase or a mixture of the TlCa2Ba2O9 and TlCaBa2Cu2O7 phases with the c-axis preferentially oriented perpendicular to the film surface. The TlCa2Ba2Cu3O9 film grown on an asymmetrically cut yttrium-stabilized ZrO2 (YSZ) substrate has the highest superconducting transition with on-set Tc near 120 K and zero resistance at 116 K. The TlCa2Ba2Cu3O9 film deposited on a SrTiO3 (100) substrate has a slightly lower transition with zero resistance at 104 K probably because of stacking faults. The film composed of both the TlCa2Ba2Cu3O9 and TlCaBa2Cu2O7 phases and grown on YSZ has a double transition with on-set Tc near 118 K and 107 K, and zero resistance at 102 K.

  14. Method for producing edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure

    Science.gov (United States)

    Hunt, Brian D. (Inventor); Leduc, Henry G. (Inventor)

    1992-01-01

    A method for fabricating an edge geometry superconducting tunnel junction device is discussed. The device is comprised of two niobium nitride superconducting electrodes and a magnesium oxide tunnel barrier sandwiched between the two electrodes. The NbN electrodes are preferably sputter-deposited, with the first NbN electrode deposited on an insulating substrate maintained at about 250 C to 500 C for improved quality of the electrode.

  15. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  16. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  17. A study on the superconducting properties of YBa{sub 2}Cu{sub 9-x}Nb{sub x}O{sup y} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Srinivas, S.; Bhatnagar, A.K. [Univ. of Hyderabad (India); Pinto, R. [Solid State Electronics Group, Bombay (India)] [and others

    1994-12-31

    Effect of niobium substitution at the copper site in YBa{sub 2}Cu{sub 9}O{sub 7-x} was studied in thin film form. The films were deposited by laser ablation technique using the targets of the YBa{sub 2}Cu{sub 3-x}Nb{sub x}O{sub y} where x = 0.0, 0.025, 0.05, 0.1, 0.2, 0.4, 0.8 and 1.0 under identical deposition conditions on SrTiO{sub 9} <100> substrates. Films were characterized by XRD, resistivity, I-V and J{sub c} measurements. Films made from x = 0.025 and 0.05 concentrations of Nb substituted targets showed relatively improved superconducting properties compared to that of undoped films. The best 7 realized for x = 0.025 Nb concentration was 1.8 x 10{sup {sigma}} A/cm{sup 2} and for 0.05 Nb concentration it was 3.2x10{sup {sigma}} A/cm{sup 2} at 77K. However, degradation of the superconducting properties, with the increase of x {ge} 0.1 Nb concentration and drastic suppression and complete loss of superconductivity was noticed for x {ge} 0.4. The growth of impurity phase YBa{sub 2}NbO{sub 6} for x = 0.1 and above of Nb concentration was noticed from XRD patterns. However, the site occupancy of Nb could not be confirmed from these studies.

  18. Pinning enhancement in MgB2 superconducting thin films by magnetic nanoparticles of Fe2O3

    Indian Academy of Sciences (India)

    E Taylan Koparan; A Surdu; K Kizilkaya; A Sidorenko; E Yanmaz

    2013-11-01

    MgB2 thin films were fabricated on -plane Al2O3 (1$\\bar{1}$02) substrates. First, deposition of boron was performed by rf magnetron sputtering on Al2O3 substrates and followed by a post-deposition annealing at 850 °C in magnesium vapour. In order to investigate the effect of Fe2O3 nanoparticles on the structural and magnetic properties of films, MgB2 films were coated with different concentrations of Fe2O3 nanoparticles by spin coating process. The magnetic field dependence of the critical current density c was calculated from the M–H loops and magnetic field dependence of the pinning force density, p(), was investigated for the films containing different concentrations of Fe2O3 nanoparticles. The critical current densities, c, in 3Tmagnetic field at 5 K were found to be around 2.7 × 104 A/cm2, 4.3 × 104 A/cm2, 1.3 × 105 A/cm2 and 5.2 × 104 A/cm2 for films with concentrations of 0, 25, 50 and 100% Fe2O3, respectively. It was found that the films coated with Fe2O3 nanoparticles have significantly enhanced the critical current density. It can be noted that especially the films coated by Fe2O3 became stronger in the magnetic field and at higher temperatures. It was believed that coated films indicated the presence of artificial pinning centres created by Fe2O3 nanoparticles. The results of AFM indicate that surface roughness of the films significantly decreased with increase in concentration of coating material.

  19. Sign change of the vortex Hall effect in superconducting YBCO thin films with a square pattern of ion-irradiated defect columns

    Science.gov (United States)

    Zechner, G.; Haag, L. T.; Lang, W.; Dosmailov, M.; Bodea, M. A.; Pedarnig, J. D.

    2017-02-01

    The Hall effect in the mixed state of thin films of the high-temperature superconductor YBa2Cu3O7-δ (YBCO) that were patterned with a square array of regions with suppressed superconducting order parameter is investigated. Cylindrical defect columns penetrating the entire thin YBCO film along its crystallographic c - axis have been created by irradiation with He+ ions through a silicon stencil mask. Distinct peaks of the critical current at commensurate arrangements of magnetic flux quanta with the artificial defect lattice confirm enhanced vortex pinning. Vortex motion not only leads to a dissipative voltage along the current direction but also to a transverse voltage, termed vortex Hall effect. We report on the observation of a novel commensurability effect in the transverse Hall signal. A sign change and a positive peak of the Hall coefficient appear in a narrow magnetic field range around the matching field. The feature appears in the temperature range below the critical temperature, where the Hall effect usually is negative in underdoped and optimally-doped cuprate superconductors. The results indicate that the Hall matching effect originates from enhanced pinning of the vortices along the regular defect columns.

  20. Time-resolved photoexcitation of the superconducting two-gap state in MgB2 thin films.

    Science.gov (United States)

    Xu, Y; Khafizov, M; Satrapinsky, L; Kús, P; Plecenik, A; Sobolewski, Roman

    2003-11-01

    Femtosecond pump-probe studies show that carrier dynamics in MgB2 films is governed by the sub-ps electron-phonon (e-ph) relaxation present at all temperatures, the few-ps e-ph process well pronounced below 70 K, and the sub-ns superconducting relaxation below T(c). The amplitude of the superconducting component versus temperature follows the superposition of the isotropic dirty gap and the three-dimensional pi gap dependences, closing at two different T(c) values. The time constant of the few-ps relaxation exhibits a double divergence at temperatures corresponding to the T(c)'s of the two gaps.

  1. Edge geometry superconducting tunnel junctions utilizing an NbN/MgO/NbN thin film structure

    Science.gov (United States)

    Hunt, Brian D. (Inventor); Leduc, Henry G. (Inventor)

    1992-01-01

    An edge defined geometry is used to produce very small area tunnel junctions in a structure with niobium nitride superconducting electrodes and a magnesium oxide tunnel barrier. The incorporation of an MgO tunnel barrier with two NbN electrodes results in improved current-voltage characteristics, and may lead to better junction noise characteristics. The NbN electrodes are preferably sputter-deposited, with the first NbN electrode deposited on an insulating substrate maintained at about 250 C to 500 C for improved quality of the electrode.

  2. Unshielded use of thin-film Nb dc superconducting quantum interference devices and integrated asymmetric gradiometers for nondestructive evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, M.E.; Nakane, H.; Cochran, A.; Weston, R.G.; Klein, U.; Pegrum, C.M.; Donaldson, G.B. [Department of Physics and Applied Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    1997-07-01

    Novel nondestructive evaluation measurements made using niobium dc superconducting quantum interference devices with integrated asymmetric first-order gradiometers are described. Comparative theoretical and experimental studies of their spatial response have been described, and it is shown that the gradiometric response makes operation possible in an unshielded and electromagnetically noisy environment. As a demonstration of their capabilities, subsurface defects in a multilayer aluminum structure have been located and mapped using induced eddy currents at 70 Hz, with no magnetic shielding around the specimen or cryostat. {copyright} {ital 1997 American Institute of Physics.}

  3. Growth and superconducting properties of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} {sub +} {sub δ} thin films incorporated with iridate nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    De Vero, Jeffrey C.; Hwang, Inwoong; Shin, Hyeonseop; Song, Jong Hyun [Department of Physics, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Santiago, Alvin Carl; Sarmago, Roland V. [National Institute of Physics, University of the Philippines, Diliman, 1101 (Philippines); Lee, Doopyo [Department of Physics, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Chang, Jungwon [Department of Display and Semiconductor Physics, Korea University, Sejong Campus, Sejong, 339-700 (Korea, Republic of); Korea Research Institute of Science and Standards, Daejeon, 305-340 (Korea, Republic of); Kim, Jinhee [Korea Research Institute of Science and Standards, Daejeon, 305-340 (Korea, Republic of)

    2014-08-15

    Iridate nanoparticle AIrO{sub 3} (A = Sr, Ba) incorporated Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} {sub +} {sub δ} (Bi-2212) thin films were successfully grown using pulsed laser deposition with post-growth ex situ heat treatment. Nanosized particles of SrIrO{sub 3} (Sr-iridate) and BaIrO{sub 3} (Ba-iridate) were deposited on top of MgO (100) substrate, followed by Bi-2212 layers to investigate their effects on the physical and superconducting properties of Bi-2212 thin films. The number of laser pulses was changed from 450 to 1800 to control the density of iridates in the Bi-2212 matrix. The composite film is then partial-melted at 890 C for 15 min and annealed at 850 C for 5 h in ambient air. Scanning electron microscopy shows that the surfaces of thin films with iridates are more compact with minimal voids and porosity than those of pure Bi-2212 thin films. Both types of iridate incorporation suppress T{sub c-zero} of Bi-2212 thin films. Incorporating Sr-iridate in the Bi-2212 strongly affects T{sub c-zero} than those with Ba-iridate at low density. However, both iridate incorporations result in the expansion of the c-axis lattice constant and variation of Bi/Sr ratio of Bi-2212 films. On the other hand, we observed improvement of the activation energy, U{sub 0}, as well as the self-field critical current density, J{sub c}(0), of Bi-2212 films with incorporated iridates even with suppressed T{sub c-zero}. (copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Preparation of superconducting Bi-Sr-Ca-Cu-O thin films by sequential electron beam evaporation and oxygen annealing

    Energy Technology Data Exchange (ETDEWEB)

    Steinbeck, J.; Tsaur, B.; Anderson, A.C.; Strauss, A.J.

    1989-01-30

    Superconducting films with nominal composition Bi/sub 2/Sr/sub 2/Ca/sub 1/Cu/sub 2/O/sub x/ have been prepared on <100> MgO substrates by sequential electron beam evaporation of Cu, Bi, and Sr/sub 2/3/ Ca/sub 1/3/ F/sub 2/, followed by annealing in flowing wet, then dry, O/sub 2/. X-ray diffraction data show that the films contain the two Bi-Sr-Ca-Cu-O phases that have been identified in the literature as a superconducting phase with capprox.31 A and a semiconducting phase with capprox.24 A. Both phases are strongly textured with the c axis perpendicular to the substrate. For the best film, which was annealed at 870 /sup 0/C for 30 min, zero resistance was observed at 90 K, and the critical current density increased from 0.8 x 10/sup 5/ A/cm/sup 2/ at 77 K to 2.3 x 10/sup 5/ A/cm/sup 2/ at 4.2 K.

  5. Shielding superconductors with thin films

    CERN Document Server

    Posen, Sam; Catelani, Gianluigi; Liepe, Matthias U; Sethna, James P

    2015-01-01

    Determining the optimal arrangement of superconducting layers to withstand large amplitude AC magnetic fields is important for certain applications such as superconducting radiofrequency cavities. In this paper, we evaluate the shielding potential of the superconducting film/insulating film/superconductor (SIS') structure, a configuration that could provide benefits in screening large AC magnetic fields. After establishing that for high frequency magnetic fields, flux penetration must be avoided, the superheating field of the structure is calculated in the London limit both numerically and, for thin films, analytically. For intermediate film thicknesses and realistic material parameters we also solve numerically the Ginzburg-Landau equations. It is shown that a small enhancement of the superheating field is possible, on the order of a few percent, for the SIS' structure relative to a bulk superconductor of the film material, if the materials and thicknesses are chosen appropriately.

  6. Improvement of the critical temperature of superconducting NbTiN and NbN thin films using the AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Shiino, Tatsuya; Shiba, Shoichi; Sakai, Nami; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamakura, Tetsuya [Institute of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ten-nodai, Tsukuba, Ibaraki 305-8577 (Japan); Jiang, Ling [College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, Jiangsu (China); Uzawa, Yoshinori [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Maezawa, Hiroyuki, E-mail: shiino@taurus.phys.s.u-tokyo.ac.j [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chigusa-ku, Nagoya 464-8602 (Japan)

    2010-04-15

    Thin superconducting NbTiN and NbN films with a few nm thickness are used in various device applications including in hot electron bolometer mixers. Such thin films have lower critical temperature (T{sub c}) and higher resistivity than corresponding bulk materials. In an effort to improve them, we have investigated an effect of the AlN buffer layer between the film and the substrate (quartz or soda lime glass). The AlN film is deposited by DC magnetron sputtering, and the process condition is optimized so that the x-ray diffraction intensity from the 002 surface of wurtzite AlN becomes the highest. By use of this well-characterized buffer layer, T{sub c} and the resistivity of the NbTiN film with a few nm thickness are remarkably increased and decreased, respectively, in comparison with those without the buffer layer. More importantly, the AlN buffer layer is found to be effective for NbN. With the AlN buffer layer, T{sub c} is increased from 7.3 to 10.5 K for the 8 nm NbN film. The improvement of T{sub c} and the resistivity originates from the good lattice matching between the 002 surface of AlN and the 111 surface of NbTiN or NbN, which results in better crystallization of the NbTiN or NbN film. This is further confirmed by the x-ray diffraction measurement.

  7. On the magnetization relaxation of ring-shaped Tl 2Ba 2CaCu 2O 8 thin films as determined by superconducting quantum interference device measurements

    Science.gov (United States)

    Wen, Hai-hu; Ziemann, Paul; Radovan, Henri A.; Herzog, Thomas

    1998-09-01

    By using a superconducting quantum interference device (SQUID), the temporal relaxation of the magnetization was determined for ring-shaped Tl 2Ba 2CaCu 2O 8 thin films at various temperatures between 10 K and 80 K in magnetic fields ranging from 2 mT to 0.3 T. Based on these data, a detailed analysis has been performed related to the following methods or models: (1) Fitting the data to the thermally activated flux motion and collective pinning model; (2) Applying the Generalized Inversion Scheme to extract the temperature dependence of the unrelaxed critical current density jc( T) and pinning potential Uc( T); (3) Testing a modified Maley's method to obtain the current dependent activation energy for flux motion; (4) 2D vortex glass scaling. It is found that, for low fields (2 mT, 10 mT, 40 mT) the experimental data can be described by an elastic flux motion, most probably due to 3D single vortex creep. At higher fields (0.1 T, 0.2 T, 0.3 T), the observed behavior can be interpreted in terms of plastic flux motion which is probably governed by dislocation mediated flux creep. These high field data can also be consistently described by the 2D vortex glass scaling with scaling parameters ν2D, T0 and p being consistent with those derived from corresponding transport measurement. Also, results are presented demonstrating the importance of optimizing the scan length of the sample in a moving sample SQUID magnetometer to avoid artifacts.

  8. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  9. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  10. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  11. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  12. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  13. Multifunctional thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  14. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  15. Interdiffusion studies on high-Tc superconducting YBa2Cu3O7-δ thin films on Si(111) with a NiSi2/ZrO2 buffer layer

    DEFF Research Database (Denmark)

    Aarnink, W.A.M.; Blank, D.H.A.; Adelerhof, D.J.

    1991-01-01

    Interdiffusion studies on high-T(c) superconducting YBa2Cu3O7-delta thin films with thickness in the range of 2000-3000 angstrom, on a Si(111) substrate with a buffer layer have been performed. The buffer layer consists of a 400 angstrom thick epitaxial NiSi2 layer covered with 1200 angstrom...... x 10(4) A/cm2. With X-ray analysis (XRD), only c-axis orientation has been observed. The interdiffusion studies, using Rutherford backscattering spectrometry (RBS) and scanning Auger microscopy (SAM) show that the ZrO2 buffer layer prevents severe Si diffusion to the YBa2Cu3O7-delta layer, the Si...... substrate and Ni segregation to the surface of the ZrO2 layer may be expected. From the results we may conclude that, when using laser ablation, it is well possible to grow polycrystalline, c-axis-oriented high-T(c) superconducting YBa2Cu3O7-delta thin films on a Si(111) substrate with a NiSi2/ZrO2 buffer...

  16. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  17. Biomimetic thin film deposition

    Science.gov (United States)

    Rieke, P. C.; Campbell, A. A.; Tarasevich, B. J.; Fryxell, G. E.; Bentjen, S. B.

    1991-04-01

    Surfaces derivatized with organic functional groups were used to promote the deposition of thin films of inorganic minerals. These derivatized surfaces were designed to mimic the nucleation proteins that control mineral deposition during formation of bone, shell, and other hard tissues in living organisms. By the use of derivatized substrates control was obtained over the phase of mineral deposited, the orientation of the crystal lattice and the location of deposition. These features are of considerable importance in many technically important thin films, coatings, and composite materials. Methods of derivatizing surfaces are considered and examples of controlled mineral deposition are presented.

  18. Superconducting thin films of As-free pnictide LaPd{sub 1-x}Sb{sub 2} grown by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Retzlaff, Reiner; Buckow, Alexander; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany)

    2013-07-01

    We use reactive molecular beam epitaxy as synthesis technique for the search of arsenic free pnictide superconductors. Epitaxial thin films of LaPd{sub 1-x}Sb{sub 2} were grown on (100) MgO substrates from elemental sources by simultaneous evaporation of high purity La, Pd and Sb metals by e-gun. LaPd{sub 1-x}Sb{sub 2} belongs to a novel class of pnictide superconductors with a peculiar pnictide square net layer. Previously, we have reported epitaxial growth of isostructural Bi based compounds. The substitution of Bi by Sb leads to thin films with metallic behavior and room temperature resistivity of about 85 μΩ cm. The highest observed transition temperature T{sub c} inLaPd{sub 1-x}Sb{sub 2} is 3.1 K and does not depend on x. We discuss strategies to increase T{sub c} in this pnictide subfamily.

  19. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  20. Thin films for material engineering

    Science.gov (United States)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  1. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  2. Scanned probe microscopy for thin film superconductor development

    Energy Technology Data Exchange (ETDEWEB)

    Moreland, J. [National Institute of Standards and Technology, Boulder, CO (United States)

    1996-12-31

    Scanned probe microscopy is a general term encompassing the science of imaging based on piezoelectric driven probes for measuring local changes in nanoscale properties of materials and devices. Techniques like scanning tunneling microscopy, atomic force microscopy, and scanning potentiometry are becoming common tools in the production and development labs in the semiconductor industry. The author presents several examples of applications specific to the development of high temperature superconducting thin films and thin-film devices.

  3. Zapping thin film transistors

    NARCIS (Netherlands)

    Golo-Tosic, N.; Kuper, F.G.; Mouthaan, A.J.

    2002-01-01

    It was expected that hydrogenated amorphous silicon thin film transistors (alpha-Si:H TFTs) behave similarly to crystalline silicon transistors under electrostatic discharge (ESD) stress. It will be disproved in this paper. This knowledge is necessary in the design of the transistors used in a ESD

  4. [Spectral emissivity of thin films].

    Science.gov (United States)

    Zhong, D

    2001-02-01

    In this paper, the contribution of multiple reflections in thin film to the spectral emissivity of thin films of low absorption is discussed. The expression of emissivity of thin films derived here is related to the thin film thickness d and the optical constants n(lambda) and k(lambda). It is shown that in the special case d-->infinity the emissivity of thin films is equivalent to that of the bulk material. Realistic numerical and more precise general numerical results for the dependence of the emissivity on d, n(lambda) and k(lambda) are given.

  5. C-axis Josephson plasma resonance observed in Tl(2)Ba(2)CaCu(2)O(8) superconducting thin films by use of terahertz time-domain spectroscopy.

    Science.gov (United States)

    Thorsmølle, V K; Averitt, R D; Maley, M P; Bulaevskii, L N; Helm, C; Taylor, A J

    2001-08-15

    We have unambiguously observed the c -axis Josephson plasma resonance (JPR) in high-critical-temperature (T(c)) cuprate (Tl(2)Ba(2)CaCu(2)O(8)) superconducting thin films, employing terahertz time-domain spectroscopy in transmission as a function of temperature in zero magnetic field. These are believed to be the first measurements of the JPR temperature dependence of a high-T(c) material in transmission. With increasing temperature, the JPR shifts from 705 GHz at 10 K to ~170 GHz at 98 K, corresponding to an increase in c-axis penetration depth from 22.4+/-0.6mum to 94+/-9mum . The linewidth of the JPR peak increases with temperature, which indicates an increase in the quasi-particle scattering rate. We have probed the onset of the c -axis phase coherence to ~0.95T(c) . The JPR vanishes above T(c) as expected.

  6. Anisotropic magnetoresistance in the normal state of oxygen-deficient YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films induced by superconducting fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Lang, W. [Ludwig-Boltzmann-Institut fuer Festkoerperphysik, Vienna (Austria); Goeb, W. [Ludwig-Boltzmann-Institut fuer Festkoerperphysik, Vienna (Austria); Kula, W. [Rochester Univ., NY (United States). Dept. of Electrical Engineering; Sobolewski, R. [Rochester Univ., NY (United States). Dept. of Electrical Engineering

    1995-10-01

    We have investigated both the transverse and the longitudinal magnetoresistance of oxygen-deficient YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films above their critical temperature T{sub c} = 55 K. The magnetoresistance is solely caused by the magnetic-field suppression of superconducting order-parameter fluctuations, existing in the films up to 143 K, i.e. 2.6 T{sub c}. The fluctuation effect provides a reliable determination of the Ginzburg-Landau coherence lengths, {xi}{sub ab} = 2.5 nm and {xi}{sub c} = 0.09 nm, with the anisotropy enhanced by oxygen depletion. No signature of the Maki-Thompson fluctuation process or a magnetoresistance resulting from the cyclotron motion of the normal-state quasiparticles was found. (orig.)

  7. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  8. Biomimetic thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  9. Thin film superfluid optomechanics

    CERN Document Server

    Baker, Christopher G; McAuslan, David L; Sachkou, Yauhen; He, Xin; Bowen, Warwick P

    2016-01-01

    Excitations in superfluid helium represent attractive mechanical degrees of freedom for cavity optomechanics schemes. Here we numerically and analytically investigate the properties of optomechanical resonators formed by thin films of superfluid $^4$He covering micrometer-scale whispering gallery mode cavities. We predict that through proper optimization of the interaction between film and optical field, large optomechanical coupling rates $g_0>2\\pi \\times 100$ kHz and single photon cooperativities $C_0>10$ are achievable. Our analytical model reveals the unconventional behaviour of these thin films, such as thicker and heavier films exhibiting smaller effective mass and larger zero point motion. The optomechanical system outlined here provides access to unusual regimes such as $g_0>\\Omega_M$ and opens the prospect of laser cooling a liquid into its quantum ground state.

  10. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  11. Multiferroic oxide thin films and heterostructures

    Science.gov (United States)

    Lu, Chengliang; Hu, Weijin; Tian, Yufeng; Wu, Tom

    2015-06-01

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  12. Multiferroic oxide thin films and heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Chengliang, E-mail: cllu@mail.hust.edu.cn, E-mail: Tao.Wu@kaust.edu.sa [School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074 (China); Hu, Weijin; Wu, Tom, E-mail: cllu@mail.hust.edu.cn, E-mail: Tao.Wu@kaust.edu.sa [Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Tian, Yufeng [School of Physics, Shandong University, Jinan 250100 (China)

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  13. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  14. New Methods for Thin Film Deposition and First Investigations of the use of High Temperature Superconductors for Thin Film Cavities

    CERN Document Server

    Gustafsson, Anna; Vollenberg, Wilhelmus; Seviour, Rebecca

    2010-01-01

    Niobium thin film cavities have shown good and reliable performance for LEP and LHC, although there are limitations to overcome if this technique should be used for new accelerators such as the ILC. New coating techniques like High Power Impulse Magnetron Sputtering (HiPIMS) has shown very promising results and we will report on its possible improvements for Nb thin film cavity performance. Current materials used in accelerator Superconducting Radio Frequency (SRF) technologies operate at temperatures below 4 K, which require complex cryogenic systems. Researchers have investigated the use of High Temperature Superconductors (HTS) to form RF cavities, with limited success. We propose a new approach to achieve a high-temperature SRF cavity based on the superconducting ’proximity effect’. The superconducting proximity effect is the effect through which a superconducting material in close proximity to a non-superconducting material induces a superconducting condensate in the latter. Using this effect we hope...

  15. Large-scale modulation in the superconducting properties of thin films due to domains in the SrTi O3 substrate

    Science.gov (United States)

    Wissberg, Shai; Kalisky, Beena

    2017-04-01

    Scanning superconducting quantum interference device measurements reveal large-scale modulations of the superfluid density and the critical temperature in superconducting Nb, NbN, and underdoped YB a2C u3O7 -δ films deposited on SrTi O3 (STO). We show that these modulations are a result of the STO domains and domain walls, forming below the 105 K structural phase transition of STO. We found that the flow of normal current, measured above the superconducting transition, is also modulated over the same domain structure, suggesting a modified carrier density. In clean STO, domain walls remain mobile down to low temperatures. Modulated superconductivity over mobile channels offers the opportunity to locally control superconducting properties and better understand the relations between superconductivity and the local structure.

  16. Phase-glass scaling near the coherence transition in granular HoBa{sub 2}Cu{sub 3}O{sub 7-{delta}} superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Roa-Rojas, J.; Landinez Tellez, D.A. [Grupo de Fisica de Nuevos Materiales, Departamento de Fisica, Universidad Nacional de Colombia, A. A. 14490, Bogota DC (Colombia); Prieto, P. [Grupo de Peliculas Delgadas, Departamento de Fisica, Universidad del Valle, A. A. 25360, Cali (Colombia)

    2005-07-01

    Systematic measurements of electrical magnetoconductivity near the coherence transition of granular HoBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films are reported. Experiments performed in magnetic fields ranging from 0 to 2500 Oe reveal that close to the coherence transition temperature T{sub c0}(H), the correlation length scales as a power law of temperature with a thermal-dependent critical exponent, {nu}. In low external fields the corresponding value of {nu} is consistent with the two-dimensional phase-glass model, which is in the same dynamical universality class of the so-called vortex-glass model. At applied fields H > 1000 Oe, the vortex dynamics becomes stronger and the coherence transition is not observed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Investigation on Silicon Thin Film Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The preparation, current status and trends are investigated for silicon thin film solar cells. The advantages and disadvantages of amorphous silicon thin film, polycrystalline silicon thin film and mono-crystalline silicon thin film solar cells are compared. The future development trends are pointed out. It is found that polycrystalline silicon thin film solar cells will be more promising for application with great potential.

  18. Carbon Superatom Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Canning, A. [Cray Research, PSE, EPFL, 1015 Lausanne (Switzerland); Canning, A.; Galli, G. [Institut Romand de Recherche Numerique en Physique des Materiaux (IRRMA), IN-Ecublens, 1015 Lausanne (Switzerland); Kim, J. [Department of Physics, The Ohio State University, Columbus, Ohio 43210 (United States)

    1997-06-01

    We report on quantum molecular dynamics simulations of C{sub 28} deposition on a semiconducting surface. Our results show that under certain deposition conditions C{sub 28} {close_quote}s act as building blocks on a nanometer scale to form a thin film of nearly defect-free molecules. The C{sub 28} {close_quote}s behave as carbon superatoms, with the majority of them being threefold or fourfold coordinated, similar to carbon atoms in amorphous systems. The microscopic structure of the deposited film supports recent suggestions about the stability of a new form of carbon, the hyperdiamond solid. {copyright} {ital 1997} {ital The American Physical Society}

  19. First Thin Film Festival

    Science.gov (United States)

    Samson, Philippe

    2005-05-01

    The constant evolution of the satellite market is asking for better technical performances and reliability for a reduced cost. Solar array is in front line of this challenge. This can be achieved by present technologies progressive improvement in cost reduction or by technological breakthrough. To reach an effective End Of Live performance100 W/kg of solar array is not so easy, even if you suppose that the mass of everything is nothing! Thin film cells are potential candidate to contribute to this challenge with certain confidence level and consequent development plan validation and qualification on ground and flight. Based on a strong flight heritage in flexible Solar Array design, the work has allowed in these last years, to pave the way on road map of thin film technologies . This is encouraged by ESA on many technological contracts put in concurrent engineering. CISG was selected cell and their strategy of design, contributions and results will be presented. Trade-off results and Design to Cost solutions will discussed. Main technical drivers, system design constraints, market access, key technologies needed will be detailed in this paper and the resulting road-map and development plan will be presented.

  20. Thin Film Inorganic Electrochemical Systems.

    Science.gov (United States)

    1995-07-01

    determined that thin film cathodes of LiCoO2 can be readily performed by either spray pyrolysis or spin coating . These cathodes are electrochemically...active. We have also determined that thin film anodes of Li4Ti5O12 can be prepared by spray pyrolysis or spin coating . These anodes are also

  1. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  2. Selective inorganic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T. [Sandia National Laboratories, Albuquerque, NM (United States)] [and others

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  3. Polyimide Aerogel Thin Films

    Science.gov (United States)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  4. Thin film interconnect processes

    Science.gov (United States)

    Malik, Farid

    Interconnects and associated photolithography and etching processes play a dominant role in the feature shrinkage of electronic devices. Most interconnects are fabricated by use of thin film processing techniques. Planarization of dielectrics and novel metal deposition methods are the focus of current investigations. Spin-on glass, polyimides, etch-back, bias-sputtered quartz, and plasma-enhanced conformal films are being used to obtain planarized dielectrics over which metal films can be reliably deposited. Recent trends have been towards chemical vapor depositions of metals and refractory metal silicides. Interconnects of the future will be used in conjunction with planarized dielectric layers. Reliability of devices will depend to a large extent on the quality of the interconnects.

  5. Nonlinear optical thin films

    Science.gov (United States)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  6. Low frequency voltage noise in current biased HTCS thin films. [BiSrCaCuO

    Energy Technology Data Exchange (ETDEWEB)

    Gierlowski, P. (Inst. Fizyki PAN, Warszawa (Poland)); Jung, G. (Inst. Fizyki PAN, Warszawa (Poland) Physics Dept., Ben Gurion Univ. of the Negev, Beer-Sheva (Israel) Dipt. di Fisica, Univ. di Salerno (Italy)); Kula, W. (Inst. Fizyki PAN, Warszawa (Poland) Electrical Engineering Dept., Univ. of Rochester, NY (United States)); Lewandowski, S.J. (Inst. Fizyki PAN, Warszawa (Poland)); Savo, B. (Dipt. di Fisica, Univ. di Salerno (Italy)); Sobolewski, R. (Inst. Fizyki PAN, Warszawa (Poland) Electrical Engineering Dept., Univ. of Rochester, NY (United States)); Tebano, A. (Dipt. di Ingegneria Meccanica, Univ. di Roma Tor-Vergata (Italy)); Vecchione, A. (Physics Dept., Ben Gurion Univ. of the Negev, Beer-Sheva (Israel) Dipt. di Fisica, Univ. di Salerno (Italy))

    1994-02-01

    Pronounced changes in low-frequency noise power spectra have been observed, close to the transition temperature, in current biased high-T[sub c] superconducting thin films. Generally, the spectra scale as 1/f[sup [alpha

  7. Superconducting Dy1-x(Gd,Yb)xBa2Cu3O7-δ thin films made by Chemical Solution Deposition

    DEFF Research Database (Denmark)

    Opata, Yuri Aparecido; Wulff, Anders Christian; Hansen, Jørn Otto Bindslev

    2016-01-01

    Dy1-x(Gd or Yb)xBa2Cu3O7-δ samples were prepared using chemical solution deposition (CSD), based on trifluoroacetate metal-organic decomposition (MOD) methods. X-ray diffraction results demonstrated the formation of the RE123 superconducting phase with a strong in-plane and out-of-plane texture. c...

  8. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  9. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  10. Localized superconductivity in the quantum-critical region of the disorder-driven superconductor-insulator transition in TiN thin films.

    Science.gov (United States)

    Baturina, T I; Mironov, A Yu; Vinokur, V M; Baklanov, M R; Strunk, C

    2007-12-21

    We investigate low-temperature transport properties of thin TiN superconducting films in the vicinity of the disorder-driven superconductor-insulator transition. In a zero magnetic field, we find an extremely sharp separation between superconducting and insulating phases, evidencing a direct superconductor-insulator transition without an intermediate metallic phase. At moderate temperatures, in the insulating films we reveal thermally activated conductivity with the magnetic field-dependent activation energy. At very low temperatures, we observe a zero-conductivity state, which is destroyed at some depinning threshold voltage V{T}. These findings indicate the formation of a distinct collective state of the localized Cooper pairs in the critical region at both sides of the transition.

  11. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  12. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  13. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with t

  14. Chiral atomically thin films

    Science.gov (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  15. Laser stimulated kinetics effects on the phase transition of the ferromagnetic/superconducting MgB{sub 2}/(CrO{sub 2}) bilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    AlZayed, N.S. [Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Kityk, I.V., E-mail: ikityk@el.pcz.czest.pl [Faculty of Electrical Engineering, Czestochowa University Technology, Armii Krajowej 17, PL-42201 Czestochowa (Poland); Soltan, S. [Max Planck Institute, Solid State Research, D-70569 Stuttgart (Germany); Physics Department, Faculty of Science, Helwan University, 11798 Helwan, Cairo (Egypt); Wojciechowski, A. [Faculty of Electrical Engineering, Czestochowa University Technology, Armii Krajowej 17, PL-42201 Czestochowa (Poland); Fedorchuk, A.O. [Department of Inorganic and Organic Chemistry, Lviv National University of Veterinary Medicine and Biotechnologies, Pekarska St., 50, 79010 Lviv (Ukraine); Lakshminarayana, G. [Materials Science and Technology Division (MST-7), Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Shahabuddin, M. [Physics and Astronomy Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2014-05-01

    Graphical abstract: Dependence of resistance versus temperature for different power densities. The nonzero value is generated from the bottom CrO{sub 2} resistive layer. The onset transition temperature is our reference for the enhancement value. - Highlights: • Photoinduced enhancement of critical temperature in MgB{sub 2}–Cr{sub 2}O{sub 3} films was found. • Crucail role of electron–phonon interacton was shown. • Optimal ratio fundamental/SHG intensities was varied within 4:1 and 6:1. - Abstract: Using bicolor laser treatment by Nd:YAG 20 ns laser (1064–532 nm) and 180 ns CO{sub 2} laser beams (10.6–5.3 μm) it was shown a possibility of critical temperature enhancement in ferromagnetic superconducting MgB{sub 2}/CrO{sub 2} bilayer films. The role of the phonon sub-system effectively interacting with 3d Cr originating localized trapping levels is discussed. The pump–probe laser kinetics for the probing second harmonic generation at 1064 nm is explored in details to show principal role of the localized trapping levels. The relaxation of the processes after the switching off the photo inducing beams show the disappearance of the enhanced superconductivity after the 20–30 s. The temperature dependence of the resistance show nonlinear dependence versus the pumping power and different optimal fundamental to writing power density beams ratio.

  16. Spinodal dewetting of thin films

    Science.gov (United States)

    Jaiswal, Prabhat K.; Puri, S.

    2009-01-01

    Stable thin liquid films are of various scientific and technological applications, e.g., in optical coating, painting technologies, coating thin wires and fibers, lubricants, adhesives, etc. However, the instabilities in a thin film may lead to rupture, hole formation, and other morphological changes which amplify the nonuniformity in the thin film [1]. This morphological evolution in an unstable thin film is generally known as `dewetting' [2]. There have recently been a number of theoretical and experimental studies on dewetting in thin films [3-6]. The process of `spinodal dewetting' comes into the category of a general class of phenomena, spinodal decomposition [7]. The pattern formation taking place during dewetting can also be of great importance in nanotechnology, e.g., for preparing quantum dots [8], nanorings [9], etc. We numerically solve the nonlinear two-dimensional thin film equation [2] for a thin liquid film subjected to the long range van der Waals attraction and short range Born repulsion. The simulation results for the temporal evolution of domains and height profile along diagonal direction of the lattice show the `hills and valleys' short of structures which is the typical morphology obtained during the spinodal dewetting [10]. We obtain the dynamical correlation function and structure factor showing the existence of a characteristic length scale in the system at late time. We give the scaling arguments for the length scale of the drops to be proportional to t1/3 which is in agreement with our numerical results for the domain growth.

  17. Birefringent non-polarizing thin film design

    Institute of Scientific and Technical Information of China (English)

    QI Hongji; HONG Ruijin; HE Hongbo; SHAO Jianda; FAN Zhengxiu

    2005-01-01

    In this paper, 2×2 characteristic matrices of uniaxially anisotropic thin film for extraordinary and ordinary wave are deduced at oblique incidence. Furthermore, the reflectance and transmittance of thin films are calculated separately for two polarizations, which provide a new concept for designing non-polarizing thin films at oblique incidence. Besides, using the multilayer birefringent thin films, non-polarizing designs, such as beam splitter thin film at single wavelength, edge filter and antireflection thin film over visible spectral region are obtained at oblique incidence.

  18. Interface control by homoepitaxial growth in pulsed laser deposited iron chalcogenide thin films

    Science.gov (United States)

    Molatta, Sebastian; Haindl, Silvia; Trommler, Sascha; Schulze, Michael; Wurmehl, Sabine; Hühne, Ruben

    2015-11-01

    Thin film growth of iron chalcogenides by pulsed laser deposition (PLD) is still a delicate issue in terms of simultaneous control of stoichiometry, texture, substrate/film interface properties, and superconducting properties. The high volatility of the constituents sharply limits optimal deposition temperatures to a narrow window and mainly challenges reproducibility for vacuum based methods. In this work we demonstrate the beneficial introduction of a semiconducting FeSe1-xTex seed layer for subsequent homoepitaxial growth of superconducting FeSe1-xTex thin film on MgO substrates. MgO is one of the most favorable substrates used in superconducting thin film applications, but the controlled growth of iron chalcogenide thin films on MgO has not yet been optimized and is the least understood. The large mismatch between the lattice constants of MgO and FeSe1-xTex of about 11% results in thin films with a mixed texture, that prevents further accurate investigations of a correlation between structural and electrical properties of FeSe1-xTex. Here we present an effective way to significantly improve epitaxial growth of superconducting FeSe1-xTex thin films with reproducible high critical temperatures (≥17 K) at reduced deposition temperatures (200 °C-320 °C) on MgO using PLD. This offers a broad scope of various applications.

  19. Thin-film solar cell

    OpenAIRE

    Metselaar, J.W.; Kuznetsov, V. I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with the light-collecting surface. In this context, the relationships 45 < alpha < 135 degrees and 45 < beta < 135 degrees apply. The invention also relates to a panel provided with a plurality of such t...

  20. Thin-film solar cell

    OpenAIRE

    Metselaar, J.W.; V. I. Kuznetsov

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with the light-collecting surface. In this context, the relationships 45 < alpha < 135 degrees and 45 < beta < 135 degrees apply. The invention also relates to a panel provided with a plurality of such t...

  1. Comparison of superconducting properties between FeSe0.5Te0.5/CeO2/SrTiO3 and FeSe0.5Te0.5/SrTiO3 thin films

    Science.gov (United States)

    Chen, S. H.; Han, Y. Y.; Liu, J. Z.; Wang, T.; Tian, M. L.; Wen, H. H.; Xing, Z. W.

    2016-09-01

    The electrical resistance behaviors under angle-dependent magnetic fields up to 16 T are investigated in superconducting FeSe0.5Te0.5 (FST) thin films grown on SrTiO3 (STO) substrates without or with a CeO2 buffer layer. It is found that the FST/CeO2/STO films have an enhanced superconducting transition temperature Tc and slightly increased superconducting anisotropy in comparison with the FST/STO films. The enhancement of Tc in the presence of the CeO2 buffer is closely related to the changes in both the out-of-plane lattice constant and Se-Fe-Se (Te-Fe-Te) bond angle.

  2. Thin Film Research. Volume 1

    Science.gov (United States)

    1985-05-30

    1928), and later by Coper, Frommer and Zocher (1931), followed. From that time, when thin film technology was in its early stages of evolution, we...personal communication (1983). Cau, Marcel, Comtes Rendues 186, 1293 (1928). Coper, H. K., Frommer , L., and Zocher, H., Ztschr. Elektrochem. 37, 571

  3. Thin film corrosion. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Raut, M.K.

    1980-06-01

    Corrosion of chromium/gold (Cr/Au) thin films during photolithography, prebond etching, and cleaning was evaluated. Vapors of chromium etchant, tantalum nitride etchant, and especially gold etchant were found to corrosively attack chromium/gold films. A palladium metal barrier between the gold and chromium layers was found to reduce the corrosion from gold etchant.

  4. Microstructural and superconducting properties of (Y{sub 1-x}Eu{sub x})Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films: x = 0-1

    Energy Technology Data Exchange (ETDEWEB)

    Haugan, T J; Campbell, T A; Pierce, N A; Locke, M F; Maartense, I; Barnes, P N [Air Force Research Laboratory, AFRL/RZPG, Wright-Patterson AFB, OH 45433-7251 (United States)

    2008-02-15

    Thin films of (Y{sub 1-x}Eu{sub x})Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} with x = 0-1 were grown by pulsed laser deposition on single crystal substrates, to determine the effect of Y and Eu substitution on the microstructural and superconducting properties. The film critical transition temperature (T{sub c}), critical current density (J{sub c}) and surface roughness were found to be strongly dependent on the substrate choice, with the best properties achieved on CeO{sub 2}-YSZ substrates. Substrates with varying lattice mismatch from -2% to +1% were studied, including LaAlO{sub 3}, SrTiO{sub 3}, CeO{sub 2}-buffer-coated Zr{sub 0.905}Y{sub 0.095}O{sub 2} (YSZ), and (LaAlO{sub 3}){sub 0.3}(Sr{sub 2}AlTaO{sub 6}){sub 0.7} (LSAT). With increasing Eu substitution from x = 0 to 1, the T{sub c} on CeO{sub 2}-YSZ substrates increased steadily from 89 to 93 K. The value of J{sub c} was measured by magnetic methods at 65 and 77 K, and by transport methods at 77 K for selected samples and different angles of orientation H{sub appl}({theta}) = 0 deg. -90 deg. As Eu substitution was increased from x = 0 to {>=} 0.2, J{sub c} at 77 K increased strongly more than two-fold for H parallel ab > 0.2 T and for H<0.5 T for all orientations 0 deg. {<=}{theta}{<=}90 deg.; but, it decreased more than two-fold for H parallel c > 1{sub T}. The J{sub c}(H) properties at both low and high fields correlated well with microstructural features observed by scanning electron microscopy. The low-field J{sub c} (H parallel c) was enhanced when the grain size was reduced to {approx}100 nm size, and the self-field and high-field J{sub c}(H) appeared to be strongly affected by the film density and porosity. A controlled dense-island structure was noted for x = 0.75, on CeO{sub 2}-YSZ substrate.

  5. Bridging amount of spin-glasses over ferromagnetic/antiferromagnetic thin films and bit-cell dispersion of exchange bias in corresponding TA-MRAM devices

    Science.gov (United States)

    Akmaldinov, Kamil; Ducruet, Clarisse; Alvarez-Herault, Jeremy; Baltz, Vincent

    2015-03-01

    For thermally-assisted magnetic random access memories (TA-MRAM), lowering bit-cells dispersions of exchange bias is necessary. In this study, we prove that spin-glass-like phases (SG) spread over the ferromagnetic/antiferromagnetic (F/AF) storage layer are the main cause of such distributions once the film is nanofabricated into a device. In particular, we show that the less the SG, the lower the bit-cell dispersion. More precisely, the amount of SG was varied from sample to sample by sputtering various AFs: IrMn, FeMn and their alloys. Blocking temperature distributions were measured to quantify the amount of SG at the wafer level. The wafers were then patterned to obtain 1kb devices and all the cells were tested electrically. Finally, the resulting loop shift cumulative distribution functions accounting for the bit-cell dispersions were correlated to the initial amount of SG. In addition to bridging the gap between fundamental SG and a technological application, we also demonstrated that blocking temperature distributions are a versatile method to qualify TA-MRAM production batches before processing. Univ. Grenoble-Alpes/CNRS/INAC-CEA, 38000 Grenoble, France.

  6. Preparation of high T(c) Tl-Ba-Ca-Cu-O thin films by pulsed laser evaporation and Tl2O3 vapor processing

    Science.gov (United States)

    Johs, B.; Thompson, D.; Ianno, N. J.; Woollam, John A.; Liou, S. H.

    1989-01-01

    Tl-Ba-Ca-Cu-O superconducting thin films with zero-resistance temperatures up to 115 K have been prepared using a Tl2O3 vapor process on Ba-Ca-Cu-O precursor thin films. The Ba-Ca-Cu-O thin films were made by laser deposition on Y-stabilized ZrO2 substrates. This technique minimizes problems caused by the toxicity of Tl2O3, and its subsequent decomposition to the volatile and toxic Tl2O upon heating. Therefore, it may have practical application in the fabrication of high T(c) Tl-Ba-Ca-Cu-O superconducting thin-film devices.

  7. Picosecond and subpicosecond pulsed laser deposition of Pb thin films

    Directory of Open Access Journals (Sweden)

    F. Gontad

    2013-09-01

    Full Text Available Pb thin films were deposited on Nb substrates by means of pulsed laser deposition (PLD with UV radiation (248 nm, in two different ablation regimes: picosecond (5 ps and subpicosecond (0.5 ps. Granular films with grain size on the micron scale have been obtained, with no evidence of large droplet formation. All films presented a polycrystalline character with preferential orientation along the (111 crystalline planes. A maximum quantum efficiency (QE of 7.3×10^{-5} (at 266 nm and 7 ns pulse duration was measured, after laser cleaning, demonstrating good photoemission performance for Pb thin films deposited by ultrashort PLD. Moreover, Pb thin film photocathodes have maintained their QE for days, providing excellent chemical stability and durability. These results suggest that Pb thin films deposited on Nb by ultrashort PLD are a noteworthy alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns. Finally, a comparison with the characteristics of Pb films prepared by ns PLD is illustrated and discussed.

  8. Thin film ruthenium microstructures for transition edge sensors

    Science.gov (United States)

    Ilin, A. S.; Cohn, I. A.; Vystavkin, A. N.; Kovalenko, A. G.

    2016-12-01

    The superconducting properties of ruthenium (Ru) thin films and microstructures are investigated. The microstructures are used as transition edge sensors (TES), working at He-3 evaporation cryostats' temperatures. Ruthenium is substantially inert, and the critical temperature Tc for bulk Ru samples is known from state of art to be 0.40-0.51 K. We investigated magnetron sputtered Ru thin films with thicknesses 13-300 nm on a Si substrate and electron lithography fabricated TES samples, based on the thin-film Ru microstructures. It has been found, that the Tc for the Ru thin films is 0.55-0.70 K, and the width of the transition region is 1-5 mK, and for the Ru TES Tc = 0.55 and ΔT = 4 mK. Furthermore, it was established that lithography process had no significant influence on the properties of the TES samples, so we were able to get consistent properties for several fabrication sessions. Therefore ruthenium is concluded to be a desirable material for transition edge sensors working at He-3 cryostats' temperatures.

  9. Analysis on mechanism of thin film lubrication

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chaohui; LUO Jianbin; HUANG Zhiqiang

    2005-01-01

    It is an important concern to explore the properties and principles of lubrication at nano or molecularscale. For a long time, measurement apparatus for filmthickness of thin film lubrication (TFL) at nano scale havebeen devised on the basis of superthin interferometry technique. Many experiments were carried out to study the lubrication principles of TFL by taking advantages of aforementioned techniques, in an attempt to unveil the mechanism of TFL. Comprehensive experiments were conducted to explore the distinctive characteristics of TFL. Results show that TFL is a distinctive lubrication state other than any known lubrication ones, and serves as a bridge between elastohydrodynamic lubrication (EHL) and boundary lubrication (BL). Two main influence factors of TFL are the solid surface effects and the molecular properties of the lubricant, whose combination effects result in alignment of liquid molecules near the solid surfaces and subsequently lubrication with ordered film emerged. Results of theoretical analysis considering microstructure are consistent with experimental outcomes, thus validating the proposed mechanism.

  10. Thin-Film Metamaterials called Sculptured Thin Films

    CERN Document Server

    Lakhtakia, Akhlesh

    2010-01-01

    Morphology and performance are conjointed attributes of metamaterials, of which sculptured thin films (STFs) are examples. STFs are assemblies of nanowires that can be fabricated from many different materials, typically via physical vapor deposition onto rotating substrates. The curvilinear--nanowire morphology of STFs is determined by the substrate motions during fabrication. The optical properties, especially, can be tailored by varying the morphology of STFs. In many cases prototype devices have been fabricated for various optical, thermal, chemical, and biological applications.

  11. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  12. Thin Film Deposition Techniques (PVD)

    Science.gov (United States)

    Steinbeiss, E.

    The most interesting materials for spin electronic devices are thin films of magnetic transition metals and magnetic perovskites, mainly the doped La-manganites [1] as well as several oxides and metals for passivating and contacting the magnetic films. The most suitable methods for the preparation of such films are the physical vapor deposition methods (PVD). Therefore this report will be restricted to these deposition methods.

  13. Thin-film metal hydrides.

    Science.gov (United States)

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis.

  14. High Curie temperature Mn5Ge3 thin films produced by non-diffusive reaction

    Science.gov (United States)

    Assaf, E.; Portavoce, A.; Hoummada, K.; Bertoglio, M.; Bertaina, S.

    2017-02-01

    Polycrystalline Mn5Ge3 thin films were produced on SiO2 using magnetron sputtering and reactive diffusion (RD) or non-diffusive reaction (NDR). In situ X-ray diffraction and atomic force microscopy were used to determine the layer structures, and magnetic force microscopy, superconducting quantum interference device, and ferromagnetic resonance were used to determine their magnetic properties. RD-mediated layers exhibit similar magnetic properties as molecular beam epitaxy-grown monocrystalline Mn5Ge3 thin films, while NDR-mediated layers show magnetic properties similar to monocrystalline C-doped Mn5Ge3Cx thin films with 0.1 ≤ x ≤ 0.2. NDR appears as a complementary metal oxide semi-conductor-compatible efficient method to produce good magnetic quality high-Curie temperature Mn5Ge3 thin films.

  15. Magnesium diboride thin films and devices

    Science.gov (United States)

    Cui, Yi

    Magnesium diboride (MgB2) is a binary compound superconductor with a superconducting transition temperature Tc of ˜40 K. MgB2 has two conduction bands: a two-dimensional sigma band and a three-dimensional pi band with weak interband scattering. The two gap superconductivity in MgB2 gives rise to many interesting physical properties not possible in other superconductors. The relatively high Tc combined with phonon mediated superconductivity and relatively long coherence length makes MgB2 promising for electronics applications like rapid single flux quantum (RSFQ) logics and superconducting quantum interference devices (SQUID). The high current density and record-high upper critical field in pure or alloyed MgB2 are also attractive to a variety of high field applications including cryogen-free Magnetic Resonance Imaging (MRI) systems. MgB2 may also be used in RF cavity coatings due to its low surface resistance and in photo detection due to its fast photoresponse coupled with relatively high Tc. High quality epitaxial thin films are produced by the hybrid physical-chemical vapor deposition (HPCVD) technique. The HPCVD MgB2 thin films have the highest Tc and lowest resistivity with sharp transition of all MgB2 materials reported. The HPCVD MgB2 material is free of dendritic flux jumps due to its low resistivity. The root-mean-square (RMS) surface roughness of HPCVD MgB2 films can be ˜1 nm when ˜1% of nitrogen is added to the hydrogen carrier gas during the growth. The stability of MgB2 films in water is studied; it is found that degradation can be prevented by a thin (10 nm) MgO layer deposited on the film surface. The Tc is enhanced by tensile strain due to the Volmer-Weber growth mode and the mismatches between MgB2 and the substrate in the lattice constants and the coefficients of thermal expansion. High quality superconductor-insulator-superconductor Josephson tunnel junctions were made with various barrier formation techniques. The junction critical current

  16. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  17. Beryllium thin films for resistor applications

    Science.gov (United States)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  18. Gold Incorporated Mesoporous Silica Thin Film Model Surface as a Robust SERS and Catalytically Active Substrate

    Directory of Open Access Journals (Sweden)

    Anandakumari Chandrasekharan Sunil Sekhar

    2016-05-01

    Full Text Available Ultra-small gold nanoparticles incorporated in mesoporous silica thin films with accessible pore channels perpendicular to the substrate are prepared by a modified sol-gel method. The simple and easy spin coating technique is applied here to make homogeneous thin films. The surface characterization using FESEM shows crack-free films with a perpendicular pore arrangement. The applicability of these thin films as catalysts as well as a robust SERS active substrate for model catalysis study is tested. Compared to bare silica film our gold incorporated silica, GSM-23F gave an enhancement factor of 103 for RhB with a laser source 633 nm. The reduction reaction of p-nitrophenol with sodium borohydride from our thin films shows a decrease in peak intensity corresponding to –NO2 group as time proceeds, confirming the catalytic activity. Such model surfaces can potentially bridge the material gap between a real catalytic system and surface science studies.

  19. Flexible thin film magnetoimpedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Fernández, E. [BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Svalov, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Burgoa Beitia, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); García-Arribas, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain)

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti]{sub 3}/Cu/[FeNi/Ti]{sub 3} films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  20. Piezomagnetism in Epitaxial Cr2O3 Thin Films

    Science.gov (United States)

    Wang, Yi; Sahoo, Sarbeswar; Binek, Christian

    2007-03-01

    Recently, the magnetoelectric material Cr2O3 attracted renewed interest due to its potential for future spintronics applications which can be realized by novel magnetic thin film heterostructures [1]. Here we study thin films of Cr2O3 (111) on c-Al2O3 (111) substrate which are grown by thermal evaporation of Cr metal in an O2 atmosphere. X-ray diffraction data reveal stoichiometric epitaxially grown Cr2O3 (111) films. Owing to a lattice mismatch of ˜4% at the interface between the Al2O3 substrate and the film we observe a strong stress induced piezomagnetic moment in the Cr2O3 film. We measure the temperature dependence of this piezomoment by Superconducting Quantum Interference Device (SQUID) magnetometry and Kerr rotation. The presence of high inherent stress, a significant piezomagnetic moment and the possibility to realize high electric fields makes our Cr2O3 thin films ideal candidates for the challenging quest of the symmetry allowed but hitherto undiscovered piezomagnetoelectric effect. [1] Ch. Binek, B. Doudin, J. Phys. Condens. Matter 17, L39 (2005).

  1. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...

  2. Characterisation of Pb thin films prepared by the nanosecond pulsed laser deposition technique for photocathode application

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, A., E-mail: antonella.lorusso@le.infn.it [Dipartimento di Matematica e Fisica “E. De Giorgi” and Istituto Nazionale di Fisica Nucleare, Università del Salento, Lecce 73100 (Italy); Gontad, F. [Dipartimento di Matematica e Fisica “E. De Giorgi” and Istituto Nazionale di Fisica Nucleare, Università del Salento, Lecce 73100 (Italy); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping SE-581 83 (Sweden); Chiadroni, E. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, Frascati 00044 (Italy); Perrone, A. [Dipartimento di Matematica e Fisica “E. De Giorgi” and Istituto Nazionale di Fisica Nucleare, Università del Salento, Lecce 73100 (Italy)

    2015-03-31

    Pb thin films were prepared by the nanosecond pulsed laser deposition technique on Si (100) and polycrystalline Nb substrates for photocathode application. As the photoemission performances of a cathode are strongly affected by its surface characteristics, the Pb films were grown at different substrate temperatures with the aim of modifying the morphology and structure of thin films. An evident morphological modification in the deposited films with the formation of spherical grains at higher temperatures has been observed. X-ray diffraction measurements showed that a preferred orientation of Pb (111) normal to the substrate was achieved at 30 °C while the Pb (200) plane became strongly pronounced with the increase in the substrate temperature. Finally, a Pb thin film deposited on Nb substrate at 30 °C and tested as the photocathode showed interesting results for the application of such a device in superconducting radio frequency guns. - Highlights: • Pb thin films obtained by the nanosecond pulsed laser deposition technique at different substrate temperature. • The substrate temperature modifies the morphology and structure of Pb films. • Pb thin film was deposited at room temperature for photocathode application. • The Pb thin film photocathode was tested and the quantum efficiency of the device improved after laser cleaning treatment of the film surface.

  3. A monolithic thin film electrochromic window

    Energy Technology Data Exchange (ETDEWEB)

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. (Tufts Univ., Medford, MA (United States). Electro-Optics Technology Center); Wei, G. (Mobil Solar Energy Corp., Billerica, MA (United States)); Yu, P.C. (PPG Industries, Inc., Monroeville, PA (United States))

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  4. A monolithic thin film electrochromic window

    Energy Technology Data Exchange (ETDEWEB)

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. [Tufts Univ., Medford, MA (United States). Electro-Optics Technology Center; Wei, G. [Mobil Solar Energy Corp., Billerica, MA (United States); Yu, P.C. [PPG Industries, Inc., Monroeville, PA (United States)

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  5. Manufacture of GdBa2Cu3O7−x Superconducting Thin Films Using High-Thermal-Stability Precursors Playing the Role of Intermediate-Phase Grain-Growth Inhibitors

    DEFF Research Database (Denmark)

    Tang, Xiao; He, Dong; Yue, Zhao;

    2014-01-01

    We have developed a fluorine-free metal–organic decomposition method using acrylic acid as the solvent for the synthesis of GdBCO superconducting thin films. Commonly used propionic acid was also used to make a comparison with acrylic acid. Acrylic acid was found to be polymerized during drying......, resulting in high thermal stability of the precursor solution. Due to the elevated decomposition temperature of the organic compounds in the acrylic-acid-based precursor, the formation of intermediate phases such as CuO was found delayed; therefore, the grain growth and phase segregation were suppressed....... The superior quality of pyrolyzed films induced by the use of polymerizable acrylic acid is reflected in the Jcof the GdBCO films, which achieved 1.2MA/cm2....

  6. THE EPITAXIALLY GROWTH AND GD DOPING EFFECT OF YBa2Cu3O7-δ SUPERCONDUCTING THIN FILMS BY LOW-FLUORINE MOD METHOD%低氟MOD法YBa2Cu3O7-δ超导薄膜外延生长及Gd掺杂效应

    Institute of Scientific and Technical Information of China (English)

    孙梅娟; 刘志勇; 白传易; 李敏娟; 郭艳群; 蔡传兵

    2013-01-01

    A series of Y1-xGdxBa2Cu3O7-δ(x=0,0.23,0.5,0.77,1)superconducting thin films were prepared on Hastelloy substrate by low fluorine MOD process.The X ray diffraction (XRD) analysis showed that the epitaxial growth of Gd doped YBa2Cu3O7-δ superconducting thin film is easier to form.The pole figures showed the he inplane orientation of FWHM of Y1-xGdxBa2Cu3O7-δ changes nonlinearly with increasing the nominal amount of Gddoping.The doped films have higher performance and better surface morphology,compared with pure YBCO thin films.Appropriate doping may lead to the enhancement of critical current density in 77K,self field,which may due to modulation structure formed by doping can be effective flux pinning centers.%通过低氟金属有机物沉积方法(MOD)在哈氏合金基底上制备了一系列Y1-xGdxBa2Cu3O7-δ(x=0,0.23,0.5,0.77,1)超导薄膜.X光衍射(XRD)分析表明:Gd3+掺杂使YBa2Cu3 O7-δ超导薄膜外延生长易于形成,X光极图显示,随掺杂量增加,其面内取向半高宽随名义掺杂量的增加呈非线性变化.与纯YBCO相比,掺杂薄膜具有更好的表面形貌.Gd3+掺杂的样品的超导性能均优于纯YBCD的性能.在77K、自场下适当掺杂量有助于超导薄膜临界电流密度的提高,这可能由于掺杂形成的调制结构可以作为磁通钉扎中心.

  7. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  8. Thin film fuel cell electrodes.

    Science.gov (United States)

    Asher, W. J.; Batzold, J. S.

    1972-01-01

    Earlier work shows that fuel cell electrodes prepared by sputtering thin films of platinum on porous vycor substrates avoid diffusion limitations even at high current densities. The presented study shows that the specific activity of sputtered platinum is not unusually high. Performance limitations are found to be controlled by physical processes, even at low loadings. Catalyst activity is strongly influenced by platinum sputtering parameters, which seemingly change the surface area of the catalyst layer. The use of porous nickel as a substrate shows that pore size of the substrate is an important parameter. It is noted that electrode performance increases with increasing loading for catalyst layers up to two microns thick, thus showing the physical properties of the sputtered layer to be different from platinum foil. Electrode performance is also sensitive to changing differential pressure across the electrode. The application of sputtered catalyst layers to fuel cell matrices for the purpose of obtaining thin total cells appears feasible.

  9. BDS thin film damage competition

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  10. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  11. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  12. Thin films under chemical stress

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  13. Micropatterned coumarin polyester thin films direct neurite orientation.

    Science.gov (United States)

    McCormick, Aleesha M; Maddipatla, Murthy V S N; Shi, Shuojia; Chamsaz, Elaheh A; Yokoyama, Hiroshi; Joy, Abraham; Leipzig, Nic D

    2014-11-26

    Guidance and migration of cells in the nervous system is imperative for proper development, maturation, and regeneration. In the peripheral nervous system (PNS), it is challenging for axons to bridge critical-sized injury defects to achieve repair and the central nervous system (CNS) has a very limited ability to regenerate after injury because of its innate injury response. The photoreactivity of the coumarin polyester used in this study enables efficient micropatterning using a custom digital micromirror device (DMD) and has been previously shown to be biodegradable, making these thin films ideal for cell guidance substrates with potential for future in vivo applications. With DMD, we fabricated coumarin polyester thin films into 10×20 μm and 15×50 μm micropatterns with depths ranging from 15 to 20 nm to enhance nervous system cell alignment. Adult primary neurons, oligodendrocytes, and astrocytes were isolated from rat brain tissue and seeded onto the polymer surfaces. After 24 h, cell type and neurite alignment were analyzed using phase contrast and fluorescence imaging. There was a significant difference (ppolyester thin films has proven beneficial as an axon guidance platform for future nervous system regenerative strategies.

  14. High magnetic field properties of Fe-pnictide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Fritz

    2015-11-20

    The recent discovery of high-temperature superconductivity in Fe-based materials triggered worldwide efforts to investigate their fundamental properties. Despite a lot of similarities to cuprates and MgB{sub 2}, important differences like near isotropic behaviour in contrast to cuprates and the peculiar pairing symmetry of the order parameter (OP) have been reported. The OP symmetry of Fe-based superconductors (FBS) was theoretically predicted to be of so-called s± state prior to various experimental works. Still, most of the experimental results favour the s± scenario; however, definitive evidence has not yet been reported. Although no clear understanding of the superconducting mechanisms yet exists, potential applications such as high-field magnets and Josephson devices have been explored. Indeed, a lot of reports about FBS tapes, wires, and even SQUIDs have been published to this date. In this thesis, the feasibility of high-field magnet applications of FBS is addressed by studying their transport properties, involving doped BaFe{sub 2}As{sub 2} (Ba-122) and LnFeAs(O,F) [Ln=Sm and Nd]. Particularly, it is important to study physical properties in a sample form (i.e. thin films) that is close to the conditions found in applications. However, the realisation of epitaxial FBS thin films is not an easy undertaking. Recent success in growing epitaxial FBS thin films opens a new avenue to delve into transport critical current measurements. The information obtained through this research will be useful for exploring high-field magnet applications. This thesis consists of 7 chapters: Chapter 1 describes the motivation of this study, the basic background of superconductivity, and a brief summary of the thin film growth of FBS. Chapter 2 describes experimental methods employed in this study. Chapter 3 reports on the fabrication of Co-doped Ba-122 thin films on various substrates. Particular emphasis lies on the discovery of fluoride substrates to be beneficial for

  15. Carbon nanotube based transparent conductive thin films.

    Science.gov (United States)

    Yu, X; Rajamani, R; Stelson, K A; Cui, T

    2006-07-01

    Carbon nanotube (CNT) based optically transparent and electrically conductive thin films are fabricated on plastic substrates in this study. Single-walled carbon nanotubes (SWNTs) are chemically treated with a mixture of concentrated sulfuric acid and nitric acid before being dispersed in aqueous surfactant-contained solutions. SWNT thin films are prepared from the stable SWNT solutions using wet coating techniques. The 100 nm thick SWNT thin film exhibits a surface resistivity of 6 kohms/square nanometer with an average transmittance of 88% on the visible light range, which is three times better than the films prepared from the high purity as-received SWNTs.

  16. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  17. Process compilation methods for thin film devices

    Science.gov (United States)

    Zaman, Mohammed Hasanuz

    process flows for thin film devices from schematics of their structures. The algorithms also include the capability of grading the process flows based on the expected device yield and some empirical factors. The MISTIC software uses a lab-specific database of process recipes and materials to produce process flows for a specific set of laboratory resources and process statistics that help to choose the most suitable process flow in a comparative manner. Currently the process compiler consists of five modules, viz., the graphical device editor, the database and the database editor, the compiler, and the process viewer constituting a complete design environment. The program has been implemented with approximately 213,800 lines of C code that utilize the X11/Motif library. The compiler in its current version accepts devices with Manhattan-like geometries over a multiplicity of one dimensional slices of the device, hence all calculations are inherently one-dimensional in nature. The compilation procedure has been successfully tested with several conventional integrated circuit devices, e.g., DIODE, CMOS and BICMOS, etc. It has also been successfully applied to Micro-Electro Mechanical System (MEMS) devices such as accelerometer, micro-bridge, micro-motor structures with or without on chip circuits. In each case the compiler has generated a set of process flows which included the established process for that device along with several alternative processes.

  18. Quench characteristic of YBCO thin film tapes; YBCO hakumaku tepu senzai no kuenchi tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Asai, H.; Shimizu, S.; Ishiyama, A. [Waseda Univ., Tokyo (Japan); Kasu, O.; Ii, H.; Takeda, K.; Shibuya, M. [Engineering Research Association for Super conductive Generation Equipment and Materials, Osaka (Japan)

    1999-11-10

    We prepare 10.0mm width, YBCO film thickness 1.5 {mu}m, YSZ0.5 {mu}m, hastelloy 0.2mm, experiment in GM refrigerating machine conduction cooling of silver of 10 {mu}m using a YBCO thin film tape wire rod in order to examine the effect of the shape. Using the analysis code which confirmed the validity prior to the experiment by Bi system superconducting wire rod, analysis and prediction of quench characteristics of a YBCO thin film tape wire rod were done. (NEDO)

  19. Synthesis and ionic liquid gating of hexagonal WO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Phillip M., E-mail: philwu@stanford.edu, E-mail: beasley@stanford.edu; Munakata, Ko; Hammond, R. H.; Geballe, T. H.; Beasley, M. R., E-mail: philwu@stanford.edu, E-mail: beasley@stanford.edu [Department of Applied Physics, Stanford University, Stanford, California 94305, USA and Geballe Laboratory for Advanced Materials, Stanford University, Stanford, California 94305 (United States); Ishii, Satoshi; Tanabe, Kenji; Tokiwa, Kazuyasu [Department of Applied Electronics, Tokyo University of Science, Katsushika-ku, Tokyo 125-8585 (Japan)

    2015-01-26

    Via thin film deposition techniques, the meta-stable in bulk crystal hexagonal phase of tungsten oxide (hex-WO{sub 3}) is stabilized as a thin film. The hex-WO{sub 3} structure is potentially promising for numerous applications and is related to the structure for superconducting compounds found in WO{sub 3}. Utilizing ionic liquid gating, carriers were electrostatically induced in the films and an insulator-to-metal transition is observed. These results show that ionic liquid gating is a viable technique to alter the electrical transport properties of WO{sub 3}.

  20. Raman spectroscopy of thin films

    Science.gov (United States)

    Burgess, James Shaw

    Raman spectroscopy was used in conjunction with x-ray diffraction and x-ray photoelectron spectroscopy to elucidate structural and compositional information on a variety of samples. Raman was used on the unique La 2NiMnO6 mixed double perovskite which is a member of the LaMnO3 family of perovskites and has multiferroic properties. Raman was also used on nanodiamond films as well as some boron-doped carbon compounds. Finally, Raman was used to identify metal-dendrimer bonds that have previously been overlooked. Vibrational modes for La2NiMnO6 were ascribed by comparing spectra with that for LaMnO3 bulk and thin film spectra. The two most prominent modes were labeled as an asymmetric stretch (A g) centered around 535 cm-1 and a symmetric stretch (B g) centered around 678 cm. The heteroepitaxial quality of La2NiMnO 6 films on SrTiO3 (100) and LaAlO3 (100) substrates were examined using the Raman microscope by way of depth profile experiments and by varying the thickness of the films. It was found that thin films (10 nm) had much greater strain on the LaAlO3 substrate than on the SrTiO3 substrate by examining the shifts of the Ag and the Bg modes from their bulk positions. Changes in the unit cell owing to the presence of oxygen defects were also monitored using Raman spectroscopy. It was found that the Ag and Bg modes shifted between samples formed with different oxygen partial pressures. These shifts could be correlated to changes in the symmetry of the manganese centers due to oxygen defects. Raman spectroscopy was used to examine the structural and compositional characteristics of carbon materials. Nanocrystalline diamond coated cutting tools were examined using the Raman Microscope. Impact, abrasion, and depth profile experiments indicated that delamination was the primary cause of film failure in these systems. Boron doped material of interest as catalyst supports were also examined. Monitoring of the G-mode and intensities of the D- and G-modes indicated that

  1. The Physics of Thin Film Optical Spectra An Introduction

    CERN Document Server

    Stenzel, Olaf

    2005-01-01

    The book is intended to bridge the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures.

  2. Drying radioactive wastewater salts using a thin film dryer

    Energy Technology Data Exchange (ETDEWEB)

    Scully, D.E.

    1998-03-19

    This paper describes the operational experience in drying brines generated at a radioactive wastewater treatment facility. The brines are composed of aqueous ammonium sulfate/sodium sulfate and aqueous sodium nitrate/sodium sulfate, The brine feeds receive pretreatment to preclude dryer bridging and fouling. The dryer products are a distillate and a powder. The dryer is a vertical thin film type consisting of a steam heated cylinder with rotor. Maintenance on the dryer has been minimal. Although many operability problems have had to be overcome, dryer performance can now be said to be highly reliable.

  3. PREPARATION AND CHARACTERIZATION OF POLY-CRYSTALLINE SILICON THIN FILM

    Institute of Scientific and Technical Information of China (English)

    Y.F. Hu; H. Shen; Z.Y. Liu; L.S. Wen

    2003-01-01

    Poly-crystalline silicon thin film has big potential of reducing the cost of solar cells.In this paper the preparation of thin film is introduced, and then the morphology of poly-crystalline thin film is discussed. On the film we developed poly-crystalline silicon thin film solar cells with efficiency up to 6. 05% without anti-reflection coating.

  4. Comparison between nonlinear measurements in patterned and unpatterned thin films

    Energy Technology Data Exchange (ETDEWEB)

    Collado, C [Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, Campus Nord UPC, D3-Jordi Girona, 1-3, 08034 Barcelona (Spain); Mateu, J [Centre Tecnologic de Telecomunicacions de Catalunya, Edifici Nexus Gran Capita, 2-4, 2nd floor, room 202-203, 08034 Barcelona (Spain); O' Callaghan, J M [Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, Campus Nord UPC, D3-Jordi Girona, 1-3, 08034 Barcelona (Spain)

    2004-07-01

    This work compares two alternative methods of characterizing the nonlinearities in a 10 x 10 mm{sup 2} superconducting thin film. Both methods are based on measuring the intermodulation distortion in high temperature superconducting (HTS) films. The first method measures the unpatterned film by using a rutile loaded cavity operating at the TE{sub 011} mode. The second method is based on intermodulation measurements made in a resonant coplanar line which is patterned on the same film that is used in the rutile cavity. In both experiments we use closed-form expressions and numerical techniques to extract local parameters related to the nonlinearities of the superconductor. The intermodulation data in both type of measurements can be fitted with identical nonlinear parameters of the HTS.

  5. Comparison between nonlinear measurements in patterned and unpatterned thin films

    Science.gov (United States)

    Collado, C.; Mateu, J.; O'Callaghan, J. M.

    2004-07-01

    This work compares two alternative methods of characterizing the nonlinearities in a 10 × 10 mm2 superconducting thin film. Both methods are based on measuring the intermodulation distortion in high temperature superconducting (HTS) films. The first method measures the unpatterned film by using a rutile loaded cavity operating at the TE011 mode. The second method is based on intermodulation measurements made in a resonant coplanar line which is patterned on the same film that is used in the rutile cavity. In both experiments we use closed-form expressions and numerical techniques to extract local parameters related to the nonlinearities of the superconductor. The intermodulation data in both type of measurements can be fitted with identical nonlinear parameters of the HTS.

  6. Thin films for geothermal sensing: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-09-01

    The report discusses progress in three components of the geothermal measurement problem: (1) developing appropriate chemically sensitive thin films; (2) discovering suitably rugged and effective encapsulation schemes; and (3) conducting high temperature, in-situ electrochemical measurements. (ACR)

  7. Manganese ferrite thin films Part II: Properties

    NARCIS (Netherlands)

    Hulscher, W.S.

    1972-01-01

    Some properties of evaporated manganese ferrite thin films are investigated, e.g. resistivity, magnetization reversal, Curie temperature, Faraday rotation and optical absorption. The properties are partly related to the partial oxygen pressure present during a preceding annealing process.

  8. TiO2 thin film photocatalyst

    Institute of Scientific and Technical Information of China (English)

    YU Jiaguo

    2004-01-01

    It is well known that the photocatalytic activity of TiO2 thin films strongly depends on the preparing methods and post-treatment conditions, since they have a decisive influence on the chemical and physical properties of TiO2 thin films.Therefore, it is necessary to elucidate the influence of the preparation process and post-treatment conditions on the photocatalytic activity and surface microstructures of the films. This review deals with the preparation of TiO2 thin film photocatalysts by wet-chemical methods (such as sol-gel, reverse micellar and liquid phase deposition) and the comparison of various preparation methods as well as their advantage and disadvantage. Furthermore, it is discussed that the advancement of photocatalytic activity, super-hydrophilicity and bactericidal activity of TiO2 thin film photocatalyst in recent years.

  9. Thin Film Photovoltaics: Markets and Industry

    National Research Council Canada - National Science Library

    Jäger-Waldau, Arnulf

    2012-01-01

    ...% of worldwide production. Between 2005 and 2009, thin film production capacity and volume increased more than the overall industry but did not keep up in 2010 and 2011 due to the rapid price decline for solar modules...

  10. Highly stretchable wrinkled gold thin film wires

    Science.gov (United States)

    Kim, Joshua; Park, Sun-Jun; Nguyen, Thao; Chu, Michael; Pegan, Jonathan D.; Khine, Michelle

    2016-02-01

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  11. Ellipsometric Studies on Silver Telluride Thin Films

    Directory of Open Access Journals (Sweden)

    M. Pandiaraman

    2011-01-01

    Full Text Available Silver telluride thin films of thickness between 45 nm and 145 nm were thermally evaporated on well cleaned glass substrates at high vacuum better than 10 – 5 mbar. Silver telluride thin films are polycrystalline with monoclinic structure was confirmed by X-ray diffractogram studies. AFM and SEM images of these films are also recorded. The phase ratio and amplitude ratio of these films were recorded in the wavelength range between 300 nm and 700 nm using spectroscopic ellipsometry and analysed to determine its optical band gap, refractive index, extinction coefficient, and dielectric functions. High absorption coefficient determined from the analysis of recorded spectra indicates the presence of direct band transition. The optical band gap of silver telluride thin films is thickness dependent and proportional to square of reciprocal of thickness. The dependence of optical band gap of silver telluride thin films on film thickness has been explained through quantum size effect.

  12. Highly stretchable wrinkled gold thin film wires

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joshua, E-mail: joshuk7@uci.edu; Park, Sun-Jun; Nguyen, Thao [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Chu, Michael [Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States); Pegan, Jonathan D. [Department of Materials and Manufacturing Technology, University of California, Irvine, California 92697 (United States); Khine, Michelle, E-mail: mkhine@uci.edu [Department of Chemical Engineering and Materials Science, University of California, Irvine, California 92697 (United States); Department of Biomedical Engineering, University of California, Irvine, California 92697 (United States)

    2016-02-08

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  13. Magnetostrictive thin films for microwave spintronics.

    Science.gov (United States)

    Parkes, D E; Shelford, L R; Wadley, P; Holý, V; Wang, M; Hindmarch, A T; van der Laan, G; Campion, R P; Edmonds, K W; Cavill, S A; Rushforth, A W

    2013-01-01

    Multiferroic composite materials, consisting of coupled ferromagnetic and piezoelectric phases, are of great importance in the drive towards creating faster, smaller and more energy efficient devices for information and communications technologies. Such devices require thin ferromagnetic films with large magnetostriction and narrow microwave resonance linewidths. Both properties are often degraded, compared to bulk materials, due to structural imperfections and interface effects in the thin films. We report the development of epitaxial thin films of Galfenol (Fe81Ga19) with magnetostriction as large as the best reported values for bulk material. This allows the magnetic anisotropy and microwave resonant frequency to be tuned by voltage-induced strain, with a larger magnetoelectric response and a narrower linewidth than any previously reported Galfenol thin films. The combination of these properties make epitaxial thin films excellent candidates for developing tunable devices for magnetic information storage, processing and microwave communications.

  14. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B. (Editor); Heinen, Vernon O. (Editor)

    1990-01-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  15. Studies in thin film flows

    CERN Document Server

    McKinley, I S

    2000-01-01

    the general case of non-zero capillary number numerically. Using the lubrication approximation to the Navier-Stokes equations we investigate the evolution and stability of a thin film of incompressible Newtonian fluid on a planar substrate subjected to a jet of air blowing normally to the substrate. For the simple model of the air jet we adopt, the initially axisymmetric problems we study are identical to those of a drop spreading on a turntable rotating at constant angular velocity (the simplest model for spin coating). We consider both drops without a dry patch (referred to as 'non-annular') and drops with a dry patch at their centre (referred to as 'annular'). First, both symmetric two-dimensional and axisymmetric three-dimensional drops are considered in the quasi-static limit of small capillary number. The evolution of both non-annular and annular drops and the stability of equilibrium solutions to small perturbations with zero wavenumber are determined. Using a specially developed finite-difference code...

  16. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  17. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    Rachana Gupta; Mukul Gupta; Thomas Gutberlet

    2008-11-01

    Thin films of permalloy (Ni80Fe20) were prepared using an Ar+N2 mixture with magnetron sputtering technique at ambient temperature. The film prepared with only Ar gas shows reflections corresponding to the permalloy phase in X-ray diffraction (XRD) pattern. The addition of nitrogen during sputtering results in broadening of the peaks in XRD pattern, which finally leads to an amorphous phase. The - loop for the sample prepared with only Ar gas is matching well with the values obtained for the permalloy. For the samples prepared with increased nitrogen partial pressure the magnetic moment decreased rapidly and the values of coercivity increased. The polarized neutron reflectivity measurements (PNR) were performed in the sample prepared with only Ar gas and with nitrogen partial pressure of 5 and 10%. It was found that the spin-up and spin-down reflectivities show exactly similar reflectivity for the sample prepared with Ar gas alone, while PNR measurements on 5 and 10% sample show splitting in the spin-up and spin-down reflectivity.

  18. Printable CIGS thin film solar cells

    Science.gov (United States)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  19. Carbon Nanotube Thin-Film Antennas.

    Science.gov (United States)

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed.

  20. Structural and morphological properties of metallic thin films grown by pulsed laser deposition for photocathode application

    Science.gov (United States)

    Lorusso, A.; Gontad, F.; Caricato, A. P.; Chiadroni, E.; Broitman, E.; Perrone, A.

    2016-03-01

    In this work yttrium and lead thin films have been deposited by pulsed laser deposition technique and characterized by ex situ different diagnostic methods. All the films were adherent to the substrates and revealed a polycrystalline structure. Y films were uniform with a very low roughness and droplet density, while Pb thin films were characterized by a grain morphology with a relatively high roughness and droplet density. Such metallic materials are studied because they are proposed as a good alternative to copper and niobium photocathodes which are generally used in radiofrequency and superconducting radiofrequency guns, respectively. The photoemission performances of the photocathodes based on Y and Pb thin films have been also studied and discussed.

  1. The effect of r f sputtering conditions on the morphological and superconducting properties in thin films of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}; Efecto de las condiciones de rf sputtering en las propiedades morfologicas y superconductoras en peliculas delgadas de YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, M.; Ares, O.; Sosa, V.; Acosta, C.; Ceh, O. [Departamento deFisica Aplicada, Centro de Investigacion y de Estudios Avanzados, InstitutoPolitecnico Nacional, Unidad Merida, Apartado Postal 73, Cordemex, 97310Merida, Yucatan (Mexico)

    1998-12-31

    Using an off-axis configuration we have prepared in situ superconducting YBaCu{sub 3}O{sub 7-{delta}} (YBaCuO) thin films on SrTiO{sub 3} single-crystal (100) substrates. We have studied the effect of the distance from the target-substrate on the critical temperature (T{sub c}) and current density (J{sub c}) of our films. Our best samples had T{sub c} {approx} 85 K and J{sub c} {approx} 10{sup 6} A/cm{sup 2} at 20 K. Surface topography was examined by atomic force microscopy (AFM) and scanning electron microscopy (Sem), showing the growth of spiral-shaped terraces. The height between steps was of the order of the c-axis length. Samples grown at not optimized positions presented non superconducting regions. The damage of this regions was related to the bombardment of negative oxygen ions or highly-energetic particles present in the plasma. (Author)

  2. YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer

    Science.gov (United States)

    Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.

    1993-03-01

    Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.

  3. Nonequilibrium Properties of Variable-Thickness Superconducting Micro-bridges.

    Science.gov (United States)

    1978-01-01

    shor t is always lef t near the leads to prevent acci- dental burnout. This short is only removed once the leads are soldered (with an unplugged and...interest here, by overlaying a superconduct- ing film with a normal metal,14 by optical, phonon or quasi— 15 16particle injection, by ion implantation or...which might not be justified in the regimes of interest. Experimentall y, further work is requir ed in order to understand the low voltage I—V

  4. Microfabricated structures and devices featuring nanostructured titania thin films

    Science.gov (United States)

    Monkowski, Adam J.

    2007-05-01

    When titanium reacts with hydrogen peroxide at 80°C--100°C, a nanostructured titania (NST) thin film is formed on the titanium surface. This nanostructured film is particularly suited for integration with thin film and bulk microfabrication techniques. The ability to manufacture devices in a batch format is a principal advantage of microfabrication-based production. To reliably produce arrays of micro-patterned NST thin films on the wafer scale, a patterning guideline must be considered. The formation of NST relies on a re-deposition process; adequate ti-peroxo species must be generated and remain at the solid-solution interface. Numerical analysis of the characteristic transient diffusion behavior for various micro-patterns has been compared with experimental data to generate a criterion to guide the design of NST micro-patterns. Wafer scale arrays of NST micro gas-sensors have been fabricated using standard thin film techniques. Sensing elements are 20 mum on a side. High sensitivity to hydrogen is achieved by modification of the sensors with platinum nanoparticles. When exposed to a 10 mT partial pressure of hydrogen at 250°C, the functionalized devices exhibit more than one order of magnitude resistance decrease with a response time of approximately 7 sec. Titanium microstructures formed using the titanium ICP deep etch (TIDE) process have been integrated with NST films to produce an ordered nanostructure-microstructure composite (3D-NST). The process developed allows for the incorporation of a planar top surface, advantageous for bonding and sealing applications, in which the nanostructured thin film is formed only on feature sidewalls and floors. When titanium microstructures are spaced less than 1 mum apart, titania nanostructures bridge adjacent features. NST and 3D-NST structures have been assembled and tested in a dye-sensitized solar cell (DSSC) device. The NST film is approximately 900nm thick; this yielded a DSSC with an efficiency of 1.8%, similar

  5. Control of oxygen concentration in BSCCO thin films using solid-state electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Tsuyoshi (Advanced Thin Film Research Labs., Teijin Ltd., Asahigaoka, Hino, Tokyo (Japan)); Yatabe, Toshiaki (Advanced Thin Film Research Labs., Teijin Ltd., Asahigaoka, Hino, Tokyo (Japan)); Yugami, Hiroo (Research Inst. for Scientific Measurements, Tohoku Univ., Katahira, Sendai (Japan)); Ishigame, Mareo (Research Inst. for Scientific Measurements, Tohoku Univ., Katahira, Sendai (Japan))

    A new electrochemical cell using the oxygen ion conducting solid-state electrolyte, yttria-stabilized zirconia (YSZ), was developed to control the oxygen concentration in high-T[sub c] superconducting Bi[sub 2]Sr[sub 2]Ca[sub 1]Cu[sub 2]O[sub 8+x] (BSCCO) thin films. In the electrochemical cell, YSZ single crystal plate was used as an oxygen ion pump as well as a substrate for the BSCCO thin film. Oxygen ions were removed from or injected into the BSCCO thin film electrochemically by supplying charges to the cell at 500 C in air. T[sub c] and lattice constant c were found to increase with removing oxygen ions from as-fabricated BSCCO thin films, and to decrease with injecting oxygen ions. These parameters varied reversibly and were correlated, depending on the total charges carried by oxygen ions. It was confirmed that this technique is an effective method to control the oxygen concentration in BSCCO thin films.

  6. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  7. Micromotors using magnetostrictive thin films

    Science.gov (United States)

    Claeyssen, Frank; Le Letty, Ronan; Barillot, Francois; Betz, Jochen; MacKay, Ken; Givord, Dominique; Bouchilloux, Philippe

    1998-07-01

    This study deals with a micromotor based on the use of magnetostrictive thin films. This motor belongs to the category of the Standing Wave Ultrasonic Motors. The active part of the motor is the rotor, which is a 100 micrometers thick ring vibrating in a flexural mode. Teeth (300 micrometers high) are placed on special positions of the rotor and produce an oblique motion which can induce the relative motion of any object in contact with them. The magnetic excitation field is radial and uses the transverse coupling of the 4 micrometers thick magnetostrictive film. The film, deposited by sputtering on the ring, consists of layers of different rare-earth/iron alloys and was developed during a European Brite-Euram project. The finite element technique was used in order to design a prototype of the motor and to optimize the active rotor and the energizer coil. The prototype we built delivered a speed of 30 turns per minute with a torque of 2 (mu) N.m (without prestress applied on the rotor). Our experimental results show that the performance of this motor could easily be increased by a factor of 5. The main advantage of this motor is the fact that it is remotely powered and controlled. The excitation coil, which provides both power and control, can be placed away from the active rotor. Moreover, the rotor is completely wireless and is not connected to its support or to any other part. It is interesting to note that it would not be possible to build this type of motor using piezoelectric technology. Medical applications of magnetostrictive micromotors could be found for internal microdistributors of medication (the coil staying outside the body). Other applications include remote control micropositioning, micropositioning of optical components, and for the actuation of systems such as valves, electrical switches, and relays.

  8. Effect of BaZrO3/Ag hybrid doping to the microstructure and performance of fluorine-free MOD method derived YBa2Cu3O7−x superconducting thin films

    DEFF Research Database (Denmark)

    Tang, Xiao; Yue, Zhao; Wu, W.

    2015-01-01

    It is known that BaZrO3 and Ag can improve the magnetic and transport performance of YBCO thin film through totally disparate ways. BaZrO3 plays the role of flux pinning centers and Ag improves the transparency of the YBCO grain boundaries. However, similar research is rare on the fluorine......-free derived YBCO films. In this research, BaZrO3-doped, Ag-doped and BaZrO3/Ag hybrid-doped YBCO films were synthesized through a fluorine-free metal–organic deposition method. BaZrO3 was found to deteriorate the microstructure and performance of YBCO, while Ag-doping was found to enhance the crystallization...... of YBCO and resulted in a high Jc of 3.87 MA/cm2 in self-field at 77 K. However, the microstructure and performance of the BaZrO3/Ag hybrid-doped YBCO film showed that the positive impact of Ag-doping was totally overwhelmed by that of BaZrO3....

  9. Optical Constants of Cadmium Telluride Thin Film

    Science.gov (United States)

    Nithyakalyani, P.; Pandiaraman, M.; Pannir, P.; Sanjeeviraja, C.; Soundararajan, N.

    2008-04-01

    Cadmium Telluride (CdTe) is II-VI direct band gap semiconductor compound with potential application in Solar Energy conversion process. CdTe thin film of thickness 220 mn was prepared by thermal evaporation technique at a high vacuum better than 10-5 m.bar on well cleaned glass substrates of dimensions (l cm×3 cm). The transmittance spectrum and the reflectance spectrum of the prepared CdTc thin film was recorded using UV-Vis Spectrophotometer in the wavelength range between 300 nm and 900 nm. These spectral data were analyzed and the optical band and optical constants of CdTe Thin film have been determined by adopting suitable relations. The optical band gap of CdTe thin film is found to be 1.56 eV and this value is also agreeing with the published works of CdTe thin film prepared by various techniques. The absorption coefficient (α) has been higher than 106 cm-1. The Refractive index (n) and the Extinction Coefficient (k) are found to be varying from 3.0 to 4.0 and 0.1 Cm-1 to 0.5 Cm-1 respectively by varying the energy from l.0 eV to 4.0 eV. These results are also compared with the literature.

  10. Ferromagnetic properties of fcc Gd thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bertelli, T. P., E-mail: tambauh@gmail.com; Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y. [Universidade Federal do Espírito Santo, Departamento de Física, Vitória/ES 29075-910 (Brazil); Pessoa, M. S. [Universidade Federal do Espírito Santo, Departamento de Ciências Naturais, São Mateus/ES 29932-540 (Brazil)

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  11. Pulsed laser deposition of ferroelectric thin films

    Science.gov (United States)

    Sengupta, Somnath; McKnight, Steven H.; Sengupta, Louise C.

    1997-05-01

    It has been shown that in bulk ceramic form, the barium to strontium ratio in barium strontium titanium oxide (Ba1- xSrxTiO3, BSTO) affects the voltage tunability and electronic dissipation factor in an inverse fashion; increasing the strontium content reduces the dissipation factor at the expense of lower voltage tunability. However, the oxide composites of BSTO developed at the Army Research Laboratory still maintain low electronic loss factors for all compositions examined. The intent of this study is to determine whether such effects can be observed in the thin film form of the oxide composites. The pulsed laser deposition (PLD) method has been used to deposit the thin films. The different compositions of the compound (with 1 wt% of the oxide additive) chosen were: Ba0.3Sr0.7TiO3, Ba0.4Sr0.6TiO3, Ba0.5Sr0.5TiO3, Ba0.6Sr0.4TiO3, and Ba0.7Sr0.3TiO3. The electronic properties investigated in this study were the dielectric constant and the voltage tunability. The morphology of the thin films were examined using the atomic force microscopy. Fourier transform Raman spectroscopy was also utilized for optical characterization of the thin films. The electronic and optical properties of the thin films and the bulk ceramics were compared. The results of these investigations are discussed.

  12. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  13. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  14. Magnetoelectric thin film composites with interdigital electrodes

    Science.gov (United States)

    Piorra, A.; Jahns, R.; Teliban, I.; Gugat, J. L.; Gerken, M.; Knöchel, R.; Quandt, E.

    2013-07-01

    Magnetoelectric (ME) thin film composites on silicon cantilevers are fabricated using Pb(Zr0.52Ti0.45)O3 (PZT) films with interdigital transducer electrodes on the top side and FeCoSiB amorphous magnetostrictive thin films on the backside. These composites without any direct interface between the piezoelectric and magnetostrictive phase are superior to conventional plate capacitor-type thin film ME composites. A limit of detection of 2.6 pT/Hz1/2 at the mechanical resonance is determined which corresponds to an improvement of a factor of approximately 2.8 compared to the best plate type sensor using AlN as the piezoelectric phase and even a factor of approximately 4 for a PZT plate capacitor.

  15. Domains in Ferroic Crystals and Thin Films

    CERN Document Server

    Tagantsev, Alexander K; Fousek, Jan

    2010-01-01

    Domains in Ferroic Crystals and Thin Films presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observation of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. Domains in Ferroic Crystals and Thin Films covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In most solid state physics books, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In co...

  16. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    Antonio ePolitano

    2014-07-01

    Full Text Available Herein, we discuss the status and the prospect of plasmonic modes in thin films. Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs are waves that propagate along the surface of a conductor with applications in magneto-optic data storage, optics, microscopy, and catalysis. In thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications and, moreover, they affect both the dispersion relation of SP frequency and the damping processes of the SP.Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  17. Carrier lifetimes in thin-film photovoltaics

    Science.gov (United States)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  18. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  19. Study of the Thin Film Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-yuan; SHI Yu; WEN Qi-ye

    2005-01-01

    A new thin film pulse transformer for using in ISND and model systems is fabricated by a mask sputtering process. This novel pulse transformer consists of four I-shaped CoZrRe nanometer crystal magnetic-film cores and a Cu thin film coil, deposited on the micro-crystal glass substrate directly. The thickness of thin film core is between 1 and 3 μm, and the area is between 4mm×6 mm and 12mm×6 mm. The coils provide a relatively high induce of 0.8 μm and can be well operated in a frequency range of 0.001~20 MHz.

  20. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  1. Multifractal characteristics of titanium nitride thin films

    Directory of Open Access Journals (Sweden)

    Ţălu Ştefan

    2015-09-01

    Full Text Available The study presents a multi-scale microstructural characterization of three-dimensional (3-D micro-textured surface of titanium nitride (TiN thin films prepared by reactive DC magnetron sputtering in correlation with substrate temperature variation. Topographical characterization of the surfaces, obtained by atomic force microscopy (AFM analysis, was realized by an innovative multifractal method which may be applied for AFM data. The surface micromorphology demonstrates that the multifractal geometry of TiN thin films can be characterized at nanometer scale by the generalized dimensions Dq and the singularity spectrum f(α. Furthermore, to improve the 3-D surface characterization according with ISO 25178-2:2012, the most relevant 3-D surface roughness parameters were calculated. To quantify the 3-D nanostructure surface of TiN thin films a multifractal approach was developed and validated, which can be used for the characterization of topographical changes due to the substrate temperature variation.

  2. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  3. Tungsten-doped thin film materials

    Science.gov (United States)

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  4. Magnetically actuated peel test for thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ostrowicki, G.T.; Sitaraman, S.K., E-mail: suresh.sitaraman@me.gatech.edu

    2012-03-30

    Delamination along thin film interfaces is a prevalent failure mechanism in microelectronic, photonic, microelectromechanical systems, and other engineering applications. Current interfacial fracture test techniques specific to thin films are limited by either sophisticated mechanical fixturing, physical contact near the crack tip, or complicated stress fields. Moreover, these techniques are generally not suitable for investigating fatigue crack propagation under cyclical loading. Thus, a fixtureless and noncontact experimental test technique with potential for fatigue loading is proposed and implemented to study interfacial fracture toughness for thin film systems. The proposed test incorporates permanent magnets surface mounted onto micro-fabricated released thin film structures. An applied external magnetic field induces noncontact loading to initiate delamination along the interface between the thin film and underlying substrate. Characterization of the critical peel force and peel angle is accomplished through in situ deflection measurements, from which the fracture toughness can be inferred. The test method was used to obtain interfacial fracture strength of 0.8-1.9 J/m{sup 2} for 1.5-1.7 {mu}m electroplated copper on natively oxidized silicon substrates. - Highlights: Black-Right-Pointing-Pointer Non-contact magnetic actuation test for interfacial fracture characterization. Black-Right-Pointing-Pointer Applied load is determined through voltage applied to the driving electromagnet. Black-Right-Pointing-Pointer Displacement and delamination propagation is measured using an optical profiler. Black-Right-Pointing-Pointer Critical peel force and peel angle is measured for electroplated Cu thin-film on Si. Black-Right-Pointing-Pointer The measured interfacial fracture energy of Cu/Si interface is 0.8-1.9 J/m{sup 2}.

  5. Feasibility Study of Thin Film Thermocouple Piles

    Science.gov (United States)

    Sisk, R. C.

    2001-01-01

    Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.

  6. Anisotropic Heisenberg model in thin film geometry

    Energy Technology Data Exchange (ETDEWEB)

    Akıncı, Ümit

    2014-01-01

    The effect of the anisotropy in the exchange interaction on the phase diagrams and magnetization behavior of the Heisenberg thin film has been investigated with effective field formulation in a two spin cluster using the decoupling approximation. Phase diagrams and magnetization behaviors have been obtained for several different cases, by grouping the systems in accordance with, whether the surfaces/interior of the film has anisotropic exchange interaction or not. - Highlights: • Phase diagrams of the anisotropic Heisenberg model on the thin film obtained • Dependence of the critical properties on the film thickness obtained • Effect of the anisotropy on the magnetic properties obtained.

  7. NLO properties of functionalized DNA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krupka, Oksana [University d' Angers, Laboratoire POMA CNRS UMR 6136, France, 2 Bd. Lavoisier, 49045 (France)], E-mail: okrupka@mail.ru; El-ghayoury, Abdelkrim [University d' Angers, UFR Sciences, Laboratoire CIMMA UMR CNRS 6200, 2 Bd. Lavoisier, 49045 (France); Rau, Ileana; Sahraoui, Bouchta [University d' Angers, Laboratoire POMA CNRS UMR 6136, France, 2 Bd. Lavoisier, 49045 (France); Grote, James G. [Air Force Research Laboratory Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, 3005 Hobson Way, Dayton, OH 45433-7707 (United States); Kajzar, Francois [University d' Angers, Laboratoire POMA CNRS UMR 6136, France, 2 Bd. Lavoisier, 49045 (France)

    2008-10-31

    In this paper we investigate the third-order nonlinear optical properties of spin deposited thin films of DNA-based complexes using the optical third harmonic generation (THG) technique at a fundamental wavelength of 1064 nm. We found that the third-order susceptibility, {chi}{sup (3)}(- 3{omega};{omega},{omega},{omega}), of DNA-based films was about one order of magnitude larger than that of our reference, a pure silica slab. In thin films doped with 5% of the chromophore disperse red 1 (DR1), a two order of magnitude larger value of {chi}{sup (3)}(- 3{omega};{omega},{omega},{omega}) was observed.

  8. Insect thin films as solar collectors.

    Science.gov (United States)

    Heilman, B D; Miaoulis, L N

    1994-10-01

    A numerical method for simulation of microscale radiation effects in insect thin-film structures is described. Accounting for solar beam and diffuse radiation, the model calculates the reflectivity and emissivity of such structures. A case study examines microscale radiation effects in butterfuly wings, and results reveal a new function of these multilayer thin films: thermal regulation. For film thicknesses of the order of 0.10 µm, solar absorption levels vary by as much as 25% with small changes in film thickness; for certain existing structures, absorption levels reach 96%., This is attributed to the spectral distribution of the reflected radiation, which consists of a singular reflectance peak within the solar spectrum.

  9. Micro-sensor thin-film anemometer

    Science.gov (United States)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)

    1996-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  10. Advances in thin-film solar cells

    CERN Document Server

    Dharmadasa, I M

    2012-01-01

    This book concentrates on the latest developments in our understanding of solid-state device physics. The material presented is mainly experimental and based on CdTe thin-film solar cells. It extends these new findings to CIGS thin-film solar cells and presents a new device design based on graded bandgap multilayer solar cells. This design has been experimentally tested using the well-researched GaAs/AlGaAs system and initial devices have shown impressive device parameters. These devices are capable of absorbing all radiation (UV, visible, and infra-red) within the solar spectrum and combines

  11. Emittance Theory for Thin Film Selective Emitter

    Science.gov (United States)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  12. Preparation and characterization of thin films of the superconductor FeSe

    Energy Technology Data Exchange (ETDEWEB)

    Venzmer, Eike; Kronenberg, Alexander; Haaf, Sebastian ten; Jourdan, Martin [Institut fuer Physik, Johannes Gutenberg-Universitaet, Staudingerweg 7, 55128 Mainz (Germany); Maletz, Janek [IFW-Dresden, Institute for Solid State Research, PO Box 270116, D-01171 Dresden (Germany)

    2013-07-01

    The recently discovered class of iron pnictide compounds features a presumably unconventional mechanism of superconductivity. We investigate the iron chalcogenide FeSe, which is the structurally simplest representative of this class of materials. Epitaxial thin films are prepared by rf-sputtering from a stoichiometric FeSe target and alternatively by co-sputtering from separate Fe and Se targets. Both methods yield superconducting epitaxial thin films on MgO(100) as well as on YAlO{sub 3}(010) substrates. The influence of deposition rates and substrate temperature on phase formation, sample homogeneity, morphology and electronic transport properties are discussed. A comparison with the properties of previously prepared by MBE is presented. The main advantage of the sputter deposited samples is an improved morphology which is promising for the future integration in planar tunneling junctions for spectroscopic investigations.

  13. RAPID COMMUNICATION: ? thin film bilayers grown by pulsed laser ablation deposition

    Science.gov (United States)

    Singh, S. K.; Palmer, S. B.; McK Paul, D.; Lees, M. R.

    1996-09-01

    We have grown superconducting thin films of 0022-3727/29/9/044/img2 (Y-123) on 0022-3727/29/9/044/img3 (PCMO) buffer layers and PCMO overlayers on Y-123 thin films using pulsed laser ablation deposition. For both sets of films below 50 K, the Y-123 layer is superconducting and the zero-field cooled PCMO layer is insulating. The application of a magnetic field of 8 T results in an insulator - metal transition in the PCMO layer. This field-induced conducting state is stable in zero magnetic field at low temperature. The PCMO layer can be returned to an insulating state by annealing above 100 K. This opens the way for the construction of devices incorporating these oxide materials in which the electronic properties of key components such as the substrate or the barrier layer can be switched in a controlled way by the application of a magnetic field.

  14. Manipulating Josephson junctions in thin-films by nearby vortices

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, V G; Mints, R G

    2014-07-01

    It is shown that a vortex trapped in one of the banks of a planar edge-type Josephson junction in a narrow thin-film superconducting strip can change drastically the dependence of the junction critical current on the applied field, I-c(H). When the vortex is placed at certain discrete positions in the strip middle, the pattern I-c(H) has zero at H = 0 instead of the traditional maximum of '0-type' junctions. The number of these positions is equal to the number of vortices trapped at the same location. When the junction-vortex separation exceeds similar to W, the strip width, I-c(H) is no longer sensitive to the vortex presence. The same is true for any separation if the vortex approaches the strip edges. (C) 2014 Elsevier B.V. All rights reserved.

  15. Microstrip coupling techniques applied to thin-film Josephson junctions at microwave frequencies

    DEFF Research Database (Denmark)

    Sørensen, O H; Pedersen, Niels Falsig; Mygind, Jesper

    1981-01-01

    Three different schemes for coupling to low impedance Josephson devices have been investigated. They all employ superconducting thin-film microstrip circuit techniques. The schemes are: (i) a quarterwave stepped impedance transformer, (ii) a microstrip resonator, (iii) an adjustable impedance...... transformer in inverted microstrip. Using single microbridges to probe the performance we found that the most primising scheme in terms of coupling efficiency and useful bandwidth was the adjustable inverted microstrip transformer....

  16. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  17. Thin films for micro solid oxide fuel cells

    Science.gov (United States)

    Beckel, D.; Bieberle-Hütter, A.; Harvey, A.; Infortuna, A.; Muecke, U. P.; Prestat, M.; Rupp, J. L. M.; Gauckler, L. J.

    Thin film deposition as applied to micro solid oxide fuel cell (μSOFC) fabrication is an emerging and highly active field of research that is attracting greater attention. This paper reviews thin film (thickness ≤1 μm) deposition techniques and components relevant to SOFCs including current research on nanocrystalline thin film electrolyte and thin-film-based model electrodes. Calculations showing the geometric limits of μSOFCs and first results towards fabrication of μSOFCs are also discussed.

  18. Characterization of fully functional spray-on antibody thin films

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Jhon [Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-5250 (United States); Magaña, Sonia; Lim, Daniel V. [Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-7115 (United States); Schlaf, Rudy, E-mail: schlaf@eng.usf.edu [Department of Electrical Engineering, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-5101 (United States)

    2014-02-15

    The authors recently demonstrated that fully functional Escherichia coli O157:H7 antibody thin films can be prepared using a simple pneumatic nebulizer on glass surface [1]. This paper focuses on the investigation of the morphology and physical properties of these films with the aim to better understand their performance. A series of E. coli O157:H7 antibody spray-on thin films were investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), immunoassays, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), fluorescence microscopy, atomic force microscope (AFM) and contact angle analysis. These data were compared to measurements on films prepared with the biotin–avidin covalent bonding scheme. The investigation showed that films created by a 2 min pneumatic spray deposition time can capture antigens similar as the avidin–biotin wet-chemical method. The results also suggests that an influential factor for the comparable capture cell ability between sprayed and covalent films is an increased antibody surface coverage for the sprayed films (non-equilibrium technique), which compensates for the lack of its antibody orientation. There was no significant antibody denaturation detected on any of the sprayed films. Both techniques led to the formation of cluster-aggregates, a factor that seems unavoidable due to the natural tendency of protein to cluster. The avidin–biotin bridge films generally had a higher roughness, which manifested itself in a higher wettability compared to the sprayed films.

  19. A thin-film magnetoresistive angle detector

    NARCIS (Netherlands)

    Eijkel, Kees J.M.; Wieberdink, Johan W.; Fluitman, Jan H.J; Popma, Theo J.A.; Groot, Peter; Leeuwis, Henk

    1990-01-01

    An overview is given of the results of our research on a contactless angle detector based on the anisotropic magnetoresistance effect (AMR effect) in a permalloy thin film. The results of high-temperature annealing treatment of the pemalloy film are discussed. Such a treatment suppresses the effects

  20. Amorphous silicon for thin-film transistors

    NARCIS (Netherlands)

    Schropp, Rudolf Emmanuel Isidore

    1987-01-01

    Hydrogenated amorphous silicon (a-Si:H) has considerable potential as a semiconducting material for large-area photoelectric and photovoltaic applications. Moreover, a-Si:H thin-film transistors (TFT’s) are very well suited as switching devices in addressable liquid crystal display panels and addres

  1. Electrostatic Discharge Effects in Thin Film Transistors

    NARCIS (Netherlands)

    Golo, Natasa

    2002-01-01

    Although amorphous silicon thin film transistors (α-Si:H TFT’s) have a very low electron mobility and pronounced instabilities of their electrical characteristics, they are still very useful and they have found their place in the semiconductors industry, as they possess some very good properties: th

  2. Thin-Film Solid Oxide Fuel Cells

    Science.gov (United States)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  3. Intelligent Processing of Ferroelectric Thin Films

    Science.gov (United States)

    1994-05-31

    unsatisfactory. To detect the electroopic effects of thin films deposited on opaque substrates a waveguide refractometry of category 3 was reported. An advantage...of the waveguide refractometry is its capability of resolving the change in ordinary index from the change in the extraordinary index. Some successes

  4. Recent progress in thin film organic photodiodes

    NARCIS (Netherlands)

    Inganäs, Olle; Roman, Lucimara S.; Zhang, Fengling; Johansson, D.M.; Andersson, M.R.; Hummelen, J.C.

    2001-01-01

    We review current developments in organic photodiodes, with special reference to multilayer thin film optics, and modeling of organic donor-acceptor photodiodes. We indicate possibilities to enhance light absorption in devices by nanopatterning as well as by blending, and also discuss materials

  5. Recent progress in thin film organic photodiodes

    NARCIS (Netherlands)

    Inganäs, Olle; Roman, Lucimara S.; Zhang, Fengling; Johansson, D.M.; Andersson, M.R.; Hummelen, J.C.

    2001-01-01

    We review current developments in organic photodiodes, with special reference to multilayer thin film optics, and modeling of organic donor-acceptor photodiodes. We indicate possibilities to enhance light absorption in devices by nanopatterning as well as by blending, and also discuss materials scie

  6. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and prem

  7. Exotic thin films made from cobalt ferrite

    NARCIS (Netherlands)

    Lisfi, A.; Lisfi, A.; Williams, C.M.; Johnson, A.; Chang, P.; Corcoran, H.; Nguyen, L.T.; Lodder, J.C.; Morgan, W.; Soohoo, R.F.

    2005-01-01

    Epitaxial CoFe2O4 thin films have been grown by PLD on (100) MgO substrate. Two types of spin-reorientation have been observed in such films upon annealing or increasing the film-thickness. In the as-deposited layers and at low thickness the easy axis is confined to the normal to the film plane

  8. Polarization Fatigue in Ferroelectric Thin Films

    Institute of Scientific and Technical Information of China (English)

    王忆; K.H.WONG; 吴文彬

    2002-01-01

    The fatigue problem in ferroelectric thin films is investigated based on the switched charge per unit area versus switching cycles. The temperature, dielectric permittivity, voltage bias, frequency and defect valence dependent switching polarization properties are calculated quantitatively with an extended Dawber-Scott model. The results are in agreement with the recent experiments.

  9. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.

    2007-01-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic inst

  10. Rechargeable Thin-film Lithium Batteries

    Science.gov (United States)

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  11. Flexible thin-film NFC tags

    NARCIS (Netherlands)

    Myny, K.; Tripathi, A.K.; Steen, J.L. van der; Cobb, B.

    2015-01-01

    Thin-film transistor technologies have great potential to become the key technology for leafnode Internet of Things by utilizing the NFC protocol as a communication medium. The main requirements are manufacturability on flexible substrates at a low cost while maintaining good device performance char

  12. Bauschinger effect in unpassivated freestanding thin films

    NARCIS (Netherlands)

    Shishvan, S.S.; Nicola, L.; Van der Giessen, E.

    2010-01-01

    Two-dimensional (2D) discrete dislocation plasticity simulations are carried out to investigate the Bauschinger effect (BE) in freestanding thin films. The BE in plastic flow of polycrystalline materials is generally understood to be caused by inhomogeneous deformation during loading, leading to res

  13. Flexoelectricity in barium strontium titanate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiao Tong University, Xi' an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  14. Stabilized thin film heterostructure for electrochemical applications

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provides a method for the formation of a thin film multi-layered heterostructure upon a substrate, said method comprising the steps of: a. providing a substrate; b. depositing a buffer layer upon said substrate, said buffer layer being a layer of stable ionic conductor (B); c. depos...

  15. Resistance contact thin-film resistor

    Directory of Open Access Journals (Sweden)

    Spirin V. G.

    2008-10-01

    Full Text Available The analytical model of the calculation of the contact resistance of the thin-film resistor is Offered. The Explored dependency of the contact resistance from wedge of the pickling. The Considered influence adhesive layer on warm-up stability of the resistor. They Are Received formulas of the calculation systematic and casual inaccuracy contributed by contact resistance.

  16. Electrical characterization of thin film ferroelectric capacitors

    NARCIS (Netherlands)

    Tiggelman, M.P.J.; Reimann, K.; Klee, M.; Beelen, D.; Keur, W.; Schmitz, Jurriaan; Hueting, Raymond Josephus Engelbart

    2006-01-01

    Tunable capacitors can be used to facilitate the reduction of components in wireless technologies. The tunability of the capacitors is caused by the sensitivity of the relative dielectric constant to a change in polarization with electric field. Thin film ferroelectric MIM capacitors on silicon

  17. Electrical analysis of niobium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Graça, M.P.F., E-mail: mpfg@ua.pt [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Saraiva, M. [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal); Freire, F.N.A. [Mechanics Engineering Department, Ceará Federal University, Fortaleza (Brazil); Valente, M.A.; Costa, L.C. [I3N & Physics Department, Aveiro University, Campus Universitário de Santiago, 3810-193 Aveiro (Portugal)

    2015-06-30

    In this work, a series of niobium oxide thin films was deposited by reactive magnetron sputtering. The total pressure of Ar/O{sub 2} was kept constant at 1 Pa, while the O{sub 2} partial pressure was varied up to 0.2 Pa. The depositions were performed in a grounded and non-intentionally heated substrate, resulting in as-deposited amorphous thin films. Raman spectroscopy confirmed the absence of crystallinity. Dielectric measurements as a function of frequency (40 Hz–110 MHz) and temperature (100 K–360 K) were performed. The dielectric constant for the film samples with thickness (d) lower than 650 nm decreases with the decrease of d. The same behaviour was observed for the conductivity. These results show a dependence of the dielectric permittivity with the thin film thickness. The electrical behaviour was also related with the oxygen partial pressure, whose increment promotes an increase of the Nb{sub 2}O{sub 5} stoichiometry units. - Highlights: • Niobium oxide thin films were deposited by reactive magnetron sputtering. • XRD showed a phase change with the increase of the P(O{sub 2}). • Raman showed that increasing P(O{sub 2}), Nb{sub 2}O{sub 5} amorphous increases. • Conductivity tends to decrease with the increase of P(O{sub 2}). • Dielectric analysis indicates the inexistence of preferential grow direction.

  18. Surface roughness evolution of nanocomposite thin films

    NARCIS (Netherlands)

    Turkin, A; Pei, Y.T.; Shaha, K.P.; Chen, C.Q.; Vainchtein, David; Hosson, J.Th.M. De

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growin

  19. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  20. Potentiostatic Deposition and Characterization of Cuprous Oxide Thin Films

    OpenAIRE

    2013-01-01

    Electrodeposition technique was employed to deposit cuprous oxide Cu2O thin films. In this work, Cu2O thin films have been grown on fluorine doped tin oxide (FTO) transparent conducting glass as a substrate by potentiostatic deposition of cupric acetate. The effect of deposition time on the morphologies, crystalline, and optical quality of Cu2O thin films was investigated.

  1. Monte Carlo simulation of magnetic nanostructured thin films

    Institute of Scientific and Technical Information of China (English)

    Guan Zhi-Qiang; Yutaka Abe; Jiang Dong-Hua; Lin Hai; Yoshitake Yamazakia; Wu Chen-Xu

    2004-01-01

    @@ Using Monte Carlo simulation, we have compared the magnetic properties between nanostructured thin films and two-dimensional crystalline solids. The dependence of nanostructured properties on the interaction between particles that constitute the nanostructured thin films is also studied. The result shows that the parameters in the interaction potential have an important effect on the properties of nanostructured thin films at the transition temperatures.

  2. Practical design and production of optical thin films

    CERN Document Server

    Willey, Ronald R

    2002-01-01

    Fundamentals of Thin Film Optics and the Use of Graphical Methods in Thin Film Design Estimating What Can Be Done Before Designing Fourier Viewpoint of Optical Coatings Typical Equipment for Optical Coating Production Materials and Process Know-How Process Development Monitoring and Control of Thin Film Growth Appendix: Metallic and Semiconductor Material Graphs Author IndexSubject Index

  3. Growth induced magnetic anisotropy in crystalline and amorphous thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, F.

    1998-07-20

    The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and Ni-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials. A brief summary of work done in each area is given.

  4. Tailoring electronic structure of polyazomethines thin films

    Directory of Open Access Journals (Sweden)

    J. Weszka

    2010-09-01

    Full Text Available Purpose: The aim of this work is to show how electronic properties of polyazomethine thin films deposited by chemical vapor deposition method (CVD can be tailored by manipulating technological parameters of pristine films preparation as well as modifying them while the as-prepared films put into iodine atmosphere.Design/methodology/approach: The recent achievements in the field of designing and preparation methods to be used while preparing polymer photovoltaic solar cells or optoelectronic devices.Findings: The method used allow for pure pristine polymer thin films to be prtepared without any unintentional doping taking place during prepoaration methods. This is a method based on polycondensation process, where polymer chain developing is running directly due to chemical reaction between molecules of bifunctional monomers. The method applied to prepare thin films of polyazomethines takes advantage of monomer transporting by mreans of neutral transport agent as pure argon is.Research limitations/implications: The main disadvantage of alternately conjugated polymers seems to be quite low mobility of charge carrier that is expected to be a consequence of their backbone being built up of sp2 hybridized carbon and nitrogen atoms. Varying technological conditions towards increasing reagents mass transport to the substrate is expected to give such polyazomethine thin films organization that phenylene rin stacking can result in special π electron systems rather than linear ones as it is the case.Originality/value: Our results supply with original possibilities which can be useful in ooking for good polymer materials for optoelectronic and photovoltaic applications. These results have been gained on polyazomethine thin films but their being isoelectronic counterpart to widely used poly p-phenylene vinylene may be very convenient to develop high efficiency polymer solar cells

  5. Workshop on thin film thermal conductivity measurements

    Science.gov (United States)

    Feldman, Albert; Balzaretti, Naira M.; Guenther, Arthur H.

    1998-04-01

    On a subject of considerable import to the laser-induced damage community, a two day workshop on the topic, Thin Film Thermal Conductivity Measurement was held as part of the 13th Symposium on Thermophysical Properties at the University of Colorado in Boulder CO, June 25 and 26, 1997. The Workshop consisted of 4 sessions of 17 oral presentations and two discussion sessions. Two related subjects of interest were covered; 1) methods and problems associated with measuring thermal conductivity ((kappa) ) of thin films, and 2) measuring and (kappa) of chemical vapor deposited (CVD) diamond. On the subject of thin film (kappa) measurement, several recently developed imaginative techniques were reviewed. However, several authors disagreed on how much (kappa) in a film differs from (kappa) in a bulk material of the same nominal composition. A subject of controversy was the definition of an interface. In the first discussion session, several questions were addressed, a principal one being, how do we know that the values of (kappa) we obtain are correct and is there a role for standards in thin film (kappa) measurement. The second discussion session was devoted to a round-robin interlaboratory comparison of (kappa) measurements on a set of CVD diamond specimens and several other specimens of lower thermal conductivity. Large interlaboratory differences obtained in an earlier round robin had been attributed to specimen inhomogeneity. Unfortunately, large differences were also observed in the second round robin even though the specimens were more homogenous. There was good consistency among the DC measurements, however, the AC measurements showed much greater variability. There was positive feedback from most of the attenders regarding the Workshop with nearly all respondents recommending another Workshop in three or fewer years. There was general recognition that thin film thermal conductivity measurements are important for predicting the resistance of optical coating

  6. Transport and Magnetism in Bulk and Thin Film Strontium Titanate

    Science.gov (United States)

    Ambwani, Palak

    SrTiO3 is a wide band-gap perovskite oxide semiconductor that is widely investigated in the bulk form, due to its remarkable electronic properties. These properties arise from its quantum paraelectric nature which enables unique features, such as, a high-mobility low-density metallic state, quantum transport in an unusual limit, and the most dilute superconducting state thus reported. Recent advances in deposition of oxide thin films and heterostructures have further led to some remarkable observations, such as, the strain-enhancement of mobility in doped thin films of SrTiO3, and the presence of 2D electron gases at interfaces and in delta-doped layers. The presence of magnetic moments and their possible ordering, and the simultaneous observation of quantum oscillations and superconductivity, have been reported in these 2D electron gases. While magnetism has been observed in heterostructures of SrTiO3 , there have been limited reports on magnetism in bulk SrTiO3. The first part of this thesis (Chapter 3) discusses how circularly polarized light can induce an extremely long-lived magnetic moment in slightly oxygen-deficient but otherwise nominally pure SrTiO3-delta bulk crystals. These magnetic signals, which are induced at zero applied magnetic field and at low temperatures below ˜ 18 K, can be controlled in both magnitude and sign by means of the circular polarization and wavelength of sub-bandgap illumination (400-500 nm), and point to the existence of optically polarizable VO-related complexes in the forbidden gap of SrTiO 3-delta, rather than collective or long-range magnetic order. The methods used to detect optically induced magnetization are also discussed (Appendix A). The phenomenal progress reported in thin films and heterostructures of SrTiO3 has been possible only by precise control of stoichiometry and defect density in SrTiO3 using techniques such as oxide/LASER MBE or high-temperature PLD. The next part of the thesis (Chapter 4) demonstrates that

  7. Multiscale numerical study on ferroelectric nonlinear response of PZT thin films (Conference Presentation)

    Science.gov (United States)

    Wakabayashi, Hiroki; Uetsuji, Yasutomo; Tsuchiya, Kazuyoshi

    2017-06-01

    PZT thin films have excellent performance in deformation precision and response speed, so it is used widely for actuators and sensors of Micro Electro Mechanical System (MEMS). Although PZT thin films outputs large piezoelectricity at morphotropic phase bounfary (MPB), it shows a complicated hysteresis behavior caused by domain switching and structural phase transition between tetragonal and rhombohedral. In general, PZT thin films have some characteristic crystal morphologies. Additionally mechanical strains occur by lattice mismatch with substrate. Therefore it is important for fabrication and performance improvement of PZT thin films to understand the relation between macroscopic hysteresis response and microstructural changes. In this study, a multiscale nonlinear finite element simulation was proposed for PZT thin films at morphotropic phase boundary (MPB) on the substrate. The homogenization theory was employed for scale-bridging between macrostructure and microstructure. Figure 1 shows the proposed multiscale nonlinear simulation [1-3] based on the homogenization theory. Macrostructure is a homogeneous structure to catch the whole behaviors of actuators and sensors. And microstructure is a periodic inhomogeneous structure consisting of domains and grains. Macrostructure and microstructure are connected perfectly by homogenization theory and are analyzed by finite element method. We utilized an incremental form of fundamental constitutive law in consideration with physical property change caused by domain switching and structural phase transition. The developed multiscale finite element method was applied to PZT thin films with lattice mismatch strain on the substrate, and the relation between the macroscopic hysteresis response and microscopic domain switching and structural phase transition were investigated. Especially, we discuss about the effect of crystal morphologies and lattice mismatch strain on hysteresis response.

  8. Thin film bismuth iron oxides useful for piezoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  9. The physics of thin film optical spectra an introduction

    CERN Document Server

    Stenzel, Olaf

    2016-01-01

    The book bridges the gap between fundamental physics courses (such as optics, electrodynamics, quantum mechanics and solid state physics) and highly specialized literature on the spectroscopy, design, and application of optical thin film coatings. Basic knowledge from the above-mentioned courses is therefore presumed. Starting from fundamental physics, the book enables the reader derive the theory of optical coatings and to apply it to practically important spectroscopic problems. Both classical and semiclassical approaches are included. Examples describe the full range of classical optical coatings in various spectral regions as well as highly specialized new topics such as rugate filters and resonant grating waveguide structures.The second edition has been updated and extended with respect to probing matter in different spectral regions, homogenous and inhomogeneous line broadening mechanisms and the Fresnel formula for the effect of planar interfaces.

  10. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  11. Modification of a YBa2Cu3O7-δ Thin Film Using an Atomic Force Microscope

    Institute of Scientific and Technical Information of China (English)

    尤立星; 尹晓波; 冯一军; 杨森祖; 康琳; 王牧; 吴培亨

    2002-01-01

    A YBa2Cu3O7-δ thin film is modified by a probe electric field of an atomic force microscope to form a ridge with the width of only a grain cell. The modification varies with the operation parameters of the bias voltage,the moving velocity of the probe and the ambient humidity. Energy dispersive spectroscopy analysis shows only oxygen deficiency in the modified YBCO thin film. As a result, the suppressed superconductivity was found in the junction crossing the ridge.

  12. Epitaxial LaFeAsO{sub 1-x}F{sub x} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kidszun, M; Haindl, S; Reich, E; Haenisch, J; Iida, K; Schultz, L; Holzapfel, B, E-mail: M.Kidszun@ifw-dresden.d [IFW Dresden, Institute for Metallic Materials, PO Box 270116, D-01171 Dresden (Germany)

    2010-02-15

    Superconducting and epitaxially grown LaFeAsO{sub 1-x}F{sub x} thin films were successfully prepared on (001)-oriented LaAlO{sub 3} substrates using pulsed laser deposition. The prepared thin films show exclusively a single in-plane orientation with the epitaxial relation (001)[100]||(001)[100] and a full width at half-maximum value of 1{sup 0}. Furthermore, resistive measurement of the superconducting transition temperature revealed a T{sub c,90%} of 25 K with a high residual resistive ratio of 6.8. The preparation technique applied, standard thin film pulsed laser deposition at room temperature in combination with a subsequent post-annealing process, is suitable for fabrication of high quality LaFeAsO{sub 1-x}F{sub x} thin films. A high upper critical field of 76.2 T was evaluated for magnetic fields applied perpendicular to the c-axis and the anisotropy was calculated to be 3.3 assuming single band superconductivity. (rapid communication)

  13. Electrostatic Discharge Effects on Thin Film Resistors

    Science.gov (United States)

    Sampson, Michael J.; Hull, Scott M.

    1999-01-01

    Recently, open circuit failures of individual elements in thin film resistor networks have been attributed to electrostatic discharge (ESD) effects. This paper will discuss the investigation that came to this conclusion and subsequent experimentation intended to characterize design factors that affect the sensitivity of resistor elements to ESD. The ESD testing was performed using the standard human body model simulation. Some of the design elements to be evaluated were: trace width, trace length (and thus width to length ratio), specific resistivity of the trace (ohms per square) and resistance value. However, once the experiments were in progress, it was realized that the ESD sensitivity of most of the complex patterns under evaluation was determined by other design and process factors such as trace shape and termination pad spacing. This paper includes pictorial examples of representative ESD failure sites, and provides some options for designing thin film resistors that are ESD resistant. The risks of ESD damage are assessed and handling precautions suggested.

  14. Triboelectric Nanogenerator Using Lithium Niobate Thin Film

    Science.gov (United States)

    Geng, Juan; Zhang, Xinzheng; Kong, Yongfa; Xu, Jingjun

    2017-06-01

    We present a triboelectric nanogenerator (TENG) using a lithium niobate thin film, as one of the triboelectric pairs which was grown on a silicon substrate by laser molecule beam epitaxy (LMBE). The designed TENG has the advantages of simple structure, easy fabrication, small size (1.1*1.0*0.15 cm3). An open-circuit voltage of 136 V and a short-circuit current of 8.40 μA have been achieved. The maximum output power is 307.5μW under the load resistance of 10MΩ. This is the first time to use lithium niobate thin film as one of the friction pair, which may make it possible to expand the application of triboelectric nanogenerator to optical field.

  15. Thin Films of Polypyrrole on Particulate Aluminum

    Science.gov (United States)

    2009-02-01

    C H R I S T O P H E R V E T T E R , X I A O N I N G Q I , S U B R A M A N Y A M V . K A S I S O M A Y A J U L A , A N D Thin Films of Polypyrrole on...1. REPORT DATE FEB 2009 2. REPORT TYPE 3. DATES COVERED 00-00-2009 to 00-00-2009 4. TITLE AND SUBTITLE Thin Films of Polypyrrole on...layer 3 Why Polypyrrole /Flake? Polypyrrole  Poor mechanical properties  Poor adhesion  Solubility issues  Continuous layer needed 4 Polypyrrole Coated

  16. Electrostatic thin film chemical and biological sensor

    Science.gov (United States)

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  17. Magnetite thin films: A simulational approach

    Energy Technology Data Exchange (ETDEWEB)

    Mazo-Zuluaga, J. [Grupo de Estado Solido y Grupo de Instrumentacion Cientifica y Microelectronica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia)]. E-mail: jomazo@fisica.udea.edu.co; Restrepo, J. [Grupo de Estado Solido y Grupo de Instrumentacion Cientifica y Microelectronica, Universidad de Antioquia, A.A. 1226 Medellin (Colombia)

    2006-10-01

    In the present work the study of the magnetic properties of magnetite thin films is addressed by means of the Monte Carlo method and the Ising model. We simulate LxLxd magnetite thin films (d being the film thickness and L the transversal linear dimension) with periodic boundary conditions along transversal directions and free boundary conditions along d direction. In our model, both the three-dimensional inverse spinel structure and the interactions scheme involving tetrahedral and octahedral sites have been considered in a realistic way. Results reveal a power-law dependence of the critical temperature with the film thickness accordingly by an exponent {nu}=0.81 and ruled out by finite-size scaling theory. Estimates for the critical exponents of the magnetization and the specific heat are finally presented and discussed.

  18. MISSE 5 Thin Films Space Exposure Experiment

    Science.gov (United States)

    Harvey, Gale A.; Kinard, William H.; Jones, James L.

    2007-01-01

    The Materials International Space Station Experiment (MISSE) is a set of space exposure experiments using the International Space Station (ISS) as the flight platform. MISSE 5 is a co-operative endeavor by NASA-LaRC, United Stated Naval Academy, Naval Center for Space Technology (NCST), NASA-GRC, NASA-MSFC, Boeing, AZ Technology, MURE, and Team Cooperative. The primary experiment is performance measurement and monitoring of high performance solar cells for U.S. Navy research and development. A secondary experiment is the telemetry of this data to ground stations. A third experiment is the measurement of low-Earth-orbit (LEO) low-Sun-exposure space effects on thin film materials. Thin films can provide extremely efficacious thermal control, designation, and propulsion functions in space to name a few applications. Solar ultraviolet radiation and atomic oxygen are major degradation mechanisms in LEO. This paper is an engineering report of the MISSE 5 thm films 13 months space exposure experiment.

  19. Interfacial Effects on Pentablock Ionomer Thin Films

    Science.gov (United States)

    Etampawala, Thusitha; Ratnaweera, Dilru; Osti, Naresh; Shrestha, Umesh; Perahia, Dvora; Majewski, Jaroslaw

    2011-03-01

    The interfacial behavior of multi block copolymer thin films results from a delicate balance between inherent phase segregation due to incompatibility of the blocks and the interactions of the individual blocks with the interfaces. Here in we report a study of thin films of ABCBA penta block copolymers, anionically synthesized, comprising of centered randomly sulfonated polystyrene block to which rubbery poly-ethylenebutalene is connected, terminated by blocks of poly-t-butylstyrene, kindly provided by Kraton. AFM and neutron reflectometry studies have shown that the surface structure of pristine films depends on film thickness and ranges from trapped micelles to thin layered films. Annealing above Tg for the styrene block results in rearrangements into relatively featureless air interface. Neutron reflectivity studies have shown that annealed films forms layers whose plane are parallel to the solid substrate with the bulky block at the air interface and the ionic block at the solid interface.

  20. Sprayed lanthanum doped zinc oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bouznit, Y., E-mail: Bouznit80@gmail.com [Laboratory of Materials Study, Jijel University, Jijel 18000 (Algeria); Beggah, Y. [Laboratory of Materials Study, Jijel University, Jijel 18000 (Algeria); Ynineb, F. [Laboratory of Thin Films and Interface, University Mentouri, Constantine 25000 (Algeria)

    2012-01-15

    Lanthanum doped zinc oxide thin films were deposited on soda-lime glass substrates using a pneumatic spray pyrolysis technique. The films were prepared using different lanthanum concentrations at optimum deposition parameters. We studied the variations in structural, morphological and optical properties of the samples due to the change of doping concentration in precursor solutions. X-ray diffraction (XRD) patterns show that pure and La-doped ZnO thin films are highly textured along c-axis perpendicular to the surface of the substrate. Scanning electron micrographs show that surface morphology of ZnO films undergoes a significant change according to lanthanum doping. All films exhibit a transmittance higher than 80% in the visible region.

  1. Sprayed lanthanum doped zinc oxide thin films

    Science.gov (United States)

    Bouznit, Y.; Beggah, Y.; Ynineb, F.

    2012-01-01

    Lanthanum doped zinc oxide thin films were deposited on soda-lime glass substrates using a pneumatic spray pyrolysis technique. The films were prepared using different lanthanum concentrations at optimum deposition parameters. We studied the variations in structural, morphological and optical properties of the samples due to the change of doping concentration in precursor solutions. X-ray diffraction (XRD) patterns show that pure and La-doped ZnO thin films are highly textured along c-axis perpendicular to the surface of the substrate. Scanning electron micrographs show that surface morphology of ZnO films undergoes a significant change according to lanthanum doping. All films exhibit a transmittance higher than 80% in the visible region.

  2. Thin Film Electrodes for Rare Event Detectors

    Science.gov (United States)

    Odgers, Kelly; Brown, Ethan; Lewis, Kim; Giordano, Mike; Freedberg, Jennifer

    2017-01-01

    In detectors for rare physics processes, such as neutrinoless double beta decay and dark matter, high sensitivity requires careful reduction of backgrounds due to radioimpurities in detector components. Ultra pure cylindrical resistors are being created through thin film depositions onto high purity substrates, such as quartz glass or sapphire. By using ultra clean materials and depositing very small quantities in the films, low radioactivity electrodes are produced. A new characterization process for cylindrical film resistors has been developed through analytic construction of an analogue to the Van Der Pauw technique commonly used for determining sheet resistance on a planar sample. This technique has been used to characterize high purity cylindrical resistors ranging from several ohms to several tera-ohms for applications in rare event detectors. The technique and results of cylindrical thin film resistor characterization will be presented.

  3. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. [ed.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  4. Polycrystalline thin films FY 1992 project report

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. (ed.)

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  5. Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se₂/ZnS thin film solar cells.

    Science.gov (United States)

    Tan, Xiao-Hui; Chen, Yu; Liu, Ye-Xiang

    2014-05-20

    Solution processed silver nanowire indium-tin oxide nanoparticle (AgNW-ITONP) composite thin films were successfully applied as the transparent electrodes for Cu(In,Ga)Se₂ (CIGS) thin film solar cells with ZnS buffer layers. Properties of the AgNW-ITONP thin film and its effects on performance of CIGS/ZnS thin film solar cells were studied. Compared with the traditional sputtered ITO electrodes, the AgNW-ITONP thin films show comparable optical transmittance and electrical conductivity. Furthermore, the AgNW-ITONP thin film causes no physical damage to the adjacent surface layer and does not need high temperature annealing, which makes it very suitable to use as transparent conductive layers for heat or sputtering damage-sensitive optoelectronic devices. By using AgNW-ITONP electrodes, the required thickness of the ZnS buffer layers for CIGS thin film solar cells was greatly decreased.

  6. Magnetotransport Methods to Probe Surface States of Topological Insulator Thin Films and Topological Insulator/Ferromagnet (TI/FM) Heterostructures

    Science.gov (United States)

    Kumar, Raj

    First part of this thesis is focused on the structural and magnetotransport characterization of Bi2Se3 thin films grown by hybrid physical chemical vapor deposition (HPCVD) method. Bi2Se3 thin films were grown by HPCVD on (0001) Al2O3 substrates with high Se vapor pressure to reduce the occurrence of Se vacancies as the main type of defect. Consequently, the carrier concentration was reduced to ˜5.75x1018 cm-3 comparable to reported carrier concentration in Bi2Se3 thin films. Magnetotransport measurements were performed on the films and the data was analyzed for weak anti-localization (WAL) using the Hikami-Larkin-Nagaoka (HLN) model. The estimated alpha and lφ values showed good agreement with the symplectic case of 2-D transport of topological surface states (TSS) in the quantum diffusion regime. The temperature and angular dependence of magnetoresistance indicated a large contribution of the 2-D surface carriers to overall transport properties of Bi2Se 3 thin film. The proximity effect at interface of Bi2Se3 TI thin films and superconducting indium contacts is discussed in the second part of this thesis. Low field magnetotransport measurements were performed on Bi2Se3 TI thin films in quantum diffusion regime using superconducting indium dot contacts. We have exploited the coupling of superconducting Cooper pairs with the spin polarized surface states to probe the TSS of Bi2Se3 TI thin films. Switching in the anisotropic magnetoresistance (AMR) and hysteretic behavior in the magnetoresistance (MR) were observed up to 3.25 K when indium contacts with Tc ˜ 3.40 K were in the superconducting state and vanished at higher temperatures. The magnitude of AMR switching showed a forced current dependence due to current induced spin polarization in Bi2Se3 TI thin films. The cos2(theta) dependence of AMR of the Bi2Se 3 TI thin films was observed up to 3.25 K and ˜160 Oe when indium contacts were in the superconducting state. 2-D surface transport of the TSS was

  7. Rechargeable thin-film lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6-{mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin-film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin-film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin-film lithium batteries.

  8. Incoherent and Laser Photodeposition on Thin Films.

    Science.gov (United States)

    1980-09-01

    mixing system. Both a carbon dioxide and dry chemical fire extinguisher were on hand in case a fire was initiated by the compounds. The dimethvlzinc was...summarizes three months of experimental effort devoted toward the production of thin films by the photodissociation of organometallic molecules containing the...that the threshold wavelength for the photodissociation of both Zn- 0 and Se- (CH3 )2 was approximately 2420A. Consequently, these laser photodeposition

  9. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  10. MOF thin films: existing and future applications.

    Science.gov (United States)

    Shekhah, O; Liu, J; Fischer, R A; Wöll, Ch

    2011-02-01

    The applications and potentials of thin film coatings of metal-organic frameworks (MOFs) supported on various substrates are discussed in this critical review. Because the demand for fabricating such porous coatings is rather obvious, in the past years several synthesis schemes have been developed for the preparation of thin porous MOF films. Interestingly, although this is an emerging field seeing a rapid development a number of different applications on MOF films were either already demonstrated or have been proposed. This review focuses on the fabrication of continuous, thin porous films, either supported on solid substrates or as free-standing membranes. The availability of such two-dimensional types of porous coatings opened the door for a number of new perspectives for functionalizing surfaces. Also for the porous materials themselves, the availability of a solid support to which the MOF-films are rigidly (in a mechanical sense) anchored provides access to applications not available for the typical MOF powders with particle sizes of a few μm. We will also address some of the potential and applications of thin films in different fields like luminescence, QCM-based sensors, optoelectronics, gas separation and catalysis. A separate chapter has been devoted to the delamination of MOF thin films and discusses the potential to use them as free-standing membranes or as nano-containers. The review also demonstrates the possibility of using MOF thin films as model systems for detailed studies on MOF-related phenomena, e.g. adsorption and diffusion of small molecules into MOFs as well as the formation mechanism of MOFs (101 references).

  11. Quantized Nanocrystalline CdTe Thin Films

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Nanocrystalline CdTe thin films were prepared by asymmetric rectangular pulse electrodeposition in organic solution at 110°C. STM image shows a porous network morphology constructed by interconnected spherical CdTe crystallites with a mean diameter of 4.2 nm. A pronounced size quantization was indicated in the action and absorption spectra. Potentials dependence dual conductive behavior was revealed in the photocurrent-potential (I-V) curves.

  12. Surface morphology of thin films polyoxadiazoles

    OpenAIRE

    J. Weszka; M.M. Szindler; M. Chwastek-Ogierman; BRUMA M.; P. Jarka; Tomiczek, B.

    2011-01-01

    urpose: The purpose of this paper was to analyse the surface morphology of thin films polyoxadiazoles. Design/methodology/approach: SSix different polymers which belong to the group of polyoxadiazoles were dissolved in the solvent NMP. Each of these polymer was deposited on a glass substrate and a spin coating method was applied with a spin speed of 1000, 2000 and 3000 rev/min. Changes in surface topography and roughness were observed. An atomic force microscope AFM Park System has been used....

  13. Environmentally stable sputter-deposited thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, D.J.

    1978-03-01

    Accelerated corrosion data are presented for the titanium-silver and chrome-gold thin film metallization systems presently used at Sandia Laboratories. Improvements in corrosion, hence reliability, as a result of interposing a thin intermediate layer of either platinum or palladium are shown. Potentiometric measurements showing the alteration of corrosion potential with the use of palladium for the titanium-silver system are also presented.

  14. Transport properties of nanoperforated Nb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Trezza, M., E-mail: trezza@sa.infn.i [Laboratorio Regionale SuperMat, CNR-INFM Salerno and Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Baronissi I-84081 (Italy); Cirillo, C. [Laboratorio Regionale SuperMat, CNR-INFM Salerno and Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Baronissi (Saudi Arabia) I-84081 (Italy); Prischepa, S.L. [State University of Informatics and RadioElectronics, P. Brovka Street 6, Minsk 220013 (Belarus); Attanasio, C. [Laboratorio Regionale SuperMat, CNR-INFM Salerno and Dipartimento di Fisica ' E. R. Caianiello' , Universita degli Studi di Salerno, Baronissi I-84081 (Italy)

    2010-10-01

    Porous silicon, obtained by electrochemical etching, has been used as a substrate for the growth of nanoperforated Nb thin films. The films, deposited by UHV magnetron sputtering, inherited from the Si substrates their structure, made of holes of 10 nm diameter and of 20 and 40 nm spacing, which provide an artificial pinning lattice. Commensurability effects between the Abrikosov vortex lattice and the artificial array of holes were investigated by transport measurements.

  15. Cathodoluminescence degradation of PLD thin films

    Science.gov (United States)

    Swart, H. C.; Coetsee, E.; Terblans, J. J.; Ntwaeaborwa, O. M.; Nsimama, P. D.; Dejene, F. B.; Dolo, J. J.

    2010-12-01

    The cathodoluminescence (CL) intensities of Y2SiO5:Ce3+, Gd2O2S:Tb3+ and SrAl2O4:Eu2+,Dy3+ phosphor thin films that were grown by pulsed laser deposition (PLD) were investigated for possible application in low voltage field emission displays (FEDs) and other infrastructure applications. Several process parameters (background gas, laser fluence, base pressure, substrate temperature, etc.) were changed during the deposition of the thin films. Atomic force microscopy (AFM) was used to determine the surface roughness and particle size of the different films. The layers consist of agglomerated nanoparticle structures. Samples with good light emission were selected for the electron degradation studies. Auger electron spectroscopy (AES) and CL spectroscopy were used to monitor changes in the surface chemical composition and luminous efficiency of the thin films. AES and CL spectroscopy were done with 2 keV energy electrons. Measurements were done at 1×10-6 Torr oxygen pressure. The formation of different oxide layers during electron bombardment was confirmed with X-ray photoelectron spectroscopy (XPS). New non-luminescent layers that formed during electron bombardment were responsible for the degradation in light intensity. The adventitious C was removed from the surface in all three cases as volatile gas species, which is consistent with the electron stimulated surface chemical reaction (ESSCR) model. For Y2SiO5:Ce3+ a luminescent SiO2 layer formed during the electron bombardment. Gd2O3 and SrO thin films formed on the surfaces of Gd2O2S:Tb3+ and SrAl2O4:Eu2+,Dy3+, respectively, due to ESSCRs.

  16. Silver buffer layers for YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Tel Aviv Univ. (Israel). Center for Technol. Education Holon

    1999-09-01

    A simple economical conventional vacuum system was used for evaporation of YBCO thin films on as-deposited unbuffered Ag layers on MgO substrates. The subsequent heat treatment was carried out in low oxygen partial pressure at a relative low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using dc four probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). (orig.)

  17. Perovskite thin films via atomic layer deposition.

    Science.gov (United States)

    Sutherland, Brandon R; Hoogland, Sjoerd; Adachi, Michael M; Kanjanaboos, Pongsakorn; Wong, Chris T O; McDowell, Jeffrey J; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J; Sargent, Edward H

    2015-01-01

    A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3 NH3 PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm(-1) .

  18. Fracture of nanoporous organosilicate thin films

    Science.gov (United States)

    Gage, David Maxwell

    Nanoporous organosilicate thin films are attractive candidates for a number of emerging technologies, ranging from biotechnology to optics and microelectronics. However, integration of these materials is challenged by their fragile nature and susceptibility to mechanical failure. Debonding and cohesive cracking of the organosilicate film are principal concerns that threaten the reliability and yield of device structures. Despite the intense interest in these materials, there is currently a need for greater understanding of the relationship between glass structure and thermomechanical integrity. The objective of this research was to investigate strategies for improving mechanical performance through variations in film chemistry, process conditions, and pore morphology. Several approaches to effecting improvements in elastic and fracture properties were examined in depth, including post-deposition curing, molecular reinforcement using hydrocarbon network groups, and manipulation of pore size and architecture. Detailed structural characterization was employed along with quantitative fracture mechanics based testing methods. It was shown that ultra-violet irradiation and electron bombardment post-deposition treatments can significantly impact glass structure in ways that cannot be achieved through thermal activation alone. Both techniques demonstrated high porogen removal efficiency and enhanced the glass matrix through increased network connectivity and local bond rearrangements. The increases in network connectivity were achieved predominantly through the replacement of terminal groups, particularly methyl and silanol groups, with Si-O network bonds. Nuclear magnetic resonance spectroscopy was shown to be a powerful and quantitative method for gaining new insight into the underlying cure reactions and mechanisms. It was demonstrated that curing leads to significant progressive enhancement of elastic modulus and adhesive fracture energies due to increased network bond

  19. Nanomechanical and electrical properties of Nb thin films deposited on Pb substrates by pulsed laser deposition as a new concept photocathode for superconductor cavities

    Energy Technology Data Exchange (ETDEWEB)

    Gontad, F. [University of Salento, Department of Mathematics and Physics “E. De Giorgi”, 73100 Lecce (Italy); National Institute of Nuclear Physics, 73100 Lecce (Italy); Lorusso, A., E-mail: antonella.lorusso@le.infn.it [University of Salento, Department of Mathematics and Physics “E. De Giorgi”, 73100 Lecce (Italy); National Institute of Nuclear Physics, 73100 Lecce (Italy); Panareo, M.; Monteduro, A.G.; Maruccio, G. [University of Salento, Department of Mathematics and Physics “E. De Giorgi”, 73100 Lecce (Italy); National Institute of Nuclear Physics, 73100 Lecce (Italy); Broitman, E. [Thin Film Physics Division, IFM, Linköping University, 581-83 Linköping (Sweden); Perrone, A. [University of Salento, Department of Mathematics and Physics “E. De Giorgi”, 73100 Lecce (Italy); National Institute of Nuclear Physics, 73100 Lecce (Italy)

    2015-12-21

    We report a design of photocathode, which combines the good photoemissive properties of lead (Pb) and the advantages of superconducting performance of niobium (Nb) when installed into a superconducting radio-frequency gun. The new configuration is obtained by a coating of Nb thin film grown on a disk of Pb via pulsed laser deposition. The central emitting area of Pb is masked by a shield to avoid the Nb deposition. The nanomechanical properties of the Nb film, obtained through nanoindentation measurements, reveal a hardness of 2.8±0.3 GPa, while the study of the electrical resistivity of the film shows the appearance of the superconducting transitions at 9.3 K and 7.3 K for Nb and Pb, respectively, very close to the bulk material values. Additionally, morphological, structural and contamination studies of Nb thin film expose a very low droplet density on the substrate surface, a small polycrystalline orientation of the films and a low contamination level. These results, together with the acceptable Pb quantum efficiency of 2×10{sup −5} found at 266 nm, demonstrate the potentiality of the new concept photocathode. - Highlights: • Fabrication of hybrid Nb/Pb photocathodes for superconductive photoinjectors. • Nb thin films deposition by pulsed laser ablation on Pb substrates. • Characterization of nanomechanical properties of Nb thin films. • Characterization of electrical properties of Nb thin films.

  20. Crystallization of zirconia based thin films.

    Science.gov (United States)

    Stender, D; Frison, R; Conder, K; Rupp, J L M; Scherrer, B; Martynczuk, J M; Gauckler, L J; Schneider, C W; Lippert, T; Wokaun, A

    2015-07-28

    The crystallization kinetics of amorphous 3 and 8 mol% yttria stabilized zirconia (3YSZ and 8YSZ) thin films grown by pulsed laser deposition (PLD), spray pyrolysis and dc-magnetron sputtering are explored. The deposited films were heat treated up to 1000 °C ex situ and in situ in an X-ray diffractometer. A minimum temperature of 275 °C was determined at which as-deposited amorphous PLD grown 3YSZ films fully crystallize within five hours. Above 325 °C these films transform nearly instantaneously with a high degree of micro-strain when crystallized below 500 °C. In these films the t'' phase crystallizes which transforms at T > 600 °C to the t' phase upon relaxation of the micro-strain. Furthermore, the crystallization of 8YSZ thin films grown by PLD, spray pyrolysis and dc-sputtering are characterized by in situ XRD measurements. At a constant heating rate of 2.4 K min(-1) crystallization is accomplished after reaching 800 °C, while PLD grown thin films were completely crystallized already at ca. 300 °C.

  1. Design and characterization of thin film microcoolers

    Science.gov (United States)

    LaBounty, Chris; Shakouri, Ali; Bowers, John E.

    2001-04-01

    Thin film coolers can provide large cooling power densities compared to bulk thermoelectrics due to the close spacing of hot and cold junctions. Important parameters in the design of such coolers are investigated theoretically and experimentally. A three-dimensional (3D) finite element simulator (ANSYS) is used to model self-consistently thermal and electrical properties of a complete device structure. The dominant three-dimensional thermal and electrical spreading resistances acquired from the 3D simulation are also used in a one-dimensional model (MATLAB) to obtain faster, less rigorous results. Heat conduction, Joule heating, thermoelectric and thermionic cooling are included in these models as well as nonideal effects such as contact resistance, finite thermal resistance of the substrate and the heat sink, and heat generation in the wire bonds. Simulations exhibit good agreement with experimental results from InGaAsP-based thin film thermionic emission coolers which have demonstrated maximum cooling of 1.15 °C at room temperature. With the nonideal effects minimized, simulations predict that single stage thin film coolers can provide up to 20-30 °C degrees centigrade cooling with cooling power densities of several 1000 W/cm2.

  2. Photophysical properties of Alq3 thin films

    Science.gov (United States)

    Zawadzka, A.; Płóciennik, P.; Strzelecki, J.; Łukasiak, Z.; Sahraoui, B.

    2013-11-01

    This work contains investigation results of the photophysical properties of aluminum (III) tris(8-hydroxyquinoline) thin films. The Alq3 thin films were successfully fabricated by Physical Vapor Deposition technique. The films were grown on transparent: (quartz and glass) and semiconductor (n-type silica) substrates kept at room temperature during the deposition process. Selected films were annealed after fabrication in ambient atmosphere for 12 h at the temperature equal to 100 °C and 150 °C. Morphology of the films was investigated by AFM technique. Photophysical properties were characterized via photoluminescence, transmission, second and third harmonic generation measurements. The thin films exhibit high structural quality regardless of the annealing process, but the stability of the film can be improved by using an appropriate temperature during the annealing process. Photoluminescence of Alq3 films obtained in air were efficient and stable. The measurements of transmission, SHG and THG spectra allowed us to determine optical constant of the films. We find that the photophysical properties were strictly connected with the morphology and the annealing process significantly changes the structural properties of the films.

  3. Polycrystalline thin film materials and devices

    Energy Technology Data Exchange (ETDEWEB)

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. (Delaware Univ., Newark, DE (United States). Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  4. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  5. Increased upper critical field for nanocrystalline MoN thin films deposited on AlN buffered substrates at ambient temperature

    Science.gov (United States)

    Baskaran, R.; Thanikai Arasu, A. V.; Amaladass, E. P.; Vaidhyanathan, L. S.; Baisnab, D. K.

    2016-05-01

    Molybdenum nitride (MoN) thin films have been deposited using reactive DC magnetron sputtering on aluminum nitride buffered oxidized silicon substrates at ambient temperature. GIXRD of aluminum nitride (AlN) deposited under similar conditions has revealed the formation of wurtzite phase AlN. GIXRD characterization of molybdenum thin films deposited on AlN buffered oxidized silicon substrates has indicated the formation of nanocrystalline MoN thin films. The electrical resistivity measurements indicate MoN thin films have a superconducting transition temperature of ~8 K. The minimum transition width of the MoN thin film is 0.05 K at 0 T. The inferred upper critical field B c2(0) for these nanocrystalline MoN thin films obtained by fitting the temperature dependence of critical field with Werthamer, Helfand and Hohenberg theory lies in the range of 17-18 T which is the highest reported in literature for MoN thin films.

  6. The Impact of Standard Semiconductor Fabrication Processes on Polycrystalline Nb Thin Film Surfaces

    Science.gov (United States)

    Brown, Ari David; Barrentine, Emily M.; Moseley, Samuel H.; Noroozian, Omid; Stevenson, Thomas

    2011-01-01

    Polycrystalline superconducting Nb thin films are extensively used for submillimeter and millimeter transmission line applications and, less commonly, used in microwave kinetic inductance detector (MKID) applications. The microwave and mm-wave loss in these films is impacted, in part, by the presence of surface nitrides and oxides. In this study, glancing incidence x-ray diffraction was used to identify the presence of niobium nitride and niobium monoxide surface layers on Nb thin films which had been exposed to chemicals used in standard photolithographic processing. A method of mitigating the presence of ordered niobium monoxide surface layers is presented. Furthermore, we discuss the possibility of using glancing incidence x-ray diffraction as a non-destructive diagnostic tool for evaluating the quality of Nb thin films used in MKIDs and transmission lines. For a given fabrication process, we have both the x-ray diffraction data of the surface chemistry and a measure of the mm-wave and microwave loss, the latter being made in superconducting resonators.

  7. Heavy ion ToF analysis of oxygen incorporation in MgB{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ionescu, M. [Australian Nuclear Science and Technology Organization, Lucas Heights, Building 53, New South Wales 2234 (Australia)], E-mail: Mihail.Ionescu@ansto.gov.au; Zhao, Y. [Institute for Superconduction and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Siegele, R.; Cohen, D.D.; Stelcer, E.; Prior, M. [Australian Nuclear Science and Technology Organization, Lucas Heights, Building 53, New South Wales 2234 (Australia)

    2008-04-15

    Oxygen incorporation in MgB{sub 2} thin films during their fabrication process has a strong influence on the future properties of the films, and was studied by Elastic Recoil Detection Analysis with Heavy ions and a Time-of-flight detection. A series of MgB{sub 2} thin film samples were analyzed, including films produced in situ on Al{sub 2}O{sub 3}-C and Si (0 0 1) substrates (with higher T{sub c} and lower T{sub c}) with an 'on-axis' geometry, and films produced in situ with an 'off-axis' geometry. The amount of oxygen detected in these films appears to be correlated with the T{sub c} of the films, the higher the T{sub c} the lower the oxygen content. The superconducting properties of the examined thin films are discussed in the context of the ERDA results.

  8. Deposition and characterization of CuInS2 thin films deposited over copper thin films

    Science.gov (United States)

    Thomas, Titu; Kumar, K. Rajeev; Kartha, C. Sudha; Vijayakumar, K. P.

    2015-06-01

    Simple, cost effective and versatile spray pyrolysis method is effectively combined with vacuum evaporation for the deposition of CuIns2 thin films for photovoltaic applications. In the present study In2s3 was spray deposited over vacuum evaporated Cu thin films and Cu was allowed to diffuse in to the In2S3 layer to form CuInS2. To analyse the dependence of precursor volume on the formation of CuInS2 films structural, electrical and morphological analzes are carried out. Successful deposition of CuInS2thin films with good crystallinity and morphology with considerably low resistivity is reported in this paper.

  9. PLD-grown thin film saturable absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Tellkamp, Friedjof

    2012-11-01

    The subject of this thesis is the preparation and characterization of thin films made of oxidic dielectrics which may find their application as saturable absorber in passively Q-switched lasers. The solely process applied for fabrication of the thin films was the pulsed laser deposition (PLD) which stands out against other processes by its flexibility considering the composition of the systems to be investigated. Within the scope of this thesis the applied saturable absorbers can be divided into two fundamentally different kinds of functional principles: On the one hand, saturable absorption can be achieved by ions embedded in a host medium. Most commonly applied bulk crystals are certain garnets like YAG (Y{sub 3}Al{sub 5}O{sub 12}) or the spinel forsterite (Mg{sub 2}SiO{sub 4}), in each case with chromium as dopant. Either of these media was investigated in terms of their behavior as PLD-grown saturable absorber. Moreover, experiments with Mg{sub 2}GeO{sub 4}, Ca{sub 2}GeO{sub 4}, Sc{sub 2}O{sub 3}, and further garnets like YSAG or GSGG took place. The absorption coefficients of the grown films of Cr{sup 4+}:YAG were determined by spectroscopic investigations to be one to two orders of magnitude higher compared to commercially available saturable absorbers. For the first time, passive Q-switching of a Nd:YAG laser at 1064 nm with Cr{sup 4+}:YAG thin films could be realized as well as with Cr:Sc{sub 2}O{sub 3} thin films. On the other hand, the desirable effect of saturable absorption can also be generated by quantum well structures. For this purpose, several layer system like YAG/LuAG, Cu{sub 2}O/MgO, and ZnO/corumdum were investigated. It turned out that layer systems with indium oxide (In{sub 2}O{sub 3}) did not only grew in an excellent way but also showed up a behavior regarding their photo luminescence which cannot be explained by classical considerations. The observed luminescence at roughly 3 eV (410 nm) was assumed to be of excitonic nature and its

  10. Tunable pinning effects produced by non-uniform antidot arrays in YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    George, J.; Jones, A.; Al-Qurainy, M. [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW (Australia); Fedoseev, S.A. [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW (Australia); Centre for Medical Radiation Physics, University of Wollongong, NSW (Australia); Rosenfeld, A. [Centre for Medical Radiation Physics, University of Wollongong, NSW (Australia); Pan, A.V. [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW (Australia); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2017-04-15

    Uniform, graded and spaced arrays of 3 μm triangular antidots in pulsed laser deposited YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) superconducting thin films are compared by examining the improvements in the critical current density J{sub c} they produced. The comparison is made to establish the role of their lithographically defined (non-)uniformity and the effectiveness to control and/or enhance the critical current density. It is found that almost all types of non-uniform arrays, including graded ones enhance J{sub c} over the broad applied magnetic field and temperature range due to the modified critical state. Whereas uniform arrays of antidots either reduce or produce no effect on J{sub c} compared to the original (as-deposited) thin films. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Chemical solution deposition of YBCO thin film by different polymer additives

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.T.; Li, G.; Pu, M.H.; Sun, R.P.; Zhou, H.M.; Zhang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, H. [Department of Physics, Peking University, Beijing 100871 (China); Yang, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); Cheng, C.H. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia); Zhao, Y. [Key Laboratory of Magnetic Levitation Technologies and Maglev Trains, Ministry of Education of China, Superconductivity R and D Center (SRDC), Mail Stop 165, Southwest Jiaotong University, Chengdu 610031 (China); School of Materials Science and Engineering, University of New South Wale, Sydney, 2052 NSW (Australia)], E-mail: yzhao@swjtu.edu.cn

    2008-09-15

    A polymer-assisted chemical solution deposition approach has been proposed for the preparation of YBCO thin film. Different additives like PVB (polyvinyl butyral), PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) have been used to adjust the final viscosity of the precursor solution and thus the film formation. In this fluorine-free approach, YBCO has been deposited on single crystal substrates with metal acetates being starting materials. Biaxially textured YBCO thin films have been obtained. However, different additives lead to different microstructure. Dense, smooth and crack-free YBCO film prepared with PVB as additive yields sharp superconducting transition around T{sub c} = 90 K as well as high J{sub c} (0 T, 77 K) over 3 MA/cm{sup 2}.

  12. Chemical solution deposition of YBCO thin film by different polymer additives

    Science.gov (United States)

    Wang, W. T.; Li, G.; Pu, M. H.; Sun, R. P.; Zhou, H. M.; Zhang, Y.; Zhang, H.; Yang, Y.; Cheng, C. H.; Zhao, Y.

    2008-09-01

    A polymer-assisted chemical solution deposition approach has been proposed for the preparation of YBCO thin film. Different additives like PVB (polyvinyl butyral), PEG (polyethylene glycol) and PVP (polyvinylpyrrolidone) have been used to adjust the final viscosity of the precursor solution and thus the film formation. In this fluorine-free approach, YBCO has been deposited on single crystal substrates with metal acetates being starting materials. Biaxially textured YBCO thin films have been obtained. However, different additives lead to different microstructure. Dense, smooth and crack-free YBCO film prepared with PVB as additive yields sharp superconducting transition around Tc = 90 K as well as high Jc (0 T, 77 K) over 3 MA/cm 2.

  13. Theoretical investigation of the thermodynamic properties of metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Vu Van [Vietnam Education Publishing House, 81 Tran Hung Dao, Hanoi (Viet Nam); Phuong, Duong Dai [Hanoi National University of Education, 136 Xuan Thuy, Hanoi (Viet Nam); Hoa, Nguyen Thi [University of Transport and Communications, Lang Thuong, Dong Da, Hanoi (Viet Nam); Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2015-05-29

    The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks.

  14. Metallic Thin-Film Bonding and Alloy Generation

    Science.gov (United States)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  15. Printed organic thin-film transistor-based integrated circuits

    Science.gov (United States)

    Mandal, Saumen; Noh, Yong-Young

    2015-06-01

    Organic electronics is moving ahead on its journey towards reality. However, this technology will only be possible when it is able to meet specific criteria including flexibility, transparency, disposability and low cost. Printing is one of the conventional techniques to deposit thin films from solution-based ink. It is used worldwide for visual modes of information, and it is now poised to enter into the manufacturing processes of various consumer electronics. The continuous progress made in the field of functional organic semiconductors has achieved high solubility in common solvents as well as high charge carrier mobility, which offers ample opportunity for organic-based printed integrated circuits. In this paper, we present a comprehensive review of all-printed organic thin-film transistor-based integrated circuits, mainly ring oscillators. First, the necessity of all-printed organic integrated circuits is discussed; we consider how the gap between printed electronics and real applications can be bridged. Next, various materials for printed organic integrated circuits are discussed. The features of these circuits and their suitability for electronics using different printing and coating techniques follow. Interconnection technology is equally important to make this product industrially viable; much attention in this review is placed here. For high-frequency operation, channel length should be sufficiently small; this could be achievable with a combination of surface treatment-assisted printing or laser writing. Registration is also an important issue related to printing; the printed gate should be perfectly aligned with the source and drain to minimize parasitic capacitances. All-printed organic inverters and ring oscillators are discussed here, along with their importance. Finally, future applications of all-printed organic integrated circuits are highlighted.

  16. The road to magnesium diboride thin films, Josephson junctions and SQUIDs

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, Alexander; Mijatovic, Dragana; Hilgenkamp, Hans; Rijnders, Guus; Oomen, Ingrid; Veldhuis, Dick; Roesthuis, Frank; Rogalla, Horst; Blank, Dave H A [MESA Research Institute and Low Temperature Division, Applied Physics, University of Twente, PO Box 217, 7500 AE Enschede(Netherlands)

    2003-02-01

    The remarkably high critical temperature at which magnesium diboride (MgB{sub 2}) undergoes transition to the superconducting state, T{sub c} {approx} 40 K, has aroused great interest and has encouraged many groups to explore the properties and application potential of this novel superconductor. For many electronic applications and further basic studies, the availability of superconducting thin films is of great importance. Several groups have succeeded in fabricating superconducting MgB{sub 2} films. An overview of the deposition techniques for MgB{sub 2} thin film growth will be given, with a special focus on the in situ two-step process. Although, meanwhile, many problems to obtain suitable films have been solved, such as oxygen impurities and magnesium volatility, the question of how single-phase epitaxial films can be grown still remains. The possibility of growing single-crystalline epitaxial films will be discussed from the deposition conditions' point of view as well as substrate choice. Necessary conditions are discussed and possible routes are reviewed. The applicability of MgB{sub 2} in superconducting electronic devices depends on the possibility of making well-controlled, i.e., reproducible and stable, Josephson junctions. The first attempts to make MgB{sub 2}-MgO-MgB{sub 2} ramp-type junctions and SQUIDs from MgB{sub 2} nanobridges are discussed.

  17. 3D Field Simulation of Magnetic Thin Film Inductor

    OpenAIRE

    FUJIWARA, Toshiyasu; CHOI, Kyung-Ku; SATO, SHIGEKI

    2006-01-01

    The 3D magnetic field simulations with FEM (finite element method) have been performed to predictand understand the performance of Magnetic Thin Film Inductor (MTFl). Inductor structures of planar electroplated Cu spiralcoil, which are sandwiched and underlaid with magnetic thin films, are considered as the simulation models. The inductance increment of 300% compared to air-core inductor was predicted when the sandwiched 5μm thickness magnetic thin film with relative permeability of 600 was a...

  18. Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yeon; Lee, Jeong Soo

    2008-02-15

    This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.

  19. Crystal structure of fiber structured pentacene thin films

    OpenAIRE

    2007-01-01

    This PhD thesis presents a technique based on the grazing incidence crystal truncation rod (GI-CTR) X-ray diffraction method used to solve the crystal structure of substrate induced fiber structured organic thin films. The crystal structures of pentacene thin films grown on technologically relevant gate dielectric substrates are reported. It is widely recognized, that the intrinsic charge transport properties in organic thin film transistors (OTFTs) depend strongly on the crystal structur...

  20. Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring

    Science.gov (United States)

    Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.

    2017-09-01

    Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.

  1. Mechanism of Crystallization and Implications for Charge Transport in Poly(3-ethylhexylthiophene) Thin Films

    KAUST Repository

    Duong, Duc T.

    2014-04-09

    In this work, crystallization kinetics and aggregate growth of poly(3-ethylhexylthiophene) (P3EHT) thin films are studied as a function of film thickness. X-ray diffraction and optical absorption show that individual aggregates and crystallites grow anisotropically and mostly along only two packing directions: the alkyl stacking and the polymer chain backbone direction. Further, it is also determined that crystallization kinetics is limited by the reorganization of polymer chains and depends strongly on the film thickness and average molecular weight. Time-dependent, field-effect hole mobilities in thin films reveal a percolation threshold for both low and high molecular weight P3EHT. Structural analysis reveals that charge percolation requires bridged aggregates separated by a distance of ≈2-3 nm, which is on the order of the polymer persistence length. These results thus highlight the importance of tie molecules and inter-aggregate distance in supporting charge percolation in semiconducting polymer thin films. The study as a whole also demonstrates that P3EHT is an ideal model system for polythiophenes and should prove to be useful for future investigations into crystallization kinetics. Recrystallization kinetics and its relationship to charge transport in poly(3-ethylhexylthiophene) (P3EHT) thin films are investigated using a combination of grazing incidence X-ray diffraction, optical absorption, and field-effect transistor measurements. These results show that thin film crystallization kinetics is limited by polymer chain reorganization and that charge percolation depends strongly on the edge-to-edge distance between aggregates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  3. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  4. Inorganic and Organic Solution-Processed Thin Film Devices

    Institute of Scientific and Technical Information of China (English)

    Morteza Eslamian

    2017-01-01

    Thin films and thin film devices have a ubiquitous presence in numerous conventional and emerging tech-nologies. This is because of the recent advances in nanotechnology, the development of functional and smart materials, conducting polymers, molecular semiconductors, carbon nanotubes, and graphene, and the employment of unique prop-erties of thin films and ultrathin films, such as high surface area, controlled nanostructure for effective charge transfer, and special physical and chemical properties, to develop new thin film devices. This paper is therefore intended to provide a concise critical review and research directions on most thin film devices, including thin film transistors, data storage memory, solar cells, organic light-emitting diodes, thermoelectric devices, smart materials, sensors, and actuators. The thin film devices may consist of organic, inorganic, and composite thin layers, and share similar functionality, properties, and fabrication routes. Therefore, due to the multidisciplinary nature of thin film devices, knowledge and advances already made in one area may be applicable to other similar areas. Owing to the importance of developing low-cost, scalable, and vacuum-free fabrication routes, this paper focuses on thin film devices that may be processed and deposited from solution.

  5. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  6. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  7. Design and Simulation of the Thin Film Pulse Transformer

    Institute of Scientific and Technical Information of China (English)

    LIU Bao-yuan; SHI Yu; WEN Qi-ye

    2005-01-01

    A new thin film pulse transformer for using in ISND and ADSL systems has been designed based on a domain wall pinning model, the parameters of nano-magnetic thin film such as permeability and coercivity can be calculated. The main properties of the thin film transformer including the size,parallel inductance, Q value and turn ratio have been simulated and optimized. Simulation results show that the thin film transformer can be fairly operated in a frequency range of 0. 001~20 MHz.

  8. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available Electrochemical atomic layer deposition technique is selected as one of the methods to prepare thin films for various applications, including electrocatalytic materials and compound....

  9. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  10. Thin-Film Materials Synthesis and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a wide capability for deposition and processing of thin films, including sputter and ion-beam deposition, thermal evaporation, electro-deposition,...

  11. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  12. Growth of YBa 2Cu 3O 7-δ on alkaline earth flouride substrates and thin films

    Science.gov (United States)

    Vasquez, R. P.; Foote, M. C.; Hunt, B. D.; Barner, J. B.

    1993-03-01

    The growth and characterization of YBa 2Cu 3O 7-δ (YBCO) thin films grown by laser ablation on MgF 2 (100), CaF 2 (100), SrF 2 (100), and BaF 2 (100) substrates, and on CaF 2 and BaF 2 thin films on LaAlO 3 (100) substrates, are described. High quality superconducting YBCO films could be grown directly only on the BaF 2 substrates and thin films. YBCO films grown directly on MgF 2 or CaF 2 substrates were insulating and showed clear signs of interdiffusion and reaction, as measured by X-ray photoelectron spectroscopy. Superconducting YBCO films could be grown on SrF 2 and CaF 2 substrates and thin films only with an yttria-stabilized zirconia buffer layer and/or with a low YBCO growth temperature, while YBCO grown on MgF 2 yielded insulating films for all growth conditions investigated. The highest quality YBCO films were obtained on BaF 2 substrates ( Tc=87.6 K, ΔTc=0.3 K). These results are discussed in terms of the thermodynamic stability of possible reaction products and the temperature dependence of the ionic mobilities.

  13. Photoluminescence Study of Copper Selenide Thin Films

    Science.gov (United States)

    Urmila, K. S.; Asokan, T. Namitha; Pradeep, B.

    2011-10-01

    Thin films of Copper Selenide of composition of composition Cu7Se4 with thickness 350 nm are deposited on glass substrate at a temperature of 498 K±5 K and pressure of 10-5 mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%) and Selenium (99.99%) as the elemental starting material. The deposited film is characterized structurally using X-ray Diffraction. The structural parameters such as lattice constant, particle size, dislocation density; number of crystallites per unit area and strain in the film are evaluated. Photoluminescence of the film is analyzed at room temperature using Fluoro Max-3 Spectrofluorometer.

  14. Liquid phase deposition of electrochromic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, Thomas J.; Rubin, Michael D.

    2000-08-18

    Thin films of titanium, zirconium and nickel oxides were deposited on conductive SnO2:F glass substrates by immersion in aqueous solutions. The films are transparent, conformal, of uniform thickness and appearance, and adhere strongly to the substrates. On electrochemical cycling, TiO2, mixed TiO2-ZrO2, and NiOx films exhibited stable electrochromism with high coloration efficiencies. These nickel oxide films were particularly stable compared with films prepared by other non-vacuum techniques. The method is simple, inexpensive, energy efficient, and readily scalable to larger substrates.

  15. Thermoviscoelastic models for polyethylene thin films

    DEFF Research Database (Denmark)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-01-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach...... is that the experimentally inaccessible out-of-plane material properties are determined by fitting the model predictions to the measured nonlinear behavior of the film. Creep tests, uniaxial tension tests, and biaxial bubble tests are used to determine the material parameters. The model has been validated experimentally...

  16. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  17. INVESTIGATION OF PHOTOELECTROCHROMIC THIN FILM AND DEVICE

    Institute of Scientific and Technical Information of China (English)

    M.J. Chen; H. Shen

    2005-01-01

    Photoelectrochromic device is a combination of dye-sensitized solar cells and electrochromic WO3 layers. Ectrochroelmic WO3 layer and TiO2 layer had been prepared by the sol-gel process, then be assembled to pohotoelectrochromic device. The effects of heating temperature on photoelectrochromic were investigated. The results showed that thin films prepared by dip-coating and spin-coating had good film quality and the device made by the method mentioned in the paper had good photoelectrochromie properties.

  18. Infrared control coating of thin film devices

    Science.gov (United States)

    Berland, Brian Spencer; Stowell, Jr., Michael Wayne; Hollingsworth, Russell

    2017-02-28

    Systems and methods for creating an infrared-control coated thin film device with certain visible light transmittance and infrared reflectance properties are disclosed. The device may be made using various techniques including physical vapor deposition, chemical vapor deposition, thermal evaporation, pulsed laser deposition, sputter deposition, and sol-gel processes. In particular, a pulsed energy microwave plasma enhanced chemical vapor deposition process may be used. Production of the device may occur at speeds greater than 50 Angstroms/second and temperatures lower than 200.degree. C.

  19. Infrared control coating of thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Stowell, Jr., Michael Wayne; Hollingsworth, Russell

    2017-02-28

    Systems and methods for creating an infrared-control coated thin film device with certain visible light transmittance and infrared reflectance properties are disclosed. The device may be made using various techniques including physical vapor deposition, chemical vapor deposition, thermal evaporation, pulsed laser deposition, sputter deposition, and sol-gel processes. In particular, a pulsed energy microwave plasma enhanced chemical vapor deposition process may be used. Production of the device may occur at speeds greater than 50 Angstroms/second and temperatures lower than 200.degree. C.

  20. Pyroelectric coupling in thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Victor G.; Shvydka, Diana [Department of Physics and Astronomy, University of Toledo, OH (United States)

    2007-07-15

    We propose a theory of thin film photovoltaics in which one of the polycrystalline films is made of a pyroelectric material grains such as CdS. That film is shown to generate strong polarization improving the device open circuit voltage. Implications and supporting facts for the major photovoltaic types based on CdTe and CuIn(Ga)Se{sub 2} absorber layers are discussed. Band diagram of a pyroelectric (CdS) based PV junction. Arrows represent the charge carrier photo-generation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Study of iron mononitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tayal, Akhil, E-mail: mgupta@csr.res.in; Gupta, Mukul, E-mail: mgupta@csr.res.in; Phase, D. M., E-mail: mgupta@csr.res.in; Reddy, V. R., E-mail: mgupta@csr.res.in; Gupta, Ajay, E-mail: mgupta@csr.res.in [UGC-DAE Consortium for Scientific Research, University Campus, Khandwa Road, Indore,-452001 (India)

    2014-04-24

    In this work we have studied the crystal structural and local ordering of iron and nitrogen in iron mononitride thin films prepared using dc magnetron sputtering at sputtering power of 100W and 500W. The films were sputtered using pure nitrogen to enhance the reactivity of nitrogen with iron. The x-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS) and soft x-ray absorption spectroscopy (SXAS) studies shows that the film crystallizes in ZnS-type crystal structure.

  2. Synthesis and Characterization of Thin Films.

    Science.gov (United States)

    1987-07-10

    j,k tinteger; freq comp % array CO..203 of integer; A, phase ~carg : array CC. .2CJ of realI begin woriteln(’enter numfourierpts’);N readln(num fourier...Thesis DTIG SELECTfE: rmas do~amaat hau s appvildlttb tol a.l e... . . .o fix paut reloc~e and 9010) Is . < " ,,.’. 5’ , , "" "’’"°"" % Is ViifmyI lr...URIP) grants. 2. THIN FILM FACILITY A 1983 DoD University Research Instrumentation Program Grant to ISU was used for construction of the first phase

  3. Birefringent thin films and polarizing elements

    CERN Document Server

    Hodgkinson, Ian J

    1997-01-01

    This book describes the propagation of light in biaxial media, the properties of biaxial thin films, and applications such as birefringent filters for tuning the wavelength of dye lasers.A novel feature of the first part is the parallel treatment of Stokes, Jones, and Berreman matrix formalisms in a chapter-by-chapter development of wave equations, basis vectors, transfer matrices, reflection and transmission equations, and guided waves. Computational tools for MATLAB are included.The second part focuses on an emerging planar technology in which anisotropic microstructures are formed by obliqu

  4. Epitaxy of layered semiconductor thin films

    Science.gov (United States)

    Brahim Otsmane, L.; Emery, J. Y.; Jouanne, M.; Balkanski, M.

    1993-03-01

    Epilayers of InSe on InSe(00.1) and GaSe(00.1) have been grown by the molecular beam epitaxy (MBE) technique. Raman spectroscopy was used for a characterization of the structure and crystallinity in InSe/InSe(00.1) (homoepitaxy) and InSe/GaSe(00.1) (heteroepitaxy). The Raman spectra of the InSe thin films are identical to those of polytype γ-InSe. An activation of the E(LO) mode at 211 cm -1 is observed in these films here. Scanning electron microscopy (SEM) is also used to investigate surfaces of these films.

  5. Vortex motion in YBCO thin films

    Science.gov (United States)

    Shapiro, V.; Verdyan, A.; Lapsker, I.; Azoulay, J.

    1999-09-01

    Hall resistivity measurements as function of temperature in the vicinity of Tc were carried out on a thin films YBCO superconductors. A sign reversal of Hall voltage with external magnetic field applied along c axis have been observed upon crossing Tc. Hall voltage in the mixed state was found to be insensitive to the external magnetic field inversion. These effects are discussed and explained in terms of vortex motion under the influence of Magnus force balanced by large damping force. It is argued that in this model the flux-line velocity has component opposite to the superfluid current direction thus yielding a negative Hall voltage.

  6. Thin-film optical shutter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matlow, S.L.

    1981-02-01

    A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.

  7. Theory and practical considerations of multilayer dielectric thin-film stacks in Ag-coated hollow waveguides.

    Science.gov (United States)

    Bledt, Carlos M; Melzer, Jeffrey E; Harrington, James A

    2014-02-01

    This analysis explores the theory and design of dielectric multilayer reflection-enhancing thin film stacks based on high and low refractive index alternating layers of cadmium sulfide (CdS) and lead sulfide (PbS) on silver (Ag)-coated hollow glass waveguides (HGWs) for low loss transmission at midinfrared wavelengths. The fundamentals for determining propagation losses in such multilayer thin-film-coated Ag hollow waveguides is thoroughly discussed, and forms the basis for further theoretical analysis presented in this study. The effects on propagation loss resulting from several key parameters of these multilayer thin film stacks is further explored in order to bridge the gap between results predicted through calculation under ideal conditions and deviations from such ideal models that often arise in practice. In particular, the effects on loss due to the number of dielectric thin film layers deposited, deviation from ideal individual layer thicknesses, and surface roughness related scattering losses are presented and thoroughly investigated. Through such extensive theoretical analysis the level of understanding of the underlying loss mechanisms of multilayer thin-film Ag-coated HGWs is greatly advanced, considerably increasing the potential practical development of next-generation ultralow-loss mid-IR Ag/multilayer dielectric-coated HGWs.

  8. Pulsed laser deposition of pepsin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary)]. E-mail: kega@physx.u-szeged.hu; Kresz, N. [Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dom ter 9 (Hungary); Smausz, T. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Hopp, B. [Hungarian Academy of Sciences and University of Szeged, Research Group on Laser Physics, H-6720 Szeged, Dom ter 9 (Hungary); Nogradi, A. [Department of Ophthalmology, University of Szeged, H-6720, Szeged, Koranyi fasor 10-11 (Hungary)

    2005-07-15

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ({lambda} = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm{sup 2}. The pressure in the PLD chamber was 2.7 x 10{sup -3} Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm{sup 2}. The protein digesting capacity of the transferred pepsin was tested by adapting a modified 'protein cube' method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  9. Rechargeable thin-film lithium batteries

    Energy Technology Data Exchange (ETDEWEB)

    Bates, J.B.; Gruzalski, G.R.; Dudney, N.J.; Luck, C.F.; Yu, X.

    1993-09-01

    Rechargeable thin-film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. These include Li-TiS{sub 2}, Li-V{sub 2}O{sub 5}, and Li-Li{sub x}Mn{sub 2}O{sub 4} cells with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The realization of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46}and a conductivity at 25 C of 2 {mu}S/cm. The thin-film cells have been cycled at 100% depth of discharge using current densities of 5 to 100 {mu}A/cm{sup 2}. Over most of the charge-discharge range, the internal resistance appears to be dominated by the cathode, and the major source of the resistance is the diffusion of Li{sup +} ions from the electrolyte into the cathode. Chemical diffusion coefficients were determined from ac impedance measurements.

  10. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1986-08-01

    The major objective of this work was to demonstrate CdTe devices grown by chemical vapor deposition (CVD) with a total area greater than 1 cm2 and photovoltic efficiencies of at least 13%. During the period covered, various processing steps were investigated for the preparation of thin-film CdTe heterojunction solar cells of the inverted configuration. Glass coated with fluorine-doped tin oxide was used as the substrate. Thin-film heterojunction solar cells were prepared by depositing p-CdTe films on substrates using CVD and close-spaced sublimation (CSS). Cells prepared from CSS CdTe usually have a higher conversion efficiency than those prepared from CVD CdTe, presumably due to the chemical interaction between CdS and CdTe at the interface during the CVD process. The best cell, about 1.2 sq cm in area, had an AM 1.5 (global) efficiency of 10.5%, and further improvements are expected by optimizing the process parameters.

  11. Antimony selenide thin-film solar cells

    Science.gov (United States)

    Zeng, Kai; Xue, Ding-Jiang; Tang, Jiang

    2016-06-01

    Due to their promising applications in low-cost, flexible and high-efficiency photovoltaics, there has been a booming exploration of thin-film solar cells using new absorber materials such as Sb2Se3, SnS, FeS2, CuSbS2 and CuSbSe2. Among them, Sb2Se3-based solar cells are a viable prospect because of their suitable band gap, high absorption coefficient, excellent electronic properties, non-toxicity, low cost, earth-abundant constituents, and intrinsically benign grain boundaries, if suitably oriented. This review surveys the recent development of Sb2Se3-based solar cells with special emphasis on the material and optoelectronic properties of Sb2Se3, the solution-based and vacuum-based fabrication process and the recent progress of Sb2Se3-sensitized and Sb2Se3 thin-film solar cells. A brief overview further addresses some of the future challenges to achieve low-cost, environmentally-friendly and high-efficiency Sb2Se3 solar cells.

  12. Thin film cadmium telluride photovoltaic cells

    Energy Technology Data Exchange (ETDEWEB)

    Compaan, A.; Bohn, R. (Toledo Univ., OH (United States))

    1992-04-01

    This report describes research to develop to vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD) and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl{sub 2}, as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO{sub 2}-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally ({ge} 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. 19 refs.

  13. Titanium diffusion in gold thin films

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, William E. [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States); Gregori, Giuliano, E-mail: g.gregori@fkf.mpg.d [California NanoSystems Institute, University of California, Santa Barbara, CA 93106-5050 (United States); Mates, Thomas [Materials Department, University of California, Santa Barbara, CA 93106-5050 (United States)

    2010-03-01

    In the present study, diffusion phenomena in titanium/gold (Ti/Au) thin films occurring at temperatures ranging between 200 and 400 {sup o}C are investigated. The motivation is twofold: the first objective is to characterize Ti diffusion into Au layer as an effect of different heat-treatments. The second goal is to prove that the implementation of a thin titanium nitride (TiN) layer between Ti and Au can remarkably reduce Ti diffusion. It is observed that Ti atoms can fully diffuse through polycrystalline Au thin films (260 nm thick) already at temperatures as a low as 250 {sup o}C. Starting from secondary ion mass spectroscopy data, the overall diffusion activation energy {Delta}E = 0.66 eV and the corresponding pre-exponential factor D{sub 0} = 5 x 10{sup -11} cm{sup 2}/s are determined. As for the grain boundary diffusivity, both the activation energy range 0.54 < {Delta}E{sub gb} < 0.66 eV and the pre-exponential factor s{sub 0}D{sub gb0} = 1.14 x 10{sup -8} cm{sup 2}/s are obtained. Finally, it is observed that the insertion of a thin TiN layer (40 nm) between gold and titanium acts as an effective diffusion barrier up to 400 {sup o}C.

  14. Stripe glasses in ferromagnetic thin films

    Science.gov (United States)

    Principi, Alessandro; Katsnelson, Mikhail I.

    2016-02-01

    Domain walls in magnetic multilayered systems can exhibit a very complex and fascinating behavior. For example, the magnetization of thin films of hard magnetic materials is in general perpendicular to the thin-film plane, thanks to the strong out-of-plane anisotropy, but its direction changes periodically, forming an alternating spin-up and spin-down stripe pattern. The latter is stabilized by the competition between the ferromagnetic coupling and dipole-dipole interactions, and disappears when a moderate in-plane magnetic field is applied. It has been suggested that such a behavior may be understood in terms of a self-induced stripe glassiness. In this paper we show that such a scenario is compatible with the experimental findings. The strong out-of-plane magnetic anisotropy of the film is found to be beneficial for the formation of both stripe-ordered and glassy phases. At zero magnetic field the system can form a glass only in a narrow interval of fairly large temperatures. An in-plane magnetic field, however, shifts the glass transition towards lower temperatures, therefore enabling it at or below room temperature. In good qualitative agreement with the experimental findings, we show that a moderate in-plane magnetic field of the order of 50 mT can lead to the formation of defects in the stripe pattern, which sets the onset of the glass transition.

  15. Nanomechanics of Ferroelectric Thin Films and Heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yulan; Hu, Shenyang Y.; Chen , L.Q.

    2016-08-31

    The focus of this chapter is to provide basic concepts of how external strains/stresses altering ferroelectric property of a material and how to evaluate quantitatively the effect of strains/stresses on phase stability, domain structure, and material ferroelectric properties using the phase-field method. The chapter starts from a brief introduction of ferroelectrics and the Landau-Devinshire description of ferroelectric transitions and ferroelectric phases in a homogeneous ferroelectric single crystal. Due to the fact that ferroelectric transitions involve crystal structure change and domain formation, strains and stresses can be produced inside of the material if a ferroelectric transition occurs and it is confined. These strains and stresses affect in turn the domain structure and material ferroelectric properties. Therefore, ferroelectrics and strains/stresses are coupled to each other. The ferroelectric-mechanical coupling can be used to engineer the material ferroelectric properties by designing the phase and structure. The followed section elucidates calculations of the strains/stresses and elastic energy in a thin film containing a single domain, twinned domains to complicated multidomains constrained by its underlying substrate. Furthermore, a phase field model for predicting ferroelectric stable phases and domain structure in a thin film is presented. Examples of using substrate constraint and temperature to obtain interested ferroelectric domain structures in BaTiO3 films are demonstrated b phase field simulations.

  16. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures.

    Science.gov (United States)

    Ahnood, Arman; Zhou, H; Suzuki, Y; Sliz, R; Fabritius, T; Nathan, Arokia; Amaratunga, G A J

    2015-12-01

    Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics.

  17. Strain-induced phenomenon in complex oxide thin films

    Science.gov (United States)

    Haislmaier, Ryan

    Complex oxide materials wield an immense spectrum of functional properties such as ferroelectricity, ferromagnetism, magnetoelectricity, optoelectricity, optomechanical, magnetoresistance, superconductivity, etc. The rich coupling between charge, spin, strain, and orbital degrees of freedom makes this material class extremely desirable and relevant for next generation electronic devices and technologies which are trending towards nanoscale dimensions. Development of complex oxide thin film materials is essential for realizing their integration into nanoscale electronic devices, where theoretically predicted multifunctional capabilities of oxides could add tremendous value. Employing thin film growth strategies such as epitaxial strain and heterostructure interface engineering can greatly enhance and even unlock novel material properties in complex oxides, which will be the main focus of this work. However, physically incorporating oxide materials into devices remains a challenge. While advancements in molecular beam epitaxy (MBE) of thin film oxide materials has led to the ability to grow oxide materials with atomic layer precision, there are still major limitations such as controlling stoichiometric compositions during growth as well as creating abrupt interfaces in multi-component layered oxide structures. The work done in this thesis addresses ways to overcome these limitations in order to harness intrinsic material phenomena. The development of adsorption-controlled stoichiometric growth windows of CaTiO3 and SrTiO3 thin film materials grown by hybrid MBE where Ti is supplied using metal-organic titanium tetraisopropoxide material is thoroughly outlined. These growth windows enable superior epitaxial strain-induced ferroelectric and dielectric properties to be accessed as demonstrated by chemical, structural, electrical, and optical characterization techniques. For tensile strained CaTiO3 and compressive strained SrTiO 3 films, the critical effects of

  18. High velocity vortex channeling in vicinal YBCO thin films.

    Science.gov (United States)

    Puica, I; Lang, W; Durrell, J H

    2012-09-01

    We report on electrical transport measurements at high current densities on optimally doped YBa2Cu3O7-δ thin films grown on vicinal SrTiO3 substrates. Data were collected by using a pulsed-current technique in a four-probe arrangement, allowing to extend the current-voltage characteristics to high supercritical current densities (up to 24 MA cm(-2)) and high electric fields (more than 20 V/cm), in the superconducting state at temperatures between 30 and 80 K. The electric measurements were performed on tracks perpendicular to the vicinal step direction, such that the current crossed between ab planes, under magnetic field rotated in the plane defined by the crystallographic c axis and the current density. At magnetic field orientation parallel to the cuprate layers, evidence for the sliding motion along the ab planes (vortex channeling) was found. The signature of vortex channeling appeared to get enhanced with increasing electric field, due to the peculiar depinning features in the kinked vortex range. They give rise to a current-voltage characteristics steeper than in the more off-plane rectilinear vortex orientations, in the electric field range below approximately 1 V/cm. Roughly above this value, the high vortex channeling velocities (up to 8.6 km/s) could be ascribed to the flux flow, although the signature of ohmic transport appeared to be altered by unavoidable macroscopic self-heating and hot-electron-like effects.

  19. The fabrication and characterization of nano-SQUIDs based on Nb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xixi; Liu, Xiaoyu; Wang, Hao; Chen, Lei, E-mail: leichen@mail.sim.ac.cn; Wang, Zhen

    2015-08-15

    Highlights: • We developed a nano-SQUID fabrication process starting from a high-quality thin film. • The fabricated nano-SQUIDs exhibited flux modulation depth up to 10.3% at 4.6 K. • The measured data agreed with the Ginzburg–Landau simulation. • We found that a small critical current <50 μA is important for a deep flux modulation. • The suggestions in improving the nano-SQUID’s performance were discussed. - Abstract: SQUIDs with nano-junctions (or nano-SQUIDs) are able to be miniaturized into nanoscale to measure a single Bohr magneton. Here, we reported the development of a fabrication process for Nb (niobium) nano-SQUIDs using the thin film deposition and the electron-beam lithography technology. The developed process started from a high-quality superconducting thin film so that it is compatible with a variety of film growing techniques. The as-fabricated nano-SQUIDs exhibited functional flux modulation depth up to 10.3% at 4.6 K, in agreement with the numerical simulation based on the Ginzburg–Landau equation. By further comparing the results from both experiments and simulations, we found that a small critical current below ∼50 μA played a leading role in order to obtain a decent flux-modulation depth for Nb nano-SQUIDs.

  20. Spectroscopic and luminescent properties of Co2+ doped tin oxide thin films by spray pyrolysis

    Directory of Open Access Journals (Sweden)

    K. Durga Venkata Prasad

    2016-07-01

    Full Text Available The wide variety of electronic and chemical properties of metal oxides makes them exciting materials for basic research and for technological applications alike. Oxides span a wide range of electrical properties from wide band-gap insulators to metallic and superconducting. Tin oxide belongs to a class of materials called Transparent Conducting Oxides (TCO which constitutes an important component for optoelectronic applications. Co2+ doped tin oxide thin films were prepared by chemical spray pyrolysis synthesis and characterized by powder X-ray diffraction, SEM, TEM, FT-IR, optical, EPR and PL techniques to collect the information about the crystal structure, coordination/local site symmetry of doped Co2+ ions in the host lattice and the luminescent properties of the prepared sample. Powder XRD data revealed that the crystal structure belongs to tetragonal rutile phase and its lattice cell parameters are evaluated. The average crystallite size was estimated to be 26 nm. The morphology of prepared sample was analyzed by using SEM and TEM studies. Functional groups of the prepared sample were observed in the FT-IR spectrum. Optical absorption and EPR studies have shown that on doping, Co2+ ions enter in the host lattice as octahedral site symmetry. PL studies of Co2+ doped SnO2 thin films exhibit blue and yellow emission bands. CIE chromaticity coordinates were also calculated from emission spectrum of Co2+ doped SnO2 thin films.

  1. Thermochemical Analysis of Molybdenum Thin Films on Porous Alumina.

    Science.gov (United States)

    Lee, Kyoungjin; de Lannoy, Charles-François; Liguori, Simona; Wilcox, Jennifer

    2017-01-12

    Molybdenum (Mo) thin films (thickness thin-film composites were stable below 300 °C but had no reactivity toward gases. Mo thin films showed nitrogen incorporation on the surface as well as in the subsurface at 450 °C, as confirmed by X-ray photoelectron spectroscopy. The reactivity toward nitrogen was diminished in the presence of CO2, although no carbon species were detected either on the surface or in the subsurface. The Mo thin films have a very stable native oxide layer, which may further oxidize to higher oxidation states above 500 °C due to the reaction with the porous anodized alumina substrate. The oxidation of Mo thin films was accelerated in the presence of oxidizing gases. At 600 °C in N2, the Mo thin film on anodized alumina was completely oxidized and may also have been volatilized. The results imply that choosing thermally stable and inactive porous supports and operating in nonoxidizing conditions below 500 °C will likely maintain the stability of the Mo composite. This study provides key information about the chemical and structural stability of a Mo thin film on a porous substrate for future membrane applications and offers further insights into the integrity of thin-film composites when exposed to harsh conditions.

  2. Tools to Synthesize the Learning of Thin Films

    Science.gov (United States)

    Rojas, Roberto; Fuster, Gonzalo; Slusarenko, Viktor

    2011-01-01

    After a review of textbooks written for undergraduate courses in physics, we have found that discussions on thin films are mostly incomplete. They consider the reflected and not the transmitted light for two instead of the four types of thin films. In this work, we complement the discussion in elementary textbooks, by analysing the phase…

  3. Stretchable, adhesive and ultra-conformable elastomer thin films.

    Science.gov (United States)

    Sato, Nobutaka; Murata, Atsushi; Fujie, Toshinori; Takeoka, Shinji

    2016-11-16

    Thermoplastic elastomers are attractive materials because of the drastic changes in their physical properties above and below the glass transition temperature (Tg). In this paper, we report that free-standing polystyrene (PS, Tg: 100 °C) and polystyrene-polybutadiene-polystyrene triblock copolymer (SBS, Tg: -70 °C) thin films with a thickness of hundreds of nanometers were prepared by a gravure coating method. Among the mechanical properties of these thin films determined by bulge testing and tensile testing, the SBS thin films exhibited a much lower elastic modulus (ca. 0.045 GPa, 212 nm thickness) in comparison with the PS thin films (ca. 1.19 GPa, 217 nm thickness). The lower elastic modulus and lower thickness of the SBS thin films resulted in higher conformability and thus higher strength of adhesion to an uneven surface such as an artificial skin model with roughness (Ra = 10.6 μm), even though they both have similar surface energies. By analyzing the mechanical properties of the SBS thin films, the elastic modulus and thickness of the thin films were strongly correlated with their conformability to a rough surface, which thus led to a high adhesive strength. Therefore, the SBS thin films will be useful as coating layers for a variety of materials.

  4. A New Method of Fabricating NASICON Thin Film

    Institute of Scientific and Technical Information of China (English)

    WNGLing; SUNJialin; 等

    1998-01-01

    Nasicon thin films of 15 μm thick on YSZ sub-strates were prepared by means of solid state reaction at 1230℃ for 10 hours,Stuctural characteriza-tion of the films were performed by XRD ,SEM and EDX,A new tyype of CO2 gas sensor with Nasicon thin film as solid electrolyte was developed.

  5. A thin-film device for detecting hydrogen

    NARCIS (Netherlands)

    Westerwaal, R.J.; Szilagyi, P.A.; Dam, B.

    2014-01-01

    The present invention relates to a thin-film device, to a method for producing a thin-film device, to a protective layer for shielding an oxygen, moisture and/or carbon monoxide sensitive surface, to a method for shielding such a surface, to a method for forming a metal framework material, to a hydr

  6. Study of thin-film resistor resistance error

    Directory of Open Access Journals (Sweden)

    Spirin V. G.

    2009-10-01

    Full Text Available A relationship between a thin-film resistor resistance error and mask misalignment with a substrate conductive layer at the second photolithography stage for a thin-film resistor design in which the resistive element does not overlap conductor pads is studied. The error value is at a maximum when the resistor aspect ratio is equal to 1.0.

  7. Nonlocal thin films in calculations of the Casimir force

    NARCIS (Netherlands)

    Esquivel-Sirvent, R.; Svetovoy, V.B.

    2005-01-01

    The Casimir force is calculated between plates with thin metallic coating. Thin films are described with spatially dispersive (nonlocal) dielectric functions. For thin films the nonlocal effects are more relevant than for half-spaces. However, it is shown that even for film thickness smaller than th

  8. Bismuth thin films obtained by pulsed laser deposition

    Science.gov (United States)

    Flores, Teresa; Arronte, Miguel; Rodriguez, Eugenio; Ponce, Luis; Alonso, J. C.; Garcia, C.; Fernandez, M.; Haro, E.

    1999-07-01

    In the present work Bi thin films were obtained by Pulsed Laser Deposition, using Nd:YAG lasers. The films were characterized by optical microscopy. Raman spectroscopy and X-rays diffraction. It was accomplished the real time spectral emission characterization of the plasma generated during the laser evaporation process. Highly oriented thin films were obtained.

  9. Optimized grid design for thin film solar panels

    NARCIS (Netherlands)

    Deelen, J. van; Klerk, L.; Barink, M.

    2014-01-01

    There is a gap in efficiency between record thin film cells and mass produced thin film solar panels. In this paper we quantify the effect of monolithic integration on power output for various configurations by modeling and present metallization as a way to improve efficiency of solar panels. Grid d

  10. Upper critical field of as-grown MgB{sub 2} thin films by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Y. [Department of Material Science and Engineering, Iwate University, Iwate Industrial Promotion Center, Iioka shinden 3-35-2, Morioka 020-0852 (Japan)]. E-mail: yharada@luck.ocn.ne.jp; Udsuka, M. [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka 020-8551 (Japan); Takahashi, T. [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka 020-8551 (Japan); Nakanishi, Y. [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka 020-8551 (Japan); Yoshizawa, M. [Graduate School of Engineering, Iwate University, Ueda 4-3-5, Morioka 020-8551 (Japan)

    2005-04-30

    Superconducting thin films of magnesium diboride (MgB{sub 2}) were prepared on MgO(001) substrate by molecular beam epitaxy in the co-evaporation conditions of low deposition rate and ultra-high vacuum. A superconducting transition with the onset temperature of 31.2K was confirmed by both transport and magnetization measurements. The upper critical fields are obtained from measurement of the field dependence of the resistivity. It was estimated that the upper critical field at 0K was more than 15T. The upper critical field anisotropy ratio, H{sub C2,ab}(0)/H{sub C2,c}(0), was estimated to be 1.78 from the magnetic field-temperature phase diagram for as-grown MgB{sub 2} thin films.

  11. Photolithographically patterened thin-film multilayer devices of YBa sub 2 Cu sub 3 O sub 7-x

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, J.J.; Wellstood, F.C.; Quan, D.; Clarke, J.

    1990-09-01

    We have fabricated thin-film YBa{sub 2}Cu{sub 3}O{sub 7-x}-SrTiO{sub 3}-YBa{sub 2}Cu{sub 3}O{sub 7-x} multilayer interconnect structures in which each in situ laser-deposited film is independently patterned by photolithography. In particular, we have constructed the two key components necessary for a superconducting multilayer interconnect technology, crossovers and window contacts. As a further demonstration of the technology, we have fabricated a thin-film flux transformer, suitable for use with a Superconducting QUantum Interference Device (SQUID), that includes a ten-turn input coil with 6{mu}m linewidth. Transport measurements showed that the critical temperature was 87K and the critical current was 135 {mu}A at 82K. 7 refs., 6 figs.

  12. Melt process of Sm-Ba-Cu-O bulk superconductors by thin film cold seeding

    Science.gov (United States)

    Fujimoto, H.; Ozaku, H.; Ohtabara, E.

    2003-10-01

    We discuss Sm123 bulks melt-processed in air and their characteristic superconducting properties for improving superconducting properties and producing a larger bulk. Isothermal undercooling growth in air with oxygen annealing and Nd123/MgO thin film cold seeding technique were applied in SmBaCuOy/Ag system to seek the high-efficiency of process, homogeneity of composition, and feasibility of batch production. We investigated process conditions such as heat treatment temperatures, compositions, seeding methods, and atmosphere. Single-domain growth of superconducting phases of a square larger than 10 mm on a side and 5 mm in thickness was achieved using this technique. Tc,onset and Tc,zero are 94 and 90 K, and Jc is 3 × 10 4 A/cm 2 at around 2 T at 77 K with a typical peak effect in the LRE system. In the case of Sm211 = 10 and 40 mol% addition, the maximum trapped magnetic field of the bulks is 1000 and 2100 G, respectively. The maximum magnetic field increases as Sm211 volume fractions increase. The result implies that melt-processed in air applying isothermal method and thin film seeding in Sm system is feasible for producing larger bulks in large scale applications.

  13. Thermal treatment of superconductor thin film of the BSCCO system using domestic microwave oven

    Science.gov (United States)

    Silveira, J. B.; Carvalho, C. L.; Torsoni, G. B.; Aquino, H. A.; Zadorosny, R.

    2012-08-01

    In this work, we report the preparation of a superconductor thin film of the BSCCO system using a good quality powder with nominal composition Bi1.8Pb0.4Sr2CaCu2Ox which was thermally treated using a domestic microwave oven (2.45 GHz, 800 W). This film was grew on a single crystal of LaAlO3 (1 0 0) substrate and exhibited a crystalline structure with the c-axis perpendicular to the plane of the substrate. An onset superconducting transition temperature was measured at 80 K.

  14. Thermal treatment of superconductor thin film of the BSCCO system using domestic microwave oven

    Energy Technology Data Exchange (ETDEWEB)

    Silveira, J.B.; Carvalho, C.L.; Torsoni, G.B.; Aquino, H.A. [Grupo de Desenvolvimento e Aplicacoes de Materiais, Departamento de Fisica e Quimica, Faculdade de Engenharia de Ilha Solteira, Univers Estadual Paulista-UNESP, Caixa Postal 31, 15385-000 Ilha Solteira, SP (Brazil); Zadorosny, R., E-mail: rafazad@yahoo.com.br [Grupo de Desenvolvimento e Aplicacoes de Materiais, Departamento de Fisica e Quimica, Faculdade de Engenharia de Ilha Solteira, Univers Estadual Paulista-UNESP, Caixa Postal 31, 15385-000 Ilha Solteira, SP (Brazil)

    2012-08-15

    In this work, we report the preparation of a superconductor thin film of the BSCCO system using a good quality powder with nominal composition Bi{sub 1.8}Pb{sub 0.4}Sr{sub 2}CaCu{sub 2}O{sub x} which was thermally treated using a domestic microwave oven (2.45 GHz, 800 W). This film was grew on a single crystal of LaAlO{sub 3} (1 0 0) substrate and exhibited a crystalline structure with the c-axis perpendicular to the plane of the substrate. An onset superconducting transition temperature was measured at 80 K.

  15. Magnetic and Transport Properties of Ferromagnetic Semiconductor GaDyN Thin Film

    Institute of Scientific and Technical Information of China (English)

    LI Xi-Jun; ZHOU YI-Kai; KIM M.; KIMURA S.; TERAGUCHI N.; EMURA S.; HASEGAWA S.; ASAHI H.

    2005-01-01

    @@ Magnetic properties and temperature dependence of electrical transport properties of rare-earth-metal Dy-doped GaN thin film are experimentally studied with a superconducting quantum interference device magnetometer and van der Pauw method. It was found that this thin nitride film has both semiconductor properties and ferromagnetism from 10K to room temperature. The dopant-band (conducting band due to doping) electron conduction dominates the transport properties of this film at low temperatures. These results indicate that Dy-doped GaN is an n-type ferromagnetic semiconductor at room temperature.

  16. Calculation of Specific Heat for Aluminium Thin Films

    Institute of Scientific and Technical Information of China (English)

    LU Yao; SONG Qing-Lin; XIA Shan-Hong

    2005-01-01

    @@ We employ Prasher's non-dimensional form to analyse the size effects on specific heat of Al thin films. Compared the calculation results of pure aluminium film with the experimental data, it is found that the reduction of phonon states is not the main reason of the size effect on the specific heat Al thin films with thickness from 10hm to 370nm. However, the Al thin film in air usually has an oxidation layer and the specific heat of the layer is smaller than Al. By including the contribution of the oxidation layer to the thin-film specific heat, the calculation results are much closer to the experimental data. This may be a possible reason of the size effects on specific heat of Al thin films.

  17. Nanotwin hardening in a cubic chromium oxide thin film

    Directory of Open Access Journals (Sweden)

    Kazuma Suzuki

    2015-09-01

    Full Text Available NaCl-type (B1 chromium oxide (CrO has been expected to have a high hardness value and does not exist as an equilibrium phase. We report a B1-based Cr0.67O thin film with a thickness of 144 nm prepared by pulsed laser deposition as an epitaxial thin film on a MgO single crystal. The thin film contained a number of stacking faults and had a nanotwinned structure composed of B1 with disordered vacancies and corundum structures. The Cr0.67O thin film had a high indentation hardness value of 44 GPa, making it the hardest oxide thin film reported to date.

  18. Nanocoatings and ultra-thin films technologies and applications

    CERN Document Server

    Tiginyanu, Ion

    2011-01-01

    Gives a comprehensive account of the developments of nanocoatings and ultra-thin films. This book covers the fundamentals, processes of deposition and characterisation of nanocoatings, as well as the applications. It is suitable for the glass and glazing, automotive, electronics, aerospace, construction and biomedical industries in particular.$bCoatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings. Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications...

  19. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  20. Chemical Oxidation of La2CuO4 Epitaxial Thin Films Grown by Pulsed Laser Deposition

    Institute of Scientific and Technical Information of China (English)

    WANG Chun-Chang; YAN Yun-Jie; ZHU Jing

    2007-01-01

    Chemical oxidation is used to induce superconductivity in La2CuO4 expitaxial thin films fabricated by pulsed laser deposition technique. Details about the influence of oxidation time on structural, surface morphology, Raman spectra, and electrical properties have been investigated. The results convince that successful uptake of oxygen occurs in the oxidized films, and the content of the inserted oxygen increases with increasing oxidation interval. The possible mechanism for the excess oxygen insertion into the film is also discussed.

  1. In situ fabrication of high-Tc Y-Ba-Cu-O thin film by resistive evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. (Centre for Technological Education, Holon (Israel) Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv Univ. (Israel))

    1992-11-20

    We have recently used a simple conventional oil-pumped vacuum system equipped with a resistively heated boat for in situ fabrication of Y-Ba-Cu-O high Tc superconductivity phase thin films at a relatively low substrate temperature. A well-ground mixture of yttrium, BaF[sub 2] and copper, weighed in the atomic proportion to yield a stoichiometric YBa[sub 2]Cu[sub 3]O[sub 7-[delta

  2. Characterization of reliability of printed indium tin oxide thin films.

    Science.gov (United States)

    Hong, Sung-Jei; Kim, Jong-Woong; Jung, Seung-Boo

    2013-11-01

    Recently, decreasing the amount of indium (In) element in the indium tin oxide (ITO) used for transparent conductive oxide (TCO) thin film has become necessary for cost reduction. One possible approach to this problem is using printed ITO thin film instead of sputtered. Previous studies showed potential for printed ITO thin films as the TCO layer. However, nothing has been reported on the reliability of printed ITO thin films. Therefore, in this study, the reliability of printed ITO thin films was characterized. ITO nanoparticle ink was fabricated and printed onto a glass substrate followed by heating at 400 degrees C. After measurement of the initial values of sheet resistance and optical transmittance of the printed ITO thin films, their reliabilities were characterized with an isothermal-isohumidity test for 500 hours at 85 degrees C and 85% RH, a thermal shock test for 1,000 cycles between 125 degrees C and -40 degrees C, and a high temperature storage test for 500 hours at 125 degrees C. The same properties were investigated after the tests. Printed ITO thin films showed stable properties despite extremely thermal and humid conditions. Sheet resistances of the printed ITO thin films changed slightly from 435 omega/square to 735 omega/square 507 omega/square and 442 omega/square after the tests, respectively. Optical transmittances of the printed ITO thin films were slightly changed from 84.74% to 81.86%, 88.03% and 88.26% after the tests, respectively. These test results suggest the stability of printed ITO thin film despite extreme environments.

  3. An overview of thin film nitinol endovascular devices.

    Science.gov (United States)

    Shayan, Mahdis; Chun, Youngjae

    2015-07-01

    Thin film nitinol has unique mechanical properties (e.g., superelasticity), excellent biocompatibility, and ultra-smooth surface, as well as shape memory behavior. All these features along with its low-profile physical dimension (i.e., a few micrometers thick) make this material an ideal candidate in developing low-profile medical devices (e.g., endovascular devices). Thin film nitinol-based devices can be collapsed and inserted in remarkably smaller diameter catheters for a wide range of catheter-based procedures; therefore, it can be easily delivered through highly tortuous or narrow vascular system. A high-quality thin film nitinol can be fabricated by vacuum sputter deposition technique. Micromachining techniques were used to create micro patterns on the thin film nitinol to provide fenestrations for nutrition and oxygen transport and to increase the device's flexibility for the devices used as thin film nitinol covered stent. In addition, a new surface treatment method has been developed for improving the hemocompatibility of thin film nitinol when it is used as a graft material in endovascular devices. Both in vitro and in vivo test data demonstrated a superior hemocompatibility of the thin film nitinol when compared with commercially available endovascular graft materials such as ePTFE or Dacron polyester. Promising features like these have motivated the development of thin film nitinol as a novel biomaterial for creating endovascular devices such as stent grafts, neurovascular flow diverters, and heart valves. This review focuses on thin film nitinol fabrication processes, mechanical and biological properties of the material, as well as current and potential thin film nitinol medical applications.

  4. Penetration depth and conductivity of NbN and $DyBa_2Cu_3O_7$ thin films measured by mm-wave transmission

    NARCIS (Netherlands)

    Feenstra, B. J.; Klaassen, F. C.; Marel, D. van der; Barber, Z. H. P; érez-Pinaya, R.; Decroux, M.

    1997-01-01

    Published in: Physica C 278 (1997) 213 citations recorded in [Science Citation Index] Abstract: Using mm-wave transmission we obtain information about both the real and imaginary part of the dielectric function of superconducting thin films. This is done by fitting the Fabry-Perot resonance spectrum

  5. Penetration depth and conductivity of NbN and DyBa2Cu3O7-delta thin films measured by mm-wave transmission

    NARCIS (Netherlands)

    Feenstra, BJ; Klaassen, FC; vanderMarel, D; Barber, ZH; Pinaya, RP; Decroux, M

    1997-01-01

    Using mm-wave transmission, information about both the real and imaginary part of the dielectric function of superconducting thin films is obtained. This is done by fitting the Fabry-Perot resonance spectrum for the film plus substrate over a broad frequency range (110-180 GHz) using the full Fresne

  6. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  7. Sulfated cellulose thin films with antithrombin affinity

    Directory of Open Access Journals (Sweden)

    2009-11-01

    Full Text Available Cellulose thin films were chemically modified by in situ sulfation to produce surfaces with anticoagulant characteristics. Two celluloses differing in their degree of polymerization (DP: CEL I (DP 215–240 and CEL II (DP 1300–1400 were tethered to maleic anhydride copolymer (MA layers and subsequently exposed to SO3•NMe3 solutions at elevated temperature. The impact of the resulting sulfation on the physicochemical properties of the cellulose films was investigated with respect to film thickness, atomic composition, wettability and roughness. The sulfation was optimized to gain a maximal surface concentration of sulfate groups. The scavenging of antithrombin (AT by the surfaces was determined to conclude on their potential anticoagulant properties.

  8. Capillary instabilities in thin films. I. Energetics

    Energy Technology Data Exchange (ETDEWEB)

    Srolovitz, D.J.; Safran, S.A.

    1986-07-01

    A stability theory is presented which describes the conditions under which thin films rupture. It is found that holes in the film will either grow or shrink, depending on whether their initial radius is larger or smaller than a critical value. If the holes grow large enough, they impinge to form islands; the size of which are determined by the surface energies. The formation of grooves where the grain boundary meets the free surface is a potential source of holes which can lead to film rupture. Equilibrium grain boundary groove depths are calculated for finite grain sizes. Comparison of groove depth and film thickness yields microstructural conditions for film rupture. In addition, pits which form at grain boundary vertices, where three grains meet, are another source of film instability.

  9. Photoluminescence studies in epitaxial CZTSe thin films

    Science.gov (United States)

    Sendler, Jan; Thevenin, Maxime; Werner, Florian; Redinger, Alex; Li, Shuyi; Hägglund, Carl; Platzer-Björkman, Charlotte; Siebentritt, Susanne

    2016-09-01

    Epitaxial Cu 2 ZnSnSe 4 (CZTSe) thin films were grown by molecular beam epitaxy on GaAs(001) using two different growth processes, one containing an in-situ annealing stage as used for solar cell absorbers and one for which this step was omitted. Photoluminescences (PL) measurements carried out on these samples show no dependence of the emission shape on the excitation intensity at different temperatures ranging from 4 K to 300 K . To describe the PL measurements, we employ a model with fluctuating band edges in which the density of states of the resulting tail states does not seem to depend on the excited charge carrier density. In this interpretation, the PL measurements show that the annealing stage removes a defect level, which is present in the samples without this annealing.

  10. Ternary compound thin film solar cells

    Science.gov (United States)

    Kazmerski, L. L.

    1975-01-01

    A group of ternary compound semiconductor (I-III-VI2) thin films for future applications in photovoltaic devices is proposed. The consideration of these materials (CuInSe2, CuInTe2 and especially CuInS2) for long range device development is emphasized. Much of the activity to date has been concerned with the growth and properties of CuInX2 films. X-ray and electron diffraction analyses, Hall mobility and coefficient, resistivity and carrier concentration variations with substrate and film temperature as well as grain size data have been determined. Both p- and n-type films of CuInS2 and CuInSe2 have been produced. Single and double source deposition techniques have been utilized. Some data have been recorded for annealed films.

  11. Characterization of lithium phosphorous oxynitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiaohua; Bates, J.B.; Jellison, G.E. Jr.

    1996-01-01

    Electrical and electrochemical properties of an amorphous thin-film lithium electrolyte, lithium phosphorous oxynitride (Lipon), have been studied with emphasis on the stability window vs Li metal and the behavior of the Li/Lipon interface. Ion conductivity of Lipon exhibits Arrhenius behavior at {minus}26 to +140 C, with a conductivity of 1.7 {times} 10{sup {minus}6}S/cm at 25 C and an activity energy of 0.50 {plus_minus} 0.01 eV. A stability window of 5.5 V was observed with respect to a Li{sup +}/Li reference, and no detectable reaction or degradation was evident at the Li/Lipon interface upon lithium cycling.

  12. When are thin films of metals metallic?

    Science.gov (United States)

    Plummer, E. W.; Dowben, P. A.

    1993-04-01

    There is an increasing body of experimental information suggesting that very thin films of materials, normally considered to be metals, exhibit behavior characteristic of a nonmetal. In almost all cases, there is a nonmetal-to-metal transition as a function of film density or thickness, frequently accompanied by a structural transition. Amazingly, this behavior seems to occur for metal films on metal substrates, as well as for metals on semiconductors. The identification of this phenomena and the subsequent explanation has been slow in developing, due to the inability to directly measure the conductivity of a submonolayer film. This paper will discuss the evidence accumulated from variety of spectroscopic experimental techniques for three systems: a Mott-Hubbard transition, a Peierls-like distortion, and a Wilson transition.

  13. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    G V Kunte; S A Shivashankar; A M Umarji

    2008-11-01

    Thin films of the hydrated phase of tungsten oxide, hydrotungstite (H2WO4.H2O), have been grown on glass substrates using a dip-coating technique. The -axis oriented films have been characterized by X-ray diffraction and scanning electron microscopy. The electrical conductivity of the films is observed to vary with humidity and selectively show high sensitivity to moisture at room temperature. In order to understand the mechanism of sensing, the films were examined by X-ray diffraction at elevated temperatures and in controlled atmospheres. Based on these observations and on conductivity measurements, a novel sensing mechanism based on protonic conduction within the surface layers adsorbed onto the hydrotungstite film is proposed.

  14. Nonlinear optics of astaxanthin thin films

    Science.gov (United States)

    Esser, A.; Fisch, Herbert; Haas, Karl-Heinz; Haedicke, E.; Paust, J.; Schrof, Wolfgang; Ticktin, Anton

    1993-02-01

    Carotinoids exhibit large nonlinear optical properties due to their extended (pi) -electron system. Compared to other polyenes which show a broad distribution of conjugation lengths, carotinoids exhibit a well defined molecular structure, i.e. a well defined conjugation length. Therefore the carotinoid molecules can serve as model compounds to study the relationship between structure and nonlinear optical properties. In this paper the synthesis of four astaxanthins with C-numbers ranging from 30 to 60, their preparation into thin films, wavelength dispersive Third Harmonic Generation (THG) measurements and some molecular modelling calculations will be presented. Resonant (chi) (3) values reach 1.2(DOT)10-10 esu for C60 astaxanthin. In the nonresonant regime a figure of merit (chi) (3)/(alpha) of several 10-13 esu-cm is demonstrated.

  15. Electron impinging on metallic thin film targets

    Energy Technology Data Exchange (ETDEWEB)

    Rouabah, Z. [Laboratoire de Physique Moleculaire et des Collisions, ICPMB (FR CNRS 2843), Institut de Physique, Universite Paul Verlaine-Metz, Metz Cedex 3 (France); Laboratoire Materiaux et Systemes Electroniques, Centre Universitaire de Bordj-Bou-Arreridj, El-Anasser, 34265 Bordj-Bou-Arreridj (Algeria); Bouarissa, N., E-mail: N_Bouarissa@yahoo.fr [Department of Physics, Faculty of Science, King Khalid University, Abha, P.O.Box 9004 (Saudi Arabia); Champion, C. [Laboratoire de Physique Moleculaire et des Collisions, ICPMB (FR CNRS 2843), Institut de Physique, Universite Paul Verlaine-Metz, Metz Cedex 3 (France)

    2010-03-15

    Based on the Vicanek and Urbassek theory [M. Vicanek, H.M. Urbassek, Phys. Rev. B 44 (1991) 7234] combined to a home-made Monte Carlo simulation, the present work deals with backscattering coefficients, mean penetration depths and stopping profiles for 1-4 keV electrons normally incident impinging on Al and Cu thin film targets. The cross-sections used to describe the electron transport are calculated via the appropriate analytical expression given by Jablonski [A. Jablonski, Phys. Rev. B 58 (1998) 16470] whose new improved version has been recently given [Z. Rouabah, N. Bouarissa, C. Champion, N. Bouaouadja, Appl. Surf. Sci. 255 (2009) 6217]. The behavior of the backscattering coefficient, mean penetration depth and stopping profiles versus the metallic film thickness at the nanometric scale and beyond is here analyzed and discussed.

  16. Scanning tunneling spectroscopy of Pb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael

    2010-12-13

    The present thesis deals with the electronic structure, work function and single-atom contact conductance of Pb thin films, investigated with a low-temperature scanning tunneling microscope. The electronic structure of Pb(111) thin films on Ag(111) surfaces is investigated using scanning tunneling spectroscopy (STS). Quantum size effects, in particular, quantum well states (QWSs), play a crucial role in the electronic and physical properties of these films. Quantitative analysis of the spectra yields the QWS energies as a function of film thickness, the Pb bulk-band dispersion in {gamma}-L direction, scattering phase shifts at the Pb/Ag interface and vacuum barrier as well as the lifetime broadening at anti {gamma}. The work function {phi} is an important property of surfaces, which influences catalytic reactivity and charge injection at interfaces. It controls the availability of charge carriers in front of a surface. Modifying {phi} has been achieved by deposition of metals and molecules. For investigating {phi} at the atomic scale, scanning tunneling microscopy (STM) has become a widely used technique. STM measures an apparent barrier height {phi}{sub a}, which is commonly related to the sample work function {phi}{sub s} by: {phi}{sub a}=({phi}{sub s}+{phi}{sub t}- vertical stroke eV vertical stroke)/2, with {phi}{sub t} the work function of the tunneling tip, V the applied tunneling bias voltage, and -e the electron charge. Hence, the effect of the finite voltage in STM on {phi}{sub a} is assumed to be linear and the comparison of {phi}{sub a} measured at different surface sites is assumed to yield quantitative information about work function differences. Here, the dependence of {phi}{sub a} on the Pb film thickness and applied bias voltage V is investigated. {phi}{sub a} is found to vary significantly with V. This bias dependence leads to drastic changes and even inversion of contrast in spatial maps of {phi}{sub a}, which are related to the QWSs in the Pb

  17. Electrical Resistance Tomography of Conductive Thin Films

    CERN Document Server

    Cultrera, Alessandro

    2016-01-01

    The Electrical Resistance Tomography (ERT) technique is applied to the measurement of sheet conductance maps of both uniform and patterned conductive thin films. Images of the sheet conductance spatial distribution, and local conductivity values are obtained. Test samples are tin oxide films on glass substrates, with electrical contacts on the sample boundary, some samples are deliberately patterned in order to induce null conductivity zones of known geometry while others contain higher conductivity inclusions. Four-terminal resistance measurements among the contacts are performed with a scanning setup. The ERT reconstruction is performed by a numerical algorithm based on the total variation regularization and the L-curve method. ERT correctly images the sheet conductance spatial distribution of the samples. The reconstructed conductance values are in good quantitative agreement with independent measurements performed with the van der Pauw and the four-point probe methods.

  18. Thin-film forces in pseudoemulsion films

    Energy Technology Data Exchange (ETDEWEB)

    Bergeron, V.; Radke, C.J. [California Univ., Berkeley, CA (United States). Dept. of Chemical Engineering]|[Lawrence Berkeley Lab., CA (United States)

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  19. Separation Efficiency of Thin-film Evaporators

    Institute of Scientific and Technical Information of China (English)

    R.Billet

    2004-01-01

    The recovery of contaminants and useful substances from liquid wastes, the purification of production effluents and the separation of thermally instable mixtures are some of the multivarious applications of thin-film distillors in many processes of the chemical and allied industries and of the food industries. In a study carried out in pilot plants with distillation test systems there was found a good agreement between the experimental separation results and those obtained by computing with a theorectical model; the latter is based on the assumption of phase equilibrium between the vapour formed on an infinitely small element of area in a liquid film of any given concentric periphery of the vertically arranged evaporator. These tests were perfomed under various phase loads.

  20. Photodesorption from copper, beryllium, and thin films

    Science.gov (United States)

    Foerster, C. L.; Halama, H. J.; Korn, G.

    Ever increasing circulating currents in electron-positron colliders and light sources demand lower and lower photodesportion (PSD) from the surfaces of their vacuum chambers and their photon absorbers. This is particularly important in compact electron storage rings and B meson factories where photon power of several kw cm(exp -1) is deposited on the surfaces. Given the above factors, we have measured PSD from 1 m long bars of solid copper and solid beryllium, and TiN, Au and C thin films deposited on solid copper bars. Each sample was exposed to about 10(exp 23) photons/m with a critical energy of 500 eV at the VUV ring of the NSLS. PSD was recorded for two conditions: after a 200 C bake-out and after an Ar glow discharge cleaning. In addition, we also measured reflected photons, photoelectrons and desorption as functions of normal, 75 mrad, 100 mrad, and 125 mrad incident photons.

  1. Stationary states and dynamics of superconducting thin films

    DEFF Research Database (Denmark)

    Ögren, Magnus; Sørensen, Mads Peter; Pedersen, Niels Falsig

    of stationary states with the GL equation and with the time-dependent GL equation are given. Moreover we study real time evolution with the so called Schrödinger-GL equation [3]. For simplicity we here present numerical data for a twodimensional rectangular geometry, but we emphasize that our FEM formulation......The Ginzburg-Landau (GL) theory is a celebrated tool for theoretical modelling of superconductors [1]. We elaborate on different partial differential equations (PDEs) and boundary conditions for GL theory, formulated within the finite element method (FEM) [2]. Examples of PDEs for the calculation...

  2. Gadolinium thin films as benchmark for magneto-caloric thin films

    Science.gov (United States)

    Helmich, Lars; Bartke, Marianne; Teichert, Niclas; Schleicher, Benjamin; Fähler, Sebastian; Hütten, Andreas

    2017-05-01

    We report on the preparation of Gadolinium thin films by means of sputter deposition on Silicon Oxide wafers. A series of samples with different buffer layers and various substrate temperatures has been produced. The film on an amorphous Tantalum buffer deposited at 773 K shows the highest increase of magnetization during the phase transition at the Curie temperature. Further detailed analysis of the magnetic properties has been conducted by VSM.

  3. Magnesium Diboride thin Films, multilayers, and coatings for SRF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xiaoxing [Temple Univ., Philadelphia, PA (United States)

    2017-08-17

    Superconducting radio frequency (SRF) cavities currently use low-temperature superconductor niobium, and the Nb SRF cavities have approached the performance levels predicted theoretically. Compared to Nb, MgB2 becomes superconducting at a much higher temperature and promises a better RF performance in terms of higher quality factor Q and higher acceleration capability. An MgB2 SRF technology can significantly reduce the operating costs of particle accelerators when these potentials are realized. This project aimed to advance the development of an MgB2 SRF technology. It had two main objectives: (1) materials issues of MgB2 thin films and multilayers related to their applications in SRF cavities; and (2) coating single-cell cavities for testing at RF frequencies. The key technical thrust of the project is the deposition of high quality clean MgB2 films and coatings by the hybrid physical-chemical vapor deposition (HPCVD) technique, which was developed in my group. We have achieved technical progress in each of the two areas. For the first objective, we have confirmed that MgB2 thin film coatings can be used to effectively enhance the vortex penetration field of an SRF cavity. A vortex is a normal region in the shape of spaghetti that threads through a superconductor. Its existence is due to an applied magnetic field that is greater than a so-called lower critical field, Hc1. Once a vortex enters the superconductor, its movement leads to loss. This has been shown to be the reason for an SRF cavity to break down. Thus, enhancing the magnetic field for a vortex to enter the superconductor that forms the SRF cavity has be a goal of intense research. To this end, Gurevich proposed that a coating of thin superconductor layer can impede the vortex entrance. In this project, we have done two important experiment to test this concept. One, we showed that the enhancement of Hc1 can be

  4. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  5. Two approaches for enhancing the hydrogenation properties of palladium: Metal nanoparticle and thin film over layers

    Indian Academy of Sciences (India)

    Manika Khanuja; B R Mehta; S M Shivaprasad

    2008-11-01

    In the present study, two approaches have been used for enhancing the hydrogenation properties of Pd. In the first approach, metal thin film (Cu, Ag) has been deposited over Pd and hydrogenation properties of bimetal layer Cu (thin film)/Pd(thin film) and Ag(thin film)/Pd(thin film) have been studied. In the second approach, Ag metal nanoparticles have been deposited over Pd and hydrogenation properties of Ag (nanoparticle)/Pd (thin film) have been studied and compared with Ag(thin film)/Pd(thin film) bimetal layer system. The observed hydrogen sensing response is stable and reversible over a number of hydrogen loading and deloading cycles in both bimetallic systems. Alloying between Ag and Pd is suppressed in case of Ag(nanoparticle)/Pd(thin film) bimetallic layer on annealing as compared to Ag (thin film)/Pd(thin film).

  6. The corrosion behavior of nanocrystalline nickel based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Danışman, Murat, E-mail: muratdan@gmail.com

    2016-03-01

    In this study, the effect of Cr addition on corrosion behavior of Ni thin films were investigated. Ni thin films and Ni films with three different Cr content were deposited on glass substrates by magnetron sputtering. After deposition process, thin films with different Cr content were thermally treated in a rapid thermal process system. Phase analysis and grain size calculations of the samples were carried out by X-ray diffraction analysis. In order to reveal corrosion properties, potentiodynamic tests were conducted on samples. Analysis revealed that, although Cr addition to pure-Ni thin films improved their corrosion resistance, occurrence of σ-Cr{sub 3}Ni{sub 2} phase at higher Cr contents increased corrosion rate. The corrosion properties of the samples were also investigated by electrochemical impedance spectroscopy and surface related parameters caused by corrosion reactions were calculated. The analysis revealed that at 55% wt. Cr, rapid ion exchange occurred and highest corrosion current, 23.4 nA cm{sup −2} was observed. - Highlights: • Thin film Ni–Cr samples were deposited on glass substrate. • Effect of Cr addition on corrosion behavior of Ni thin films were investigated. • Potentiodynamic tests and electrochemical impedance spectroscopy methods were used. • Cr content in Ni thin films plays and important role on corrosion. • Up to a certain Cr content, Cr addition reduces corrosion rate.

  7. Optical properties of aluminum oxide thin films and colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Koushki, E., E-mail: ehsan.koushki@yahoo.com [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Mousavi, S.H. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Jafari Mohammadi, S.A. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Department of Chemistry, College of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Majles Ara, M.H. [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Oliveira, P.W. de [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany)

    2015-10-01

    In this work, we prepared thin films of aluminum oxide (Al{sub 2}O{sub 3}) with different thicknesses, using a wet chemical process. The Al{sub 2}O{sub 3} nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  8. Organic photo detectors for an integrated thin-film spectrometer

    Science.gov (United States)

    Peters, Sabine; Sui, Yunwu; Glöckler, Felix; Lemmer, Uli; Gerken, Martina

    2007-09-01

    We introduce a thin-film spectrometer that is based on the superprism effect in photonic crystals. While the reliable fabrication of two and three dimensional photonic crystals is still a challenge, the realization of one-dimensional photonic crystals as thin-film stacks is a relatively easy and inexpensive approach. Additionally, dispersive thin-film stacks offer the possibility to custom-design the dispersion profile according to the application. The thin-film stack is designed such that light incident at an angle experiences a wavelength-dependent spatial beam shift at the output surface. We propose the monolithic integration of organic photo detectors to register the spatial beam position and thus determine the beam wavelength. This thin-film spectrometer has a size of approximately 5 mm2. We demonstrate that the output position of a laser beam is determined with a resolution of at least 20 μm by the fabricated organic photo detectors. Depending on the design of the thin-film filter the wavelength resolution of the proposed spectrometer is at least 1 nm. Possible applications for the proposed thin-film spectrometer are in the field of absorption spectroscopy, e.g., for gas analysis or biomedical applications.

  9. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  10. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  11. Development of Thin Film Ceramic Thermocouples for High Temperature Environments

    Science.gov (United States)

    Wrbanek, John D.; Fralick, Gustave C.; Farmer, Serene C.; Sayir, Ali; Blaha, Charles A.; Gonzalez, Jose M.

    2004-01-01

    The maximum use temperature of noble metal thin film thermocouples of 1100 C (2000 F) may not be adequate for use on components in the increasingly harsh conditions of advanced aircraft and next generation launch technology. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically found in the form of rods or probes. NASA Glenn Research Center is investigating the feasibility of ceramics as thin film thermocouples for extremely high temperature applications to take advantage of the stability and robustness of ceramics and the non-intrusiveness of thin films. This paper will discuss the current state of development in this effort.

  12. Preface: Advanced Thin Film Developments and Nano Structures

    Institute of Scientific and Technical Information of China (English)

    Ray Y.Lin

    2005-01-01

    @@ In this special issue, we invited a few leading materials researchers to present topics in thin films, coatings, and nano structures. Readers will find most recent developments in topics, including recent advances in hard, tough, and low friction nanocomposite coatings; thin films for coating nanomaterials; electroless plating of silver thin films on porous Al2O3 substrate; CrN/Nano Cr interlayer coatings; nano-structured carbide derived carbon (CDC) films and their tribology; predicting interdiffusion in high-temperature coatings; gallium-catalyzed silica nanowire growth; and corrosion protection properties of organofunctional silanes. Authors are from both national laboratories and academia.

  13. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  14. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong, E-mail: xzzhang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People' s Republic of China and Beijing National Center for Electron Microscopy, Beijing 100084 (China)

    2015-05-07

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ∼ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ∼ 1.5% in 2 ∼ 40 K. The origin of this angular MR was also discussed.

  15. Thin-film organic photonics molecular layer deposition and applications

    CERN Document Server

    Yoshimura, Tetsuzo

    2011-01-01

    Among the many atomic/molecular assembling techniques used to develop artificial materials, molecular layer deposition (MLD) continues to receive special attention as the next-generation growth technique for organic thin-film materials used in photonics and electronics. Thin-Film Organic Photonics: Molecular Layer Deposition and Applications describes how photonic/electronic properties of thin films can be improved through MLD, which enables precise control of atomic and molecular arrangements to construct a wire network that achieves ""three-dimensional growth"". MLD facilitates dot-by-dot--o

  16. Novel phthalocyanine thin film for compact disc recordable

    Institute of Scientific and Technical Information of China (English)

    Yongyou Geng(耿永友); Donghong Gu(顾冬红); Yiqun Wu(吴谊群); Fuxi Gan(干福熹)

    2003-01-01

    In this paper, the spin-coated thin films of phthalocyanine dye are presented. Absorption spectrum ofthe thin film shows a comparatively broad absorption in the wavelength range 630 - 770 nm. Opticalparameters of the thin film were measured by a spectroscopic ellipsometer system. 5-in CD-R discs madeof this dye exhibit good performance with Yamaha 20-speed recorder. Jitters of land and pit are less than30 ns, and the 3T-11T's signals show very good quality. This dye is a promising recording medium forCD-R with much higher recording speed.

  17. Nonlinear optical microscopy for imaging thin films and surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Smilowitz, L.B.; McBranch, D.W.; Robinson, J.M.

    1995-03-01

    We have used the inherent surface sensitivity of second harmonic generation to develop an instrument for nonlinear optical microscopy of surfaces and interfaces. We have demonstrated the use of several nonlinear optical responses for imaging thin films. The second harmonic response of a thin film of C{sub 60} has been used to image patterned films. Two photon absorption light induced fluorescence has been used to image patterned thin films of Rhodamine 6G. Applications of nonlinear optical microscopy include the imaging of charge injection and photoinduced charge transfer between layers in semiconductor heterojunction devices as well as across membranes in biological systems.

  18. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at; Schmid, Ulrich, E-mail: ulrich.e366.schmid@tuwien.ac.at [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail: jenspeter.konrath@infineon.com; Haberl, Verena, E-mail: verena.haberl@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)

    2016-03-15

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  19. Thin films and coatings toughening and toughness characterization

    CERN Document Server

    Zhang, Sam

    2015-01-01

    Thin Films and Coatings: Toughening and Toughness Characterization captures the latest developments in the toughening of hard coatings and in the measurement of the toughness of thin films and coatings. Featuring chapters contributed by experts from Australia, China, Czech Republic, Poland, Singapore, Spain, and the United Kingdom, this first-of-its-kind book:Presents the current status of hard-yet-tough ceramic coatingsReviews various toughness evaluation methods for films and hard coatingsExplores the toughness and toughening mechanisms of porous thin films and laser-treated surfacesExamines

  20. Assembly and Applications of Carbon Nanotube Thin Films

    Institute of Scientific and Technical Information of China (English)

    Hongwei ZHU; Bingqing WEI

    2008-01-01

    The ultimate goal of current research on carbon nanotubes (CNTs) is to make breakthroughs that advance nanotechnological applications of bulk CNT materials. Especially, there has been growing interest in CNT thin films because of their unique and usually enhanced properties and tremendous potential as components for use in nano-electronic and nano-mechanical device applications or as structural elements in various devices. If a synthetic or a post processing method can produce high yield of nanotube thin films, these structures will provide tremendous potential for fundamental research on these devices. This review will address the synthesis, the post processing and the device applications of self-assembled nanotube thin films.