WorldWideScience

Sample records for superconductive hot-electron bolometer

  1. Characterization of MgB2 Superconducting Hot Electron Bolometers

    Science.gov (United States)

    Cunnane, D.; Kawamura, J. H.; Wolak, M. A.; Acharya, N.; Tan, T.; Xi, X. X.; Karasik, B. S.

    2014-01-01

    Hot-Electron Bolometer (HEB) mixers have proven to be the best tool for high-resolution spectroscopy at the Terahertz frequencies. However, the current state of the art NbN mixers suffer from a small intermediate frequency (IF) bandwidth as well as a low operating temperature. MgB2 is a promising material for HEB mixer technology in view of its high critical temperature and fast thermal relaxation allowing for a large IF bandwidth. In this work, we have fabricated and characterized thin-film (approximately 15 nanometers) MgB2-based spiral antenna-coupled HEB mixers on SiC substrate. We achieved the IF bandwidth greater than 8 gigahertz at 25 degrees Kelvin and the device noise temperature less than 4000 degrees Kelvin at 9 degrees Kelvin using a 600 gigahertz source. Using temperature dependencies of the radiation power dissipated in the device we have identified the optical loss in the integrated microantenna responsible as a cause of the limited sensitivity of the current mixer devices. From the analysis of the current-voltage (IV) characteristics, we have derived the effective thermal conductance of the mixer device and estimated the required local oscillator power in an optimized device to be approximately 1 microwatts.

  2. Noise Behaviour of a THz Superconducting Hot-Electron Bolometer Mixer

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wen; S. I. Svechnikov; Yu. B. Vachtomin; S. V. Antipov; B. M. Voronov; G. N. Gol'tsman; LI Ning; JIANG Ling; MIAO Wei; LIN Zheng-Hui; YAO Qi-Jun; SHI Sheng-Cai; CHEN Jian; WU Pei-Heng

    2007-01-01

    A quasi-optical superconducting NbN hot-electron bolometer (HEB) mixer is measured in the frequency range of 0.5-2.5 THz for understanding of the frequency dependence of noise temperature of THz coherent detectors. It has been found that noise temperature increasing with frequency is mainly due to the coupling loss between the quasioptical planar antenna and the superconducting HEB bridge when taking account of non-uniform distribution of high-frequency current. With the coupling loss corrected, the superconducting HEB mixer demonstrates a noise temperature nearly independent of frequency.

  3. Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers

    CERN Document Server

    Shcherbatenko, M; Lobanov, Yu; Maslennikov, S N; Kaurova, N; Finkel, M; Voronov, B; Goltsman, G; Klapwijk, T M

    2016-01-01

    We present a physically consistent interpretation of the dc electrical properties of niobiumnitride (NbN)-based superconducting hot-electron bolometer (HEB-) mixers, using concepts of nonequilibrium superconductivity. Through this we clarify what physical information can be extracted from the resistive transition and the dc current-voltage characteristics, measured at suitably chosen temperatures, and relevant for device characterization and optimization. We point out that the intrinsic spatial variation of the electronic properties of disordered superconductors, such as NbN, leads to a variation from device to device.

  4. Fabrication of high-Tc superconducting hot electron bolometers for terahertz mixer applications

    Science.gov (United States)

    Villegier, Jean-Claude; Degardin, Annick F.; Guillet, Bruno; Houze, Frederic; Kreisler, Alain J.; Chaubet, Michel

    2005-03-01

    Superconducting Hot Electron Bolometer (HEB) mixers are a competitive alternative to Schottky diode mixers or other conventional superconducting receiver technologies in the terahertz frequency range because of their ultrawide bandwidth (from millimeter waves to the visible), high conversion gain, and low intrinsic noise level, even at 77 K. A new technological process has been developed to realize HEB mixers based on high temperature superconducting materials, using 15 to 40 nm thick layers of YBa2Cu3O7-δ (YBCO), sputtered on MgO (100) substrates by hollow cathode magnetron sputtering. Critical temperature values of YBCO films were found in the 85 to 91 K range. Sub-micron HEB bridges (0.8 μm x 0.8 μm) were obtained by combining electronic and UV lithography followed by selective etching techniques. Realization of YBCO HEB coupling to planar integrated gold antennas was also considered.

  5. Appropriate microwave frequency selection for biasing superconducting hot electron bolometers as terahertz direct detectors

    Science.gov (United States)

    Jiang, S. L.; Li, X. F.; Jia, X. Q.; Kang, L.; Jin, B. B.; Xu, W. W.; Chen, J.; Wu, P. H.

    2017-04-01

    Terahertz (THz) direct detectors based on superconducting niobium nitride (NbN) hot electron bolometers (HEBs) and biased by a simple microwave (MW) source have been studied. The frequency and power of the MW are selected by measuring the MW responses of the current–voltage (I–V) curves and resistance–temperature (R–T) curves of the NbN HEBs. The non-uniform absorption theory is used to explain the current jumps in the I–V curves and the resistance jumps in the R–T curves. Compared to the thermal biasing, the MW biasing method can improve the sensitivity, make the readout system much easier and consumes less liquid helium, which is important for long lasting experiments. The noise equivalent power (NEP) of 1.6 pW Hz‑1/2 and the response time of 86 ps are obtained for the detectors working at 4.2 K and 0.65 THz.

  6. Development of 1.5 THz waveguide NbTiN superconducting hot electron bolometer mixers

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Ling [College of Information Science and Technology, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, Jiangsu (China); Shiba, Shoichi; Shiino, Tatsuya; Shimbo, Ken; Sakai, Nami; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Hongo 7-3-1, Tokyo 113-0033 (Japan); Yamakura, Tetsuya [Department of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba (Japan); Irimajiri, Yoshihisa [National Institute of Information and Communications Technology (Japan); Ananthasubramanian, P G [Raman Research Institute, Bangalore (India); Maezawa, Hiroyuki, E-mail: lingjiang616@hotmail.co [Solar-Terrestrial Environment Laboratory, Nagoya University (Japan)

    2010-04-15

    We present a characterization of a 1.5 THz waveguide niobium titanium nitride (NbTiN) superconducting hot electron bolometer (HEB) mixer which can be pumped by a commercial solid state tunable local oscillator (LO) source. The NbTiN HEB mixer is made from a 12 nm thick NbTiN thin film deposited on a quartz substrate at room temperature. A gold electrode is formed in situ on the NbTiN thin film without breaking vacuum to ensure good contact. The uncorrected DSB receiver noise temperature is measured to be 1700 K at 1.5 THz, whereas the mixer noise temperature is derived to be 1000 K after corrections for losses of the input optics and the intermediate frequency (IF) amplifier chain. The required LO power absorbed in the HEB mixer is evaluated to be 340 nW by using an isothermal technique. The IF gain bandwidth is supposed to be about 1.3 GHz or higher. The present results show that good performance can be obtained at 1.5 THz even with a relatively thick NbTiN film (12 nm), as in the case of 0.8 THz. In order to investigate the cooling mechanism of our HEB mixers, we have conducted performance measurements for a few HEB mixers with different microbridge sizes both at 1.5 and 0.8 THz. The noise performance of the NbTiN HEB mixers is found to depend on the length of the NbTiN microbridge. The shorter the microbridge is, the lower the receiver noise temperature is. This may imply a contribution of the diffusion cooling in addition to the phonon cooling.

  7. Terahertz hot electron bolometer waveguide mixers for GREAT

    CERN Document Server

    Pütz, P; Jacobs, K; Justen, M; Schultz, M; Stutzki, J

    2012-01-01

    Supplementing the publications based on the first-light observations with the German Receiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on their operation in GREAT is given. Our mixer units are waveguide-based and couple to free-space radiation via a feedhorn antenna. The HEB mixers are designed, fabricated, characterized, and flight-qualified in-house. We are able to use the full intermediate frequency bandwidth of the mixers using silicon-germanium multi-octave cryogenic low-noise amplifiers with very low input return loss. Superconducting HEB mixers have proven to be practical and sensitive detectors for high-resolution THz frequency spectroscopy on SOFIA. W...

  8. Noise temperature and beam pattern of an NbN hot electron bolometer mixer at 5.25 THz

    NARCIS (Netherlands)

    Zhang, W.; Khosropanah, P.; Gao, J.R.; Bansal, T.; Klapwijk, T.M.; Miao, W.; Shi, S.C.

    2010-01-01

    We report the measured sensitivities of a superconducting NbN hot electron bolometer (HEB) heterodyne receiver at 5.25 THz. Terahertz (THz) radiation is quasioptically coupled to a HEB mixer with a lens and a spiral antenna. Using a measurement setup with black body calibration sources and a beam

  9. Optimizing phonon-cooled Nb hot-electron bolometers

    Science.gov (United States)

    Araújo, H. M.; Puplett, E. F.; White, G. J.

    2000-12-01

    A Nb hot-electron bolometer designed for operation as a sensor of millimeter waves and far-infrared radiation has been analyzed. This optically coupled detector has a very wide spectral bandwidth, a response speed of ˜1 ns determined by electron-phonon scattering, and an impedance of 50 Ω. The geometry employed here has traditionally been affected by stability problems manifesting as random voltage fluctuations, which have hindered the usefulness of these bolometers. This issue has been addressed by exploring the underlying physical causes and adapting the fabrication technique. Analytical results on substrate-induced bolometric effects are summarized and other factors concerning detector performance addressed, and the reality of an isothermal regime of operation is questioned. A noise equivalent power of 4 pW/Hz1/2 was measured at 100 μm, with a coupling efficiency close to unity that was achieved by reducing the optical reflection losses. Operation of a similar device is shown able to resolve the macropulses of FELIX, the Free-Electron Laser for Infrared eXperiments, into its 40 ns spaced micropulses.

  10. Hot electron bolometer heterodyne receiver with a 4.7-THz quantum cascade laser as a local oscillator

    CERN Document Server

    Kloosterman, Jenna L; Ren, Yuan; Kao, Tsung-Yu; Hovenier, Neils; Gao, Jian-Rong; Klapwijk, Teun M; Hu, Qing; Walker, Christopher K; Reno, John L

    2012-01-01

    We report on a heterodyne receiver designed to observe the astrophysically important neutral atomic oxygen [OI] line at 4.7448 THz. The local oscillator is a third-order distributed feedback Quantum Cascade Laser operating in continuous wave mode at 4.756 THz. A quasi-optical, superconducting NbN hot electron bolometer is used as the mixer. We recorded a double sideband receiver noise temperature (T^DSB_rec) of 815 +/- 12 K, which is ~7 times the quantum noise limit (hf/2kB) and an Allan variance time of 15 s at an effective noise fluctuation bandwidth of 18 MHz. Heterodyne performance was confirmed by measuring a methanol line spectrum.

  11. Hot-Electron Bolometer Mixers on Silicon-on-Insulator Substrates for Terahertz Frequencies

    Science.gov (United States)

    Skalare, Anders; Stern, Jeffrey; Bumble, Bruce; Maiwald, Frank

    2005-01-01

    A terahertz Hot-Electron Bolometer (HEB) mixer design using device substrates based on Silicon-On-Insulator (SOI) technology is described. This substrate technology allows very thin chips (6 pm) with almost arbitrary shape to be manufactured, so that they can be tightly fitted into a waveguide structure and operated at very high frequencies with only low risk for power leakages and resonance modes. The NbTiN-based bolometers are contacted by gold beam-leads, while other beamleads are used to hold the chip in place in the waveguide test fixture. The initial tests yielded an equivalent receiver noise temperature of 3460 K double-sideband at a local oscillator frequency of 1.462 THz and an intermediate frequency of 1.4 GHz.

  12. Bloch oscillating transistor as the readout element for hot electron bolometers

    Science.gov (United States)

    Hassel, Juha; Seppä, Heikki; Lindell, Rene; Hakonen, Pertti

    2004-10-01

    In this paper we analyse the properties of the Bloch oscillating transistor as a preamplifier in cryogenic devices. We consider here especially the readout of hot electron bolometers (HEBs) based on Normal-Superconductor-Insulator tunnel junctions, but the results also apply more generally. We show that one can get an equivalent noise voltage below 1 nV/√Hz with a single BOT. By using N BOTs in a parallel array configuration, a further reduction by factor √N may be achieved.

  13. Millimeter and sub-millimeter heterodyne mixing based on 2DEG hot-electron bolometers

    Science.gov (United States)

    Wang, Kai; Bell, Matthew; Ramaswamy, Rahul; Sergeev, Andrei; Strasser, Gottfried; Mitin, Vladimir

    2010-03-01

    We investigate GHz and THz heterodyne mixer based on the electron heating effect of a two-dimensional electron gas (2DEG) by electromagnetic radiation at liquid nitrogen temperatures (77K). The devices are fabricated from AlGaAs/GaAs heterostructures with a channel width of 150 μm and lengths varying from 3-20 μm. Steady-state measurements are used to investigate electron heating in these devices and determine basic parameters, such as electron-phonon energy relaxation time and electron heat capacity. We perform mixing experiments at ˜100 GHz frequency range with two Gunn diodes as the radiation sources, and find that electron heating is the primary mixing mechanism at these frequencies. For the mixing experiments at ˜ 2 terahertz range, a quantum cascade laser (QCL) is employed as the local oscillator. To optimize our device, we also investigate electron kinetics and transport properties in the 2DEG hot-electron bolometer.

  14. Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer

    NARCIS (Netherlands)

    Hajenius, M.; Baselmans, J.J.A.; Baryshev, A.; Gao, J.R.; Klapwijk, T.M.; Kooi, J.W.; Jellema, W.; Yang, Z.Q.

    2006-01-01

    We present a complete experimental characterization of a quasioptical twin-slot antenna coupled small area (1.0×0.15 μm2) NbN hot electron bolometer (HEB) mixer compatible with currently available solid state tunable local oscillator (LO) sources. The required LO power absorbed in the HEB is

  15. Fabrication and characterisation of a Nb diffusion-cooled hot electron bolometer for a 730 GHz waveguide mixer

    NARCIS (Netherlands)

    Floet, DW; Gao, [No Value; Hulshoff, W; van de Stadt, H; Klapwijk, TM; Suurling, AK; Rogalla, H; Blank, DHA

    1997-01-01

    We have fabricated Nb diffusion-cooled hot electron bolometers for a waveguide mixer around 700 GHz. The device in this work is a thin (12 nm) Nb bridge with a length and width of 220 nm and is defined by a two-step electron beam lithography process. The resistance as a function of temperature shows

  16. Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer

    NARCIS (Netherlands)

    Hajenius, M.; Baselmans, J.J.A.; Baryshev, A.; Gao, J.R.; Klapwijk, T.M.; Kooi, J.W.; Jellema, W.; Yang, Z.Q.

    2006-01-01

    We present a complete experimental characterization of a quasioptical twin-slot antenna coupled small area (1.0×0.15 μm2) NbN hot electron bolometer (HEB) mixer compatible with currently available solid state tunable local oscillator (LO) sources. The required LO power absorbed in the HEB is analyze

  17. Full characterization and analysis of a terahertz heterodyne receiver based on a NbN hot electron bolometer

    NARCIS (Netherlands)

    Hajenius, M.; Baselmans, J.J.A.; Baryshev, A.; Gao, J.R.; Klapwijk, T.M.; Kooi, J.W.; Jellema, W.; Yang, Z.Q.

    2006-01-01

    We present a complete experimental characterization of a quasioptical twin-slot antenna coupled small area (1.0×0.15 μm2) NbN hot electron bolometer (HEB) mixer compatible with currently available solid state tunable local oscillator (LO) sources. The required LO power absorbed in the HEB is analyze

  18. An Ultrasensitive Hot-Electron Bolometer for Low-Background SMM Applications

    Science.gov (United States)

    Olayaa, David; Wei, Jian; Pereverzev, Sergei; Karasik, Boris S.; Kawamura, Jonathan H.; McGrath, William R.; Sergeev, Andrei V.; Gershenson, Michael E.

    2006-01-01

    We are developing a hot-electron superconducting transition-edge sensor (TES) that is capable of counting THz photons and operates at T = 0.3K. The main driver for this work is moderate resolution spectroscopy (R approx. 1000) on the future space telescopes with cryogenically cooled (approx. 4 K) mirrors. The detectors for these telescopes must be background-limited with a noise equivalent power (NEP) approx. 10(exp -19)-10(exp -20) W/Hz(sup 1/2) over the range v = 0.3-10 THz. Above about 1 THz, the background photon arrival rate is expected to be approx. 10-100/s), and photon counting detectors may be preferable to an integrating type. We fabricated superconducting Ti nanosensors with a volume of approx. 3x10(exp -3) cubic microns on planar substrate and have measured the thermal conductance G to the thermal bath. A very low G = 4x10(exp -14) W/K, measured at 0.3 K, is due to the weak electron-phonon coupling in the material and the thermal isolation provided by superconducting Nb contacts. This low G corresponds to NEP(0.3K) = 3x10(exp -19) W/Hz(sup 1/2). This Hot-Electron Direct Detector (HEDD) is expected to have a sufficient energy resolution for detecting individual photons with v > 0.3 THz at 0.3 K. With the sensor time constant of a few microseconds, the dynamic range is approx. 50 dB.

  19. Terahertz Direct Detection Characteristics of a Superconducting NbN Bolometer

    Institute of Scientific and Technical Information of China (English)

    REN Yuan; MIAO Wei; YAO Qi-Jun; ZHANG Wen; SHI Sheng-Cai

    2011-01-01

    We report the terahertz direct detection characteristics of a spiral antenna coupled NbN superconducting hot-electron bolometer (HEB) at a bath temperature of 4.2 K. Thermal conductance determined from resistance transition curves with different bias currents is found to be 3 × 10-7 W/K. The device shows a read-out circuit limited noise equivalent power (NEP) of 4.5×10-12 W/Hz1/2 at 4.2 K with a home-made transimpedance amplifier operating at room temperature.

  20. Superconducting hot-electron nanobolometer with microwave bias and readout

    CERN Document Server

    Kuzmin, A A; Shitov, S V; Abramov, N N; Ermakov, A B; Arndt, M; Wuensch, S H; Ilin, K S; Ustinov, A V; Siegel, M

    2014-01-01

    We propose a new detection technique based on radio-frequency (RF) bias and readout of an antenna-coupled superconducting nanobolometer. This approach is suitable for Frequency-Division-Multiplexing (FDM) readout of large arrays using broadband low-noise RF amplifier. We call this new detector RFTES. This feasibility study was made on demonstrator devices which are made in all-Nb technology and operate at 4.2 K. The studied RFTES devices consist of an antenna-coupled superconducting nanobolometer made of ultrathin niobium films with transition temperature Tc = 5.2 K. The 0.65-THz antenna and nanobolometer are embedded as a load into a GHz-range coplanar niobium resonator (Tc = 8.9 K, Q = 4000). To heat the superconducting Nb nanobolometer close to the Tc, the RF power at resonator frequency f = 5.8 GHz is applied via a transmission line which is weakly coupled (-11 dB) to the loaded resonator. The THz-antenna of RFTES was placed in the focus of a sapphire immersion lens inside a He4-cryostat equipped with an ...

  1. Pinning effects on hot-electron vortex flow instability in superconducting films

    Science.gov (United States)

    Shklovskij, Valerij A.

    2017-07-01

    The hot-electron vortex flow instability in superconducting films in magnetic field B at substrate temperature T0 ≪ Tc is theoretically considered in the presence of pinning. The magnetic field dependences of the instability critical parameters (electric field E*, current density j*, resistivity ρ*, power density P* and vortex velocity v*) are derived for a cosine and a saw-tooth washboard pinning potential and compared with the results obtained earlier by M. Kunchur [Phys. Rev. Lett. 89 (2002) 137005] in absence of pinning. It is shown that the B-behavior of E*, j* and ρ* is monotonic, whereas the B-dependence of v* is quite different, namely dv*/dB may change its sign twice, as sometimes observed in experiments. The simplest heat balance equation for electrons in low-Tc superconducting films is considered within the framework of the two-fluid model. A theoretical analysis reveals that the instability critical temperature T* ≈ 5Tc/6 at T0 < T*/2 with T* being independent of B.

  2. Applications of superconducting bolometers in security imaging

    Science.gov (United States)

    Luukanen, A.; Leivo, M. M.; Rautiainen, A.; Grönholm, M.; Toivanen, H.; Grönberg, L.; Helistö, P.; Mäyrä, A.; Aikio, M.; Grossman, E. N.

    2012-12-01

    Millimeter-wave (MMW) imaging systems are currently undergoing deployment World-wide for airport security screening applications. Security screening through MMW imaging is facilitated by the relatively good transmission of these wavelengths through common clothing materials. Given the long wavelength of operation (frequencies between 20 GHz to ~ 100 GHz, corresponding to wavelengths between 1.5 cm and 3 mm), existing systems are suited for close-range imaging only due to substantial diffraction effects associated with practical aperture diameters. The present and arising security challenges call for systems that are capable of imaging concealed threat items at stand-off ranges beyond 5 meters at near video frame rates, requiring substantial increase in operating frequency in order to achieve useful spatial resolution. The construction of such imaging systems operating at several hundred GHz has been hindered by the lack of submm-wave low-noise amplifiers. In this paper we summarize our efforts in developing a submm-wave video camera which utilizes cryogenic antenna-coupled microbolometers as detectors. Whilst superconducting detectors impose the use of a cryogenic system, we argue that the resulting back-end complexity increase is a favorable trade-off compared to complex and expensive room temperature submm-wave LNAs both in performance and system cost.

  3. Terahertz Direct Detectors Based on Superconducting Hot Electron Bolometers with Microwave Biasing

    Science.gov (United States)

    Jiang, Shou-Lu; Li, Xian-Feng; Su, Run-Feng; Jia, Xiao-Qing; Tu, Xue-Cou; Kang, Lin; Jin, Biao-Bing; Xu, Wei-Wei; Chen, Jian; Wu, Pei-Heng

    2017-08-01

    Not Available Supported by the National Basic Research Program of China under Grant No 2014CB339800, the National Natural Science Foundation of China under Grant Nos 61521001, 11173015 and 11227904, the Fundamental Research Funds for the Central Universities, and the Key Laboratory of Advanced Techniques for Manipulating Electromagnetic Waves of Jiangsu Province.

  4. Superconducting bolometers: high-Tc and low-Tc

    Science.gov (United States)

    Richards, Paul L.

    1991-07-01

    A description is given of recent work at Berkeley on superconducting detectors and mixers for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high-Tc superconductor YBCO from 750 GHz to 21 THz. The next report describes measurements of the thermal boundary resistance between YBCO films and various substrates. This resistance is much larger than expected from the acoustic impedance mismatch model and gives a thermal time constant in the nanosecond range for typical YBCO films. Reports are also included on the design and experimental performance of two different types of high-Tc bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer. The properties of a low-Tc microbolometer are also described. The last reports describe accurate measurements and also theoretical modeling of an SIS quasi-particle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory.

  5. First astronomical images obtained with an array of multiplexed superconducting bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Staguhn, J.G. [NASA/GSFC, Greenbelt, MD 20771 (United States) and SSAI, 10210 Greenbelt Road, Lanham, MD 20706 (United States)]. E-mail: johannes.staguhn@gsfc.nasa.gov; Benford, D.J. [NASA/GSFC, Greenbelt, MD 20771 (United States); Moseley, S.H. [NASA/GSFC, Greenbelt, MD 20771 (United States); Allen, C.A. [NASA/GSFC, Greenbelt, MD 20771 (United States); Kennedy, C.R. [NASA/GSFC, Greenbelt, MD 20771 (United States); Notre Dame University, Notre Dame, IN 46556 (United States); Lefranc, S. [Institut d' Astrophysique Spatiale, Orsay (France); Maher, S.F. [NASA/GSFC, Greenbelt, MD 20771 (United States); SSAI, 10210 Greenbelt Road, Lanham, MD 20706 (United States); Pajot, F. [Institut d' Astrophysique Spatiale, Orsay (France); Rioux, C. [Institut d' Astrophysique Spatiale, Orsay (France); Shafer, R.A. [NASA/GSFC, Greenbelt, MD 20771 (United States); Voellmer, G.M. [NASA/GSFC, Greenbelt, MD 20771 (United States)

    2006-04-15

    We present multicolor images of Jupiter observed in the 350{mu}m band with the first deployed astronomical instrument to use multiplexed superconducting bolometers. The Fabry-Perot Interferometer Bolometer Research Experiment (FIBRE) is a broadband submillimeter spectrometer that made these images in July 2004 at the Caltech Submillimeter Observatory (CSO). FIBREs detectors are superconducting bilayer transition edge sensor (TES) bolometers read out by a SQUID multiplexer. An order-sorted Fabry-Perot provides illumination of a 16-element linear bolometer array, resulting in five orders at a spectral resolution R of 1200 covering a band of 17 of the observed wavelength. The optics permit these orders to be scanned to cover the entirety of either the 350 or 450{mu}m bands.

  6. Operation of a Wideband Terahertz Superconducting Bolometer Responding to Quantum Cascade Laser Pulses

    Science.gov (United States)

    Cibella, S.; Beck, M.; Carelli, P.; Castellano, M. G.; Chiarello, F.; Faist, J.; Leoni, R.; Ortolani, M.; Sabbatini, L.; Scalari, G.; Torrioli, G.; Turcinkova, D.

    2012-06-01

    We make use of a niobium film to produce a micrometric vacuum-bridge superconducting bolometer responding to THz frequency. The bolometer works anywhere in the temperature range 2-7 K, which can be easily reached in helium bath cryostats or closed-cycle cryocoolers. In this work the bolometer is mounted on a pulse tube refrigerator and operated to measure the equivalent noise power (NEP) and the response to fast (μs) terahertz pulses. The NEP above 100 Hz equals that measured in a liquid helium cryostat showing that potential drawbacks related to the use of a pulse tube refrigerator (like mechanical and thermal oscillations, electromagnetic interference, noise) are irrelevant. At low frequency, instead, the pulse tube expansion-compression cycles originate lines at 1 Hz and harmonics in the noise spectrum. The bolometer was illuminated with THz single pulses coming either from a Quantum Cascade Laser operating at liquid nitrogen temperature or from a frequency-multiplied electronic oscillator. The response of the bolometer to the single pulses show that the device can track signals with a rise time as fast as about 450 ns.

  7. Optical NEP in Hot-Electron Nanobolometers

    CERN Document Server

    Karasik, Boris S

    2010-01-01

    For the first time, we have measured the optical noise equivalent power (NEP) in titanium (Ti) superconducting hot-electron nanobolometers (nano-HEBs). The bolometers were 2{\\mu}mx1{\\mu}mx20nm and 1{\\mu}mx1{\\mu}mx20nm planar antenna-coupled devices. The measurements were done at {\\lambda} = 460 {\\mu}m using a cryogenic black body radiation source delivering optical power from a fraction of a femtowatt to a few 100s of femtowatts. A record low NEP = 3x10^{-19} W/Hz^{1/2} at 50 mK has been achieved. This sensitivity meets the requirements for SAFARI instrument on the SPICA telescope. The ways for further improvement of the nano-HEB detector sensitivity are discussed.

  8. Development of Superconducting Magnetic Heat Switches for an Ideal Integrating Bolometer

    Science.gov (United States)

    Nagler, P. C.; Canavan, E.; De Alba, R.; Stevenson, T. R.

    2016-07-01

    We are developing an ideal integrating bolometer (IIB), a novel detector for far-infrared applications. An IIB consists of a dissipationless temperature sensor weakly coupled to a thermal bath through a heat switch. If the heat switch's thermal conductance in the "off" state is much smaller than its conductance in the "on" state, the thermometer temperature will depend linearly on integrated incident power, until the bolometer temperature is reset by changing the conductance to the "on" state. A key component of an IIB is the heat switch, the subject of this paper. We have fabricated and tested prototype IIB devices designed to demonstrate a superconducting magnetic heat switch on both solid substrates and membranes. In this work, we will present details on the design, fabrication, and experimental performance of our prototype IIB devices.

  9. Feedhorn-Coupled Transition-Edge Superconducting Bolometer Arrays for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Hubmayr, J.; Austermann, J.; Beall, J.; Becker, D.; Cho, H.-M.; Datta, R.; Duff, S. M.; Grace, E.; Halverson, N.; Henderson, S. W.; hide

    2015-01-01

    NIST produces large-format, dual-polarization-sensitive detector arrays for a broad range of frequencies (30-1400 GHz). Such arrays enable a host of astrophysical measurements. Detectors optimized for cosmic microwave background observations are monolithic, polarization-sensitive arrays based on feedhorn and planar Nb antenna-coupled transition-edge superconducting (TES) bolometers. Recent designs achieve multiband, polarimetric sensing within each spatial pixel. In this proceeding, we describe our multichroic, feedhorn-coupled design; demonstrate performance at 70-380 GHz; and comment on current developments for implementation of these detector arrays in the advanced Atacama Cosmology Telescope receiver

  10. Design and Fabrication of a Two-Dimensional Superconducting Pop-up Bolometer Array

    Science.gov (United States)

    Benford, Dominic J.; Staguhn, Johannes G.; Chervenak, James A.; Allen, Christine A.; Moseley, S. Harvey; Irwin, Kent D.; Stacey, Gordon J.; Page, Lyman A.

    2004-01-01

    We have been developing an architecture for producing large format, two dimensional arrays of close-packed bolometers, which will enable submillimeter cameras and spectrometers to obtain images and spectra orders of magnitude faster than present instruments. The low backgrounds achieved in these instruments require very sensitive detectors with NEPs of order 5 x 10(exp -18) W/square root of Hz. Superconducting transition edge sensor bolometers can be close-packed using the Pop-up Detector (PUD) format, and SQUID multiplexers operating at the detector base temperature can be intimately coupled to them. The array unit cell is 8 x 32 pixels, using 32- element detector and multiplexer components. We have fabricated an engineering model array with this technology which features a very compact, modular approach for large format arrays. We report on the production of the 32-element components for the arrays. Planned instruments using this array architecture include the Submillimeter and Far-InfraRed Experiment (SAFIRE) on the SOFIA airborne observatory, the South Pole Imaging Fabry-Perot Interferometer (SPIFI) for the AST/RO observatory, the Millimeter Bolometer Camera for the Atacama Cosmology Telescope (MBC/ACT), and the Redshift (Z) Early Universe Spectrometer (ZEUS j.

  11. Modeling of Noise and Resistance of Semimetal Hg1-xCdxTe Quantum Well used as a Channel for THz Hot-Electron Bolometer.

    Science.gov (United States)

    Melezhik, E O; Gumenjuk-Sichevska, J V; Sizov, F F

    2016-12-01

    Noise characteristics and resistance of semimetal-type mercury-cadmium-telluride quantum wells (QWs) at the liquid nitrogen temperature are studied numerically, and their dependence on the QW parameters and on the electron concentration is established. The QW band structure calculations are based on the full 8-band k.p Hamiltonian. The electron mobility is simulated by the direct iterative solution of the Boltzmann transport equation, which allows us to include correctly all the principal scattering mechanisms, elastic as well as inelastic.We find that the generation-recombination noise is strongly suppressed due to the very fast recombination processes in semimetal QWs. Hence, the thermal noise should be considered as a main THz sensitivity-limiting mechanism in those structures. Optimization of a semimetal Hg1-xCdxTe QW to make it an efficient THz bolometer channel should include the increase of electron concentration in the well and tuning the molar composition x close to the gapless regime.

  12. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    Science.gov (United States)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; Rostem, Karwan; Sharp, Elmer H.; Staguhn, Johannes G.; Stiehl, gregory M.; Voellmer, George M.; Wollack, Edward J.

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  13. 5,120 Superconducting Bolometers for the PIPER Balloon-Borne CMB Polarization Experiment

    Science.gov (United States)

    Benford, Dominic J.; Chuss, David T.; Hilton, Gene C.; Irwin, Kent D.; Jethava, Nikhil S.; Jhabvala, Christine A.; Kogut, Alan J.; Miller, Timothy M.; Mirel, Paul; Moseley, S. Harvey; hide

    2010-01-01

    We are constructing the Primordial Inflation Polarization Explorer (PIPER) to measure the polarization o[ the cosmic microwave background (CMB) and search for the imprint of gravity waves produced during an inflationary epoch in the early universe. The signal is faint and lies behind confusing foregrounds, both astrophysical and cosmological, and so many detectors are required to complete the measurement in a limited time. We will use four of our matured 1,280 pixel, high-filling-factor backshort-under-grid bolometer arrays for efficient operation at the PIPER CMB wavelengths. All four arrays observe at a common wavelength set by passband filters in the optical path. PIPER will fly four times to observe at wavelengths of 1500, 1100, 850, and 500 microns in order to separate CMB from foreground emission. The arrays employ leg-isolated superconducting transition edge sensor bolometers operated at 128mK; tuned resonant backshorts for efficient optical coupling; and a second-generation superconducting quantum interference device (SQUID) multiplexer readout. We describe the design, development, and performance of PIPER bo|ometer array technology to achieve background-limited sensitivity for a cryogenic balloon-borne telescope.

  14. SCUBA-2 instrument: an application of large-format superconducting bolometer arrays for submillimetre astronomy

    Science.gov (United States)

    Hollister, Matthew Ian

    2009-01-01

    This thesis concerns technical aspects related to the design and operation of the submillimetre common-user bolometer array 2 (SCUBA-2) instrument, a new wide-field camera for submillimetre astronomy currently undergoing commissioning on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. Offering unprecedented sensitivity and mapping capabilities, SCUBA-2 is expected to make a major impact in surveys of the sky at submillimetre wavelengths, a largely unexplored part of the electromagnetic spectrum, and provide better understanding of the formation and evolution of galaxies, stars and planets by providing large, unbiased samples of such objects. SCUBA-2 uses large arrays of bolometers, with superconducting transition edge sensors (TESs) as the temperature-sensitive element. TES devices are a relatively new technology, utilising the sharp resistance change between the normal and superconducting states to make a sensitive thermistor. Kilopixel arrays of such devices are multiplexed using superconducting quantum interference devices (SQUIDs). This thesis derives the key detector performance parameters, and presents analysis of engineering data to confirm the detector performance on array scales. A key issue for bolometric instruments for far infrared and submillimetre astronomy is the need to operate at extremely low temperatures in the sub-kelvin and millikelvin ranges to achieve the necessary detector sensitivity. This work describes the design, testing and performance of the liquid cryogen-free millikelvin cryostat, the first such instrument to be deployed for astronomy. Subsequent chapters detail the design and testing of a magnetic shielding scheme for the instrument, an important aspect of the operation of superconducting devices. Based on experience with the construction and testing of this instrument, a number of potential improvements for future instruments are presented and discussed.

  15. Superconducting bolometers: High-T(sub c) and low-T(sub c)

    Science.gov (United States)

    Richards, P. L.

    1991-04-01

    A description is given of recent work at Berkeley on superconducting detectors and mixers for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high-(Tc) superconductor YBCO from 750 GHz to 21 THz. The next report describes measurements of the thermal boundary resistance between YBCO films and various substrates. This resistance is much larger than expected from the acoustic impedance mismatch model and gives a thermal time constant in the nanosecond range for typical YBCO films. Then, there are reports on the design and experimental performance of two different types of high-(Tc) bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer. The properties of a low-(Tc) microbolometer are also described. The last reports describe accurate measurements and also theoretical modeling of an SIS quasiparticle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory.

  16. Low noise high-Tc superconducting bolometers on silicon nitride membranes for far-infrared detection

    NARCIS (Netherlands)

    Nivelle, de M.J.M.E.; Bruijn, M.P.; Vries, de R.; Wijnbergen, J.J.; Korte, de P.A.J.; Sanchez, S.; Elwenspoek, M.; Heidenblut, T.; Schwierzi, B.; Michalke, W.; Steinbeiss, E.

    1997-01-01

    High-Tc GdBa2Cu3O7 – delta superconductor bolometers with operation temperatures near 89 K, large receiving areas of 0.95 mm2 and very high detectivity have been made. The bolometers are supported by 0.62 µm thick silicon nitride membranes. A specially developed silicon-on-nitride layer was used to

  17. All Metal Organic Deposited High-Tc Superconducting Transition Edge Bolometer on Yttria-Stabilized Zirconia Substrate

    DEFF Research Database (Denmark)

    Mohajeri, Roya; Opata, Yuri Aparecido; Wulff, Anders Christian;

    2016-01-01

    We report on the results of a YBa2Cu3O7−x (YBCO) superconductive transition edge bolometer (TEB) fabricated on a Ce0.9La0.1O2−7 (CLO) buffered single crystalline yttria-stabilized zirconia (YSZ) substrate. Metal organic deposition was used for the fabrication of both the YBCO thin film as well...... as CLO buffer layer, while standard photolithography was applied for TEB preparation. YBCO thin film properties were analysed using scanning electron microscopy (SEM), X-ray diffraction (XRD), AC susceptibility and resistance versus temperature measurements. Optical response of the TEB in terms...... of voltage amplitude and phase was analysed and measured through four-probe technique in a liquid nitrogen cooling system. An increase in voltage amplitude response was observed for the fabricated YBCO/CLO/YSZ bolometer compared to previously reported TEBs with similarly deposited YBCO thin film on a SrTiO3...

  18. Transition-Edge Hot-Electron Microbolometers for Millimeter and Submillimeter Astrophysics

    Science.gov (United States)

    Hsieh, Wen-Ting; Stevenson, Thomas; U-yen, Kongpop; Wollack, Edward; Barrentine, Emily

    2014-01-01

    The millimeter and the submillimeter wavelengths of the electromagnetic spectrum hold a wealth of information about the evolution of the universe. In particular, cosmic microwave background (CMB) radiation and its polarization carry the oldest information in the universe, and provide the best test of the inflationary paradigm available to astronomy today. Detecting gravity waves through their imprint on the CMB polarization would have extraordinary repercussions for cosmology and physics. A transition-edge hot-electron micro - bolometer (THM) consists of a superconducting bilayer transition-edge sensor (TES) with a thin-film absorber. Unlike traditional monolithic bolometers that make use of micromachined structures, the THM em ploys the decoupling between electrons and phonons at millikelvin temperatures to provide thermal isolation. The devices are fabricated photolithographically and are easily integrated with antennas via microstrip transmission lines, and with SQUID (superconducting quantum interference device) readouts. The small volume of the absorber and TES produces a short thermal time constant that facilitates rapid sky scanning. The THM consists of a thin-film metal absorber overlapping a superconducting TES. The absorber forms the termination of a superconducting microstripline that carries RF power from an antenna. The purpose of forming a separate absorber and TES is to allow flexibility in the optimization of the two components. In particular, the absorbing film's impedance can be chosen to match the antenna, while the TES impedance can be chosen to match to the readout SQUID amplifier. This scheme combines the advantages of the TES with the advantages of planar millimeter-wave transmission line circuits. Antenna-coupling to the detectors via planar transmission lines allows the detector dimensions to be much smaller than a wavelength, so the technique can be extended across the entire microwave, millimeter, and submillimeter wavelength ranges. The

  19. Monolayer Graphene Bolometer as a Sensitive Far-IR Detector

    Science.gov (United States)

    Karasik, Boris S.; McKitterick, Christopher B.; Prober, Daniel E.

    2014-01-01

    In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few micro m(sup 2) of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature approx. 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity.

  20. Monolayer graphene bolometer as a sensitive far-IR detector

    CERN Document Server

    Karasik, Boris S; Prober, Daniel E

    2014-01-01

    In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few {\\mu}m$^2$ of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature ~ 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity. The analysis shows that the readout contribution can be reduced to that of the bolometer phonon noise if the detector device is operated at 0.05 K and the JNT signal is read at abo...

  1. Monolayer graphene bolometer as a sensitive far-IR detector

    Science.gov (United States)

    Karasik, Boris S.; McKitterick, Christopher B.; Prober, Daniel E.

    2014-07-01

    In this paper we give a detailed analysis of the expected sensitivity and operating conditions in the power detection mode of a hot-electron bolometer (HEB) made from a few μm2 of monolayer graphene (MLG) flake which can be embedded into either a planar antenna or waveguide circuit via NbN (or NbTiN) superconducting contacts with critical temperature ~ 14 K. Recent data on the strength of the electron-phonon coupling are used in the present analysis and the contribution of the readout noise to the Noise Equivalent Power (NEP) is explicitly computed. The readout scheme utilizes Johnson Noise Thermometry (JNT) allowing for Frequency-Domain Multiplexing (FDM) using narrowband filter coupling of the HEBs. In general, the filter bandwidth and the summing amplifier noise have a significant effect on the overall system sensitivity. The analysis shows that the readout contribution can be reduced to that of the bolometer phonon noise if the detector device is operated at 0.05 K and the JNT signal is read at about 10 GHz where the Johnson noise emitted in equilibrium is substantially reduced. Beside the high sensitivity (NEP saturation limit and thus can be used for far-IR sky imaging with arbitrary contrast. By changing the operating temperature of the bolometer the sensitivity can be fine tuned to accommodate the background photon flux in a particular application. By using a broadband low-noise kinetic inductance parametric amplifier, ~100s of graphene HEBs can be read simultaneously without saturation of the system output.

  2. Investigation of response of high-temperature superconducting Bi sub 2 Sr sub 2 CaCu sub 2 O sub y bolometer at hard substrate on infrared laser pulses of permanent power and variable relative pulse duration

    CERN Document Server

    Antonenko, S V; Korotkov, D P; Maltsev, S N

    2001-01-01

    A method for studying bolometric response of superconducting films to effect of a sequence of IR pulses of identical power and variable relative pulse duration using an optical rod was developed. A semiconductor laser was used as radiation source. Using the method suggested experiments on studying characteristics of a superconducting bolometer on the basis of Bi sub 2 Sr sub 2 CaCu sub 2 O sub y film on a MgO substrate were conducted. It was found that increase in pulse repetition frequency of IR laser in the range of 1-7 kHz brought about a decrease (by a factor of 2.5) of variable component of the bolometer response amplitude

  3. Measurement of Hot Electron Spectrum

    Institute of Scientific and Technical Information of China (English)

    LIYe-jun; SHANYu-sheng; ZHANGHai-feng; ZHANGJi; WANGLei-jian; TANGXiu-zhang

    2003-01-01

    The hot electron spectrum was measured using 180°electron magnetic spectrometer through the irradiation of solid Cu target by an intense, near infrared(744 nm), P-polarized light, femtosecond (120 fs) laser pulse with free pre-pulse, and the intensity of laser is 1016 W/cm2 with 45° incidence. And the spectrometer was located in the direction of laser right reflection.

  4. Graphene Hot-electron Transistors

    OpenAIRE

    Vaziri, Sam

    2016-01-01

    Graphene base transistors (GBTs) have been, recently, proposed to overcome the intrinsic limitations of the graphene field effect transistors (GFETs) and exploit the graphene unique properties in high frequency (HF) applications. These devices utilize single layer graphene as the base material in the vertical hot-electron transistors. In an optimized GBT, the ultimate thinness of the graphene-base and its high conductivity, potentially, enable HF performance up to the THz region.  This thesis...

  5. Design and fabrication of superconducting HEB mixer

    Institute of Scientific and Technical Information of China (English)

    WANG JinPing; LI YangBin; KANG Lin; WANG Yu; ZHONG YangYin; LIANG Min; CHEN Jian; CAO ChunHai; XU WeiWei; WU PeiHeng

    2009-01-01

    This paper describes the design and fabrication of superconducting hot electron bolometer (HEB)mixer based on ultra-thin superconducting NbN films. The high quality films were epitaxially grown on high resistance Si substrates. The device was fabricated by magnetron sputtering, electron beam lithography (EBL), reactive ion etching (RIE), lithography, and so on. The device's resistance-temperature (R-T) curves and current-voltage (I-V) curves were studied. The results of THz response of the device are presented. Y-factor technique was used to measure the device's noise temperature. When the device was irradiated with a laser radiation of 2.5 THz, the obtained lowest noise temperature of the device was 2213 K.

  6. Performance of resistive microcalorimeters and bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Galeazzi, M

    2004-03-11

    Despite the impressive results achieved by microcalorimeters and bolometers, their performance is still significantly worse than that predicted by Mather's ideal model (Appl. Opt. 21 (1982) 1125). The difference is due both to non-ideal effects and to excess noise of unknown origin. The non-ideal effects have been recently quantified and include hot-electron effect, absorber decoupling, thermometer non-ohmic behavior, and all related extra noise sources. The excess noise affects primarily Transition Edge Sensors (TES) and is currently under experimental and theoretical investigation. This paper reviews the origin of non-ideal effects in microcalorimeters and bolometers and their effect on energy resolution and noise equivalent power. It also reviews the results on the characterization and suppression of the excess noise in TES, and the recent theoretical investigations to explain its origin in relation to fundamental physics in superconductors.

  7. Estimation of Hot Electron Relaxation Time in GaN Using Hot Electron Transistors

    Science.gov (United States)

    Dasgupta, Sansaptak; Lu, Jing; Nidhi; Raman, Ajay; Hurni, Christophe; Gupta, Geetak; Speck, James S.; Mishra, Umesh K.

    2013-03-01

    In this paper, we report for the first time an estimation of hot electron relaxation time in GaN using electrical measurements. Hot electron transistors (HETs) with GaN as the base layer and different base-emitter barrier-height configurations and base thicknesses were fabricated. Common-base measurements were performed to extract the differential transfer ratio, and an exponential decay of the transfer ratio with increasing base thickness was observed. A hot electron mean free path was extracted from the corresponding exponential fitting and a relaxation time was computed, which, for low energy injection, matched well with theoretically predicted relaxation times based on longitudinal optical (LO) phonon scattering.

  8. Hot electron transport and current sensing

    Science.gov (United States)

    Abraham, Mathew Cheeran

    The effect of hot electrons on momentum scattering rates in a two-dimensional electron gas is critically examined. It is shown that with hot electrons it is possible to explore the temperature dependence of individual scattering mechanisms not easily probed under equilibrium conditions; both the Bloch-Gruneisen (BG) phonon scattering phenomena and the reduction in impurity scattering are clearly observed. The theoretical calculations are consistent with the results obtained from hot electrons experiments. As a function of bias current, a resistance peak is formed in a 2DEG if the low temperature impurity limited mobilities muI( T = 0) is comparable to muph(TBG ) the phonon limited mobility at the critical BG temperature. In this case, as the bias current is increased, the electron temperature Te rises due to Joule heating and the rapid increase in phonon scattering can be detected before the effect of the reduction in impurity scattering sets in. If muI(T = 0) wire defined in a 2DEG. Concurrently, an appropriate current imaging technique to detect this transition is sought. A rigorous evaluation of magnetic force microscopy (MFM) as a possible candidate to detect Poiseuille electronic flow was conducted, and a method that exploits the mechanical resonance of the MFM cantilever was implemented to significantly improve its current sensitivity.

  9. Integrated Electron-tunneling Refrigerator and TES Bolometer for Millimeter Wave Astronomy

    Science.gov (United States)

    Silverberg, R. F.; Benford, D. J.; Chen, T. C.; Chervenak, J.; Finkbeiner, F.; Moseley, S. H.; Duncan, W.; Miller, N.; Schmidt, D.; Ullom, J.

    2005-01-01

    We describe progress in the development of a close-packed array of bolometers intended for use in photometric applications at millimeter wavelengths from ground- based telescopes. Each bolometer in the may uses a proximity-effect Transition Edge Sensor (TES) sensing element and each will have integrated Normal-Insulator-Superconductor (NIS) refrigerators to cool the bolometer below the ambient bath temperature. The NIS refrigerators and acoustic-phonon-mode-isolated bolometers are fabricated on silicon. The radiation-absorbing element is mechanically suspended by four legs, whose dimensions are used to control and optimize the thermal conductance of the bolometer. Using the technology developed at NIST, we fabricate NIS refrigerators at the base of each of the suspension legs. The NIS refrigerators remove hot electrons by quantum-mechanical tunneling and are expected to cool the biased (approx.10 pW) bolometers to <170 mK while the bolometers are inside a pumped 3He-cooled cryostat operating at approx.280 mK. This significantly lower temperature at the bolometer allows the detectors to approach background-limited performance despite the simple cryogenic system.

  10. Going ballistic: Graphene hot electron transistors

    Science.gov (United States)

    Vaziri, S.; Smith, A. D.; Östling, M.; Lupina, G.; Dabrowski, J.; Lippert, G.; Mehr, W.; Driussi, F.; Venica, S.; Di Lecce, V.; Gnudi, A.; König, M.; Ruhl, G.; Belete, M.; Lemme, M. C.

    2015-12-01

    This paper reviews the experimental and theoretical state of the art in ballistic hot electron transistors that utilize two-dimensional base contacts made from graphene, i.e. graphene base transistors (GBTs). Early performance predictions that indicated potential for THz operation still hold true today, even with improved models that take non-idealities into account. Experimental results clearly demonstrate the basic functionality, with on/off current switching over several orders of magnitude, but further developments are required to exploit the full potential of the GBT device family. In particular, interfaces between graphene and semiconductors or dielectrics are far from perfect and thus limit experimental device integrity, reliability and performance.

  11. Graphene vertical hot-electron terahertz detectors

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhii, V., E-mail: v-ryzhii@riec.tohoku.ac.jp [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University and Institute of Ultra High Frequency Semiconductor Electronics, Russian Academy of Sciences, Moscow 111005 (Russian Federation); Satou, A.; Otsuji, T. [Research Institute for Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Mitin, V. [Department of Electrical Engineering, University at Buffalo, Buffalo, New York 1460-1920 (United States); Shur, M. S. [Departments of Electrical, Electronics, and Systems Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2014-09-21

    We propose and analyze the concept of the vertical hot-electron terahertz (THz) graphene-layer detectors (GLDs) based on the double-GL and multiple-GL structures with the barrier layers made of materials with a moderate conduction band off-set (such as tungsten disulfide and related materials). The operation of these detectors is enabled by the thermionic emissions from the GLs enhanced by the electrons heated by incoming THz radiation. Hence, these detectors are the hot-electron bolometric detectors. The electron heating is primarily associated with the intraband absorption (the Drude absorption). In the frame of the developed model, we calculate the responsivity and detectivity as functions of the photon energy, GL doping, and the applied voltage for the GLDs with different number of GLs. The detectors based on the cascade multiple-GL structures can exhibit a substantial photoelectric gain resulting in the elevated responsivity and detectivity. The advantages of the THz detectors under consideration are associated with their high sensitivity to the normal incident radiation and efficient operation at room temperature at the low end of the THz frequency range. Such GLDs with a metal grating, supporting the excitation of plasma oscillations in the GL-structures by the incident THz radiation, can exhibit a strong resonant response at the frequencies of several THz (in the range, where the operation of the conventional detectors based on A{sub 3}B{sub 5} materials, in particular, THz quantum-well detectors, is hindered due to a strong optical phonon radiation absorption in such materials). We also evaluate the characteristics of GLDs in the mid- and far-infrared ranges where the electron heating is due to the interband absorption in GLs.

  12. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  13. Theory of hot electron photoemission from graphene

    Science.gov (United States)

    Ang, Lay Kee; Liang, Shijun

    Motivated by the development of Schottky-type photodetectors, some theories have been proposed to describe how the hot carriers generated by the incident photon are transported over the Schottky barrier through the internal photoelectric effect. One of them is Fowler's law proposed as early as 1931, which studied the temperature dependence of photoelectric curves of clean metals. This law is very successful in accounting for mechanism of detecting photons of energy lower than the band gap of semiconductor based on conventional metal/semiconductor Schottky diode. With the goal of achieving better performance, graphene/silicon contact-based- graphene/WSe2 heterostructure-based photodetectors have been fabricated to demonstrate superior photodetection efficiency. However, the theory of how hot electrons is photo-excited from graphene into semiconductor remains unknown. In the current work, we first examine the photoemission process from suspended graphene and it is found that traditional Einstein photoelectric effect may break down for suspended graphene due to the unique linear band structure. Furthermore, we find that the same conclusion applies for 3D graphene analog (e.g. 3D topological Dirac semi-metal). These findings are very useful to further improve the performance of graphene-based photodetector, hot-carrier solar cell and other kinds of sensor.

  14. Fabrication of superconducting nanowires from ultrathin MgB2 films via focused ion beam milling

    Directory of Open Access Journals (Sweden)

    Chen Zhang

    2015-02-01

    Full Text Available High quality superconducting nanowires were fabricated from ultrathin MgB2 films by a focused ion beam milling technique. The precursor MgB2 films in 10 nm thick were grown on MgO substrates by using a hybrid physical-chemical vapor deposition method. The nanowires, in widths of about 300-600 nm and lengths of 1 or 10 μm, showed high superconducting critical temperatures (Tc’s above 34 K and narrow superconducting transition widths (ΔTc’s of 1-3 K. The superconducting critical current density Jc of the nanowires was above 5 × 107 A/cm2 at 20 K. The high Tc, narrow ΔTc, and high Jc of the nanowires offered the possibility of making MgB2-based nano-devices such as hot-electron bolometers and superconducting nanowire single-photon detectors with high operating temperatures at 15-20 K.

  15. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  16. Monolithic silicon bolometers

    Science.gov (United States)

    Downey, P. M.; Jeffries, A. D.; Meyer, S. S.; Weiss, R.; Bachner, F. J.; Donnelly, J. P.; Lindley, W. T.; Mountain, R. W.; Silversmith, D. J.

    1984-01-01

    A new type of bolometer detector for the millimeter and submillimeter spectral range is described. The bolometer is constructed of silicon using integrated circuit fabrication techniques. Ion implantation is used to give controlled resistance vs temperature properties as well as extremely low 1/f noise contacts. The devices have been tested between 4.2 and 0.3 K. The best electrical NEP measured is 4 x 10 to the -16th W/Hz to the 1/2 at 0.35 K between 1- and 10-Hz modulation frequency. This device had a detecting area of 0.25 sq cm and a time constant of 20 msec at a bath temperature of 0.35 K.

  17. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  18. An Ideal Integrating Bolometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An ideal integrating bolometer can achieve breakthrough sensitivity in IR photon detection by removing practical barriers to extreme thermal isolation of the...

  19. An Ideal Integrating Bolometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An ideal integrating bolometer can achieve breakthrough sensitivity in IR photon detection by removing practical barriers to extreme thermal isolation of the...

  20. Surface and volume photoemission of hot electrons from plasmonic nanoantennas

    DEFF Research Database (Denmark)

    Uskov, Alexander V.; Protsenko, Igor E.; Ikhsanov, Renat S.;

    2014-01-01

    We theoretically compare surface- and volume-based photoelectron emission from spherical nanoparticles, obtaining analytical expressions for the emission rate in both mechanisms. We show that the surface mechanism prevails, being unaffected by detrimental hot electron collisions....

  1. Hot electron stabilization of a helically symmetric plasma

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.L.

    1986-04-01

    Furth and Boozer (private communication; Proceedings of the Advanced Bumpy Torus Concepts Workshop, CONF-830758, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 1983, p. 161) have suggested the use of relativistic electrons to achieve the second stability regime in a helical axis stellarator (Heliac). The hot electrons would only be required until the background plasma reached the second stability regime; the heating power maintaining the hot electron layer would then be turned off. The basic correctness of Furth and Boozer's suggestion is confirmed numerically by a localized stability analysis of helically symmetric plasma equilibria, with anisotropic pressure profiles. Stability is evaluated using the localized interchange criterion in which the hot electrons, because of their large drift speeds, are treated as rigid. A hot electron pressure profile is exhibited; it provides a stable path to the second stability regime for the background plasma.

  2. Surface and volume photoemission of hot electrons from plasmonic nanoantennas

    DEFF Research Database (Denmark)

    Uskov, Alexander V.; Protsenko, Igor E.; Ikhsanov, Renat S.

    2014-01-01

    We theoretically compare surface- and volume-based photoelectron emission from spherical nanoparticles, obtaining analytical expressions for the emission rate in both mechanisms. We show that the surface mechanism prevails, being unaffected by detrimental hot electron collisions.......We theoretically compare surface- and volume-based photoelectron emission from spherical nanoparticles, obtaining analytical expressions for the emission rate in both mechanisms. We show that the surface mechanism prevails, being unaffected by detrimental hot electron collisions....

  3. Hot-electron nanoscopy using adiabatic compression of surface plasmons

    KAUST Repository

    Giugni, Andrea

    2013-10-20

    Surface plasmon polaritons are a central concept in nanoplasmonics and have been exploited to develop ultrasensitive chemical detection platforms, as well as imaging and spectroscopic techniques at the nanoscale. Surface plasmons can decay to form highly energetic (or hot) electrons in a process that is usually thought to be parasitic for applications, because it limits the lifetime and propagation length of surface plasmons and therefore has an adverse influence on the functionality of nanoplasmonic devices. Recently, however, it has been shown that hot electrons produced by surface plasmon decay can be harnessed to produce useful work in photodetection, catalysis and solar energy conversion. Nevertheless, the surface-plasmon-to-hot-electron conversion efficiency has been below 1% in all cases. Here we show that adiabatic focusing of surface plasmons on a Schottky diode-terminated tapered tip of nanoscale dimensions allows for a plasmon-to-hot-electron conversion efficiency of ∼30%. We further demonstrate that, with such high efficiency, hot electrons can be used for a new nanoscopy technique based on an atomic force microscopy set-up. We show that this hot-electron nanoscopy preserves the chemical sensitivity of the scanned surface and has a spatial resolution below 50 nm, with margins for improvement.

  4. MIS hot electron devices for enhancement of surface reactivity by hot electrons

    DEFF Research Database (Denmark)

    Thomsen, Lasse Bjørchmar

    to be an important energy loss center for the electrons tunneling through the oxide lowering the emission e±ciency of a factor of 10 for a 1 nm Ti layer thickness. Electron emission is observed under ambient pressure conditions and in up to 2 bars of Ar. 2 bar Ar decrease the emission current by an order...... is monitored using the calibrated resistance of the metal layer. The MIS hot electron emitters are cleaned in-situ in a background pressure of 3 £ 10¡7 mbar O2. Thermal desorption experiments with labeled CO are carried out with a reproducibility of 7%. The detection limit of labeled CO for the mass...

  5. Fabrication of large NbSi bolometer arrays for CMB applications

    Energy Technology Data Exchange (ETDEWEB)

    Ukibe, M. [AIST, Tsukuba Central 2, Tsukuba, Ibaraki 305-8568 (Japan); CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Belier, B. [CNRS-IEF, Bat 220, Orsay Campus F-91405 (France); Camus, Ph. [CNRS-CRTBT, 25 avenue des Martyrs, Grenoble F-38042 (France)]. E-mail: philippe.camus@grenoble.cnrs.fr; Dobrea, C. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Dumoulin, L. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Fernandez, B. [CNRS-CRTBT, 25 avenue des Martyrs, Grenoble F-38042 (France); Fournier, T. [CNRS-CRTBT, 25 avenue des Martyrs, Grenoble F-38042 (France); Guillaudin, O. [CNRS-LPSC, 53 avenue des Martyrs, Grenoble F-38042 (France); Marnieros, S. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France); Yates, S.J.C. [CNRS-CSNSM, Bat 104, Orsay Campus F-91405 (France)

    2006-04-15

    Future cosmic microwave background experiments for high-resolution anisotropy mapping and polarisation detection require large arrays of bolometers at low temperature. We have developed a process to build arrays of antenna-coupled bolometers for that purpose. With adjustment of the Nb{sub x}Si{sub 1-x} alloy composition, the array can be made of high impedance or superconductive (TES) sensors.

  6. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  7. High frequency conductivity of hot electrons in carbon nanotubes

    Science.gov (United States)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac-dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons' source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  8. Hot-electron refluxing enhanced relativistic transparency of overdense plasmas

    CERN Document Server

    Yu, Yong; Chen, Zi-Yu; Wang, Jia-Xiang; Zhu, Wen-Jun

    2013-01-01

    A new phenomenon of enhancing the relativistic transparency of overdense plasmas by the influence of hot-electron refluxing has been found via particle-in-cell simulations. When a p-polarized laser pulse, with intensity below the self-induced-transparency (SIT) threshold, obliquely irradiates a thin overdense plasma, the initially opaque plasma would become transparent after a time interval which linearly relies on the thickness of the plasma. This phenomenon can be interpreted by the influence of hot-electron refluxing. As the laser intensity is higher than the SIT threshold, the penetration velocity of the laser in the plasma is enhanced when the refluxing is presented. Simulation data with ion motion considered is also consistent with the assumption that hot-electron refluxing enhances transparency. These results have potential applications in laser shaping.

  9. Role of hot electron transport in scintillators: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Huihui [SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Lab. of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen Univ. (China); Li, Qi [Physical Sciences Division, IBM TJ Watson Research Center, Yorktown Heights, NY (United States); Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL (United States); Lu, Xinfu; Williams, R.T. [Department of Physics, Wake Forest University, Winston Salem, NC (United States); Qian, Yiyang [College of Engineering and Applied Science, Nanjing University (China); Wu, Yuntao [Scintillation Materials Research Center, University of Tennessee, Knoxville, TN (United States)

    2016-10-15

    Despite recent intensive study on scintillators, several fundamental questions on scintillator properties are still unknown. In this work, we use ab-initio calculations to determine the energy dependent group velocity of the hot electrons from the electronic structures of several typical scintillators. Based on the calculated group velocities and optical phonon frequencies, a Monte-Carlo simulation of hot electron transport in scintillators is carried out to calculate the thermalization time and diffusion range in selected scintillators. Our simulations provide physical insights on a recent trend of improved proportionality and light yield from mixed halide scintillators. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Whistler Solitons in Plasma with Anisotropic Hot Electron Admixture

    Science.gov (United States)

    Khazanov, G. V.; Krivorutsky, E. N.; Gallagher, D. L.

    1999-01-01

    The longitudinal and transverse modulation instability of whistler waves in plasma, with a small admixture of hot anisotropic electrons, is discussed. If the hot particles temperature anisotropy is positive, it is found that, in such plasma, longitudinal perturbations can lead to soliton formation for frequencies forbidden in cold plasma. The soliton is enriched by hot particles. The frequency region unstable to transverse modulation in cold plasma in the presence of hot electrons is divided by stable domains. For both cases the role of hot electrons is more significant for whistlers with smaller frequencies.

  11. Harvesting the loss: surface plasmon-based hot electron photodetection

    Directory of Open Access Journals (Sweden)

    Li Wei

    2016-11-01

    Full Text Available Although the nonradiative decay of surface plasmons was once thought to be only a parasitic process within the plasmonic and metamaterial communities, hot carriers generated from nonradiative plasmon decay offer new opportunities for harnessing absorption loss. Hot carriers can be harnessed for applications ranging from chemical catalysis, photothermal heating, photovoltaics, and photodetection. Here, we present a review on the recent developments concerning photodetection based on hot electrons. The basic principles and recent progress on hot electron photodetectors are summarized. The challenges and potential future directions are also discussed.

  12. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  13. Carbon Nanotube Bolometer for Absolute FTIR Spectroscopy

    Science.gov (United States)

    Woods, Solomon; Neira, Jorge; Tomlin, Nathan; Lehman, John

    We have developed and calibrated planar electrical-substitution bolometers which employ absorbers made from vertically-aligned carbon nanotube arrays. The nearly complete absorption of light by the carbon nanotubes from the visible range to the far-infrared can be exploited to enable a device with read-out in native units equivalent to optical power. Operated at cryogenic temperatures near 4 K, these infrared detectors are designed to have time constant near 10 ms and a noise floor of about 10 pW. Built upon a micro-machined silicon platform, each device has an integrated heater and thermometer, either a carbon nanotube thermistor or superconducting transition edge sensor, for temperature control. We are optimizing temperature-controlled measurement techniques to enable high resolution spectral calibrations using these devices with a Fourier-transform spectrometer.

  14. Ultrafast Hot Electron Induced Phase Transitions in Vanadium Dioxide

    Directory of Open Access Journals (Sweden)

    Haglund R. F.

    2013-03-01

    Full Text Available The Au/Cr/VO2/Si system was investigated in pump–probe experiments. Hot-electrons generated in the Au were found to penetrate into the underlying VO2 and couple with its lattice inducing a semiconductor-to-metal phase transition in ~2 picoseconds.

  15. Hot electron attenuation of direct and scattered carriers across an epitaxial Schottky interface

    Science.gov (United States)

    Parui, S.; Klandermans, P. S.; Venkatesan, S.; Scheu, C.; Banerjee, T.

    2013-11-01

    Hot electron transport of direct and scattered carriers across an epitaxial NiSi2/n-Si(111) interface, for different NiSi2 thickness, is studied using ballistic electron emission microscopy (BEEM). We find the BEEM transmission for the scattered hot electrons in NiSi2 to be significantly lower than that for the direct hot electrons, for all thicknesses. Interestingly, the attenuation length of the scattered hot electrons is found to be twice as large as that of the direct hot electrons. The lower BEEM transmission for the scattered hot electrons is due to inelastic scattering of the injected hot holes while the larger attenuation length of the scattered hot electrons is a consequence of the differences in the energy distribution of the injected and scattered hot electrons and the increasing attenuation length, at lower energies, of the direct hot electrons in NiSi2.

  16. FTU bolometer electronic system upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Pollastrone, Fabio, E-mail: fabio.pollastrone@enea.it [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy); Neri, Carlo; Florean, Marco; Ciccone, Giovanni [Associazione EURATOM-ENEA sulla Fusione, Via Enrico Fermi 45, 00044 Frascati, Rome (Italy)

    2013-10-15

    Highlights: ► Design and realization of a new bolometer electronic system. ► Many improvements over the actual commercial system. ► Architecture based on digital electronic hardware with minimal analog front end. ► Auto off-set correction, real time visualization features and small system size. ► Test results for the electronic system. -- Abstract: The FTU (Frascati Tokamak Upgrade) requires a bolometer diagnostic in order to measure the total plasma radiation. The current diagnostic architecture is based on a full analog multichannel AC bolometer system, which uses a carrier frequency amplifier with a synchronous demodulation. Taking into account the technological upgrades in the field of electronics, it was decided to realize an upgrade for the bolometric electronic system by using a hybrid analog/digital implementation. The new system developed at the ENEA Frascati laboratories has many improvements, and mainly a massive system volume reduction, a good measurement linearity and a simplified use. The new hardware system consists of two subsystems: the Bolometer Digital Control and the Bolometer Analog System. The Bolometer Digital Control can control 16 bolometer bridges through the Bolometer Analog System. The Bolometer Digital Control, based on the FPGA architecture, is connected via Ethernet with a PC; therefore, it can receive commands settings from the PC and send the stream of bolometric measurements in real time to the PC. In order to solve the cross-talk between the bridges and the cables, each of the four bridges in the bolometer head receives a different synthesized excitation frequency. Since the system is fully controlled by a PC GUI (Graphic User Interface), it is very user friendly. Moreover, some useful features have been developed, such as: auto off-set correction, bridge amplitude regulation, software gain setting, real time visualization, frequency excitation selection and noise spectrum analyzer embedded function. In this paper, the

  17. Hot electrons generated by ultra-short pulse laser interacting with solid targets

    Institute of Scientific and Technical Information of China (English)

    陈黎明; 张杰; 李玉同; 梁天骄; 王龙; 魏志义; 江文勉

    2000-01-01

    Hot electrons produced by ultra-short pulse laser interacting with solid targets were studied systematically. When 800 nm, 8 × 1015 W/cm2 laser pulses interacted with solid targets, hot electron e-mission was found to be collimated in certain directions and the angular distribution of hot electrons depended on the energy absorption. The angular divergence of outgoing hot electrons was inversely proportional to the hot electron energy. The energy spectrum of hot electrons was found to be in a bi-Maxwellian distribution and the maximum energy was over 500 keV.

  18. Hot electrons generated by ultra-short pulse laser interacting with solid targets

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Hot electrons produced by ultra-short pulse laser interacting with solid targets were studied systematically. When 800 nm, 8×1015 W/cm2 laser pulses interacted with solid targets, hot electron emission was found to be collimated in certain directions and the angular distribution of hot electrons depended on the energy absorption. The angular divergence of outgoing hot electrons was inversely proportional to the hot electron energy. The energy spectrum of hot electrons was found to be in a bi-Maxwellian distribution and the maximum energy was over 500 keV.

  19. A 90GHz Bolometer Camera Detector System for the Green

    Science.gov (United States)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3 mm) for the 100m Green Bank Telescope (GBT). This system will provide high sensitivity (less than 1mJy in 1s) rapid imaging (15'x15' to 150 micron Jy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close-packed, Nyquist-sampled array of superconducting transition edge sensor (TES) bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approximately 2 x 10(exp -17) W/square root of Hz, the TES bolometers will provide fast, linear, sensitive response for high performance imaging. The detectors are read out by an 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  20. Two models for bolometer and microcalorimeter detectors with complex thermal architectures

    Energy Technology Data Exchange (ETDEWEB)

    Appel, J.W. [Department of Physics, University of Miami, P.O. Box 248046, Coral Gables, FL 33124 (United States); Galeazzi, M. [Department of Physics, University of Miami, P.O. Box 248046, Coral Gables, FL 33124 (United States)]. E-mail: galeazzi@physics.miami.edu

    2006-06-15

    We have developed two analytical models to describe the performance of cryogenic microcalorimeters and bolometers. One of the models is suitable to describe Transition Edge Sensor (TES) detectors with an integrated absorber, the other is suitable for detectors with large absorbers. Both models take into account hot-electron decoupling and absorber decoupling. The differential equations describing these models have been solved using block diagram algebra. Each model has produced closed-form solutions for the detector's responsivity, dynamic impedance, and noise equivalent power for phonon noise, Johnson noise, amplifier noise, 1/f noise, and load resistor noise.

  1. Two Models for Bolometer and Microcalorimeter Detectors with Complex Thermal Architectures

    CERN Document Server

    Appel, J W

    2005-01-01

    We have developed two analytical models to describe the performance of cryogenic microcalorimeters and bolometers. One of the models is suitable to describe Transition Edge Sensor (TES) detectors with an integrated absorber, the other is suitable for detectors with large absorbers. Both models take into account hot-electron decoupling and absorber decoupling. The differential equations describing these models have been solved using block diagram algebra. Each model has produced closed form solutions for the detector's responsivity, dynamic impedance, and noise equivalent power for phonon noise, Johnson noise, amplifier noise, 1/f noise, and load resistor noise.

  2. High frequency conductivity of hot electrons in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Amekpewu, M., E-mail: mamek219@gmail.com [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, S.Y. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Musah, R. [Department of Applied Physics, University for Development Studies, Navrongo (Ghana); Mensah, N.G. [Department of Mathematics, College of Agriculture and Natural Sciences, U.C.C. (Ghana); Abukari, S.S.; Dompreh, K.A. [Department of Physics, College of Agriculture and Natural Sciences, U.C.C. (Ghana)

    2016-05-01

    High frequency conductivity of hot electrons in undoped single walled achiral Carbon Nanotubes (CNTs) under the influence of ac–dc driven fields was considered. We investigated semi-classically Boltzmann's transport equation with and without the presence of the hot electrons’ source by deriving the current densities in CNTs. Plots of the normalized current density versus frequency of ac-field revealed an increase in both the minimum and maximum peaks of normalized current density at lower frequencies as a result of a strong injection of hot electrons. The applied ac-field plays a twofold role of suppressing the space-charge instability in CNTs and simultaneously pumping an energy for lower frequency generation and amplification of THz radiations. These have enormous promising applications in very different areas of science and technology.

  3. High pressure generation by hot electrons driven ablation

    Energy Technology Data Exchange (ETDEWEB)

    Piriz, A. R. [E.T.S.I. Industriales, CYTEMA, and Instituto de Investigaciones Energéticas, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Piriz, S. A. [Facultad de Ciencias Físicas, Universidad Complutense de Madrid, 28040 Madrid (Spain); Tahir, N. A. [GSI Helmholtzzentrum für Schwerionenforschung, Planckstrasse 1, 64291 Darmstadt (Germany)

    2013-11-15

    A previous model [Piriz et al. Phys. Plasmas 19, 122705 (2012)] for the ablation driven by the hot electrons generated in collisionless laser-plasma interactions in the framework of shock ignition is revisited. The impact of recent results indicating that for a laser wavelength λ = 0.35 μm the hot electron temperature θ{sub H} would be independent of the laser intensity I, on the resulting ablation pressure is considered. In comparison with the case when the scaling law θ{sub H}∼(Iλ{sup 2}){sup 1/3} is assumed, the generation of the high pressures needed for driving the ignitor shock may be more demanding. Intensities above 10{sup 17} W/cm{sup 2} would be required for θ{sub H}=25−30 keV.

  4. Charge uncovering effects on flute instabilities in hot electron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Spong, D.A.

    1985-01-01

    Recent measurements and concurrent theoretical equilibrium models of the ELMO Bumpy Torus (EBT) edge plasma region (as described by E. F. Jaeger et al. in Magnetic Well Depth in EBT and Sensitivity to Hot Electron Ring Geometry, ORNL/TM-9185 (1984)) have indicated that the hot electron ring beta ..beta../sub hot/ at the C-T transition may not always be sufficient to produce the local minimum in the magnetic field thought to be necessary for MHD stability. This has led to the examination of other mechanisms that could account for the observed stability of the T-mode. In this report, an effect known as charge uncovering, which depends not on the value of ..beta../sub hot/ but rather on the ratio n/sub hot//n/sub core/, is studied.

  5. Hot electron pump: a plasmonic rectifying antenna (Presentation Recording)

    Science.gov (United States)

    Yanik, Ahmet A.; Hossain, Golam I.

    2015-09-01

    Plasmonic nanostructures have been widely explored to improve absorption efficiency of conventional solar cells, either by employing them as a light scatterer, or as a source of local field enhancement. Unavoidable ohmic loss associated with the plasmonic metal nanostructures in visible spectrum, limits the efficiency improvement of photovoltaic devices by employing this local photon density of states (LDOS) engineering approach. Instead of using plasmonic structures as efficiency improving layer, recently, there has been a growing interest in exploring plasmoinc nanoparticle as the active medium for photovoltaic device. By extracting hot electrons that are created in metallic nanoparticles in a non-radiative Landau decay of surface plasmons, many novel plasmonic photovoltaic devices have been proposed. Moreover, these hot electrons in metal nanoparticles promises high efficiency with a spectral response that is not limited by the band gap of the semiconductors (active material of conventional solar cell). In this work, we will show a novel photovoltaic configuration of plasmonic nanoparticle that acts as an antenna by capturing free space ultrahigh frequency electromagnetic wave and rectify them through an ultrafast hot electron pump and eventually inject DC current in the contact of the device. We will introduce a bottom-up quantum mechanical approach model to explain fundamental physical processes involved in this hot electron pump rectifying antenna and it's ultrafast dynamics. Our model is based on non-equilibrium Green's function formalism, a robust theoretical framework to investigate transport and design nanoscale electronic devices. We will demonstrate some fundamental limitations that go the very foundations of quantum mechanics.

  6. Transport Properties of III-N Hot Electron Transistors

    Science.gov (United States)

    Suntrup, Donald J., III

    Unipolar hot electron transistors (HETs) represent a tantalizing alternative to established bipolar transistor technologies. During device operation electrons are injected over a large emitter barrier into the base where they travel along the device axis with very high velocity. Upon arrival at the collector barrier, high-energy electrons pass over the barrier and contribute to collector current while low-energy electrons are quantum mechanically reflected back into the base. Designing the base with thickness equal to or less than the hot electron mean free path serves to minimize scattering events and thus enable quasi-ballistic operation. Large current gain is achieved by increasing the ratio of transmitted to reflected electrons. Although III-N HETs have undergone substantial development in recent years, there remain ample opportunities to improve key device metrics. In order to engineer improved device performance, a deeper understanding of the operative transport physics is needed. Fortunately, the HET provides fertile ground for studying several prominent electron transport phenomena. In this thesis we present results from several studies that use the III-N HET as both emitter and analyzer of hot electron momentum states. The first provides a measurement of the hot electron mean free path and the momentum relaxation rate in GaN; the second relies on a new technique called electron injection spectroscopy to investigate the effects of barrier height inhomogeneity in the emitter. To supplement our analysis we develop a comprehensive theory of coherent electron transport that allows us to model the transfer characteristics of complex heterojunctions. Such a model provides a theoretical touchstone with which to compare our experimental results. While these studies are of potential interest in their own right, we interpret the results with an eye toward improving next-generation device performance.

  7. The GISMO-2 Bolometer Camera

    Science.gov (United States)

    Staguhn, Johannes G.; Benford, Dominic J.; Fixsen, Dale J.; Hilton, Gene; Irwin, Kent D.; Jhabvala, Christine A.; Kovacs, Attila; Leclercq, Samuel; Maher, Stephen F.; Miller, Timothy M.; Moseley, Samuel H.; Sharp, Elemer H.; Wollack, Edward J.

    2012-01-01

    We present the concept for the GISMO-2 bolometer camera) which we build for background-limited operation at the IRAM 30 m telescope on Pico Veleta, Spain. GISM0-2 will operate Simultaneously in the 1 mm and 2 mm atmospherical windows. The 1 mm channel uses a 32 x 40 TES-based Backshort Under Grid (BUG) bolometer array, the 2 mm channel operates with a 16 x 16 BUG array. The camera utilizes almost the entire full field of view provided by the telescope. The optical design of GISM0-2 was strongly influenced by our experience with the GISMO 2 mm bolometer camera which is successfully operating at the 30m telescope. GISMO is accessible to the astronomical community through the regular IRAM call for proposals.

  8. A sensitive YBaCuO thin film bolometer with ultrawide wavelength response

    Science.gov (United States)

    Dwir, B.; Pavuna, D.

    1992-11-01

    We have constructed two types of high-temperature superconducting bolometers, whose performance is essentially wavelength independent from 0.6 to 450 microns: the first is a microbridge, of dimensions 20 x 20 microns, and the second is a meander, covering a region of about 1 sq mm. Both were fabricated by photolithography of a superconducting YBaCuO thin film on SrTiO3. The bolometers are current biased, and the ac voltage induced by the chopped radiation is measured using lock-in detection. Operating optimally in the vicinity of the transition temperature (90 K), the first bolometer shows responsivity S about 1 mV/(W/sq cm), while the second gives S about 800 V/W. The response of the first bolometer for various chopping frequencies is basically S about 1/sq rt f, which makes it usuable at frequencies up to over 50 kHz, while the second bolometer has a chopping-frequency response that is basically S about 1/f, with a cutoff frequency near 0.01 Hz.

  9. Neutron transmutation doped Ge bolometers

    Science.gov (United States)

    Haller, E. E.; Kreysa, E.; Palaio, N. P.; Richards, P. L.; Rodder, M.

    1983-01-01

    Some conclusions reached are as follow. Neutron Transmutation Doping (NTD) of high quality Ge single crystals provides perfect control of doping concentration and uniformity. The resistivity can be tailored to any given bolometer operating temperature down to 0.1 K and probably lower. The excellent uniformity is advantaged for detector array development.

  10. The performance of the bolometer array and readout system during the 2012/2013 flight of the E and B experiment (EBEX)

    CERN Document Server

    MacDermid, Kevin; Ade, Peter; Aubin, Francois; Baccigalupi, Carlo; Bandura, Kevin; Bao, Chaoyun; Borrill, Julian; Chapman, Daniel; Didier, Joy; Dobbs, Matt; Grain, Julien; Grainger, Will; Hanany, Shaul; Helson, Kyle; Hillbrand, Seth; Hilton, Gene; Hubmayr, Hannes; Irwin, Kent; Johnson, Bradley; Jaffe, Andrew; Jones, Terry; Kisner, Ted; Klein, Jeff; Korotkov, Andrei; Lee, Adrian; Levinson, Lorne; Limon, Michele; Miller, Amber; Milligan, Michael; Pascale, Enzo; Raach, Kate; Reichborn-Kjennerud, Britt; Reintsema, Carl; Sagiv, Ilan; Smecher, Graeme; Stompor, Radek; Tristram, Matthieu; Tucker, Greg; Westbrook, Ben; Zilic, Kyle

    2014-01-01

    EBEX is a balloon-borne telescope designed to measure the polarization of the cosmic microwave background radiation. During its eleven day science flight in the Austral Summer of 2012, it operated 955 spider-web transition edge sensor (TES) bolometers separated into bands at 150, 250 and 410 GHz. This is the first time that an array of TES bolometers has been used on a balloon platform to conduct science observations. Polarization sensitivity was provided by a wire grid and continuously rotating half-wave plate. The balloon implementation of the bolometer array and readout electronics presented unique development requirements. Here we present an outline of the readout system, the remote tuning of the bolometers and Superconducting QUantum Interference Device (SQUID) amplifiers, and preliminary current noise of the bolometer array and readout system.

  11. Hot electron induced NIR detection in CdS films.

    Science.gov (United States)

    Sharma, Alka; Kumar, Rahul; Bhattacharyya, Biplab; Husale, Sudhir

    2016-03-11

    We report the use of random Au nanoislands to enhance the absorption of CdS photodetectors at wavelengths beyond its intrinsic absorption properties from visible to NIR spectrum enabling a high performance visible-NIR photodetector. The temperature dependent annealing method was employed to form random sized Au nanoparticles on CdS films. The hot electron induced NIR photo-detection shows high responsivity of ~780 mA/W for an area of ~57 μm(2). The simulated optical response (absorption and responsivity) of Au nanoislands integrated in CdS films confirms the strong dependence of NIR sensitivity on the size and shape of Au nanoislands. The demonstration of plasmon enhanced IR sensitivity along with the cost-effective device fabrication method using CdS film enables the possibility of economical light harvesting applications which can be implemented in future technological applications.

  12. Hot electron generation and transport using Kα emission

    Science.gov (United States)

    Akli, K. U.; Stephens, R. B.; Key, M. H.; Bartal, T.; Beg, F. N.; Chawla, S.; Chen, C. D.; Fedosejevs, R.; Freeman, R. R.; Friesen, H.; Giraldez, E.; Green, J. S.; Hey, D. S.; Higginson, D. P.; Hund, J.; Jarrott, L. C.; Kemp, G. E.; King, J. A.; Kryger, A.; Lancaster, K.; LePape, S.; Link, A.; Ma, T.; Mackinnon, A. J.; MacPhee, A. G.; McLean, H. S.; Murphy, C.; Norreys, P. A.; Ovchinnikov, V.; Patel, P. K.; Ping, Y.; Sawada, H.; Schumacher, D.; Theobald, W.; Tsui, Y. Y.; Van Woerkom, L. D.; Wei, M. S.; Westover, B.; Yabuuchi, T.

    2010-08-01

    We have conducted experiments on both the Vulcan and Titan laser facilities to study hot electron generation and transport in the context of fast ignition. Cu wires attached to Al cones were used to investigate the effect on coupling efficiency of plasma surround and the pre-formed plasma inside the cone. We found that with thin cones 15% of laser energy is coupled to the 40μm diameter wire emulating a 40μm fast ignition spot. Thick cone walls, simulating plasma in fast ignition, reduce coupling by x4. An increase of pre-pulse level inside the cone by a factor of 50 reduces coupling by a factor of 3.

  13. State analysis of high power laser induced hot electrons by simulation of x-ray radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fukumoto, Ichirou; Utsumi, Takayuki; Sasaki, Akira; Zhidkov, A. [Neyagawa Office, Kansai Research Establishment, Japan Atomic Energy Research Institute, Neyagawa, Osaka (Japan)

    2000-03-01

    X-ray generation due to hot electrons induced by ultra-short pulse laser irradiation is simulated using a Monte Carlo Method. Mass attenuation coefficients of photons by scatter, photoelectric effect, or pair production, and stopping powers of hot electrons due to collisions and radiation are shown. The initial distribution of hot electrons is assumed to be Maxwellian, and the x-ray spectrum due to bremsstrahlung and the number of K{sub {alpha}} photons are calculated. As a result, the temperature of hot electrons could be estimated by comparing with the simulation results and the measurements. (author)

  14. Normal Metal Hot-Electron Nanobolometer with Johnson Noise Thermometry Readout

    CERN Document Server

    Karasik, Boris S; Reck, Theodore J; Prober, Daniel E

    2014-01-01

    The sensitivity of a THz hot-electron nanobolometer (nano-HEB) made from a normal metal is analyzed. Johnson Noise Thermometry (JNT) is employed as a readout technique. In contrast to its superconducting TES counterpart, the normal-metal nano-HEB can operate at any cryogenic temperature depending on the required radiation background limited Noise Equivalent Power (NEP). It does not require bias lines; 100s of nano-HEBs can be read by a single low-noise X-band amplifier via a filter bank channelizer. The modeling predicts that even with the sensitivity penalty due to the amplifier noise, an NEP ~ 10$^{-20}$ - 10$^{-19}$ W/Hz$^{1/2}$ can be expected at 50-100 mK in 10-20 nm thin titanium (Ti) normal metal HEBs with niobium (Nb) contacts. This NEP is fairly constant over a range of readout frequencies ~ 10 GHz. Although materials with weaker electron-phonon coupling (bismuth, graphene) do not improve the minimum achievable NEP, they can be considered if a larger than 10 GHz readout bandwidth is required.

  15. Development of Niobium Hot Electron Bolometric Mixer for Terahertz Frequencies: the Phonon-Cooled Version

    Science.gov (United States)

    Gerecht, Eyal

    NbN HEB mixers represent a promising approach for achieving receiver noise temperatures of a few times the quantum noise limit at frequencies above 1 THz. NbN HEB devices have been shown to have sufficient bandwidth for applications in astronomy, remote sensing, and plasma diagnostics in the FIR range. The NbN HEB is a phonon cooled bolometer in which the energy is transfered from the hot electrons to the substrate via inelastic collisions with phonons. The development of an NbN HEB mixer contained two steps: (1) implementing mixing in a comparatively large 'direct-coupled' prototype device which required LO power of a few milliwatts, and (2) optimization of the first step by the development of an 'antenna-coupled' (quasi-optically coupled) device with an LO power level of less than one μ W. The LO power was coupled to the antenna via an extended hemispherical lens (1.3 mm in diameter). The design, fabrication, and measurement stages were performed by a collaborative effort between a Russian team from the Department of Physics at Moscow State Pedagogical University in Moscow, the Submillimeter Technology Laboratory at UMass/Lowell and the Department of Electrical and Computer Engineering at UMass/Amherst. Mixing at 2.5 THz was demonstrated for the first time using the direct-coupled device achieving an intrinsic conversion loss of 23 dB. Sufficient level of LO power coupling at four different frequencies was demonstrated with the antenna-coupled device. The antenna/lens configuration has performed as well as expected insuring coupling to LO power of less than one μW. A 3 dB conversion gain was demonstrated with the antenna-coupled device using a laser LO at 1.56 THz with an IF frequency of 500 KHz. A second laser was utilized as the rf source. Noise temperature for the NbN HEB mixer receiver of 5800 K has been demonstrated over the 1.25-1.75 GHz IF band. The mixer temperature was 2500 K and the total conversion loss was 27 dB. Further optimization of the receiver

  16. Probing momentum distributions in magnetic tunnel junctions via hot-electron decay

    NARCIS (Netherlands)

    Jansen, R.; Banerjee, T.; Park, B.G.; Lodder, J.C.

    2007-01-01

    The tunnel momentum distribution in a (magnetic) tunnel junction is probed by analyzing the decay of the hot electrons in the Co metal anode after tunneling, using a three-terminal transistor structure in which the hot-electron attenuation is sensitive to the tunnel momentum distribution. Solid stat

  17. The optimization of production and control of hot-electron plasmas

    Energy Technology Data Exchange (ETDEWEB)

    1988-03-11

    The research discussed in this paper consist of the following: Hot-Electron Plasma Formation in AMPHED; Kinectic Models of Hot-Electron Plasma Formation; Resonator Design and Tests; Results of 1-D Fokker-Planck ECH Study of TEXT; and AMPC/TEXT Collaboration.

  18. Hot electron attenuation of direct and scattered carriers across an epitaxial Schottky interface

    NARCIS (Netherlands)

    Parui, S.; Klandermans, P. S.; Venkatesan, S.; Scheu, C.; Banerjee, T.

    2013-01-01

    Hot electron transport of direct and scattered carriers across an epitaxial NiSi2/n-Si(111) interface, for different NiSi2 thickness, is studied using ballistic electron emission microscopy (BEEM). We find the BEEM transmission for the scattered hot electrons in NiSi2 to be significantly lower than

  19. Hot-Electron Tunneling sensors for high-resolution x-ray and gamma-ray spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Mears, C.A.; Labov, S.E.; Frank, M.; Netel, H.

    1997-02-07

    Over the past 2 years, we have been studying the use of Hot Electron Tunneling sensors for use in high-energy-resolution x-ray and gamma-ray spectrometers. These sensors promise several advantages over existing cryogenic sensors, including simultaneous high count rate and high resolution capability, and relative ease of use. Using simple shadow mask lithography, we verified the basic principles of operation of these devices and discovered new physics in their thermal behavior as a function applied voltage bias. We also began to develop ways to use this new sensor in practical x-ray and gamma-ray detectors based on superconducting absorbers. This requires the use of quasiparticle trapping to concentrate the signal in the sensing elements.

  20. The effect of hot electrons and surface plasmons on heterogeneous catalysis

    Science.gov (United States)

    Kim, Sun Mi; Lee, Si Woo; Moon, Song Yi; Park, Jeong Young

    2016-06-01

    Hot electrons and surface-plasmon-driven chemistry are amongst the most actively studied research subjects because they are deeply associated with energy dissipation and the conversion processes at the surface and interfaces, which are still open questions and key issues in the surface science community. In this topical review, we give an overview of the concept of hot electrons or surface-plasmon-mediated hot electrons generated under various structural schemes (i.e. metals, metal-semiconductor, and metal-insulator-metal) and their role affecting catalytic activity in chemical reactions. We highlight recent studies on the relation between hot electrons and catalytic activity on metallic surfaces. We discuss possible mechanisms for how hot electrons participate in chemical reactions. We also introduce controlled chemistry to describe specific pathways for selectivity control in catalysis on metal nanoparticles.

  1. Hot-electron noise properties of graphene-like systems

    Science.gov (United States)

    Rustagi, A.; Stanton, C. J.

    2014-12-01

    We study the hot-electron noise properties of two-dimensional materials with a graphene-like energy dispersion under a strong applied electric field which drives the system far from equilibrium. Calculations are based on a Boltzmann-Green-function method within a two-relaxation-time approximation that allows for both inelastic scattering coming from electron-phonon scattering and elastic scattering coming from electron-impurity scattering. The steady-state distribution function is used to calculate the average current and the low-frequency spectral density for current fluctuations (noise) in the nonequilibrium steady-state. We find that as the electric field strength increases, the noise decreases from its equilibrium thermal noise value. This is in contrast with semiconductors with a quadratic energy-wave-vector dispersion where the noise increases in a constant-relaxation-time model with the square of the electric field due to the Joule heating of the electron gas by the electric field. We have also studied these properties for an electronic dispersion with a gap introduced into the Dirac spectrum. The inclusion of the gap in the electronic dispersion causes an initial increase in the noise as a function of external electric field due to the heating of the electron gas for large gap values. At high electric fields, the noise decreases with increasing electric field as in the case of gapless dispersion at higher fields.

  2. Design of III-Nitride Hot Electron Transistors

    Science.gov (United States)

    Gupta, Geetak

    III-Nitride based devices have made great progress over the past few decades in electronics and photonics applications. As the technology and theoretical understanding of the III-N system matures, the limitations on further development are based on very basic electronic properties of the material, one of which is electron scattering (or ballistic electron effects). This thesis explores the design space of III-N based ballistic electron transistors using novel design, growth and process techniques. The hot electron transistor (HET) is a unipolar vertical device that operates on the principle of injecting electrons over a high-energy barrier (φBE) called the emitter into an n-doped region called base and finally collecting the high energy electrons (hot electrons) over another barrier (φBC) called the collector barrier. The injected electrons traverse the base in a quasi-ballistic manner. Electrons that get scattered in the base contribute to base current. High gain in the HET is thus achieved by enabling ballistic transport of electrons in the base. In addition, low leakage across the collector barrier (I BCleak) and low base resistance (RB) are needed to achieve high performance. Because of device attributes such as vertical structure, ballistic transport and low-resistance n-type base, the HET has the potential of operating at very high frequencies. Electrical measurements of a HET structure can be used to understand high-energy electron physics and extract information like mean free path in semiconductors. The III-Nitride material system is particularly suited for HETs as it offers a wide range of DeltaEcs and polarization charges which can be engineered to obtain barriers which can inject hot-electrons and have low leakage at room temperature. In addition, polarization charges in the III-N system can be engineered to obtain a high-density and high-mobility 2DEG in the base, which can be used to reduce base resistance and allow vertical scaling. With these

  3. Kilopixel Pop-Up Bolometer Arrays for the Atacama Cosmology Telescope

    Science.gov (United States)

    Chervenak, J. A.; Wollack, E.; Henry, R.; Moseley, S. H.; Niemack, M.; Staggs, S.; Page, L.; Doriese, R.; Hilton, G. c.; Irwin, K. D.

    2007-01-01

    The recently deployed Atacama Cosmology Telescope (ACT) anticipates first light on its kilopixel array of close-packed transition-edge-sensor bolometers in November of 2007. The instrument will represent a full implementation of the next-generation, large format arrays for millimeter wave astronomy that use superconducting electronics and detectors. Achieving the practical construction of such an array is a significant step toward producing advanced detector arrays for future SOFIA instruments. We review the design considerations for the detector array produced for the ACT instrument. The first light imager consists of 32 separately instrumented 32-channel pop-up bolometer arrays (to create a 32x32 filled array of mm-wave sensors). Each array is instrumented with a 32-channel bias resistor array, Nyquist filter array, and time-division SQUID multiplexer. Each component needed to be produced in relatively large quantities with suitable uniformity to meet tolerances for array operation. An optical design was chosen to maximize absorption at the focal plane while mitigating reflections and stray light. The pop-up geometry (previously implemented with semiconducting detectors and readout on the SHARC II and HAWC instruments) enabled straightforward interface of the superconducting bias and readout circuit with the 2D array of superconducting bolometers. The array construction program balanced fabrication challenges with assembly challenges to deliver the instrument in a timely fashion. We present some of the results of the array build and characterization of its performance.

  4. Neutronic analysis for bolometers in ITER

    Energy Technology Data Exchange (ETDEWEB)

    Suarez, A., E-mail: alejandro.suarez@iter.org [CIEMAT, Avda. Complutense 40, 28040 Madrid (Spain); Reichle, R.; Loughlin, M.; Polunovskiy, E.; Walsh, M. [ITER Organization, Route de Vinon sur Verdon, 13115, St. Paul lez Durance (France)

    2013-10-15

    Highlights: ► Radiation damage calculations for the bolometers in ITER. ► Redesign of the bolometric diagnostic in EPP01. ► New bolometer radiation damage values in EPP01 in the safe zone. -- Abstract: Neutronic considerations in ITER have such importance that they drive the design of many diagnostics and components of the machine, and bolometers are not an exception. Bolometer cameras will be installed on the vacuum vessel, viewing the plasma through the gaps between blanket modules, divertor, equatorial and upper port plugs. The ITER reference bolometer sensors are of a resistive type. For this study it is assumed that they are composed of a thin silicon nitride carrier film and platinum resistors disposed in a Wheatstone bridge configuration. Their assumed radiation hardness is 0.1 dpa. Neutronic calculations were performed with the Monte Carlo program MCNP5, the FENDL 2.1 nuclear data library and the latest B-lite ITER neutronic model with the appropriate modifications using the CAD to MCNP converter MCAM. A complete characterization of the neutron fluxes in all the bolometer locations and the calculation of neutron damage were performed. Values above the failure threshold damage were obtained for some of the bolometers, leading to a complete redesign of some parts of the bolometric system in order to extend its lifetime.

  5. Investigation of CeO2 Buffer Layer Effects on the Voltage Response of YBCO Transition-Edge Bolometers

    DEFF Research Database (Denmark)

    Mohajeri, Roya; Nazifi, Rana; Wulff, Anders Christian

    2016-01-01

    The effect on the thermal parameters of superconducting transition-edge bolometers produced on a single crystalline SrTiO3 (STO) substrate with and without a CeO2 buffer layer was investigated. Metal-organic deposition was used to deposit the 20-nm CeO2 buffer layer, whereas RF magnetron sputtering...... responses, and the results were compared with that of simulations conducted by applying a one-dimensional thermophysical model. It was observed that adding the buffer layer to the structure of the bolometer results in an increased response at higher modulation frequencies. Results from simulations made...

  6. A Strained Silicon Cold Electron Bolometer using Schottky Contacts

    CERN Document Server

    Brien, T L R; Barry, P S; Dunscombe, C; Leadley, D R; Morozov, D V; Myronov, M; Parker, E H C; Prest, M J; Sudiwala, R V; Whall, T E; Mauskopf, P D

    2014-01-01

    We describe optical characterisation of a Strained Silicon Cold Electron Bolometer (CEB), operating on a $350~\\mathrm{mK}$ stage, designed for absorption of millimetre-wave radiation. The silicon Cold Electron Bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to $160~\\mathrm{GHz}$ and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of $50~\\%$ for radiation coupled into the device by the planar antenna and an overall noise equivalent power (NEP), referred to absorbed optical power, of $1.1 \\times 10^{-16}~\\math...

  7. Anisotropy effects on curvature-driven flute instabilities in a hot-electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Spong, D.A.; Berk, H.L.; Van Dam, J.W.; Rosenbluth, M.N.

    1982-08-01

    The effects of finite parallel temperature are investigated for a hot electron plasma with sufficiently large beta that the magnetic field scale length (..delta../sub B/) is small compared with the vacuum field radius of curvature (R). Numerical and analytical estimates of stability boundaries are obtained for the four possible modes that can be treated in this limit: the conventional hot electron interchange, the high frequency hot electron interchange (..omega.. > ..omega../sub ci/), the compressional Alfven mode, and the interacting pressure-driven interchange.

  8. Double Jet Emission of Hot Electrons from a Micro-droplet Spray

    Institute of Scientific and Technical Information of China (English)

    彭晓昱; 张杰; 梁天骄; 盛政明; 金展; 李玉同; 王兆华; 于全芝; 郑志远; 刘运全; 武慧春; 郝作强; 远晓辉; 魏志义

    2004-01-01

    Spatial distribution of hot electrons with energies above 50 keV are investigated by an ethanol micro-droplet spray irradiated bylinearly and elliptically polarized 150fs laser pulses at an intensity of 1016 W/cm2. Two symmetric hot electron jets with respect to the laser propagation direction are observed in the polarization plane for a linearly polarized laser field and in the plane of the long electric vector for an elliptically polarized laser field,respectively. Particle-in-cell simulations suggest that the resonance absorption on the spherical surface of the droplets is mainly responsible for the generation of the double-jet emission of hot electrons.

  9. Origin of Power Laws for Reactions at Metal Surfaces Mediated by Hot Electrons

    DEFF Research Database (Denmark)

    Olsen, Thomas; Schiøtz, Jakob

    2009-01-01

    A wide range of experiments have established that certain chemical reactions at metal surfaces can be driven by multiple hot-electron-mediated excitations of adsorbates. A high transient density of hot electrons is obtained by means of femtosecond laser pulses and a characteristic feature...... of such experiments is the emergence of a power law dependence of the reaction yield on the laser fluence Y similar to F-n. We propose a model of multiple inelastic scattering by hot electrons which reproduces this power law and the observed exponents of several experiments. All parameters are calculated within...

  10. Radiation Hardened Bolometer Linear Array Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has developed space-based thermal instrument spectrometers based on thermopile detectors linear arrays that are intrinsically radiation hard. Micro-bolometers...

  11. Hot-Electron Nanobolometers Based on Disordered GaN Heterostructures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed research is to develop hot electron THz nanobolometers (nanoHEB) with unprecedented low electron heat capacity (~10-19 J/K) for use in advanced...

  12. Target heating due to the shock produced hot electrons in the shock ignition scheme

    Science.gov (United States)

    Rezaei, Somayeh; Farahbod, Amir Hossein; Jafari, Mohammad Jafar; Sobhanian, Samad

    2016-09-01

    Hot electrons are produced as a result of ignitor-corona interaction of the shock ignition scheme. In the present paper, penetration depth and energy deposition of such energetic electrons have been qualitatively discussed applying Monte Carlo simulations. Target real conditions for propagating hot electrons were taken from 1-D hydrodynamic simulations. It has been found that compressing target up to 10.4 ns helps to stop hot electrons at a proper distance thus, preventing fuel preheating. In addition, embedding hot electron energy source into the hydrodynamic code, changes of parameters p, ρ and ρR are calculated. Monoenergetic electron beams have been launched at different times of target compression. The simulation results indicate the creation of high ablation pressure as well as maximum shell areal density by a 50 keV monoenergetic electron beam with intensity 1 PW/cm2 irradiated on the compressed target at a proper time which indeed improves the implosion processes.

  13. Complex impedance and equivalent bolometer, analysis of a low noise bolometer for SAFARI

    NARCIS (Netherlands)

    Lindeman, M.A.; Khosropanah, P.; Hijmering, R.A.; Ridder, M.; Gottardi, L.; Bruijn, M.; Van der Kuur, J.; De Korte, P.A.J.; Gao, J.R.; Hoevers, H.

    2012-01-01

    Transition-edge-sensor (TES) bolometers are the chosen detector technology for the SAFARI Imaging Spectrometer on the SPICA telescope. For this mission, SRON is developing bolometers, each consisting of a TiAu TES that is weakly coupled to the thermal bath through thin legs of silicon nitride. In

  14. A 90GHz Bolometer Camera Detector System for the Green Bank Telescope

    Science.gov (United States)

    Benford, Dominic J.; Allen, Christine A.; Buchanan, Ernest D.; Chen, Tina C.; Chervenak, James A.; Devlin, Mark J.; Dicker, Simon R.; Forgione, Joshua B.

    2004-01-01

    We describe a close-packed, two-dimensional imaging detector system for operation at 90GHz (3.3mm) for the 100 m Green Bank Telescope (GBT) This system will provide high sensitivity (<1mjy in 1s rapid imaging (15'x15' to 250 microJy in 1 hr) at the world's largest steerable aperture. The heart of this camera is an 8x8 close packed, Nyquist-sampled array of superconducting transition edge sensor bolometers. We have designed and are producing a functional superconducting bolometer array system using a monolithic planar architecture and high-speed multiplexed readout electronics. With an NEP of approx. 2.10(exp 17) W/square root Hz, the TES bolometers will provide fast linear sensitive response for high performance imaging. The detectors are read out by and 8x8 time domain SQUID multiplexer. A digital/analog electronics system has been designed to enable read out by SQUID multiplexers. First light for this instrument on the GBT is expected within a year.

  15. Dual-mode operation of 2D material-base hot electron transistors

    KAUST Repository

    Lan, Yann-Wen

    2016-09-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (V-CB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (V-CB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications.

  16. Radial structure of curvature-driven instabilities in a hot-electron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Spong, D.A.; Berk, H.L.; Van Dam, J.W.

    1983-10-01

    A nonlocal analysis of curvature-driven instabilities for a hot electron ring interacting with a warm background plasma has been made. We have examined four different instability modes characteristic of hot electron plasmas: the high-frequency hot electron interchange (at frequencies larger than the ion cyclotron frequency), the compressional Alfven instability, the interacting background pressure-driven interchange, and the conventional hot electron interchange (at frequencies below the ion cyclotron frequency). We have also examined the decoupling condition between core and hot electron plasmas as it influences the background and hot electron interchange stability requirements. The assumed equilibrium plasma profiles and resulting radial mode structure differ somewhat from those used in previous local analytic estimates; however, when the analysis is calibrated to the appropriate effective radial wavelength of the nonlocal calculation, reasonable agreement is obtained. Comparison with recent experimental measurements indicates that certain of these modes may play a role in establishing operating boundaries for the ELMO Bumpy Torus-Scale (EBT-S) experiment.

  17. Alpha Background Rejection in Bolometer Detectors

    Science.gov (United States)

    Deporzio, Nicholas

    2016-03-01

    This study presents the modification of bolometer detectors used in particle searches to veto or otherwise reject alpha radiation background and the statistical advantages of doing so. Several techniques are presented in detail - plastic film scintillator vetoes, metallic film ionization vetoes, and scintillating bolometer vetoes. Plastic scintillator films are cooled to bolometer temperatures and bombarded with 1.4MeV to 6.0MeV alpha particles representative of documented detector background. Photomultipliers detect this scintillation light and produce a veto signal. Layered metallic films of a primary metal, dielectric, and secondary metal, such as gold-polyethylene-gold films, are cooled to milli-kelvin temperatures and biased to produce a current signal veto when incident 1.4MeV to 6.0MeV alpha particles ionize conduction paths through the film. Modified Zinc Molybdate Bolometers are used to produce scintillation light when stimulated by alpha background. Calibration of veto signal to background energy is presented. Results are used to quantify the statistical impact of such modifications on bolometer searches.

  18. Measurements of hot-electron temperature in laser-irradiated plasmas

    Science.gov (United States)

    Solodov, A. A.; Yaakobi, B.; Edgell, D. H.; Follett, R. K.; Myatt, J. F.; Sorce, C.; Froula, D. H.

    2016-10-01

    In a recently published work [Yaakobi et al., Phys. Plasmas 19, 012704 (2012)] we reported on measuring the total energy of hot electrons produced by the interaction of a nanosecond laser with planar CH-coated molybdenum targets, using the Mo Kα emission. The temperature of the hot electrons in that work was determined by the high-energy bremsstrahlung [hard X-ray (HXR)] spectrum measured by a three-channel fluorescence-photomultiplier HXR detector (HXRD). In the present work, we replaced the HXRD with a nine-channel image-plate (IP)-based detector (HXIP). For the same conditions (irradiance of the order of 1014 W/cm2; 2-ns pulses), the measured temperatures are consistently lower than those measured by the HXRD (by a factor ˜1.5 to 1.7). We supplemented this measurement with three experiments that measure the hot-electron temperature using Kα line-intensity ratios from high-Z target layers, independent of the HXR emission. These experiments yielded temperatures that were consistent with those measured by the HXIP. We showed that the thermal X-ray radiation must be included in the derivation of total energy in hot electrons (Ehot), and that this makes Ehot only weakly dependent on hot-electron temperature. For a given X-ray emission in the inertial confinement fusion compression experiments, this result would lead to a higher total energy in hot electrons, but preheating of the compressed fuel may be lower because of the reduced hot-electron range.

  19. Multimode bolometer development for the PIXIE instrument

    CERN Document Server

    Nagler, Peter C; Denis, Kevin L; Devasia, Archana M; Fixsen, Dale J; Kogut, Alan J; Manos, George; Porter, Scott; Stevenson, Thomas R

    2016-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With $\\sim30$ times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance ...

  20. YBa2Cu3O7 thin films on nanocrystalline diamond films for HTSC bolometer

    Science.gov (United States)

    Cui, G.; Beetz, C. P., Jr.; Boerstler, R.; Steinbeck, J.

    1993-03-01

    Superconducting YBa2Cu3O(7-x) films on nanocrystalline diamond thin films have been fabricated. A composite buffer layer system consisting of diamond/Si3N4/YSZ/YBCO was explored for this purpose. The as-deposited YBCO films were superconducting with Tc of about 84 K and a relatively narrow transition width of about 8 K. SEM cross sections of the films showed very sharp interfaces between diamond/Si3N4 and between Si3N4/YSZ. The deposited YBCO film had a surface roughness of about 1000 A, which is suitable for high-temperature superconductive (HTSC) bolometer fabrication. It was also found that preannealing of the nanocrystalline diamond thin films at high temperature was very important for obtaining high-quality YBCO films.

  1. Hot-electron-based solar energy conversion with metal-semiconductor nanodiodes.

    Science.gov (United States)

    Lee, Young Keun; Lee, Hyosun; Lee, Changhwan; Hwang, Euyheon; Park, Jeong Young

    2016-06-29

    Energy dissipation at metal surfaces or interfaces between a metal and a dielectric generally results from elementary excitations, including phonons and electronic excitation, once external energy is deposited to the surface/interface during exothermic chemical processes or an electromagnetic wave incident. In this paper, we outline recent research activities to develop energy conversion devices based on hot electrons. We found that photon energy can be directly converted to hot electrons and that hot electrons flow through the interface of metal-semiconductor nanodiodes where a Schottky barrier is formed and the energy barrier is much lower than the work function of the metal. The detection of hot electron flow can be successfully measured using the photocurrent; we measured the photoyield of photoemission with incident photons-to-current conversion efficiency (IPCE). We also show that surface plasmons (i.e. the collective oscillation of conduction band electrons induced by interaction with an electromagnetic field) are excited on a rough metal surface and subsequently decay into secondary electrons, which gives rise to enhancement of the IPCE. Furthermore, the unique optical behavior of surface plasmons can be coupled with dye molecules, suggesting the possibility for producing additional channels for hot electron generation.

  2. Scintillating bolometers for Double Beta Decay search

    CERN Document Server

    Gironi, Luca

    2009-01-01

    In the field of Double Beta Decay (DBD) searches, the use of high resolution detectors in which background can be actively discriminated is very appealing. Scintillating bolometers containing a Double Beta Decay emitter can largely fulfill this very interesting possibility. In this paper we present the latest results obtained with CdWO4 and CaMoO4 crystals. Moreover we report, for the first time, a very interesting feature of CaMoO4 bolometers: the possibility to discriminate beta-gamma events from those induced by alpha particles thanks to different thermal pulse shape.

  3. Imaging of current distributions in superconducting thin film structures; Abbildung von Stromverteilungen in supraleitenden Duennfilmstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Doenitz, D.

    2006-10-31

    Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tuebingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference

  4. Spin dependent transport of hot electrons through ultrathin epitaxial metallic films

    Energy Technology Data Exchange (ETDEWEB)

    Heindl, Emanuel

    2010-06-23

    In this work relaxation and transport of hot electrons in thin single crystalline metallic films is investigated by Ballistic Electron Emission Microscopy. The electron mean free paths are determined in an energy interval of 1 to 2 eV above the Fermi level. While fcc Au-films appear to be quite transmissive for hot electrons, the scattering lengths are much shorter for the ferromagnetic alloy FeCo revealing, furthermore, a strong spin asymmetry in hot electron transport. Additional information is gained from temperature dependent studies in combination with golden rule approaches in order to disentangle the impact of several relaxation and transport properties. It is found that bcc Fe-films are much less effective in spin filtering than films made of the FeCo-alloy. (orig.)

  5. Tandem-structured, hot electron based photovoltaic cell with double Schottky barriers.

    Science.gov (United States)

    Lee, Young Keun; Lee, Hyosun; Park, Jeong Young

    2014-04-03

    We demonstrate a tandem-structured, hot electron based photovoltaic cell with double Schottky barriers. The tandem-structured, hot electron based photovoltaic cell is composed of two metal/semiconductor interfaces. Two types of tandem cells were fabricated using TiO2/Au/Si and TiO2/Au/TiO2, and photocurrent enhancement was detected. The double Schottky barriers lead to an additional pathway for harvesting hot electrons, which is enhanced through multiple reflections between the two barriers with different energy ranges. In addition, light absorption is improved by the band-to-band excitation of both semiconductors with different band gaps. Short-circuit current and energy conversion efficiency of the tandem-structured TiO2/Au/Si increased by 86% and 70%, respectively, compared with Au/Si metal/semiconductor nanodiodes, showing an overall solar energy conversion efficiency of 5.3%.

  6. Young's double-slit interference observation of hot electrons in semiconductors.

    Science.gov (United States)

    Furuya, Kazuhito; Ninomiya, Yasunori; Machida, Nobuya; Miyamoto, Yasuyuki

    2003-11-21

    We have carried out Young's double-slit experiment for the hot-electron wave in man-made semiconductor structures with a 25-nm-space double slit in an InP layer buried within GaInAs, a 190-nm-thick GaInAsP hot-electron wave propagation layer, and a collector array of 80 nm pitch. At 4.2 K, dependences of the collector current on the magnetic field were measured and found to agree clearly with the double-slit interference theory. The present results show evidence for the wave front spread of hot electrons using the three-dimensional state in materials, for the first time, and the possibility of using top-down fabrication techniques to achieve quantum wave front control in materials.

  7. Efficient, Broadband and Wide-Angle Hot-Electron Transduction using Metal-Semiconductor Hyperbolic Metamaterials

    KAUST Repository

    Sakhdari, Maryam

    2016-05-20

    Hot-electron devices are emerging as promising candidates for the transduction of optical radiation into electrical current, as they enable photodetection and solar/infrared energy harvesting at sub-bandgap wavelengths. Nevertheless, poor photoconversion quantum yields and low bandwidth pose fundamental challenge to fascinating applications of hot-electron optoelectronics. Based on a novel hyperbolic metamaterial (HMM) structure, we theoretically propose a vertically-integrated hot-electron device that can efficiently couple plasmonic excitations into electron flows, with an external quantum efficiency approaching the physical limit. Further, this metamaterial-based device can have a broadband and omnidirectional response at infrared and visible wavelengths. We believe that these findings may shed some light on designing practical devices for energy-efficient photodetection and energy harvesting beyond the bandgap spectral limit.

  8. Liquid-phase catalytic reactor combined with measurement of hot electron flux and chemiluminescence

    Science.gov (United States)

    Nedrygailov, Ievgen I.; Lee, Changhwan; Moon, Song Yi; Lee, Hyosun; Park, Jeong Young

    2016-11-01

    Understanding the role of electronically nonadiabatic interactions during chemical reactions on metal surfaces in liquid media is of great importance for a variety of applications including catalysis, electrochemistry, and environmental science. Here, we report the design of an experimental apparatus for detection of the highly excited (hot) electrons created as a result of nonadiabatic energy transfer during the catalytic decomposition of hydrogen peroxide on thin-film metal-semiconductor nanodiodes. The apparatus enables the measurement of hot electron flows and related phenomena (e.g., surface chemiluminescence) as well as the corresponding reaction rates at different temperatures. The products of the chemical reaction can be characterized in the gaseous phase by means of gas chromatography. The combined measurement of hot electron flux, catalytic activity, and light emission can lead to a fundamental understanding of the elementary processes occurring during the heterogeneous catalytic reaction.

  9. Study of hot electrons generated from intense laser-plasma interaction employing Image Plate

    Institute of Scientific and Technical Information of China (English)

    LIANG WenXi; JIN Zhan; WEI ZhiYi; ZHAO Wei; LI YingJun; ZHANG Jie; LI YuTong; XU MiaoHua; YUAN XiaoHui; ZHENG ZhiYuan; ZHANG Yi; LIU Feng; WANG ZhaoHua; LI HanMing

    2008-01-01

    Image Plate (IP) is convenient to be used and very suitable for radiation detection because of its advantages such as wide dynamic range, high detective quantum efficiency, ultrahigh sensitivity and superior linearity. The function mechanism and characteristics of IP are introduced in this paper. IP was employed in the study of hot electrons generated from intense laser-plasma interaction. The angular distri-bution and energy spectrum of hot electrons were measured with IP in the experi-ments. The results demonstrate that IP is an effective radiation detector for the study of laser-plasma interaction.

  10. Study of hot electrons generated from intense laser-plasma interaction employing Image Plate

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Image Plate (IP) is convenient to be used and very suitable for radiation detection because of its advantages such as wide dynamic range, high detective quantum efficiency, ultrahigh sensitivity and superior linearity. The function mechanism and characteristics of IP are introduced in this paper. IP was employed in the study of hot electrons generated from intense laser-plasma interaction. The angular distri- bution and energy spectrum of hot electrons were measured with IP in the experi- ments. The results demonstrate that IP is an effective radiation detector for the study of laser-plasma interaction.

  11. All electron bolometer for radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Marnieros, S; Berge, L; Collin, S; Juillard, A; Marrache-Kikuchi, C A [CSNSM, CNRS-IN2P3, Paris 11 University, Orsay (France); Dumoulin, L; Benoit, A; Camus, P [CRTBT, CNRS, Grenoble (France)], E-mail: Stefanos.Marnieros@csnsm.in2p3.fr

    2009-02-01

    In order to measure the Cosmological Microwave Background (CMB), high performance 'bolometric cameras' similar to CCDs are currently developed. They are made out of thousands of pixels, each of which is a bolometer on its own. In order to meet the requirements for future CMB experiments - notably the measurement of the CMB B-mode polarization - the sensitivity of each pixel should be improved by one or two orders of magnitude compared to what now exists. Taking advantage of the solid-state properties of amorphous Nb{sub x}Si{sub 1-x} thin films, we here present a proposal for a new bolometer structure that would increase the pixels' sensitivity, its response time and allow a simplification of the fabrication process. In this resistive detector (that can be either high impedance or TES) the three functions of a classical bolometer (wave absorption, temperature measurement and thermal decoupling) are achieved in a single Nb{sub x}Si{sub 1-x} film. The frequency properties of this material allow the merger of the two first functions. The natural thermal decoupling between electrons and phonons at low temperature then makes it possible to use this single object as bolometer. This new type of detector solely uses the electronic properties of the Nb{sub x}Si{sub 1-x} thin films and is free of any phononic mediation of the energy.

  12. Multimode bolometer development for the PIXIE instrument

    Science.gov (United States)

    Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.

    2016-07-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polar- ization and absolute intensity of the cosmic microwave background. In the following, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With ˜ 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.

  13. Fabrication and Test of Large Area Spider-Web Bolometers for CMB Measurements

    Science.gov (United States)

    Biasotti, M.; Ceriale, V.; Corsini, D.; De Gerone, M.; Gatti, F.; Orlando, A.; Pizzigoni, G.

    2016-08-01

    Detecting the primordial 'B-mode' polarization of the cosmic microwave background is one of the major challenges of modern observational cosmology. Microwave telescopes need sensitive cryogenic bolometers with an overall equivalent noise temperature in the nK range. In this paper, we present the development status of large area (about 1 cm2) spider-web bolometer, which imply additional fabrication challenges. The spider-web is a suspended Si3N4 1 \\upmu m-thick and 8-mm diameter with mesh size of 250 \\upmu m. The thermal sensitive element is a superconducting transition edge sensor (TES) at the center of the bolometer. The first prototype is a Ti-Au TES with transition temperature tuned around 350 mK, new devices will be a Mo-Au bilayer tuned to have a transition temperature of 500 mK. We present the fabrication process with micro-machining techniques from silicon wafer covered with SiO2 - Si3N4 CVD films, 0.3 and 1 \\upmu m- thick, respectively, and preliminary tests.

  14. Origin of the spin-asymmetry of hot-electron transmission in Fe

    NARCIS (Netherlands)

    Banerjee, T.; Lodder, J.C.; Jansen, R.

    2007-01-01

    Using the technique of ballistic electron magnetic microscopy, we have studied the spin-asymmetry of transmission of hot electrons in Fe, for which a recent ab initio calculation has shown that the inelastic lifetime is similar for majority and minority spin. Nevertheless, using a spin-valve structu

  15. Operation of a novel hot-electron vertical-cavity surface-emitting laser

    Science.gov (United States)

    Balkan, Naci; O'Brien-Davies, Angela; Thoms, A. B.; Potter, Richard J.; Poolton, Nigel; Adams, Michael J.; Masum, J.; Bek, Alpan; Serpenguzel, Ali; Aydinli, Atilla; Roberts, John S.

    1998-07-01

    The hot Electron Light Emission and Lasing in Semiconductor Heterostructures devices (HELLISH-1) is novel surface emitter consisting of a GaAs quantum well, within the depletion region, on the n side of Ga1-xAlxAs p- n junction. It utilizes hot electron transport parallel to the layers and injection of hot electron hole pairs into the quantum well through a combination of mechanisms including tunnelling, thermionic emission and diffusion of `lucky' carriers. Super Radiant HELLISH-1 is an advanced structure incorporating a lower distributed Bragg reflector (DBR). Combined with the finite reflectivity of the upper semiconductor-air interface reflectivity it defines a quasi- resonant cavity enabling emission output from the top surface with a higher spectral purity. The output power has increased by two orders of magnitude and reduced the full width at half maximum (FWHM) to 20 nm. An upper DBR added to the structure defines HELLISH-VCSEL which is currently the first operational hot electron surface emitting laser and lases at room temperature with a 1.5 nm FWHM. In this work we demonstrate and compare the operation of UB-HELLISH-1 and HELLISH-VCSEL using experimental and theoretical reflectivity spectra over an extensive temperature range.

  16. Hot electrons injection in carbon nanotubes under the influence of quasi-static ac-field

    Science.gov (United States)

    Amekpewu, M.; Mensah, S. Y.; Musah, R.; Mensah, N. G.; Abukari, S. S.; Dompreh, K. A.

    2016-07-01

    The theory of hot electrons injection in carbon nanotubes (CNTs) where both dc electric field (Ez), and a quasi-static ac field exist simultaneously (i.e. when the frequency ω of ac field is much less than the scattering frequency v (ω ≪ v or ωτ ≪ 1, v =τ-1) where τ is relaxation time) is studied. The investigation is done theoretically by solving semi-classical Boltzmann transport equation with and without the presence of the hot electrons source to derive the current densities. Plots of the normalized current density versus dc field (Ez) applied along the axis of the CNTs in the presence and absence of hot electrons reveal ohmic conductivity initially and finally negative differential conductivity (NDC) provided ωτ ≪ 1 (i.e. quasi- static case). With strong enough axial injection of the hot electrons, there is a switch from NDC to positive differential conductivity (PDC) about Ez ≥ 75 kV / cm and Ez ≥ 140 kV / cm for a zigzag CNT and an armchair CNT respectively. Thus, the most important tough problem for NDC region which is the space charge instabilities can be suppressed due to the switch from the NDC behaviour to the PDC behaviour predicting a potential generation of terahertz radiations whose applications are relevance in current-day technology, industry, and research.

  17. Hot Electron Propagation and Imposed Magnetic Field in Inertial Fusion Hohlraums

    CERN Document Server

    Strozzi, D J; Marinak, M M; Larson, D J; Koning, J M; Logan, B G

    2015-01-01

    Simulations with the radiation-hydrodynamics code HYDRA of a low-adiabat ignition design for the National Ignition Facility (NIF), with and without an imposed axial magnetic field, are presented. We also study superthermal, or "hot," electron dynamics with the hybrid-PIC code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, when hot electrons from the window are a concern, we find ~2E-3 of the hot electron energy in a source consistent with two-plasmon decay (80 keV temperature) in the laser entrance hole deposits in the deuterium-tritium (DT) fuel, while most of the energy deposits in the high-Z wall. A 70 Tesla field, which may improve capsule performance, magnetizes hot electrons in the hohlraum fill gas, guides them to the capsule, and increases the DT deposition 12x. Early in peak laser power, electrons with >125 keV reach the DT fuel, and those with ~185 keV deposit the largest fraction of their energy (13%) in DT. HYDRA magnetohydrodynamics (MHD) simulations with an initial...

  18. Hot Electron Photoemission from Plasmonic Nanostructures: The Role of Surface Photoemission and Transition Absorption

    DEFF Research Database (Denmark)

    Babicheva, Viktoriia; Zhukovsky, Sergei; Ikhsanov, Renat Sh;

    2015-01-01

    We study mechanisms of photoemission of hot electrons from plasmonic nanoparticles. We analyze the contribution of "transition absorption", i.e., loss of energy of electrons passing through the boundary between different materials, to the surface mechanism of photoemission. We calculate photoemis...

  19. Characterization of the hot electron population with bremsstrahlung and backscatter measurements at the National Ignition Facility

    Science.gov (United States)

    Albert, Felicie; Hohenberger, Matthias; Michel, Pierre; Divol, Laurent; Doeppner, Tilo; Dewald, Edward; Bachmann, Benjamin; Ralph, Joseph; Turnbull, David; Goyon, Clement; Thomas, Cliff; Landen, Otto; Moody, John

    2016-10-01

    In indirect-drive ignition experiments, the hot electron population, produced by laser-plasma interactions, can be inferred from the bremsstrahlung generated by the interaction of the hot electrons with the target. At the National Ignition Facility (NIF), the upgraded filter-fluorescer x-ray diagnostic (FFLEX), a 10-channel, time-resolved hard x-ray spectrometer operating in the 20- to 500-keV range, provides measurements of the bremsstrahlung spectrum. It typically shows a two-temperature distribution of the hot electron population inside the hohlraum. In SRS, where the laser is coupled to an electron plasma wave, the backscattered spectrum, measured with the NIF full-aperture backscatter system (FABS), is used to infer the plasma wave phase velocity. We will present FFLEX time-integrated and time-resolved measurements of the hot electron population low-temperature component. We will correlate them with electron plasma wave phase velocities inferred from FABS spectra for a range of recent shots performed at the National Ignition Facility. This work was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Modification of the Absorption Edge of GaAs Arising from Hot-Electron Effects

    DEFF Research Database (Denmark)

    McGroddy, J. C.; Christensen, Ove

    1973-01-01

    We have observed a large enhancement of the electric-field-induced optical absorption arising from hot-electron effects in n-type GaAs at 77 K. The magnitude and field dependence of the enhancement can be approximately accounted for by a theory attributing the effect to broadening of the final st...

  1. A hot electron-hole pair breaks the symmetry of a semiconductor quantum dot.

    Science.gov (United States)

    Trinh, M Tuan; Sfeir, Matthew Y; Choi, Joshua J; Owen, Jonathan S; Zhu, Xiaoyang

    2013-01-01

    The best-understood property of semiconductor quantum dots (QDs) is the size-dependent optical transition energies due to the quantization of charge carriers near the band edges. In contrast, much less is known about the nature of hot electron-hole pairs resulting from optical excitation significantly above the bandgap. Here, we show a transient Stark effect imposed by a hot electron-hole pair on optical transitions in PbSe QDs. The hot electron-hole pair does not behave as an exciton, but more bulk-like as independent carriers, resulting in a transient and varying dipole moment which breaks the symmetry of the QD. As a result, we observe redistribution of optical transition strength to dipole forbidden transitions and the broadening of dipole-allowed transitions during the picosecond lifetime of the hot carriers. The magnitude of symmetry breaking scales with the amount of excess energy of the hot carriers, diminishes as the hot carriers cool down and disappears as the hot electron-hole pair becomes an exciton. Such a transient Stark effect should be of general significance to the understanding of QD photophysics above the bandgap.

  2. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation

    DEFF Research Database (Denmark)

    Lu, Yuhua; Dong, Wen; Chen, Zhuo;

    2016-01-01

    within the whole visible region. We show that the Au-NPs/TiO2/Au-film device can take advantage of such strong and broadband light absorption to enhance the generation of hot electrons and thus the photocurrent under visible irradiation. As compared to conventional plasmonic photocatalysts such as Au...

  3. Measurement of Hot Electron Spectrum During the Interaction of Ultrashort Pulse UV Laser With Solid Target

    Institute of Scientific and Technical Information of China (English)

    LIYe-jun; SHANYu-sheng; ZHANGJi; ZHANGHai-feng; TANGXiu-zhang; WANGLei-jian

    2003-01-01

    The hot electron spectrum was measured using electron magnetic spectrometer through the irradiation of solid Cu target by an intense, UV (248 nm) femtosecond (440 fs) laser pulse with free pre-pulse, and the intensity of laser is 1017 W/cm2. We find the electron spectrum presents two temperatures Maxwellian distribution.

  4. Generation and Beaming of Early Hot Electrons onto the Capsule in Laser-Driven Ignition Hohlraums

    Science.gov (United States)

    Dewald, E. L.; Hartemann, F.; Michel, P.; Milovich, J.; Hohenberger, M.; Pak, A.; Landen, O. L.; Divol, L.; Robey, H. F.; Hurricane, O. A.; Döppner, T.; Albert, F.; Bachmann, B.; Meezan, N. B.; MacKinnon, A. J.; Callahan, D.; Edwards, M. J.

    2016-02-01

    In hohlraums for inertial confinement fusion (ICF) implosions on the National Ignition Facility, suprathermal hot electrons, generated by laser plasma instabilities early in the laser pulse ("picket") while blowing down the laser entrance hole (LEH) windows, can preheat the capsule fuel. Hard x-ray imaging of a Bi capsule surrogate and of the hohlraum emissions, in conjunction with the measurement of time-resolved bremsstrahlung spectra, allows us to uncover for the first time the directionality of these hot electrons and infer the capsule preheat. Data and Monte Carlo calculations indicate that for most experiments the hot electrons are emitted nearly isotropically from the LEH. However, we have found cases where a significant fraction of the generated electrons are emitted in a collimated beam directly towards the capsule poles, where their local energy deposition is up to 10 × higher than the average preheat value and acceptable levels for ICF implosions. The observed "beaming" is consistent with a recently unveiled multibeam stimulated Raman scattering model [P. Michel et al., Phys. Rev. Lett. 115, 055003 (2015)], where laser beams in a cone drive a common plasma wave on axis. Finally, we demonstrate that we can control the amount of generated hot electrons by changing the laser pulse shape and hohlraum plasma.

  5. Experimental observations of the characteristics of hot electron and nonlinear processes produced in special material

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Making use of disk targets composed of several peculiar materials (foam Au, foam C8H8)and hohlraum with a special structure, experiments have been done at"Xing Guang - II" laser facility,which study the characteristics of hot electrons and therelated nonlinear processes such as StimulatedRaman Scattering (SRS), Two Plasma Decay (TPD), StimulatedBrillouin Scattering (SBS), etc.

  6. Hot electron generation and energy coupling in planar experiments with shock ignition high intensity lasers

    Science.gov (United States)

    Wei, M. S.; Krauland, C.; Alexander, N.; Zhang, S.; Peebles, J.; Beg, F. N.; Theobald, W.; Borwick, E.; Ren, C.; Yan, R.; Haberberger, D.; Betti, R.; Campbell, E. M.

    2016-10-01

    Hot electrons produced in nonlinear laser plasma interactions are critical issues for shock ignition (SI) laser fusion. We conducted planar target experiments to characterize hot electron and energy coupling using the high energy OMEGA EP laser system at SI high intensities. Targets were multilayered foils consisting of an ablator (either plastic or lithium) and a Cu layer to facilitate hot electron detection via fluorescence and bremsstrahlung measurements. The target was first irradiated by multi-kJ, low-intensity UV beams to produce a SI-relevant mm-scale hot ( 1 keV) preformed plasma. The main interaction pulse, either a kJ 1-ns UV pulse with intensity 1.6x1016 Wcm-2 or a kJ 0.1-ns IR pulse with intensity up to 2x1017 Wcm-2was injected at varied timing delays. The high intensity IR beam was found to strongly interact with underdense plasmas breaking into many filaments near the quarter critical density region followed by propagation of those filaments to critical density, producing hot electrons with Thot 70 keV in a well-contained beam. While the high intensity UV beam showed poor energy coupling. Details of the experiments and the complementary PIC modeling results will be presented. Work supported by U.S. DOE under contracts DE-NA0002730 (NLUF) and DE-SC0014666 (HEDLP).

  7. Application of Micro-channel Plate (MCP) in Magnetic Spectra Meter of Hot Electrons

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The interaction between ultra-short pulse laser and solid target generates hot electrons. Owing to lowenergy of laser (10 J), there are not so many electrons. In order to improve resoling power of spectra meter,the solid angle of spectra meter must be very little. So the number of entering into the meter is very few.

  8. Bistable hot electron transport in InP/GaInAs composite collector heterojunction bipolar transistors

    Science.gov (United States)

    Ritter, D.; Hamm, R. A.; Feygenson, A.; Temkin, H.; Panish, M. B.; Chandrasekhar, S.

    1992-07-01

    The transport mechanism of electrons across an energy barrier in the collector of a heterojunction bipolar transistor is studied and identified as hot electron thermionic emission. Bistability between tunneling and thermionic emission was observed at 77 K and room temperature. The bistability can be suppressed by n-type doping of the heterointerface vicinity.

  9. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  10. The large APEX bolometer camera LABOCA

    Science.gov (United States)

    Siringo, Giorgio; Kreysa, Ernst; Kovacs, Attila; Schuller, Frederic; Weiß, Axel; Esch, Walter; Gemünd, Hans-Peter; Jethava, Nikhil; Lundershausen, Gundula; Güsten, Rolf; Menten, Karl M.; Beelen, Alexandre; Bertoldi, Frank; Beeman, Jeffrey W.; Haller, Eugene E.; Colin, Angel

    2008-07-01

    A new facility instrument, the Large APEX Bolometer Camera (LABOCA), developed by the Max-Planck-Institut für Radioastronomie (MPIfR, Bonn, Germany), has been commissioned in May 2007 for operation on the Atacama Pathfinder Experiment telescope (APEX), a 12 m submillimeter radio telescope located at 5100 m altitude on Llano de Chajnantor in northern Chile. For mapping, this 295-bolometer camera for the 870 micron atmospheric window operates in total power mode without wobbling the secondary mirror. One LABOCA beam is 19 arcsec FWHM and the field of view of the complete array covers 100 square arcmin. Combined with the high efficiency of APEX and the excellent atmospheric transmission at the site, LABOCA offers unprecedented capability in large scale mapping of submillimeter continuum emission. Details of design and operation are presented.

  11. Fast Resonance Frequency Modulation in Superconducting Stripline Resonator

    OpenAIRE

    Segev, Eran; Abdo, Baleegh; Shtempluck, Oleg; Buks, Eyal

    2006-01-01

    Fast resonance frequency modulation of a superconducting stripline resonator is investigated. The experiments are performed using a novel device which integrates a hot electron detector (HED) into a superconducting stripline ring resonator. Frequency modulation is demonstrated by both applying dc current or voltage to the HED, and by applying optical illumination, with modulation frequencies of up to 4.2GHz. Potential applications for such a device are in telecommunication, quantum cryptograp...

  12. A 65 nm CMOS LNA for Bolometer Application

    Science.gov (United States)

    Huang, Tom Nan; Boon, Chirn Chye; Zhu, Forest Xi; Yi, Xiang; He, Xiaofeng; Feng, Guangyin; Lim, Wei Meng; Liu, Bei

    2016-04-01

    Modern bolometers generally consist of large-scale arrays of detectors. Implemented in conventional technologies, such bolometer arrays suffer from integrability and productivity issues. Recently, the development of CMOS technologies has presented an opportunity for the massive production of high-performance and highly integrated bolometers. This paper presents a 65-nm CMOS LNA designed for a millimeter-wave bolometer's pre-amplification stage. By properly applying some positive feedback, the noise figure of the proposed LNA is minimized at under 6 dB and the bandwidth is extended to 30 GHz.

  13. AC Read-Out Circuits for Single Pixel Characterization of TES Microcalorimeters and Bolometers

    Science.gov (United States)

    Gottardi, L.; van de Kuur, J.; Bandler, S.; Bruijn, M.; de Korte, P.; Gao, J. R.; den Hartog, R.; Hijmering, R. A.; Hoevers, H.; Koshropanah, P.; Kilbourne, C.; Lindemann, M. A.; Parra Borderias, M.; Ridder, M.

    2011-01-01

    SRON is developing Frequency Domain Multiplexing (FDM) for the read-out of transition edge sensor (TES) soft x-ray microcalorimeters for the XMS instrument of the International X-ray Observatory and far-infrared bolometers for the SAFARI instrument on the Japanese mission SPICA. In FDM the TESs are AC voltage biased at frequencies from 0.5 to 6 MHz in a superconducting LC resonant circuit and the signal is read-out by low noise and high dynamic range SQUIDs amplifiers. The TES works as an amplitude modulator. We report on several AC bias experiments performed on different detectors. In particular, we discuss the results on the characterization of Goddard Space Flight Center x-ray pixels and SRON bolometers. The paper focuses on the analysis of different read-out configurations developed to optimize the noise and the impedance matching between the detectors and the SQUID amplifier. A novel feedback network electronics has been developed to keep the SQUID in flux locked loop, when coupled to superconducting high Q circuits, and to optimally tune the resonant bias circuit. The achieved detector performances are discussed in view of the instrument requirement for the two space missions.

  14. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  15. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  16. Controlling hot electrons by wave amplification and decay in compressing plasma.

    Science.gov (United States)

    Schmit, P F; Dodin, I Y; Fisch, N J

    2010-10-22

    Through particle-in-cell simulations, it is demonstrated that a part of the mechanical energy of compressing plasma can be controllably transferred to hot electrons by preseeding the plasma with a Langmuir wave that is compressed together with the medium. Initially, a wave is undamped, so it is amplified under compression due to plasmon conservation. Later, as the phase velocity also changes under compression, Landau damping can be induced at a predetermined instant of time. Then the wave energy is transferred to hot electrons, shaping the particle distribution over a controllable velocity interval, which is wider than that in stationary plasma. For multiple excited modes, the transition between the adiabatic amplification and the damping occurs at different moments; thus, individual modes can deposit their energy independently, each at its own prescribed time.

  17. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals

    CERN Document Server

    Brown, Ana M; Narang, Prineha; Goddard, William A; Atwater, Harry A

    2016-01-01

    Ultrafast laser measurements probe the non-equilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semi-empirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously-neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phon...

  18. Hot-Electron Degradation of Gallium Arsenide Metal-Semiconductor Field-Effect Transistors.

    Science.gov (United States)

    Tkachenko, Yevgeniy A.

    1995-01-01

    The physical mechanism of gradual degradation of GaAs MESFETs during RF overdrive is investigated in detail. A hot-electron effect was found responsible for this so-called "power slump" problem. Hot electrons produced by a large drain-gate voltage swing, tunnel from the MESFET channel and get trapped in SiN. These trapped electrons (i) increase surface depletion, hence reduce maximum channel current, transconductance and transistor gain, (ii) increase knee voltage through an increase in series channel resistance, (iii) relax gate-drain field distribution, thereby suppressing avalanche breakdown, (iv) decrease gate-drain capacitance, hence rm S_{22} under open-channel condition, and (v) increase surface leakage through trap hopping in SiN. The damage to SiN can only be partially recovered by deep UV illumination or 200^circrm C anneal. The evidence supports that trapping occurs in the bulk SiN, instead of at the GaAs/SiN interface. The possible chemical reaction responsible for this trap formation is breaking of the Si-H bond in SiN. An analytical theory of hot-electron effects, which combines hot-electron trapping with gate-drain breakdown and pinched-channel electro-luminescence, was developed and verified using experimental data and numerical simulations. Based on this theory, the rate of hot electron trapping was obtained and the threshold energy for trap formation was determined. The square-root time dependence given by the theory and the threshold energy of 1.9 eV were found consistent with gate current and electro-luminescence measurements. Numerical analysis was consistent with a trap density of the order of 5times10^{12}/rm cm^2 over a distance of approximately 0.1 murm m from the gate toward the drain, and it predicted the experimentally observed open-channel current reduction and gate-drain field relaxation. The spatial distribution of trapped electrons was directly observed by a novel high-voltage electron-beam-induced -current imaging technique. It

  19. Transport of high intensity laser-generated hot electrons in cone coupled wire targets

    Science.gov (United States)

    Beg, Farhat

    2008-04-01

    In this talk, we present results from a series of experiments where cone-wire targets were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Experiments were performed on the petawatt laser at the Rutherford Appleton Laboratory. A 500J, 1ps laser (I ˜ 4 x 10^20 W/cm-2) was focused by an f/3 off-axis parabolic mirror into hollow aluminum cones joined at their tip to Cu wires of diameters from 10 to 40 μm. The three main diagnostics fielded were a copper Kalpha Bragg crystal imager, a single hit CCD camera spectrometer and a Highly Oriented Pyrolytic Graphite (HOPG) spectrometer. The resulting data were cross-calibrated to obtain the absolute Kalpha yield. Comparison of the axially diminishing absolute Cu Kα intensity with modeling shows that the penetration of the hot electrons is consistent with one dimensional ohmic potential limited transport (1/e length ˜ 100 μm). The laser coupling efficiency to electron energy within the wire is shown to be proportional to the cross sectional area of the wire, reaching 15% for 40 μm wires. We find that the hot electron temperature within the wire was <=750 keV, significantly lower than that predicted by the ponderomotive scaling. A comparison of the experimental results with 2D hybrid PIC simulations using e-PLAS code will be presented and relevance to Fast Ignition will be discussed at the meeting. *In collaboration with J.A. King, M.H. Key, K.U. Akli, R.R. Freeman, J. Green, S. P. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, T. Ma, A.J. MacKinnon, A. MacPhee, R. Mason, P.A. Norreys, P.K Patel, T. Phillips, R. Stephens, W. Theobald, R.P.J. Town, M. Wei, L. Van Woerkom, B. Zhang.

  20. Top Hat HELLISH (Hot electron light emitting and lasing in heterostructures)

    CERN Document Server

    Wah, J Y

    2003-01-01

    Hot electron light emitting and lasing in semiconductor heterostructures (HELLISH) is a longitudinal transport structure comprising of a GaAs Quantum Well within an Al sub x Ga sub 1 sub - sub x As pn junction. The light emission from the HELLISH device was previously believed to be merely due to hot electron effects. In the current work, we showed, however, that the device can be operated even at low applied electric fields where the hot electron effects are essentially negligible. Thus, a novel model for operation with the new concept of 'quasi-flatband condition' is introduced. In order to investigate new functionalities of the HELLISH devices, a new structure with longer p-channel, nicknamed Top Hat HELLISH (THH), is also fabricated and demonstrated. In terms of the energy band profile, the HELLISH device has a monotonic build-in potential barrier along the heterojunction. The operation is through tilting the bands and hence allowing carrier diffusion into the active region under the quasi-flatband condit...

  1. Surface-plasmon enhanced photodetection at communication band based on hot electrons

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kai; Zhan, Yaohui, E-mail: yhzhan@suda.edu.cn, E-mail: xfli@suda.edu.cn; Wu, Shaolong; Deng, Jiajia; Li, Xiaofeng, E-mail: yhzhan@suda.edu.cn, E-mail: xfli@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China and Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China)

    2015-08-14

    Surface plasmons can squeeze light into a deep-subwavelength space and generate abundant hot electrons in the nearby metallic regions, enabling a new paradigm of photoconversion by the way of hot electron collection. Unlike the visible spectral range concerned in previous literatures, we focus on the communication band and design the infrared hot-electron photodetectors with plasmonic metal-insulator-metal configuration by using full-wave finite-element method. Titanium dioxide-silver Schottky interface is employed to boost the low-energy infrared photodetection. The photodetection sensitivity is strongly improved by enhancing the plasmonic excitation from a rationally engineered metallic grating, which enables a strong unidirectional photocurrent. With a five-step electrical simulation, the optimized device exhibits an unbiased responsivity of ∼0.1 mA/W and an ultra-narrow response band (FWHM = 4.66 meV), which promises to be a candidate as the compact photodetector operating in communication band.

  2. Direct Measurements of Hot-Electron Preheat in Inertial Confinement Fusion

    Science.gov (United States)

    Christopherson, A. R.; Betti, R.; Howard, J.; Bose, A.; Forrest, C. J.; Theobald, W.; Campbell, E. M.; Delettrez, J. A.; Stoeckl, C.; Edgell, D. H.; Seka, W.; Davis, A. K.; Michel, D. T.; Glebov, V. Yu.; Wei, M. S.

    2016-10-01

    In laser-driven inertial confinement fusion, a spherical capsule of cryogenic DT with a low- Z (CH, Be) ablator is accelerated inward on low entropy to achieve high hot-spot pressures at stagnation with minimal driver energy. Hot electrons generated from laser-plasma instabilities can compromise this performance by preheating the DT fuel, which results in early decompression of the imploding shell and lower hot-spot pressures. The hot-electron energy deposited into the DT for direct-drive implosions is routinely inferred by subtracting hard x-ray signals between a cryogenic implosion and its mass-equivalent, all-CH implosion. However, this technique does not measure the energy deposited into the unablated DT, which fundamentally determines the final degradation in hot-spot pressure. In this work, we report on experiments conducted with high- Z payloads of varying thicknesses to determine the hot-electron energy deposited into a payload that is mass equivalent to the amount of unablated DT present in typical DT layered implosions on OMEGA. These are the first measurements to directly probe the effect of preheat on performance degradation. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  3. Measurements of hot electrons in the Extrap T1 reversed-field pinch

    Science.gov (United States)

    Welander, A.; Bergsåker, H.

    1998-02-01

    The presence of an anisotropic energetic electron population in the edge region is a characteristic feature of reversed-field pinch (RFP) plasmas. In the Extrap T1 RFP, the anisotropic, parallel heat flux in the edge region measured by calorimetry was typically several hundred 0741-3335/40/2/011/img1. To gain more insight into the origin of the hot electron component and to achieve time resolution of the hot electron flow during the discharge, a target probe with a soft x-ray monitor was designed, calibrated and implemented. The x-ray emission from the target was measured with a surface barrier detector covered with a set of different x-ray filters to achieve energy resolution. A calibration in the range 0.5-2 keV electron energy was performed on the same target and detector assembly using a 0741-3335/40/2/011/img2 cathode electron gun. The calibration data are interpolated and extrapolated numerically. A directional asymmetry of more than a factor of 100 for the higher energy electrons is observed. The hot electrons are estimated to constitute 10% of the total electron density at the edge and their energy distribution is approximated by a half-Maxwellian with a temperature slightly higher than the central electron temperature. Scalings with plasma current, as well as correlations with local 0741-3335/40/2/011/img3 measurements and radial dependences, are presented.

  4. Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well

    Directory of Open Access Journals (Sweden)

    H. J. Huang

    2015-11-01

    Full Text Available The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC, or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.

  5. Imposed magnetic field and hot electron propagation in inertial fusion hohlraums

    Science.gov (United States)

    Strozzi, David J.; Perkins, L. J.; Marinak, M. M.; Larson, D. J.; Koning, J. M.; Logan, B. G.

    2015-12-01

    > . The field's main hydrodynamic effect is to significantly reduce electron thermal conduction perpendicular to the field. This results in hotter and less dense plasma on the equator between the capsule and hohlraum wall. The inner laser beams experience less inverse bremsstrahlung absorption before reaching the wall. The X-ray drive is thus stronger from the equator with the imposed field. We study superthermal, or `hot', electron dynamics with the particle-in-cell code ZUMA, using plasma conditions from HYDRA. During the early-time laser picket, hot electrons based on two-plasmon decay in the laser entrance hole (Regan et al., Phys. Plasmas, vol. 17(2), 2010, 020703) are guided to the capsule by a 70 T field. Twelve times more energy deposits in the deuterium-tritium fuel. For plasma conditions early in peak laser power, we present mono-energetic test-case studies with ZUMA as well as sources based on inner-beam stimulated Raman scattering. The effect of the field on deuterium-tritium deposition depends strongly on the source location, namely whether hot electrons are generated on field lines that connect to the capsule.

  6. Plasmonic photocatalytic reactions enhanced by hot electrons in a one-dimensional quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H. J., E-mail: hjhuang@narlabs.org.tw, E-mail: hhjhuangkimo@gmail.com; Liu, B. H.; Lin, C. T. [Instrument Technology Research Center, National Applied Research Laboratories, Hsinchu, 300, Taiwan (China); Su, W. S. [National Center for High-performance Computing, Hsinchu 300, Taiwan and Department of Physics, National Chung Hsing University, Taichung 402, Taiwan (China)

    2015-11-15

    The plasmonic endothermic oxidation of ammonium ions in a spinning disk reactor resulted in light energy transformation through quantum hot charge carriers (QHC), or quantum hot electrons, during a chemical reaction. It is demonstrated with a simple model that light of various intensities enhance the chemical oxidization of ammonium ions in water. It was further observed that light illumination, which induces the formation of plasmons on a platinum (Pt) thin film, provided higher processing efficiency compared with the reaction on a bare glass disk. These induced plasmons generate quantum hot electrons with increasing momentum and energy in the one-dimensional quantum well of a Pt thin film. The energy carried by the quantum hot electrons provided the energy needed to catalyze the chemical reaction. The results indicate that one-dimensional confinement in spherical coordinates (i.e., nanoparticles) is not necessary to provide an extra excited state for QHC generation; an 8 nm Pt thin film for one-dimensional confinement in Cartesian coordinates can also provide the extra excited state for the generation of QHC.

  7. High-Current Gain Two-Dimensional MoS 2 -Base Hot-Electron Transistors

    KAUST Repository

    Torres, Carlos M.

    2015-12-09

    The vertical transport of nonequilibrium charge carriers through semiconductor heterostructures has led to milestones in electronics with the development of the hot-electron transistor. Recently, significant advances have been made with atomically sharp heterostructures implementing various two-dimensional materials. Although graphene-base hot-electron transistors show great promise for electronic switching at high frequencies, they are limited by their low current gain. Here we show that, by choosing MoS2 and HfO2 for the filter barrier interface and using a noncrystalline semiconductor such as ITO for the collector, we can achieve an unprecedentedly high-current gain (α ∼ 0.95) in our hot-electron transistors operating at room temperature. Furthermore, the current gain can be tuned over 2 orders of magnitude with the collector-base voltage albeit this feature currently presents a drawback in the transistor performance metrics such as poor output resistance and poor intrinsic voltage gain. We anticipate our transistors will pave the way toward the realization of novel flexible 2D material-based high-density, low-energy, and high-frequency hot-carrier electronic applications. © 2015 American Chemical Society.

  8. Neutron-transmutation-doped germanium bolometers

    Science.gov (United States)

    Palaio, N. P.; Rodder, M.; Haller, E. E.; Kreysa, E.

    1983-01-01

    Six slices of ultra-pure germanium were irradiated with thermal neutron fluences between 7.5 x 10 to the 16th and 1.88 x 10 to the 18th per sq cm. After thermal annealing the resistivity was measured down to low temperatures (less than 4.2 K) and found to follow the relationship rho = rho sub 0 exp(Delta/T) in the hopping conduction regime. Also, several junction FETs were tested for noise performance at room temperature and in an insulating housing in a 4.2 K cryostat. These FETs will be used as first stage amplifiers for neutron-transmutation-doped germanium bolometers.

  9. Metallic magnetic bolometers for particle detection

    Energy Technology Data Exchange (ETDEWEB)

    Bandler, S.R.; Enss, C.; Lanou, R.E.; Maris, H.J.; More, T.; Porter, F.S.; Seidel, G.M. (Brown Univ., Providence, RI (United States))

    1993-11-01

    The magnetization of localized spins in metals is discussed as a sensor for the low temperature calorimetric detection of particles. The magnetization of localized paramagnetic ions in metals can be used as a very sensitive sensor for the calorimetric detection of particles at low temperatures. The strong coupling of the localized spins to the conduction electrons results in very fast thermal equilibration between the two systems. Even though the concentration of spins must be kept small in metals to avoid spin-spin coupling by indirect exchange, the metallic magnetic bolometer can achieve very high sensitivities. In general, the sensitivity increases very rapidly with decreasing temperature.

  10. Measurement of the relaxation time of hot electrons in laser-solid interaction at relativistic laser intensities

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Shepherd, R; Chung, H K; Dyer, G; Faenov, A; Fournier, K B; Hansen, S B; Hunter, J; Kemp, A; Pikuz, T; Ping, Y; Widmann, K; Wilks, S C; Beiersdorfer, P

    2006-08-22

    The authors have measured the relaxation time of hot electrons in short pulse laser-solid interactions using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. Employing laser intensities of 10{sup 17}, 10{sup 18}, and 10{sup 19} W/cm{sup 2}, they find increased laser coupling to hot electrons as the laser intensity becomes relativistic and thermalization of hot electrons at timescales on the order of 10 ps at all laser intensities. They propose a simple model based on collisional coupling and plasma expansion to describe the rapid relaxation of hot electrons. The agreement between the resulting K{sub {alpha}} time-history from this model with the experiments is best at highest laser intensity and less satisfactory at the two lower laser intensities.

  11. Electrogenerated chemiluminescence induced by sequential hot electron and hole injection into aqueous electrolyte solution

    Energy Technology Data Exchange (ETDEWEB)

    Salminen, Kalle; Kuosmanen, Päivi; Pusa, Matti [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kulmala, Oskari [University of Helsinki, Department of Physics, P.O. Box 64, FI-00014 (Finland); Håkansson, Markus [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Kulmala, Sakari, E-mail: sakari.kulmala@aalto.fi [Aalto University, Department of Chemistry, Laboratory of Analytical Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland)

    2016-03-17

    Hole injection into aqueous electrolyte solution is proposed to occur when oxide-coated aluminum electrode is anodically pulse-polarized by a voltage pulse train containing sufficiently high-voltage anodic pulses. The effects of anodic pulses are studied by using an aromatic Tb(III) chelate as a probe known to produce intensive hot electron-induced electrochemiluminescence (HECL) with plain cathodic pulses and preoxidized electrodes. The presently studied system allows injection of hot electrons and holes successively into aqueous electrolyte solutions and can be utilized in detecting electrochemiluminescent labels in fully aqueous solutions, and actually, the system is suggested to be quite close to a pulse radiolysis system providing hydrated electrons and hydroxyl radicals as the primary radicals in aqueous solution without the problems and hazards of ionizing radiation. The analytical power of the present excitation waveforms are that they allow detection of electrochemiluminescent labels at very low detection limits in bioaffinity assays such as in immunoassays or DNA probe assays. The two important properties of the present waveforms are: (i) they provide in situ oxidation of the electrode surface resulting in the desired oxide film thickness and (ii) they can provide one-electron oxidants for the system by hole injection either via F- and F{sup +}-center band of the oxide or by direct hole injection to valence band of water at highly anodic pulse amplitudes. - Highlights: • Hot electrons injected into aqueous electrolyte solution. • Generation of hydrated electrons. • Hole injection into aqueous electrolyte solution. • Generation of hydroxyl radicals.

  12. Observation of Hot Electrons in Surface-Wave Plasmas Excited by Surface Plasmon Polaritons

    Institute of Scientific and Technical Information of China (English)

    HU Ye-Lin; CHEN Zhao-Quan; LIU Ming-Hai; HONG Ling-Li; LI Ping; ZHENG Xiao-Liang; XIA Guang-Qing; HU Xi-Wei

    2011-01-01

    The electron energy distribution functions (EEDFs) are studied in the planar-type surface-wave plasma (SWP)caused by resonant excitation of surface plasmon polaritons (SPPs) using a single cylindrical probe.Sustained plasma characteristics can be considered as a bi-Maxwellian EEDF,which correspond to a superposition of the bulk low-temperature electron and the high-energy electron beam-like part.The beam component energy is pronounced at about 10eV but the bulk part is lower than 3.5eV.The hot electrons included in the proposed plasmas play a significant role in plasma heating and further affect the discharge chemistry.During the past several years,in the fabrication ofamorphous or crystalline silicon films,diamond film synthesis and carbon nanotube growth,the large-area overdense plasma source has been useful.In electronic device fabrication techniques such as etching,ashing or plasma chemical vapor deposition,overdense electrons and radicals are required,especially hot electrons.Among the various plasma devices,the planar-type surface-wave plasma (SWP) source is an advanced plasma source,which is a type of promising plasma source satisfying the above rigorous requirements for large-area plasma processing.%The electron energy distribution functions (EEDFs) are studied in the planar-type surface-wave plasma (SWP) caused by resonant excitation of surface plasmon polaritons (SPPs) using a single cylindrical probe. Sustained plasma characteristics can be considered as a bi-Maxwellian EEDF, which correspond to a superposition of the bulk low-temperature electron and the high-energy electron beam-like part. The beam component energy is pronounced at about 10 eV but the bulk part is lower than 3.5 eV. The hot electrons included in the proposed plasmas play a significant role in plasma heating and further affect the discharge chemistry.

  13. Effect of laser wavelength and intensity on the divergence of hot electrons in fast ignition

    Science.gov (United States)

    Li, Boyuan; Tian, Chao; Zhang, Zhimeng; Zhang, Feng; Shan, Lianqiang; Zhang, Bo; Zhou, Weimin; Zhang, Baohan; Gu, Yuqiu

    2016-09-01

    Recently, the short wavelength laser is believed to have a promising prospect in fast ignition for reducing the conflict between laser energy requirement and electron stopping range. Here we investigate the influence of laser wavelength and intensity in the angular dispersion of hot electrons. Both our theoretical model and numerical simulations show that the angular dispersion would increase rapidly with the shortening of laser wavelength due to the Weibel instability, while the laser intensity has little effect on it. These results have important implications for fast ignition.

  14. Modeling Hot-Electron Measurements in Multibeam Two-Plasmon-Decay Experiments

    Science.gov (United States)

    Follett, R. K.; Edgell, D. H.; Henchen, R. J.; Hu, S. X.; Katz, J.; Michel, D. T.; Myatt, J. F.; Shaw, J. G.; Solodov, A. A.; Yaakobi, B.; Froula, D. H.

    2015-11-01

    Many-beam laser facilities introduce laser-plasma interactions where multiple beams can couple to common daughter waves. Recent theory, modeling, and experiments have suggested that multiple laser beams can drive the two-plasmon-decay (TPD) instability through common electron plasma waves. Experiments and modeling suggest that these waves lead to turbulence and the acceleration of electrons to high energies. Experiments on OMEGA used ultraviolet Thomson scattering to observe TPD-driven electron plasma waves and hard x-ray detectors to infer the corresponding hot-electron production. The experiments were modeled in 3-D using a hybrid code (LPSE) that combines a pseudospectral wave solver for calculating the bulk fluid behavior with a particle tracker for calculating nonlinear Landau damping. Detailed comparison of both the hot-electron generation and the turbulent electron plasma wave spectrum are in excellent agreement with the experimental measurements. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  15. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation

    Science.gov (United States)

    Lu, Yuhua; Dong, Wen; Chen, Zhuo; Pors, Anders; Wang, Zhenlin; Bozhevolnyi, Sergey I.

    2016-07-01

    Plasmonic hot-electron generation has recently come into focus as a new scheme for solar energy conversion. So far, however, due to the relatively narrow bandwidth of the surface plasmon resonances and the insufficient resonant light absorption, most of plasmonic photocatalysts show narrow-band spectral responsivities and small solar energy conversion efficiencies. Here we experimentally demonstrate that a three-layered nanostructure, consisting of a monolayer gold-nanoparticles and a gold film separated by a TiO2 gap layer (Au-NPs/TiO2/Au-film), is capable of near-completely absorbing light within the whole visible region. We show that the Au-NPs/TiO2/Au-film device can take advantage of such strong and broadband light absorption to enhance the generation of hot electrons and thus the photocurrent under visible irradiation. As compared to conventional plasmonic photocatalysts such as Au-NPs/TiO2 nanostructures, a 5-fold-enhanced incident photon-to-current conversion efficiency is achieved within the entire wavelength range 450–850 nm in the Au-NPs/TiO2/Au-film device. Simulations show good agreements with the experimental results, demonstrating that only the plasmon-induced losses contribute to the enhanced photocurrent generation of the Au-NPs/TiO2/Au-film device.

  16. Hot electron field emission via individually transistor-ballasted carbon nanotube arrays.

    Science.gov (United States)

    Li, Chi; Zhang, Yan; Cole, Matthew T; Shivareddy, Sai G; Barnard, Jon S; Lei, Wei; Wang, Baoping; Pribat, Didier; Amaratunga, Gehan A J; Milne, William I

    2012-04-24

    We present electronically controlled field emission characteristics of arrays of individually ballasted carbon nanotubes synthesized by plasma-enhanced chemical vapor deposition on silicon-on-insulator substrates. By adjusting the source-drain potential we have demonstrated the ability to controllable limit the emission current density by more than 1 order of magnitude. Dynamic control over both the turn-on electric field and field enhancement factor have been noted. A hot electron model is presented. The ballasted nanotubes are populated with hot electrons due to the highly crystalline Si channel and the high local electric field at the nanotube base. This positively shifts the Fermi level and results in a broad energy distribution about this mean, compared to the narrow spread, lower energy thermalized electron population in standard metallic emitters. The proposed vertically aligned carbon nanotube field-emitting electron source offers a viable platform for X-ray emitters and displays applications that require accurate and highly stable control over the emission characteristics.

  17. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals

    Science.gov (United States)

    Brown, Ana M.; Sundararaman, Ravishankar; Narang, Prineha; Goddard, William A.; Atwater, Harry A.

    2016-08-01

    Ultrafast laser measurements probe the nonequilibrium dynamics of excited electrons in metals with increasing temporal resolution. Electronic structure calculations can provide a detailed microscopic understanding of hot electron dynamics, but a parameter-free description of pump-probe measurements has not yet been possible, despite intensive research, because of the phenomenological treatment of electron-phonon interactions. We present ab initio predictions of the electron-temperature dependent heat capacities and electron-phonon coupling coefficients of plasmonic metals. We find substantial differences from free-electron and semiempirical estimates, especially in noble metals above transient electron temperatures of 2000 K, because of the previously neglected strong dependence of electron-phonon matrix elements on electron energy. We also present first-principles calculations of the electron-temperature dependent dielectric response of hot electrons in plasmonic metals, including direct interband and phonon-assisted intraband transitions, facilitating complete theoretical predictions of the time-resolved optical probe signatures in ultrafast laser experiments.

  18. Antenna-Coupled TES Bolometer Arrays for CMB Polarimetry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop and test transition edge sensor (TES) bolometer arrays for precision polarimetry of cosmic microwave background (CMB).  Verify that critical antenna...

  19. Optical Response of Strained- and Unstrained-Silicon Cold-Electron Bolometers

    CERN Document Server

    Brien, T L R; Barry, P S; Dunscombe, C J; Leadley, D R; Morozov, D V; Myronov, M; Parker, E H C; Prest, M J; Prunnila, M; Sudiwala, R V; Whall, T E; Mauskopf, P D

    2016-01-01

    We describe the optical characterisation of two silicon cold-electron bolometers each consisting of a small ($32 \\times 14~\\mathrm{\\mu m}$) island of degenerately doped silicon with superconducting aluminium contacts. Radiation is coupled into the silicon absorber with a twin-slot antenna designed to couple to 160-GHz radiation through a silicon lens.The first device has a highly doped silicon absorber, the second has a highly doped strained-silicon absorber.Using a novel method of cross-correlating the outputs from two parallel amplifiers, we measure noise-equivalent powers of $3.0 \\times 10^{-16}$ and $6.6 \\times 10^{-17}~\\mathrm{W\\,Hz^{-1/2}}$ for the control and strained device, respectively, when observing radiation from a 77-K source. In the case of the strained device, the noise-equivalent power is limited by the photon noise.

  20. A high-Tc superconductor bolometer on a silicon nitridemembrane

    NARCIS (Netherlands)

    Sanchez, S.; Elwenspoek, M.C.; Gui, C.; Nivelle, de M.J.M.E.; Vries, de R.; Korte, de P.A.J.; Bruijn, M.P.; Schwierzi, B.

    1997-01-01

    In this paper we describe the design, fabrication and performance of a high-Tc GdBa2Cu3O7-δ superconductor bolometer positioned on a 2×2 mm2, 1 μm thick silicon nitride membrane. The bolometer structure has an effective area of 0.64 mm2 and was grown on a specially developed silicon-on-nitride layer

  1. Antenna-coupled bolometer arrays using transition-edgesensors

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Michael J.; Ade, Peter; Engargiola, Greg; Holzapfel,William; Lee,Adrian T.; O' Brient, Roger; Richards, Paul L.; Smith, Andy; Spieler, Helmuth; Tran, Huan

    2004-06-08

    We describe the development of an antenna-coupled bolometer array for use in a Cosmic Microwave Background polarization experiment. Prototype single pixels using double-slot dipole antennas and integrated microstrip band defining filters have been built and tested. Preliminary results of optical testing and simulations are presented. A bolometer array design based on this pixel will also be shown and future plans for application of the technology will be discussed.

  2. Cross Linked Metal Particles for Low Noise Bolometer Materials

    Science.gov (United States)

    2016-12-12

    SECURITY CLASSIFICATION OF: This final report summarizes WSU’s progress from 4/2/2015 to 09/30/2016 on the project, "Cross-linked Metal Particles ...2016 Final Report: Cross-linked Metal Particles for Low-noise Bolometer Materials The views, opinions and/or findings contained in this report are...peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Cross-linked Metal Particles for Low-noise Bolometer

  3. UEDGE code comparisons with DIII-D bolometer DATA

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, J.M.

    1995-01-01

    This paper describes the work done to develop a bolometer post processor that converts volumetric radiated power values taken from a UEDGE solution, to a line integrated radiated power along chords of the bolometers in the DIII-D tokamak. The UEDGE code calculates plasma physics quantities, such as plasma density, radiated power, or electron temperature, and compares them to actual diagnostic measurements taken from the scrape off layer (SOL) and divertor regions of the DIII-D tokamak. Bolometers are devices measuring radiated power within the tokamak. The bolometer interceptors are made up of two complete arrays, an upper array with a vertical view and a lower array with a horizontal view, so that a two dimensional profile of the radiated power may be obtained. The bolometer post processor stores line integrated values taken from UEDGE solutions into a file in tabular format. Experimental data is then put into tabular form and placed in another file. Comparisons can be made between the UEDGE solutions and actual bolometer data. Analysis has been done to determine the accuracy of the plasma physics involved in producing UEDGE simulations.

  4. UEDGE code comparisons with DIII-D bolometer data

    Energy Technology Data Exchange (ETDEWEB)

    Daniel, J.M.

    1994-12-01

    This paper describes the work done to develop a bolometer post processor that converts volumetric radiated power values taken from a UEDGE solution, to a line integrated radiated power along chords of the bolometers in the DIII-D tokamak. The UEDGE code calculates plasma physics quantities, such as plasma density, radiated power, or electron temperature, and compares them to actual diagnostic measurements taken from the scrape off layer (SOL) and divertor regions of the DIII-D tokamak. Bolometers are devices measuring radiated power within the tokamak. The bolometer interceptors are made up of two complete arrays, an upper array with a vertical view and a lower array with a horizontal view, so that a two dimensional profile of the radiated power may be obtained. The bolometer post processor stores line integrated values taken from UEDGE solutions into a file in tabular format. Experimental data is then put into tabular form and placed in another file. Comparisons can be made between the UEDGE solutions and actual bolometer data. Analysis has been done to determine the accuracy of the plasma physics involved in producing UEDGE simulations.

  5. Collisionless absorption, hot electron generation, and energy scaling in intense laser-target interaction

    Energy Technology Data Exchange (ETDEWEB)

    Liseykina, T., E-mail: tatyana.tiseykina@uni-rostock.de [Institut für Physik, Universität Rostock, Universitätsplatz 3, 18051 Rostock (Germany); Institute of Computational Technologies SD RAS, Acad. Lavrentjev Ave. 6, 630090 Novosibirsk (Russian Federation); Mulser, P. [Theoretical Quantum Electronics, Technische Universität Darmstadt, 64289 Darmstadt (Germany); Murakami, M. [Institute of Laser Engineering, Osaka University, Osaka 565-0871 (Japan)

    2015-03-15

    Among the various attempts to understand collisionless absorption of intense and superintense ultrashort laser pulses, a whole variety of models and hypotheses has been invented to describe the laser beam target interaction. In terms of basic physics, collisionless absorption is understood now as the interplay of the oscillating laser field with the space charge field produced by it in the plasma. A first approach to this idea is realized in Brunel's model the essence of which consists in the formation of an oscillating charge cloud in the vacuum in front of the target, therefore frequently addressed by the vague term “vacuum heating.” The investigation of statistical ensembles of orbits shows that the absorption process is localized at the ion-vacuum interface and in the skin layer: Single electrons enter into resonance with the laser field thereby undergoing a phase shift which causes orbit crossing and braking of Brunel's laminar flow. This anharmonic resonance acts like an attractor for the electrons and leads to the formation of a Maxwellian tail in the electron energy spectrum. Most remarkable results of our investigations are the Brunel like spectral hot electron distribution at the relativistic threshold, the minimum of absorption at Iλ{sup 2}≅(0.3−1.2)×10{sup 21} Wcm{sup −2}μm{sup 2} in the plasma target with the electron density of n{sub e}λ{sup 2}∼10{sup 23}cm{sup −3}μm{sup 2}, the drastic reduction of the number of hot electrons in this domain and their reappearance in the highly relativistic domain, and strong coupling, beyond expectation, of the fast electron jets with the return current through Cherenkov emission of plasmons. The hot electron energy scaling shows a strong dependence on intensity in the moderately relativistic domain Iλ{sup 2}≅(10{sup 18}−10{sup 20}) Wcm{sup −2}μm{sup 2}, a scaling in vague accordance with current published estimates in the range Iλ{sup 2}≅(0.14−3.5)×10{sup 21}

  6. Hot electron dynamics at semiconductor surfaces: Implications for quantum dot photovoltaics

    Science.gov (United States)

    Tisdale, William A., III

    Finding a viable supply of clean, renewable energy is one of the most daunting challenges facing the world today. Solar cells have had limited impact in meeting this challenge because of their high cost and low power conversion efficiencies. Semiconductor nanocrystals, or quantum dots, are promising materials for use in novel solar cells because they can be processed with potentially inexpensive solution-based techniques and because they are predicted to have novel optoelectronic properties that could enable the realization of ultra-efficient solar power converters. However, there is a lack of fundamental understanding regarding the behavior of highly-excited, or "hot," charge carriers near quantum-dot and semiconductor interfaces, which is of paramount importance to the rational design of high-efficiency devices. The elucidation of these ultrafast hot electron dynamics is the central aim of this Dissertation. I present a theoretical framework for treating the electronic interactions between quantum dots and bulk semiconductor surfaces and propose a novel experimental technique, time-resolved surface second harmonic generation (TR-SHG), for probing these interactions. I then describe a series of experimental investigations into hot electron dynamics in specific quantum-dot/semiconductor systems. A two-photon photoelectron spectroscopy (2PPE) study of the technologically-relevant ZnO(1010) surface reveals ultrafast (sub-30fs) cooling of hot electrons in the bulk conduction band, which is due to strong electron-phonon coupling in this highly polar material. The presence of a continuum of defect states near the conduction band edge results in Fermi-level pinning and upward (n-type) band-bending at the (1010) surface and provides an alternate route for electronic relaxation. In monolayer films of colloidal PbSe quantum dots, chemical treatment with either hydrazine or 1,2-ethanedithiol results in strong and tunable electronic coupling between neighboring quantum dots

  7. Hard x-ray and hot electron production from intense laser irradiation of wavelength-scale particles

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, T.D.; Rust, M.; Weiner, I. [Department of Physics, Harvey Mudd College, Claremont, CA (United States); Allen, M. [Department of Nuclear Engineering, University of California, Berkeley, CA (United States); Smith, R.A. [Blackett Laboratory, Imperial College, London (United Kingdom); Steinke, C.A. [Lyman Laboratory, Harvard University, Cambridge, MA (United States); Wilks, S.; Zweiback, J.; Cowan, T.E.; Ditmire, T. [Laser Program, Lawrence Livermore National Laboratory, Livermore, CA (United States)

    2001-05-28

    We have examined the production of hard x-rays from the irradiation of {approx}1 {mu}m diameter water droplets with a 35 fs laser at an intensity of up to 7x10{sup 17} W cm{sup -2}. We observe substantial x-ray production in the photon energy range above 100 keV and find that the implied hot electron temperatures from these micron-scale targets are significantly higher than electron temperatures observed from irradiation of solid planar plastic targets under nearly identical irradiation conditions. The observed enhancement of the hot electron temperature from droplets is consistent with hot electron spectra calculated from particle-in-cell simulations. (author). Letter-to-the-editor.

  8. Silicon-Based Antenna-Coupled Polarization-Sensitive Millimeter-Wave Bolometer Arrays for Cosmic Microwave Background Instruments

    CERN Document Server

    Rostem, Karwan; Appel, John W; Bennett, Charles L; Brown, Ari; Chang, Meng-Ping; Chuss, David T; Colazo, Felipe A; Costen, Nick; Denis, Kevin L; Essinger-Hileman, Tom; Hu, Ron; Marriage, Tobias A; Moseley, Samuel H; Stevenson, Thomas R; U-Yen, Kongpop; Wollack, Edward J; Xu, Zhilei

    2016-01-01

    We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define th...

  9. Divergence of laser-generated hot electrons generated in a cone geometry

    Science.gov (United States)

    Stephens, R. B.; Akli, K. U.; Bartal, T.; Beg, F. N.; Chawla, S.; Chen, C. D.; Divol, L.; Fedosejevs, R.; Freeman, R. R.; Friesen, H.; Giraldez, E.; Hey, D. S.; Higginson, D. P.; Jarrot, C.; Kemp, G. E.; Key, M. H.; Krygier, A.; Larson, D.; Le Pape, S.; Link, A.; Ma, T. Y.; MacKinnon, A. J.; MacLean, H. S.; MacPhee, A. G.; Murphy, C.; Ovchinnikov, V.; Patel, P. K.; Ping, Y.; Sawada, H.; Schumacher, D.; Tsui, Y.; Wei, M. S.; Van Woerkom, L. D.; Westover, B.; Wilks, S. C.; Yabuuchi, T.

    2010-08-01

    Short-pulse, ultra-intense lasers generate hot electrons at the cone tip in a Fast Ignition target. Core heating and cone-wire experiments find that about 20% of the incident laser energy is coupled into a target, but do not characterize electron propagation direction, a critical parameter for ignition. Previous studies using flat foils suggest they propagate forward, diverging by ~40°. Buried cone targets-conical cavities in multilayer metal foils-were developed to allow divergence measurements in an FI relevant geometry. Preliminary results show increased electron divergence in a 30 μm diameter cone tip which disappears for 90 μm diameter tips. Implications of the experiment are discussed.

  10. Mechanism of hot electron electroluminescence in GaN-based transistors

    Science.gov (United States)

    Brazzini, Tommaso; Sun, Huarui; Sarti, Francesco; Pomeroy, James W.; Hodges, Chris; Gurioli, Massimo; Vinattieri, Anna; Uren, Michael J.; Kuball, Martin

    2016-11-01

    The nature of hot electron electroluminescence (EL) in AlGaN/GaN high electron mobility transistors is studied and attributed to Bremsstrahlung. The spectral distribution has been corrected, for the first time, for interference effects due to the multilayered device structure, and this was shown to be crucial for the correct interpretation of the data, avoiding artefacts in the spectrum and misinterpretation of the results. An analytical expression for the spectral distribution of emitted light is derived assuming Bremsstrahlung as the only origin and compared to the simplified exponential model for the high energy tail commonly used for electron temperature extraction: the electron temperature obtained results about 20% lower compared to the approximated exponential model. Comparison of EL intensity for devices from different wafers illustrated the dependence of EL intensity on the material quality. The polarization of electroluminescence also confirms Bremsstrahlung as the dominant origin of the light emitted, ruling out other possible main mechanisms.

  11. First-Principles Simulation of Hot Electron Dynamics at Silicon-Molecule Interfaces

    Science.gov (United States)

    Li, Lesheng; Kanai, Yosuke; Kanai Group Team

    2015-03-01

    Hot carrier relaxation process at an interface between semiconductor and molecular ligands is of great importance for a number of technological applications ranging from photo-electrochemical cells to quantum-dot light emitting diodes. Although a number of spectroscopic experiments suggest important role of molecular ligands at surface in the hot carrier relaxation, a quantitative understanding has not been developed. We investigate the hot electron relaxation process through synergetic use of first-principles molecular dynamics (FPMD), fewest switch surface hopping (FSSH) algorithm, and GW calculations. Using FSSH stochastic dynamics simulation based on non-adiabatic couplings from FPMD and quasi-particle energy level alignment at the interface, we investigate the role of molecular passivation at silicon (111) surface as a representative example. We will discuss how different types of molecules influence the relaxation process and elucidate important factors controlling the relaxation time scale.

  12. Plasmonic Hot Electron Transport Driven Site-Specific Surface-Chemistry with Nanoscale Spatial Resolution

    CERN Document Server

    Cortés, Emiliano; Cambiasso, Javier; Jermyn, Adam S; Sundararaman, Ravishankar; Narang, Prineha; Schlücker, Sebastian; Maier, Stefan A

    2016-01-01

    Nanoscale localization of electromagnetic fields near metallic nanostructures underpins the fundamentals and applications of plasmonics. The unavoidable energy loss from plasmon decay, initially seen as a detriment, has now expanded the scope of plasmonic applications to exploit the generated hot carriers. However, quantitative understanding of the spatial localization of these hot carriers, akin to electromagnetic near-field maps, has been elusive. Here we spatially map hot-electron-driven reduction chemistry with 15 nanometre resolution as a function of time and electromagnetic field polarization for different plasmonic nanostructures. We combine experiments employing a six-electron photo-recycling process that modify the terminal group of a self-assembled monolayer on plasmonic silver nanoantennas, with theoretical predictions from first-principles calculations of non-equilibrium hot-carrier transport in these systems. The resulting localization of reactive regions, determined by hot carrier transport from...

  13. Anomalously Hot Electrons due to Rescatter of Stimulated Raman Scattering in the Kinetic Regime

    CERN Document Server

    Winjum, B J; Tsung, F S; Mori, W B

    2012-01-01

    Using particle-in-cell simulations, we examine hot electron generation from electron plasma waves excited by stimulated Raman scattering and rescattering in the kinetic regime where the wavenumber times the Debye length (k\\lambda_D) is greater than 0.3 for backscatter. We find that for laser and plasma conditions of possible relevance to experiments at the National Ignition Facility (NIF), anomalously energetic electrons can be produced through the interaction of a discrete spectrum of plasma waves generated from SRS (back and forward scatter), rescatter, and the Langmuir decay of the rescatter-generated plasma waves. Electrons are bootstrapped in energy as they propagate into plasma waves with progressively higher phase velocities.

  14. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials

    Science.gov (United States)

    Li, Wei; Coppens, Zachary J.; Besteiro, Lucas V.; Wang, Wenyi; Govorov, Alexander O.; Valentine, Jason

    2015-09-01

    Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector's ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform.

  15. Experimental Route to Scanning Probe Hot Electron Nanoscopy (HENs) Applied to 2D Material

    KAUST Repository

    Giugni, Andrea

    2017-06-09

    This paper presents details on a new experimental apparatus implementing the hot electron nanoscopy (HENs) technique introduced for advanced spectroscopies on structure and chemistry in few molecules and interface problems. A detailed description of the architecture used for the laser excitation of surface plasmons at an atomic force microscope (AFM) tip is provided. The photogenerated current from the tip to the sample is detected during the AFM scan. The technique is applied to innovative semiconductors for applications in electronics: 2D MoS2 single crystal and a p-type SnO layer. Results are supported by complementary scanning Kelvin probe microscopy, traditional conductive AFM, and Raman measurements. New features highlighted by HEN technique reveal details of local complexity in MoS2 and polycrystalline structure of SnO at nanometric scale otherwise undetected. The technique set in this paper is promising for future studies in nanojunctions and innovative multilayered materials, with new insight on interfaces.

  16. Spontaneous Hot-Electron Light Emission from Electron-Fed Optical Antennas.

    Science.gov (United States)

    Buret, Mickael; Uskov, Alexander V; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V; Protsenko, Igor E; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-09-09

    Nanoscale electronics and photonics are among the most promising research areas providing functional nanocomponents for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanoscale.

  17. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials.

    Science.gov (United States)

    Li, Wei; Coppens, Zachary J; Besteiro, Lucas V; Wang, Wenyi; Govorov, Alexander O; Valentine, Jason

    2015-09-22

    Circularly polarized light is utilized in various optical techniques and devices. However, using conventional optical systems to generate, analyse and detect circularly polarized light involves multiple optical elements, making it challenging to realize miniature and integrated devices. While a number of ultracompact optical elements for manipulating circularly polarized light have recently been demonstrated, the development of an efficient and highly selective circularly polarized light photodetector remains challenging. Here we report on an ultracompact circularly polarized light detector that combines large engineered chirality, realized using chiral plasmonic metamaterials, with hot electron injection. We demonstrate the detector's ability to distinguish between left and right hand circularly polarized light without the use of additional optical elements. Implementation of this photodetector could lead to enhanced security in fibre and free-space communication, as well as emission, imaging and sensing applications for circularly polarized light using a highly integrated photonic platform.

  18. Non-thermal hot electrons ultrafastly generating hot optical phonons in graphite

    Science.gov (United States)

    Ishida, Y.; Togashi, T.; Yamamoto, K.; Tanaka, M.; Taniuchi, T.; Kiss, T.; Nakajima, M.; Suemoto, T.; Shin, S.

    2011-08-01

    Investigation of the non-equilibrium dynamics after an impulsive impact provides insights into couplings among various excitations. A two-temperature model (TTM) is often a starting point to understand the coupled dynamics of electrons and lattice vibrations: the optical pulse primarily raises the electronic temperature Tel while leaving the lattice temperature Tl low; subsequently the hot electrons heat up the lattice until Tel = Tl is reached. This temporal hierarchy owes to the assumption that the electron-electron scattering rate is much larger than the electron-phonon scattering rate. We report herein that the TTM scheme is seriously invalidated in semimetal graphite. Time-resolved photoemission spectroscopy (TrPES) of graphite reveals that fingerprints of coupled optical phonons (COPs) occur from the initial moments where Tel is still not definable. Our study shows that ultrafast-and-efficient phonon generations occur beyond the TTM scheme, presumably associated to the long duration of the non-thermal electrons in graphite.

  19. Hot electron mediated desorption rates calculated from excited state potential energy surfaces

    CERN Document Server

    Olsen, Thomas; Schiøtz, Jakob

    2008-01-01

    We present a model for Desorption Induce by (Multiple) Electronic Transitions (DIET/DIMET) based on potential energy surfaces calculated with the Delta Self-Consistent Field extension of Density Functional Theory. We calculate potential energy surfaces of CO and NO molecules adsorbed on various transition metal surfaces, and show that classical nuclear dynamics does not suffice for propagation in the excited state. We present a simple Hamiltonian describing the system, with parameters obtained from the excited state potential energy surface, and show that this model can describe desorption dynamics in both the DIET and DIMET regime, and reproduce the power law behavior observed experimentally. We observe that the internal stretch degree of freedom in the molecules is crucial for the energy transfer between the hot electrons and the molecule when the coupling to the surface is strong.

  20. Elastic scattering by hot electrons and apparent lifetime of longitudinal optical phonons in gallium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Khurgin, Jacob B., E-mail: jakek@jhu.edu [Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Bajaj, Sanyam; Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2015-12-28

    Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.

  1. Structure and Process of Infrared Hot Electron Transistor Arrays

    Directory of Open Access Journals (Sweden)

    Richard Fu

    2012-05-01

    Full Text Available An infrared hot-electron transistor (IHET 5 × 8 array with a common base configuration that allows two-terminal readout integration was investigated and fabricated for the first time. The IHET structure provides a maximum factor of six in improvement in the photocurrent to dark current ratio compared to the basic quantum well infrared photodetector (QWIP, and hence it improved the array S/N ratio by the same factor. The study also showed for the first time that there is no electrical cross-talk among individual detectors, even though they share the same emitter and base contacts. Thus, the IHET structure is compatible with existing electronic readout circuits for photoconductors in producing sensitive focal plane arrays.

  2. Elastic scattering by hot electrons and apparent lifetime of longitudinal optical phonons in gallium nitride

    Science.gov (United States)

    Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth

    2015-12-01

    Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.

  3. Spontaneous hot-electron light emission from electron-fed optical antennas

    CERN Document Server

    Buret, Mickael; Dellinger, Jean; Cazier, Nicolas; Mennemanteuil, Marie-Maxime; Berthelot, Johann; Smetanin, Igor V; Protsenko, Igor E; Colas-des-Francs, Gérard; Bouhelier, Alexandre

    2015-01-01

    Nanoscale electronics and photonics are among the most promising research areas providing functional nano-components for data transfer and signal processing. By adopting metal-based optical antennas as a disruptive technological vehicle, we demonstrate that these two device-generating technologies can be interfaced to create an electronically-driven self-emitting unit. This nanoscale plasmonic transmitter operates by injecting electrons in a contacted tunneling antenna feedgap. Under certain operating conditions, we show that the antenna enters a highly nonlinear regime in which the energy of the emitted photons exceeds the quantum limit imposed by the applied bias. We propose a model based upon the spontaneous emission of hot electrons that correctly reproduces the experimental findings. The electron-fed optical antennas described here are critical devices for interfacing electrons and photons, enabling thus the development of optical transceivers for on-chip wireless broadcasting of information at the nanos...

  4. Influence of laser induced hot electrons on the threshold for shock ignition of fusion reactions

    Science.gov (United States)

    Colaïtis, A.; Ribeyre, X.; Le Bel, E.; Duchateau, G.; Nicolaï, Ph.; Tikhonchuk, V.

    2016-07-01

    The effects of Hot Electrons (HEs) generated by the nonlinear Laser-Plasma Interaction (LPI) on the dynamics of Shock Ignition Inertial Confinement Fusion targets are investigated. The coupling between the laser beam, plasma dynamics and hot electron generation and propagation is described with a radiative hydrodynamics code using an inline model based on Paraxial Complex Geometrical Optics [Colaïtis et al., Phys. Rev. E 92, 041101 (2015)]. Two targets are considered: the pure-DT HiPER target and a CH-DT design with baseline spike powers of the order of 200-300 TW. In both cases, accounting for the LPI-generated HEs leads to non-igniting targets when using the baseline spike powers. While HEs are found to increase the ignitor shock pressure, they also preheat the bulk of the imploding shell, notably causing its expansion and contamination of the hotspot with the dense shell material before the time of shock convergence. The associated increase in hotspot mass (i) increases the ignitor shock pressure required to ignite the fusion reactions and (ii) significantly increases the power losses through Bremsstrahlung X-ray radiation, thus rapidly cooling the hotspot. These effects are less prominent for the CH-DT target where the plastic ablator shields the lower energy LPI-HE spectrum. Simulations using higher laser spike powers of 500 TW suggest that the CH-DT capsule marginally ignites, with an ignition window width significantly smaller than without LPI-HEs, and with three quarters of the baseline target yield. The latter effect arises from the relation between the shock launching time and the shell areal density, which becomes relevant in presence of a LPI-HE preheating.

  5. Monte Carlo simulations of Kα source generated by hot electrons-nanobrush target interactions

    Science.gov (United States)

    Zhao, Jincui; Zheng, Jianhua; Cao, Lihua; Zhao, Zongqing; Li, Shu; Gu, Yuqiu; Liu, Jie

    2016-09-01

    We focus on the transport processes from hot electrons to Kα x-ray emission in a copper nanobrush target. The physics on the enhancement of Kα photon yield and conversion efficiency from laser to Kα x-ray ηL→Kα is studied by combining Monte Carlo simulations and previous particle-in-cell simulation results. Simulation results show that Kα photon yield and electron- Kα photon conversion efficiency ηe-→Kα from nanobrush targets rise gradually and then stay nearly constant. Kα photon yield from the structured nanobrush target increases with peak number density n0, but the yield is a little less than that from the same-size planar target when the electron temperature T =400 keV and n0=1021 cm-3 . It is because the number density of atoms and ions in the nanobrush target is almost one half of the foil target. Compared to the planar target, Kα photons after the nanobrush target are more than those before the target. Because it is easier for the electrons to enter the structured target surface, and Kα x-ray source is produced in the deeper position of the structured nanobrush target. Considering the realistic number of hot electrons produced by laser-nanobrush and -planar targets interaction, Kα photon yield in nanobrush targets has a significant enhancement of over 2-6 folds relative to laser-foil irradiation. The yield and ηL→K α from the nanobrush target are, respectively, 5.42 ×109 sr-1 and 7.32 ×10-5 when laser strength I λ2≈2 ×1018 W cm-2 μm2 . The yield and ηL→Kα decrease gradually with the laser strength, but the values are always higher than that from the planar target. Therefore, the laser-nanobrush target interaction can produce brighter and smaller-size Kα photon source, compared to a planar target.

  6. Generation and Transport of Hot Electrons in Cone-Wire Targets

    Science.gov (United States)

    Beg, Farhat

    2009-11-01

    We present results from a series of experiments where cone-wire targets in various configurations were employed both to assess hot electron coupling efficiency, and to reveal the source temperature of the hot electrons. Initial experiments were performed on the Vulcan petawatt laser at the Rutherford Appleton Laboratory and Titan laser at the Lawrence Livermore National Laboratory. Results with aluminum cones joined to Cu wires of diameters from 10 to 40 μm show that the laser coupling efficiency to electron energy within the wire is proportional to the cross sectional area of the wire. In addition, coupling into the wire was observed to decrease with the laser prepulse and cone-wall thickness. More recently, this study was extended, using the OMEGA EP laser. The resulting changes in coupling energy give indications of the scaling as we approach FI-relevant conditions. Requirements for FI scale fast ignition cone parameters: tip thickness, wall thickness, laser prepulse and laser pulse length, will be discussed. In collaboration with T. Yabuuchi, T. Ma, D. Higginson, H. Sawada, J. King, M.H. Key, K.U. Akli, Al Elsholz, D. Batani, H. Chen, R.R. Freeman, L. Gizzi, J. Green, S. Hatchett, D. Hey, P. Jaanimagi, J. Koch, K. L. Lancaster, D.Larson, A.J. MacKinnon, H. McLean, A. MacPhee, P.A. Norreys, P.K Patel, R. B. Stephens, W. Theobald, R. Town, M. Wei, S. Wilks, Roger Van Maren, B. Westover and L. VanWoerkom.

  7. Development of plasma bolometers using fiber-optic temperature sensors

    Science.gov (United States)

    Reinke, M. L.; Han, M.; Liu, G.; van Eden, G. G.; Evenblij, R.; Haverdings, M.; Stratton, B. C.

    2016-11-01

    Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry-Pérot cavity when broadband light, λo ˜ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ˜150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m2 when compared to those of the resistive bolometer which can achieve coatings, along with improving the spectral resolution of the interrogator.

  8. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  9. Improvement of the critical temperature of superconducting NbTiN and NbN thin films using the AlN buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Shiino, Tatsuya; Shiba, Shoichi; Sakai, Nami; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yamakura, Tetsuya [Institute of Physics, Graduate School of Pure and Applied Sciences, University of Tsukuba, Ten-nodai, Tsukuba, Ibaraki 305-8577 (Japan); Jiang, Ling [College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, Jiangsu (China); Uzawa, Yoshinori [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Maezawa, Hiroyuki, E-mail: shiino@taurus.phys.s.u-tokyo.ac.j [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chigusa-ku, Nagoya 464-8602 (Japan)

    2010-04-15

    Thin superconducting NbTiN and NbN films with a few nm thickness are used in various device applications including in hot electron bolometer mixers. Such thin films have lower critical temperature (T{sub c}) and higher resistivity than corresponding bulk materials. In an effort to improve them, we have investigated an effect of the AlN buffer layer between the film and the substrate (quartz or soda lime glass). The AlN film is deposited by DC magnetron sputtering, and the process condition is optimized so that the x-ray diffraction intensity from the 002 surface of wurtzite AlN becomes the highest. By use of this well-characterized buffer layer, T{sub c} and the resistivity of the NbTiN film with a few nm thickness are remarkably increased and decreased, respectively, in comparison with those without the buffer layer. More importantly, the AlN buffer layer is found to be effective for NbN. With the AlN buffer layer, T{sub c} is increased from 7.3 to 10.5 K for the 8 nm NbN film. The improvement of T{sub c} and the resistivity originates from the good lattice matching between the 002 surface of AlN and the 111 surface of NbTiN or NbN, which results in better crystallization of the NbTiN or NbN film. This is further confirmed by the x-ray diffraction measurement.

  10. Guiding, Focusing, and Collimated Transport of Hot Electrons in a Canal in the Extended Tip of Cone Targets

    Science.gov (United States)

    Renard-Le Galloudec, N.; D'Humières, E.; Cho, B. I.; Osterholz, J.; Sentoku, Y.; Ditmire, T.

    2009-05-01

    Hot electrons are produced, guided into a beam, and transported over 60μm in a small canal to the outside tip of a structured cone target. The diameter of the electron beam is defined by the inside tip diameter. This carries the potential to create electron beams of specific diameters propagating over specific distances of interest for several applications.

  11. New basic insights into the low hot electron injection efficiency of gold-nanoparticle-photosensitized titanium dioxide.

    Science.gov (United States)

    Ma, Xiangchao; Dai, Ying; Yu, Lin; Huang, Baibiao

    2014-08-13

    The low hot electrons injection efficiency (HEIE) from plasmonic metal to semiconductor significantly affects the performance of metal-semiconductor composite. However, there are few reports about the origin of this low HEIE. In the present work, the factors affecting the transfer process and generation efficiency of hot electron in Au@TiO2 composite are investigated using first-principles calculations and Maxwell's electrodynamics theory. The occupation of surface oxygen vacancies of TiO2 by gold atoms is found to increase the hot electrons transfer barrier and expand the space charge region, which decrease the HEIE. In addition, the existing Au@TiO2 structure going against the generation of large amount of hot electrons may also lead to low HEIE. Our results reveal that the replacement of divalent host oxygen atoms with monovalent atoms can decrease the HEIE and comparison with experimental results allows us to validate our predictions. Furthermore, proper surface treatment of semiconductor before depositing metal particles and structure optimization of the composite are suggested to improve the HEIE.

  12. Perpendicular hot electron spin-valve effect in a new magnetic field sensor: The spin-valve transistor

    NARCIS (Netherlands)

    Monsma, D.J.; Lodder, J.C.; Popma, T.J.A.; Dieny, B.

    1995-01-01

    A new magnetic field sensor is presented, based on perpendicular hot electron transport in a giant magnetoresistance (Co/Cu)4 multilayer, which serves as a base region of an n-silicon metal-base transistor structure. A 215% change in collector current is found in 500 Oe (77 K), with typical

  13. Interface, Volume, and Thermal Attenuation of Hot-Electron Spins in Ni80Fe20 and Co

    NARCIS (Netherlands)

    Vlutters, R.; van 't Erve, O.M.J.; Kim, S.D.; Jansen, R.; Lodder, J.C.

    2002-01-01

    The relative importance of interface, volume, and thermal scattering in spin-dependent hot-electron transmission of magnetic trilayers is quantified. While interfaces produce significant attenuation (factor 2.2 per interface), the spin asymmetry is dominated by volume scattering. Extracted thermal

  14. Nanoscale hot electron transport across Cu/n-Si(100) and Cu/n-Si(111) interfaces

    NARCIS (Netherlands)

    Parui, S.; Ploeg, J.R.R. van der; Rana, K.G.; Banerjee, T.

    2011-01-01

    Ballistic electron emission microscopy (BEEM) has been used to investigate hot electron transmission, at the nanoscale, in thin films of Cu on Si(100) and Si(111). For all Cu thicknesses studied here, the BEEM transmission is observed to be twice larger for Si(111) than for Si(100). Further, the att

  15. The Detector Calibration System for the CUORE cryogenic bolometer array

    CERN Document Server

    Cushman, J S; Davis, C J; Ejzak, L; Lenz, D; Lim, K E; Heeger, K M; Maruyama, R H; Nucciotti, A; Sangiorgio, S; Wise, T

    2016-01-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of $^{130}$Te and other rare events. The CUORE detector consists of 988 TeO$_2$ bolometers operated underground at 10~mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning...

  16. Sensitivity and Noise of Cold-Electron Bolometer Arrays

    Science.gov (United States)

    Mukhin, A. S.; Gordeeva, A. V.; Revin, L. S.; Abashin, A. E.; Shishov, A. A.; Pankratov, A. L.; Mahashabde, S.; Kuzmin, L. S.

    2017-01-01

    We perform experimental and theoretical studies of the series-parallel arrays of the cold-electron bolometers integrated into a cross-slot antenna and composed with an immersion silicon lens. This work is aimed at determining the efficiency of radiation absorption by bolometers, their volt-watt sensitivity, and equivalent noise power. The absorbed power was found using two independent methods, which ensured a better reliability of the results. The first method is based on comparing the experimental current-voltage characteristics of bolometers with the model based on the heat-balance equation. The second approach involves simulation of the electromagnetic properties of the system including the antenna, the lens, the bandpass filters, and the radiation source. The discrepancy among the results obtained using various methods does not exceed 30%. Optimization of the experimental setup is proposed to reach the photon-noise detection regime.

  17. Development of plasma bolometers using fiber-optic temperature sensors

    Energy Technology Data Exchange (ETDEWEB)

    Reinke, M. L., E-mail: reinkeml@ornl.gov [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Han, M.; Liu, G. [University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Eden, G. G. van [Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven (Netherlands); Evenblij, R.; Haverdings, M. [Technobis, Pyrietstraat 2, 1812 SC Alkmaar (Netherlands); Stratton, B. C. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)

    2016-11-15

    Measurements of radiated power in magnetically confined plasmas are important for exhaust studies in present experiments and expected to be a critical diagnostic for future fusion reactors. Resistive bolometer sensors have long been utilized in tokamaks and helical devices but suffer from electromagnetic interference (EMI). Results are shown from initial testing of a new bolometer concept based on fiber-optic temperature sensor technology. A small, 80 μm diameter, 200 μm long silicon pillar attached to the end of a single mode fiber-optic cable acts as a Fabry–Pérot cavity when broadband light, λ{sub o} ∼ 1550 nm, is transmitted along the fiber. Changes in temperature alter the optical path length of the cavity primarily through the thermo-optic effect, resulting in a shift of fringes reflected from the pillar detected using an I-MON 512 OEM spectrometer. While initially designed for use in liquids, this sensor has ideal properties for use as a plasma bolometer: a time constant, in air, of ∼150 ms, strong absorption in the spectral range of plasma emission, immunity to local EMI, and the ability to measure changes in temperature remotely. Its compact design offers unique opportunities for integration into the vacuum environment in places unsuitable for a resistive bolometer. Using a variable focus 5 mW, 405 nm, modulating laser, the signal to noise ratio versus power density of various bolometer technologies are directly compared, estimating the noise equivalent power density (NEPD). Present tests show the fiber-optic bolometer to have NEPD of 5-10 W/m{sup 2} when compared to those of the resistive bolometer which can achieve <0.5 W/m{sup 2} in the laboratory, but this can degrade to 1-2 W/m{sup 2} or worse when installed on a tokamak. Concepts are discussed to improve the signal to noise ratio of this new fiber-optic bolometer by reducing the pillar height and adding thin metallic coatings, along with improving the spectral resolution of the interrogator.

  18. A Monte Carlo model of hot electron trapping and detrapping in SiO2

    Science.gov (United States)

    Kamocsai, R. L.; Porod, W.

    1991-02-01

    High-field stressing and oxide degradation of SiO2 are studied using a microscopic model of electron heating and charge trapping and detrapping. Hot electrons lead to a charge buildup in the oxide according to the dynamic trapping-detrapping model by Nissan-Cohen and co-workers [Y. Nissan-Cohen, J. Shappir, D. Frohman-Bentchkowsky, J. Appl. Phys. 58, 2252 (1985)]. Detrapping events are modeled as trap-to-band impact ionization processes initiated by high energy conduction electrons. The detailed electronic distribution function obtained from Monte Carlo transport simulations is utilized for the determination of the detrapping rates. We apply our microscopic model to the calculation of the flat-band voltage shift in silicon dioxide as a function of the electric field, and we show that our model is able to reproduce the experimental results. We also compare these results to the predictions of the empirical trapping-detrapping model which assumes a heuristic detrapping cross section. Our microscopic theory accounts for the nonlocal nature of impact ionization which leads to a dark space close to the injecting cathode, which is unaccounted for in the empirical model.

  19. Resonant plasmonic terahertz detection in vertical graphene-base hot-electron transistors

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhii, V. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Center for Photonics and Infrared Engineering, Bauman Moscow State Technical University and Institute of Ultra High Frequency Semiconductor Electronics of RAS, Moscow 111005 (Russian Federation); Otsuji, T. [Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577 (Japan); Ryzhii, M. [Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu 965-8580 (Japan); Mitin, V. [Department of Electrical Engineering, University at Buffalo, SUNY, Buffalo, New York 1460-1920 (United States); Shur, M. S. [Department of Electrical, Computer, and System Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-28

    We analyze dynamic properties of vertical graphene-base hot-electron transistors (GB-HETs) and consider their operation as detectors of terahertz (THz) radiation using the developed device model. The GB-HET model accounts for the tunneling electron injection from the emitter, electron propagation across the barrier layers with the partial capture into the GB, and the self-consistent oscillations of the electric potential and the hole density in the GB (plasma oscillations), as well as the quantum capacitance and the electron transit-time effects. Using the proposed device model, we calculate the responsivity of GB-HETs operating as THz detectors as a function of the signal frequency, applied bias voltages, and the structural parameters. The inclusion of the plasmonic effect leads to the possibility of the GB-HET operation at the frequencies significantly exceeding those limited by the characteristic RC-time. It is found that the responsivity of GB-HETs with a sufficiently perfect GB exhibits sharp resonant maxima in the THz range of frequencies associated with the excitation of plasma oscillations. The positions of these maxima are controlled by the applied bias voltages. The GB-HETs can compete with and even surpass other plasmonic THz detectors.

  20. Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection.

    Science.gov (United States)

    Appavoo, Kannatassen; Wang, Bin; Brady, Nathaniel F; Seo, Minah; Nag, Joyeeta; Prasankumar, Rohit P; Hilton, David J; Pantelides, Sokrates T; Haglund, Richard F

    2014-03-12

    Ultrafast photoinduced phase transitions could revolutionize data-storage and telecommunications technologies by modulating signals in integrated nanocircuits at terahertz speeds. In quantum phase-changing materials (PCMs), microscopic charge, lattice, and orbital degrees of freedom interact cooperatively to modify macroscopic electrical and optical properties. Although these interactions are well documented for bulk single crystals and thin films, little is known about the ultrafast dynamics of nanostructured PCMs when interfaced to another class of materials as in this case to active plasmonic elements. Here, we demonstrate how a mesh of gold nanoparticles, acting as a plasmonic photocathode, induces an ultrafast phase transition in nanostructured vanadium dioxide (VO2) when illuminated by a spectrally resonant femtosecond laser pulse. Hot electrons created by optical excitation of the surface-plasmon resonance in the gold nanomesh are injected ballistically across the Au/VO2 interface to induce a subpicosecond phase transformation in VO2. Density functional calculations show that a critical density of injected electrons leads to a catastrophic collapse of the 6 THz phonon mode, which has been linked in different experiments to VO2 phase transition. The demonstration of subpicosecond phase transformations that are triggered by optically induced electron injection opens the possibility of designing hybrid nanostructures with unique nonequilibrium properties as a critical step for all-optical nanophotonic devices with optimizable switching thresholds.

  1. The Herschel/PACS 2560 bolometers imaging camera

    CERN Document Server

    Billot, N; Augueres, J L; Beguin, A; Bouere, A; Boulade, O; Cara, C; Cloue, C; Doumayrou, E; Duband, L; Horeau, B; Le Mer, I; Le Pennec, J; Martignac, J; Okumura, K; Reveret, V; Sauvage, M; Simoens, F; Vigroux, L; Billot, Nicolas; Agnese, Patrick; Augueres, Jean-Louis; Beguin, Alain; Bouere, Andre; Boulade, Olivier; Cara, Christophe; Cloue, Christelle; Doumayrou, Eric; Duband, Lionel; Horeau, Benoit; Mer, Isabelle Le; Pennec, Jean Le; Martignac, Jerome; Okumura, Koryo; Reveret, Vincent; Sauvage, Marc; Simoens, Francois; Vigroux, Laurent

    2006-01-01

    The development program of the flight model imaging camera for the PACS instrument on-board the Herschel spacecraft is nearing completion. This camera has two channels covering the 60 to 210 microns wavelength range. The focal plane of the short wavelength channel is made of a mosaic of 2x4 3-sides buttable bolometer arrays (16x16 pixels each) for a total of 2048 pixels, while the long wavelength channel has a mosaic of 2 of the same bolometer arrays for a total of 512 pixels. The 10 arrays have been fabricated, individually tested and integrated in the photometer. They represent the first filled arrays of fully collectively built bolometers with a cold multiplexed readout, allowing for a properly sampled coverage of the full instrument field of view. The camera has been fully characterized and the ground calibration campaign will take place after its delivery to the PACS consortium in mid 2006. The bolometers, working at a temperature of 300 mK, have a NEP close to the BLIP limit and an optical bandwidth of ...

  2. Multimode Bolometer Development for the Primordial Inflation Explorer (PIXIE) Instrument

    Science.gov (United States)

    Nagler, Peter C.; Crowley, Kevin T.; Denis, Kevin L.; Devasia, Archana M.; Fixsen, Dale J.; Kogut, Alan J.; Manos, George; Porter, Scott; Stevenson, Thomas R.

    2016-01-01

    The Primordial Inflation Explorer (PIXIE) is an Explorer-class mission concept designed to measure the polarization and absolute intensity of the cosmic microwave background [1]. In this work, we report on the design, fabrication, and performance of the multimode polarization-sensitive bolometers for PIXIE, which are based on silicon thermistors. In particular we focus on several recent advances in the detector design, including the implementation of a tensioning scheme to greatly raise the frequencies of the internal vibrational modes of the large-area, low-mass optical absorber structure consisting of a grid of micromachined, ion-implanted silicon wires. With 30 times the absorbing area of the spider-web bolometers used by Planck, the tensioning scheme enables the PIXIE bolometers to be robust in the vibrational and acoustic environment at launch of the space mission. More generally, it could be used to reduce microphonic sensitivity in other types of low temperature detectors. We also report on the performance of the PIXIE bolometers in a dark cryogenic environment.

  3. Transient absorption and photocurrent microscopy show that hot electron supercollisions describe the rate-limiting relaxation step in graphene.

    Science.gov (United States)

    Graham, Matt W; Shi, Su-Fei; Wang, Zenghui; Ralph, Daniel C; Park, Jiwoong; McEuen, Paul L

    2013-01-01

    Using transient absorption (TA) microscopy as a hot electron thermometer, we show that disorder-assisted acoustic-phonon supercollisions (SCs) best describe the rate-limiting relaxation step in graphene over a wide range of lattice temperatures (Tl = 5-300 K), Fermi energies (E(F) = ± 0.35 eV), and optical probe energies (~0.3-1.1 eV). Comparison with simultaneously collected transient photocurrent, an independent hot electron thermometer, confirms that the rate-limiting optical and electrical response in graphene are best described by the SC-heat dissipation rate model, H = A(T(e)(3) - T(l)(3)). Our data further show that the electron cooling rate in substrate-supported graphene is twice as fast as in suspended graphene sheets, consistent with SC model prediction for disorder.

  4. Effect of excess superthermal hot electrons on finite amplitude ion-acoustic solitons and supersolitons in a magnetized auroral plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rrufai@csir.co.za [Council for Scientific and Industrial Research, Pretoria (South Africa); Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Bellville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi, Mumbai-410218 (India)

    2015-10-15

    The effect of excess superthermal electrons is investigated on finite amplitude nonlinear ion-acoustic waves in a magnetized auroral plasma. The plasma model consists of a cold ion fluid, Boltzmann distribution of cool electrons, and kappa distributed hot electron species. The model predicts the evolution of negative potential solitons and supersolitons at subsonic Mach numbers region, whereas, in the case of Cairn's nonthermal distribution model for the hot electron species studied earlier, they can exist both in the subsonic and supersonic Mach number regimes. For the dayside auroral parameters, the model generates the super-acoustic electric field amplitude, speed, width, and pulse duration of about 18 mV/m, 25.4 km/s, 663 m, and 26 ms, respectively, which is in the range of the Viking spacecraft measurements.

  5. Measurement of the hot electron mean free path and the momentum relaxation rate in GaN

    Energy Technology Data Exchange (ETDEWEB)

    Suntrup, Donald J., E-mail: suntrup@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106 (United States); Gupta, Geetak; Li, Haoran; Keller, Stacia; Mishra, Umesh K. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106 (United States)

    2014-12-29

    We present a method for measuring the mean free path and extracting the momentum relaxation time of hot electrons in GaN using the hot electron transistor (HET). In this device, electrons are injected over a high energy emitter barrier into the base where they experience quasi-ballistic transport well above the conduction band edge. After traversing the base, high energy electrons either surmount the base-collector barrier and become collector current or reflect off the barrier and become base current. We fabricate HETs with various base thicknesses and measure the common emitter transfer ratio (α) for each device. The mean free path is extracted by fitting α to a decaying exponential as a function of base width and the relaxation time is computed using a suitable injection velocity. For devices with an injection energy of ∼1 eV, we measure a hot electron mean free path of 14 nm and calculate a momentum relaxation time of 16 fs. These values are in agreement with theoretical calculations where longitudinal optical phonon scattering is the dominant momentum relaxation mechanism.

  6. Characterization of TES bolometers used in 2-dimensional Backshort-Under-Grid (BUG) arrays for far-infrared astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Staguhn, J.G. [NASA/GSFC, Greenbelt, MD 20771 (United States) and SSAI, 10210 Greenbelt Rd., Lanham, MD 20706 (United States)]. E-mail: johannes.staguhn@gsfc.nasa.gov; Allen, C.A. [NASA/GSFC, Greenbelt, MD 20771 (United States); Benford, D.J. [NASA/GSFC, Greenbelt, MD 20771 (United States); Chervenak, J.A. [NASA/GSFC, Greenbelt, MD 20771 (United States); Chuss, D.T. [NASA/GSFC, Greenbelt, MD 20771 (United States); Miller, T.M. [NASA/GSFC, Greenbelt, MD 20771 (United States); QSS, 4500 Forbes Blvd., Lanham, MD 20706 (United States); Moseley, S.H. [NASA/GSFC, Greenbelt, MD 20771 (United States); Wollack, E.J. [NASA/GSFC, Greenbelt, MD 20771 (United States)

    2006-04-15

    We have produced a laboratory demonstration of our new Backshort-Under-Grid (BUG) bolometer array architecture in a monolithic, 2-dimensional, 8x8 format. The detector array is designed as a square grid of suspended, 1{mu}m thick silicon bolometers with superconducting molybdium/gold bilayer TESs. These detectors use an additional layer of gold bars deposited on top of the bilayer, oriented transverse to the direction of the current flow, for the suppression of excess noise. This detector design has earlier been shown to provide near fundamental noise limited device performance. We present results from performance measurements of witness devices. In particular we demonstrate that the inband excess noise level of the TES detectors is less than 20% above the thermodynamic phonon noise limit and not significantly higher out of band at frequencies that cannot be attenuated by the Nyquist filter. Our 8x8 BUG arrays will be used in the near future for astronomical observations in several (sub-)millimeter instruments.

  7. MgB2-Based Bolometer Array for Far Infra-Red Thermal Imaging and Fourier Transform Spectroscopy Applications

    Science.gov (United States)

    Lakew, B.; Aslam, S.; Brasunas, J.

    2012-01-01

    The mid-superconducting critical temperature (T(sub c) approximately 39 K) of the simple binary, intermetallic MgB, [1] makes it a very good candidate for the development of the next generation of electrooptical devices (e.g. [2]). In particular, recent advances in thin film deposition teclmiques to attain higb quality polycrystalline thin film MgB, deposited on SiN-Si substrates, with T(sub c) approximately 38K [3] coupled with the low voltage noise performance of the film [4] makes it higbly desirable for the development of moderately cooled bolometer arrays for integration into future space-bourne far infra-red (FIR) spectrometers and thermal mappers for studying the outer planets, their icy moons and other moons of interest in the 17-250 micrometer spectral wavelength range. Presently, commercially available pyroelectric detectors operating at 300 K have specific detectivity, D(*), around 7 x 10(exp 8) to 2 x 10(exp 9) centimeters square root of Hz/W. However, a MgB2 thin film based bolometer using a low-stress (less than 140 MPa) SiN membrane isolated from the substrate by a small thermal conductive link, operating at 38 K, promises to have two orders of magnitude higher specific detectivity [5][6].

  8. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  9. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  10. High temperature superconducting compounds

    Science.gov (United States)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  11. Current gain above 10 in sub-10 nm base III-Nitride tunneling hot electron transistors with GaN/AlN emitter

    Science.gov (United States)

    Yang, Zhichao; Zhang, Yuewei; Krishnamoorthy, Sriram; Nath, Digbijoy N.; Khurgin, Jacob B.; Rajan, Siddharth

    2016-05-01

    We report on a tunneling hot electron transistor amplifier with common-emitter current gain greater than 10 at a collector current density in excess of 40 kA/cm2. The use of a wide-bandgap GaN/AlN (111 nm/2.5 nm) emitter was found to greatly improve injection efficiency of the emitter and reduce cold electron leakage. With an ultra-thin (8 nm) base, 93% of the injected hot electrons were collected, enabling a common-emitter current gain up to 14.5. This work improves understanding of the quasi-ballistic hot electron transport and may impact the development of high speed devices based on unipolar hot electron transport.

  12. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B. (Editor); Heinen, Vernon O. (Editor)

    1990-01-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  13. Li-containing scintillating bolometers for low background physics

    CERN Document Server

    Pattavina, L

    2013-01-01

    We present the performances of Li-based compounds used as scintillating bolometer for rare decay studies such as double-beta decay and direct dark matter investigations. The compounds are tested in a dilution refrigerator installed in the underground laboratory of Laboratori Nazionali del Gran Sasso (Italy). Low temperature scintillating properties are investigated by means of different radioactive sources, and the radio-purity level for internal contaminations are estimated for possible employment for next generation experiments.

  14. Li-containing scintillating bolometers for low background physics

    Directory of Open Access Journals (Sweden)

    Pattavina L.

    2014-01-01

    Full Text Available We present the performances of Li-based compounds used as scintillating bolometer for rare decay studies such as double-beta decay and direct dark matter investigations. The compounds are tested in a dilution refrigerator installed in the underground laboratory of Laboratori Nazionali del Gran Sasso (Italy. Low temperature scintillating properties are investigated by means of different radioactive sources, and the radio-purity level for internal contaminations are estimated for possible employment for next generation experiments.

  15. Highly sensitive bolometers for rare alpha decay studies

    Directory of Open Access Journals (Sweden)

    Gironi L.

    2014-03-01

    Full Text Available High resolution detectors able to identify background events are very appealing in the study of rare nuclear processes. Scintillating bolometers featuring simultaneous read-out of heat and scintillation signals, can effectively address this problem thanks to the possibility to discriminate different ionizing particles and achieve background free experiments. With this technique it has already been possible to measure rare alpha decays never observed before or improve by orders of magnitude the existing limits.

  16. SCUBA-2: The 10000 pixel bolometer camera on the James Clerk Maxwell Telescope

    CERN Document Server

    Holland, W S; Chapin, E L; Chrysostomou, A; Davis, G R; Dempsey, J T; Duncan, W D; Fich, M; Friberg, P; Halpern, M; Irwin, K D; Jenness, T; Kelly, B D; MacIntosh, M J; Robson, E I; Scott, D; Ade, P A R; Atad-Ettedgui, E; Berry, D S; Craig, S C; Gao, X; Gibb, A G; Hilton, G C; Hollister, M I; Kycia, J B; Lunney, D W; McGregor, H; Montgomery, D; Parkes, W; Tilanus, R P J; Ullom, J N; Walther, C A; Walton, A J; Woodcraft, A L; Amiri, M; Atkinson, D; Burger, B; Chuter, T; Coulson, I M; Doriese, W B; Dunare, C; Economou, F; Niemack, M D; Parsons, H A L; Reintsema, C D; Sibthorpe, B; Smail, I; Sudiwala, R; Thomas, H S

    2013-01-01

    SCUBA-2 is an innovative 10000 pixel bolometer camera operating at submillimetre wavelengths on the James Clerk Maxwell Telescope (JCMT). The camera has the capability to carry out wide-field surveys to unprecedented depths, addressing key questions relating to the origins of galaxies, stars and planets. With two imaging arrays working simultaneously in the atmospheric windows at 450 and 850 microns, the vast increase in pixel count means that SCUBA-2 maps the sky 100-150 times faster than the previous SCUBA instrument. In this paper we present an overview of the instrument, discuss the physical characteristics of the superconducting detector arrays, outline the observing modes and data acquisition, and present the early performance figures on the telescope. We also showcase the capabilities of the instrument via some early examples of the science SCUBA-2 has already undertaken. In February 2012, SCUBA-2 began a series of unique legacy surveys for the JCMT community. These surveys will take 2.5 years and the ...

  17. The 0.1K bolometers cooled by adiabatic demagnetization

    Science.gov (United States)

    Roellig, T.; Lesyna, L.; Kittel, P.; Werner, M.

    1983-01-01

    The most straightforward way of reducing the noise equivalent power of bolometers is to lower their operating temperature. We have been exploring the possibility of using conventionally constructed bolometers at ultra-low temperatures to achieve NEP's suitable to the background environment of cooled space telescopes. We have chosen the technique of adiabatic demagnetization of a paramagnetic salt as a gravity independent, compact, and low power way to achieve temperatures below pumped He-3 (0.3 K). The demagnetization cryostat we used was capable of reaching temperatures below 0.08 K using Chromium Potassium Alum as a salt from a starting temperature of 1.5 K and a starting magnetic field of 30,000 gauss. Computer control of the magnetic field decay allowed a temperature of 0.2 K to be maintained to within 0.5 mK over a time period exceeding 14 hours. The refrigerator duty cycle was over 90 percent at this temperature. The success of these tests has motivated us to construct a more compact portable adiabatic demagnetization cryostat capable of bolometer optical tests and use at the 5m Hale telescope at 1mm wavelengths.

  18. The detector calibration system for the CUORE cryogenic bolometer array

    Science.gov (United States)

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; Ejzak, Larissa; Lenz, Daniel; Lim, Kyungeun E.; Heeger, Karsten M.; Maruyama, Reina H.; Nucciotti, Angelo; Sangiorgio, Samuele; Wise, Thomas

    2017-02-01

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires the placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. This paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.

  19. The 0.1K bolometers cooled by adiabatic demagnetization

    Science.gov (United States)

    Roellig, T.; Lesyna, L.; Kittel, P.; Werner, M.

    1983-01-01

    The most straightforward way of reducing the noise equivalent power of bolometers is to lower their operating temperature. We have been exploring the possibility of using conventionally constructed bolometers at ultra-low temperatures to achieve NEP's suitable to the background environment of cooled space telescopes. We have chosen the technique of adiabatic demagnetization of a paramagnetic salt as a gravity independent, compact, and low power way to achieve temperatures below pumped He-3 (0.3 K). The demagnetization cryostat we used was capable of reaching temperatures below 0.08 K using Chromium Potassium Alum as a salt from a starting temperature of 1.5 K and a starting magnetic field of 30,000 gauss. Computer control of the magnetic field decay allowed a temperature of 0.2 K to be maintained to within 0.5 mK over a time period exceeding 14 hours. The refrigerator duty cycle was over 90 percent at this temperature. The success of these tests has motivated us to construct a more compact portable adiabatic demagnetization cryostat capable of bolometer optical tests and use at the 5m Hale telescope at 1mm wavelengths.

  20. High-impedance wire grid method to study spatiotemporal behavior of hot electron clump generated in a plasma.

    Science.gov (United States)

    Terasaka, K; Yoshimura, S; Kato, Y; Furuta, K; Aramaki, M; Morisaki, T; Tanaka, M Y

    2014-11-01

    High-impedance Wire Grid (HIWG) detector has been developed to study spatiotemporal behavior of a hot electron clump generated in an electron cyclotron resonance (ECR) plasma. By measuring the floating potentials of the wire electrodes, and generating structure matrix made of geometrical means of the floating potentials, the HIWG detector reconstructs the spatial distribution of high-temperature electron clump at an arbitrary instant of time. Time slices of the spike event in floating potential revealed the growth and decay process of a hot spot occurs in an ECR plasma.

  1. Superconductivity applications for infrared and microwave devices II; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Heinen, Vernon O. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Topics discussed include thin-film technology, microwave transmission lines and resonators, microwave devices and circuits, infrared detectors and bolometers, and superconducting junctions. Papers are presented on possible enhancement in bolometric response using free-standing film of YBa2Cu3O(x), aging and surface instability in high-Tc superconductors, epitaxial Tl2Ba2CaCu2O8 thin films on LaAlO3 and their microwave device properties, the performance of stripline resonators using sputtered YBCO films, and a coplanar waveguide microwave filter of YBa2Cu3O7. Attention is also given to the performance characteristics of Y-Ba-Cu-O microwave superconducting detectors, high-Tc bolometer developments for planetary missions, infrared detectors from YBaCuO thin films, high-temperature superconductor junction technology, and submillimeter receiver components using superconducting tunnel junctions.

  2. Recent developments in superconducting receivers

    Science.gov (United States)

    Richards, Paul L.

    1990-09-01

    A description is given of recent work at Berkeley on superconducting mixers and detectors for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. The next report describes accurate measurements and also theoretical modeling of an SIS quasiparticle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high Tc superconductor YBCO from 750 GHz to 21 THz. Finally, there are reports on the design and experimental performance of two different types of high Tc bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer.

  3. Ion acoustic solitons and supersolitons in a magnetized plasma with nonthermal hot electrons and Boltzmann cool electrons

    Energy Technology Data Exchange (ETDEWEB)

    Rufai, O. R., E-mail: rajirufai@gmail.com; Bharuthram, R., E-mail: rbharuthram@uwc.ac.za [University of the Western Cape, Belville (South Africa); Singh, S. V., E-mail: satyavir@iigs.iigm.res.in; Lakhina, G. S., E-mail: lakhina@iigs.iigm.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India)

    2014-08-15

    Arbitrary amplitude, ion acoustic solitons, and supersolitons are studied in a magnetized plasma with two distinct groups of electrons at different temperatures. The plasma consists of a cold ion fluid, cool Boltzmann electrons, and nonthermal energetic hot electrons. Using the Sagdeev pseudo-potential technique, the effect of nonthermal hot electrons on soliton structures with other plasma parameters is studied. Our numerical computation shows that negative potential ion-acoustic solitons and double layers can exist both in the subsonic and supersonic Mach number regimes, unlike the case of an unmagnetized plasma where they can only exist in the supersonic Mach number regime. For the first time, it is reported here that in addition to solitions and double layers, the ion-acoustic supersoliton solutions are also obtained for certain range of parameters in a magnetized three-component plasma model. The results show good agreement with Viking satellite observations of the solitary structures with density depletions in the auroral region of the Earth's magnetosphere.

  4. Broadband sample holder for microwave spectroscopy of superconducting qubits.

    Science.gov (United States)

    Averkin, A S; Karpov, A; Shulga, K; Glushkov, E; Abramov, N; Huebner, U; Il'ichev, E; Ustinov, A V

    2014-10-01

    We present a practical design and implementation of a broadband sample holder suitable for microwave experiments with superconducting integrated circuits at millikelvin temperatures. Proposed design can be easily integrated in standard dilution cryostats, has flat pass band response in a frequency range from 0 to 32 GHz, allowing the RF testing of the samples with substrate size up to 4 × 4 mm(2). The parasitic higher modes interference in the holder structure is analyzed and prevented via design considerations. The developed setup can be used for characterization of superconducting parametric amplifiers, bolometers, and qubits. We tested the designed sample holder by characterizing of a superconducting flux qubit at 20 mK temperature.

  5. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  6. Impedance Matching of a Micromesh Bolometer Placed in a Silicon Parallel Plate Waveguide Spectrometer

    NARCIS (Netherlands)

    Chattopadhyay, G.; Llombart, N.; Bradford, C.M.; Neto, A.

    2008-01-01

    Micromesh bolometers have been used in several instruments working in the submillimeter band (e.g. [1]). The bolometers are usually placed inside a waveguide and consist of a mesh absorber, at a certain distance from a back short. The mesh is made of SiNi whose thermal conductivity is tuned to the i

  7. Micron-scale mapping of megagauss magnetic fields using optical polarimetry to probe hot electron transport in petawatt-class laser-solid interactions.

    Science.gov (United States)

    Chatterjee, Gourab; Singh, Prashant Kumar; Robinson, A P L; Blackman, D; Booth, N; Culfa, O; Dance, R J; Gizzi, L A; Gray, R J; Green, J S; Koester, P; Kumar, G Ravindra; Labate, L; Lad, Amit D; Lancaster, K L; Pasley, J; Woolsey, N C; Rajeev, P P

    2017-08-21

    The transport of hot, relativistic electrons produced by the interaction of an intense petawatt laser pulse with a solid has garnered interest due to its potential application in the development of innovative x-ray sources and ion-acceleration schemes. We report on spatially and temporally resolved measurements of megagauss magnetic fields at the rear of a 50-μm thick plastic target, irradiated by a multi-picosecond petawatt laser pulse at an incident intensity of ~10(20) W/cm(2). The pump-probe polarimetric measurements with micron-scale spatial resolution reveal the dynamics of the magnetic fields generated by the hot electron distribution at the target rear. An annular magnetic field profile was observed ~5 ps after the interaction, indicating a relatively smooth hot electron distribution at the rear-side of the plastic target. This is contrary to previous time-integrated measurements, which infer that such targets will produce highly structured hot electron transport. We measured large-scale filamentation of the hot electron distribution at the target rear only at later time-scales of ~10 ps, resulting in a commensurate large-scale filamentation of the magnetic field profile. Three-dimensional hybrid simulations corroborate our experimental observations and demonstrate a beam-like hot electron transport at initial time-scales that may be attributed to the local resistivity profile at the target rear.

  8. Silicon-based antenna-coupled polarization-sensitive millimeter-wave bolometer arrays for cosmic microwave background instruments

    Science.gov (United States)

    Rostem, Karwan; Ali, Aamir; Appel, John W.; Bennett, Charles L.; Brown, Ari; Chang, Meng-Ping; Chuss, David T.; Colazo, Felipe A.; Costen, Nick; Denis, Kevin L.; Essinger-Hileman, Tom; Hu, Ron; Marriage, Tobias A.; Moseley, Samuel H.; Stevenson, Thomas R.; U-Yen, Kongpop; Wollack, Edward J.; Xu, Zhilei

    2016-07-01

    We describe feedhorn-coupled polarization-sensitive detector arrays that utilize monocrystalline silicon as the dielectric substrate material. Monocrystalline silicon has a low-loss tangent and repeatable dielectric constant, characteristics that are critical for realizing efficient and uniform superconducting microwave circuits. An additional advantage of this material is its low specific heat. In a detector pixel, two Transition-Edge Sensor (TES) bolometers are antenna-coupled to in-band radiation via a symmetric planar orthomode transducer (OMT). Each orthogonal linear polarization is coupled to a separate superconducting microstrip transmission line circuit. On-chip filtering is employed to both reject out-of-band radiation from the upper band edge to the gap frequency of the niobium superconductor, and to flexibly define the bandwidth for each TES to meet the requirements of the application. The microwave circuit is compatible with multi-chroic operation. Metalized silicon platelets are used to define the backshort for the waveguide probes. This micro-machined structure is also used to mitigate the coupling of out-of-band radiation to the microwave circuit. At 40 GHz, the detectors have a measured efficiency of ˜90%. In this paper, we describe the development of the 90 GHz detector arrays that will be demonstrated using the Cosmology Large Angular Scale Surveyor (CLASS) ground-based telescope.

  9. Antenna-Coupled TES Bolometers for CMB Polarimetry

    CERN Document Server

    Kuo, C L; Chattopadhyay, G; Goldin, A; Golwala, S; Holmes, W; Irwin, K; Kenyon, M; Lange, A E; Le Duc, H G; Rossinot, P; Vayonakis, A; Wang, G; Yun, M; Zmuidzinas, J

    2006-01-01

    We have developed a completely lithographic antenna-coupled bolometer for CMB polarimetry. The necessary components of a millimeter wave radiometer -- a beam forming element, a band defining filter, and the TES detectors -- are fabricated on a silicon chip with photolithography. The densely populated antennas allow a very efficient use of the focal plane area. We have fabricated and characterized a series of prototype devices. We find that their properties, including the frequency and angular responses, are in good agreement with the theoretical expectations. The devices are undergoing optimization for upcoming CMB experiments.

  10. Scintillating Bolometer Monte Carlo for Rare Particle Event Searches

    Science.gov (United States)

    Deporzio, Nicholas

    2017-01-01

    This study uses the Geant4 physics simulation toolkit to characterize various scintillating bolometer constructions for potential experimental commissioning. Emphasis is placed on detector sensitivity to neutrinoless double-beta decay. Constructions minimally include a scintillating source material for the decay and an absorber material. Tellurium, Selenium, Germanium and other candidate isotopes are studied as source materials. Various background discrimination techniques are analyzed including reflective housings and anti-reflective coatings upon the source material. Different geometric optimizations are considered. Ability to discriminate incident alpha and beta radiation, as well as photon detection efficiency for each construction is presented.

  11. ZnSe scintillating bolometers for Double Beta Decay

    CERN Document Server

    Arnaboldi, C; Cremonesi, O; Gironi, L; Pavan, M; Pessina, G; Pirro, S

    2010-01-01

    ZnSe scintillating bolometers are good candidates for future Double Beta Decay searches, because of the 82Se high Q-value and thanks to the possibility of alpha background rejection on the basis of the scintillation signal. In this paper we report the characteristics and the anomalies observed in an extensive study of these devices. Among them, an unexpected high emission from alpha particles, accompanied with an unusual pattern of the light vs. heat scatter plot. The perspectives for the application of this kind of detectors to search for the Neutrinoless Double Beta Decay of 82Se are presented.

  12. Sea level characterization of a 1100 g sapphire bolometer

    CERN Document Server

    Pécourt, S; Bobin, C; Coron, N; Jesus, M D; Hadjout, J P; Leblanc, J W; Marcillac, P D

    1999-01-01

    A first characterization of a 1100 g sapphire bolometer, performed at sea level and at a working temperature of 40 mK, is presented. Despite perturbations coming from the high-radioactive background and cosmic rays, calibration spectra could be achieved with an internal alpha source and a sup 5 sup 7 Co gamma-ray source: the experimental threshold is 25 keV, while the FWHM resolution is 17.4 keV for the 122 keV peak. Possible heat release effects are discussed, and a new limit of 9x10 sup - sup 1 sup 4 W/g is obtained for sapphire.

  13. Comparison of Au and Pt Foils for an Imaging Bolometer

    OpenAIRE

    Byron J., Peterson; Evgeny A., DRAPIKO; Dongcheol, SEO; Naoko, ASHIKAWA

    2010-01-01

    In the imaging bolometer a thin metal foil converts plasma radiated power to infrared radiation measured by an infrared camera. Calibration of the foil provides information on its sensitivity, which is helpful in selecting the best foil material. In this study thermal properties of submicron Au and Pt foils are investigated by heating the foils with a chopped HeNe laser beam (?20 mW) and observing the temperature change, ΔT, and thermal time constant, τ, of the foil temperature. Assuming that...

  14. Enhancement of Kα emission through efficient hot electron generation in carbon nanotubes on intense laser pulse irradiation

    Science.gov (United States)

    Chakravarty, U.; Arora, V.; Naik, P. A.; Chakera, J. A.; Srivastava, H.; Srivastava, A.; Varma, G. D.; Kumbhare, S. R.; Gupta, P. D.

    2012-09-01

    Near complete absorption of the energy of intense ultra-short laser pulses (45 fs, intensity ˜1.6 × 1016 to 2.5 × 1017 W/cm2) is observed in carbon nanotubes deposited on a planar molybdenum substrate. The hollow structure of the nanotube plasma facilitates resonant electric field enhancement during its ionization phase. This resonantly enhanced localized field at a density much larger than the critical density nc leads to efficient hot electron generation, which results in enhanced Kα emission of Mo at 17.5 keV. It is observed that for nanotubes, depending on the degree of hollowness, there is an optimum laser intensity for maximum x-ray enhancement compared to a planar uncoated target.

  15. CdWO4 bolometers for Double Beta Decay search

    CERN Document Server

    Gironi, L; Capelli, S; Cremonesi, O; Pavan, M; Pessina, G; Pirro, S

    2008-01-01

    In the field of Double Beta Decay (DBD) searches the possibility to have high resolution detectors in which background can be discriminated is very appealing. This very interesting possibility can be largely fulfilled in the case of a scintillating bolometer containing a Double Beta Decay emitter whose transition energy exceeds the one of the natural gamma line of 208Tl. We present the latest results obtained in the development of such a kind of scintillating bolometer. For the first time an array of five CdWO4 (116Cd has a Double Beta Decay transition energy of 2805 keV) crystals is tested. The array consists of a plane of four 3x3x3 cm3 crystals and a second plane consisting of a single 3x3x6 cm3 crystal. This setup is mounted in hall C of the National Laboratory of Gran Sasso inside a lead shielding in order to reduce as far as possible the environmental background. The aim of this test is to demonstrate the technical feasibility of this technique through an array of detectors and perform a long background...

  16. Infrared Imaging Bolometer for the HL-2A Tokamak

    Science.gov (United States)

    Gao, Jinming; Li, Wei; Lu, Jie; Xia, Zhiwei; Yi, Ping; Liu, Yi; Yang, Qingwei; HL-2A Team

    2016-06-01

    An infrared imaging bolometer diagnostic has been upgraded recently to be adapted for the complications of the signal-to-noise ratio arising from the low level of plasma radiation and high reflectivity of low energy photon (careful calibration of the foil, the incident power density distribution on the foil is determined by solving the heat diffusion equation with a numerical technique. The local plasma radiated power density is reconstructed with a minimum fisher information regularization method by assuming plasma emission toroidal symmetry. Comparisons of the results and the profiles measured by an ordinary bolometric detector demonstrate that this method is good enough to provide the plasma radiated power pattern. The typical plasma radiated power density distribution before and after high mode (H-mode) transition is firstly reconstructed with the infrared imaging bolometer. Moreover, during supersonic molecular beam injection (SMBI), an enhanced radiation region is observed at the edge of the plasma. supported by National Natural Science Foundation of China (Nos. 10805016 and 11175061), and the Chinese National Fusion Project for ITER (No. 2014GB109001)

  17. Electron-Phonon Decoupling NbSi CMB Bolometers

    Science.gov (United States)

    Marnieros, S.; Nones, C.; Dumoulin, L.; Bergé, L.; Rigaut, O.; Monfardini, A.; Camus, P.; Benoit, A.

    2012-06-01

    Precise measurements of the cosmic microwave background (CMB) is crucial to cosmology, since any proposed model of the Universe must account for the features of this radiation. E_cient very large bolometer arrays (>10,000 pixels) constitute an important challenge for CMB observations and are actually developed by many groups worldwide. We present here an explorative new bolometer design based on a structure that simplifies the fabrication process and exhibits high sensitivity. This innovative device replaces delicate membrane-based structures and eliminates the mediation of phonons: the incoming energy is directly captured and measured in the electron bath of an appropriate sensor and the thermal decoupling is achieved via the intrinsic electron-phonon decoupling of the sensor at very low temperature. Reported results come from a 204-pixel matrix of Nb x Si1- x transition edge sensors with a meander structure fabricated on a 2-inch silicon wafer using electron-beam co-evaporation and standard lithography process. To validate the application to CMB measurements, we have realized an optical calibration of our sample in the focal plane of a dilution cryostat test bench.

  18. Irradiation tests performed on the Herschel/Pacs bolometer arrays

    CERN Document Server

    Horeau, B; Rodriguez, L; Billot, N; Boulade, O; Doumayrou, E; Okumura, K; Pennec, J Le

    2010-01-01

    A new concept of bolometer arrays is used for the imager of PACS, one of the three instruments aboard the future Herschel space observatory. Within the framework of PACS photometer characterization, irradiation tests were performed on a dedicated bolometer array in order to study long-term and short-term radiation effects. The main objective was to study particles impacts on the detectors applicable to future observations in orbit and possible hard and/or soft curing to restore its performances. Cobalt-60 gamma ray irradiations did not show significant degradation, so we mainly focused on single events effects (SEE). Protons and alphas irradiations were then performed at the Van de Graaf tandem accelerator at the Institut de Physique Nucleaire (IPN, Orsay, France), respectively at 20MeV and 30MeV. Observation showed that the shape of signal perturbations clearly depends on the location of the impacts either on the detector itself or the read-out circuit. Software curing has then to be anticipated in order to ...

  19. A 16 channel frequency-domain-modulation readout system with custom superconducting LC filters for the SWIPE instrument of the balloon-borne LSPE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, G., E-mail: giovanni.signorelli@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baldini, A.M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Bemporad, C. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Biasotti, M. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Cei, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Ceriale, V.; Corsini, D.; Fontanelli, F. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Galli, L.; Gallucci, G. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Gatti, F. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Incagli, M.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Spinella, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Vaccaro, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Venturini, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2016-07-11

    We present the design, implementation and first tests of the superconducting LC filters for the frequency domain readout of spiderweb TES bolometers of the SWIPE experiment on the balloon-borne LSPE mission which aims at measuring the linear polarization of the Cosmic Microwave Background at large angular scales to find the imprint of inflation on the B-mode CMB polarization. LC filters are designed, produced and tested at the INFN sections of Pisa and Genoa where thin film deposition and cryogenic test facilities are present, and where also the TES spiderweb bolometers are being produced.

  20. Low temperature NbSi thin film thermometers on Silicon Nitride membranes for bolometer applications

    Energy Technology Data Exchange (ETDEWEB)

    Camus, Ph. E-mail: camus@csnsm.in2p3.fr; Berge, L.; Dumoulin, L.; Marnieros, S.; Torre, J.P

    2000-04-07

    We report the design of amorphous NbSi thin film bolometer thermometers on Silicon Nitride membranes. Due to the low-thermal conductivity of Si{sub 3}N{sub 4}, this material has several applications in millimeter wavelength bolometers and microcalorimetry. Compared to NTD-Ge thermometers, similar sensitivities are obtained with a 50 times lesser volume. The smallest realized films have a rectangular surface (100x400 {mu}m{sup 2}) and are 100 nm thick. Optimization of the thermometer shape, NbSi composition and electrical material contact is discussed. The goal of this development is to manufacture a complete array of bolometers by photolithography techniques.

  1. Design and characterization of TES bolometers and SQUID readout electronics for a balloon-borne application

    CERN Document Server

    Hubmayr, Johannes; Bissonnette, Eric; Dobbs, Matt; Hanany, Shaul; Lee, Adrian T; MacDermid, Kevin; Meng, Xiaofan; Sagiv, Ilan; Smecher, Graeme

    2009-01-01

    We present measurements of the electrical and thermal properties of new arrays of bolometeric detectors that were fabricated as part of a program to develop bolometers optimized for the low photon background of the EBEX balloon-borne experiment. An array consists of 140 spider-web transition edge sensor bolometers microfabricated on a 4" diameter silicon wafer. The designed average thermal conductance of bolometers on a proto-type array is 32 pW/K, and measurements are in good agreement with this value. The measurements are taken with newly developed, digital frequency domain multiplexer SQUID readout electronics.

  2. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)

    Science.gov (United States)

    Hohenberger, M.; Albert, F.; Palmer, N. E.; Lee, J. J.; Döppner, T.; Divol, L.; Dewald, E. L.; Bachmann, B.; MacPhee, A. G.; LaCaille, G.; Bradley, D. K.; Stoeckl, C.

    2014-11-01

    In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostic-a multichannel, hard x-ray spectrometer operating in the 20-500 keV range-has been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ˜300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U Kβ). The detectors impulse response function was measured in situ on NIF short-pulse (˜90 ps) experiments, and in off-line tests.

  3. Time-resolved measurements of the hot-electron population in ignition-scale experiments on the National Ignition Facility (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Hohenberger, M., E-mail: mhoh@lle.rochester.edu; Stoeckl, C. [Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14623 (United States); Albert, F.; Palmer, N. E.; Döppner, T.; Divol, L.; Dewald, E. L.; Bachmann, B.; MacPhee, A. G.; LaCaille, G.; Bradley, D. K. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Lee, J. J. [National Security Technologies LLC, Livermore, California 94551 (United States)

    2014-11-15

    In laser-driven inertial confinement fusion, hot electrons can preheat the fuel and prevent fusion-pellet compression to ignition conditions. Measuring the hot-electron population is key to designing an optimized ignition platform. The hot electrons in these high-intensity, laser-driven experiments, created via laser-plasma interactions, can be inferred from the bremsstrahlung generated by hot electrons interacting with the target. At the National Ignition Facility (NIF) [G. H. Miller, E. I. Moses, and C. R. Wuest, Opt. Eng. 43, 2841 (2004)], the filter-fluorescer x-ray (FFLEX) diagnostic–a multichannel, hard x-ray spectrometer operating in the 20–500 keV range–has been upgraded to provide fully time-resolved, absolute measurements of the bremsstrahlung spectrum with ∼300 ps resolution. Initial time-resolved data exhibited significant background and low signal-to-noise ratio, leading to a redesign of the FFLEX housing and enhanced shielding around the detector. The FFLEX x-ray sensitivity was characterized with an absolutely calibrated, energy-dispersive high-purity germanium detector using the high-energy x-ray source at NSTec Livermore Operations over a range of K-shell fluorescence energies up to 111 keV (U K{sub β}). The detectors impulse response function was measured in situ on NIF short-pulse (∼90 ps) experiments, and in off-line tests.

  4. The NASA high temperature superconductivity program

    Science.gov (United States)

    Sokoloski, Martin M.; Romanofsky, Robert R.

    1990-01-01

    It has been recognized from the onset that high temperature superconductivity held great promise for major advances across a broad range of NASA interests. The current effort is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAIO produced far superior RF characteristics when compared to metallic films on the same substrate. This achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high Q filters. Melt texturing and melt quenched techniques are being used to produce bulk materials with optimized magnetic properties. These yttrium enriched materials possess enhanced flux pinning characteristics and will lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies are being conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magneto-plasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar and Mars mission applications. The project direction and level of effort of the program are also described.

  5. Scintillating bolometers: a key for determining WIMP parameters

    CERN Document Server

    Cerdeno, D G; Fornasa, M; Garcia, E; Ginestra, C; Marcos, C; Martinez, M; Ortigoza, Y; Peiro, M; Puimedon, J; Sarsa, M L

    2014-01-01

    In the last decade direct detection Dark Matter (DM) experiments have increased enormously their sensitivity and ton-scale setups have been proposed, especially using germanium and xenon targets with double readout and background discrimination capabilities. In light of this situation, we study the prospects for determining the parameters of Weakly Interacting Massive Particle (WIMP) DM (mass, spin-dependent (SD) and spin-independent (SI) cross section off nucleons) by combining the results of such experiments in the case of a hypothetical detection. In general, the degeneracy between the SD and SI components of the scattering cross section can only be removed using targets with different sensitivities to these components. Scintillating bolometers, with particle discrimination capability, very good energy resolution and threshold and a wide choice of target materials, are an excellent tool for a multitarget complementary DM search. We investigate how the simultaneous use of scintillating targets with differen...

  6. An implanted $^{228}$Ra source for response characterization of bolometers

    CERN Multimedia

    TeO$_{2}$ crystals are used as bolometers in experiments searching for Double $\\beta$ Decay without emission of neutrinos. One of the most important issues in this extremely delicate kind of experiments is the discrimination of the background from the real signal. A deep knowledge of the bolometric response to $\\alpha$-particles is therefore needed to recognize and discard them, since it has been proven that $\\alpha$ surface contamination could be a major contribution in our background budget. We would like to use ISOLDE’s capability of implanting $^{228}$Ra to make a long-lived source feeding several monochromatic $\\alpha$- and recoiling nuclei, with little or no $\\alpha$-peak broadening due to the source itself, for tests of our detectors in Milano and Gran Sasso INFN National Lab.

  7. High signal-to-noise ratio quantum well bolometer materials

    Science.gov (United States)

    Wissmar, Stanley; Höglund, Linda; Andersson, Jan; Vieider, Christian; Savage, Susan; Ericsson, Per

    2006-09-01

    Novel single crystalline high-performance temperature sensing materials (quantum well structures) have been developed for the manufacturing of uncooled infrared bolometers. SiGe/Si and AlGaAs/GaAs quantum wells are grown epitaxially on standard Si and GaAs substrates respectively. The former use holes as charge carriers utilizing the discontinuities in the valence band structure, whereas the latter operate in a similar manner with electrons in the conduction band. By optimizing parameters such as the barrier height (by variation of the germanium/aluminium content respectively) and the fermi level E f (by variation of the quantum well width and doping level) these materials provide the potential to engineer layer structures with a very high temperature coefficient of resistance, TCR, as compared with conventional thin film materials such as vanadium oxide and amorphous silicon. In addition, the high quality crystalline material promises very low 1/f-noise characteristics promoting an outstanding signal to noise ratio and well defined and uniform material properties, A comparison between the two (SiGe/Si and AlGaAs/GaAs) quantum well structures and their fundamental theoretical limits are discussed and compared to experimental results. A TCR of 2.0%/K and 4.5%/K have been obtained experimentally for SiGe/Si and AlGaAs/GaAs respectively. The noise level for both materials is measured as being several orders of magnitude lower than that of a-Si and VOx. These uncooled thermistor materials can be hybridized with read out circuits by using conventional flip-chip assembly or wafer level adhesion bonding. The increased bolometer performance so obtained can either be exploited for increasing the imaging system performance, i. e. obtaining a low NETD, or to reduce the vacuum packaging requirements for low cost applications (e.g. automotive).

  8. The Construction of the Fast Resistive Bolometer for a SXR Measurement on the GIT-12 Facility

    Directory of Open Access Journals (Sweden)

    Jakub Cikhardt

    2013-01-01

    Full Text Available A lot of kinds of instruments are used for the SXR measurement at pulsed power facilities, but most of them are difficult to calibrate absolutely. For the determination of the energy of SXR radiated by the discharge on Z-pinches, it is possible to use the bolometer which can be calibrated analytically. The bolometer can be constructed with the sufficient sensitivity and, at the same time, with the time resolution in the order of nanoseconds. This bolometer was designed and constructed for the measurement on the 5MA facility GIT-12 at the Institute of High Current Electronics (IHCE of the Siberian Branch Russian Academy of Sciences in Tomsk. The experiments on GIT-12 with the neon and deuterium gas-puff load were diagnosed by the copper bolometer with the time resolution of 4 ns and the sensitivity of 12 V cm2 J-1.

  9. Long-Running-Time (T{=}0.45 K) Germanium Bolometer for Far Infrared Spectroscopy

    Science.gov (United States)

    Satoh, Naoki; Tanaka, Yasumoto; Nagasaka, Keigo

    1990-01-01

    A long-running-time (T{=}0.45 K) germanium bolometer which has a compact charcoal adsorption pump with a novel 3He gas condenser has been constructed. The refrigerator provides continuous cooling of the bolometer element at 0.45 K for 24-hour measurements of spectra in the range 2 to 40 cm-1. Utilizing this bolometer system, transmission spectroscopy has been carried out successively, maintaining the temperature of the sample below 40 K and that of the bolometer element below 1.5 K without a thermal cycle. This experimental setup is essential for obtaining a reproducible spectrum of MEM(TCNQ)2. Thus, each resultant spectrum has good reproducibility even after one-week-long experiments.

  10. Characterization of single layer anti-reflective coatings for bolometer-based rare event searches

    CERN Document Server

    Hansen, E V

    2016-01-01

    A photon signal added to the existing phonon signal can powerfully reduce backgrounds for bolometer-based rare event searches. Anti-reflective coatings can significantly increase the performance of the secondary light sensing bolometer in these experiments. Coatings of SiO2, HfO2, and TiO2 on Ge and Si were fabricated and characterized at room temperature and all angles of incidence.

  11. A high-Tc superconductor bolometer on a silicon nitride membrane

    NARCIS (Netherlands)

    Sánchez, S.; Elwenspoek, M.C.; Gui, C.; Nivelle, de M.J.M.E.; Vries, de R.J.; Korte, de P.A.J.; Bruijn, M.P.; Wijnbergen, J.J.; Michalke, W.; Steinbeiss, E.; Heidenblut, T.; Schwierzi, B.

    1997-01-01

    In this paper we describe the design, fabrication and performance of a high-Tc GdBa2Cu3O7-δ superconductor bolometer positioned on a 2×2 mm2, 1 μm thick silicon nitride membrane. The bolometer structure has an effective area of 0.64 mm2, and was grown on a specially developed Silicon-On-Nitride laye

  12. Promoting Active Species Generation by Plasmon-Induced Hot-Electron Excitation for Efficient Electrocatalytic Oxygen Evolution.

    Science.gov (United States)

    Liu, Guigao; Li, Peng; Zhao, Guixia; Wang, Xin; Kong, Jintao; Liu, Huimin; Zhang, Huabin; Chang, Kun; Meng, Xianguang; Kako, Tetsuya; Ye, Jinhua

    2016-07-27

    Water splitting represents a promising technology for renewable energy conversion and storage, but it is greatly hindered by the kinetically sluggish oxygen evolution reaction (OER). Here, using Au-nanoparticle-decorated Ni(OH)2 nanosheets [Ni(OH)2-Au] as catalysts, we demonstrate that the photon-induced surface plasmon resonance (SPR) excitation on Au nanoparticles could significantly activate the OER catalysis, specifically achieving a more than 4-fold enhanced activity and meanwhile affording a markedly decreased overpotential of 270 mV at the current density of 10 mA cm(-2) and a small Tafel slope of 35 mV dec(-1) (no iR-correction), which is much better than those of the benchmark IrO2 and RuO2, as well as most Ni-based OER catalysts reported to date. The synergy of the enhanced generation of Ni(III/IV) active species and the improved charge transfer, both induced by hot-electron excitation on Au nanoparticles, is proposed to account for such a markedly increased activity. The SPR-enhanced OER catalysis could also be observed over cobalt oxide (CoO)-Au and iron oxy-hydroxide (FeOOH)-Au catalysts, suggesting the generality of this strategy. These findings highlight the possibility of activating OER catalysis by plasmonic excitation and could open new avenues toward the design of more-energy-efficient catalytic water oxidation systems with the assistance of light energy.

  13. Indirect Band Gap Emission by Hot Electron Injection in Metal/MoS2 and Metal/WSe2 Heterojunctions

    Science.gov (United States)

    Li, Zhen; Ezhilarasu, Goutham; Chatzakis, Ioannis; Dhall, Rohan; Chen, Chun-Chung; Cronin, Stephen

    Transition metal dichalcogenides (TMDCs), such as MoS2 and WSe2, are free of dangling bonds, therefore make more `ideal' Schottky junctions than bulk semiconductors, which produce recombination centers at the interface with metals, inhibiting charge transfer. Here, we observe a more than 10X enhancement in the indirect band gap PL of TMDCs deposited on various metals, while the direct band gap emission remains unchanged. We believe the main mechanism of light emission arises from photoexcited hot electrons in the metal that are injected into the conduction band of MoS2 and WSe2, and subsequently recombine radiatively with minority holes. Since the conduction band at the K-point is 0.5eV higher than at the Σ-point, a lower Schottky barrier of the Σ-point band makes electron injection more favorable. Also, the Σ band consists of the sulfur pz orbital, which overlaps more significantly with the electron wavefunctions in the metal. This enhancement only occurs for thick flakes, and is absent in monolayer and few-layer flakes. Here, the flake thickness must exceed the depletion width of the Schottky junction, in order for efficient radiative recombination to occur in the TMDC. The intensity of this indirect peak decreases at low temperatures. Reference: DOI: 10.1021/acs.nanolett.5b00885

  14. Terahertz mixing in AlGaAs/GaAs 2DEG hot-electron microbolometers at liquid nitrogen temperatures

    Science.gov (United States)

    Wang, Kai; Ramaswamy, Rahul; Bell, Matthew; Sergeev, Andrei; Verevkin, Aleksandr; Strasser, Gottfried; Mitin, Vladimir; Wobschall, Darold

    2009-03-01

    We investigate THz mixing based on electron heating of two-dimensional electron gas (2DEG) in semiconductor mirobolometers. The 2DEG microbolometers were fabricated from AlGaAs/GaAs heterostructures and have dimensions of 3 - 20μm between the Ohmic contacts and 50µm in width. Significant efforts were made to get low Ohmic contact resistance for effective coupling to the THz antenna and to the intermediate frequency amplifier. We investigate mixing at subTHz and THz frequencies. In the sub-THz range, a W-band Gunn diode operating at 82 GHz was used as a local oscillator. In the THz range we employ a Quantum Cascade Laser (QCL). The QCL is positioned in close proximity at different locations to optimize electromagnetic coupling. Experiments at sub-THz and THz frequencies give consistent data, which provide evidence that electron-heating is the major mechanism of mixing. Mixing experiments allow us to evaluate the mixer gain bandwidth and conversion loss. The results show that a heterodyne receiver, which combines AlGaAs/GaAs 2DEG hot- electron mixer with a QCL as the local oscillator, has great prospects for THz sensing with high spectral resolution and wide spectral bandwidth.

  15. Hot electron generation under large-signal radio frequency operation of GaN high-electron-mobility transistors

    Science.gov (United States)

    Latorre-Rey, Alvaro D.; Sabatti, Flavio F. M.; Albrecht, John D.; Saraniti, Marco

    2017-07-01

    In order to assess the underlying physical mechanisms of hot carrier-related degradation such as defect generation in millimeter-wave GaN power amplifiers, we have simulated the electron energy distribution function under large-signal radio frequency conditions in AlGaN/GaN high-electron-mobility transistors. Our results are obtained through a full band Monte Carlo particle-based simulator self-consistently coupled to a harmonic balance circuit solver. At lower frequency, simulations of a Class AB power amplifier at 10 GHz show that the peak hot electron generation is up to 43% lower under RF drive than it is under DC conditions, regardless of the input power or temperature of operation. However, at millimeter-wave operation up to 40 GHz, RF hot carrier generation reaches that from DC biasing and even exceeds it up to 75% as the amplifier is driven into compression. Increasing the temperature of operation also shows that degradation of DC and RF characteristics are tightly correlated and mainly caused by increased phonon scattering. The accurate determination of the electron energy mapping is demonstrated to be a powerful tool for the extraction of compact models used in lifetime and reliability analysis.

  16. The electron distribution function downstream of the solar-wind termination shock: Where are the hot electrons?

    CERN Document Server

    Fahr, Hans J; Verscharen, Daniel

    2015-01-01

    In the majority of the literature on plasma shock waves until now, electrons have played the role of "ghost particles," since they contribute to mass- and momentum flows only negligibly and have been treated as taking care of the electric plasma neutrality. In some more recent papers, however, electrons play a new important role in the shock dynamics and thermodynamics, especially at the solar-wind termination shock. They react on the shock electric field in a very specific way, leading to suprathermal non-equilibrium distributions of the downstream electrons that can be represented by a kappa distribution function. In this article, we discuss why these anticipated hot electron population has not been seen by the plasma detectors of the Voyager spacecraft downstream of the solar-wind termination shock. We show that hot non-equilibrium electrons induce a strong negative electric charge-up of any spacecraft cruising through this downstream plasma environment. This charge reduces electron fluxes at the spacecraf...

  17. A hot-electron thermophotonic solar cell demonstrated by thermal up-conversion of sub-bandgap photons.

    Science.gov (United States)

    Farrell, Daniel J; Sodabanlu, Hassanet; Wang, Yunpeng; Sugiyama, Masakazu; Okada, Yoshitaka

    2015-11-06

    The direct conversion of solar energy to electricity can be broadly separated into two main categories: photovoltaics and thermal photovoltaics, where the former utilizes gradients in electrical potential and the latter thermal gradients. Conventional thermal photovoltaics has a high theoretical efficiency limit (84%) but in practice cannot be easily miniaturized and is limited by the engineering challenges of sustaining large (>1,000 K) temperature gradients. Here we show a hot-carrier-based thermophotonic solar cell, which combines the compact nature of photovoltaic devices with the potential to reach the high-efficiency regime of thermal photovoltaics. In the device, a thermal gradient of 500 K is established by hot electrons, under Stokes illumination, rather than by raising the temperature of the material itself. Under anti-Stokes (sub-bandgap) illumination we observe a thermal gradient of ∼20 K, which is maintained by steady-state Auger heating of carriers and corresponds to a internal thermal up-conversion efficiency of 30% between the collector and solar cell.

  18. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  19. Time-resolved K α spectroscopy measurements of hot-electron equilibration dynamics in thin-foil solid targets: collisional and collective effects

    Science.gov (United States)

    Nilson, P. M.; Solodov, A. A.; Davies, J. R.; Theobald, W.; Mileham, C.; Stoeckl, C.; Begishev, I. A.; Zuegel, J. D.; Froula, D. H.; Betti, R.; Meyerhofer, D. D.

    2015-11-01

    Time-resolved K α spectroscopy measurements from high-intensity laser interactions with thin-foil solid targets are reviewed. Thin Cu foils were irradiated with 1-10 J, 1 ps pulses at focused intensities from 1018 to 1019 W cm-2. The experimental data show K α -emission pulse widths from 3 to 6 ps, increasing with laser intensity. The time-resolved K α -emission data are compared to a hot-electron transport and K α -production model that includes collisional electron-energy coupling, resistive heating, and electromagnetic field effects. The experimental data show good agreement with the model when a reduced ponderomotive scaling is used to describe the initial mean hot-electron energy over the relevant intensity range.

  20. Hard x-ray (>100 keV) imager to measure hot electron preheat for indirectly driven capsule implosions on the NIF.

    Science.gov (United States)

    Döppner, T; Dewald, E L; Divol, L; Thomas, C A; Burns, S; Celliers, P M; Izumi, N; Kline, J L; LaCaille, G; McNaney, J M; Prasad, R R; Robey, H F; Glenzer, S H; Landen, O L

    2012-10-01

    We have fielded a hard x-ray (>100 keV) imager with high aspect ratio pinholes to measure the spatially resolved bremsstrahlung emission from energetic electrons slowing in a plastic ablator shell during indirectly driven implosions at the National Ignition Facility. These electrons are generated in laser plasma interactions and are a source of preheat to the deuterium-tritium fuel. First measurements show that hot electron preheat does not limit obtaining the fuel areal densities required for ignition and burn.

  1. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  2. Wide-Range Bolometer with RF Readout TES

    CERN Document Server

    Shitov, S V; Kuzmin, A A; Merker, M; Arndt, M; Wuensch, S H; Ilin, K S; Erhan, E; Ustinov, A; Siegel, M

    2014-01-01

    To improve both scalability and noise-filtering capability of a Transition-Edge Sensor (TES), a new concept of a thin-film detector is suggested, which is based on embedding a microbridge TES into a high-Q planar GHz range resonator weakly coupled to a 50 Ohm-readout transmission line. Such a TES element is designed as a hot-electron microbolometer coupled to a THz range antenna and as a load of the resonator at the same time. A weak THz signal coupled to the antenna heats the microbridge TES, thus reducing the quality factor of the resonator and leading to a power increment in the readout line. The power-to-power conversion gain, an essential figure of merit, is estimated to be above 10. To demonstrate the basic concept, we fabricated and tested a few submicron sized devices from Nb thin films for operation temperature about 5 K. The dc and rf characterization of the new device is made at a resonator frequency about 5.8 GHz. A low-noise HEMT amplifier is used in our TES experiments without the need for a SQU...

  3. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  4. M-shell resolved high-resolution X-ray spectroscopic study of transient matter evolution driven by hot electrons in kJ-laser produced plasmas

    Science.gov (United States)

    Condamine, F. P.; Šmíd, M.; Renner, O.; Dozières, M.; Thais, F.; Angelo, P.; Rosmej, F. B.

    2017-03-01

    Hot electrons represent a key subject for high intensity laser produced plasmas and atomic physics. Simulations of the radiative properties indicate a high sensitivity to hot electrons, that in turn provides the possibility for their detailed characterization by high-resolution spectroscopic methods. Of particular interest is X-ray spectroscopy due to reduced photo-absorption in dense matter and their efficient generation by hot electrons (inner-shell ionization/excitation). Here, we report on an experimental campaign conducted at the ns, kJ laser facility PALS at Prague in Czech Republic. Thin copper foils have been irradiated with 1ω pulses. Two spherically bent quartz Bragg crystal spectrometers with high spectral (λ/Δλ > 5000) and spatial resolutions (Δx = 30µm) have been set up simultaneously to achieve a high level of confidence for the complex Kα emission group. In particular, this group, which shows a strong overlap between lines, can be resolved in several substructures. Furthermore, an emission on the red wing of the Kα2 transition (λ = 1.5444A) could be identified with Hartree-Fock atomic structure calculations. We discuss possible implications for the analysis of non-equilibrium phenomena and present first simulations.

  5. Dislocation blocking by AlGaN hot electron injecting layer in the epitaxial growth of GaN terahertz Gunn diode

    Science.gov (United States)

    Li, Liang; Yang, Lin'an; Zhang, Jincheng; Hao, Yue

    2013-09-01

    This paper reports an efficient method to improve the crystal quality of GaN Gunn diode with AlGaN hot electron injecting layer (HEI). An evident reduction of screw dislocation and edge dislocation densities is achieved by the strain management and the enhanced lateral growth in high temperature grown AlGaN HEI layer. Compared with the top hot electron injecting layer (THEI) structure, the bottom hot electron injecting layer (BHEI) structure enhances the crystal quality of transit region due to the growth sequence modulation of HEI layer. A high Hall mobility of 2934 cm2/Vs at 77 K, a nearly flat downtrend of Hall mobility at the temperature ranging from 300 to 573 K, a low intensity of ratio of yellow luminescence band to band edge emission, a narrow band edge emission line-width, and a smooth surface morphology are observed for the BHEI structural epitaxy of Gunn diode, which indicates that AlGaN BHEI structure is a promising candidate for fabrication of GaN Gunn diodes in terahertz regime.

  6. Prototype finline-coupled TES bolometers for CLOVER

    CERN Document Server

    Audley, M D; Crane, M; Dace, R; Glowacka, D; Goldie, D J; Lasenby, A N; Stevenson, H M; Tsaneva, V; Withington, S; Grimes, P; Johnson, B; Yassin, G; Piccirillo, L; Pisano, G; Duncan, W D; Hilton, G C; Irwin, K D; Reintsema, C D; Halpern, M; Audley, Michael D.; Barker, Robert W.; Crane, Michael; Dace, Roger; Glowacka, Dorota; Goldie, David J.; Lasenby, Anthony N.; Stevenson, Howard M.; Tsaneva, Vassilka; Withington, Stafford; Grimes, Paul; Johnson, Bradley; Yassin, Ghassan; Piccirillo, Lucio; Pisano, Giampaolo; Duncan, William D.; Hilton, Gene C.; Irwin, Kent D.; Reintsema, Carl D.; Halpern, Mark

    2006-01-01

    CLOVER is an experiment which aims to detect the signature of gravitational waves from inflation by measuring the B-mode polarization of the cosmic microwave background. CLOVER consists of three telescopes operating at 97, 150, and 220 GHz. The 97-GHz telescope has 160 feedhorns in its focal plane while the 150 and 220-GHz telescopes have 256 horns each. The horns are arranged in a hexagonal array and feed a polarimeter which uses finline-coupled TES bolometers as detectors. To detect the two polarizations the 97-GHz telescope has 320 detectors while the 150 and 220-GHz telescopes have 512 detectors each. To achieve the target NEPs (1.5, 2.5, and 4.5x10^-17 W/rtHz) the detectors are cooled to 100 mK for the 97 and 150-GHz polarimeters and 230 mK for the 220-GHz polarimeter. Each detector is fabricated as a single chip to ensure a 100% operational focal plane. The detectors are contained in linear modules made of copper which form split-block waveguides. The detector modules contain 16 or 20 detectors each for...

  7. The initial design of LAPAN's IR micro bolometer using mission analysis process

    Science.gov (United States)

    Bustanul, A.; Irwan, P.; M. T., Andi; Firman, B.

    2016-11-01

    As new player in Infra Red (IR) sector, uncooled, small, and lightweight IR Micro Bolometer has been chosen as one of payloads for LAPAN's next micro satellite project. Driven the desire to create our own IR Micro Bolometer, mission analysis design procedure has been applied. After tracing all possible missions, the Planck's and Wien's Law for black body, Temperature Responsivity (TR), and sub-pixel response had been utilized in order to determine the appropriate spectral radiance. The 3.8 - 4 μm wavelength were available to detect wild fire (forest fire) and active volcanoes, two major problems faced by Indonesia. In order to strengthen and broaden the result, iteration process had been used throughout the process. The analysis, then, were continued by calculating Ground pixel size, IFOV pixel, swath width, and focus length. Meanwhile, regarding of resolution, at least it is 400 m. The further procedure covered the integrated of optical design, wherein we combined among optical design software, Zemax, with mechanical analysis software (structure and thermal analysis), such as Nastran and Thermal Desktop / Sinda Fluint. The integration process was intended to produce high performance optical system of our IR Micro Bolometer that can be used under extreme environment. The results of all those analysis, either in graphs or in measurement, show that the initial design of LAPAN'S IR Micro Bolometer meets the determined requirement. However, it needs the further evaluation (iteration). This paper describes the initial design of LAPAN's IR Micro Bolometer using mission analysis process

  8. Hybrid-PIC modeling of laser-plasma interactions and hot electron generation in gold hohlraum walls

    Science.gov (United States)

    Thoma, C.; Welch, D. R.; Clark, R. E.; Rose, D. V.; Golovkin, I. E.

    2017-06-01

    The walls of the hohlraum used in experiments at the national ignition facility are heated by laser beams with intensities ˜ 10 15 W/cm2, a wavelength of ˜ 1 / 3 μm, and pulse lengths on the order of a ns, with collisional absorption believed to be the primary heating mechanism. X-rays generated by the hot ablated plasma at the gold walls are then used to implode a target in the hohlraum interior. In addition to the collisional absorption of laser energy at the walls, non-linear laser-plasma interactions (LPI), such as stimulated Raman scattering and two plasmon decay, are believed to generate a population of supra-thermal electrons which, if present in the hohlraum, can have a deleterious effect on target implosion. We describe results of hohlraum modeling using a hybrid particle-in-cell code. To enable this work, new particle-based algorithms for a multiple-ion magneto-hydrodynamic (MHD) treatment, and a particle-based ray-tracing model were developed. The use of such hybrid methods relaxes the requirement to resolve the laser wavelength, and allows for relatively large-scale hohlraum simulations with a reasonable number of cells. But the non-linear effects which are believed to be the cause of hot electron generation can only be captured by fully kinetic simulations with good resolution of the laser wavelength. For this reason, we employ a two-tiered approach to hohlraum modeling. Large-scale simulations of the collisional absorption process can be conducted using the fast quasi-neutral MHD algorithm with fluid particle species. From these simulations, we can observe the time evolution of the hohlraum walls and characterize the density and temperature profiles. From these results, we can transition to smaller-scale highly resolved simulations using traditional kinetic particle-in-cell methods, from which we can fully model all of the non-linear laser-plasma interactions, as well as assess the details of the electron distribution function. We find that vacuum

  9. Superconductivity in highly disordered NbN nanowires

    Science.gov (United States)

    Arutyunov, K. Yu; Ramos-Álvarez, A.; Semenov, A. V.; Korneeva, Yu P.; An, P. P.; Korneev, A. A.; Murphy, A.; Bezryadin, A.; Gol'tsman, G. N.

    2016-11-01

    The topic of superconductivity in strongly disordered materials has attracted significant attention. These materials appear to be rather promising for fabrication of various nanoscale devices such as bolometers and transition edge sensors of electromagnetic radiation. The vividly debated subject of intrinsic spatial inhomogeneity responsible for the non-Bardeen-Cooper-Schrieffer relation between the superconducting gap and the pairing potential is crucial both for understanding the fundamental issues of superconductivity in highly disordered superconductors, and for the operation of corresponding nanoelectronic devices. Here we report an experimental study of the electron transport properties of narrow NbN nanowires with effective cross sections of the order of the debated inhomogeneity scales. The temperature dependence of the critical current follows the textbook Ginzburg-Landau prediction for the quasi-one-dimensional superconducting channel I c ˜ (1-T/T c)3/2. We find that conventional models based on the the phase slip mechanism provide reasonable fits for the shape of R(T) transitions. Better agreement with R(T) data can be achieved assuming the existence of short ‘weak links’ with slightly reduced local critical temperature T c. Hence, one may conclude that an ‘exotic’ intrinsic electronic inhomogeneity either does not exist in our structures, or, if it does exist, it does not affect their resistive state properties, or does not provide any specific impact distinguishable from conventional weak links.

  10. A millisecond-risetime sub-millimeter light source for lab and in flight bolometer calibration

    Energy Technology Data Exchange (ETDEWEB)

    Abbon, Ph. [DAPNIA CEA Saclay, 91191 Gif/Yvette Cedex (France); Delbart, A. [DAPNIA CEA Saclay, 91191 Gif/Yvette Cedex (France); Fesquet, M. [DAPNIA CEA Saclay, 91191 Gif/Yvette Cedex (France); Magneville, C. [DAPNIA CEA Saclay, 91191 Gif/Yvette Cedex (France)]. E-mail: cmv@hep.saclay.cea.fr; Mazeau, B. [DAPNIA CEA Saclay, 91191 Gif/Yvette Cedex (France); Pansart, J.-P. [DAPNIA CEA Saclay, 91191 Gif/Yvette Cedex (France); Yvon, D. [DAPNIA CEA Saclay, 91191 Gif/Yvette Cedex (France)]. E-mail: dyvon@cea.fr; Dumoulin, L. [IN2P3/CSNSM, Orsay (France); Marnieros, S. [IN2P3/CSNSM, Orsay (France); Camus, Ph. [CEA/CRTBT, Grenoble (France); Durand, T. [CEA/CRTBT, Grenoble (France); Hoffmann, Ch. [CEA/CRTBT, Grenoble (France)

    2007-06-01

    The Olimpo balloon project will use a 120 bolometer camera to observe the sky at four frequencies (143, 217, 385 and 600GHz) with a resolution of 3 to 2 arc-minute. This paper presents the sub-millimeter calibration 'lamp' developed for ground testing and in-flight secondary calibration of bolometric detectors. By design, main features of the device are reproducibility and stability of light flux and millisecond rise time. The radiative device will be placed inside the bolometer camera and will illuminate the bolometer array through a hole in the last 2K mirror. Operation, readout, and monitoring of the device is ensured by warm electronics. Light output flux and duration is programmable, triggered and monitored from a simple computer RS232 interface. It was tested to be reliable in ballooning temperature conditions from -80 to 50 deg. C. Design and test's results are explained.

  11. A millisecond-risetime sub-millimeter light source for lab and in flight bolometer calibration

    Science.gov (United States)

    Abbon, Ph.; Delbart, A.; Fesquet, M.; Magneville, C.; Mazeau, B.; Pansart, J.-P.; Yvon, D.; Dumoulin, L.; Marnieros, S.; Camus, Ph.; Durand, T.; Hoffmann, Ch.

    2007-06-01

    The Olimpo balloon project will use a 120 bolometer camera to observe the sky at four frequencies (143, 217, 385 and 600 GHz) with a resolution of 3 to 2 arc-minute. This paper presents the sub-millimeter calibration "lamp" developed for ground testing and in-flight secondary calibration of bolometric detectors. By design, main features of the device are reproducibility and stability of light flux and millisecond rise time. The radiative device will be placed inside the bolometer camera and will illuminate the bolometer array through a hole in the last 2 K mirror. Operation, readout, and monitoring of the device is ensured by warm electronics. Light output flux and duration is programmable, triggered and monitored from a simple computer RS232 interface. It was tested to be reliable in ballooning temperature conditions from -80 to 50C. Design and test's results are explained.

  12. Building the analytical response in frequency domain of AC biased bolometers - Application to Planck/HFI

    Science.gov (United States)

    Sauvé, Alexandre; Montier, Ludovic

    2016-10-01

    uc(Context): Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for ν knowledge of detector response. However bolometers have highly nonlinear characteristics, coming from their electrical and thermal coupling making them very difficult to model. uc(Goal): We present a method to build the analytical transfer function in frequency domain which describe the voltage response of an Alternative Current (AC) biased bolometer to optical excitation, based on the standard bolometer model. This model is built using the setup of the Planck/HFI instrument and offers the major improvement of being based on a physical model rather than the currently in use had-hoc model based on Direct Current (DC) bolometer theory. uc(Method): The analytical transfer function expression will be presented in matrix form. For this purpose, we build linearized versions of the bolometer electro thermal equilibrium. A custom description of signals in frequency is used to solve the problem with linear algebra. The model performances is validated using time domain simulations. uc(Results): The provided expression is suitable for calibration and data processing. It can also be used to provide constraints for fitting optical transfer function using real data from steady state electronic response and optical response. The accurate description of electronic response can also be used to improve the ADC nonlinearity correction for quickly varying optical signals.

  13. A multiplexer for the ac/dc characterization of TES based bolometers and microcalorimeters

    CERN Document Server

    Gottardi, Luciano; Bruijn, Marcel; Gao, Jan R; Hartog, Roland den; Hijmering, Richard; Hoevers, Henk; Khosropanah, Pourya; van der Kuur, Jan; van der Linden, Anoton; Lindeman, Marcel; Ridder, Marcel

    2016-01-01

    At SRON we are developing the Frequency Domain Multiplexing (FDM) for the read-out of the TES-based detector array for the future infrared and X-ray space mission. We describe the performances of a multiplexer designed to increase the experimental throughput in the characterisation of ultra-low noise equivalent power (NEP) TES bolometers and high energy resolving power X-ray microcalorimeters arrays under ac and dc bias. We discuss the results obtained using the TiAu TES bolometers array fabricated at SRON with measured dark NEP below $5\\cdot 10^{-19}W/Hz^{1/2}$ and saturation power of several fW

  14. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  15. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  16. Modeling and Design of GaN High Electron Mobility Transistors and Hot Electron Transistors through Monte Carlo Particle-based Device Simulations

    Science.gov (United States)

    Soligo, Riccardo

    In this work, the insight provided by our sophisticated Full Band Monte Carlo simulator is used to analyze the behavior of state-of-art devices like GaN High Electron Mobility Transistors and Hot Electron Transistors. Chapter 1 is dedicated to the description of the simulation tool used to obtain the results shown in this work. Moreover, a separate section is dedicated the set up of a procedure to validate to the tunneling algorithm recently implemented in the simulator. Chapter 2 introduces High Electron Mobility Transistors (HEMTs), state-of-art devices characterized by highly non linear transport phenomena that require the use of advanced simulation methods. The techniques for device modeling are described applied to a recent GaN-HEMT, and they are validated with experimental measurements. The main techniques characterization techniques are also described, including the original contribution provided by this work. Chapter 3 focuses on a popular technique to enhance HEMTs performance: the down-scaling of the device dimensions. In particular, this chapter is dedicated to lateral scaling and the calculation of a limiting cutoff frequency for a device of vanishing length. Finally, Chapter 4 and Chapter 5 describe the modeling of Hot Electron Transistors (HETs). The simulation approach is validated by matching the current characteristics with the experimental one before variations of the layouts are proposed to increase the current gain to values suitable for amplification. The frequency response of these layouts is calculated, and modeled by a small signal circuit. For this purpose, a method to directly calculate the capacitance is developed which provides a graphical picture of the capacitative phenomena that limit the frequency response in devices. In Chapter 5 the properties of the hot electrons are investigated for different injection energies, which are obtained by changing the layout of the emitter barrier. Moreover, the large signal characterization of the

  17. Energy-loss rate of hot electrons due to confined acoustic phonon modes in a semiconductor quantum wire under transverse electric field

    Science.gov (United States)

    Stepanyan, A.; Yeranosyan, M.; Vardanyan, L.; Asatryan, A.; Kirakosyan, A.; Vartanian, A.

    2017-08-01

    The hot-electron energy-loss rate via the acoustic-phonons in an embedded semiconductor quantum wire of circular cross section in the presence of external electric field has been investigated using deformation potential theory. Dimensional confinement effect on modifying acoustic-phonon modes are taken into account. The energy-loss rate as a function of electric field strength, electron density and electron temperature is obtained. Our calculations show that the electric field applied perpendicularly to the wire axis can be used as an important tool for the control of the energy-loss processes in nanowires.

  18. Role of hot electron base transport in abrupt emitter InP/Ga0.43In0.53As heterojunction bipolar transistors

    Science.gov (United States)

    Ritter, Dan; Hamm, R. A.; Feygenson, A.; Smith, P. R.

    1994-05-01

    The high frequency performance of InP/Ga0.47In0.53As heterojunction bipolar transistors (HBTs) with a varying base thickness was measured. The diffusion constant of minority carrier electrons in the heavily doped base was found to be 105 cm2/s. It is demonstrated that the short base transit times in fast InP/Ga0.47In0.53As HBTs is mainly due to the high value of the diffusion constant of thermalized electrons. The contribution of hot electron ballistic transport is relatively small.

  19. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  20. Toward 17µm pitch heterogeneously integrated Si/SiGe quantum well bolometer focal plane arrays

    Science.gov (United States)

    Ericsson, Per; Fischer, Andreas C.; Forsberg, Fredrik; Roxhed, Niclas; Samel, Björn; Savage, Susan; Stemme, Göran; Wissmar, Stanley; Öberg, Olof; Niklaus, Frank

    2011-06-01

    Most of today's commercial solutions for un-cooled IR imaging sensors are based on resistive bolometers using either Vanadium oxide (VOx) or amorphous Silicon (a-Si) as the thermistor material. Despite the long history for both concepts, market penetration outside high-end applications is still limited. By allowing actors in adjacent fields, such as those from the MEMS industry, to enter the market, this situation could change. This requires, however, that technologies fitting their tools and processes are developed. Heterogeneous integration of Si/SiGe quantum well bolometers on standard CMOS read out circuits is one approach that could easily be adopted by the MEMS industry. Due to its mono crystalline nature, the Si/SiGe thermistor material has excellent noise properties that result in a state-ofthe- art signal-to-noise ratio. The material is also stable at temperatures well above 450°C which offers great flexibility for both sensor integration and novel vacuum packaging concepts. We have previously reported on heterogeneous integration of Si/SiGe quantum well bolometers with pitches of 40μm x 40μm and 25μm x 25μm. The technology scales well to smaller pixel pitches and in this paper, we will report on our work on developing heterogeneous integration for Si/SiGe QW bolometers with a pixel pitch of 17μm x 17μm.

  1. An experimental study of antireflective coatings in Ge light detectors for scintillating bolometers

    Directory of Open Access Journals (Sweden)

    Mancuso M.

    2014-01-01

    Full Text Available Luminescent bolometers are double-readout devices able to measure simultaneously the phonon and the light yields after a particle interaction in the detector. This operation allows in some cases to tag the type of the interacting quantum, crucial issue for background control in rare event experiments such as the search for neutrinoless double beta decay and for interactions of particle dark matter candidates. The light detectors used in the LUCIFER and LUMINEU searches (projects aiming at the study of the double beta interesting candidates 82Se and 100Mo using ZnSe and ZnMoO4 scintillating bolometers consist of hyper-pure Ge thin slabs equipped with NTD thermistors. A substantial sensitivity improvement of the Ge light detectors can be obtained applying a proper anti-reflective coatings on the Ge side exposed to the luminescent bolometer. The present paper deals with the investigation of this aspect, proving and quantifying the positive effect of a SiO2 and a SiO coating and setting the experimental bases for future tests of other coating materials. The results confirm that an appropriate coating procedure helps in improving the sensitivity of bolometric light detectors by an important factor (in the range 20% – 35% and needs to be included in the recipe for the development of an optimized radio-pure scintillating bolometer.

  2. A high-Tc superconductor bolometer for remote sensing of atmospheric OH

    NARCIS (Netherlands)

    Nivelle, de M.J.M.E.; Bruijn, M.P.; Vries, de R.; Wijnbergen, J.J.; Korte, de P.A.J.; Sanchez, S.; Elwenspoek, M.; Heidenblut, T.; Schwierzi, B.; Michalke, W.; Steinbeiss, E.; Frericks, M.

    1996-01-01

    The technological feasibility is being investigated of a high-Tc superconductor transition edge bolometer for far-infrared detection, which can meet the requirements of a Fabry-Perot based satellite instrument designed for remote sensing of atmospheric OH. These include a time constant τ<0.3 s, an o

  3. Building the analytical response in frequency domain of AC biased bolometers Application to Planck/HFI

    CERN Document Server

    Sauvé, Alexandre

    2016-01-01

    Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for {\

  4. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  5. Superconducting submillimeter and millimeter wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, Michael [Univ. of California, Berkeley, CA (United States)

    1992-10-20

    The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-Tc microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa2Cu307-δ films was subsequently measured and provided direct evidence for the bolometric response of high-Tc films to fast (ns) laser pulses. The low-Tc microbolometer was developed and used to make the first direct measurements of the frequency dependent optical efficiency of planar lithographed antennas. The hot-electron microbolometer was invented less than a year prior to the writing of this dissertation. Our analysis, presented here, indicates that it should be possible to attain up to two orders of magnitude higher sensitivity than that of the best available direct detectors when operated at the same temperature. The temperature readout scheme for this device could also be used to measure the intrinsic interaction between electrons and phonons in a metal with a sensitivity that is five orders of magnitude better than in previous measurements. Preliminary measurements of quasiparticle trapping effects at the interface between a metal and a superconductor are also presented.

  6. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  7. Basic principle of superconductivity

    OpenAIRE

    De Cao, Tian

    2007-01-01

    The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

  8. Focal plane array detectors with micro-bolometer structure and its application in IR and THz imaging

    Science.gov (United States)

    Wang, Jun; Mou, Wenchao; Gou, Jun; Jiang, Yadong

    2016-10-01

    Focal Plane Array (FPA) detector has characteristics of low cost, operating at room temperature, compatibility with the silicon CMOS technology, and high detecting performance, therefore it becomes a hot spot in infrared (IR) or terahertz (THz) detect field recently. However, the tradition structure of micro-bolometer has the conflict of the pixel size and thermal performance. In order to improve the detecting performance of small pixel size bolometer, high fill factor and low thermal conductance design should be considered. In IR detecting, double layers structure is an efficient method to improve the absorption of micro-bolometer and reduce thermal conductance. The three-dimension model of small size micro-bolometer was built in this article. The thermal and mechanical characters of those models were simulated and optimized, and finally the double layer structure micro-bolometer was fabricated with multifarious semiconductor recipes on the readout integrated chip wafer. For THz detecting, to improve the detecting performance, different dimension THz detectors based on micro-bridge structure were designed and fabricated to get optimizing micro-bolometer parameters from the test results of membrane deformation. A nanostructured titanium thin film absorber is integrated in the micro-bridge structure of the VOx micro-bolometer to enhance the absorption of THz radiation. Continuous-wave THz detection and imaging are demonstrated with a 2.52 THz far infrared CO2 laser and fabricated 320×240 vanadium oxide micro-bolometer focal plane array with optimized cell structure. With this detecting system, THz imaging of metal concealed in wiping cloth and envelope is demonstrated.

  9. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  10. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  11. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  12. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  13. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  14. Heterogeneous oligonucleotide-hybridization assay based on hot electron-induced electrochemiluminescence of a rhodamine label at oxide-coated aluminum and silicon electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Spehar-Deleze, Anna-Maria [Laboratory of Sensors, Actuators and Microsystems, Institute of Microtechnology, University of Neuchatel, Rue Jaquet-Droz 1, CH-2007 Neuchatel (Switzerland) and Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland)]. E-mail: anna-maria.spehar@unine.ch; Suomi, Johanna [Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland); Jiang Qinghong [Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland); Rooij, Nico de [Laboratory of Sensors, Actuators and Microsystems, Institute of Microtechnology, University of Neuchatel, Rue Jaquet-Droz 1, CH-2007 Neuchatel (Switzerland); Koudelka-Hep, Milena [Laboratory of Sensors, Actuators and Microsystems, Institute of Microtechnology, University of Neuchatel, Rue Jaquet-Droz 1, CH-2007 Neuchatel (Switzerland); Kulmala, Sakari [Laboratory of Inorganic and Analytical Chemistry, Helsinki University of Technology, Kemistintie 1, FIN-02015 HUT (Finland)

    2006-07-28

    This paper describes a heterogeneous oligonucleotide-hybridization assay based on hot electron-induced electrochemiluminescence (HECL) of a rhodamine label. Thin oxide-film coated aluminum and silicon electrodes were modified with an aminosilane layer and derivatized with short, 15-mer oligonucleotides via diisothiocyanate coupling. Target oligonucleotides were conjugated with tetramethylrhodamine (TAMRA) dye at their amino modified 5' end and hybridization was detected using HECL of TAMRA. Preliminary results indicate sensitivity down to picomolar level and low nonspecific adsorption. The sensitivity was better on oxide-coated silicon compared to oxide-coated aluminum electrodes and two-base pair mismatched hybrids were successfully discriminated. The experimental results presented here might be useful for the design of disposable electrochemiluminescent DNA biosensors.

  15. Current gain in sub-10 nm base GaN tunneling hot electron transistors with AlN emitter barrier

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhichao, E-mail: zcyang.phys@gmail.com; Zhang, Yuewei; Nath, Digbijoy N.; Rajan, Siddharth [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Khurgin, Jacob B. [Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2015-01-19

    We report on Gallium Nitride-based tunneling hot electron transistor amplifier with common-emitter current gain greater than 1. Small signal current gain up to 5 and dc current gain of 1.3 were attained in common-emitter configuration with collector current density in excess of 50 kA/cm{sup 2}. The use of a combination of 1 nm GaN/3 nm AlN layers as an emitter tunneling barrier was found to improve the energy collimation of the injected electrons. These results represent demonstration of unipolar vertical transistors in the III-nitride system that can potentially lead to higher frequency and power microwave devices.

  16. Plasmon resonance energy transfer and hot electron injection induced high photocurrent density in liquid junction Ag@Ag2S sensitized solar cells.

    Science.gov (United States)

    Wu, Dapeng; Wang, Fujuan; Wang, Hongju; Cao, Kun; Gao, Zhiyong; Xu, Fang; Jiang, Kai

    2016-10-18

    An in situ technique was developed to deposit Ag@Ag2S core-shell quantum dots on a SnO2 mesoporous film for solar energy conversion. When adopted as a photoanode, an impressive high photocurrent density of ∼25.6 mA cm(-2) was demonstrated in a cell configuration using polysulfide S(2-)/Sn(2-) as an electrolyte and Cu2S/brass as a counter electrode, which leads to a power conversion efficiency of ∼0.784% for this environmentally benign device. Optical measurements showed that Ag nanoparticles could be employed as plasmon resonance centers to enhance the harvesting efficiency of incident light at the visible and near-infrared range. Moreover, photoluminescence spectra demonstrated fast charge transfer at Ag@Ag2S/SnO2 interfaces, which facilitates direct hot electron injection from sensitizers to the SnO2 matrix and finally gives rise to the high photocurrent density.

  17. Limiting efficiencies of solar energy conversion and photo-detection via internal emission of hot electrons and hot holes in gold

    CERN Document Server

    Boriskina, Svetlana V; Hsu, Wei-Chun; Liao, Bolin; Chen, Gang

    2015-01-01

    We evaluate the limiting efficiency of full and partial solar spectrum harvesting via the process of internal photoemission in Au-semiconductor Schottky junctions. Our results based on the ab initio calculations of the electron density of states (e-DOS) reveal that the limiting efficiency of the full-spectrum Au converter based on hot electron injection is below 4%. This value is even lower than previously established limit based on the parabolic approximation of the Au electron energy bands. However, we predict limiting efficiency exceeding 10% for the hot holes collection through the Schottky junction between Au and p-type semiconductor. Furthermore, we demonstrate that such converters have more potential if used as a part of the hybrid system for harvesting high- and low-energy photons of the solar spectrum.

  18. The magic of nanoplasmonics: from superhydrophobic and 3D suspended devices for SERS/TERS-like applications to hot-electrons based nanoscopy

    KAUST Repository

    Alabastri, A.

    2014-05-02

    The ability to confine light in small volumes, associated to low background signals, is an important technological achievement for a number of disciplines such as biology or electronics. In fact, decoupling the source position from the sample area allows an unprecedented sensitivity which can be exploited in different systems. The most direct implications are however related to either Surface Enhanced Raman Scattering (SERS) or Tip Enhanced Raman Scattering (TERS). Furthermore, while the combination with super-hydrophobic patterns can overcome the typical diffusion limit of sensors, focused surface plasmons decaying into hot electrons can be exploited to study the electronic properties of the sample by means of a Schottky junction. Within this paper these techniques will be briefly described and the key role played by both surface and localized plasmons will be highlighted. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  19. Au@ZnO nanostructures on porous silicon for photocatalysis and gas-sensing: the effect of plasmonic hot-electrons driven by visible-light

    Science.gov (United States)

    Zhou, Fang; Wang, Qiang; Liu, Wenjun

    2016-08-01

    Nanostructured heterojunctions play key role for transfer and separation of interfacial photo-carriers. At visible light illumination, the effects of Au nanoparticles (NPs) for the photocatalysis and gas-sensing performance of Au@ZnO nanstructures on porous silicon layer are reported. At optimized loading amount of Au NPs, the local surface plasmon resonance (LSPR) effect of Au NPs is studied. Generated by visible light irradiation, the LSPR effect of Au NPs promotes desorption and activation of surface adsorption oxygen species -{{{{O}}}2}-, which is initiated by hot electrons transfer through Au-ZnO nanojunctions. This mechanism is responsible for the enhanced photocatalysis of methyl orange molecular, as well as enhancing the detecting performance for ammonia (NH3) gas at room temperature.

  20. Rapid evaluation of doping-spike carrier concentration levels in millimetre-wave GaAs Gunn diodes with hot-electron injection

    Science.gov (United States)

    Farrington, N. E. S.; Carr, M. W.; Missous, M.

    2010-12-01

    This paper describes a novel method for fast, accurate evaluation of doping-spike carrier concentrations in hot-electron injected GaAs Gunn diodes. The technique relies on current asymmetry measurements obtained using pulsed-dc testing of on-wafer quasi-planar Gunn diode test structures, which removes the need for full device fabrication. Small changes in carrier concentration can easily be detected (at a nominal value of 1 × 1018 cm-3) and a greater sensitivity than conventional techniques is demonstrated at the doping levels used. In addition, test structure fabrication can be integrated into the initial Gunn diode front side production process allowing a rapid in-process test to be carried out thus leading to a significant reduction in material characterization cycle time.

  1. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  2. Femtosecond-laser induced dynamics of CO on Ru(0001): Deep insights from a hot-electron friction model including surface motion

    Science.gov (United States)

    Scholz, Robert; Floß, Gereon; Saalfrank, Peter; Füchsel, Gernot; Lončarić, Ivor; Juaristi, J. I.

    2016-10-01

    A Langevin model accounting for all six molecular degrees of freedom is applied to femtosecond-laser induced, hot-electron driven dynamics of Ru(0001)(2 ×2 ):CO. In our molecular dynamics with electronic friction approach, a recently developed potential energy surface based on gradient-corrected density functional theory accounting for van der Waals interactions is adopted. Electronic friction due to the coupling of molecular degrees of freedom to electron-hole pairs in the metal are included via a local density friction approximation, and surface phonons by a generalized Langevin oscillator model. The action of ultrashort laser pulses enters through a substrate-mediated, hot-electron mechanism via a time-dependent electronic temperature (derived from a two-temperature model), causing random forces acting on the molecule. The model is applied to laser induced lateral diffusion of CO on the surface, "hot adsorbate" formation, and laser induced desorption. Reaction probabilities are strongly enhanced compared to purely thermal processes, both for diffusion and desorption. Reaction yields depend in a characteristic (nonlinear) fashion on the applied laser fluence, as well as branching ratios for various reaction channels. Computed two-pulse correlation traces for desorption and other indicators suggest that aside from electron-hole pairs, phonons play a non-negligible role for laser induced dynamics in this system, acting on a surprisingly short time scale. Our simulations on precomputed potentials allow for good statistics and the treatment of long-time dynamics (300 ps), giving insight into this system which hitherto has not been reached. We find generally good agreement with experimental data where available and make predictions in addition. A recently proposed laser induced population of physisorbed precursor states could not be observed with the present low-coverage model.

  3. Development of Ultra-Low-Noise TES Bolometer Arrays

    Science.gov (United States)

    Suzuki, T.; Khosropanah, P.; Ridder, M. L.; Hijmering, R. A.; Gao, J. R.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2× 10^{-19} hbox {W}/√{{ {Hz}}}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner ({TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20 \\upmu hbox {m}), narrow (0.5-0.7 \\upmu hbox {m}), and long (340-460 \\upmu hbox {m}) SiN legs and show Tc of {˜ }93 hbox {mK} and Rn of {˜ }158 hbox {m}{Ω }. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1-3 MHz) system. TESs without the absorber show NEPs as low as 1.1 × 10^{-19} hbox {W}/√{{ {Hz}}} with a reasonable response speed ({TESs with the absorber, we confirmed a higher hbox {NEP}_{el} ({˜ }5 × 10^{-19} hbox {W}/√{{ {Hz}}}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.

  4. Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane.

    Science.gov (United States)

    Meister, H; Eich, T; Endstrasser, N; Giannone, L; Kannamüller, M; Kling, A; Koll, J; Trautmann, T; Detemple, P; Schmitt, S

    2010-10-01

    Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 °C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 μm thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 °C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.

  5. Optimization of a bolometer detector for ITER based on Pt absorber on SiN membrane

    Energy Technology Data Exchange (ETDEWEB)

    Meister, H.; Eich, T.; Endstrasser, N.; Giannone, L.; Kannamueller, M.; Kling, A.; Koll, J.; Trautmann, T. [Max-Planck-Institut fuer Plasmaphysik, EURATOM Association, Boltzmannstr. 2, D-85748 Garching (Germany); Detemple, P.; Schmitt, S. [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Str. 18-20, D-55129 Mainz (Germany); Collaboration: ASDEX Upgrade Team

    2010-10-15

    Any plasma diagnostic in ITER must be able to operate at temperatures in excess of 200 deg. C and neutron loads corresponding to 0.1 dpa over its lifetime. To achieve this aim for the bolometer diagnostic, a miniaturized metal resistor bolometer detector based on Pt absorbers galvanically deposited on SiN membranes is being developed. The first two generations of detectors featured up to 4.5 {mu}m thick absorbers. Results from laboratory tests are presented characterizing the dependence of their calibration constants under thermal loads up to 450 deg. C. Several detectors have been tested in ASDEX Upgrade providing reliable data but also pointing out the need for further optimization. A laser trimming procedure has been implemented to reduce the mismatch in meander resistances below 1% for one detector and the thermal drifts from this mismatch.

  6. An FPGA-based bolometer for the MAST-U Super-X divertor.

    Science.gov (United States)

    Lovell, Jack; Naylor, Graham; Field, Anthony; Drewelow, Peter; Sharples, Ray

    2016-11-01

    A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.

  7. Building the analytical response in frequency domain of AC biased bolometers. Application to Planck/HFI

    Science.gov (United States)

    Sauvé, Alexandre; Montier, Ludovic

    2016-12-01

    Context: Bolometers are high sensitivity detector commonly used in Infrared astronomy. The HFI instrument of the Planck satellite makes extensive use of them, but after the satellite launch two electronic related problems revealed critical. First an unexpected excess response of detectors at low optical excitation frequency for ν linearized versions of the bolometer electro thermal equilibrium. A custom description of signals in frequency is used to solve the problem with linear algebra. The model performances is validated using time domain simulations. Results: The provided expression is suitable for calibration and data processing. It can also be used to provide constraints for fitting optical transfer function using real data from steady state electronic response and optical response. The accurate description of electronic response can also be used to improve the ADC nonlinearity correction for quickly varying optical signals.

  8. First array of enriched Zn$^{82}$Se bolometers to search for double beta decay

    CERN Document Server

    Artusa, D R; Beeman, J W; Bellini, F; Biassoni, M; Brofferio, C; Camacho, A; Capelli, S; Cardani, L; Carniti, P; Casali, N; Cassina, L; Clemenza, M; Cremonesi, O; Cruciani, A; D'Addabbo, A; Dafinei, I; Di Domizio, S; di Vacri, M L; Ferroni, F; Gironi, L; Giuliani, A; Gotti, C; Keppel, G; Maino, M; Mancuso, M; Martinez, M; Morganti, S; Nagorny, S; Nastasi, M; Nisi, S; Nones, C; Orio, F; Orlandi, D; Pagnanini, L; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pessina, G; Pettinacci, V; Pirro, S; Pozzi, S; Previtali, E; Puiu, A; Rusconi, C; Schaeffner, K; Tomei, C; Vignati, M; Zolotarova, A

    2016-01-01

    The R&D activity performed during the last years proved the potential of ZnSe scintillating bolometers to the search for neutrino-less double beta decay, motivating the realization of the first large-mass experiment based on this technology: CUPID-0. The isotopic enrichment in $^{82}$Se, the Zn$^{82}$Se crystals growth, as well as the light detectors production have been accomplished, and the experiment is now in construction at Laboratori Nazionali del Gran Sasso (Italy). In this paper we present the results obtained testing the first three Zn$^{82}$Se crystals operated as scintillating bolometers, and we prove that their performance in terms of energy resolution, background rejection capability and intrinsic radio-purity complies with the requirements of CUPID-0.

  9. An FPGA-based bolometer for the MAST-U Super-X divertor

    Science.gov (United States)

    Lovell, Jack; Naylor, Graham; Field, Anthony; Drewelow, Peter; Sharples, Ray

    2016-11-01

    A new resistive bolometer system has been developed for MAST-Upgrade. It will measure radiated power in the new Super-X divertor, with millisecond time resolution, along 16 vertical and 16 horizontal lines of sight. The system uses a Xilinx Zynq-7000 series Field-Programmable Gate Array (FPGA) in the D-TACQ ACQ2106 carrier to perform real time data acquisition and signal processing. The FPGA enables AC-synchronous detection using high performance digital filtering to achieve a high signal-to-noise ratio and will be able to output processed data in real time with millisecond latency. The system has been installed on 8 previously unused channels of the JET vertical bolometer system. Initial results suggest good agreement with data from existing vertical channels but with higher bandwidth and signal-to-noise ratio.

  10. A bolometer based on single-walled carbon nanotubes and hybrid materials

    Science.gov (United States)

    Kopylova, D. S.; Boldyrev, N. Yu.; Iakovlev, V. Ya.; Gladush, Yu. G.; Nasibulin, A. G.

    2016-12-01

    We have designed a bolometric IR detector based on freestanding aerosol synthesised carbon nanotubes and hybrid graphene materials deposited on a film suspended over a hole in the substrate. In this case, graphene serves as an absorber. The effect of the amount of the deposited absorber on the spectral characteristics, voltage sensitivity, response time and noise of the bolometer is investigated. The best response time is observed for the samples of pristine carbon nanotubes, whereas the hybrid sample with the largest amount of graphene demonstrates the highest sensitivity to radiation. Moreover, we have measured and analysed the bolometer parameters as functions of the ambient pressure and temperature, which has allowed us to determine the optimum operating conditions for the device.

  11. Neutron Transmutation Doped (NTD) germanium thermistors for sub-mm bolometer applications

    Science.gov (United States)

    Haller, E. E.; Itoh, K. M.; Beeman, J. W.

    1996-01-01

    Recent advances in the development of neutron transmutation doped (NTD) semiconductor thermistors fabricated from natural and controlled isotopic composition germanium are reported. The near ideal doping uniformity that can be achieved with the NTD process, the device simplicity of NTD Ge thermistors and the high performance of cooled junction field effect transistor preamplifiers led to the widespread acceptance of these thermal sensors in ground-based, airborne and spaceborne radio telescopes. These features made possible the development of efficient bolometer arrays.

  12. Sensitivity to Cosmic Rays of Cold Electron Bolometers for Space Applications

    CERN Document Server

    Salatino, Maria; Kuzmin, Leonid; Mahashabde, Sumedh; Masi, Silvia

    2014-01-01

    An important phenomenon limiting the sensitivity of bolometric detectors for future space missions is the interaction with cosmic rays. We tested the sensitivity of Cold Electron Bolometers (CEBs) to ionizing radiation using gamma-rays from a radioactive source and X-rays from a X-ray tube. We describe the test setup and the results. As expected, due to the effective thermal insulation of the sensing element and its negligible volume, we find that CEBs are largely immune to this problem.

  13. Development of a prototype infrared imaging bolometer for NSTX-U

    Science.gov (United States)

    van Eden, G. G.; Delgado-Aparicio, L. F.; Gray, T. K.; Jaworski, M. A.; Morgan, T. W.; Peterson, B. J.; Reinke, M. L.; Sano, R.; Mukai, K.; Differ/Pppl Collaboration; Nifs/Pppl Collaboration

    2015-11-01

    Measurements of the radiated power in fusion reactors are of high importance for studying detachment and the overall power balance. A prototype Infrared Video Bolometer (IRVB) is being developed for NSTX-U complementing resistive bolometer and AXUV diode diagnostics. The IRVB has proven to be a powerful tool on LHD and JT-60U for its 2D imaging quality and reactor environment compatibility. For NSTX-U, a poloidal view of the lower center stack and lower divertor are envisaged for the 2016 run campaign. The IRVB concept images radiation from the plasma onto a 2.5 μm thick 9 x 7 cm2 calibrated Pt foil and monitors its temperature evolution using an IR camera (SB focal plane, 2-12 μm, 128x128 pixels, 1.6 kHz). The power incident on the foil is calculated by solving the 2D +time heat diffusion equation. Benchtop characterization is presented, demonstrating a sensitivity of approximately 20 mK and a noise equivalent power density of 71.5 μW cm-2 for 4x20 bolometer super-pixels and a 50 Hz time response. The hardware design, optimization of camera and detector settings as well as first results of both synthetic and experimental origin are discussed.

  14. Progress on Background-Limited Membrane-Isolated TES Bolometers for Far-IR/Submillimeter Spectroscopy

    Science.gov (United States)

    Kenyon, M.; Day, P. K.; Bradford, C. M.; Bock, J. J.; Leduc, H. G.

    2006-01-01

    To determine the lowest attainable phonon noise equivalent power (NEP) for membrane-isolation bolometers, we fabricated and measured the thermal conductance of suspended Si3N4 beams with different geometries via a noise thermometry technique. We measured beam cross-sectional areas ranging from 0.35 x 0.5 (micro)m(sup 2) to 135 x 1.0 (micro)m(sup 2) and beam lengths ranging from (micro)m to 8300 (micro)m. The measurements directly imply that membrane-isolation bolometers are capable of reaching a phonon noise equivalent power (NEP) of 4 x 10(sup -20)W/Hz(sup 1)/O . This NEP adequate for the Background-Limited Infrared-Submillimeter Spectrograph (BLISS) proposed for the Japanese SPICA observatory, and adequate for NASA's SAFIR observatory, a 10-meter, 4 K telescope to be deployed at L2. Further, we measured the heat capacity of a suspended Si3N4 membrane and show how this result implies that one can make membrane-isolation bolometers with a response time which is fast enough for BLISS.

  15. Characterization of a ZnSe scintillating bolometer prototype for neutrinoless double beta decay search

    Directory of Open Access Journals (Sweden)

    Tenconi M.

    2014-01-01

    Full Text Available As proposed in the LUCIFER project, ZnSe crystals are attractive materials to realize scintillating bolometers aiming at the search for neutrinoless double beta decay of the promising isotope 82Se. However, the optimization of the ZnSe-based detectors is rather complex and requires a wide-range investigation of the crystal features: optical properties, crystalline quality, scintillation yields and bolometric behaviour. Samples tested up to now show problems in the reproducibility of crucial aspects of the detector performance. In this work, we present the results obtained with a scintillating bolometer operated aboveground at about 25 mK. The detector energy absorber was a single 1 cm3 ZnSe crystal. The good energy resolution of the heat channel (about 14 keV at 1460 keV and the excellent alpha/beta discrimination capability are very encouraging for a successful realization of the LUCIFER program. The bolometric measurements were completed by optical tests on the crystal (optical transmission and luminescence measurements down to 10 K and investigation of the crystalline structure. The work here described provides a set of parameters and procedures useful for a complete pre-characterization of ZnSe crystals in view of the realization of highly performing scintillating bolometers.

  16. Optimisation of design parameters for collimators and pin-holes of bolometer cameras

    Energy Technology Data Exchange (ETDEWEB)

    Meister, H. [Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany); Kalvin, S. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, Konkoly-Thege Miklós 29–33, H-1121 Budapest (Hungary)

    2014-12-15

    The total radiation emission profile of fusion experiments is usually determined using the bolometer diagnostic. In order to evaluate the spatially resolved profile, many line integrated measurements are inverted using tomographic reconstruction techniques. Their success depends on a well known and optimised definition of the viewing cones of every line-of-sight. To this aim a set of equations has been derived and put in hierarchical order to define the design parameters for bolometer cameras in fusion experiments. In particular, previous considerations, which focussed on the beam width overlap and light yield optimisation, are extended to explicitly take geometrical boundary conditions imposed by the experimental device into account, with an emphasis on small gap sizes through which viewing cones have to pass through. The equations are derived for both camera types, collimator and pin-hole versions. The results obtained can be used to design bolometer cameras for any fusion device, but in particular also for ITER. An example of such an application is given and implications for the realisation of the optimal design are discussed.

  17. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  18. Superconducting energy recovery linacs

    Science.gov (United States)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  19. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  20. Fundamentals of Superconducting Nanoelectronics

    CERN Document Server

    Sidorenko, Anatolie

    2011-01-01

    This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, P

  1. Superconductive imaging surface magnetometer

    Science.gov (United States)

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  2. Superconducting optical modulator

    Science.gov (United States)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  3. Basic Study of Superconductive Actuator

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    2000-01-01

    There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...

  4. Energy-resolved detection of single infrared photons with {\\lambda} = 8 {\\mu}m using a superconducting microbolometer

    CERN Document Server

    Karasik, Boris S; Soibel, Alexander; Santavicca, Daniel F; Prober, Daniel E; Olaya, David; Gershenson, Michael E

    2012-01-01

    We report on the detection of single photons with {\\lambda} = 8 {\\mu}m using a superconducting hot-electron microbolometer. The sensing element is a titanium transition-edge sensor with a volume ~ 0.1 {\\mu}m^3 fabricated on a silicon substrate. Poisson photon counting statistics including simultaneous detection of 3 photons was observed. The width of the photon-number peaks was 0.11 eV, 70% of the photon energy, at 50-100 mK. This achieved energy resolution is the best figure reported so far for superconducting devices. Such devices can be suitable for single photon calorimetric spectroscopy throughout the mid-infrared and even the far-infrared.

  5. Graphene: Carbon's superconducting footprint

    Science.gov (United States)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  6. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  7. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  8. Effect of reverse body bias on hot-electron-induced punchthrough reliability of pMOSFETs with thin gate dielectric at high temperatures

    Science.gov (United States)

    Kang, YongHa; Kim, JongKyun; Lee, NamHyun; Oh, MinGeon; Hwang, YuChul; Moon, ByungMoo

    2016-06-01

    The effect of the reverse body bias V SB on the hot-electron-induced punch-through (HEIP) reliability of pMOSFETs with a thin gate dielectric at high temperatures was investigated for the first time. Experimental results indicate that the reverse V SB increased the HEIP degradation for a thin pMOSFET because of the increase in the maximum electric field E m due to the increase in the threshold voltage V th. The sensitivity of HEIP degradation to V SB increased with increasing body effect coefficient γ at a given oxide thickness T ox. However, a thin device (22 Å) showed a much stronger dependence of HEIP degradation on V SB due to the decrease in the velocity saturation length l, although it had a smaller γ than a thick device (60 Å). These new observations suggest that the body bias technique for improving circuit performance can cause a reliability problem of nanoscale pMOSFETs at high temperatures and impose a significant limitation on CMOS device scaling.

  9. Study of shock waves generation, hot electron production and role of parametric instabilities in an intensity regime relevant for the shock ignition

    Science.gov (United States)

    Antonelli, L.; Köster, P.; Folpini, G.; Maheut, Y.; Baffigi, F.; Cristoforetti, G.; Labate, L.; Levato, T.; Gizzi, L. A.; Consoli, F.; De Angelis, R.; Kalinowska, Z.; Chodukowski, T.; Rosinski, M.; Parys, P.; Pisarczyk, T.; Raczka, P.; Ryc, L.; Badziak, J.; Wolowski, J.; Smid, M.; Renner, O.; Krousky, E.; Pfeifer, M.; Skala, J.; Ullschmied, J.; Nicolaï, P.; Ribeyre, X.; Shurtz, G.; Atzeni, S.; Marocchino, A.; Schiavi, A.; Spindloe, C.; Dell, T. O.; Rhee, Y. J.; Richetta, M.; Batani, D.

    2016-03-01

    We present experimental results at intensities relevant to Shock Ignition obtained at the sub-ns Prague Asterix Laser System in 2012. We studied shock waves produced by laser-matter interaction in presence of a pre-plasma. We used a first beam at 1ω (1315 nm) at 7 x 1013 W/cm2 to create a pre-plasma on the front side of the target and a second at 3ω (438 nm) at ∼ 1016 W/cm2 to create the shock wave. Multilayer targets composed of 25 (or 40 µm) of plastic (doped with Cl), 5 µm of Cu (for Kα diagnostics) and 20 µm of Al for shock measurement were used. We used X-ray spectroscopy of Cl to evaluate the plasma temperature, Kα imaging and spectroscopy to evaluate spatial and spectral properties of the fast electrons and a streak camera for shock breakout measurements. Parametric instabilities (Stimulated Raman Scattering, Stimulated Brillouin Scattering and Two Plasmon Decay) were studied by collecting the back scattered light and analysing its spectrum. Back scattered energy was measured with calorimeters. To evaluate the maximum pressure reached in our experiment we performed hydro simulations with CHIC and DUED codes. The maximum shock pressure generated in our experiment at the front side of the target during laser-interaction is 90 Mbar. The conversion efficiency into hot electrons was estimated to be of the order of ∼ 0.1% and their mean energy in the order ∼50 keV.

  10. Hot electron refluxing in the short intense laser pulse interactions with solid targets and its influence on K-α radiation

    Directory of Open Access Journals (Sweden)

    Horný Vojtěch

    2015-06-01

    Full Text Available Fast electrons created as a result of the laser beam interaction with a solid target penetrate into the target material and initialize processes leading to the generation of the characteristic X-ray K-α radiation. Due to the strong electric field induced at the rear side of a thin target the transmitted electrons are redirected back into the target. These refluxing electrons increase the K-α radiation yield, as well as the duration of the X-ray pulse and the size of the radiation emitting area. A model describing the electron refluxing was verified via particle-in-cell simulations for non-relativistic electron energies. Using this model it was confirmed that the effect of the electron refluxing on the generated X-ray radiation depends on the target thickness and the target material. A considarable increase of the number of the emitted K-α photons is observed especially for thin targets made of low-Z materials, and for higher hot electron temperatures.

  11. The low energy spectrum of TeO2 bolometers: results and perspectives for the CUORE-0 and CUORE experiments

    CERN Document Server

    Alessandria, F; Artusa, D R; Avignone, F T; Azzolini, O; Balata, M; Banks, T I; Bari, G; Beeman, J; Bellini, F; Bersani, A; Biassoni, M; Bloxham, T; Brofferio, C; Bucci, C; Cai, X Z; Canonica, L; Capelli, S; Carbone, L; Cardani, L; Carrettoni, M; Casali, N; Chott, N; Clemenza, M; Cosmelli, C; Cremonesi, O; Creswick, R J; Dafinei, I; Dally, A; Datskov, V; De Biasi, A; Decowski, M P; Deninno, M M; Di Domizio, S; di Vacri, M L; Ejzak, L; Faccini, R; Fang, D Q; Farach, H A; Ferri, E; Ferroni, F; Fiorini, E; Franceschi, M A; Freedman, S J; Frossati, G; Fujikawa, B K; Giachero, A; Gironi, L; Giuliani, A; Goett, J J; Gorla, P; Gotti, C; Guardincerri, E; Gutierrez, T D; Haller, E E; Han, K; Heeger, K M; Huang, H Z; Kadel, R; Kazkaz, K; Keppel, G; Kogler, L; Kolomensky, Yu G; Lenz, D; Li, Y L; Ligi, C; Liu, X; Ma, Y G; Maiano, C; Maino, M; Martinez, M; Maruyama, R H; Moggi, N; Morganti, S; Napolitano, T; Newman, S; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; Orio, F; Orlandi, D; Ouellet, J L; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pirro, S; Previtali, E; Rampazzo, V; Rimondi, F; Rosenfeld, C; Rusconi, C; Sangiorgio, S; Scielzo, N D; Sisti, M; Smith, A R; Stivanello, F; Taffarello, L; Tenconi, M; Tian, W D; Tomei, C; Trentalange, S; Ventura, G; Vignati, M; Wang, B S; Wang, H W; Whitten, C A; Wise, y T; Woodcraft, A; Zanotti, L; Zarra, C; Zhu, B X; Zucchelli, S

    2012-01-01

    We collected 19.4 days of data from four 750 g TeO2 bolometers, and in three of them we were able to set the energy threshold around 3 keV using a new analysis technique. We found a background rate ranging from 25 cpd/keV/kg at 3 keV to 2 cpd/keV/kg at 25 keV, and a peak at 4.7 keV. The origin of this peak is presently unknown, but its presence is confirmed by a reanalysis of 62.7 kg days of data from the finished CUORICINO experiment. Finally, we report the expected sensitivities of the CUORE-0 (52 bolometers) and CUORE (988 bolometers) experiments to a WIMP annual modulation signal.

  12. Quasioptical qualification of parallel/series arrays of cold-electron bolometers with a cross-slot antenna

    CERN Document Server

    Mukhin, A S; Revin, L S; Abashin, A E; Shishov, A A; Pankratov, A L; Mahashabde, S; Kuzmin, L S

    2015-01-01

    We perform experimental and theoretical study of the Cold-Electron Bolometers (CEBs) integrated into a cross-slot antenna and composed with an immersion silicon lens. The purpose is to determine the absorption efficiency, the responsivity and the electrical noise equivalent power (NEP) of the bolometers. The absorbed power has been found in two independent ways. The comparison of two approaches gives better understanding of the system and secures from misinterpretations. The first approach is fitting of the bolometers' IV curves with solutions of heat-balance equations. The second approach is modeling of electromagnetic properties of the system, including an antenna, lens, optical can, band pass filters and black body source. The difference between both methods does not exceed $30\\%$. At the end the further improvements are proposed, which should lead to a photon limited detection mode.

  13. Bolometer's development for the detection of dark matter; Instrumentation autour de bolometres pour la recherche de matiere sombre WIMPs

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, D

    2000-06-01

    The author reviews his contributions to the use of bolometers (cryogenic detectors) for the detection of wimps (weakly interactive massive particles). Wimps are detected through their elastic scattering on the nuclei of the detector, a heat signal, luminescence or ionization can be simultaneously detected (at least 2 signals are necessary to discard photon interactions). Bolometers operate at low temperatures (< 50 mK) so they allow very low detection threshold and resolution (< keV) with a full energy conversion for recoiling nuclei. In Saclay the technology of bolometers based on simultaneous detection of heat and ionisation has been developed and improvements have been studied (NbSi thin films bolometers). The first results obtained in the framework of the Edelweiss collaboration are presented. Other developments based on infra-red bolometry (Planck surveyor and Archeops projects) are briefly described. In an appendix the operating principle of a bolometer is presented. (A.C.)

  14. Modeling multimode feed-horn coupled bolometers for millimeter-wave and terahertz astronomical instrumentation

    Science.gov (United States)

    Kalinauskaite, Eimante; Murphy, Anthony; McAuley, Ian; Trappe, Neil A.; Bracken, Colm P.; McCarthy, Darragh N.; Doherty, Stephen; Gradziel, Marcin L.; O'Sullivan, Creidhe; Maffei, Bruno; Lamarre, Jean-Michel A.; Ade, Peter A. R.; Savini, Giorgio

    2016-07-01

    Multimode horn antennas can be utilized as high efficiency feeds for bolometric detectors, providing increased throughput and sensitivity over single mode feeds, while also ensuring good control of beam pattern characteristics. Multimode horns were employed in the highest frequency channels of the European Space Agency Planck Telescope, and have been proposed for future terahertz instrumentation, such as SAFARI for SPICA. The radiation pattern of a multimode horn is affected by the details of the coupling of the higher order waveguide modes to the bolometer making the modeling more complicated than in the case of a single mode system. A typical cavity coupled bolometer system can be most efficiently simulated using mode matching, typically with smooth walled waveguide modes as the basis and computing an overall scattering matrix for the horn-waveguide-cavity system that includes the power absorption by the absorber. In this paper we present how to include a cavity coupled bolometer, modelled as a thin absorbing film with particular interest in investigating the cavity configuration for optimizing power absorption. As an example, the possible improvements from offsetting the axis of a cylindrically symmetric absorbing cavity from that of a circular waveguide feeding it (thus trapping more power in the cavity) are discussed. Another issue is the effect on the optical efficiency of the detectors of the presence of any gaps, through which power can escape. To model these effects required that existing in-house mode matching software, which calculates the scattering matrices for axially symmetric waveguide structures, be extended to be able to handle offset junctions and free space gaps. As part of this process the complete software code 'PySCATTER' was developed in Python. The approach can be applied to proposed terahertz systems, such as SPICASAFARI.

  15. Investigation of semiconducting YBaCuO thin films: A new room temperature bolometer

    Science.gov (United States)

    Shan, P. C.; ćelik-Butler, Z.; Butler, D. P.; Jahanzeb, A.; Travers, C. M.; Kula, W.; Sobolewski, Roman

    1996-12-01

    We explore the application of the semiconducting phases of YBaCuO thin films as a bolometer for uncooled infrared detection. For this study, four different structures were built with different types of buffer layers: YBaCuO on a Si substrate with and without a MgO buffer layer, and on an oxidized Si substrate with and without a MgO buffer layer. These films were all amorphous without a detectable long range order. For comparison, crystalline tetragonal YBa2Cu3O6.5 and YBa2Cu3O6.3 thin films on a LaAlO3 substrate were included into the study. All six films exhibited semiconducting resistance versus temperature characteristics. The bolometer figures of merit, responsivity, and detectivity were calculated from the measured temperature coefficient of resistance (TCR) and the inherent noise characteristics of the temperature sensing element. The room temperature TCRs for all four amorphous films were greater than 2.5% K-1. The highest TCR of 4.02% K-1 was observed on the amorphous YBaCuO thin film deposited on MgO/Si without a SiO2 layer. The TCR of the tetragonal films, on the other hand, remained 2% K-1 or less in the same temperature range. Noise measurements performed in the 1-100 Hz frequency range revealed a quadratic dependence on the bias current as would be expected from ohmic electrical characteristics. The Johnson and 1/f regions were clearly identified in the noise spectrum. From TCR and noise measurements, we estimated the amorphous semiconducting YBaCuO bolometers would have a responsivity as high as 3.8×105 V/W and a detectivity as high as 1.6×109 cm Hz1/2/W for 1 μA bias current and frame frequency of 30 Hz if integrated with a typical air-gap thermal isolation structure.

  16. Superconductivity in carbon nanomaterials

    Science.gov (United States)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  17. European roadmap on superconductive electronics - status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Blamire, M.G. [University of Cambridge, Department of Materials Science, Pembroke St, Cambridge CB2 3QZ (United Kingdom); Buchholz, F.-Im. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Crete, D.-G. [Unite Mixte de Physique CNRS/THALES, 1 Avenue Augustin Fresnel, 91767 Palaiseau CEDEx (France); Cristiano, R. [Istituto di Cibernetica CNR, Via Campi Flegrei 34, 80078 Napoli (Italy); Febvre, P. [University of Savoie, IMEP-LAHC, CNRS UMR 5130, Campus scientifique, 73376 Le Bourget du Lac Cedex (France); Fritzsch, L. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Herr, A. [Chalmers University of Technology, Department of Microtechnology and Nanoscience - MC2, SE-412 96 Goeteborg (Sweden); Il' ichev, E. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Kohlmann, J. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Kunert, J., E-mail: juergen.kunert@ipht-jena.d [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Meyer, H.-G. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Niemeyer, J. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Ortlepp, T. [Technische Universitaet Ilmenau, Theoretische Elektrotechnik, PF 10 05 65 D-98684 Ilmenau (Germany); Rogalla, H. [University of Twente, Fac. Science and Technology, P.O. Box 217, 7500 AE Enschede (Netherlands); Schurig, T. [Physikalisch-Technische Bundesanstalt (PTB), Berlin, Abbestr. 2-12, 10587 Berlin (Germany)

    2010-12-15

    Device (SQUID). Amongst many other applications SQUIDs are used as sensors for magnetic heart and brain signals in medical applications, as sensor for geological surveying and food-processing and for non-destructive testing. As amplifiers of electrical signals, SQUIDs can nearly reach the theoretical limit given by Quantum Mechanics. A further important field of application is the detection of very weak signals by 'transition-edge' bolometers, superconducting nanowire single-photon detectors, and superconductive tunnel junctions. Their application as radiation detectors in a wide frequency range, from microwaves to X-rays is now standard. The very low losses of superconductors have led to commercial microwave filter designs that are now widely used in the USA in base stations for cellular phones and in military communication applications. The number of demonstrated applications is continuously increasing and there is no area in professional electronics, in which superconductive electronics cannot be applied and surpasses the performance of classical devices. Superconductive electronics has to be cooled to very low temperatures. Whereas this was a bottleneck in the past, cooling techniques have made a huge step forward in recent years: very compact systems with high reliability and a wide range of cooling power are available commercially, from microcoolers of match-box size with milli-Watt cooling power to high-reliability coolers of many Watts of cooling power for satellite applications. Superconductive electronics will not replace semiconductor electronics and similar room-temperature techniques in standard applications, but for those applications which require very high speed, low-power consumption, extreme sensitivity or extremely high precision, superconductive electronics is superior to all other available techniques. To strengthen the European competitiveness in superconductor electronics research projects have to be set-up in the following field: - Ultra

  18. European roadmap on superconductive electronics - status and perspectives

    Science.gov (United States)

    Anders, S.; Blamire, M. G.; Buchholz, F.-Im.; Crété, D.-G.; Cristiano, R.; Febvre, P.; Fritzsch, L.; Herr, A.; Il'ichev, E.; Kohlmann, J.; Kunert, J.; Meyer, H.-G.; Niemeyer, J.; Ortlepp, T.; Rogalla, H.; Schurig, T.; Siegel, M.; Stolz, R.; Tarte, E.; ter Brake, H. J. M.; Toepfer, H.; Villegier, J.-C.; Zagoskin, A. M.; Zorin, A. B.

    2010-12-01

    many other applications SQUIDs are used as sensors for magnetic heart and brain signals in medical applications, as sensor for geological surveying and food-processing and for non-destructive testing. As amplifiers of electrical signals, SQUIDs can nearly reach the theoretical limit given by Quantum Mechanics. A further important field of application is the detection of very weak signals by ‘transition-edge’ bolometers, superconducting nanowire single-photon detectors, and superconductive tunnel junctions. Their application as radiation detectors in a wide frequency range, from microwaves to X-rays is now standard. The very low losses of superconductors have led to commercial microwave filter designs that are now widely used in the USA in base stations for cellular phones and in military communication applications. The number of demonstrated applications is continuously increasing and there is no area in professional electronics, in which superconductive electronics cannot be applied and surpasses the performance of classical devices. Superconductive electronics has to be cooled to very low temperatures. Whereas this was a bottleneck in the past, cooling techniques have made a huge step forward in recent years: very compact systems with high reliability and a wide range of cooling power are available commercially, from microcoolers of match-box size with milli-Watt cooling power to high-reliability coolers of many Watts of cooling power for satellite applications. Superconductive electronics will not replace semiconductor electronics and similar room-temperature techniques in standard applications, but for those applications which require very high speed, low-power consumption, extreme sensitivity or extremely high precision, superconductive electronics is superior to all other available techniques. To strengthen the European competitiveness in superconductor electronics research projects have to be set-up in the following field: Ultra-sensitive sensing and imaging

  19. Quenching factor for alpha particles in ZnSe scintillating bolometers

    Science.gov (United States)

    Nagorny, S.; Cardani, L.; Casali, N.; Dafinei, I.; Pagnanini, L.; Pattavina, L.; Pirro, S.; Schaeffner, K.

    2017-02-01

    In the framework of the CUPID-0 experiment, a numbers of ZnSe single crystals were produced and subjected to different thermal treatments, and later tested as cryogenic scintillating bolometers. We have found that a specific thermal treatment (24 hours under argon atmosphere at 900 °C) has a strong impact on some properties of ZnSe crystals (amplitude of signal, light yield, specific resistivity) and most interestingly, changes the quenching factor for alpha particles from values > 1 to values < 1. Thus such thermal treatment opens the possibility to modify this experimental parameter for a various applications.

  20. Multi-mode TES bolometer optimization for the LSPE-SWIPE instrument

    CERN Document Server

    Gualtieri, R; Cruciani, A; de Bernardis, P; Biasotti, M; Corsini, D; Gatti, F; Lamagna, L; Masi, S

    2016-01-01

    In this paper we explore the possibility of using transition edge sensor (TES) detectors in multi-mode configuration in the focal plane of the Short Wavelength Instrument for the Polarization Explorer (SWIPE) of the balloon-borne polarimeter Large Scale Polarization Explorer (LSPE) for the Cosmic Microwave Background (CMB) polarization. This study is motivated by the fact that maximizing the sensitivity of TES bolometers, under the augmented background due to the multi-mode design, requires a non trivial choice of detector parameters. We evaluate the best parameter combination taking into account scanning strategy, noise constraints, saturation power and operating temperature of the cryostat during the flight.

  1. A low noise, high thermal stability, 0.1 K test facility for the Planck HFI bolometers

    OpenAIRE

    2002-01-01

    We are developing a facility which will be used to characterize the bolometric detectors for Planck, an ESA mission to investigate the Cosmic Microwave Background. The bolometers operate at 0.1 K, employing neutron-transmutation doped (NTD) Ge thermistors with resistances of several megohms to achieve NEPs~1×10^(–17) W Hz^(–1/2). Characterization of the intrinsic noise of the bolometers at frequencies as low as 0.010 Hz dictates a test apparatus thermal stability of 40 nK Hz^(–1/2) to that fr...

  2. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  3. The superconducting spin valve and triplet superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Garifullin, I.A., E-mail: ilgiz_garifullin@yahoo.com [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Leksin, P.V.; Garif' yanov, N.N.; Kamashev, A.A. [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Fominov, Ya.V. [L. D. Landau Institute for Theoretical Physics RAS, 119334 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O.G. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Büchner, B. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany)

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoO{sub x}/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers. - Highlights: • We studied a spin switch design F1/F2/S. • We prepared a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). • The full spin switch effect for the superconducting current was realized. • We observed its oscillating behavior as a function of the Fe2-layer thickness. • We obtained direct evidence for the long-range triplet superconductivity.

  4. Tunneling in superconducting structures

    Science.gov (United States)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  5. Superconductivity in doped insulators

    Energy Technology Data Exchange (ETDEWEB)

    Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  6. Tunnelling Hot Electron Transfer Amplifiers

    Science.gov (United States)

    1993-10-30

    high- The RHEED intensity time evolution clearly shows that Vc quality inverted interfaces is especially important for achiev- the smoothness recovery...can be rk 2. A typical time evoluion lRE ispecula beam intemty akem dearly seen, alter each interruption. One of the GaAs stop layers is indicat- hU

  7. Hot electron dynamics in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Ling, Meng-Chieh [Iowa State Univ., Ames, IA (United States)

    2011-01-01

    Graphene, a two-dimensional (2D) honeycomb structure allotrope of carbon atoms, has a long history since the invention of the pencil [Petroski (1989)] and the linear dispersion band structure proposed by Wallace [Wal]; however, only after Novoselov et al. successively isolated graphene from graphite [Novoselov et al. (2004)], it has been studied intensively during the recent years. It draws so much attentions not only because of its potential application in future electronic devices but also because of its fundamental properties: its quasiparticles are governed by the two-dimensional Dirac equation, and exhibit a variety of phenomena such as the anomalous integer quantum Hall effect (IQHE) [Novoselov et al. (2005)] measured experimentally, a minimal conductivity at vanishing carrier concentration [Neto et al. (2009)], Kondo effect with magnetic element doping [Hentschel and Guinea (2007)], Klein tunneling in p-n junctions [Cheianov and Fal’ko (2006), Beenakker (2008)], Zitterbewegung [Katsnelson (2006)], and Schwinger pair production [Schwinger (1951); Dora and Moessner (2010)]. Although both electron-phonon coupling and photoconductivity in graphene also draws great attention [Yan et al. (2007); Satou et al. (2008); Hwang and Sarma (2008); Vasko and Ryzhii (2008); Mishchenko (2009)], the nonequilibrium behavior based on the combination of electronphonon coupling and Schwinger pair production is an intrinsic graphene property that has not been investigated. Our motivation for studying clean graphene at low temperature is based on the following effect: for a fixed electric field, below a sufficiently low temperature linear eletric transport breaks down and nonlinear transport dominates. The criteria of the strength of this field [Fritz et al. (2008)] is eE = T2/~vF (1.1) For T >√eE~vF the system is in linear transport regime while for T <√eE~vF the system is in nonlinear transport regime. From the scaling’s point of view, at the nonlinear transport regime the temperature T and electric field E are also related. In this thesis we show that the nontrivial electron distribution function can be associated with an effective temperature T which exhibits a dependence on electric field E and electron-phonon coupling g: T ∝ E1/4g(1.2) The anamolous exponent 1/4 may obtained from scaling. Meanwhile, yet we cannot obtain the distribution function, however, argument based on scaling gives us the current dependence on electric field: J ∝√Eg2 (1.3) which is a very different result compared with the results in which electrons do not experience scattering. This result provides us with important insighht into the correct nonequilibrium distribution function because now we know what the electric field dependence of current must be. Due to the applied field, the electronic system produces heat which prevents us from reaching a steady state. In order to remove Joule heat, we imagine that we have a graphene flake attached to a semiconductor substrate. Joule heat either transport to its environment or to the substrate as shown in 1.1. The red lines represent heat current flowing from high temperature sample to the low temperature reservoir. However, for a very large system, the temperature gradient is 0 in the plane so heat cannot be conducted outside in the horizontal direction, while the energy gap in semiconductor also forbids electron current from flowing into the substrate. But for phonon thermal current, the temperature gradient is large in the vertical direction, so heat can be transported into the substrate via phonons. There are two possible channels of phonon degrees of freedom, acoustic phonon and optical phonon. As we can see from Fig. 1.2 [Kusminskiy et al. (2009)], since the optical phonon excitation energy is too large for a low temperature system, it is note likely to be excited by the nonlinear electric field, so the possible way left is by electron-acoustic phonon scattering. Here acoustic phonon acts as a heat bath to absorb the Joule heat created by pair production process. Hence the scattering process is determined by electron-acoustic phonon interaction which will be introduced in section 3.3.

  8. Hot Electron Emission in Semiconductors.

    Science.gov (United States)

    2014-09-26

    absolute FIR emission intensity at one frequency as the absolute detector response and the optical properties of Present address: AT&T Bell Laboratories...awT)d.. (3) through the 2D electron system of GaAs/ AlGaAs single heterojunctions. This heats up the carriers to a carrier tern- The detector...this optical emis- and by the European Research Office of the U. S. Army, sion method are in good quantitative agreement with the London. Valuable

  9. Measurements of thermal characteristics in silicon germanium un-cooled micro-bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, Mario; Torres, Alfonso; Kosarev, Andrey [National Institute for Astrophysics, Optics and Electronics, P.O. Box 51 and 216, Z.P. 7200 Puebla (Mexico); Ambrosio, Roberto; Mireles, Jose [Universidad Autonoma de Ciudad Juarez, Electrical Department, Av. Del Charro 450 N, Z.P. 32310, C. J., Chihuahua (Mexico); Garcia, Maria [Benemerita Universidad Autonoma de Puebla, Physics Department, Av. San Claudio S/N Z.P. 72570 Puebla (Mexico)

    2010-04-15

    We present a study of the thermal characteristics of an infrared detector (un-cooled micro-bolometer), based on an amorphous silicon germanium film (a-Si{sub x}Ge{sub y}:H), deposited by plasma at low temperature ({proportional_to} 300 C) and compatible with the standard CMOS technology. These films have been studied due to their high performance characteristics as high activation energy (E{sub a}{approx} 0.37 eV), high temperature coefficient of resistance (TCR{approx} -0.047 K{sup -1}) and moderate room temperature conductivity ({sigma}{sub RT}{approx} 2x10{sup -5}{omega} cm), which provides a moderate pixel resistance (R{sub cell}{approx}3.5x10{sup 8}{omega}). We have used two simple methods to calculate the thermal characteristics of the micro-bolometer. The thermal conductance (G{sub th}) has been obtained from the electrical I(U) characteristics in the range where self heating due to bias is not presented. The temperature dependence of the electrical resistance and as well the temperature dependence of the thermal resistance have been obtained by measuring the I(U) characteristics in the device at different temperature values. Finally the results of both methods have been compared. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. Multiphysics simulation for the optimization of optical nanoantennas working as distributed bolometers in the infrared

    Science.gov (United States)

    Cuadrado, Alexander; Alda, Javier; González, Francisco Javier

    2013-01-01

    The electric currents induced by infrared radiation incident on optical antennas and resonant structures increase their temperature through Joule heating as well as change their electric resistance through the bolometric effect. As the thermo-electric mechanism exists throughout a distributed bolometer, a multiphysics approach was adopted to analyze thermal, electrical, and electromagnetic effects in a dipole antenna functioning as a resonant distributed bolometer. The finite element method was used for electromagnetic and thermal considerations. The results showed that bolometric performance depends on the choice of materials, the geometry of the resonant structure, the thickness of an insulating layer, and the characteristics of a bias circuit. Materials with large skin depth and small thermal conductivity are desirable. The thickness of the SiO insulating layer should not exceed 1.2 μm, and a current source for the bias circuit enhances performance. An optimized device designed with the previously stated design rules provides a response increase of two orders of magnitude compared to previously reported devices using the same dipole geometry.

  11. A scintillating bolometer array for double beta decay studies: The LUCIFER experiment

    Energy Technology Data Exchange (ETDEWEB)

    Gironi, L., E-mail: luca.gironi@mib.infn.it [Università degli Studi di Milano-Bicocca, Milano (Italy); INFN – Sezione di Milano-Bicocca, Milano (Italy)

    2016-07-11

    The main goal of the LUCIFER experiment is to study the neutrinoless double beta decay, a rare process allowed if neutrinos are Majorana particles. Although aiming at a discovery, in the case of insufficient sensitivity the LUCIFER technique will be the demonstrator for a higher mass experiment able to probe the entire inverted hierarchy region of the neutrino mass. In order to achieve this challenging result, high resolution detectors with active background discrimination capability are required. This very interesting possibility can be largely fulfilled by scintillating bolometers thanks to the simultaneous read-out of heat and light emitted by the interactions in the detector or by pulse shape analysis. - Highlights: • The LUCIFER technique will be the demonstrator for a higher mass experiment. • Scintillating bolometers allow high energy resolution and background discrimination. • The first choice for the LUCIFER tower are ZnSe crystals. • The LUCIFER setup will consist of an array of 30 individual single module detectors. • An array of ZnMoO4 crystals allowed the bolometric observation of the 2vDBD of {sup 100}Mo.

  12. Enriched Zn$^{100}$MoO$_4$ scintillating bolometers to search for $0 \

    CERN Document Server

    Barabash, A S; Danevich, F A; Giuliani, A; Ivanov, I M; Makarov, E P; Mancuso, M; Marnieros, S; Nasonov, S G; Nones, C; Olivieri, E; Pessina, G; Poda, D V; Shlegel, V N; Tenconi, M; Tretyak, V I; Vasiliev, Ya V; Velazquez, M; Zhdankov, V N

    2014-01-01

    The LUMINEU project aims at performing a demonstrator underground experiment searching for the neutrinoless double beta decay of the isotope $^{100}$Mo embedded in zinc molybdate (ZnMoO$_4$) scintillating bolometers. In this context, a zinc molybdate crystal boule enriched in $^{100}$Mo to 99.5\\% with a mass of 171 g was grown for the first time by the low-thermal-gradient Czochralski technique. The production cycle provided a high yield (the crystal boule mass was 84\\% of initial charge) and an acceptable level -- around 4\\% -- of irrecoverable losses of the costy enriched material. Two crystals of 59 g and 63 g, obtained from the enriched boule, were tested aboveground at milli-Kelvin temperature as scintillating bolometers. They showed a high detection performance, equivalent to that of previously developed natural ZnMoO$_4$ detectors. These results pave the way to future sensitive searches based on the LUMINEU technology, capable to approach and explore the inverted hierarchy region of the neutrino mass p...

  13. Rejection of randomly coinciding events in ZnMoO$_4$ scintillating bolometers

    CERN Document Server

    Chernyak, D M; Giuliani, A; Mancuso, M; Nones, C; Olivieri, E; Tenconi, M; Tretyak, V I

    2014-01-01

    Random coincidence of events (particularly from two neutrino double beta decay) could be one of the main sources of background in the search for neutrinoless double beta decay with cryogenic bolometers due to their poor time resolution. Pulse-shape discrimination by using front edge analysis, mean-time and $\\chi^2$ methods was applied to discriminate randomly coinciding events in ZnMoO$_4$ cryogenic scintillating bolometers. These events can be effectively rejected at the level of 99% by the analysis of the heat signals with rise-time of about 14 ms and signal-to-noise ratio of 900, and at the level of 92% by the analysis of the light signals with rise-time of about 3 ms and signal-to-noise ratio of 30, under the requirement to detect 95% of single events. These rejection efficiencies are compatible with extremely low background levels in the region of interest of neutrinoless double beta decay of $^{100}$Mo for enriched ZnMoO$_4$ detectors, of the order of $10^{-4}$ counts/(y keV kg). Pulse-shape parameters ...

  14. The 12x32 Pop-Up Bolometer Array for the SHARC II Camera

    Science.gov (United States)

    Dowell, C. Darren; Groseth, Jeffrey E.; Phillips, Thomas G.; Allen, Christine A.; Babu, Sachidananda R.; Jhabvala, Murzy D.; Moseley, S. Harvey, Jr.; Voellmer, George M.

    2002-01-01

    SHARC II is a 350 micron facility camera for the Caltech Submillimeter Observatory (CSO) expected to come on-line in 2002. The key component of SHARC II is a 12x32 array of doped silicon 'pop-up' bolometers developed at NASA/Goddard and delivered to Caltech in March 2002. Each pixel is 1 mm x 1 mm, coated with a 400 Omega/square bismuth film, and located lambda/4 above a reflective backshort to maximize radiation absorption. The pixels cover the focal plane with greater than 95% filling factor. Each doped thermistor occupies nearly the full area of the pixel to minimize 1/f noise. We report some results from the first cold measurements of this array. The bolometers were located inside a dark cover, and 4x32 pixels were read simultaneously. In the best 25% of winter nights on Mauna Kea, SHARC II is expected to have an NEFD at 350 microns of 1 Jy s(sup 1/2) or better.

  15. Measurements of the Optical Performance of Prototype TES Bolometers for SAFARI

    Science.gov (United States)

    Audley, M. D.; de Lange, G.; Ranjan, M.; Gao, J.-R.; Khosropanah, P.; Ridder, M. L.; Mauskopf, P. D.; Morozov, D.; Doherty, S.; Trappe, N.; Withington, S.

    2014-09-01

    We have measured the optical response of prototype detectors for SAFARI, the far-infrared imaging spectrometer for the SPICA satellite. SAFARI's three bolometer arrays, coupled with a Fourier transform spectrometer, will provide images of a 2'×2' field of view with spectral information over the wavelength range 34-210 μm. Each horn-coupled bolometer consists of a transition edge sensor (TES), with a transition temperature close to 100 mK, and a thin-film Ta absorber on a thermally-isolated silicon nitride membrane. SAFARI requires extremely sensitive detectors ( NEP˜2×10-19 W/), with correspondingly low saturation powers (˜5 fW), to take advantage of SPICA's cooled optics. To meet the challenge of testing such sensitive detectors we have constructed an ultra-low background test facility based on a cryogen-free high-capacity dilution refrigerator, paying careful attention to stray-light exclusion, shielding, and vibration isolation. For optical measurements the system contains internal cold (3-30 K) and hot (˜300 K) black-body calibration sources, as well as a light pipe for external illumination. We discuss our measurements of high optical efficiency in prototype SAFARI detectors and describe recent improvements to the test facility that will enable us to test the full SAFARI focal-plane arrays.

  16. The low-temperature energy calibration system for the CUORE bolometer array

    CERN Document Server

    Sangiorgio, S; Heeger, K M; Maruyama, R H; Nucciotti, A; Olcese, M; Wise, T S; Woodcraft, A L

    2009-01-01

    The CUORE experiment will search for neutrinoless double beta decay (0nDBD) of 130Te using an array of 988 TeO_2 bolometers operated at 10 mK in the Laboratori Nazionali del Gran Sasso (Italy). The detector is housed in a large cryogen-free cryostat cooled by pulse tubes and a high-power dilution refrigerator. The TeO_2 bolometers measure the event energies, and a precise and reliable energy calibration is critical for the successful identification of candidate 0nDBD and background events. The detector calibration system under development is based on the insertion of 12 gamma-sources that are able to move under their own weight through a set of guide tubes that route them from deployment boxes on the 300K flange down into position in the detector region inside the cryostat. The CUORE experiment poses stringent requirements on the maximum heat load on the cryostat, material radiopurity, contamination risk and the ability to fully retract the sources during normal data taking. Together with the integration into...

  17. Development of ballistic hot electron emitter and its applications to parallel processing: active-matrix massive direct-write lithography in vacuum and thin films deposition in solutions

    Science.gov (United States)

    Koshida, N.; Kojima, A.; Ikegami, N.; Suda, R.; Yagi, M.; Shirakashi, J.; Yoshida, T.; Miyaguchi, H.; Muroyama, M.; Nishino, H.; Yoshida, S.; Sugata, M.; Totsu, K.; Esashi, M.

    2015-03-01

    Making the best use of the characteristic features in nanocrystalline Si (nc-Si) ballistic hot electron source, the alternative lithographic technology is presented based on the two approaches: physical excitation in vacuum and chemical reduction in solutions. The nc-Si cold cathode is a kind of metal-insulator-semiconductor (MIS) diode, composed of a thin metal film, an nc-Si layer, an n+-Si substrate, and an ohmic back contact. Under a biased condition, energetic electrons are uniformly and directionally emitted through the thin surface electrodes. In vacuum, this emitter is available for active-matrix drive massive parallel lithography. Arrayed 100×100 emitters (each size: 10×10 μm2, pitch: 100 μm) are fabricated on silicon substrate by conventional planar process, and then every emitter is bonded with integrated complementary metal-oxide-semiconductor (CMOS) driver using through-silicon-via (TSV) interconnect technology. Electron multi-beams emitted from selected devices are focused by a micro-electro-mechanical system (MEMS) condenser lens array and introduced into an accelerating system with a demagnification factor of 100. The electron accelerating voltage is 5 kV. The designed size of each beam landing on the target is 10×10 nm2 in square. Here we discuss the fabrication process of the emitter array with TSV holes, implementation of integrated ctive-matrix driver circuit, the bonding of these components, the construction of electron optics, and the overall operation in the exposure system including the correction of possible aberrations. The experimental results of this mask-less parallel pattern transfer are shown in terms of simple 1:1 projection and parallel lithography under an active-matrix drive scheme. Another application is the use of this emitter as an active electrode supplying highly reducing electrons into solutions. A very small amount of metal-salt solutions is dripped onto the nc-Si emitter surface, and the emitter is driven without

  18. Hot-electron real-space transfer and longitudinal transport in dual AlGaN/AlN/{AlGaN/GaN} channels

    Science.gov (United States)

    Šermukšnis, E.; Liberis, J.; Matulionis, A.; Avrutin, V.; Ferreyra, R.; Özgür, Ü.; Morkoç, H.

    2015-03-01

    Real-space transfer of hot electrons is studied in dual-channel GaN-based heterostructure operated at or near plasmon-optical phonon resonance in order to attain a high electron drift velocity at high current densities. For this study, pulsed electric field is applied in the channel plane of a nominally undoped Al0.3Ga0.7N/AlN/{Al0.15Ga0.85N/GaN} structure with a composite channel of Al0.15Ga0.85N/GaN, where the electrons with a sheet density of 1.4 × 1013 cm-2, estimated from the Hall effect measurements, are confined. The equilibrium electrons are situated predominantly in the Al0.15Ga0.85N layer as confirmed by capacitance-voltage experiment and Schrödinger-Poisson modelling. The main peak of the electron density per unit volume decreases as more electrons occupy the GaN layer at high electric fields. The associated decrease in the plasma frequency induces the plasmon-assisted decay of non-equilibrium optical phonons (hot phonons) confirmed by the decrease in the measured hot-phonon lifetime from 0.95 ps at low electric fields down below 200 fs at fields of E \\gt 4 kV cm-1 as the plasmon-optical phonon resonance is approached. The onset of real-space transfer is resolved from microwave noise measurements: this source of noise dominates for E \\gt 8 kV cm-1. In this range of fields, the longitudinal current exceeds the values measured for a mono channel reference Al0.3Ga0.7N/AlN/GaN structure. The results are explained in terms of the ultrafast decay of hot phonons and reduced alloy scattering caused by the real-space transfer in the composite channel.

  19. Rhodium Catalysts in the Oxidation of CO by O2 and NO: Shape, Composition, and Hot Electron Generation

    Energy Technology Data Exchange (ETDEWEB)

    Renzas, James R. [Univ. of California, Berkeley, CA (United States)

    2010-03-08

    It is well known that the activity, selectivity, and deactivation behavior of heterogeneous catalysts are strongly affected by a wide variety of parameters, including but not limited to nanoparticle size, shape, composition, support, pretreatment conditions, oxidation state, and electronic state. Enormous effort has been expended in an attempt to understand the role of these factors on catalytic behavior, but much still remains to be discovered. In this work, we have focused on deepening the present understanding of the role of nanoparticle shape, nanoparticle composition, and hot electrons on heterogeneous catalysis in the oxidation of carbon monoxide by molecular oxygen and nitric oxide. These reactions were chosen because they are important for environmental applications, such as in the catalytic converter, and because there is a wide range of experimental and theoretical insight from previous single crystal work as well as experimental data on nanoparticles obtained using new state-of-the-art techniques that aid greatly in the interpretation of results on complex nanoparticle systems. In particular, the studies presented in this work involve three types of samples: ~ 6.5 nm Rh nanoparticles of different shapes, ~ 15 nm Rh1-xPdx core-shell bimetallic polyhedra nanoparticles, and Rh ultra-thin film (~ 5 nm) catalytic nanodiodes. The colloidal nanoparticle samples were synthesized using a co-reduction of metal salts in alcohol and supported on silicon wafers using the Langmuir-Blodgett technique. This synthetic strategy enables tremendous control of nanoparticle size, shape, and composition. Nanoparticle shape was controlled through the use of different organic polymer capping layers. Bimetallic core-shell nanoparticles were synthesized by careful choice of metal salt precursors. Rh/TiOx and Rh/GaN catalytic nanodiodes were fabricated using a variety of thin film device fabrication techniques, including reactive DC magnetron

  20. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...... MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train....

  1. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  2. Superconductivity fundamentals and applications

    CERN Document Server

    Buckel, Werner

    2004-01-01

    This is the second English edition of what has become one of the definitive works on superconductivity in German -- currently in its sixth edition. Comprehensive and easy to understand, this introductory text is written especially with the non-specialist in mind. The authors, both long-term experts in this field, present the fundamental considerations without the need for extensive mathematics, describing the various phenomena connected with the superconducting state, with liberal insertion of experimental facts and examples for modern applications. While all fields of superconducting phenomena are dealt with in detail, this new edition pays particular attention to the groundbreaking discovery of magnesium diboride and the current developments in this field. In addition, a new chapter provides an overview of the elements, alloys and compounds where superconductivity has been observed in experiments, together with their major characteristics. The chapter on technical applications has been considerably expanded...

  3. Superconductivity and symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)

    2012-02-15

    In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.

  4. Photoemission, Correlation and Superconductivity:

    Science.gov (United States)

    Abrecht, M.; Ariosa, D.; Cloëtta, D.; Pavuna, D.; Perfetti, L.; Grioni, M.; Margaritondo, G.

    We review some of the problems still affecting photoemission as a probe of high-temperature superconductivity, as well as important recent results concerning their solution. We show, in particular, some of the first important results on thin epitaxial films grown by laser ablation, which break the monopoly of cleaved BCSCO in this type of experiments. Such results, obtained on thin LSCO, may have general implications on the theory of high-temperature superconductivity.

  5. Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays

    Science.gov (United States)

    Forsberg, Fredrik; Roxhed, Niclas; Fischer, Andreas C.; Samel, Björn; Ericsson, Per; Hoivik, Nils; Lapadatu, Adriana; Bring, Martin; Kittilsland, Gjermund; Stemme, Göran; Niklaus, Frank

    2013-09-01

    Imaging in the long wavelength infrared (LWIR) range from 8 to 14 μm is an extremely useful tool for non-contact measurement and imaging of temperature in many industrial, automotive and security applications. However, the cost of the infrared (IR) imaging components has to be significantly reduced to make IR imaging a viable technology for many cost-sensitive applications. This paper demonstrates new and improved fabrication and packaging technologies for next-generation IR imaging detectors based on uncooled IR bolometer focal plane arrays. The proposed technologies include very large scale heterogeneous integration for combining high-performance, SiGe quantum-well bolometers with electronic integrated read-out circuits and CMOS compatible wafer-level vacuum packing. The fabrication and characterization of bolometers with a pitch of 25 μm × 25 μm that are arranged on read-out-wafers in arrays with 320 × 240 pixels are presented. The bolometers contain a multi-layer quantum well SiGe thermistor with a temperature coefficient of resistance of -3.0%/K. The proposed CMOS compatible wafer-level vacuum packaging technology uses Cu-Sn solid-liquid interdiffusion (SLID) bonding. The presented technologies are suitable for implementation in cost-efficient fabless business models with the potential to bring about the cost reduction needed to enable low-cost IR imaging products for industrial, security and automotive applications.

  6. Twenty-channel bolometer array for studying impurity radiation and transport in the TCS field-reversed configuration

    Science.gov (United States)

    Kostora, M. R.; Hsu, S. C.; Wurden, G. A.

    2006-10-01

    A bolometer array diagnostic has been developed for the University of Washington Translation, Confinement, and Sustainment (TCS) field-reversed configuration (FRC) experiment in order to measure radially resolved total radiated power per unit length of the FRC. This will provide radiation energy loss information, useful in power balance and impurity studies. The 20-element photodiode bolometer will be mounted at the midplane of the TCS cylindrical vacuum chamber to view the rotating magnetic field (RMF) generated FRC plasma. Key features of this new bolometer array are (1) extensive electrical shielding against the RMF, (2) robust electrical isolation, (3) trans-impedance amplifiers using a microcoax interface at the array and a fiber optic interface to the screen room, and (4) a custom glass-on-metal socket for the 20-element photodiode chip to ensure high vacuum compatibility. The bolometer array can be retracted behind a gate valve using a stepper motor to protect it during vacuum chamber bakeout. The slit assembly housing is interchangeable to provide flexibility for the viewing sightlines.

  7. A low noise, high thermal stability, 0.1 K test facility for the Planck HFI bolometers

    Science.gov (United States)

    Paine, C. G.; Bock, J. J.; Hristov, V. V.; Lange, A. E.

    2002-05-01

    We are developing a facility which will be used to characterize the bolometric detectors for Planck, an ESA mission to investigate the Cosmic Microwave Background. The bolometers operate at 0.1 K, employing neutron-transmutation doped (NTD) Ge thermistors with resistances of several megohms to achieve NEPs˜1×10-17 W Hz-1/2. Characterization of the intrinsic noise of the bolometers at frequencies as low as 0.010 Hz dictates a test apparatus thermal stability of 40 nK Hz-1/2 to that frequency. This temperature stability is achieved via a multi-stage isolation and control geometry with high resolution thermometry implemented with NTD Ge thermistors, JFET source followers, and dedicated lock-in amplifiers. The test facility accommodates 24 channels of differential signal readout, for measurement of bolometer V(I) characteristics and intrinsic noise. The test facility also provides for modulated radiation in the submillimeter band incident on the bolometers, for measurement of the optical speed-of-response; this illumination can be reduced below detectable limits without interrupting cryogenic operation. A commercial Oxford Instruments dilution refrigerator provides the cryogenic environment for the test facility.

  8. l/f Noise in the Superconducting Transition of a MgB2 Thin Film

    Science.gov (United States)

    Lakew, B.; Aslam, S.; Jones, H.; Stevenson, T.; Cao, N.

    2010-01-01

    The noise voltage spectral density in the superconducting transition of a MgB2 thin film on a SiN-coated Si thick substrate was measured over the frequency range 1 Hz-to-1 KHz. Using established bolometer noise theory the theoretical noise components due to Johnson, 1/f(excess) and phonon noise are modeled to the measured data. It is shown that for the case of a MgB2 thin film in the vicinity of the mid-point of transition, coupled to a heat sink via a fairly high thermal conductance (approximately equal to 10(sup -1) W/K)) that the measured noise voltage spectrum is 1/f limited and exhibits lit dependence with a varying between 0.3 and 0.5 in the measured frequency range. At a video frame rate frequency of 30 Hz the measured noise voltage density in the film is approximately equal to 61 nV /the square root of HZ, using this value an upper limit of electrical NEP approximately equal to 0.67pW / the square root of Hz is implied for a practical MgB2 bolometer operating at 36.1 K.

  9. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  10. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  11. High temperature interfacial superconductivity

    Science.gov (United States)

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  12. The superconducting spin valve and triplet superconductivity

    Science.gov (United States)

    Garifullin, I. A.; Leksin, P. V.; Garif`yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O. G.; Büchner, B.

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers.

  13. Spectral Characterizations of the Clouds and the Earth's Radiant Energy System (CERES) Thermistor Bolometers using Fourier Transform Spectrometer (FTS) Techniques

    Science.gov (United States)

    Thornhill, K. Lee; Bitting, Herbert; Lee, Robert B., III; Paden, Jack; Pandey, Dhirendra K.; Priestley, Kory J.; Thomas, Susan; Wilson, Robert S.

    1998-01-01

    Fourier Transform Spectrometer (FTS) techniques are being used to characterize the relative spectral response, or sensitivity, of scanning thermistor bolometers in the infrared (IR) region (2 - >= 100-micrometers). The bolometers are being used in the Clouds and the Earth's Radiant Energy System (CERES) program. The CERES measurements are designed to provide precise, long term monitoring of the Earth's atmospheric radiation energy budget. The CERES instrument houses three bolometric radiometers, a total wavelength (0.3- >= 150-micrometers) sensor, a shortwave (0.3-5-micrometers) sensor, and an atmospheric window (8-12-micrometers) sensor. Accurate spectral characterization is necessary for determining filtered radiances for longwave radiometric calibrations. The CERES bolometers spectral response's are measured in the TRW FTS Vacuum Chamber Facility (FTS - VCF), which uses a FTS as the source and a cavity pyroelectric trap detector as the reference. The CERES bolometers and the cavity detector are contained in a vacuum chamber, while the FTS source is housed in a GN2 purged chamber. Due to the thermal time constant of the CERES bolometers, the FTS must be operated in a step mode. Data are acquired in 6 IR spectral bands covering the entire longwave IR region. In this paper, the TRW spectral calibration facility design and data measurement techniques are described. Two approaches are presented which convert the total channel FTS data into the final CERES spectral characterizations, producing the same calibration coefficients (within 0.1 percent). The resulting spectral response curves are shown, along with error sources in the two procedures. Finally, the impact of each spectral response curve on CERES data validation will be examined through analysis of filtered radiance values from various typical scene types.

  14. Investigation of semiconducting YBaCuO thin films: A new room temperature bolometer

    Energy Technology Data Exchange (ETDEWEB)

    Shan, P.C.; Celik-Butler, Z.; Butler, D.P.; Jahanzeb, A.; Travers, C.M. [Department of Electrical Engineering, Southern Methodist University, Dallas, Texas 75275-0338 (United States); Kula, W.; Sobolewski, R. [Department of Electrical Engineering and Laboratory for Laser Energetics, University of Rochester, Rochester, New York 14627 (United States)

    1996-12-01

    We explore the application of the semiconducting phases of YBaCuO thin films as a bolometer for uncooled infrared detection. For this study, four different structures were built with different types of buffer layers: YBaCuO on a Si substrate with and without a MgO buffer layer, and on an oxidized Si substrate with and without a MgO buffer layer. These films were all amorphous without a detectable long range order. For comparison, crystalline tetragonal YBa{sub 2}Cu{sub 3}O{sub 6.5} and YBa{sub 2}Cu{sub 3}O{sub 6.3} thin films on a LaAlO{sub 3} substrate were included into the study. All six films exhibited semiconducting resistance versus temperature characteristics. The bolometer figures of merit, responsivity, and detectivity were calculated from the measured temperature coefficient of resistance (TCR) and the inherent noise characteristics of the temperature sensing element. The room temperature TCRs for all four amorphous films were greater than 2.5{percent} K{sup {minus}1}. The highest TCR of 4.02{percent} K{sup {minus}1} was observed on the amorphous YBaCuO thin film deposited on MgO/Si without a SiO{sub 2} layer. The TCR of the tetragonal films, on the other hand, remained 2{percent} K{sup {minus}1} or less in the same temperature range. Noise measurements performed in the 1{endash}100 Hz frequency range revealed a quadratic dependence on the bias current as would be expected from ohmic electrical characteristics. The Johnson and 1/{ital f} regions were clearly identified in the noise spectrum. From TCR and noise measurements, we estimated the amorphous semiconducting YBaCuO bolometers would have a responsivity as high as 3.8{times}10{sup 5} V/W and a detectivity as high as 1.6{times}10{sup 9} cmHz{sup 1/2}/W for 1 {mu}A bias current and frame frequency of 30 Hz if integrated with a typical air-gap thermal isolation structure. {copyright} {ital 1996 American Institute of Physics.}

  15. Reliability issues for a bolometer detector for ITER at high operating temperatures.

    Science.gov (United States)

    Meister, H; Kannamüller, M; Koll, J; Pathak, A; Penzel, F; Trautmann, T; Detemple, P; Schmitt, S; Langer, H

    2012-10-01

    The first detector prototypes for the ITER bolometer diagnostic featuring a 12.5 μm thick Pt-absorber have been realized and characterized in laboratory tests. The results show linear dependencies of the calibration parameters and are in line with measurements of prototypes with thinner absorbers. However, thermal cycling tests up to 450 °C of the prototypes with thick absorbers demonstrated that their reliability at these elevated operating temperatures is not yet sufficient. Profilometer measurements showed a deflection of the membrane hinting to stresses due to the deposition processes of the absorber. Finite element analysis (FEA) managed to reproduce the deflection and identified the highest stresses in the membrane in the region around the corners of the absorber. FEA was further used to identify changes in the geometry of the absorber with a positive impact on the intrinsic stresses of the membrane. However, further improvements are still necessary.

  16. Preliminary design of a tangentially viewing imaging bolometer for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, B. J., E-mail: peterson@LHD.nifs.ac.jp; Mukai, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); SOKENDAI (The Graduate University for Advance Studies), Toki 509-5292 (Japan); Sano, R. [National Institutes for Quantum and Radiological Science and Technology, Naka, Ibaraki 311-0193 (Japan); Reinke, M. L.; Canik, J. M.; Lore, J. D.; Gray, T. K. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Delgado-Aparicio, L. F.; Jaworski, M. A. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Eden, G. G. van [FOM Institute DIFFER, 5612 AJ Eindhoven (Netherlands)

    2016-11-15

    The infrared imaging video bolometer (IRVB) measures plasma radiated power images using a thin metal foil. Two different designs with a tangential view of NSTX-U are made assuming a 640 × 480 (1280 × 1024) pixel, 30 (105) fps, 50 (20) mK, IR camera imaging the 9 cm × 9 cm × 2 μm Pt foil. The foil is divided into 40 × 40 (64 × 64) IRVB channels. This gives a spatial resolution of 3.4 (2.2) cm on the machine mid-plane. The noise equivalent power density of the IRVB is given as 113 (46) μW/cm{sup 2} for a time resolution of 33 (20) ms. Synthetic images derived from Scrape Off Layer Plasma Simulation data using the IRVB geometry show peak signal levels ranging from ∼0.8 to ∼80 (∼0.36 to ∼26) mW/cm{sup 2}.

  17. Design and construction of high-sensitivity, infrared bolometers for operation at 300 mK

    Science.gov (United States)

    Alsop, D. C.; Inman, C.; Lange, A. E.; Wibanks, T.

    1992-01-01

    The design and construction of 300-mK composite bolometers developed for millimeter-wave astronomical observations are described. Graphite fibers are used as the electrical leads for the thermistor to reduce the thermal conductance and heat capacity associated with the leads. A mechanical suspension made of Nylon fibers provides the required thermal conductance. Electrical noise equivalent powers below 1 x 10 exp -16 W/sq rt Hz have been achieved for detectors with thermal time constants of 11 ms. The detectors were installed in a millimeter-wave photometer and used to perform observations of the cosmic microwave background from a balloonborne platform. The flight performance was consistent with the measured laboratory properties.

  18. Mechanical design and development of TES bolometer detector arrays for the Advanced ACTPol experiment

    CERN Document Server

    Ward, Jonathan T; Beall, James A; Choi, Steve K; Crowley, Kevin T; Devlin, Mark J; Duff, Shannon M; Gallardo, Patricio M; Henderson, Shawn W; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Niemack, Michael D; Page, Lyman A; Salatino, Maria; Schillaci, Alessandro; Schmitt, Benjamin L; Simon, Sara M; Staggs, Suzanne T; Thornton, Robert; Ullom, Joel N; Vavagiakis, Eve M; Wollack, Edward J

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling ~5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline profile leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at t...

  19. Antenna-coupled TES Bolometer Arrays for BICEP2/Keck and SPIDER

    CERN Document Server

    Orlando, A; Amiri, M; Bock, J J; Bonetti, J A; Brevik, J A; Burger, B; Chattopadthyay, G; Day, P K; Filippini, J P; Golwala, S R; Halpern, M; Hasselfield, M; Hilton, G C; Irwin, K D; Kenyon, M; Kovac, J M; Kuo, C L; Lange, A E; LeDuc, H G; Llombart, N; Nguyen, H T; Ogburn, R W; Reintsema, C D; Runyan, M C; Staniszewski, Z; Sudiwala, R; Teply, G; Trangsrud, A R; Turner, A D; Wilson, P

    2010-01-01

    BICEP2/Keck and SPIDER are cosmic microwave background (CMB) polarimeters targeting the B-mode polarization induced by primordial gravitational waves from inflation. They will be using planar arrays of polarization sensitive antenna-coupled TES bolometers, operating at frequencies between 90 GHz and 220 GHz. At 150 GHz each array consists of 64 polarimeters and four of these arrays are assembled together to make a focal plane, for a total of 256 dual-polarization elements (512 TES sensors). The detector arrays are integrated with a time-domain SQUID multiplexer developed at NIST and read out using the multi-channels electronics (MCE) developed at the University of British Columbia. Following our progress in improving detector parameters uniformity across the arrays and fabrication yield, our main effort has focused on improving detector arrays optical and noise performances, in order to produce science grade focal planes achieving target sensitivities. We report on changes in detector design implemented to op...

  20. Improved calibration technique of the infrared imaging bolometer using ultraviolet light-emitting diodes.

    Science.gov (United States)

    Drapiko, E; Peterson, B; Alekseev, A; Seo, D C

    2010-10-01

    The technique used until recently utilizing the Ne-He laser for imaging bolometer foils calibration [B. J. Peterson et al., J. Plasma Fusion Res. 2, S1018 (2007)] has showed several issues. The method was based on irradiation of 1 cm spaced set of points on a foil by the laser beam moved by set of mirrors. Issues were the nonuniformity of laser power due to the vacuum window transmission nonuniformity and high reflection coefficient for the laser. Also, due to the limited infrared (IR) window size, it was very time consuming. The new methodology uses a compact ultraviolet (uv) light-emitting diodes installed inside the vacuum chamber in a fixed position and the foil itself will be moved in the XY directions by two vacuum feedthroughs. These will help to avoid the above mentioned issues due to lack of a vacuum window, fixed emitters, higher uv power absorption, and a fixed IR camera position.

  1. AXUV bolometer and Lyman-α camera systems on the TCV tokamak

    Science.gov (United States)

    Degeling, A. W.; Weisen, H.; Zabolotsky, A.; Duval, B. P.; Pitts, R. A.; Wischmeier, M.; Lavanchy, P.; Marmillod, Ph.; Pochon, G.

    2004-10-01

    A set of seven twin slit cameras, each containing two 20-element linear absolute extreme ultraviolet photodiode arrays, has been installed on the Tokamak à Configuration Variable. One array in each camera will operate as a bolometer and the second as a Lyman-alpha (Lα) emission monitor for estimating the recycled neutral flux. The camera configuration was optimized by simulations of tomographic reconstructions of the expected Lα emission. The diagnostic will provide spatial and temporal resolution (10 μs) of the radiated power and the Lα emission that is considerably higher than previously achieved. This optimism is justified by extensive experience with prototype systems, which include first measurements of Lα light from the divertor.

  2. Antenna-coupled TES bolometers for the Keck Array, Spider, and Polar-1

    CERN Document Server

    O'Brient, R; Ahmed, Z; Aikin, R W; Amiri, M; Benton, S; Bischoff, C; Bock, J J; Bonetti, J A; Brevik, J A; Burger, B; Davis, G; Day, P; Dowell, C D; Duband, L; Filippini, J P; Fliescher, S; Golwala, S R; Grayson, J; Halpern, M; Hasselfield, M; Hilton, G; Hristov, V V; Hui, H; Irwin, K; Kernasovskiy, S; Kovac, J M; Kuo, C L; Leitch, E; Lueker, M; Megerian, K; Moncelsi, L; Netterfield, C B; Nguyen, H T; Ogburn, R W; Pryke, C L; Reintsema, C; Ruhl, J E; Runyan, M C; Schwarz, R; Sheehy, C D; Staniszewski, Z; Sudiwala, R; Teply, G; Tolan, J E; Turner, A D; Tucker, R S; Vieregg, A; Wiebe, D V; Wilson, P; Wong, C L; Wu, W L K; Yoon, K W

    2012-01-01

    Between the BICEP2 and Keck Array experiments, we have deployed over 1500 dual polarized antenna coupled bolometers to map the Cosmic Microwave Background's polarization. We have been able to rapidly deploy these detectors because they are completely planar with an integrated phased-array antenna. Through our experience in these experiments, we have learned of several challenges with this technology- specifically the beam synthesis in the antenna- and in this paper we report on how we have modified our designs to mitigate these challenges. In particular, we discus differential steering errors between the polarization pairs' beam centroids due to microstrip cross talk and gradients of penetration depth in the niobium thin films of our millimeter wave circuits. We also discuss how we have suppressed side lobe response with a Gaussian taper of our antenna illumination pattern. These improvements will be used in Spider, Polar-1, and this season's retrofit of Keck Array.

  3. Scanamorphos: a map-making software for Herschel and similar scanning bolometer arrays

    CERN Document Server

    Roussel, Hélène

    2012-01-01

    Scanamorphos is one of the public softwares available to post-process scan observations performed with the Herschel photometer arrays. This post-processing mainly consists in subtracting the total low-frequency noise (both its thermal and non-thermal components), masking cosmic ray hit residuals, and projecting the data onto a map. Although it was developed for Herschel, it is also applicable with minimal adjustment to scan observations made with other bolometer arrays, provided they entail sufficient redundancy; it was successfully applied to P-Artemis, an instrument operating on the APEX telescope. Contrary to most other algorithms (first developed for microwave background experiments and later adapted to Herschel), Scanamorphos does not assume any particular noise model, and does not apply any Fourier-space filtering to the data, but is an empirical tool using purely the redundancy built in the observations -- taking advantage of the fact that each portion of the sky is sampled at multiple times by multipl...

  4. Testing and assembly of the detectors for the Millimeter Bolometer Array Camera on ACT

    Science.gov (United States)

    Marriage, T. A.; Chervenak, J. A.; Doriese, W. B.

    2006-04-01

    The Millimeter Bolometer Array Camera (MBAC) for the Atacama Cosmology Telescope consists of three Transition Edge Sensor (TES) arrays to make simultaneous observations of the Cosmic Microwave Background in three frequency bands. MBAC TESs are NASA Goddard Pop-Up Detectors (PUD) which are read-out by NIST time-domain multiplexers. MBAC is constructed by stacking 1×32 TES columns to form the 32×32 element arrays. The arrays are modular (connectorized) at the 1×32 column level such that array assembly is reversible and camera repair possible. Prior to assembly, each column is tested in a quick (2h) cycling 4He/3He adsorption refrigerator. Tests include measurements of TES current voltage curves and TES complex impedance.

  5. Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U

    Energy Technology Data Exchange (ETDEWEB)

    Eden, G. G. van; Morgan, T. W. [Dutch Institute for Fundamental Energy Research, 5612 AJ Eindhoven (Netherlands); Reinke, M. L.; Gray, T. K.; Lore, J. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Peterson, B. J.; Mukai, K. [National Institute for Fusion Science, Toki 509-5292 (Japan); Delgado-Aparicio, L. F.; Jaworski, M. A. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Sano, R. [National Institutes for Quantum and Radiological Science and Technology, Naka 311-0193 (Japan); Pandya, S. N. [Institute for Plasma Research, Bhat Village, Gandhinagar, 382428 Gujarat (India)

    2016-11-15

    The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm{sup 2} Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solving the 2D+time heat diffusion equation, using the foil’s calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.

  6. Radiopure ZnMoO{sub 4} scintillating bolometers for the LUMINEU double-beta experiment

    Energy Technology Data Exchange (ETDEWEB)

    Poda, D. V.; Chernyak, D. M. [CSNSM, Centre de Sciences Nucléaires et de Sciences de la Matière, CNRS/IN2P3, Université Paris-Sud, 91405 Orsay (France); Institute for Nuclear Research, MSP 03680 Kyiv (Ukraine); Armengaud, E.; Boissière, T. de; Fourches, N.; Gerbier, G.; Gros, M.; Hervé, S.; Magnier, P.; Navick, X-F.; Nones, C.; Paul, B.; Penichot, Y. [CEA, Centre d’Etudes Saclay, IRFU, 91191 Gif-Sur-Yvette Cedex (France); Arnaud, Q.; Augier, C.; Benoît, A.; Cazes, A.; Censier, B.; Charlieux, F.; De Jesus, M. [IPNL, Université de Lyon, Université Lyon 1, CNRS/IN2P3, 69622 Villeurbanne Cedex (France); and others

    2015-08-17

    The results of R&D of radiopure zinc molybdate (ZnMoO{sub 4}) based scintillating bolometers for the LUMINEU (Luminescent Underground Molybdenum Investigation for NEUtrino mass and nature) double-beta decay experiment are presented. A dedicated two-stage molybdenum purification technique (sublimation in vacuum and recrystallization from aqueous solutions) and an advanced directional solidification method (the low-thermal-gradient Czochralski technique) were utilized to produce high optical quality large mass (∼1 kg) ZnMoO{sub 4} crystal boules and first {sup 100}Mo (99.5%) enriched Zn{sup 100}MoO{sub 4} crystal scintillator (mass of ∼0.2 kg). Scintillating bolometers based on ZnMoO{sub 4} (≈ 0.33 kg) and Zn{sup 100}MoO{sub 4} (≈ 0.06 kg) scintillation elements and high purity Ge wafers were tested in the EDELWEISS set-up at the Modane Underground Laboratory (France). Long term low temperature tests demonstrate excellent detectors’ performance and effectiveness of the purification and solidification procedures for the achievement of high radiopurity of the material, in particular with a bulk activity of {sup 228}Th and {sup 226}Ra below 4 µBq/kg. The adopted protocol was used to produce for the first time a large volume Zn{sup 100}MoO{sub 4} crystal scintillator (mass of ∼1.4 kg, {sup 100}Mo enrichment is 99.5%) to search for neutrinoless double-beta decay of {sup 100}Mo in the framework of the LUMINEU project.

  7. Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U

    Science.gov (United States)

    van Eden, G. G.; Reinke, M. L.; Peterson, B. J.; Gray, T. K.; Delgado-Aparicio, L. F.; Jaworski, M. A.; Lore, J.; Mukai, K.; Sano, R.; Pandya, S. N.; Morgan, T. W.

    2016-11-01

    The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm2 Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solving the 2D+time heat diffusion equation, using the foil's calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.

  8. Design and characterization of a prototype divertor viewing infrared video bolometer for NSTX-U.

    Science.gov (United States)

    van Eden, G G; Reinke, M L; Peterson, B J; Gray, T K; Delgado-Aparicio, L F; Jaworski, M A; Lore, J; Mukai, K; Sano, R; Pandya, S N; Morgan, T W

    2016-11-01

    The InfraRed Video Bolometer (IRVB) is a powerful tool to measure radiated power in magnetically confined plasmas due to its ability to obtain 2D images of plasma emission using a technique that is compatible with the fusion nuclear environment. A prototype IRVB has been developed and installed on NSTX-U to view the lower divertor. The IRVB is a pinhole camera which images radiation from the plasma onto a 2.5 μm thick, 9 × 7 cm(2) Pt foil and monitors the resulting spatio-temporal temperature evolution using an IR camera. The power flux incident on the foil is calculated by solving the 2D+time heat diffusion equation, using the foil's calibrated thermal properties. An optimized, high frame rate IRVB, is quantitatively compared to results from a resistive bolometer on the bench using a modulated 405 nm laser beam with variable power density and square wave modulation from 0.2 Hz to 250 Hz. The design of the NSTX-U system and benchtop characterization are presented where signal-to-noise ratios are assessed using three different IR cameras: FLIR A655sc, FLIR A6751sc, and SBF-161. The sensitivity of the IRVB equipped with the SBF-161 camera is found to be high enough to measure radiation features in the NSTX-U lower divertor as estimated using SOLPS modeling. The optimized IRVB has a frame rate up to 50 Hz, high enough to distinguish radiation during edge-localized-modes (ELMs) from that between ELMs.

  9. Nanoscience and Engineering in Superconductivity

    CERN Document Server

    Moshchalkov, Victor; Lang, Wolfgang

    2010-01-01

    For emerging energy saving technologies, superconducting materials with superior performance are needed. Such materials can be developed by manipulating the 'elementary building blocks' through nanostructuring. For superconductivity the 'elementary blocks' are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity

  10. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  11. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  12. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  13. Failed theories of superconductivity

    CERN Document Server

    Schmalian, Joerg

    2010-01-01

    Almost half a century passed between the discovery of superconductivity by Kammerlingh Onnes and the theoretical explanation of the phenomenon by Bardeen, Cooper and Schrieffer. During the intervening years the brightest minds in theoretical physics tried and failed to develop a microscopic understanding of the effect. A summary of some of those unsuccessful attempts to understand superconductivity not only demonstrates the extraordinary achievement made by formulating the BCS theory, but also illustrates that mistakes are a natural and healthy part of the scientific discourse, and that inapplicable, even incorrect theories can turn out to be interesting and inspiring.

  14. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  15. Fingerprints of Mott Superconductivity

    Institute of Scientific and Technical Information of China (English)

    王强华

    2003-01-01

    We improve a previous theory of doped Mott insulators with duality between pairing and magnetism by a further duality transform. As the result we obtained a quantum Ginzburg-Landau theory describing the Cooper pair condensate and the dual of spin condensate. We address the superconductivity by doping a Mott insulator,which we call the Mott superconductivity. Some fingerprints of such novelty in cuprates are the scaling between neutron resonance energy and superfluid density, and the induced quantized spin moment by vortices or Zn impurity (together with circulating charge super-current to be checked by experiments).

  16. Advanced Antenna-Coupled Superconducting Detector Arrays for CMB Polarimetry

    Science.gov (United States)

    Bock, James

    2014-01-01

    We are developing high-sensitivity millimeter-wave detector arrays for measuring the polarization of the cosmic microwave background (CMB). This development is directed to advance the technology readiness of the Inflation Probe mission in NASA's Physics of the Cosmos program. The Inflation Probe is a fourth-generation CMB satellite that will measure the polarization of the CMB to astrophysical limits, characterizing the inflationary polarization signal, mapping large-scale structure based on polarization induced by gravitational lensing, and mapping Galactic magnetic fields through measurements of polarized dust emission. The inflationary polarization signal is produced by a background of gravitational waves from the epoch of inflation, an exponential expansion of space-time in the early universe, with an amplitude that depends on the physical mechanism producing inflation. The inflationary polarization signal may be distinguished by its unique 'B-mode' vector properties from polarization from the density variations that predominantly source CMB temperature anisotropy. Mission concepts for the Inflation Probe are being developed in the US, Europe and Japan. The arrays are based on planar antennas that provide integral beam collimation, polarization analysis, and spectral band definition in a compact lithographed format that eliminates discrete fore-optics such as lenses and feedhorns. The antennas are coupled to transition-edge superconducting bolometers, read out with multiplexed SQUID current amplifiers. The superconducting sensors and readouts developed in this program share common technologies with NASA X-ray and FIR detector applications. Our program targets developments required for space observations, and we discuss our technical progress over the past two years and plans for future development. We are incorporating arrays into active sub-orbital and ground-based experiments, which advance technology readiness while producing state of the art CMB

  17. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L

    2012-01-01

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  18. Spin-orbit-coupled superconductivity.

    Science.gov (United States)

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T

    2014-06-25

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.

  19. CALDER: neutrinoless double-beta decay identification in TeO{sub 2} bolometers with kinetic inductance detectors

    Energy Technology Data Exchange (ETDEWEB)

    Battistelli, E.S.; Colantoni, I.; Coppolecchia, A. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Bellini, F.; Casali, N.; Cosmelli, C.; Cruciani, A.; De Bernardis, P.; Martinez, M.; Masi, S.; Vignati, M. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); INFN Sezione di Roma, Rome (Italy); Bucci, C.; D' Addabbo, A. [INFN Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Calvo, M. [CNRS, Institut Neel, Saint-Martin-d' Heres (France); Cardani, L. [Sapienza Universita di Roma, Dipartimento di Fisica, Rome (Italy); Princeton University, Physics Department, NJ (United States); Castellano, M.G. [CNR, Istituto di Fotonica e Nanotecnologie, Rome (Italy); Di Domizio, S. [Universita di Genova, Dipartimento di Fisica, Genoa (Italy); INFN Sezione di Genova, Genoa (Italy); Pagnanini, L. [INFN Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); INFN Gran Sasso Science Institute, L' Aquila (Italy); Tomei, C. [INFN Sezione di Roma, Rome (Italy)

    2015-08-15

    Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of 988 TeO{sub 2} bolometers being commissioned at Laboratori Nazionali del Gran Sasso, features an expected sensitivity of 50- 130 meV at 90 % C.L. The background is expected to be dominated by α radioactivity, and can be in principle removed by detecting the small amount of Cherenkov light emitted by the β signal. The Cryogenic wide-Area Light Detectors with Excellent Resolution project aims at developing a small prototype experiment consisting of TeO{sub 2} bolometers coupled to high-sensitivity light detectors based on kinetic inductance detectors. The R and D is focused on the light detectors in view of the implementation in a next-generation neutrinoless double-beta decay experiment. (orig.)

  20. Particle Discrimination in TeO$_{2}$ Bolometers using Light Detectors read out by Transition Edge Sensors

    CERN Document Server

    Schäffner, K; Bellini, F; Casali, N; Ferroni, F; Hauff, D; Nagorny, N; Pattavina, L; Petricca, F; Pirro, S; Pröbst, F; Reindl, F; Seidel, W; Strauss, R

    2014-01-01

    An active discrimination of the dominant $\\alpha$-background is the prerequisite for future DBD experiments based on TeO$_{2}$ bolometers. We investigate such $\\alpha$-particle rejection in cryogenic TeO$_{2}$ bolometers by the detection of Cherenkov light. For a setup consisting of a large TeO$_{2}$ crystal 285 g and a separate cryogenic light detector, both read out by transition edge sensors at around 10 mK, we obtain an event-by-event identification of e/$\\gamma$- and $\\alpha$-events. In the energy interval ranging from 2400 keV to 2800 keV and covering the Q-value of $^{130}$Te a discrimination power of 3.7 could be demonstrated.

  1. CALDER: neutrinoless double-beta decay identification in TeO{sub 2} bolometers with kinetic inductance detectors

    Energy Technology Data Exchange (ETDEWEB)

    Battistelli, E. S. [Dipartimento di Fisica, Sapienza Università di Roma, Rome (Italy); Bellini, F. [Dipartimento di Fisica, Sapienza Università di Roma, Rome (Italy); INFN Sezione di Roma, Rome (Italy); Bucci, C. [INFN Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Calvo, M. [Institut Néel, CNRS, Saint-Martin-d’Héres (France); Cardani, L. [Dipartimento di Fisica, Sapienza Università di Roma, Rome (Italy); Physics Department, Princeton University, Princeton, NJ (United States); Casali, N. [Dipartimento di Fisica, Sapienza Università di Roma, Rome (Italy); INFN Sezione di Roma, Rome (Italy); Castellano, M. G. [Istituto di Fotonica e Nanotecnologie, CNR, Rome (Italy); Colantoni, I.; Coppolecchia, A. [Dipartimento di Fisica, Sapienza Università di Roma, Rome (Italy); Cosmelli, C.; Cruciani, A.; Bernardis, P. de [Dipartimento di Fisica, Sapienza Università di Roma, Rome (Italy); INFN Sezione di Roma, Rome (Italy); Di Domizio, S. [Dipartimento di Fisica, Università di Genova, Genoa (Italy); INFN Sezione di Genova, Genoa (Italy); D’Addabbo, A. [INFN Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); Martinez, M.; Masi, S. [Dipartimento di Fisica, Sapienza Università di Roma, Rome (Italy); INFN Sezione di Roma, Rome (Italy); Pagnanini, L. [INFN Laboratori Nazionali del Gran Sasso, Assergi, AQ (Italy); INFN Gran Sasso Science Institute, L’Aquila (Italy); Tomei, C. [INFN Sezione di Roma, Rome (Italy); Vignati, M., E-mail: marco.vignati@roma1.infn.it [Dipartimento di Fisica, Sapienza Università di Roma, Rome (Italy); INFN Sezione di Roma, Rome (Italy)

    2015-07-31

    Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE , an array of 988 TeO{sub 2} bolometers being commissioned at Laboratori Nazionali del Gran Sasso, features an expected sensitivity of 50–130 meV at 90 % C.L. The background is expected to be dominated by α radioactivity, and can be in principle removed by detecting the small amount of Cherenkov light emitted by the β signal. The Cryogenic wide-Area Light Detectors with Excellent Resolution project aims at developing a small prototype experiment consisting of TeO{sub 2} bolometers coupled to high-sensitivity light detectors based on kinetic inductance detectors. The R&D is focused on the light detectors in view of the implementation in a next-generation neutrinoless double-beta decay experiment.

  2. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  3. Superconducting Technology Assessment

    Science.gov (United States)

    2005-08-01

    of Nb/Al- Nx /NbTiN junctions for SIS mixer applications,” IEEE Trans. Appl. Superconduct., vol. 11, pp. 76–79, Mar. 2001. [48] M. Gurvitch, W. A...Another connector developed by IBM for commercial applications using a dendritic interposer technology. A “beam-on-pad” approach developed by Siemens

  4. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  5. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  6. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  7. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  8. LHC Superconducting Magnets

    CERN Document Server

    Jean Leyder

    2000-01-01

    The LHC is the next step in CERN's quest to unravel the mysteries of the Universe. It will accelerate protons to energies never before achieved in laboratories, and to hold them on course it will use powerful superconducting magnets on an unprecedented scale.

  9. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  10. Superconducting Quantum Circuits

    NARCIS (Netherlands)

    Majer, J.B.

    2002-01-01

    This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough

  11. Checking BEBC superconducting magnet

    CERN Multimedia

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  12. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  13. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: sasaki@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: mizushima@mp.es.osaka-u.ac.jp [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2015-07-15

    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  14. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  15. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  16. Applications of Superconductivity

    Science.gov (United States)

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  17. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  18. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  19. High temperature interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A., E-mail: adrian.gozar@yale.edu [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  20. Effects of dislocations on small signal high frequency hot electron mobility in n-GaN at low and high temperatures under high magnetic fields including hot phonon effect

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, A., E-mail: juimaha@yahoo.co [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata (India); Sarkar, C.K. [Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata (India)

    2011-04-01

    The small signal high-frequency ac mobility of hot electrons in n-GaN in the extreme quantum limit at low- and high-temperatures has been calculated considering the non-equilibrium phonon distribution as well as the thermal phonon distributions. The energy loss rate has been calculated considering the dominance of the piezo electric coupling scattering and the polar optical phonon scattering while the momentum loss rate has been calculated considering the acoustic phonon scattering via deformation potential and the piezo electric coupling and the dislocation scattering.

  1. CALDER - Neutrinoless double-beta decay identification in TeO$_2$ bolometers with kinetic inductance detectors

    CERN Document Server

    Battistelli, E S; Calvo, M; Cardani, L; Casali, N; Castellano, M G; Colantoni, I; Coppolecchia, A; Cosmelli, C; Cruciani, A; de Bernardis, P; Di Domizio, S; D'Addabbo, A; Martinez, M; Masi, S; Pagnanini, L; Tomei, C; Vignati, M

    2015-01-01

    Next-generation experiments searching for neutrinoless double-beta decay must be sensitive to a Majorana neutrino mass as low as 10 meV. CUORE, an array of 988 TeO$_2$ bolometers being commissioned at Laboratori Nazionali del Gran Sasso in Italy, features an expected sensitivity of 50-130 meV at 90% C.L, that can be improved by removing the background from $\\alpha$ radioactivity. This is possible if, in coincidence with the heat release in a bolometer, the Cherenkov light emitted by the $\\beta$ signal is detected. The amount of light detected is so far limited to only 100 eV, requiring low-noise cryogenic light detectors. The CALDER project (Cryogenic wide-Area Light Detectors with Excellent Resolution) aims at developing a small prototype experiment consisting of TeO$_2$ bolometers coupled to new light detectors based on kinetic inductance detectors. The R&D is focused on the light detectors that could be implemented in a next-generation neutrinoless double-beta decay experiment.

  2. Hot Electron Diagnostic in a Solid Laser Target by Buried K-Shell Fluorer Technique from Ultra-Intense (3x1020W/cm2,< 500 J) Laser-Plasma Interactions on the Petawatt Laser at LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Yasuike, K.; Key, M.H.; Hatchett, S.P.; Snavely, R.A.

    2000-06-29

    Characterization of hot electron production (a conversion efficiency from laser energy into electrons) in ultra intense laser-solid target interaction, using 1.06 {micro}m laser light with an intensity of up to 3 x 10{sup 20}W cm{sup -2} and an on target laser energy of {le}500 J, has been done by observing K{sub {beta}} as well as K{sub {alpha}} emissions from a buried Mo layer in the targets, which are same structure as in the previous 100 TW experiments but done under less laser intensity and energy conditions ({le} 4 x 10{sup 19} Wcm{sup -2} and {le} 30 J). The conversion efficiency from the laser energy into the energy, carried by hot electrons, has been estimated to be {approx}50%, which are little bit higher than the previous less laser energy ({approx} 20 J) experiments, yet the x-ray emission spectra from the target has change drastically, i.e., gamma flash.

  3. Superconductivity an introduction

    CERN Document Server

    Kleiner, Reinhold

    2016-01-01

    The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An e...

  4. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  5. Statistical mechanics of superconductivity

    CERN Document Server

    Kita, Takafumi

    2015-01-01

    This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...

  6. Superconducting switch pack

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, V.C.; Wollan, J.J.

    1990-07-24

    This patent describes a superconducting switch pack at least one switch element. The switch element including a length of superconductive wire having a switching portion and two lead portions, the switching portion being between the lead portions; means for supporting the switching portion in a plane in a common mold; hardened resin means encapsulating the switching portion in the plane in a solid body; wherein the solid body has an exterior surface which is planar and substantially parallel with and spaced apart from the plane in which the switching portion is positioned. The exterior surface being exposed to the exterior of the switch pack and the resin means filling the space between the exterior surface and the plane of the switching portion so as to provide uninterrupted thermal communication between the plane of the switching portion and the exterior of the switch pack; and a heater element in thermal contact with the switching portion.

  7. Tunable superconducting nanoinductors

    Energy Technology Data Exchange (ETDEWEB)

    Annunziata, Anthony J; Santavicca, Daniel F; Frunzio, Luigi; Rooks, Michael J; Prober, Daniel E [Department of Applied Physics, Yale University, New Haven, CT 06511 (United States); Catelani, Gianluigi [Department of Physics, Yale University, New Haven, CT 06511 (United States); Frydman, Aviad, E-mail: anthony.annunziata@yale.edu, E-mail: daniel.prober@yale.edu [Department of Physics, Bar-Ilan University, Ramat Gan 52900 (Israel)

    2010-11-05

    We characterize inductors fabricated from ultra-thin, approximately 100 nm wide strips of niobium (Nb) and niobium nitride (NbN). These nanowires have a large kinetic inductance in the superconducting state. The kinetic inductance scales linearly with the nanowire length, with a typical value of 1 nH {mu}m{sup -1} for NbN and 44 pH {mu}m{sup -1} for Nb at a temperature of 2.5 K. We measure the temperature and current dependence of the kinetic inductance and compare our results to theoretical predictions. We also simulate the self-resonant frequencies of these nanowires in a compact meander geometry. These nanowire inductive elements have applications in a variety of microwave frequency superconducting circuits.

  8. Time ripe for superconductivity?

    Directory of Open Access Journals (Sweden)

    George Marsh

    2002-04-01

    But there is a crucial deadline and failure to meet it could send superconductivity back to the commercial shadows (at least outside the medical and scientific niches where it is a key enabler in analytical instruments, magnetic resonance imaging, and particle accelerators for another 30 years. Later this decade, the vintage infrastructure of dense copper conductors that supports power distribution in developed countries, in particular in the US, will become due for renewal. (Recent power problems in California were largely those of distribution infrastructure. At the same time, boosting capacity to serve the needs of increasingly affluent populations will pose a challenge. Superconductivity could provide the answer — if the technology matures in time and cost targets are met.

  9. Relativistic Model for two-band Superconductivity

    OpenAIRE

    Ohsaku, Tadafumi

    2003-01-01

    To understand the superconductivity in MgB2, several two-band models of superconductivity were proposed. In this paper, by using the relativistic fermion model, we clearize the effect of the lower band in the superconductivity.

  10. Topological confinement and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  11. Unconventional superconductivity near inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Poenicke, A.F.

    2008-01-25

    After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)

  12. Helical superconducting black holes.

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  13. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Energy Technology Data Exchange (ETDEWEB)

    Yuryev, V. A., E-mail: vyuryev@kapella.gpi.ru; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P. [A. M. Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilov Street, Moscow 119991 (Russian Federation); Senkov, V. M. [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskiy Avenue, Moscow 119991 (Russian Federation); Nalivaiko, O. Y. [JSC “Integral” – “Integral” Holding Management Company, 121A, Kazintsa I. P. Street, Minsk 220108 (Belarus); Novikau, A. G.; Gaiduk, P. I. [Belarusian State University, 4 Nezavisimosti Avenue, 220030 Minsk (Belarus)

    2015-05-28

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.

  14. Antenna-coupled TES bolometers used in BICEP2, Keck array, and SPIDER

    CERN Document Server

    Ade, P A R; Amiri, M; Barkats, D; Benton, S J; Bischoff, C A; Bock, J J; Bonetti, J A; Brevik, J A; Buder, I; Bullock, E; Chattopadhyay, G; Davis, G; Day, P K; Dowell, C D; Duband, L; Filippini, J P; Fliescher, S; Golwala, S R; Halpern, M; Hasselfield, M; Hildebrandt, S R; Hilton, G C; Hristov, V; Hui, H; Irwin, K D; Jones, W C; Karkare, K S; Kaufman, J P; Keating, B G; Kefeli, S; Kernasovskiy, S A; Kovac, J M; Kuo, C L; Leduc, H G; Leitch, E M; Llombart, N; Lueker, M; Mason, P; Megerian, K; Moncelsi, L; Netterfield, C B; Nguyen, H T; O'Brient, R; Ogburn, R W; Orlando, A; Pryke, C; Rahlin, A S; Reintsema, C D; Richter, S; Runyan, M C; Schwarz, R; Sheehy, C D; Staniszewski, Z K; Sudiwala, R V; Teply, G P; Tolan, J E; Trangsrud, A; Tucker, R S; Turner, A D; Vieregg, A G; Weber, A; Wiebe, D V; Wilson, P; Wong, C L; Yoon, K W; Zmuidzinas, J

    2015-01-01

    We have developed antenna-coupled transition-edge sensor (TES) bolometers for a wide range of cosmic microwave background (CMB) polarimetry experiments, including BICEP2, Keck Array, and the balloon borne SPIDER. These detectors have reached maturity and this paper reports on their design principles, overall performance, and key challenges associated with design and production. Our detector arrays repeatedly produce spectral bands with 20%-30% bandwidth at 95, 150, or 220~GHz. The integrated antenna arrays synthesize symmetric co-aligned beams with controlled side-lobe levels. Cross-polarized response on boresight is typically ~0.5%, consistent with cross-talk in our multiplexed readout system. End-to-end optical efficiencies in our cameras are routinely 35% or higher, with per detector sensitivities of NET~300 uKrts. Thanks to the scalability of this design, we have deployed 2560 detectors as 1280 matched pairs in Keck Array with a combined instantaneous sensitivity of ~9 uKrts, as measured directly from CMB...

  15. Enriched TeO2 bolometers with active particle discrimination: Towards the CUPID experiment

    Science.gov (United States)

    Artusa, D. R.; Avignone, F. T.; Beeman, J. W.; Dafinei, I.; Dumoulin, L.; Ge, Z.; Giuliani, A.; Gotti, C.; de Marcillac, P.; Marnieros, S.; Nagorny, S.; Nisi, S.; Nones, C.; Norman, E. B.; Novati, V.; Olivieri, E.; Orlandi, D.; Pagnanini, L.; Pattavina, L.; Pessina, G.; Pirro, S.; Poda, D. V.; Rusconi, C.; Schäffner, K.; Scielzo, N. D.; Zhu, Y.

    2017-04-01

    We present the performances of two 92% enriched 130TeO2 crystals operated as thermal bolometers in view of a next generation experiment to search for neutrinoless double beta decay of 130Te. The crystals, 435 g each, show an energy resolution, evaluated at the 2615 keV γ-line of 208Tl, of 6.5 and 4.3 keV FWHM. The only observable internal radioactive contamination arises from 238U (15 and 8 μBq/kg, respectively). The internal activity of the most problematic nuclei for neutrinoless double beta decay, 226Ra and 228Th, are both evaluated as <3.1 μBq/kg for one crystal and <2.3 μBq/kg for the second. Thanks to the readout of the weak Cherenkov light emitted by β / γ particles by means of Neganov-Luke bolometric light detectors we were able to perform an event-by-event identification of β / γ events with a 95% acceptance level, while establishing a rejection factor of 98.21% and 99.99% for α particles.

  16. Mechanical Design and Development of TES Bolometer Detector Arrays for the Advanced ACTPol Experiment

    Science.gov (United States)

    Ward, Jonathan T.; Austermann, Jason; Beall, James A.; Choi, Steve K.; Crowley, Kevin T.; Devlin, Mark J.; Duff, Shannon M.; Gallardo, Patricio M.; Henderson, Shawn W.; Ho, Shuay-Pwu Patty; Hilton, Gene; Hubmayr, Johannes; Khavari, Niloufar; Klein, Jeffrey; Koopman, Brian J.; Li, Dale; McMahon, Jeffrey; Mumby, Grace; Nati, Federico; Wollack, Edward J.

    2016-01-01

    The next generation Advanced ACTPol (AdvACT) experiment is currently underway and will consist of four Transition Edge Sensor (TES) bolometer arrays, with three operating together, totaling 5800 detectors on the sky. Building on experience gained with the ACTPol detector arrays, AdvACT will utilize various new technologies, including 150 mm detector wafers equipped with multichroic pixels, allowing for a more densely packed focal plane. Each set of detectors includes a feedhorn array of stacked silicon wafers which form a spline pro le leading to each pixel. This is then followed by a waveguide interface plate, detector wafer, back short cavity plate, and backshort cap. Each array is housed in a custom designed structure manufactured from high purity copper and then gold plated. In addition to the detector array assembly, the array package also encloses cryogenic readout electronics. We present the full mechanical design of the AdvACT high frequency (HF) detector array package along with a detailed look at the detector array stack assemblies. This experiment will also make use of extensive hardware and software previously developed for ACT, which will be modi ed to incorporate the new AdvACT instruments. Therefore, we discuss the integration of all AdvACT arrays with pre-existing ACTPol infrastructure.

  17. Improvement of the divertor bolometer diagnostic in the ASDEX Upgrade tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Sehmer, Till; Meister, Hans; Bernert, Matthias; Koll, Juergen; Reimold, Felix; Wischmeier, Marco; Fantz, Ursel [Max-Planck-Institut fuer Plasmaphysik, Boltzmannstr. 2, 85748 Garching (Germany); Collaboration: ASDEX Upgrade Team

    2015-05-01

    For future fusion devices such as ITER, the radiation balance in the divertor region will have a significant impact on the power exhaust balance. Therefore, scenarios with strongly localized radiation, like radiation in the high field side high density (HFSHD) region, X-Point radiation or radiation in the divertor legs during detachment, will be investigated in the next ASDEX Upgrade (AUG) operation campaign 2015. To obtain accurately the absolute divertor radiation out of these measurements, the AUG foil bolometer diagnostic system in the divertor region has been enhanced; two new cameras have been designed and manufactured. One will be mounted below the roof baffle and contains 28 lines of sight (LOS), which will observe the mentioned regions of particular physical interest. The second camera consists of 4 LOS and will be mounted at the high field side above the inner divertor nose. It will observe radiation arising from the X-Point region and from the outer divertor. The data will be analysed with a tomographic reconstruction algorithm to localize and quantify the divertor radiation.

  18. Multichroic TES Bolometers and Galaxy Cluster Mass Scaling Relations with the South Pole Telescope

    CERN Document Server

    Saliwanchik, Benjamin

    2016-01-01

    The South Pole Telescope (SPT) is a high-resolution microwave-frequency telescope designed to observe the Cosmic Microwave Background (CMB). To date, two cameras have been installed on the SPT to conduct two surveys of the CMB, the first in intensity only (SPT-SZ) and the second in intensity and polarization (SPTpol). A third-generation polarization-sensitive camera is currently in development (SPT-3G). This thesis describes work spanning all three instruments on the SPT. I present my work in time-reversed order, to follow the canonical narrative of instrument development, deployment, and analysis. First, the development and testing of novel 3-band multichroic Transition Edge Sensor (TES) bolometers for the SPT-3G experiment is detailed, followed by the development and deployment of the frequency multiplexed cryogenic readout electronics for the SPTpol experiment, and concluding with the analysis of data taken by the SPT-SZ instrument. I describe the development of a Bayesian likelihood based method I develop...

  19. Enriched TeO 2 bolometers with active particle discrimination: Towards the CUPID experiment

    Energy Technology Data Exchange (ETDEWEB)

    Artusa, D. R.; Avignone, F. T.; Beeman, J. W.; Dafinei, I.; Dumoulin, L.; Ge, Z.; Giuliani, A.; Gotti, C.; de Marcillac, P.; Marnieros, S.; Nagorny, S.; Nisi, S.; Nones, C.; Norman, E. B.; Novati, V.; Olivieri, E.; Orlandi, D.; Pagnanini, L.; Pattavina, L.; Pessina, G.; Pirro, S.; Poda, D. V.; Rusconi, C.; Schäffner, K.; Scielzo, N. D.; Zhu, Y.

    2017-04-01

    We present the performances of two 92% enriched 130TeO2 crystals operated as thermal bolometers in view of a next generation experiment to search for neutrinoless double beta decay of 130Te. The crystals, 435 g each, show an energy resolution, evaluated at the 2615 keV γ-line of 208Tl, of 6.5 and 4.3 keV FWHM. The only observable internal radioactive contamination arises from 238U (15 and 8 μBq/kg, respectively). The internal activity of the most problematic nuclei for neutrinoless double beta decay, 226Ra and 228Th, are both evaluated as <3.1 μBq/kg for one crystal and <2.3 μBq/kg for the second. Thanks to the readout of the weak Cherenkov light emitted by β/γ particles by means of Neganov–Luke bolometric light detectors we were able to perform an event-by-event identification of β/γ events with a 95% acceptance level, while establishing a rejection factor of 98.21% and 99.99% for α particles.

  20. Performances of a large mass ZnSe bolometer to search for rare events

    CERN Document Server

    Beeman, J W; Cardani, L; Casali, N; Dafinei, I; Di Domizio, S; Ferroni, F; Gironi, L; Giuliani, A; Nagorny, S; Orio, F; Pattavina, L; Pessina, G; Piperno, G; Pirro, S; Previtali, E; Rusconi, C; Tomei, C; Vignati, M

    2013-01-01

    Scintillating bolometers of ZnSe are the baseline choice of the LUCIFER experiment, whose aim is to observe the neutrinoless double beta decay of 82Se. The independent read-out of the heat and scintillation signals allows to identify and reject alpha particle interactions, the dominant background source for bolometric detectors. In this paper we report the performances of a ZnSe crystal operated within the LUCIFER R&D. We measured the scintillation yield, the energy resolution and the background in the energy region where the signal from neutrinoless double beta decay of 82Se is expected with an exposure of 9.4 kg x days. With a newly developed analysis algorithm we improved the rejection of alpha events, and we estimated the increase in energy resolution obtained by the combination of the heat and light signals. For the first time we measured the light emitted by nuclear recoils, and found it to be compatible with zero. We conclude that the discrimination of nuclear recoils from beta/gamma interactions i...

  1. ZnMoO4: a promising bolometer for neutrinoless double beta decay searches

    CERN Document Server

    Beeman, J W; Capelli, S; Cardani, L; Casali, N; Dafinei, I; Di Domizio, S; Ferroni, F; Galashov, E N; Gironi, L; Orio, F; Pattavina, L; Pessina, G; Piperno, G; Pirro, S; Shlegel, V N; Vasilyev, Ya V; Tomei, C; Vignati, M

    2012-01-01

    We investigate the performances of two ZnMoO4 scintillating crystals operated as bolometers, in view of a next generation experiment to search the neutrinoless double beta decay of Mo-100. We present the results of the alpha vs beta/gamma discrimination, obtained through the scintillation light as well as through the study of the shape of the thermal signal alone. The discrimination capability obtained at the 2615 keV line of Tl-208 is 8 sigma, using the heat-light scatter plot, while it exceeds 20 sigma using the shape of the thermal pulse alone. The achieved FWHM energy resolution ranges from 2.4 keV (at 238 keV) to 5.7 keV (at 2615 keV). The internal radioactive contaminations of the ZnMoO4 crystals were evaluated through a 407 hours background measurement. The obtained limit is < 32 microBq/kg for Th-228 and Ra-226. These values were used for a Monte Carlo simulation aimed at evaluating the achievable background level of a possible, future array of enriched ZnMoO4 crystals.

  2. The mass distribution of clumps within infrared dark clouds. A Large APEX Bolometer Camera study

    CERN Document Server

    Gomez, Laura; Schuller, Frederic; Menten, Karl; Ballesteros-Paredes, Javier

    2013-01-01

    We present an analysis of the dust continuum emission at 870 um in order to investigate the mass distribution of clumps within infrared dark clouds (IRDCs). We map six IRDCs with the Large APEX BOlometer CAmera (LABOCA) at APEX, reaching an rms noise level of 28-44 mJy/beam. The dust continuum emission coming from these IRDCs was decomposed by using two automated algorithms, Gaussclumps and Clumpfind. Moreover, we carried out single-pointing observations of the N_2H^+ (3-2) line toward selected positions to obtain kinematic information. The mapped IRDCs are located in the range of kinematic distances of 2.7-3.2 kpc. We identify 510 and 352 sources with Gaussclumps and Clumpfind, respectively, and estimate masses and other physical properties assuming a uniform dust temperature. The mass ranges are 6-2692 Msun (Gaussclumps) and 7-4254 Msun (Clumpfind) and the ranges in effective radius are around 0.10-0.74 pc (Gaussclumps) and 0.16-0.99 pc (Clumpfind). The mass distribution, independent of the decomposition me...

  3. The Diabolo photometer and the future of ground-based millimetric bolometer devices

    CERN Document Server

    Désert, F X; Camus, P; Giard, M; Pointecouteau, E; Aghanim, N; Bernard, J P; Coron, N; Lamarre, J M; Marty, P; Delabrouille, J; Soglasnova, V; Camus, Ph.; Marty, Ph.

    2001-01-01

    The millimetric atmospheric windows at 1 and 2 mm are interesting targets for cosmological studies. Two broad areas appear leading this field: 1) the search for high redshift star-forming galaxies and 2) the measurement of Sunyaev-Zel'dovich (SZ) effect in clusters of galaxies at all redshifts. The Diabolo photometer is a dual-channel photometer working at 1.2 and 2.1 mm and dedicated to high angular resolution measurements of the Sunyaev--Zel'dovich effect towards distant clusters. It uses 2 by 3 bolometers cooled down to 0.1 K with a compact open dilution cryostat. The high resolution is provided by the IRAM 30 m telescope. The result of several Winter campaigns are reported here, including the first millimetric map of the SZ effect that was obtained by Pointecouteau et al. (2001) on RXJ1347-1145, the non-detection of a millimetric counterpart to the radio decrement towards PC1643+4631 and 2 mm number count upper limits. We discuss limitations in ground-based single-dish millimetre observations, namely sky ...

  4. Enriched TeO$_2$ bolometers with active particle discrimination: towards the CUPID experiment

    CERN Document Server

    Artusa, D R; Beeman, J W; Dafinei, I; Dumoulin, L; Ge, Z; Giuliani, A; Gotti, C; de Marcillac, P; Marnieros, S; Nagorny, S; Nisi, S; Nones, C; Norman, E B; Novati, V; Olivieri, E; Orlandi, D; Pagnanini, L; Pattavina, L; Pessina, G; Pirro, S; Poda, D V; Rusconi, C; Schäffner, K; Scielzo, N D; Zhu, Y

    2016-01-01

    We present the performances of two 92% enriched $^{130}$TeO$_2$ crystals operated as thermal bolometers in view of a next generation experiment to search for neutrinoless double beta decay of $^{130}$Te. The crystals, 435 g each, show an energy resolution, evaluated at the 2615 keV $\\gamma$-line of $^{208}$Tl, of 6.5 and 4.3 keV FWHM. The only observable internal radioactive contamination arises from $^{238}$U (15 and 8 $\\mu$Bq/kg, respectively). The internal activity of the most problematic nuclei for neutrinoless double beta decay, $^{226}$Ra and $^{228}$Th, are both evaluated as $<$3.1 $\\mu$Bq/kg for one crystal and $<$2.3 $\\mu$Bq/kg for the second. Thanks to the readout of the weak Cherenkov light emitted by $\\beta/\\gamma$ particles by means of Neganov-Luke bolometric light detectors we were able to perform an event-by-event identification of $\\beta/\\gamma$ events with a 95% acceptance level, while establishing a rejection factor of 98.21% and 99.99% for $\\alpha$ particles.

  5. The Atacama B-Mode Search: CMB Polarimetry with Transition-Edge-Sensor Bolometers

    CERN Document Server

    Essinger-Hileman, T; Beall, J A; Cho, H M; Fowler, J; Halpern, M; Hasselfield, M; Irwin, K D; Marriage, T A; Niemack, M D; Page, L; Parker, L P; Pufu, S; Staggs, S T; Stryzak, O; Visnjic, C; Yoon, K W; Zhao, Y

    2010-01-01

    The Atacama B-mode Search (ABS) experiment is a 145 GHz polarimeter designed to measure the B-mode polarization of the Cosmic Microwave Background (CMB) at large angular scales. The ABS instrument will ship to the Atacama Desert of Chile fully tested and ready to observe in 2010. ABS will image large-angular-scale CMB polarization anisotropies onto a focal plane of 240 feedhorn-coupled, transition-edge sensor (TES) polarimeters, using a cryogenic crossed-Dragone design. The ABS detectors, which are fabricated at NIST, use orthomode transducers to couple orthogonal polarizations of incoming radiation onto separate TES bolometers. The incoming radiation is modulated by an ambient-temperature half-wave plate in front of the vacuum window at an aperture stop. Preliminary detector characterization indicates that the ABS detectors can achieve a sensitivity of 300 $\\mu K \\sqrt{s}$ in the field. This paper describes the ABS optical design and detector readout scheme, including feedhorn design and performance, magneti...

  6. Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers

    Science.gov (United States)

    Yuryev, V. A.; Chizh, K. V.; Chapnin, V. A.; Mironov, S. A.; Dubkov, V. P.; Uvarov, O. V.; Kalinushkin, V. P.; Senkov, V. M.; Nalivaiko, O. Y.; Novikau, A. G.; Gaiduk, P. I.

    2015-05-01

    Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si3N4/SiO2/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy. Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about -2%/ °C in the temperature interval from 25 to 50 °C.

  7. Sterile Neutrinos, Coherent Scattering and Oscillometry Measurements with Low-temperature Bolometers

    CERN Document Server

    Formaggio, Joseph A; Anderson, A J

    2011-01-01

    Coherent neutrino-nucleon scattering offers a unique approach in the search for physics beyond the Standard Model. When used in conjunction with mono-energetic neutrino sources, the technique can be sensitive to the existence of light sterile neutrinos. The ability to utilize such reactions has been limited in the past due to the extremely low energy threshold (10-50 eV) needed for detection. In this paper, we discuss an optimization of cryogenic solid state bolometers that enables reaching extremely low kinetic energy thresholds. We investigate the sensitivity of an array of such detectors to neutrino oscillations to sterile states. A recent analysis of available reactor data appears to favor the existence of such such a sterile neutrino with a mass splitting of $|\\Delta m_{\\rm sterile}|^2 \\ge 1.5$ eV$^2$ and mixing strength of $\\sin^2{2\\theta_{\\rm sterile}} = 0.17\\pm 0.08$ at 95% C.L. An array of such low-threshold detectors would be able to make a definitive statement as to the validity of the interpretati...

  8. Silicon superconducting quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F., E-mail: francois.lefloch@cea.fr [Université Grenoble Alpes, CEA - INAC - SPSMS, F-38000 Grenoble (France); Chiodi, F.; Débarre, D. [Université Paris-sud, CNRS - IEF, F-91405 Orsay - France (France); Hasselbach, K. [Université Grenoble Alpes, CNRS - Inst. Néel, F-38000 Grenoble (France); Kirtley, J. R. [Center for probing at nanoscale, Stanford University, Palo Alto, California 94305-4045 (United States)

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  9. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    SECURITY CLASSIFICATION OF: The SQOT (Superconducting Qubit Optical Transducer ) project proposes to build a novel electro-optic system which can...Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: "Superconducting Qubit Optical Transducer " (SQOT) The views, opinions and...journals: Number of Papers published in non peer-reviewed journals: Final Report: "Superconducting Qubit Optical Transducer " (SQOT) Report Title The

  10. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  11. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-04-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  12. US Navy superconductivity program

    Science.gov (United States)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  13. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  14. Superconductivity in CVD diamond films.

    Science.gov (United States)

    Takano, Yoshihiko

    2009-06-24

    A beautiful jewel of diamond is insulator. However, boron doping can induce semiconductive, metallic and superconducting properties in diamond. When the boron concentration is tuned over 3 × 10(20) cm(-3), diamonds enter the metallic region and show superconductivity at low temperatures. The metal-insulator transition and superconductivity are analyzed using ARPES, XAS, NMR, IXS, transport and magnetic measurements and so on. This review elucidates the physical properties and mechanism of diamond superconductor as a special superconductivity that occurs in semiconductors.

  15. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  16. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  17. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  18. Optimization of superconducting tiling pattern for superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  19. AC bias characterization of low noise bolometers for SAFARI using an Open-Loop Frequency Domain SQUID-based multiplexer operating between 1 and 5 MHz

    CERN Document Server

    Gottardi, Luciano; Gao, Jan-R; Hartog, Roland den; Hijmering, Richard; Hoevers, Henk; Khosropanah, Pourya; de Korte, Piet; van der Kuur, Jan; Lindeman, Mark; Ridder, Marcel

    2016-01-01

    SRON is developing the Frequency Domain Multiplexing (FDM) readout and the ultra low NEP TES bolometers array for the infrared spectrometer SAFARI on board of the Japanese space mission SPICA. The FDM prototype of the instrument requires critical and complex optimizations. For single pixel characterization under AC bias we are developing a simple FDM system working in the frequency range from 1 to 5 MHz, based on the open loop read-out of a linearized two-stage SQUID amplifier and high Q lithographic LC resonators. We describe the details of the experimental set-up required to achieve low power loading (< 1 fW) and low noise (NEP $\\sim 10^{-19} W/Hz^{1/2}$) in the TES bolometers. We conclude the paper by comparing the performance of a $4 \\cdot 10^{-19} W/Hz^{1/2}$ TES bolometer measured under DC and AC bias.

  20. The Danish Superconducting Cable Project

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1997-01-01

    The design and construction of a superconducting cable is described. The cable has a room temperature dielectric design with the cryostat placed inside the electrical insulation.BSCCO 2223 superconducting tapes wound in helix form around a former are used as the cable conductor. Results from...

  1. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  2. Fabrication of an Antenna-Coupled Bolometer for Cosmic Microwave Background Polarimetry

    Science.gov (United States)

    Denis, K. L.; Cao, N. T.; Chuss, D. T.; Eimer, J.; Hinderks, J. R.; Hsieh, W.-T.; Moseley, S. H.; Stevenson, T. R.; Talley, D. J.; U.-yen, K.; Wollack, E. J.

    2009-12-01

    We describe the development of a detector for precise measurements of the cosmic microwave background polarization. The detector employs a waveguide to couple light between a pair of Mo/Au superconducting transition edge sensors (TES) and a feedhorn. Incorporation of an on-chip ortho-mode transducer (OMT) results in high isolation. The OMT is micromachined and bonded to the microstrip and TES circuits in a low temperature wafer bonding process. The wafer bonding process incorporates a buried superconducting niobium layer with a single crystal silicon layer which serves as the leg isolated TES membrane and as the microstrip dielectric. We describe the micromachining and wafer bonding process and report measurement results of the microwave circuitry operating in the 29-45 GHz band along with Johnson noise measurements of the TES membrane structures and development of Mo/Au TES operating under 100 mK.

  3. A superconducting magnetic gear

    Science.gov (United States)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  4. Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes.

    Science.gov (United States)

    Meister, H; Willmeroth, M; Zhang, D; Gottwald, A; Krumrey, M; Scholze, F

    2013-12-01

    The energy resolved efficiency of two bolometer detector prototypes for ITER with 4 channels each and absorber thicknesses of 4.5 μm and 12.5 μm, respectively, has been calibrated in a broad spectral range from 1.46 eV up to 25 keV. The calibration in the energy range above 3 eV was performed against previously calibrated silicon photodiodes using monochromatized synchrotron radiation provided by five different beamlines of Physikalische Technische Bundesanstalt at the electron storage rings BESSY II and Metrology Light Source in Berlin. For the measurements in the visible range, a setup was realised using monochromatized halogen lamp radiation and a calibrated laser power meter as reference. The measurements clearly demonstrate that the efficiency of the bolometer prototype detectors in the range from 50 eV up to ≈6 keV is close to unity; at a photon energy of 20 keV the bolometer with the thick absorber detects 80% of the photons, the one with the thin absorber about 50%. This indicates that the detectors will be well capable of measuring the plasma radiation expected from the standard ITER scenario. However, a minimum absorber thickness will be required for the high temperatures in the central plasma. At 11.56 keV, the sharp Pt-L3 absorption edge allowed to cross-check the absorber thickness by fitting the measured efficiency to the theoretically expected absorption of X-rays in a homogeneous Pt-layer. Furthermore, below 50 eV the efficiency first follows the losses due to reflectance expected for Pt, but below 10 eV it is reduced further by a factor of 2 for the thick absorber and a factor of 4 for the thin absorber. Most probably, the different histories in production, storage, and operation led to varying surface conditions and additional loss channels.

  5. Broad-band efficiency calibration of ITER bolometer prototypes using Pt absorbers on SiN membranes

    Science.gov (United States)

    Meister, H.; Willmeroth, M.; Zhang, D.; Gottwald, A.; Krumrey, M.; Scholze, F.

    2013-12-01

    The energy resolved efficiency of two bolometer detector prototypes for ITER with 4 channels each and absorber thicknesses of 4.5 μm and 12.5 μm, respectively, has been calibrated in a broad spectral range from 1.46 eV up to 25 keV. The calibration in the energy range above 3 eV was performed against previously calibrated silicon photodiodes using monochromatized synchrotron radiation provided by five different beamlines of Physikalische Technische Bundesanstalt at the electron storage rings BESSY II and Metrology Light Source in Berlin. For the measurements in the visible range, a setup was realised using monochromatized halogen lamp radiation and a calibrated laser power meter as reference. The measurements clearly demonstrate that the efficiency of the bolometer prototype detectors in the range from 50 eV up to ≈6 keV is close to unity; at a photon energy of 20 keV the bolometer with the thick absorber detects 80% of the photons, the one with the thin absorber about 50%. This indicates that the detectors will be well capable of measuring the plasma radiation expected from the standard ITER scenario. However, a minimum absorber thickness will be required for the high temperatures in the central plasma. At 11.56 keV, the sharp Pt-L3 absorption edge allowed to cross-check the absorber thickness by fitting the measured efficiency to the theoretically expected absorption of X-rays in a homogeneous Pt-layer. Furthermore, below 50 eV the efficiency first follows the losses due to reflectance expected for Pt, but below 10 eV it is reduced further by a factor of 2 for the thick absorber and a factor of 4 for the thin absorber. Most probably, the different histories in production, storage, and operation led to varying surface conditions and additional loss channels.

  6. Superconductivity in a chiral nanotube

    Science.gov (United States)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  7. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  8. Planar Lithographed Superconducting LC Resonators for Frequency-Domain Multiplexed Readout Systems

    Science.gov (United States)

    Rotermund, K.; Barch, B.; Chapman, S.; Hattori, K.; Lee, A.; Palaio, N.; Shirley, I.; Suzuki, A.; Tran, C.

    2016-07-01

    Cosmic microwave background (CMB) polarization experiments are increasing the number of transition edge sensor (TES) bolometers to increase sensitivity. In order to maintain low thermal loading of the sub-Kelvin stage, the frequency-domain multiplexing (FDM) factor has to increase accordingly. FDM is achieved by placing TES bolometers in series with inductor-capacitor (LC) resonators, which select the readout frequency. The multiplexing factor can be raised with a large total readout bandwidth and small frequency spacing between channels. The inductance is kept constant to maintain a uniform readout bandwidth across detectors, while the maximum acceptable value is determined by bolometer stability. Current technology relies on commercially available ceramic chip capacitors. These have high scatter in their capacitance thereby requiring large frequency spacing. Furthermore, they have high equivalent series resistance (ESR) at higher frequencies and are time consuming and tedious to hand assemble via soldering. A solution lies in lithographed, planar spiral inductors (currently in use by some experiments) combined with interdigitated capacitors on a silicon (Si) substrate. To maintain reasonable device dimensions, we have reduced trace and gap widths of the LCs to 4 \\upmu m. We increased the inductance from 16 to 60 \\upmu H to achieve a higher packing density, a requirement for FDM systems with large multiplexing factors. Additionally, the Si substrate yields low ESR values across the entire frequency range and lithography makes mass production of LC pairs possible. We reduced mutual inductance between inductors by placing them in a checkerboard pattern with the capacitors, thereby increasing physical distances between adjacent inductors. We also reduce magnetic coupling of inductors with external sources by evaporating a superconducting ground plane onto the backside of the substrate. We report on the development of lithographed LCs in the 1-5 MHz range for use

  9. Superconducting dipole electromagnet

    Science.gov (United States)

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  10. 100 years of superconductivity

    CERN Multimedia

    Globe Info

    2011-01-01

    Public lecture by Philippe Lebrun, who works at CERN on applications of superconductivity and cryogenics for particle accelerators. He was head of CERN’s Accelerator Technology Department during the LHC construction period. Centre culturel Jean Monnet, route de Gex Tuesday 11 October from 8.30 p.m. to 10.00 p.m. » Suitable for all – Admission free - Lecture in French » Number of places limited For further information: +33 (0)4 50 42 29 37

  11. TOPICAL REVIEW: Superconducting bearings

    Science.gov (United States)

    Hull, John R.

    2000-02-01

    The physics and technology of superconducting bearings is reviewed. Particular attention is given to the use of high-temperature superconductors (HTSs) in rotating bearings. The basic phenomenology of levitational forces is presented, followed by a brief discussion of the theoretical models that can be used for conceptual understanding and calculations. The merits of various HTS bearing designs are presented, and the behaviour of HTS bearings in typical situations is discussed. The article concludes with a brief survey of various proposed applications for HTS bearings.

  12. Conventional and unconventional superconductivity

    Science.gov (United States)

    Fernandes, R. M.

    2012-02-01

    Superconductivity has been one of the most fruitful areas of research in condensed matter physics, bringing together researchers with distinct interests in a collaborative effort to understand from its microscopic basis to its potential for unprecedented technological applications. The concepts, techniques, and methods developed along its centennial history have gone beyond the realm of condensed matter physics and influenced the development of other fascinating areas, such as particle physics and atomic physics. These notes, based on a set of lectures given at the 2011 Advanced Summer School of Cinvestav, aim to motivate the young undergraduate student in getting involved in the exciting world of conventional and unconventional superconductors.

  13. Superconductivity from correlated hopping

    CERN Document Server

    Batista, C D; Aligia, A A

    1995-01-01

    We consider a chain described by a next-nearest-neighbor hopping combined with a nearest-neighbor spin flip. In two dimensions this three-body term arises from a mapping of the three-band Hubbard model for CuO$_2$ planes to a generalized $t-J$ model and for large O-O hopping favors resonance-valence-bond superconductivity of predominantly $d$-wave symmetry. Solving the ground state and low-energy excitations by analytical and numerical methods we find that the chain is a Luther-Emery liquid with correlation exponent $K_{\\rho} = (2-n)^2/2$, where $n$ is the particle density.

  14. Superconductivity in nanowires

    CERN Document Server

    Bezryadin, Alexey

    2012-01-01

    The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine.One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so i

  15. Introduction to superconductivity

    CERN Document Server

    Rose-Innes, AC

    1978-01-01

    Introduction to Superconductivity differs from the first edition chiefly in Chapter 11, which has been almost completely rewritten to give a more physically-based picture of the effects arising from the long-range coherence of the electron-waves in superconductors and the operation of quantum interference devices. In this revised second edition, some further modifications have been made to the text and an extra chapter dealing with """"high-temperature"""" superconductors has been added. A vast amount of research has been carried out on these since their discovery in 1986 but the results, both

  16. Superconducting Electronic Film Structures

    Science.gov (United States)

    1991-02-14

    cubic, yttria stabilized, zirconia (YSZ) single crystals with (100) orientation and ao = 0.512 to 0.516 nm. Films were magnetron-sputtered... Crown by Solid-State and Vapor-Phase Epitaxy," IEEE Trans. Uagn. 25(2), 2538 (1989). 6. J. H. Kang, R. T. Kampwirth, and K. E. Gray, "Superconductivity...summarized in Fig. 1, are too high for SrTiO3 or yttria- stabilized zirconia (YSZ) to be used in rf applications. MgO, LaAIO 3 , and LaGaO3 have a tan 6

  17. Heavy fermion superconductivity

    Science.gov (United States)

    Brison, Jean-Pascal; Glémot, Loı̈c; Suderow, Hermann; Huxley, Andrew; Kambe, Shinsaku; Flouquet, Jacques

    2000-05-01

    The quest for a precise identification of the symmetry of the order parameter in heavy fermion systems has really started with the discovery of the complex superconducting phase diagram in UPt 3. About 10 years latter, despite numerous experiments and theoretical efforts, this is still not achieved, and we will quickly review the present status of knowledge and the main open question. Actually, the more forsaken issue of the nature of the pairing mechanism has been recently tackled by different groups with macroscopic or microscopic measurement, and significant progress have been obtained. We will discuss the results emerging from these recent studies which all support non-phonon-mediated mechanisms.

  18. In situ calibration of the foil detector for an infrared imaging video bolometer using a carbon evaporation technique

    Science.gov (United States)

    Mukai, K.; Peterson, B. J.; Takayama, S.; Sano, R.

    2016-11-01

    The InfraRed imaging Video Bolometer (IRVB) is a useful diagnostic for the multi-dimensional measurement of plasma radiation profiles. For the application of IRVB measurement to the neutron environment in fusion plasma devices such as the Large Helical Device (LHD), in situ calibration of the thermal characteristics of the foil detector is required. Laser irradiation tests of sample foils show that the reproducibility and uniformity of the carbon coating for the foil were improved using a vacuum evaporation method. Also, the principle of the in situ calibration system was justified.

  19. Overview on superconducting photoinjectors

    CERN Document Server

    Arnold, A

    2011-01-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...

  20. Overview of Superconducting Photoinjectors

    CERN Document Server

    Arnold, A

    2009-01-01

    The success of most of the proposed ERL based electron accelerator projects for future storage ring replacements (SRR) and high power IR-FELs is contingent upon the development of an appropriate source. Electron beams with an unprecedented combination of high brightness, low emittance (0.1 µm rad) and high average current (hundreds of mA) are required to meet the FEL specification [1]. An elegant way to create such an unique beam is to combine the high beam quality of a normal conducting RF photo injector with the superconducting technology to get a superconducting RF photo injector (SRF gun). SRF gun R&D programs based on different approaches are under investigation at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, JLab, Niowave, NPS, Wisconsin University). Lot of progress could be achieved during the last years and first long term operation was demonstrated at the FZD [2]. In the near future, this effort will lead to SRF guns, which are indispensab...