WorldWideScience

Sample records for superconductive decimation filter

  1. High-Speed Superconductive Decimation Filter for Sigma-Delta Analog to Digital Converter

    Science.gov (United States)

    Wakamatsu, Tomu; Yamanashi, Yuki; Yoshikawa, Nobuyuki

    2017-07-01

    A superconducting decimation filter is required to convert high-speed output data from a superconducting sigma-delta analog to digital (A/D) modulator to low-speed data for data acquisition by room-temperature electronics. Because the operating frequency of the conventional superconducting decimation filter is lower than that of the maximum operation frequency of A/D modulator, the system performance of the superconducting A/D converter is limited by the decimation filter. We propose a decimation filter that can operate at the sampling frequency of the A/D modulator by hybridizing a shift-register-based and a counter-based decimation filters. The investigated decimation filter can be implemented with a practical circuit area. We designed and tested the investigated decimation filter. The simulation result indicates that the maximum operation frequency of the designed decimation filter is 39.8 GHz assuming the 2.5 kA/cm2 Nb fabrication process. We experimentally confirmed the low-speed operation of the designed decimation filter with the bias margin of 93.8%-110.8%.

  2. High-speed decimation filter for a delta-sigma analog-to-digital converter

    Science.gov (United States)

    Xie, Yiqun

    1998-10-01

    A decimation filter is a key component in a delta-sigma analog-to-digital converter system. The importance of the design of the decimation filter for the delta-sigma converter is due to several factors. The first, high resolution, which is the major advantage of the delta-sigma converter, can only be possible if the decimation filter can remove the high-frequency noise generated by the quantizer, without introducing significant distortion of the signals. The second is that a decimation filter occupies the dominant portion of the area and consumes the dominant portion of power in a delta-sigma converter; therefore, a well designed decimation filter can significantly save power and area for the converter and reduce production cost. The third is that the first-stage decimation filter has to operate in a very high frequency, equal to the sampling frequency of the delta-sigma converter. The circuit complexity and high-speed operation pose challenges to the design of a decimation filter. A superconductive decimation filter has the advantage of allowing sampling the analog signal at an ultra-high frequency in the modulator. This dissertation presents a superconductive decimation filter designed with voltage-state logic, which has the advantage of robustness, being relatively insensitive to clock timing, and easier to interface with semiconductor circuitry than other prevailing superconductive logic families. A structure of a multi-channel-input filter is developed to improve the speed performance. The filter is aimed to work at 16 Gbit/s or higher with state-of-the-art niobium technology. Extensive simulation is performed to optimize the circuit design. Circuit yield is predicted by Monte Carlo simulation using the knowledge of existing process variations. To improve yield, the circuit is simplified by using an accumulate-and-dump structure. A novel XOR gate is invented and used in the circuit to reduce gate count even further. A single-rail operation of signals, rather

  3. On the application of under-decimated filter banks

    Science.gov (United States)

    Lin, Y.-P.; Vaidyanathan, P. P.

    1994-01-01

    Maximally decimated filter banks have been extensively studied in the past. A filter bank is said to be under-decimated if the number of channels is more than the decimation ratio in the subbands. A maximally decimated filter bank is well known for its application in subband coding. Another application of maximally decimated filter banks is in block filtering. Convolution through block filtering has the advantages that parallelism is increased and data are processed at a lower rate. However, the computational complexity is comparable to that of direct convolution. More recently, another type of filter bank convolver has been developed. In this scheme, the convolution is performed in the subbands. Quantization and bit allocation of subband signals are based on signal variance, as in subband coding. Consequently, for a fixed rate, the result of convolution is more accurate than is direct convolution. This type of filter bank convolver also enjoys the advantages of block filtering, parallelism, and a lower working rate. Nevertheless, like block filtering, there is no computational saving. In this article, under-decimated systems are introduced to solve the problem. The new system is decimated only by half the number of channels. Two types of filter banks can be used in the under-decimated system: the discrete Fourier transform (DFT) filter banks and the cosine modulated filter banks. They are well known for their low complexity. In both cases, the system is approximately alias free, and the overall response is equivalent to a tunable multilevel filter. Properties of the DFT filter banks and the cosine modulated filter banks can be exploited to simultaneously achieve parallelism, computational saving, and a lower working rate. Furthermore, for both systems, the implementation cost of the analysis or synthesis bank is comparable to that of one prototype filter plus some low-complexity modulation matrices. The individual analysis and synthesis filters have complex

  4. Word-serial Architectures for Filtering and Variable Rate Decimation

    Directory of Open Access Journals (Sweden)

    Eugene Grayver

    2002-01-01

    Full Text Available A new flexible architecture is proposed for word-serial filtering and variable rate decimation/interpolation. The architecture is targeted for low power applications requiring medium to low data rate and is ideally suited for implementation on either an ASIC or an FPGA. It combines the small size and low power of an ASIC with the programmability and flexibility of a DSP. An efficient memory addressing scheme eliminates the need for power hungry shift registers and allows full reconfiguration. The decimation ratio, filter length and filter coefficients can all be changed in real time. The architecture takes advantage of coefficient symmetries in linear phase filters and in polyphase components.

  5. IMPLEMENTATION AND COMPARISON OF DIFFERENT CIC FILTER STRUCTURE FOR DECIMATION

    Directory of Open Access Journals (Sweden)

    M. Madheswaran

    2013-06-01

    Full Text Available This paper briefs an implementation of different CIC filter architectures for decimation. The different decimation filter structures are implemented using cascaded integrator-comb filter to work for the down sampling ratio of 8. The prototype is designed with MATLAB Simulink model and it is converted to VHDL code using Xilinx system generator. Prototype is implemented in Virtex V- XC5VLX110T-3ff1136 FPGA kit and simulation results and device utilization reports are generated and tabulated. Finally different architectures are compared using number of used LUTs, Registers, Power consumption etc.

  6. Optimal Sharpening of Compensated Comb Decimation Filters: Analysis and Design

    Directory of Open Access Journals (Sweden)

    David Ernesto Troncoso Romero

    2014-01-01

    Full Text Available Comb filters are a class of low-complexity filters especially useful for multistage decimation processes. However, the magnitude response of comb filters presents a droop in the passband region and low stopband attenuation, which is undesirable in many applications. In this work, it is shown that, for stringent magnitude specifications, sharpening compensated comb filters requires a lower-degree sharpening polynomial compared to sharpening comb filters without compensation, resulting in a solution with lower computational complexity. Using a simple three-addition compensator and an optimization-based derivation of sharpening polynomials, we introduce an effective low-complexity filtering scheme. Design examples are presented in order to show the performance improvement in terms of passband distortion and selectivity compared to other methods based on the traditional Kaiser-Hamming sharpening and the Chebyshev sharpening techniques recently introduced in the literature.

  7. An Applied Method for Designing Maximally Decimating Non-uniform Filter Banks

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Assembling individual line phase filters to form a multi-channel filter bank allows the synthesis filter to be similar to corresponding analysis filters, and the design calculation can be simple. The appropriate relations between synthesis filters and analysis filters eliminate most aliasing resulting from decimation in non-uniform maximally decimating filter banks, and LS algorithm and Remez algorithm are used to optimize the composite character. This design method can achieve approximate Perfect-Reconstruction. An example is given in which the general parameter filters with approximate line phase are used as units of a filter bank.

  8. Realization of IIR Decimation Filters Based on Merged Delay Transformation

    Directory of Open Access Journals (Sweden)

    Umar Farooq

    2007-01-01

    The transformation is derived analytically and can be applied directly to first- and second-order IIR filters. Computational efficiency is enhanced because the current output can be directly computed from Mth old output. The output data rate is decreased by M by merging M number of delay elements in the recursive path. The proposed transformation is applied to higher-order IIR filter by decomposing it into parallel first-order and second-order sections. This transformation not only gives better stability for coefficient quantization but also reduces the requirement on processing clock, for sample, rate reduction. Filtering and down sampling are performed in the same stage. Number of multiplications is reduced by 45% as compared to the conventional IIR filters where all output samples are computed.

  9. Decimated Filters for Acquisition System of Signs Electroencephalography

    Directory of Open Access Journals (Sweden)

    Cyndi González Alfonso

    2013-06-01

    Full Text Available In digital electroencephalography, a sampling frequency of 200 samples per second (s.p.s is theminimum used. However, the present trend of these systems for recording brain electrical activity(EEG, in the area of research is the use of higher sampling at 1000 s.p.s, in order to reproduce shortevents (intracortical records epileptic activity as well as to faithfully reproduce some kinds of artifactsto subtract digital post-processing means. Because this results in greater use of memory for thestorage of the data, in long records, as sleep studies, it is convenient to work with the minimumsampling frequency recommended by the IFCN (200m.ps being necessary to lower it by a process ofdecimation. This paper presents the study and analysis of criteria for the design optimization ofdecimates stages for electroencephalographic signal implemented by a FIR digital filter, with a versatileapplication to EEG recording systems in development by the Neuroscience Center of Cuba (CNEURO

  10. ENHANCEMENT CITRA PANORAMIK GIGI DENGAN PEMBAGIAN CITRA ARAH MENGGUNAKAN DECIMATION-FREE DIRECTIONAL FILTER BANK

    Directory of Open Access Journals (Sweden)

    Naser Jawas

    2015-11-01

    Full Text Available Citra radiograf panoramik gigi dapat digunakan untuk mendeteksi penyakit osteoporosis. Sistem deteksi osteoporosis secara digital digunakan untuk meningkatkan ketelitian dan mempermudah pengukuran. Proses enhancement citra digital radiograf panoramik gigi diperlukan untuk membantu memperbaiki atau memperjelas bagian-bagian yang penting di citra tersebut seperti bagian cortical. Bagian cortical yang memanjang secara horizontal sering memiliki bagian dengan iluminasi tidak merata di bagian tengah dengan arah vertikal yang menyulitkan proses pengukuran. Pemerataan iluminasi dengan metode filterisasi homomorfik cenderung mengalami over-enhancement. Oleh karena itu, Pada penelitian ini diusulkan metode enhancement citra radiograf panoramik gigi dengan menggunakan pemecahan citra ke dalam citra arah horizontal dan citra arah vertikal. Pemecahan citra ke dalam citra arah dilakukan dengan menggunakan Decimation-Free Directional Filter Bank. Pemerataan iluminasi dilakukan di masing-masing citra arah. Hasilnya menunjukkan proses filterisasi homomorfik yang dilakukan di citra arah ini efektif membantu menghindari over-enhancement.

  11. 级联COSINE滤波器在抽取滤波中的研究%Research on cascaded COSINE filter in decimation filter

    Institute of Scientific and Technical Information of China (English)

    刘俊

    2011-01-01

    In order to solve the problem that side lobe suppression of traditional Cascaded Integrator Comb (CIC) filter is not enough in high-speed decimation filter system ,this paper compares cascade COSINE decimation filter and principle derivation of conventional CIC decimation filter,and analyses that cascade COSINE filter has great similarities with CIC filter on the frequency characteristics,along with a good low-pass characteristics and the implementation of hardware,meeting the case of high-speed decimation filter. According to the simulation by MATLAB,it can obtain that during taken the 32-fold integer,the first side lobe attenuation of cascade COSINE filter is about 2 times that of traditional CIC filter. That means,cascade COSINE filter has better side lobe suppression than that of conventional CIC filter.%为了解决高速抽取滤波器系统中传统CIC滤波器旁瓣抑制不够的问题,通过对级联COSINE抽取滤波器和传统CIC抽取滤波器的原理推导进行对比,分析出级联COSINE滤波器在幅频特性上同CIC滤波器具有很大相似之处,且在满足高速抽取滤波器的情况下,同时具备很好的低通特性和硬件实现性.通过MATLAB仿真实验得到,级联COSINE滤波器在进行32倍整数抽取时,第一旁瓣衰减约是传统CIC滤波器的2倍,进而说明相对于传统CIC滤波器,级联COSINE滤波器具有更好的旁瓣抑制性能.

  12. Hardware-efficient Implementation of Half-Band IIR Filter for Interpolation and Decimation

    DEFF Research Database (Denmark)

    Jørgensen, Ivan Harald Holger; Pracný, Peter; Bruun, Erik

    2013-01-01

    calculations and simulations. The aim is to arrive at a design with low hardware complexity that is measured in terms of the number of adders. In the approach that is presented here, the filter specification is treated with some flexibility at the topmost system level. The half-band filter is implemented...... as a parallel connection of two all-pass filter cells. The filter is designed by first fixing the most sensitive filter coefficient to a convenient value that can be quantized by using only a few adders. Subsequently, the overdesign margin is used to coarsely quantize the remaining filter coefficients...... and thereby minimize hardware demands. The complexity of the resulting IIR filter is evaluated by counting all the adders in the filter, i.e., the adders for both the filter coefficients and the filter cells. The result of themethod is compared with state-of-the-art works where the filter is designed by using...

  13. Microstrip filters for measurement and control of superconducting qubits.

    Science.gov (United States)

    Longobardi, Luigi; Bennett, Douglas A; Patel, Vijay; Chen, Wei; Lukens, James E

    2013-01-01

    Careful filtering is necessary for observations of quantum phenomena in superconducting circuits at low temperatures. Measurements of coherence between quantum states require extensive filtering to protect against noise coupled from room temperature electronics. We demonstrate distributed transmission line filters which cut off exponentially at GHz frequencies and can be anchored at the base temperature of a dilution refrigerator. The compact design makes them suitable to filter many different bias lines in the same setup, necessary for the control and measurement of superconducting qubits.

  14. Implementation of a Two-Channel Maximally Decimated Filter Bank using Switched Capacitor Circuits

    OpenAIRE

    Nahlik, J.; Hospodka, J.; P. Sovka; B. Psenicka

    2013-01-01

    The aim of this paper is to describe the implementation of a two-channel filter bank (FB) using the switched capacitor (SC) technique considering real properties of operational amplifiers (OpAmps). The design procedure is presented and key recommendations for the implementation are given. The implementation procedure describes the design of two-channel filter bank using an IIR Cauer filter, conversion of IIR into the SC filters and the final implementation of the SC filters. The whole design ...

  15. Implementation of a Two-Channel Maximally Decimated Filter Bank using Switched Capacitor Circuits

    Directory of Open Access Journals (Sweden)

    J. Nahlik

    2013-04-01

    Full Text Available The aim of this paper is to describe the implementation of a two-channel filter bank (FB using the switched capacitor (SC technique considering real properties of operational amplifiers (OpAmps. The design procedure is presented and key recommendations for the implementation are given. The implementation procedure describes the design of two-channel filter bank using an IIR Cauer filter, conversion of IIR into the SC filters and the final implementation of the SC filters. The whole design and an SC circuit implementation is performed by a PraCAn package in Maple. To verify the whole filter bank, resulting real property circuit structures are completely simulated by WinSpice and ELDO simulators. The results confirm that perfect reconstruction conditions can be almost accepted for the filter bank implemented by the SC circuits. The phase response of the SC filter bank is not strictly linear due to the IIR filters. However, the final ripple of a magnitude frequency response in the passband is almost constant, app. 0.5 dB for a real circuit analysis.

  16. Fraunhofer regime of operation for superconducting quantum interference filters

    DEFF Research Database (Denmark)

    Shadrin, A.V.; Constantinian, K.Y.; Ovsyannikov, G.A.;

    2008-01-01

    Series arrays of superconducting quantum interference devices (SQUIDs) with incommensurate loop areas, so-called superconducting quantum interference filters (SQIFs), are investigated in the kilohertz and the gigahertz frequency range. In SQIFs made of high-T-c bicrystal junctions the flux-to-vol...

  17. 高性能CIC抽取滤波器研究与设计%Design of High-powered CIC Decimator Filter

    Institute of Scientific and Technical Information of China (English)

    刘立; 向新

    2013-01-01

    In view of the problem of high pass band distortion and low stop band attenuation of CIC decimation filter in the sampling rata conversion system, a high-powered CIC decimator filter is proposed in this paper by using the technology of compensate filter and non-recursive parallel structure. Simulation results show that the proposed filter is more excellent on the stop band attenuation and pass band distortion contact with traditional CIC filter, CIC-Cosine filter and ISOP-CIC filter. Therefore, it is more appropriate in the sampling rata conversion system which has stricter require on magnitude performance.%针对采样率变换系统中CIC抽取滤波器存在通带失真较大和阻带衰减较小的问题,提出一种高性能CIC抽取滤波器的设计方法,该方法采用补偿滤波器技术和非递归并行结构.仿真结果表明,通带失真与阻带衰减特性明显优于传统的CIC,CIC-Cosine,ISOP-CIC等滤波器.因此,适用于对幅频特性要求较高的采样率变换系统.

  18. 12位Sigma-Delta模数转换器的降采样滤波器设计%Decimation Filter Design for 12-bit Sigma-Delta ADC

    Institute of Scientific and Technical Information of China (English)

    黄博志

    2014-01-01

    The paper presents a signal-noise-ratio (SNR) based design method for the decimation filter of a 12-bit Sigma-Delta ADC (analog-to-digital converter). Sigma-Delta ADC consists of Sigma-Delta modulatorand decimation filter. Sigma-Delta modulatoris used for signal modulation and over-sampling quantization. Decimation filter is used for down-sampling the digital signal to its normal frequency and the quantization noise is filtered at the same time. Sigma-Delta ADC has higher sampling frequency, higher precision and less hardware cost than traditional ADC. There are two specifications for decimation filter:down-sampling rate and filter performance. This filter design method is driven by SNR and two solutions are applied. Simulation is done using MATLAB and the result is met the requirement of 12-bit Sigma-Delta ADC with SNR larger than 74 dB.%一种由SNR(信噪比)驱动的滤波器设计,用于12位Sigma-Delta模数转换器。Sigma-Delta模数转换器包括Sigma-Delta调制器和降采样滤波器两部分,首先用Sigma-Delta调制器对信号进行过采样率量化,然后通过降采样滤波器进行数字信号处理,将信号还原到原始采样率并去除量化噪声。和传统的模数转换器相比,Sigma-Delta模数转换器具有采样率高、精度高、面积小等优点。Sigma-Delta模数转换器的滤波器设计有降采样率和滤波性能两个指标要求,该设计方法由SNR驱动并采用了两种滤波器方案,设计结果在MATLAB里进行了仿真,其SNR大于74 dB,达到12位Sigma-Delta模数转换器的要求。

  19. Progress on applications of high temperature superconducting microwave filters

    Science.gov (United States)

    Chunguang, Li; Xu, Wang; Jia, Wang; Liang, Sun; Yusheng, He

    2017-07-01

    In the past two decades, various kinds of high performance high temperature superconducting (HTS) filters have been constructed and the HTS filters and their front-end subsystems have been successfully applied in many fields. The HTS filters with small insertion loss, narrow bandwidth, flat in-band group delay, deep out-of-band rejection, and steep skirt slope are reviewed. Novel HTS filter design technologies, including those in high power handling filters, multiband filters and frequency tunable filters, are reviewed, as well as the all-HTS integrated front-end receivers. The successful applications to various civilian fields, such as mobile communication, radar, deep space detection, and satellite technology, are also reviewed.

  20. Multilayer MgB2 superconducting quantum interference filter magnetometers

    Science.gov (United States)

    Galan, Elias; Melbourne, Thomas; Davidson, Bruce A.; Xi, X. X.; Chen, Ke

    2016-04-01

    We report two types of all-MgB2 superconductive quantum interference filter (SQIF) magnetometers that can measure absolute magnetic fields with high sensitivity. In one configuration, the SQIFs were made of 20 multilayer nonplanar all-MgB2 superconducting quantum interference devices (SQUIDs) connected in parallel with loop areas ranging in size from 0.4 to 3.6 μm2. These devices are sensitive to magnetic fields parallel to the substrate and show a single antipeak from 3 to 16 K with a maximum transfer function of ˜16 V/T at 3 K and a field noise of ˜110 pT/Hz1/2 above 100 Hz at 10 K. In a second configuration, the SQIFs were made with 16 planar SQUIDs connected in parallel with loop areas ranging in size from 4 μm2 to 25 μm2 and are sensitive to the magnetic fields perpendicular to the substrate. The planar SQIF shows a single antipeak from 10 to 22 K with a maximum transfer function of 7800 V/T at 10 K and a field noise of ˜70 pT/Hz1/2 above 100 Hz at 20 K.

  1. Decimation and harmonic inversion of periodic orbit signals

    Science.gov (United States)

    Main, J.; Dando, P. A.; Belkic, Dz; Taylor, H. S.

    2000-02-01

    We present and compare three generically applicable signal processing methods for periodic orbit quantization via harmonic inversion of semiclassical recurrence functions. In a first step of each method, a band-limited decimated periodic orbit signal is obtained by analytical frequency windowing of the periodic orbit sum. In a second step, the frequencies and amplitudes of the decimated signal are determined by either decimated linear predictor, decimated Padé approximant, or decimated signal diagonalization. These techniques, which would have been numerically unstable without the windowing, provide numerically more accurate semiclassical spectra than does the filter diagonalization method.

  2. Decimation and Harmonic Inversion of Periodic Orbit Signals

    CERN Document Server

    Main, J; Belkic, D; Taylor, H S; Belkic, Dz.

    2000-01-01

    We present and compare three generically applicable signal processing methods for periodic orbit quantization via harmonic inversion of semiclassical recurrence functions. In a first step of each method, a band-limited decimated periodic orbit signal is obtained by analytical frequency windowing of the periodic orbit sum. In a second step, the frequencies and amplitudes of the decimated signal are determined by either Decimated Linear Predictor, Decimated Pade Approximant, or Decimated Signal Diagonalization. These techniques, which would have been numerically unstable without the windowing, provide numerically more accurate semiclassical spectra than does the filter-diagonalization method.

  3. Cryopol: a superconducting magnetostatic cavity for a sup 3 He neutron spin filter

    CERN Document Server

    Dreyer, J; Bourgeat-Lami, E; Lelievre-Berna, E; Pujol, S; Thomas, F; Thomas, M; Tasset, F

    2000-01-01

    We present a device called 'Cryopol' that provides a clean magnetic environment for a sup 3 He spin filter cell, even in the presence of strong magnetic stray fields like those of a superconducting magnet.

  4. Performance of a Y-Ba-Cu-O superconducting filter/GaAs low noise amplifier hybrid circuit

    Science.gov (United States)

    Bhasin, Kul B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.

    1992-01-01

    A superconducting 7.3 GHz two-pole microstrip bandpass filter and a GaAs low noise amplifier (LNA) were combined into a hybrid circuit and characterized at liquid nitrogen temperatures. This superconducting/seismology circuit's performance was compared to a gold filter/GaAs LNA hybrid circuit. The superconducting filter/GaAs LNA hybrid circuit showed higher gain and lower noise figure than its gold counterpart.

  5. Increasing energy relaxation time of superconducting qubits with nonmagnetic infrared filter and shield

    Science.gov (United States)

    Yuhao, Liu; Mengmeng, Li; Dong, Lan; Guangming, Xue; Xinsheng, Tan; Haifeng, Yu; Yang, Yu

    2016-05-01

    One of the primary origins of the energy relaxation in superconducting qubits is the quasiparticle loss. The quasiparticles can be excited remarkably by infrared radiation. In order to minimize the density of quasiparticle and increase the qubit relaxation time, we design and fabricate the infrared filter and shield for superconducting qubits. In comparison with previous filters and shields, a nonmagnetic dielectric is used as the infrared absorbing material, greatly suppressing the background magnetic fluctuations. The filters can be made to impedance-match with other microwave devices. Using the as-fabricated infrared filter and shield, we increased the relaxation time of a transmon qubit from 519 ns to 1125 ns. Project supported by the National Natural Science Foundation of China (Grant Nos. 91321310, 11274156, 11474152, 11474153, 61521001, and 11504165) and the State Key Program for Basic Research of China (Grant Nos. 2011CB922104 and 2011CBA00205).

  6. The research of parallel-coupled linear-phase superconducting filter

    Science.gov (United States)

    Zhang, Tianliang; Zhou, Liguo; Yang, Kai; Luo, Chao; Jiang, Mingyan; Dang, Wei; Ren, Xiangyang

    2015-12-01

    This paper presents a research on the mechanism of a linear phase filter constructed with parallel-connected sub-networks, considering that linear phase characteristic of a filter can be achieved when the group delays of sub-networks compensate each other. This paper also gives several coupling and routing diagrams of linear phase filters with different parallel-connected networks, and then the coupling matrixes of three 8-order filters and one 10-order filter are synthesized. One of the coupling matrixes is utilized to design a 8-order parallel-connected network high temperature superconducting (HTS) linear phase filter with two pairs of transmission zeros, so as to verify the correctness of theory data and the feasibility of the circuit design for the proposed 8-order and higher order parallel-connected network linear phase filter. The HTS linear phase filter is designed on YBCO/LaAlO3/YBCO superconducting substrate, at 77 K, the measured center frequency is 2000 MHz with a bandwidth of 30 MHz, the insertion loss is less than 0.3 dB and the reflection is better than -12.5 dB in passband. The group delay is less than ±5 ns over the 60% passband, which shows that the filter has a good linear phase characteristic.

  7. The research of parallel-coupled linear-phase superconducting filter

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Tianliang; Zhou, Liguo; Yang, Kai, E-mail: kyang@uestc.edu.cn; Luo, Chao; Jiang, Mingyan; Dang, Wei; Ren, Xiangyang

    2015-12-15

    Highlights: • Parallel-connected linear phase filter can be achieved when the group delays of sub-networks compensate each other. • We give the coupling and routing diagrams of four linear phase filters with self-synthesized coupling matrixes, and verified the correctness of theory data and the feasibility of the circuit design. • There are a variety of topological coupling and routing diagrams for a same order filter. • We give a reasonable arrangement of design steps for high-order parallel-coupled linear phase filter. - Abstract: This paper presents a research on the mechanism of a linear phase filter constructed with parallel-connected sub-networks, considering that linear phase characteristic of a filter can be achieved when the group delays of sub-networks compensate each other. This paper also gives several coupling and routing diagrams of linear phase filters with different parallel-connected networks, and then the coupling matrixes of three 8-order filters and one 10-order filter are synthesized. One of the coupling matrixes is utilized to design a 8-order parallel-connected network high temperature superconducting (HTS) linear phase filter with two pairs of transmission zeros, so as to verify the correctness of theory data and the feasibility of the circuit design for the proposed 8-order and higher order parallel-connected network linear phase filter. The HTS linear phase filter is designed on YBCO/LaAlO{sub 3}/YBCO superconducting substrate, at 77 K, the measured center frequency is 2000 MHz with a bandwidth of 30 MHz, the insertion loss is less than 0.3 dB and the reflection is better than −12.5 dB in passband. The group delay is less than ±5 ns over the 60% passband, which shows that the filter has a good linear phase characteristic.

  8. 5 Indicators of Decimal Understandings

    Science.gov (United States)

    Cramer, Kathleen; Monson, Debra; Ahrendt, Sue; Colum, Karen; Wiley, Bethann; Wyberg, Terry

    2015-01-01

    The authors of this article collaborated with fourth-grade teachers from two schools to support implementation of a research-based fraction and decimal curriculum (Rational Number Project: Fraction Operations and Initial Decimal Ideas). Through this study, they identified five indicators of rich conceptual understanding of decimals, which are…

  9. Building Understanding of Decimal Fractions

    Science.gov (United States)

    D'Ambrosio, Beatriz S.; Kastberg, Signe E.

    2012-01-01

    Asked to complete a decimal-ordering task, several preservice teachers were unable to arrange the values from smallest to largest. Even more surprising to the authors were the number who could solve this task correctly but could not justify their solution by representing each decimal in an area model using a decimal grid. Their preservice teachers…

  10. A 23 GHz high-temperature superconducting microstrip filter for radio astronomy

    Institute of Scientific and Technical Information of China (English)

    GAO Lu; GUO Jin; WANG YueHui; YU Tao; ZHANG Qiang; LI ChunGuang; ZHANG XueQiang; LI Hong; LI JunJie; LI WuXia; GU ChangZhi; MENG JiBao; FENG Ji; HE YuSheng

    2009-01-01

    This paper reports a 6-pole high-temperature superconducting (HTS) microstrip bandpass filter for radio astronomy applications. The filter has a center frequency of 23 GHz and a bandwidth the 2 GHz. We have made many efforts, such as adopting 0.25-mm-thick substrate, carefully designing the housing box and filter layout, to solve the problems in realizing a K-band planar filter. A special straight-line half-wavelength resonator (center-widen resonator) was also designed to reduce the insertion loss of the filter. The measured results showed a midband insertion loss of 0.11 dB with a ripple of 0.4 dB, and a return loss better than 11.5 dB. Good agreement was obtained between simulated and measured re-suits.

  11. Decimal Classification Editions

    Directory of Open Access Journals (Sweden)

    Zenovia Niculescu

    2009-01-01

    Full Text Available The study approaches the evolution of Dewey Decimal Classification editions from the perspective of updating the terminology, reallocating and expanding the main and auxilary structure of Dewey indexing language. The comparative analysis of DDC editions emphasizes the efficiency of Dewey scheme from the point of view of improving the informational offer, through basic index terms, revised and developed, as well as valuing the auxilary notations.

  12. High temperature superconducting thin films for microwave filters

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Xinjie(赵新杰); LI; Lin(李林); LEI; Chong(雷冲); TIAN; Ybngjun(田永军)

    2002-01-01

    YBa2Cu3O7-δ and Tl2Ba2CaCu2O8 thin films for microwave filters were synthesized by pulsed laser deposition and the two-step thalliation process. Substrate quality requirements and the relation of thin film morphology, microstructure with microwave surface resistance were discussed.

  13. Design of a Digital Decimation Filter for Σ-Δ ADC in 0 .18 CMOS%0.18μm CMOS Σ-Δ ADC用数字抽取滤波器设计

    Institute of Scientific and Technical Information of China (English)

    刘忠超; 张长春; 李卫; 郭宇锋; 刘蕾蕾

    2014-01-01

    Design of a digital decimation filter for UHF RFID Σ-Δ ADC in 0 .18μm CMOS process ,and complete the entire process ,including pre and post-simulation ,logic synthesis ,floorplan ,and layout design ,etc .The filter use comb filter ,compensation filter and half-band filter cascade to achieve filtering and down-sampling .Rational choice of archi-tecture and order and the optimal of coefficient with CSD coding .With sampling frequency of 64 M Hz ,and oversampling ratio of 32 ,simulation results showed that by processing the bit stream from a 2-order Σ-Δ modulator , a signal-to-noise distortion ratio (SNDR) of 53 .8 dB is obtained for the filter .In the operating voltage of 1 .8 V , the power consumption is 15 mW ,layout area 0 .45 mm × 0 .45 mm ,and can meet the demand of RFID Σ-Δ ADC .%采用标准0.18μm CMOS工艺,设计了一种应用于UHF RFID Σ-Δ模数转换器的数字抽取滤波器,并完成其前后仿真、逻辑综合、布局布线及版图实现等全流程.该滤波器主要实现滤波和降采样功能,由梳状滤波器、补偿滤波器和半带滤波器级联组成.合理选择各级滤波器的结构、阶数并采用规范符号编码(CSD )对其系数进行优化.仿真结果表明:采样频率为64 M Hz ,过采样率为32的二阶Σ-Δ调制器的输出1位码流经过该滤波器滤波后,信噪比达到53.8 dB ;在1.8 V工作电压下,功耗约为15 mW .版图尺寸0.45 mm ×0.45 mm ,能够满足RFID中模数转换器的要求.

  14. Development of high-temperature superconducting filters operating at temperatures above 90 K

    Institute of Scientific and Technical Information of China (English)

    XIA HouHai; ZHOU ChunXia; ZUO Tao; HE Ming; JI Lu; ZHOU TieGe; ZHAO XinJie; FANG Lan; YAN ShaoLin

    2009-01-01

    This paper represents the development of a high temperature superconducting (HTS) filter, the highest operating temperature of which is up to 93 K. The filter is designed for S band with 4% fractional bandwidth and fabricated using thallium-barium-calcium-copper oxide (Tl_2Ba_2CaCu_2O_8) thin films. At 93 K, the measurements of the filter show that the insertion loss in the passband is less than 0.22 dB, the return loss is better than 20 dB, and the out-of-band rejection is more than 80 dB. The analysis on the characteristics of the filter operating at different temperatures shows that the filter can work well at temperatures around 90 K. The temperature of 93 K is the highest among the previous reports for HTS filters. The result reported in this paper is significant for HTS filters to be used in the field of microwave communication requiring high sensitivity.

  15. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  16. Nifty Nines and Repeating Decimals

    Science.gov (United States)

    Brown, Scott A.

    2016-01-01

    The traditional technique for converting repeating decimals to common fractions can be found in nearly every algebra textbook that has been published, as well as in many precalculus texts. However, students generally encounter repeating decimal numerals earlier than high school when they study rational numbers in prealgebra classes. Therefore, how…

  17. Nifty Nines and Repeating Decimals

    Science.gov (United States)

    Brown, Scott A.

    2016-01-01

    The traditional technique for converting repeating decimals to common fractions can be found in nearly every algebra textbook that has been published, as well as in many precalculus texts. However, students generally encounter repeating decimal numerals earlier than high school when they study rational numbers in prealgebra classes. Therefore, how…

  18. Midy's Theorem for Periodic Decimals

    OpenAIRE

    Lewittes, Joseph

    2006-01-01

    The decimal expansion of 1/7 is 0.142857142857..., the block 142857 repeating forever. We call 142857 the period and its length is 6 = 2x3. If the period is broken into 2 pieces each of length 3 which are then added, the result is 142 + 857 = 999; similarly 14 + 28 + 57 = 99. Other periodic decimals show the same phenomenon while others do not. The general question then arises: Let a/N be a fraction with denominator prime to 10, having decimal expansion with period length dk, if the period is...

  19. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  20. Varactor-tuned superconducting filter with constant absolute bandwidth at VHF-band

    Energy Technology Data Exchange (ETDEWEB)

    Li, Bo [Department of Physics, Tsinghua University, Beijing 100084 (China); Cao, Bisong, E-mail: bscao@tsinghua.edu.cn [Department of Physics, Tsinghua University, Beijing 100084 (China); Guo, Xubo; Zhang, Xiaoping [Department of Physics, Tsinghua University, Beijing 100084 (China); Chen, Yidong [Superconductor Technology Co., Ltd, Beijing 100085 (China); Wei, Bin; Jiang, Linan [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2015-09-15

    Highlights: • A four-pole superconducting tunable filter at VHF-band with constant absolute bandwidth is proposed. • The novel resonator consists of a spiral-in-spiral-out (SISO) microstrip line with one end shorted to ground and the other loaded with a varactor diode. • Both combline and interdigital constructions for coupling are introduced, and tuned to meet the constant bandwidth requirements. • The measurements show bandwidth variation is less than 1.3% while tuning from 247.28 to 266.58 MHz, and a high Q{sub u} of 1600–5500 is archived. - Abstract: A four-pole superconducting tunable filter at VHF-band with constant absolute bandwidth is proposed. The resonator consists of a spiral-in-spiral-out (SISO) resonator with one end shorted to ground and the other end loaded with a varactor diode. Both combline and interdigital constructions for coupling are introduced, and tuned to meet the constant bandwidth requirement. The fabricated device has a compact size, a tuning range of 7.3% from 247.28 to 266.58, a 3-dB bandwidth of 2.32 ± 0.03 MHz. The insertion loss ranges from 0.5 to 1.6 dB, yielding a high unloaded Q of 1600–5500. The simulated and measured results show an excellent agreement.

  1. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  2. On-chip filter bank spectroscopy at 600-700 GHz using NbTiN superconducting resonators

    CERN Document Server

    Endo, A; Yates, S J C; Baselmans, J J A; Thoen, D J; Javadzadeh, S M H; van der Werf, P P; Baryshev, A M; Klapwijk, T M

    2013-01-01

    We experimentally demonstrate the principle of an on-chip submillimeter wave filter bank spectrometer, using superconducting microresonators as narrow band-separation filters. The filters are made of NbTiN/SiNx/NbTiN microstrip line resonators, which have a resonance frequency in the range of 614-685 GHz---two orders of magnitude higher in frequency than what is currently studied for use in circuit quantum electrodynamics and photodetectors. The frequency resolution of the filters decreases from 350 to 140 with increasing frequency, most likely limited by dissipation of the resonators.

  3. Fractional Fourier domain analysis of decimation and interpolation

    Institute of Scientific and Technical Information of China (English)

    MENG XiangYi; TAO Ran; WANG Yue

    2007-01-01

    The sampling rate conversion is always used in order to decrease computational amount and storage load in a system. The fractional Fourier transform (FRFT) is a powerful tool for the analysis of nonstationary signals, especially, chirp-like signal.Thus, it has become an active area in the signal processing community, with many applications of radar, communication, electronic warfare, and information security.Therefore, it is necessary for us to generalize the theorem for Fourier domain analysis of decimation and interpolation. Firstly, this paper defines the digital frequency in the fractional Fourier domain (FRFD) through the sampling theorems with FRFT. Secondly, FRFD analysis of decimation and interpolation is proposed in this paper with digital frequency in FRFD followed by the studies of interpolation filter and decimation filter in FRFD. Using these results, FRFD analysis of the sampling rate conversion by a rational factor is illustrated. The noble identities of decimation and interpolation in FRFD are then deduced using previous results and the fractional convolution theorem. The proposed theorems in this study are the bases for the generalizations of the multirate signal processing in FRFD, which can advance the filter banks theorems in FRFD. Finally, the theorems introduced in this paper are validated by simulations.

  4. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  5. Dewey Decimal Classification: A Quagmire.

    Science.gov (United States)

    Gamaluddin, Ahmad Fouad

    1980-01-01

    A survey of 660 Pennsylvania school librarians indicates that, though there is limited professional interest in the Library of Congress Classification system, Dewey Decimal Classification (DDC) appears to be firmly entrenched. This article also discusses the relative merits of DDC, the need for a uniform system, librarianship preparation, and…

  6. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  7. A decimal carry-free adder

    Science.gov (United States)

    Nikmehr, Hooman; Phillips, Braden; Lim, Cheng-Chew

    2005-02-01

    Recently, decimal arithmetic has become attractive in the financial and commercial world including banking, tax calculation, currency conversion, insurance and accounting. Although computers are still carrying out decimal calculation using software libraries and binary floating-point numbers, it is likely that in the near future, all processors will be equipped with units performing decimal operations directly on decimal operands. One critical building block for some complex decimal operations is the decimal carry-free adder. This paper discusses the mathematical framework of the addition, introduces a new signed-digit format for representing decimal numbers and presents an efficient architectural implementation. Delay estimation analysis shows that the adder offers improved performance over earlier designs.

  8. Small-area decimators for delta-sigma video sensors

    Science.gov (United States)

    Azabache Villar, Erika; Skorka, Orit; Joseph, Dileepan

    2014-04-01

    A delta-sigma, or sigma-delta, analog-to-digital converter (ADC) comprises both a modulator, which implements oversampling and noise shaping, and a decimator, which implements low-pass filtering and downsampling. Whereas these ADCs are ubiquitous in audio applications, their usage in video applications is emerging. Because of oversampling, it is preferable to integrate delta-sigma ADCs at the pixel level of megapixel video sensors. Moreover, with pixel-level applications, area usage per ADC is much more important than with chip-level applications, where there is only one or a few ADCs per chip. Recently, a small-area decimator was presented that is suitable for pixel-level applications. However, though the pixel-level design is small enough for invisible-band video sensors, it is too large for visible-band ones. As shown here, nanoscale CMOS processes offer a solution to this problem. Given constant specifications, small-area decimators are designed, simulated, and laid out, full custom, for 180, 130, and 65nm standard CMOS processes. Area usage of the whole decimator is analyzed to establish a roadmap for the design and demonstrate that it could be competitive compared to other digital pixel sensors, based on Nyquist-rate ADCs, that are being commercialized.

  9. Efficient FPGA Hardware Reuse in a Multiplierless Decimation Chain

    Directory of Open Access Journals (Sweden)

    Guillermo A. Jaquenod

    2014-01-01

    Full Text Available In digital communications, an usual reception chain requires many stages of digital signal processing for filtering and sample rate reduction. For satellite on board applications, this need is hardly constrained by the very limited hardware resources available in space qualified FPGAs. This short paper focuses on the implementation of a dual chain of 14 stages of cascaded half band filters plus 2 : 1 decimators for complex signals (in-phase and quadrature with minimal hardware resources, using a small portion of an UT6325 Aeroflex FPGA, as a part of a receiver designed for a low data rate command and telemetry channel.

  10. FPGA Based Acceleration of Decimal Operations

    DEFF Research Database (Denmark)

    Nannarelli, Alberto

    2011-01-01

    Field Programmable Gate-Arrays (FPGAs) can efficiently implement application specific processors in nonconventional number systems, such as the decimal (Binary- Coded Decimal, or BCD) number system required for accounting accuracy in financial applications. The main purpose of this work is to show...... that applications requiring several decimal (BCD) operations can be accelerated by a processor implemented on a FPGA board connected to the computer by a standard bus. For the case of a telephone billing application, we demonstrate that even a basic implementation of the decimal processor on the FPGA, without...

  11. Primary Teachers' Subject Matter Knowledge: Decimals

    Science.gov (United States)

    Ubuz, Behiye; Yayan, Betul

    2010-01-01

    The main objective of this study was to investigate primary teachers' subject matter knowledge in the domain of decimals and more elaborately to investigate their performance and difficulties in reading scale, ordering numbers, finding the nearest decimal and doing operations, such as addition and subtraction. The difficulties in these particular…

  12. FPGA Based Acceleration of Decimal Operations

    DEFF Research Database (Denmark)

    Nannarelli, Alberto

    2011-01-01

    Field Programmable Gate-Arrays (FPGAs) can efficiently implement application specific processors in nonconventional number systems, such as the decimal (Binary- Coded Decimal, or BCD) number system required for accounting accuracy in financial applications. The main purpose of this work is to show...

  13. Fabrication and measurement of 5 GHz miniaturized 10-pole bandpass filter using superconducting microstrip quasi-spiral resonators

    Energy Technology Data Exchange (ETDEWEB)

    Ono, S. [Department of Electrical Engineering, Yamagata University, 4-3-16, Johnan, Yonezawa, Yamagata 992-8510 (Japan)], E-mail: tdn01835@st.yamagata-u.ac.jp; Harada, Y. [JST Satellite Iwate, 3-35-2, Iiokashinden, Morioka, Iwate 020-0852 (Japan); Kato, T.; Saito, A.; Lee, J.H.; Kinouchi, H. [Department of Electrical Engineering, Yamagata University, 4-3-16, Johnan, Yonezawa, Yamagata 992-8510 (Japan); Oba, T.; Yoshizawa, M. [Graduate School of Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate 020-8551 (Japan); Ohshima, S. [Department of Electrical Engineering, Yamagata University, 4-3-16, Johnan, Yonezawa, Yamagata 992-8510 (Japan)

    2008-09-15

    We designed a 5 GHz miniaturized 10-pole Chebyshev-type bandpass filter (BPF) using superconducting microstrip quasi-spiral resonators (QSR) for international mobile telecommunication (IMT)-advanced receiving applications. When we considered the unloaded quality factor (Q{sub u}) of QSR, we found that a 10-pole QSR BPF using single-sided films and a 17-pole QSR BPF using double-sided films can be achieved an insertion loss in simulation of than 0.5 dB. The 10-pole QSR filter was fabricated using a 300 nm thick single-sided MgB{sub 2} film on a c-sapphire substrate by a thermal co-evaporation method. The Au ground plane of the filter was deposited on the other side of the substrate. Simulation and measurement profile data obtained from the passband were in close agreement. We found that the power-handling performance was equivalent to that of other miniaturized filters. We could design multi-pole filters using QSR.

  14. Optimized reversible binary-coded decimal adders

    DEFF Research Database (Denmark)

    Thomsen, Michael Kirkedal; Glück, Robert

    2008-01-01

    their design. The optimized 1-decimal BCD full-adder, a 13 × 13 reversible logic circuit, is faster, and has lower circuit cost and less garbage bits. It can be used to build a fast reversible m-decimal BCD full-adder that has a delay of only m + 17 low-power reversible CMOS gates. For a 32-decimal (128-bit...... in reversible logic design by drastically reducing the number of garbage bits. Specialized designs benefit from support by reversible logic synthesis. All circuit components required for optimizing the original design could also be synthesized successfully by an implementation of an existing synthesis algorithm...

  15. Division Unit for Binary Integer Decimals

    DEFF Research Database (Denmark)

    Lang, Tomas; Nannarelli, Alberto

    2009-01-01

    -recurrence algorithm to BID representation and implement the division unit in standard cell technology. The implementation of the proposed BID division unit is compared to that of a BCD based unit implementing the same algorithm. The comparison shows that for normalized operands the BID unit has the same latency......In this work, we present a radix-10 division unit that is based on the digit-recurrence algorithm and implements binary encodings (binary integer decimal or BID) for significands. Recent decimal division designs are all based on the binary coded decimal (BCD) encoding. We adapt the radix-10 digit...

  16. The Dewey Decimal Scheme and Mathematics

    Science.gov (United States)

    Donovan, Peter W.; And Others

    1973-01-01

    This essay criticizes the mathematical schedules of the 18th edition of the Dewey Decimal Classification Scheme and offers two alternatives suitable for college libraries that use this system. (Authors)

  17. A 5 GHz high-temperature superconducting reaction-type transmitting filter based upon split open-ring resonators

    Energy Technology Data Exchange (ETDEWEB)

    Futatsumori, S; Hikage, T; Nojima, T [Graduate School of Information Science and Technology, Hokkaido University, Kita 14, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0814 (Japan); Akasegawa, A; Nakanishi, T; Yamanaka, K [Fujitsu Limited, 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197 (Japan)], E-mail: futatsumori@emwtinfo.ice.eng.hokudai.ac.jp

    2008-04-01

    A new kind of high-temperature superconducting (HTS) transmitting filter based on a reaction-type resonator is presented. The purpose of an HTS reaction-type filter (HTS-RTF) is to eliminate the intermodulation distortion noise generated by microwave power amplifiers such as those employed in mobile base stations. An HTS-RTF enables both higher power handling capability and sharper cutoff characteristics compared to existing planar-type HTS transmitting filters, since a reaction-type resonator does not resonate with high power fundamental signals. To achieve steep skirt characteristics and high power handling capability simultaneously, a 5 GHz three-pole HTS-RTF using a split open-ring resonator is designed. This split open-ring resonator offers low maximum current densities and a high-unloaded Q factor with low radiation. The designed prototype filter has Chebyshev characteristics with a centre frequency of 4.95 GHz and a bandwidth of 1.5 MHz. The HTS-RTF is fabricated using a double-sided YBa{sub 2}C{sub 3}O{sub 7-{delta}} thin film deposited on a 0.5 mm thick MgO substrate. The measured filter shows an insertion loss of less than 0.1 dB and a third intermodulation distortion value of -56.7 dBc for a 40 dBm passband signal. In addition, adjacent channel leakage power ratio (ACLR) measurements using an actual wideband CDMA signal confirm an ACLR improvement of about 10 dB for a four-carrier signal with power up to 40 dBm.

  18. Design of superconducting multi-pole miniaturized filters with quasi-spiral resonators for decreasing unwanted cross couplings

    Energy Technology Data Exchange (ETDEWEB)

    Ono, S., E-mail: tdn01835@st.yamagata-u.ac.j [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan); Harada, Y. [Advanced Industrial Science and Technology (AIST), Central 2, 1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568 (Japan); Saito, A.; Lee, J.H.; Kato, T.; Uno, M. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan); Yoshizawa, M. [Graduate School of Engineering, Iwate University, 4-3-5, Ueda, Morioka, Iwate, 020-8551 (Japan); Ohshima, S. [Graduate School of Science and Engineering, Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2009-10-15

    We designed a 5-GHz miniaturized 8-pole bandpass filter (BPF) using superconducting microstrip quasi-spiral resonators (QSRs) for international mobile telecommunication (IMT)-advanced receiving applications. We used the QSRs with line width and spacing equal to 10 mum for further miniaturization, and investigated a relationship between the structure of the QSR and the unloaded quality factor (Q{sub u}). The Q{sub u} of the optimized QSR of approximately 25,000 was obtained. It was difficult to design a BPF using miniaturized QSRs with high Q{sub u} because of strong cross couplings between QSRs. The lambda{sub g}/8-line inserted inverters were effective in decreasing the unwanted cross couplings. Using these QSR and the lambda{sub g}/8-line inserted inverters, 8-pole cascaded quadruplet (CQ) BPF was designed. We found that it was possible to design a miniaturized BPF with high Q{sub u}.

  19. Superconducting filter with a linear phase for third-generation mobile communications

    Energy Technology Data Exchange (ETDEWEB)

    Li Fei [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); Zhang Xueqiang [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); Meng Qingduan [Electronics and Information Engineering Department, Henan University of Science and Technology, Luoyang 471003 (China); Sun Liang [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); Zhang Qiang [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); Li Chunguang [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); Li Shunzhou [Institute of Acoustics, Chinese Academy of Sciences, Beijing 100080 (China); He Aisheng [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); Li Hong [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China); He Yusheng [National Laboratory for Superconductivity, Institute of Physics Chinese Academy of Sciences and Beijing National Laboratory for Condensed Matter Physics, Beijing 100080 (China)

    2007-07-15

    A linear phase filter using two cross-coupled quadruplet structures to achieve self-equalization was designed at 2012.5 MHz with 5 MHz bandwidth for a third-generation mobile communications system. This filter was fabricated using double-sided YBCO films on a 2 inch diameter, 0.5 mm thick MgO substrate. In the measurement, it showed good matching in the passband, with reflection better than -15 dB. Moreover, the group delay variation is less than 50 ns over 89% of the filter bandwidth.

  20. Fast Multi Operand Decimal Adders using Digit Compressors with Decimal Carry Generation

    DEFF Research Database (Denmark)

    Dadda, Luigi; Nannarelli, Alberto

    We consider multi operand decimal adders designed with an architecture implementing first the addition of all the digits of each column (i.e. with the same decimal weight) and then combining in various ways such column sums for obtaining the final result. Different and efficient architectures can...... of cells. A comparison is also made between multi-operand adders of different architectures....

  1. AN IMPROVED DESIGN OF REVERSIBLE BINARY TO BINARY CODED DECIMAL CONVERTER FOR BINARY CODED DECIMAL MULTIPLICATION

    Directory of Open Access Journals (Sweden)

    Praveena Murugesan

    2014-01-01

    Full Text Available Reversible logic gates under ideal conditions produce zero power dissipation. This factor highlights the usage of these gates in optical computing, low power CMOS design, quantum optics and quantum computing. The growth of decimal arithmetic in various applications as stressed the need to propose the study on reversible binary to BCD converter which plays a greater role in decimal multiplication for providing faster results. The different parameters such as gate count,garbage output and constant input are more optimized in the proposed fixed bit binary to binary coded decimal converter than the existing design.

  2. YBCO High-Temperature Superconducting Filters on M-Plane Sapphire Substrates

    Science.gov (United States)

    Sabataitis, J. C.; Mueller, C. H.; Miranda, F. A.; Warner, J.; Bhasin, K. B.

    1996-01-01

    Since the discovery of High Temperature Superconductors (HTS) in 1986, microwave circuits have been demonstrated using HTS films on various substrates. These HTS-based circuits have proven to operate with less power loss than their metallic film counterparts at 77 K. This translates into smaller and lighter microwave circuits for space communication systems such as multiplexer filter banks. High quality HTS films have conventionally been deposited on lanthanum aluminate (LaAlO3) substrates. However, LaAlO3 has a relative dielectric constant (epsilon(sub r)) of 24. With a epsilon(sub r) approx. 9.4-11.6, sapphire (Al2O3) would be a preferable substrate for the fabrication of HTS-based components since the lower dielectric constant would permit wider microstrip lines to be used in filter design, since the lower dielectric constant would permit wider microstrip lines to be used for a given characteristic impedance (Z(sub 0)), thus lowering the insertion losses and increasing the power handling capabilities of the devices. We report on the fabrication and characterization of YBa2Cu3O(7-delta) (YBCO) on M-plane sapphire bandpass filters at 4.0 GHz. For a YBCO 'hairpin' filter, a minimum insertion loss of 0.5 dB was measured at 77 K as compared with 1.4 dB for its gold counterpart. In an 'edge-coupled' configuration, the insertion loss went down from 0.9 dB for the gold film to 0.8 dB for the YBCO film at the same temperature.

  3. The Decimal Representation of Real Numbers

    Science.gov (United States)

    Kalapodi, A.

    2010-01-01

    The representation of natural numbers in decimal form is an unequivocal procedure while for the representation of real numbers some ambiguities concerning the existence of infinitely many digits equal to 9 still emerge. One of the most frequently confronted misunderstandings is whether 0.999...equals 1 or not, and if not what number does this…

  4. Tracking Decimal Misconceptions: Strategic Instructional Choices

    Science.gov (United States)

    Griffin, Linda B.

    2016-01-01

    Understanding the decimal system is challenging, requiring coordination of place-value concepts with features of whole-number and fraction knowledge (Moloney and Stacey 1997). Moreover, the learner must discern if and how previously learned concepts and procedures apply. The process is complex, and misconceptions will naturally arise. In a…

  5. The Development of the Dewey Decimal Classification.

    Science.gov (United States)

    Sweeney, Russell

    1983-01-01

    This review of the evolution of the Dewey Decimal Classification over past 30 years concentrates on three conflicts that have influenced recent developments: integrity of numbers versus keeping pace with knowledge; detailed bibliographic classification versus shelf location device; and national bias versus internationalization. Seven references…

  6. Implementing decimal floating-point arithmetic through binary: some suggestions

    OpenAIRE

    Brisebarre, Nicolas; Ercegovac, Milos; Louvet, Nicolas; Martin-Dorel, Erik; Muller, Jean-Michel; Panhaleux, Adrien

    2010-01-01

    International audience; We propose several algorithms and provide some related results that make it possible to implement decimal floating-point arithmetic on a processor that does not have decimal operators, using the available binary floating-point functions. In this preliminary study, we focus on round-to-nearest mode only. We show that several functions in decimal32 and decimal64 arithmetic can be implemented using binary64 and binary128 floating-point arithmetic, respectively. Specifical...

  7. A 16 channel frequency-domain-modulation readout system with custom superconducting LC filters for the SWIPE instrument of the balloon-borne LSPE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Signorelli, G., E-mail: giovanni.signorelli@pi.infn.it [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Baldini, A.M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Bemporad, C. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Biasotti, M. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Cei, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Ceriale, V.; Corsini, D.; Fontanelli, F. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Galli, L.; Gallucci, G. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Gatti, F. [INFN Sezione di Genova and Università degli studi di Genova, Via Dodecaneso 33, 16146 Genova (Italy); Incagli, M.; Grassi, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Nicolò, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Spinella, F. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Vaccaro, D. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Università di Pisa, Dipartimento di Fisica, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Venturini, M. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa (Italy)

    2016-07-11

    We present the design, implementation and first tests of the superconducting LC filters for the frequency domain readout of spiderweb TES bolometers of the SWIPE experiment on the balloon-borne LSPE mission which aims at measuring the linear polarization of the Cosmic Microwave Background at large angular scales to find the imprint of inflation on the B-mode CMB polarization. LC filters are designed, produced and tested at the INFN sections of Pisa and Genoa where thin film deposition and cryogenic test facilities are present, and where also the TES spiderweb bolometers are being produced.

  8. Children, algorithm and the decimal numeral system

    Directory of Open Access Journals (Sweden)

    Clélia Maria Ignatius Nogueira

    2010-08-01

    Full Text Available A large number of studies in Mathematics Education approach some possible problems in the study of algorithms in the early school years of arithmetic teaching. However, this discussion is not exhausted. In this feature, this article presents the results of a research which proposed to investigate if the arithmetic’s teaching, with emphasis in the fundamental operation’s algorithm, cooperate to build the mathematics knowledge, specifically of the Decimal Numeral System. In order to achieve this purpose, we interviewed, using the Piaget Critique Clinical Method, twenty students from a public school. The result’s analysis indicates that they mechanically reproduce the regular algorithm’s techniques without notice the relations between the techniques and the principle and the Decimal Numeral System’s properties.

  9. Decimal Integer Multiplication based on Molecular Beacons

    Directory of Open Access Journals (Sweden)

    Jing Wang

    2013-12-01

    Full Text Available Due to the enhancement of circuit integration level, and the accelerating of working frequency of traditional computer, it requires components dimension must be constantly decreased. So encapsulation, etching and other problems of chip are becoming more and more difficult to solve, which causes its performance also become unstable. In order to overcome this problem, DNA computing as a new kind of molecular computing mode, with its high parallelism, huge amounts of storage capacity, low energy consumption advantages has received extensive attention. Being the same with traditional electronic computer, DNA computer is composed by arithmetic operations such as addition, subtraction, multiplication and dividing and basic logic units such as AND, OR, NON gate. This paper puts forward a new method to realize decimal integer multiplication based on molecular beacons. The algorithm firstly converts decimal integer to binary number, and then resolves the multiplication process into multiplication of current bit and addition of intermediate result after shifting two steps. Molecular beacon is used as multiplying unit, coding sequence is used as multiplier in this method. Based on the working principle of molecular beacon, multiplication operation of two one-bit binary is simulated. And by recording fluorescence status of molecular beacon to observe intermediate result and carry-bit situation, the final result can be obtained through addition after shifting. Examples prove that this method can realize decimal integer multiplication rapidly and accurately. This method is similar to multiplication system in traditional electronic computer, and it provides a simple, easier operation method for DNA computer to realize arithmetic operation.

  10. 高温超导滤波器用斯特林制冷机温度控制算法设计%Design of temperature controlling algorithm for Stirling cryocooler used in high temperature superconducting filters

    Institute of Scientific and Technical Information of China (English)

    魏广; 马少君; 闫春杰

    2012-01-01

    In the domain of deep space communications, using of high temperature superconducting technology can significantly improve the receivers performance in sensitivity, signal noise ratio and anti -jamming. As the need for high temperature superconducting filter's low temperature working environment, a Stirling cryocooler for cooling was required. The stability of Stirling cryocoolers temperature will directly affect the performance of high temperature superconducting filter. This topic mainly focused on the temperature controlling algorithm s analysis and design for Stirling cryocooler used in high temperature superconducting filters, the temperature controlling curve based on tester of high temperature superconducting filters were proved at last.%在深空通信领域,利用高温超导滤波技术,可大幅提高接收机的灵敏度、信噪比和抗干扰能力.由于高温超导滤波器工作温度较低,需要斯特林制冷机进行制冷.斯特林制冷机温度的稳定性将直接影响高温超导滤波器的性能,文章对高温超导滤波器用斯特林制冷机温度控制算法进行了分析和设计,并给出了基于高温超导滤波器试验装置的温度控制曲线.

  11. Subject Access to Education Literature; Dewey Decimal Classification.

    Science.gov (United States)

    Dickey, Eve M.; Custer, Benjamin A.

    Because of its hierarchical notation, the Dewey Decimal Classification is advantageous for machine searching. However, the increased volume of topics in recent years has made recoding in the system necessary. Education, for example, is a rapidly changing field, and the Dewey Decimal Classification system has not kept pace. As a result subject…

  12. The decimation process in random k-SAT

    CERN Document Server

    Coja-Oghlan, Amin

    2011-01-01

    Let F be a uniformly distributed random k-SAT formula with n variables and m clauses. Non-rigorous statistical mechanics ideas have inspired a message passing algorithm called Belief Propagation Guided Decimation for finding satisfying assignments of F. This algorithm can be viewed as an attempt at implementing a certain thought experiment that we call the Decimation Process. In this paper we identify a variety of phase transitions in the decimation process and link these phase transitions to the performance of the algorithm.

  13. Application of DFT Filter Banks and Cosine Modulated Filter Banks in Filtering

    Science.gov (United States)

    Lin, Yuan-Pei; Vaidyanathan, P. P.

    1994-01-01

    None given. This is a proposal for a paper to be presented at APCCAS '94 in Taipei, Taiwan. (From outline): This work is organized as follows: Sec. II is devoted to the construction of the new 2m channel under-decimated DFT filter bank. Implementation and complexity of this DFT filter bank are discussed therein. IN a similar manner, the new 2m channel cosine modulated filter bank is discussed in Sec. III. Design examples are given in Sec. IV.

  14. Application of DFT Filter Banks and Cosine Modulated Filter Banks in Filtering

    Science.gov (United States)

    Lin, Yuan-Pei; Vaidyanathan, P. P.

    1994-01-01

    None given. This is a proposal for a paper to be presented at APCCAS '94 in Taipei, Taiwan. (From outline): This work is organized as follows: Sec. II is devoted to the construction of the new 2m channel under-decimated DFT filter bank. Implementation and complexity of this DFT filter bank are discussed therein. IN a similar manner, the new 2m channel cosine modulated filter bank is discussed in Sec. III. Design examples are given in Sec. IV.

  15. Efficient Implementation of Decimal Floating Point Adder in FPGA

    Directory of Open Access Journals (Sweden)

    Yang Huijing

    2013-10-01

    Full Text Available Decimal floating Point adder is one of the most frequent operations used by many financial, business and user-oriented applications but current implementations in FPGAs are very inefficient in terms of both area and latency when compared to binary floating point adder. This paper has shown an efficient implementation of a new parallel decimal floating point module on a reconfigurable platform, which is both area as well as performance optimal. The decimal floating-point Adder was further pipelined into five stages to increase the maximum frequency of operation. The synthesis results for a Stratix IV device indicate that our implementations have 25.1% reduction of the latency and 1.1% reduction of area compared to an existing alter-core adder design, presenting area and delay figures close to those of optimal binary adder trees.  

  16. A New Evolutionary Algorithm Based on the Decimal Coding

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Traditional Evolutionary Algorithm (EAs) is based on the binary code, real number code, structure code and so on. But these coding strategies have their own advantages and disadvantages for the optimization of functions. In this paper a new Decimal Coding Strategy (DCS) ,which is convenient for space division and alterable precision, was proposed, and the theory analysis of its implicit parallelism and convergence was also discussed. We also redesign several genetic operators for the decimal code. In order to utilize the historical information of the existing individuals in the process of evolution and avoid repeated exploring,the strategies of space shrinking and precision alterable, are adopted. Finally, the evolutionary algorithm based on decimal coding (DCEAs) was applied to the optimization of functions, the optimization of parameter, mixed-integer nonlinear programming. Comparison with traditional GAs was made and the experimental results show that the performances of DCEAS are better than the tradition GAs.

  17. The theory and practice of the Dewey Decimal Classification system

    CERN Document Server

    Satija, M P

    2013-01-01

    The Dewey Decimal Classification system (DDC) is the world's most popular library classification system. The 23rd edition of the DDC was published in 2011. This second edition of The Theory and Practice of the Dewey Decimal Classification System examines the history, management and technical aspects of the DDC up to its latest edition. The book places emphasis on explaining the structure and number building techniques in the DDC and reviews all aspects of subject analysis and number building by the most recent version of the DDC. A history of, and introduction to, the DDC is followed by subjec

  18. Report on the achievements in fiscal 1999. Research and development on a basic technology to apply superconductivity (Development on an ultra high speed signal processing technology with low electric power consumption); 1999 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho. Teishohi denryoku chokosoku shingo shori gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The development of a technology to design superconductive circuits has worked on (1) a circuit design technology and (2) fabrication of a small scale demonstration circuit. In Item (1), analog evaluation provided SN characteristics of 11 bits or more by using a primary Sigma-Delta ({sigma}-{delta}) modulator as the element circuit for an AD converter. In addition, a proposal was made on a decimation filter using a secondary {sigma}-{delta} module and a counter, which use a magnetic quantum multiplication element as feedback. In Item (2), fabricating conditions for an NBCO film were established with high Tc reproducibility. In addition to having established a design method for a superconductive filter, a technology was developed to deposit superconductive oxide conductors on both sides of an MgO substrate having a thickness of 0.5 mm. This development provided a prospect of realizing a filter for large electric power of 10 GHz and 10W class. In developing a technology for measuring superconductive circuit characteristics, discussions were given on a measurement and evaluation technology. To explain, with regard to the technology to demonstrate high speed actions, a high-speed action demonstration and measurement system was started up, which can be cooled down to 5K, and has small critical current variation due to magnetic flux trap. Output of SFQ signals up to 4 GHz was successfully detected. (NEDO)

  19. Decimal Engine for Energy-Efficient Multicore Processors

    DEFF Research Database (Denmark)

    Nannarelli, Alberto

    2014-01-01

    propose a hybrid BFP/DFP engine to perform BFP division and DFP addition, multiplication and division. The main purpose of this engine is to offload the binary floating-point units for this type of operations and reduce the latency for decimal operations, and power and temperature for the whole die....

  20. Why Is Learning Fraction and Decimal Arithmetic so Difficult?

    Science.gov (United States)

    Lortie-Forgues, Hugues; Tian, Jing; Siegler, Robert S.

    2015-01-01

    Fraction and decimal arithmetic are crucial for later mathematics achievement and for ability to succeed in many professions. Unfortunately, these capabilities pose large difficulties for many children and adults, and students' proficiency in them has shown little sign of improvement over the past three decades. To summarize what is known about…

  1. Preservice Teachers' Knowledge of Difficulties in Decimal Numeration.

    Science.gov (United States)

    Stacey, Kaye; Helme, Sue; Steinle, Vicki; Baturo, Annette; Irwin, Kathryn; Bana, Jack

    2001-01-01

    Investigates preservice elementary school teachers' content knowledge and pedagogical content knowledge of decimal numeration. Indicates that most preservice teachers were aware of longer-is-larger misconceptions in students but had little awareness of shorter-is-larger misconceptions. Emphasizes content knowledge that integrates different aspects…

  2. Prospective Teachers' Understanding of Decimals with Single Repeating Digits

    Science.gov (United States)

    Burroughs, Elizabeth A.; Yopp, David

    2010-01-01

    This article investigates prospective elementary teachers' conceptions of the repeating decimal 0.999... Five students from a first-semester undergraduate course "Mathematics for Elementary School Teachers" were interviewed to ascertain their conceptions about the mathematical statement 0.999... = 1. All of the students indicated they do not…

  3. Decimats: Helping Students to Make Sense of Decimal Place Value

    Science.gov (United States)

    Roche, Anne

    2010-01-01

    A considerable body of research exists on students' understanding of decimal fractions and the prevalence and persistence of common misconceptions related to this understanding. Results from major studies such as the National Assessment of Educational Progress (NAEP) in the United States and the Concepts in Secondary Mathematics and Science (CSMS)…

  4. Identify Fractions and Decimals on a Number Line

    Science.gov (United States)

    Shaughnessy, Meghan M.

    2011-01-01

    Tasks that ask students to label rational number points on a number line are common not only in curricula in the upper elementary school grades but also on state assessments. Such tasks target foundational rational number concepts: A fraction (or a decimal) is more than a shaded part of an area, a part of a pizza, or a representation using…

  5. Dewey Decimal Classification for U. S. Conn: An Advantage?

    Science.gov (United States)

    Marek, Kate

    This paper examines the use of the Dewey Decimal Classification (DDC) system at the U. S. Conn Library at Wayne State College (WSC) in Nebraska. Several developments in the last 20 years which have eliminated the trend toward reclassification of academic library collections from DDC to the Library of Congress (LC) classification scheme are…

  6. The Dewey Decimal Classification: Edition 20 Makes Its Bow.

    Science.gov (United States)

    Aman, Mohammed; Samore, Theodore

    1989-01-01

    Reviews the history and development of the Dewey Decimal Classification, including the recent purchase of rights by OCLC and the production of a digitalized version. The contents and organization of the most recent edition are described and evaluated. (one reference) (CLB)

  7. A Sigma-Delta ADC with Decimation and Gain Control Function for a Bluetooth Receiver in 130 nm Digital CMOS

    Directory of Open Access Journals (Sweden)

    Koh Jinseok

    2006-01-01

    Full Text Available We present a discrete-time second-order multibit sigma-delta ADC that filters and decimates by two the input data samples. At the same time it provides gain control function in its input sampling stage. A 4-tap FIR switched capacitor (SC architecture was chosen for antialiasing filtering. The decimation-by-two function is realized using divided-by-two clock signals in the antialiasing filter. Antialiasing, gain control, and sampling functions are merged in the sampling network using SC techniques. This compact architecture allows operating the preceding blocks at twice the ADC's clock frequency, thus improving the noise performance of the wireless receiver channel and relaxing settling requirements of the analog building blocks. The presented approach has been validated and incorporated in a commercial single-chip Bluetooth radio realized in a 1.5 V 130 nm digital CMOS process. The measured antialiasing filtering shows better than 75 dB suppression at the folding frequency band edge. A 67 dB dynamic range was measured with a sampling frequency of 37.5MHz.

  8. Real-time flight altitude estimation using phase correlation with Gram polynomial decimation

    Science.gov (United States)

    Choudhry, Aadil Jaleel; Badshah, Amir; Amin, Saadullah

    2017-03-01

    The paper presents a passive technique for real-time altitude above ground level estimation for aerial vehicles using a monocular camera, a GPS receiver and an inertial measurement unit. The paper discusses a robust method for featureless registration of successive images through phase correlation using Gram polynomial decimation. Altitude is estimated by formulating the shift in pixels between the images in terms of distance travelled, calculated using corresponding GPS latitudes and longitudes. Resultant value is compensated for changes in pitch before being passed through Savitzky-Golay filter. The system can generate results every 300ms on a lowcost commercial digital signal processor with mean error of 2m and standard deviation of 13m. The proposed system is suitable for speeds up to 300m/s and altitudes up to 3000m.

  9. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  10. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  11. FPGA-specific decimal sign-magnitude addition and subtraction

    Science.gov (United States)

    Vázquez, Martín; Todorovich, Elías

    2016-07-01

    The interest in sign-magnitude (SM) representation in decimal numbers lies in the IEEE 754-2008 standard, where the significand in floating-point numbers is coded as SM. However, software implementations do not meet performance constraints in some applications and more development is required in programmable logic, a key technology for hardware acceleration. Thus, in this work, two strategies for SM decimal adder/subtractors are studied and six new Field Programmable Gate Array (FPGA)-specific circuits are derived from these strategies. The first strategy is based on ten's complement (C10) adder/subtractors and the second one is based on parallel computation of an unsigned adder and an unsigned subtractor. Four of these alternative circuits are useful for at least one area-time-trade-off and specific operand size. For example, the fastest SM adder/subtractor for operand sizes of 7 and 16 decimal digits is based on the second proposed strategy with delays of 3.43 and 4.33 ns, respectively, but the fastest circuit for 34-digit operands is one of the three specific implementations based on C10 adder/subtractors with a delay of 4.65 ns.

  12. FPGA Implementation of Decimal Processors for Hardware Acceleration

    DEFF Research Database (Denmark)

    Borup, Nicolas; Dindorp, Jonas; Nannarelli, Alberto

    2011-01-01

    Applications in non-conventional number systems can benefit from accelerators implemented on reconfigurable platforms, such as Field Programmable Gate-Arrays (FPGAs). In this paper, we show that applications requiring decimal operations, such as the ones necessary in accounting or financial...... transactions, can be accelerated by Application Specific Processors (ASPs) implemented on FPGAs. For the case of a telephone billing application, we demonstrate that by accelerating the program execution on a FPGA board connected to the computer by a standard bus, we obtain a significant speed-up over its...

  13. DECIMAL SET WITH ZERO MEASURE AND FULL HAUSDORFF DIMENSION

    Institute of Scientific and Technical Information of China (English)

    许宁; 苏维宜

    2004-01-01

    LetFλ ={x∈ (0,1){2nx} ≥1/2k,n∈ z+}, z++ = {0,1,2,3,...}, k∈ N;F = U∞k=1Fλ be a decimal set in (0, 1), where {2nx} is the fractional part of a number 2nx. In this note, we prove that dirnнF = 1 and Н1(F) = 0, where dimн is Hausdr off dimension, and Н1(F) is the Hausdorff measure of F.

  14. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  15. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  16. Are Subsequences of Decimal Digits of PI Random?

    Directory of Open Access Journals (Sweden)

    Suman Kumar Sourabh

    2009-01-01

    Full Text Available A lot has been done on the randomness of the decimal expansion of Pi with extensive tests of randomness that are used to distinguish good from not-so-good random number generators when applied to the decimal digits of Pi. Pi seems to pass these tests as well as some of the best random number generator (RNG and could well serve as an RNG provided that the digits of Pi could be easily and quickly produced in the computer [Mar06]. We make an interesting study in the same context in which random substring of arbitrary length are extracted from arbitrary positions a large number of times and each sample is tested for randomness. Our results confirm the randomness of Pi and a recent claim that “Pi is less random than we thought” [TF05] stands refuted. George Marsaglia [Mar06] has also independently refuted the claim but in Marsaglia’s work, the randomness is established on the whole for the first 960 million digits of pi. Our study confirms the randomness for arbitrary subsequences also. Finally, the investigation of some functions of pi-rather than pi itself-is proposed.

  17. Formation of concept of decimal system in Mexican school children

    Directory of Open Access Journals (Sweden)

    L. Quintanar Rojas

    2013-04-01

    Full Text Available The present study deals with initial formation of concept of decimal system in second year of education at primary school in Mexico (City of Puebla. Our research is based on Activity Theory conception of teaching-learning process and of gradual introduction of scientific concepts in school age. The method has been designed and worked out with the help of actions in which logic, symbolic, spatial and mathematical aspects were implemented. All actions were introduced within divided activity of children in group guided by adult. A pretest-posttest design was used with an experimental group of Mexican school children. The results showed that children have developed the significant skills necessary for understanding the concept of decimal number system. They were also able to apply this concept for new kind if activity al the end of school year. Such new activity was solving of mathematic problems, which was not included in official school program. We consider that proposed method can be an approximation for solution of common difficulties which arise at primary school concerning teaching of mathematics.

  18. Representational Flexibility and Problem-Solving Ability in Fraction and Decimal Number Addition: A Structural Model

    Science.gov (United States)

    Deliyianni, Eleni; Gagatsis, Athanasios; Elia, Iliada; Panaoura, Areti

    2016-01-01

    The aim of this study was to propose and validate a structural model in fraction and decimal number addition, which is founded primarily on a synthesis of major theoretical approaches in the field of representations in Mathematics and also on previous research on the learning of fractions and decimals. The study was conducted among 1,701 primary…

  19. Representational Flexibility and Problem-Solving Ability in Fraction and Decimal Number Addition: A Structural Model

    Science.gov (United States)

    Deliyianni, Eleni; Gagatsis, Athanasios; Elia, Iliada; Panaoura, Areti

    2016-01-01

    The aim of this study was to propose and validate a structural model in fraction and decimal number addition, which is founded primarily on a synthesis of major theoretical approaches in the field of representations in Mathematics and also on previous research on the learning of fractions and decimals. The study was conducted among 1,701 primary…

  20. The Universal Decimal Classification: Some Factors Concerning Its Origins, Development, and Influence.

    Science.gov (United States)

    McIlwaine, I. C.

    1997-01-01

    Discusses the history and development of the Universal Decimal Classification (UDC). Topics include the relationship with Dewey Decimal Classification; revision process; structure; facet analysis; lack of standard rules for application; application in automated systems; influence of UDC on classification development; links with thesauri; and use…

  1. The Decimal Office: Administration as a Science in the Netherlands in the First Decades of the Twentieth Century

    NARCIS (Netherlands)

    van den Heuvel, C.

    2014-01-01

    In 1983 Boyd Rayward described the early diffusion abroad of the Dewey Decimal Classification (and indirectly of the Universal Decimal Classification) in Australia, Great Britain, Belgium, France, Switzerland, and Russia. Here, I discuss the enormous interest in the decimal system in the Netherlands

  2. The Decimal Office: Administration as a Science in the Netherlands in the First Decades of the Twentieth Century

    NARCIS (Netherlands)

    van den Heuvel, C.

    2014-01-01

    In 1983 Boyd Rayward described the early diffusion abroad of the Dewey Decimal Classification (and indirectly of the Universal Decimal Classification) in Australia, Great Britain, Belgium, France, Switzerland, and Russia. Here, I discuss the enormous interest in the decimal system in the Netherlands

  3. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  4. Multiple-scale stochastic processes: Decimation, averaging and beyond

    Science.gov (United States)

    Bo, Stefano; Celani, Antonio

    2017-02-01

    The recent experimental progresses in handling microscopic systems have allowed to probe them at levels where fluctuations are prominent, calling for stochastic modeling in a large number of physical, chemical and biological phenomena. This has provided fruitful applications for established stochastic methods and motivated further developments. These systems often involve processes taking place on widely separated time scales. For an efficient modeling one usually focuses on the slower degrees of freedom and it is of great importance to accurately eliminate the fast variables in a controlled fashion, carefully accounting for their net effect on the slower dynamics. This procedure in general requires to perform two different operations: decimation and coarse-graining. We introduce the asymptotic methods that form the basis of this procedure and discuss their application to a series of physical, biological and chemical examples. We then turn our attention to functionals of the stochastic trajectories such as residence times, counting statistics, fluxes, entropy production, etc. which have been increasingly studied in recent years. For such functionals, the elimination of the fast degrees of freedom can present additional difficulties and naive procedures can lead to blatantly inconsistent results. Homogenization techniques for functionals are less covered in the literature and we will pedagogically present them here, as natural extensions of the ones employed for the trajectories. We will also discuss recent applications of these techniques to the thermodynamics of small systems and their interpretation in terms of information-theoretic concepts.

  5. Realization of Multistage FIR Filters using Pipelining-Interleaving

    Directory of Open Access Journals (Sweden)

    M. Ciric

    2012-11-01

    Full Text Available Multistage digital filters can be one of the solutions for the realization of filters with a narrow transition zone. If requirements for the width of transition zone are too strict, then they are the only alternative, and the decimation/interpolation must be performed in several steps. Combining decimation/interpolation operations related to the implementation of multi-channel filters in the PI (pipelining/interleaving technique can give an efficient structure of multichannel multistage filter. Using the advantages offered by newer generations of FPGA chips in terms of digital design structure, it is possible to realize such filters with considerable savings of hardware resources and reduce the effect of finite length codeword. This paper proposes such an efficient implementation and presents the results of such a realization with FPGA components.

  6. Enhancing the Error Correction of Finite Alphabet Iterative Decoders via Adaptive Decimation

    CERN Document Server

    Planjery, Shiva Kumar; Declercq, David

    2012-01-01

    Finite alphabet iterative decoders (FAIDs) for LDPC codes were recently shown to be capable of surpassing the Belief Propagation (BP) decoder in the error floor region on the Binary Symmetric channel (BSC). More recently, the technique of decimation which involves fixing the values of certain bits during decoding, was proposed for FAIDs in order to make them more amenable to analysis while maintaining their good performance. In this paper, we show how decimation can be used adaptively to further enhance the guaranteed error correction capability of FAIDs that are already good on a given code. The new adaptive decimation scheme proposed has marginally added complexity but can significantly improve the slope of the error floor performance of a particular FAID. We describe the adaptive decimation scheme particularly for 7-level FAIDs which propagate only 3-bit messages and provide numerical results for column-weight three codes. Analysis suggests that the failures of the new decoders are linked to stopping sets ...

  7. The chemically driven phase transformation in a memristive abacus capable of calculating decimal fractions.

    Science.gov (United States)

    Xu, Hanni; Xia, Yidong; Yin, Kuibo; Lu, Jianxin; Yin, Qiaonan; Yin, Jiang; Sun, Litao; Liu, Zhiguo

    2013-01-01

    The accurate calculation of decimal fractions is still a challenge for the binary-coded computations that rely on von Neumann paradigm. Here, we report a kind of memristive abacus based on synaptic Ag-Ge-Se device, in which the memristive long-term potentiation and depression are caused by a chemically driven phase transformation. The growth and the rupture of conductive Ag₂Se dendrites are confirmed via in situ transmission electron microscopy. By detecting the change in memristive synaptic weight, the quantity of input signals applied onto the device can be "counted". This makes it possible to achieve the functions of abacus that is basically a counting frame. We demonstrate through experimental studies that this kind of memristive abacus can calculate decimal fractions in the light of the abacus algorithms. This approach opens up a new route to do decimal arithmetic in memristive devices without encoding binary-coded decimal.

  8. Obtaining the Dewey Decimal Classification Number from other databases: a catalog clean-up project

    National Research Council Canada - National Science Library

    Stefano Bargioni; Michele Caputo; Alberto Gambardella; Luigi Gentile

    2013-01-01

    .... Technical specifications have been developed to locate the records to be retrieved, to query external databases, to extract the Dewey decimal classification numbers and add them to the catalog...

  9. LEARNING ONE-DIGIT DECIMAL NUMBERS BY MEASUREMENT AND GAME PREDICTING LENGTH

    Directory of Open Access Journals (Sweden)

    Puji Astuti

    2014-01-01

    Full Text Available This paper aims to describe how students develop understanding of one-digit decimals. To achieve the aim, Local Instruction Theory (LIT about the process of learning decimals and the means designed to support that learning are developed. Along with this idea, the framework of Realistic Mathematics Education (RME is proposed. Based on the aim, design research methodology is used. This paper discusses learning activities of three meetings from teaching experiment of the focus group students of the fourth grade elementary school in Surabaya: SDIT Al Ghilmani. The data indicated that the learning activities promoted the students’ understanding of one-digit decimal numbers.Keyword: measurement, decimal numbers, number line DOI: http://dx.doi.org/10.22342/jme.5.1.1447.35-46

  10. Implementation of Binary Coded Decimal Digit Adders and Multipliers on Fpga Platform

    Directory of Open Access Journals (Sweden)

    Prof. R. P. Sarnaik

    2014-04-01

    Full Text Available Binary-coded decimal (BCD is a class of binary encodings of decimal numbers where each decimal digit is represented by a fixed number of bits. The main problem in existing decimal adders is the need of correction circuit as the result is in binary form which increases delay & area. In this paper, we propose a high speed BCD adder and multiplier without need of correction circuit. The Decimal carry-save adders (CSAs are used to design BCD digit adders which consist less area, low power and high speed performance. BCD Multiplier is design using Wallace Tree Architecture, explaining the use of half and full adders for addition of intermediate product terms obtained after the multiplication of two nibbles (4 bits.In this paper, correction free BCD Adder is efficient one. FPGAs provide an efficient hardware platform that can be employed for accelerating decimal algorithms. These designs are described and simulated using VHDL hardware description language Modelsim Simulator SE 6.3f. BCD Adders & BCD Multipliers are synthesized with the help of Altera Quartus II 9.1 sp2. Implementation results and comparison with existing designs are provided.

  11. Non-Maximally Decimated Filter Banks Enable Adaptive Frequency Hopping for Unmanned Aircraft Vehicles

    Science.gov (United States)

    Venosa, Elettra; Vermeire, Bert; Alakija, Cameron; Harris, Fred; Strobel, David; Sheehe, Charles J.; Krunz, Marwan

    2017-01-01

    In the last few years, radio technologies for unmanned aircraft vehicle (UAV) have advanced very rapidly. The increasing need to fly unmanned aircraft systems (UAS) in the national airspace system (NAS) to perform missions of vital importance to national security, defense, and science has pushed ahead the design and implementation of new radio platforms. However, a lot still has to be done to improve those radios in terms of performance and capabilities. In addition, an important aspect to account for is hardware cost and the feasibility to implement these radios using commercial off-the-shelf (COTS) components. UAV radios come with numerous technical challenges and their development involves contributions at different levels of the design. Cognitive algorithms need to be developed in order to perform agile communications using appropriate frequency allocation while maintaining safe and efficient operations in the NAS and, digital reconfigurable architectures have to be designed in order to ensure a prompt response to environmental changes. Command and control (C2) communications have to be preserved during "standard" operations while crew operations have to be minimized. It is clear that UAV radios have to be software-defined systems, where size, weight and power consumption (SWaP) are critical parameters. This paper provides preliminary results of the efforts performed to design a fully digital radio architecture as part of a NASA Phase I STTR. In this paper, we will explain the basic idea and technical principles behind our dynamic/adaptive frequency hopping radio for UAVs. We will present our Simulink model of the dynamic FH radio transmitter design for UAV communications and show simulation results and FPGA system analysis.

  12. Fractally Fourier decimated homogeneous turbulent shear flow in noninteger dimensions

    Science.gov (United States)

    Fathali, Mani; Khoei, Saber

    2017-02-01

    Time evolution of the fully resolved incompressible homogeneous turbulent shear flow in noninteger Fourier dimensions is numerically investigated. The Fourier dimension of the flow field is extended from the integer value 3 to the noninteger values by projecting the Navier-Stokes equation on the fractal set of the active Fourier modes with dimensions 2.7 ≤d ≤3.0 . The results of this study revealed that the dynamics of both large and small scale structures are nontrivially influenced by changing the Fourier dimension d . While both turbulent production and dissipation are significantly hampered as d decreases, the evolution of their ratio is almost independent of the Fourier dimension. The mechanism of the energy distribution among different spatial directions is also impeded by decreasing d . Due to this deficient energy distribution, turbulent field shows a higher level of the large-scale anisotropy in lower Fourier dimensions. In addition, the persistence of the vortex stretching mechanism and the forward spectral energy transfer, which are three-dimensional turbulence characteristics, are examined at changing d , from the standard case d =3.0 to the strongly decimated flow field for d =2.7 . As the Fourier dimension decreases, these forward energy transfer mechanisms are strongly suppressed, which in turn reduces both the small-scale intermittency and the deviation from Gaussianity. Besides the energy exchange intensity, the variations of d considerably modify the relative weights of local to nonlocal triadic interactions. It is found that the contribution of the nonlocal triads to the total turbulent kinetic energy exchange increases as the Fourier dimension increases.

  13. Fractally Fourier decimated homogeneous turbulent shear flow in noninteger dimensions.

    Science.gov (United States)

    Fathali, Mani; Khoei, Saber

    2017-02-01

    Time evolution of the fully resolved incompressible homogeneous turbulent shear flow in noninteger Fourier dimensions is numerically investigated. The Fourier dimension of the flow field is extended from the integer value 3 to the noninteger values by projecting the Navier-Stokes equation on the fractal set of the active Fourier modes with dimensions 2.7≤d≤3.0. The results of this study revealed that the dynamics of both large and small scale structures are nontrivially influenced by changing the Fourier dimension d. While both turbulent production and dissipation are significantly hampered as d decreases, the evolution of their ratio is almost independent of the Fourier dimension. The mechanism of the energy distribution among different spatial directions is also impeded by decreasing d. Due to this deficient energy distribution, turbulent field shows a higher level of the large-scale anisotropy in lower Fourier dimensions. In addition, the persistence of the vortex stretching mechanism and the forward spectral energy transfer, which are three-dimensional turbulence characteristics, are examined at changing d, from the standard case d=3.0 to the strongly decimated flow field for d=2.7. As the Fourier dimension decreases, these forward energy transfer mechanisms are strongly suppressed, which in turn reduces both the small-scale intermittency and the deviation from Gaussianity. Besides the energy exchange intensity, the variations of d considerably modify the relative weights of local to nonlocal triadic interactions. It is found that the contribution of the nonlocal triads to the total turbulent kinetic energy exchange increases as the Fourier dimension increases.

  14. Decimation-Enhanced Finite Alphabet Iterative Decoders for LDPC codes on the BSC

    CERN Document Server

    Planjery, Shiva Kumar; Declercq, David

    2011-01-01

    Finite alphabet iterative decoders (FAID) with multilevel messages that can surpass BP in the error floor region for LDPC codes on the BSC were previously proposed. In this paper, we propose decimation-enhanced decoders. The technique of decimation which is incorporated into the message update rule, involves fixing certain bits of the code to a particular value. Under appropriately chosen rules, decimation can significantly reduce the number of iterations required to correct a fixed number of errors, while maintaining the good performance of the original decoder in the error floor region. At the same time, the algorithm is much more amenable to analysis. We shall provide a simple decimation scheme for a particularly good 7-level FAID for column-weight three codes on the BSC, that helps to correct a fixed number of errors in fewer iterations, and provide insights into the analysis of the decoder. We shall also examine the conditions under which the decimation-enhanced 7-level FAID performs at least as good as ...

  15. An ERP study of the processing of common and decimal fractions: how different they are.

    Directory of Open Access Journals (Sweden)

    Li Zhang

    Full Text Available This study explored event-related potential (ERP correlates of common fractions (1/5 and decimal fractions (0.2. Thirteen subjects performed a numerical magnitude matching task under two conditions. In the common fraction condition, a nonsymbolic fraction was asked to be judged whether its magnitude matched the magnitude of a common fraction; in the decimal fraction condition, a nonsymbolic fraction was asked to be matched with a decimal fraction. Behavioral results showed significant main effects of condition and numerical distance, but no significant interaction of condition and numerical distance. Electrophysiological data showed that when nonsymbolic fractions were compared to common fractions, they displayed larger N1 and P3 amplitudes than when they were compared to decimal fractions. This finding suggested that the visual identification for nonsymbolic fractions was different under the two conditions, which was not due to perceptual differences but to task demands. For symbolic fractions, the condition effect was observed in the N1 and P3 components, revealing stimulus-specific visual identification processing. The effect of numerical distance as an index of numerical magnitude representation was observed in the P2, N3 and P3 components under the two conditions. However, the topography of the distance effect was different under the two conditions, suggesting stimulus specific semantic processing of common fractions and decimal fractions.

  16. Using Repeating Decimals As An Alternative To Prime Numbers In Encryption

    CERN Document Server

    Zirkind, Givon

    2010-01-01

    This article is meant to provide an additional point of view, applying known knowledge, to supply keys that have a series of non-repeating digits, in a manner that is not usually thought of. Traditionally, prime numbers are used in encryption as keys that have non-repeating sequences. Usually, non-repetition, especially of digits in a key, is very sought after in encryption. Uniqueness in a digit sequence defeats decryption. In searching for methods of non-decryptable encryption as well as ways to provide unique sequences, other than using prime numbers [5], the idea of using repeating decimals came to me. Applied correctly, a repeating decimal series of sufficient length will stand in as well for a prime number. This is so, because only numbers prime to each other will produce repeating decimals and; within the repeating sequence there is uniqueness of digit sequence.

  17. Using Repeating Decimals As An Alternative To Prime Numbers In Encryption

    CERN Document Server

    Zirkind, Givon

    2010-01-01

    This article is meant to provide an additional point of view, applying known knowledge, to supply keys that have a series of non-repeating digits, in a manner that is not usually thought of. Traditionally, prime numbers are used in encryption as keys that have non-repeating sequences. Non-repetition of digits in a key is very sought after in encryption. Uniqueness in a digit sequence defeats decryption by method. In searching for methods of non-decryptable encryption as well as ways to provide unique sequences, other than using prime numbers, the idea of using repeating decimals came to me. Applied correctly, a repeating decimal series of sufficient length will stand in as well for a prime number. This is so, because only numbers prime to each other will produce repeating decimals and; within the repeating sequence there is uniqueness of digit sequence.

  18. Double decimation and sliding vacua in the nuclear many-body system

    Energy Technology Data Exchange (ETDEWEB)

    Brown, G.E.; Rho, Mannque

    2004-06-01

    We propose that effective field theories for nuclei and nuclear matter comprise of 'double decimation': (1) the chiral symmetry decimation (CSD) and (2) Fermi liquid decimation (FLD). The Brown-Rho scaling recently identified as the parametric dependence intrinsic in the 'vector manifestation' of hidden local symmetry theory of Harada and Yamawaki results from the first decimation. This scaling governs dynamics down to the scale at which the Fermi surface is formed as a quantum critical phenomenon. The next decimation to the top of the Fermi sea where standard nuclear physics is operative makes up the FLD. Thus, nuclear dynamics are dictated by two fixed points, namely, the vector manifestation fixed point and the Fermi liquid fixed point. It has been a prevalent practice in nuclear physics community to proceed with the second decimation only, assuming density-independent masses, without implementing the first, CSD. We show why most nuclear phenomena can be reproduced by theories using either density-independent, or density-dependent masses, a grand conspiracy of nature that is an aspect that could be tied to the Cheshire Cat phenomenon in hadron physics. We identify what is left out in the FLD that does not incorporate the CSD. Experiments such as the dilepton production in relativistic heavy ion reactions, which are specifically designed to observe effects of dropping masses, could exhibit large effects from the reduced masses. However, they are compounded with effects that are not directly tied to chiral symmetry. We discuss a recent STAR/RHIC observation where BR scaling can be singled out in a pristine environment.

  19. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  20. Electronic Correlations Decimate the Ferroelectric Polarization of Multiferroic HoMn2O5

    Science.gov (United States)

    Giovannetti, Gianluca; van den Brink, Jeroen

    2008-06-01

    We show that electronic correlations decimate the intrinsic ferroelectric polarization of multiferroic manganites RMn2O5, where R is a rare earth element. Such is manifest from ab initio band structure computations that account for the Coulomb interactions between the manganese 3d electrons—the root of magnetism in RMn2O5. Including these leads to an amplitude and direction of polarization of HoMn2O5 that agree with experiment. The decimation is caused by a near cancellation of the ionic polarization induced by the lattice and the electronic one due to valence charge redistributions.

  1. Moving beyond the presentation layer content and context in the Dewey Decimal Classification (DDC) system

    CERN Document Server

    Mitchell, Joan S

    2013-01-01

    Can the Dewey Decimal System meet the needs of the rapidly changing information environment?Moving Beyond the Presentation Layer explores the Dewey Decimal System from a variety of perspectives, each of which peels away a bit of the ?presentation layer??the familiar linear notational sequence-to reveal the content and context offered by the DDS. Library professionals from around the word examine how the content and context offered by the DDS can evolve to meet the needs of the changing information environment, with a special focus on the impact of the Internet on current and future

  2. Least Squares Spectral Analysis and Its Application to Superconducting Gravimeter Data Analysis

    Institute of Scientific and Technical Information of China (English)

    YIN Hui; Spiros D. Pagiatakis

    2004-01-01

    Detection of a periodic signal hidden in noise is the goal of Superconducting Gravimeter (SG) data analysis. Due to spikes, gaps, datum shrifts (offsets) and other disturbances, the traditional FFT method shows inherent limitations. Instead, the least squares spectral analysis (LSSA) has showed itself more suitable than Fourier analysis of gappy, unequally spaced and unequally weighted data series in a variety of applications in geodesy and geophysics. This paper reviews the principle of LSSA and gives a possible strategy for the analysis of time series obtained from the Canadian Superconducting Gravimeter Installation (CGSI), with gaps, offsets, unequal sampling decimation of the data and unequally weighted data points.

  3. Hong Kong Grade 6 Students' Performance and Mathematical Reasoning in Decimals Tasks: Procedurally Based or Conceptually Based?

    Science.gov (United States)

    Lai, Mun Yee; Murray, Sara

    2015-01-01

    Most studies of students' understanding of decimals have been conducted within Western cultural settings. The broad aim of the present research was to gain insight into Chinese Hong Kong grade 6 students' general performance on a variety of decimals tasks. More specifically, the study aimed to explore students' mathematical reasoning for their use…

  4. Design of a high-order single-loop ∑△ ADC followed by a decimator in 0.18 μm CMOS technology

    Institute of Scientific and Technical Information of China (English)

    Li Di; Yang Yintang; Shi Lichun; Wu Xiaofeng

    2009-01-01

    This work presents an oversampled high-order single-loop single-bit sigma-delta analog-to-digital con verter followed by a multi-stage decimation filter. Design details and measurement results for the whole chip are presented for a TSMC 0.18 μm CMOS implementation to achieve virtually ideal 16-b performance over a baseband of 640 kHz. The modulator in this work is a fully differential circuit that operates from a single 1.8 V power supply. With an oversampling ratio of 64 and a clock rate of 81.92 MHz, the modulator achieves a 94 dB dynamic range. The decimator achieves a pass-band ripple of less than 0.01 dB, a stop-band attenuation of 80 dB and a transition band from 640 to 740 kHz. The whole chip consumes only 56 mW for a 1.28 MHz output rate and occupies a die area of 1×2 mm~2.

  5. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  6. Sharing Teaching Ideas: A New Approach to Decimal Division; Approximating Logarithms Intuitively; Writing Equations Containing Radicals.

    Science.gov (United States)

    May, Beverly A.; And Others

    1981-01-01

    Teaching ideas related to the instruction of decimal division as the opposite of multiplication, an approach to approximating logarithms that help reveal their properties, and the simple creation of algebraic equations with radical expressions for use as exercises and test questions are presented. (MP)

  7. Assessment of the Knowledge of the Decimal Number System Exhibited by Students with Down Syndrome

    Science.gov (United States)

    Noda, Aurelia; Bruno, Alicia

    2017-01-01

    This paper presents an assessment of the understanding of the decimal numeral system in students with Down Syndrome (DS). We followed a methodology based on a descriptive case study involving six students with DS. We used a framework of four constructs (counting, grouping, partitioning and numerical relationships) and five levels of thinking for…

  8. Effect of Cuisenaire Rods' Approach on Some Nigeria Primary Pupils' Achievement in Decimal Fractions

    Science.gov (United States)

    Kurumeh, M. S. C.; Achor, E. E.

    2008-01-01

    This study determined the effect of Cuisenaire Rods' approach on some Nigeria primary pupils' achievement in decimal fractions. Three hypotheses guided the study. A total of 200 Primary six pupils (that is, 6th grade) from randomly selected schools in Makurdi metropolis of Benue State of Nigeria served as the sample for the study. A Mathematics…

  9. Epistemic Trust and Education: Effects of Informant Reliability on Student Learning of Decimal Concepts

    Science.gov (United States)

    Durkin, Kelley; Shafto, Patrick

    2016-01-01

    The epistemic trust literature emphasizes that children's evaluations of informants' trustworthiness affects learning, but there is no evidence that epistemic trust affects learning in academic domains. The current study investigated how reliability affects decimal learning. Fourth and fifth graders (N = 122; M[subscript age] = 10.1 years)…

  10. Enhancing social tagging with automated keywords from the Dewey Decimal Classification

    DEFF Research Database (Denmark)

    Golub, Koraljka; Lykke, Marianne; Tudhope, Duglas

    2014-01-01

    Purpose – The purpose of this paper is to explore the potential of applying the Dewey Decimal Classification (DDC) as an established knowledge organization system (KOS) for enhancing social tagging, with the ultimate purpose of improving subject indexing and information retrieval. Design...

  11. Extending the Dewey Decimal Classification via Keyword Clustering: The Science Library Catalog Project.

    Science.gov (United States)

    Rosenberg, Jason B.; Borgman, Christine L.

    1992-01-01

    Discusses the Science Library Catalog, an online catalog intended for use by children at the Los Angeles Public Library, and describes the process of reorganizing the MARC-based database by using clustering algorithms to extend the Dewey Decimal Classification. Examples of screen displays are included. (18 references) (LRW)

  12. Class Dispersion between the Library of Congress Classification and the Dewey Decimal Classification.

    Science.gov (United States)

    O'Neill, Edward T.; And Others

    1987-01-01

    Two statistical measures are used to compare the Library of Congress and Dewey Decimal Classification systems by applying them to the library science portions of the two systems using a database drawn from MARC records. It is concluded that the measures characterize two different properties of dispersion. (Author/EM)

  13. The View from the Editor's Chair: Dewey Decimal Classification 16 to 19.

    Science.gov (United States)

    Custer, Benjamin A.

    The retiring editor of Dewey Decimal Classification recounts the development of the system from the 16th through the 19th editions, i.e., 1956-1980. During this period, the system has undergone major changes to internationalize its character. Special provisions have been incorporated for branches of history, geography, language, literature, the…

  14. The Tenth Abridged Dewey Decimal Classification "...and Children's Room/School Library Collections"

    Science.gov (United States)

    Chan, Lois Mai

    1973-01-01

    The tenth abridged edition (1971) of the Dewey Decimal Classification represents, in addition to the updating of the system, many structural improvements which render the system a more workable one, especially for children's room and school library collections. (2 references) (Author)

  15. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  16. Preoperative factors predictive of postoperative decimal visual acuity ≥ 1.0 following surgical treatment for idiopathic epiretinal membrane

    Directory of Open Access Journals (Sweden)

    Hiroshi Kunikata

    2011-02-01

    Full Text Available Hiroshi Kunikata1, Toshiaki Abe2, Jiro Kinukawa1, Kohji Nishida1,31Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine, Sendai, Japan; 2Division of Clinical Cell Therapy, Tohoku University Graduate School of Medicine, Sendai, Japan; 3Department of Ophthalmology, Osaka University Medical School, Suita, JapanPurpose: To report the preoperative best-corrected visual acuity (BCVA and foveal thickness (FT values that lead to a postoperative decimal BCVA of ≥ 1.0 after surgical removal of an idiopathic epiretinal membrane (ERM.Methods: This is a retrospective case series of 73 eyes that underwent surgery for removal of an idiopathic ERM. All eyes had been treated by a single surgeon using a 25-gauge transconjunctival sutureless vitrectomy and indocyanine green-assisted internal limiting membrane peel. The BCVA and FT were measured at baseline and 6 months postoperatively.Results: A postoperative decimal BCVA ≥ 1.0 was obtained in eyes with a preoperative decimal BCVA ≥ 0.3 but not in those with a preoperative decimal BCVA ≤ 0.2. The incidence of obtaining a postoperative decimal BCVA ≥ 1.0 was significantly (P = 0.002 higher in eyes with a preoperative decimal BCVA ≥ 0.5 (50% than in eyes with a preoperative decimal BCVA < 0.5 (11%. Additionally, a postoperative decimal BCVA of ≥ 1.0 was obtained in 51% of the eyes that had a preoperative FT < 400 µm, compared with only 21% of eyes with a preoperative FT ≥ 400 µm (P = 0.01. The incidence of obtaining a postoperative decimal BCVA ≥ 1.0 was significantly higher in eyes with preoperative decimal BCVA ≥ 0.5 and FT < 400 µm (60% than in eyes with preoperative decimal BCVA ≥ 0.5 and FT ≥ 400 µm (20%; P = 0.03 or preoperative BCVA < 0.5 and FT ≥ 400 µm (7%; P < 0.001.Conclusions: These findings indicate that eyes with both preoperative BCVA ≥ 0.5 and FT < 400 µm have a significantly better chance of obtaining a postoperative decimal

  17. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  18. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  19. Amazing 7-day, super-simple, scripted guide to teaching or learning decimals

    CERN Document Server

    Kolby, Jeff

    2014-01-01

    Welcome to The Amazing 7-Day Super-Simple, Scripted Guide to Teaching or Learning Decimals. I have attempted to do just what the title says: make learning decimals super simple. I have also attempted to make it fun and even ear-catching. The reason for this is not that I am a frustrated stand-up comic, but because in my fourteen years of teaching the subject, I have come to realize that my jokes, even the bad ones, have a crazy way of sticking in my students' heads. And should I use a joke (even a bad one) repetitively, the associations become embedded in their brains, many times to their chag

  20. Frequency analysis decimation vibration signals of passenger car’s suspensions

    Directory of Open Access Journals (Sweden)

    Janusz GARDULSKI

    2007-01-01

    Full Text Available The paper presents possibilities of applying linear decimation procedure in frequency analysis of non-stationary signals. It shows the results of analytical experiments conducted with vibration signals registered during examination of car suspension which was activated to vibration on harmonic stand research. Working cycles identification algorithm was helpful to make LDP of working cycles parts of a signal. Signals spectrum results confirm amplitude selectivity for typical frequency ofresearching dynamic system.

  1. From rational numbers to algebra: separable contributions of decimal magnitude and relational understanding of fractions.

    Science.gov (United States)

    DeWolf, Melissa; Bassok, Miriam; Holyoak, Keith J

    2015-05-01

    To understand the development of mathematical cognition and to improve instructional practices, it is critical to identify early predictors of difficulty in learning complex mathematical topics such as algebra. Recent work has shown that performance with fractions on a number line estimation task predicts algebra performance, whereas performance with whole numbers on similar estimation tasks does not. We sought to distinguish more specific precursors to algebra by measuring multiple aspects of knowledge about rational numbers. Because fractions are the first numbers that are relational expressions to which students are exposed, we investigated how understanding the relational bipartite format (a/b) of fractions might connect to later algebra performance. We presented middle school students with a battery of tests designed to measure relational understanding of fractions, procedural knowledge of fractions, and placement of fractions, decimals, and whole numbers onto number lines as well as algebra performance. Multiple regression analyses revealed that the best predictors of algebra performance were measures of relational fraction knowledge and ability to place decimals (not fractions or whole numbers) onto number lines. These findings suggest that at least two specific components of knowledge about rational numbers--relational understanding (best captured by fractions) and grasp of unidimensional magnitude (best captured by decimals)--can be linked to early success with algebraic expressions. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Obtaining the Dewey Decimal Classification Number from other databases: a catalog clean-up project

    Directory of Open Access Journals (Sweden)

    Stefano Bargioni

    2013-07-01

    Full Text Available The increasing availability of online catalogs and bibliographical databases allows not only for copy cataloging, but also for the retrieval of atomic information useful within the catalog. To this end, Dewey decimal numbers were imported from national and international sources by means of the unique identifier ISBN. Technical specifications have been developed to locate the records to be retrieved, to query external databases, to extract the Dewey decimal classification numbers and add them to the catalog. The exceptionally large amount of Dewey numbers added to the catalog has improved the semantic usability of the OPAC. The procedure established has also facilitated the collection of information on the use of the Dewey Decimal System in the various databases used and allowed to make certain comparisons between them. The tools employed can be used analogously for data-retrieval operations in the catalog, as an aid in the cataloging process, or to improve the OPAC in either a static or dynamic manner. Taking into account its virtually exclusive practical purpose, this work is characterized by practical rather than theoretical choices. However, the experience acquired opens up areas even in the field of academic research.

  3. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  4. Minimum Phase Property of Chebyshev-Sharpened Cosine Filters

    Directory of Open Access Journals (Sweden)

    Miriam Guadalupe Cruz Jiménez

    2015-01-01

    Full Text Available We prove that the Chebyshev sharpening technique, recently introduced in literature, provides filters with a Minimum Phase (MP characteristic when it is applied to cosine filters. Additionally, we demonstrate that cascaded expanded Chebyshev-Sharpened Cosine Filters (CSCFs are also MP filters, and we show that they achieve a lower group delay for similar magnitude characteristics in comparison with traditional cascaded expanded cosine filters. The importance of the characteristics of cascaded expanded CSCFs is also elaborated. The developed examples show improvements in the group delay ranged from 23% to 47% at the cost of a slight increase of usage of hardware resources. For an application of a low-delay decimation filter, the proposed scheme exhibits a 24% lower group delay, with 35% less computational complexity (estimated in Additions per Output Sample and slightly less usage of hardware elements.

  5. Hardware Architecture of Polyphase Filter Banks Performing Embedded Resampling for Software-Defined Radio Front-Ends

    DEFF Research Database (Denmark)

    Awan, Mehmood-Ur-Rehman; Le Moullec, Yannick; Koch, Peter

    2012-01-01

    , and power optimization for field programmable gate array (FPGA) based architectures in an M -path polyphase filter bank with modified N -path polyphase filter. Such systems allow resampling by arbitrary ratios while simultaneously performing baseband aliasing from center frequencies at Nyquist zones...... for maximally decimated, under-decimated, over-decimated, and combined up- and down-sampled scenarios is used as a case study, and an analysis of area, time, and power for their FPGA architectures is given. For resource-optimized SDR front-ends, RA is superior for reducing operating clock rates and dynamic......In this paper, we describe resource-efficient hardware architectures for software-defined radio (SDR) front-ends. These architectures are made efficient by using a polyphase channelizer that performs arbitrary sample rate changes, frequency selection, and bandwidth control. We discuss area, time...

  6. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  7. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  8. Basic principle of superconductivity

    OpenAIRE

    De Cao, Tian

    2007-01-01

    The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

  9. Filter-Bank-Based Narrowband Interference Detection and Suppression in Spread Spectrum Systems

    Directory of Open Access Journals (Sweden)

    Tobias Hidalgo Stitz

    2004-07-01

    Full Text Available A filter-bank-based narrowband interference detection and suppression method is developed and its performance is studied in a spread spectrum system. The use of an efficient, complex, critically decimated perfect reconstruction filter bank with a highly selective subband filter prototype, in combination with a newly developed excision algorithm, offers a solution with efficient implementation and performance close to the theoretical limit derived as a function of the filter bank stopband attenuation. Also methods to cope with the transient effects in case of frequency hopping interference are developed and the resulting performance shows only minor degradation in comparison to the stationary case.

  10. Dynamical decimation renormalization-group technique: kinetic gaussian model on nonbranching, branching, and multibranching koch curves

    Science.gov (United States)

    Zhu; Yang

    2000-06-01

    A generalizing formulation of dynamical real-space renormalization that is appropriate for arbitrary spin systems is suggested. The alternative version replaces single-spin flipping Glauber dynamics with single-spin transition dynamics. As an application, in this paper we mainly investigate the critical slowing down of the Gaussian spin model on three fractal lattices, including nonbranching, branching, and multibranching Koch curves. The dynamical critical exponent z is calculated for these lattices using an exact decimation renormalization transformation in the assumption of the magneticlike perturbation, and a universal result z=1/nu is found.

  11. Removal and fate of Cryptosporidium parvum, Clostridium perfringens and small-sized centric diatoms (Stephanodiscus hantzschii) in slow sand filters

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Dullemont, Y.J.; Schijven, J.F.; Brouwer-Hanzens, Anke J.; Rosielle, M.; Medema, Gerriet Jan

    2007-01-01

    The decimal elimination capacity (DEC) of slow sand filtration (SSF) for Cryptosporidium parvum was assessed to enable quantitative microbial risk analysis of a drinking water production plant. A mature pilot plant filter of 2.56 m2 was loaded with C. parvum oocysts and two other persistent organism

  12. Applied superconductivity handbook on devices and applications

    CERN Document Server

    2015-01-01

    This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the latest applications, is an essential reference for physicists and engineers in academic research as well as in the field. Readers looking for a systematic overview on superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors, including organic and magnetic materials. Technology, preparation and characterization are covered for several geometries, but the main benefit of this work lies in its broad coverage of significant applications in power engineering or passive devices, such as filter and antenna or magnetic shields. The reader will also find information on superconducting magnets for diverse applications in mechanical engineering, particle physics, fusion research, medicine and biomagnetism, as well as materials processing. SQUIDS and their usage in medicine or geophysics are thoroughly covered as are applications in quantum metrology, and, las...

  13. Decimal fraction representations are not distinct from natural number representations - evidence from a combined eye-tracking and computational modeling approach.

    Science.gov (United States)

    Huber, Stefan; Klein, Elise; Willmes, Klaus; Nuerk, Hans-Christoph; Moeller, Korbinian

    2014-01-01

    Decimal fractions comply with the base-10 notational system of natural Arabic numbers. Nevertheless, recent research suggested that decimal fractions may be represented differently than natural numbers because two number processing effects (i.e., semantic interference and compatibility effects) differed in their size between decimal fractions and natural numbers. In the present study, we examined whether these differences indeed indicate that decimal fractions are represented differently from natural numbers. Therefore, we provided an alternative explanation for the semantic congruity effect, namely a string length congruity effect. Moreover, we suggest that the smaller compatibility effect for decimal fractions compared to natural numbers was driven by differences in processing strategy (sequential vs. parallel). To evaluate this claim, we manipulated the tenth and hundredth digits in a magnitude comparison task with participants' eye movements recorded, while the unit digits remained identical. In addition, we evaluated whether our empirical findings could be simulated by an extended version of our computational model originally developed to simulate magnitude comparisons of two-digit natural numbers. In the eye-tracking study, we found evidence that participants processed decimal fractions more sequentially than natural numbers because of the identical leading digit. Importantly, our model was able to account for the smaller compatibility effect found for decimal fractions. Moreover, string length congruity was an alternative account for the prolonged reaction times for incongruent decimal pairs. Consequently, we suggest that representations of natural numbers and decimal fractions do not differ.

  14. Decimal representations are not distinct from natural number representations – Evidence from a combined eye-tracking and computational modelling approach

    Directory of Open Access Journals (Sweden)

    Stefan eHuber

    2014-04-01

    Full Text Available Decimal fractions comply with the base-10 notational system of natural Arabic numbers. Nevertheless, recent research suggested that decimal fractions may be represented differently than natural numbers because two number processing effects (i.e., semantic interference and compatibility effects differed in their size between decimal fractions and natural numbers. In the present study, we examined whether these differences indeed indicate that decimal fractions are represented differently from natural numbers. Therefore, we provided an alternative explanation for the semantic congruity effect, namely a string length congruity effect. Moreover, we suggest that the smaller compatibility effect for decimal fractions compared to natural numbers was driven by differences in processing strategy (sequential vs. parallel.To evaluate this claim, we manipulated the tenth and hundredth digits in a magnitude comparison task with participants' eye movements recorded, while the unit digits remained identical. In addition, we evaluated whether our empirical findings could be simulated by an extended version of our computational model originally developed to simulate magnitude comparisons of two-digit natural numbers. In the eye-tracking study, we found evidence that participants processed decimal fractions more sequentially than natural numbers because of the identical leading digit. Importantly, our model was able to account for the smaller compatibility effect found for decimal fractions. Moreover, string length congruity was an alternative account for the prolonged reaction times for incongruent decimal pairs. Consequently, we suggest that representations of natural numbers and decimal fractions do not differ.

  15. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  16. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  17. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  18. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  19. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  20. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  1. Decimation of encoding errors in an optimum SNS 2 micron low-noise CMOS ADC

    Science.gov (United States)

    Schafer, Jeffrey L.

    1995-03-01

    Significant research in high performance analog-to-digital converters (ADC's) has been directed at retaining part of the high-speed flash ADC architecture, while reducing the total number of comparators in the circuit. The symmetrical number system (SNS) can he used to preprocess the analog input signal, reducing the number of comparators and thus reducing the chip area and power consumption of the ADC. This thesis examines the issue of encoding errors that result when the separate channels m sub i are brought together to derive the input analog voltage. The Very Large Scale Integrated (VLSI) design for the comparators, error checking circuits and Programmable Logic Arrays (PLA's) use the Orbit 2 Micron CMOS N-well double-metal, double-poly fabrication process. Steady state transfer functions are shown which detail encoding errors that occur when the folded input samples lie at one of the code transition points. To discard the encoding errors that occur, a decimation band is constructed at each transition Point The effectiveness of the decimation band in eliminating the encoding errors and the linearity error is quantified. An Application Specific Integrated Circuit (ASIC) is designed.

  2. Pressure Decimation and Interpolation (PDI) method for a baroclinic non-hydrostatic model

    Science.gov (United States)

    Shi, Jian; Shi, Fengyan; Kirby, James T.; Ma, Gangfeng; Wu, Guoxiang; Tong, Chaofeng; Zheng, Jinhai

    2015-12-01

    Non-hydrostatic models are computationally expensive in simulating density flows and mass transport problems due to the requirement of sufficient grid resolution to resolve density and flow structures. Numerical tests based on the Non-Hydrostatic Wave Model, NHWAVE (Ma et al., 2012), indicated that up to 70% of the total computational cost may be born by the pressure Poisson solver in cases with high grid resolution in both vertical and horizontal directions. However, recent studies using Poisson solver-based non-hydrostatic models have shown that an accurate prediction of wave dispersion does not require a large number of vertical layers if the dynamic pressure is properly discretized. In this study, we explore the possibility that the solution for the dynamic pressure field may, in general, be decimated to a resolution far coarser than that used in representing velocities and other transported quantities, without sacrificing accuracy of solutions. Following van Reeuwijk (2002), we determine the dynamic pressure field by solving the Poisson equation on a coarser grid and then interpolate the pressure field onto a finer grid used for solving for the remaining dynamic variables. With the Pressure Decimation and Interpolation (PDI) method, computational efficiency is greatly improved. We use three test cases to demonstrate the model's accuracy and efficiency in modeling density flows.

  3. Filter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  4. Superconducting thin films. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The bibliography contains citations concerning the design, fabrication, structures, and properties of superconducting thin films used in microelectronics and optoelectronics. References discuss high temperature superconductors, oxide superconductors, superconducting transition temperatures, critical current density, yttrium barium copper oxide thin films, and yttrium stabilized substrates. Superconducting devices, filters, resonators, and circuits are also reviewed. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Dissipative cryogenic filters with zero dc resistance.

    Science.gov (United States)

    Bluhm, Hendrik; Moler, Kathryn A

    2008-01-01

    The authors designed, implemented, and tested cryogenic rf filters with zero dc resistance, based on wires with a superconducting core inside a resistive sheath. The superconducting core allows low frequency currents to pass with negligible dissipation. Signals above the cutoff frequency are dissipated in the resistive part due to their small skin depth. The filters consist of twisted wire pairs shielded with copper tape. Above approximately 1 GHz, the attenuation is exponential in omega, as typical for skin depth based rf filters. By using additional capacitors of 10 nF per line, an attenuation of at least 45 dB above 10 MHz can be obtained. Thus, one single filter stage kept at mixing chamber temperature in a dilution refrigerator is sufficient to attenuate room temperature black body radiation to levels corresponding to 10 mK above about 10 MHz.

  6. Dissipative Cryogenic Filters with Zero DC Resistance

    Energy Technology Data Exchange (ETDEWEB)

    Bluhm, Hendrik; Moler, Kathryn A.; /Stanford U., Appl. Phys. Dept

    2008-04-22

    The authors designed, implemented and tested cryogenic RF filters with zero DC resistance, based on wires with a superconducting core inside a resistive sheath. The superconducting core allows low frequency currents to pass with negligible dissipation. Signals above the cutoff frequency are dissipated in the resistive part due to their small skin depth. The filters consist of twisted wire pairs shielded with copper tape. Above approximately 1 GHz, the attenuation is exponential in {radical}{omega}, as typical for skin depth based RF filters. By using additional capacitors of 10 nF per line, an attenuation of at least 45 dB above 10 MHz can be obtained. Thus, one single filter stage kept at mixing chamber temperature in a dilution refrigerator is sufficient to attenuate room temperature black body radiation to levels corresponding to 10 mK above about 10 MHz.

  7. The Dewey Decimal Classification; Outlines and Papers Presented at a Workshop on the Teaching of Classification (December 8-10, 1966).

    Science.gov (United States)

    Tauber, Maurice F., Ed.; And Others

    An invitational workshop concerned with the teaching of the Dewey Decimal Classification was attended by teachers of classification in accredited library schools and administrative officers from libraries and other organizations who have expertise in the Decimal Classification and its applications. The outlines and papers prepared for discussion…

  8. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  9. Superconducting energy recovery linacs

    Science.gov (United States)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  10. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  11. Fundamentals of Superconducting Nanoelectronics

    CERN Document Server

    Sidorenko, Anatolie

    2011-01-01

    This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, P

  12. Superconductive imaging surface magnetometer

    Science.gov (United States)

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  13. Superconducting optical modulator

    Science.gov (United States)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  14. Basic Study of Superconductive Actuator

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    2000-01-01

    There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...

  15. EFFICIENT IMPLEMENTATION OF 3D FILTER FOR MOVING OBJECT EXTRACTION

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper the design and implementation of Multi-Dimensional (MD) filter, particularly 3-Dimensional (3D) filter, are presented. Digital (discrete domain) filters applied to image and video signal processing using the novel 3D multirate algorithms for efficient implementation of moving object extraction are engineered with an example. The multirate (decimation and/or interpolation) signal processing algorithms can achieve significant savings in computation and memory usage. The proposed algorithm uses the mapping relations of z-transfer functions between non-multirate and multirate mathematical expressions in terms of time-varying coefficient instead of traditional polyphase decomposition counterparts. The mapping properties can be readily used to efficiently analyze and synthesize MD multirate filters.

  16. An evaluation of different delivery methods for teaching binary, hex and decimal conversion

    Directory of Open Access Journals (Sweden)

    Daniel Kempthorne

    Full Text Available The ability to convert between binary, hexadecimal, and decimal numbering systems is a fundamental skill commonly taught to tertiary-level computing and ICT students. This paper presents the results of a multiple year investigation into the application of differing approaches for the teaching and learning of these skills. Specifically, the study compares traditional lectures, games, and group activities with student levels of academic achievement. Student prior experience with numbering system conversion is also analysed. The study reveals that, overall, the game-based approach resulted in the highest average test scores; however, when students were divided into groups with and without prior experience, the students with prior experience performed better with a traditional lecture approach.

  17. Data extraction for complex meta-analysis (DECiMAL) guide.

    Science.gov (United States)

    Pedder, Hugo; Sarri, Grammati; Keeney, Edna; Nunes, Vanessa; Dias, Sofia

    2016-12-13

    As more complex meta-analytical techniques such as network and multivariate meta-analyses become increasingly common, further pressures are placed on reviewers to extract data in a systematic and consistent manner. Failing to do this appropriately wastes time, resources and jeopardises accuracy. This guide (data extraction for complex meta-analysis (DECiMAL)) suggests a number of points to consider when collecting data, primarily aimed at systematic reviewers preparing data for meta-analysis. Network meta-analysis (NMA), multiple outcomes analysis and analysis combining different types of data are considered in a manner that can be useful across a range of data collection programmes. The guide has been shown to be both easy to learn and useful in a small pilot study.

  18. Locating Negative Decimals on the Number Line: Insights into the Thinking of Pre-Service Primary Teachers

    Science.gov (United States)

    Widjaja, Wanty; Stacey, Kaye; Steinle, Vicki

    2011-01-01

    This paper explores misconceptions of the number line which are revealed when pre-service primary teachers locate negative decimals on a number line. Written test responses from 94 pre-service primary teachers provide an initial data source which is supplemented by group responses to worksheets completed during a lesson and individual interviews.…

  19. Locating Negative Decimals on the Number Line: Insights into the Thinking of Pre-Service Primary Teachers

    Science.gov (United States)

    Widjaja, Wanty; Stacey, Kaye; Steinle, Vicki

    2011-01-01

    This paper explores misconceptions of the number line which are revealed when pre-service primary teachers locate negative decimals on a number line. Written test responses from 94 pre-service primary teachers provide an initial data source which is supplemented by group responses to worksheets completed during a lesson and individual interviews.…

  20. An Exploration of the Role Natural Language and Idiosyncratic Representations in Teaching How to Convert among Fractions, Decimals, and Percents

    Science.gov (United States)

    Muzheve, Michael T.; Capraro, Robert M.

    2012-01-01

    Using qualitative data collection and analyses techniques, we examined mathematical representations used by sixteen (N=16) teachers while teaching the concepts of converting among fractions, decimals, and percents. We also studied representational choices by their students (N=581). In addition to using geometric figures and manipulatives, teachers…

  1. Cancer Therapy (Preclinical and Clinical): A Decimal Classification, (Categories 51.1, 51.2, and 51.3).

    Science.gov (United States)

    Schneider, John H.

    This hierarchical decimal classification of information related to cancer therapy in humans and animals (preceeded by a few general categories) is a working draft of categories taken from an extensive classification of biomedical information. Because the classification identifies very small areas of cancer information, it can be used for precise…

  2. Math Academy: Dining Out! Explorations in Fractions, Decimals, & Percents. Book 4: Supplemental Math Materials for Grades 3-8

    Science.gov (United States)

    Rimbey, Kimberly

    2007-01-01

    Created by teachers for teachers, the Math Academy tools and activities included in this booklet were designed to create hands-on activities and a fun learning environment for the teaching of mathematics to the students. This booklet contains the "Math Academy--Dining Out! Explorations in Fractions, Decimals, and Percents," which teachers can use…

  3. Dewey Decimal Classification Online Project: Interim Reports to the Council on Library Resources, April 1984, September 1984, and February 1985.

    Science.gov (United States)

    Markey, Karen; Demeyer, Anh N.

    This research project focuses on the implementation and testing of the Dewey Decimal Classification (DDC) system as an online searcher's tool for subject access, browsing, and display in an online catalog. The research project comprises 12 activities. The three interim reports in this document cover the first seven of these activities: (1) obtain…

  4. Comparison of the Effect of Using Title Keyword Searching and Subject Headings among the 10 Divisions of Dewey Decimal Classification.

    Science.gov (United States)

    Tsai, Shu-En

    Bibliographic records taken from books listed in "OCLC Selected Titles for Research and University Libraries" are used to determine whether the use of terms in the title for subject searching is an effective alternative to the use of Library of Congress subject headings among the 10 divisions of Dewey Decimal Classification. Terms in…

  5. Optimal filtering

    CERN Document Server

    Anderson, Brian D O

    2005-01-01

    This graduate-level text augments and extends beyond undergraduate studies of signal processing, particularly in regard to communication systems and digital filtering theory. Vital for students in the fields of control and communications, its contents are also relevant to students in such diverse areas as statistics, economics, bioengineering, and operations research.Topics include filtering, linear systems, and estimation; the discrete-time Kalman filter; time-invariant filters; properties of Kalman filters; computational aspects; and smoothing of discrete-time signals. Additional subjects e

  6. Graphene: Carbon's superconducting footprint

    Science.gov (United States)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  7. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  8. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  9. Superconductivity in carbon nanomaterials

    Science.gov (United States)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  10. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  11. The superconducting spin valve and triplet superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Garifullin, I.A., E-mail: ilgiz_garifullin@yahoo.com [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Leksin, P.V.; Garif' yanov, N.N.; Kamashev, A.A. [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Fominov, Ya.V. [L. D. Landau Institute for Theoretical Physics RAS, 119334 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O.G. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Büchner, B. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany)

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoO{sub x}/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers. - Highlights: • We studied a spin switch design F1/F2/S. • We prepared a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). • The full spin switch effect for the superconducting current was realized. • We observed its oscillating behavior as a function of the Fe2-layer thickness. • We obtained direct evidence for the long-range triplet superconductivity.

  12. Tunneling in superconducting structures

    Science.gov (United States)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  13. Superconductivity in doped insulators

    Energy Technology Data Exchange (ETDEWEB)

    Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  14. Ultraviolet filters.

    Science.gov (United States)

    Shaath, Nadim A

    2010-04-01

    The chemistry, photostability and mechanism of action of ultraviolet filters are reviewed. The worldwide regulatory status of the 55 approved ultraviolet filters and their optical properties are documented. The photostabilty of butyl methoxydibenzoyl methane (avobenzone) is considered and methods to stabilize it in cosmetic formulations are presented.

  15. An Efficient Fingerprint Based Gender Classification System Using Dominant Un-decimated Wavelet Coefficients

    Directory of Open Access Journals (Sweden)

    D. Gnana Rajesh

    2014-09-01

    Full Text Available Gender classification is the major and challenging task in the field of forensic anthropology which minimizes the list of suspects search. The existing systems use the availability of bones, teeth and other identifiable body parts having physical features that allow gender and age estimation by conventional methods. The different biometrics traits such as face, gait, iris, speech and fingerprint are used to identify the gender and age. Among the biometrics, fingerprint is most commonly available in any crime scene. In this study, an efficient algorithm to identify the gender of a given fingerprint into male or female is proposed. The two most efficient techniques are utilized to enhance the performance of the gender classification system. As the first step, Un-decimated Wavelet Transform (UWT is employed to extract the features from the fingerprints by applying ranking. Secondly, Gaussian Mixture Models (GMMs technique is used as classifier for the process of gender classification. The proposed system is carried out with the database of 180 persons finger prints of all fingers in which 80 are female and 100 are male. The results show the satisfactory classification accuracy of over 90%.

  16. HARDWARE MODELING OF BINARY CODED DECIMAL ADDER IN FIELD PROGRAMMABLE GATE ARRAY

    Directory of Open Access Journals (Sweden)

    Muhammad Ibn Ibrahimy

    2013-01-01

    Full Text Available There are insignificant relevant research works available which are involved with the Field Programmable Gate Array (FPGA based hardware implementation of Binary Coded Decimal (BCD adder. This is because, the FPGA based hardware realization is quiet new and still developing field of research. The article illustrates the design and hardware modeling of a BCD adder. Among the types of adders, Carry Look Ahead (CLA and Ripple Carry (RC adder have been studied, designed and compared in terms of area consumption and time requirement. The simulation results show that the CLA adder performs faster with optimized area consumption. Verilog Hardware Description Language (HDL is used for designing the model with the help of Altera Quartus II Electronic Design Automation (EDA tool. EDA synthesis tools make it easy to develop an HDL model and which can be synthesized into target-specific architectures. Whereas, the HDL based modeling provides shorter development phases with continuous testing and verification of the system performance and behavior. After successful functional and timing simulations of the CLA based BCD adder, the design has been downloaded to physical FPGA device. For FPGA implementation, the Altera DE2 board has been used which contains Altera Cyclone II 2C35 FPGA device.

  17. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...... MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train....

  18. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  19. Superconductivity fundamentals and applications

    CERN Document Server

    Buckel, Werner

    2004-01-01

    This is the second English edition of what has become one of the definitive works on superconductivity in German -- currently in its sixth edition. Comprehensive and easy to understand, this introductory text is written especially with the non-specialist in mind. The authors, both long-term experts in this field, present the fundamental considerations without the need for extensive mathematics, describing the various phenomena connected with the superconducting state, with liberal insertion of experimental facts and examples for modern applications. While all fields of superconducting phenomena are dealt with in detail, this new edition pays particular attention to the groundbreaking discovery of magnesium diboride and the current developments in this field. In addition, a new chapter provides an overview of the elements, alloys and compounds where superconductivity has been observed in experiments, together with their major characteristics. The chapter on technical applications has been considerably expanded...

  20. Superconductivity and symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)

    2012-02-15

    In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.

  1. Photoemission, Correlation and Superconductivity:

    Science.gov (United States)

    Abrecht, M.; Ariosa, D.; Cloëtta, D.; Pavuna, D.; Perfetti, L.; Grioni, M.; Margaritondo, G.

    We review some of the problems still affecting photoemission as a probe of high-temperature superconductivity, as well as important recent results concerning their solution. We show, in particular, some of the first important results on thin epitaxial films grown by laser ablation, which break the monopoly of cleaved BCSCO in this type of experiments. Such results, obtained on thin LSCO, may have general implications on the theory of high-temperature superconductivity.

  2. The decimal effect: behavioral and neural bases for a novel influence on intertemporal choice in healthy individuals and in ADHD.

    Science.gov (United States)

    Fassbender, Catherine; Houde, Sebastien; Silver-Balbus, Shayla; Ballard, Kacey; Kim, Bokyung; Rutledge, Kyle J; Dixon, J Faye; Iosif, Ana-Maria; Schweitzer, Julie B; McClure, Samuel M

    2014-11-01

    We identify a novel contextual variable that alters the evaluation of delayed rewards in healthy participants and those diagnosed with attention deficit/hyperactivity disorder (ADHD). When intertemporal choices are constructed of monetary outcomes with rounded values (e.g., $25.00), discount rates are greater than when the rewards have nonzero decimal values (e.g., $25.12). This finding is well explained within a dual system framework for temporal discounting in which preferences are constructed from separate affective and deliberative processes. Specifically, we find that round dollar values produce greater positive affect than do nonzero decimal values. This suggests that relative involvement of affective processes may underlie our observed difference in intertemporal preferences. Furthermore, we demonstrate that intertemporal choices with rounded values recruit greater brain responses in the nucleus accumbens to a degree that correlates with the size of the behavioral effect across participants. Our demonstration that a simple contextual manipulation can alter self-control in ADHD has implications for treatment of individuals with disorders of impulsivity. Overall, the decimal effect highlights mechanisms by which the properties of a reward bias perceived value and consequent preferences.

  3. A new model analysis of the third harmonic voltage in inductive measurement for critical current density of superconducting films

    Institute of Scientific and Technical Information of China (English)

    Zhang Xu; Wu Zhi-Zhen; Zhou Tie-Ge; He Ming; Zhao Xin-Jie; Yan Shao-Lin; Fang Lan

    2011-01-01

    The critical current density Jc is one of the most important parameters of high temperature superconducting films in superconducting applications, such as superconducting filter and superconducting Josephson devices. This paper presents a new model to describe inhomogeneous current distribution throughout the thickness of superconducting films applying magnetic field by solving the differential equation derived from Maxwell equation and the second London equation. Using this model, it accurately calculates the inductive third-harmonic voltage when the film applying magnetic field with the inductive measurement for Jc. The theoretic curve is consistent with the experimental results about measuring superconducting film, especially when the third-harmonic voltage just exceeds zero. The Jc value of superconducting films determined by the inductive method is also compared with results measured by four-probe transport method. The agreements between inductive method and transport method are very good.

  4. Superconductivity applications for infrared and microwave devices; Proceedings of the Meeting, Orlando, FL, Apr. 19, 20, 1990

    Science.gov (United States)

    Bhasin, Kul B. (Editor); Heinen, Vernon O. (Editor)

    1990-01-01

    Various papers on superconductivity applications for IR and microwave devices are presented. The individual topics addressed include: pulsed laser deposition of Tl-Ca-Ba-Cu-O films, patterning of high-Tc superconducting thin films on Si substrates, IR spectra and the energy gap in thin film YBa2Cu3O(7-delta), high-temperature superconducting thin film microwave circuits, novel filter implementation utilizing HTS materials, high-temperature superconductor antenna investigations, high-Tc superconducting IR detectors, high-Tc superconducting IR detectors from Y-Ba-Cu-O thin films, Y-Ba-Cu0-O thin films as high-speed IR detectors, fabrication of a high-Tc superconducting bolometer, transition-edge microbolometer, photoresponse of YBa2Cu3O(7-delta) granular and epitaxial superconducting thin films, fast IR response of YBCO thin films, kinetic inductance effects in high-Tc microstrip circuits at microwave frequencies.

  5. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  6. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  7. High temperature interfacial superconductivity

    Science.gov (United States)

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  8. The superconducting spin valve and triplet superconductivity

    Science.gov (United States)

    Garifullin, I. A.; Leksin, P. V.; Garif`yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O. G.; Büchner, B.

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers.

  9. Food Filter

    Institute of Scientific and Technical Information of China (English)

    履之

    1995-01-01

    A typical food-processing plant produces about 500,000 gallons of waste water daily. Laden with organic compounds, this water usually is evaporated or discharged into sewers.A better solution is to filter the water through

  10. Choice of sterilizing/disinfecting agent: determination of the Decimal ReductionTime (D-Value

    Directory of Open Access Journals (Sweden)

    Priscila Gava Mazzola

    2009-12-01

    Full Text Available Efforts to diminish the transmission of infections include programs in which disinfectants play a crucial role. Hospital surfaces and medical devices are potential sources of cross contamination, and each instrument, surface or area in a health care unit can be responsible for spread of infection. The decimal reduction time was used to study and compare the behavior of selected strains of microorganisms. The highest D-values for various bacteria were obtained for the following solutions: (i 0.1% sodium dichloroisocyanurate (pH 7.0 - E. coli and A. calcoaceticus (D = 5.9 min; (ii sodium hypochlorite (pH 7.0 at 0.025% for B. stearothermophilus (D = 24 min, E. coli and E. cloacae (D = 7.5 min; at 0.05% for B. stearothermophilus (D = 9.4 min and E. coli (D = 6.1 min. The suspension studies were an indication of the disinfectant efficacy on a surface. The data in this study reflect the formulations used and may vary from product to product. The expected effectiveness from the studied formulations shows that the tested agents can be recommended for surface disinfection as stated in present guidelines and emphasize the importance and need to develop routine and novel programs to evaluate product utility.Esforços para diminuir o risco de transmissões de infecções incluem programas nos quais os desinfetantes desempenham papel crucial. As superfícies de materiais médico-hospitalares, se não estiverem diretamente ligados à transmissão de doenças, podem contribuir, potencialmente, para uma contaminação cruzada secundária. Cada instrumento ou superfície do estabelecimento do ambiente de saúde que entra em contato com um paciente é um disseminador potencial de infecção. Para estudar e comparar o comportamento dos microrganismos selecionados foram realizados ensaios de determinação do tempo de redução decimal. Os maiores valores D determinados, foram: (i 0,1% dicloroisocianurato de sódio (NaDCC (pH 7.0 - E. coli e A. calcoaceticus (D = 5

  11. Nanoscience and Engineering in Superconductivity

    CERN Document Server

    Moshchalkov, Victor; Lang, Wolfgang

    2010-01-01

    For emerging energy saving technologies, superconducting materials with superior performance are needed. Such materials can be developed by manipulating the 'elementary building blocks' through nanostructuring. For superconductivity the 'elementary blocks' are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity

  12. The NASA high temperature superconductivity program

    Science.gov (United States)

    Sokoloski, Martin M.; Romanofsky, Robert R.

    1990-01-01

    It has been recognized from the onset that high temperature superconductivity held great promise for major advances across a broad range of NASA interests. The current effort is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAIO produced far superior RF characteristics when compared to metallic films on the same substrate. This achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high Q filters. Melt texturing and melt quenched techniques are being used to produce bulk materials with optimized magnetic properties. These yttrium enriched materials possess enhanced flux pinning characteristics and will lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies are being conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magneto-plasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar and Mars mission applications. The project direction and level of effort of the program are also described.

  13. Superconductivity and the environment: a Roadmap

    Science.gov (United States)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    There is universal agreement between the United Nations and governments from the richest to the poorest nations that humanity faces unprecedented global challenges relating to sustainable energy, clean water, low-emission transportation, coping with climate change and natural disasters, and reclaiming use of land. We have invited researchers from a range of eclectic research areas to provide a Roadmap of how superconducting technologies could address these major challenges confronting humanity. Superconductivity has, over the century since its discovery by Kamerlingh Onnes in 1911, promised to provide solutions to many challenges. So far, most superconducting technologies are esoteric systems that are used in laboratories and hospitals. Large science projects have long appreciated the ability of superconductivity to efficiently create high magnetic fields that are otherwise very costly to achieve with ordinary materials. The most successful applications outside of large science are high-field magnets for magnetic resonance imaging, laboratory magnetometers for mineral and materials characterization, filters for mobile communications, and magnetoencephalography for understanding the human brain. The stage is now set for superconductivity to make more general contributions. Humanity uses practically unthinkable amounts of energy to drive our modern way of life. Overall, global power usage has been predicted to almost double from 16.5 to 30 TW in the next four decades (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). The economy with which electrons carry energy compels the continued quest for efficient superconducting power generation, energy storage, and power transmission. The growing global population requires new arable land and treatment of water, especially in remote areas, and superconductivity offers unique solutions to these problems. Exquisite detectors give warning of changes that are otherwise invisible. Prediction of climate and

  14. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  15. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  16. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  17. Space qualification mechanical tests of HTS filters for satellite application

    Institute of Scientific and Technical Information of China (English)

    HUANG JianDong; LI Hong; GU ChangZhi; LUO Qiang; SUN QinFen; WANG XiaoLin; SUN YiFan; WANG ZhiBing; WANG YunFei; LUO Sheng; HE YuSheng; SUN Liang; LI ShunZhou; MENG QingDuan; ZHANG Qiang; LI Fei; ZHANG XueQiang; LI ChunGuang; HE AiSheng

    2007-01-01

    High performance high-temperature superconducting (HTS) filters have been designed and constructed for satellite application. The filters are actually a superconducting integration of an 8-pole band-pass filter with an adjustable band-stop filter onto a single piece of LaAlO3 substrate (with dimension of 0.5×45×20 mm3). Typical results of the filters,i.e.,Filters A (made by YBCO) & B (made by TBCCO) will be reported. The measured responses of Filter A showed excellent specifications,e.g.,an insertion loss less than 0.1 dB,a return loss better than -22.5 dB in pass-band,band-edge steepness greater than 12 dB/MHz and out-of-band rejection at a certain band deeper than -110 dB. To satisfy the requirement of rocket launch and space operation,three filters of the above design have undergone mechanical environmental simulation tests for space qualification. Detailed analysis of the response curves of Filter B measured before and after the tests showed that no noticeable change in the performance can be found. All the filters passed the rigorous ground simulation tests,which is the first time in China for HTS devices and provided a solid foundation for satellite applications of high-temperature superconductors in the near future.

  18. Failed theories of superconductivity

    CERN Document Server

    Schmalian, Joerg

    2010-01-01

    Almost half a century passed between the discovery of superconductivity by Kammerlingh Onnes and the theoretical explanation of the phenomenon by Bardeen, Cooper and Schrieffer. During the intervening years the brightest minds in theoretical physics tried and failed to develop a microscopic understanding of the effect. A summary of some of those unsuccessful attempts to understand superconductivity not only demonstrates the extraordinary achievement made by formulating the BCS theory, but also illustrates that mistakes are a natural and healthy part of the scientific discourse, and that inapplicable, even incorrect theories can turn out to be interesting and inspiring.

  19. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  20. Fingerprints of Mott Superconductivity

    Institute of Scientific and Technical Information of China (English)

    王强华

    2003-01-01

    We improve a previous theory of doped Mott insulators with duality between pairing and magnetism by a further duality transform. As the result we obtained a quantum Ginzburg-Landau theory describing the Cooper pair condensate and the dual of spin condensate. We address the superconductivity by doping a Mott insulator,which we call the Mott superconductivity. Some fingerprints of such novelty in cuprates are the scaling between neutron resonance energy and superfluid density, and the induced quantized spin moment by vortices or Zn impurity (together with circulating charge super-current to be checked by experiments).

  1. Determination of decimal reduction time (D value of chemical agents used in hospitals for disinfection purposes

    Directory of Open Access Journals (Sweden)

    da S Martins Alzira M

    2003-10-01

    Full Text Available Abstract Background Prior to the selection of disinfectants for low, intermediate and high (sterilizing levels, the decimal reduction time, D-value, for the most common and persistent bacteria identified at a health care facility should be determined. Methods The D-value was determined by inoculating 100 mL of disinfecting solution with 1 mL of a bacterial suspension (104 – 105 CFU/mL for vegetative and spore forms. At regular intervals, 1 mL aliquots of this mixture were transferred to 8 mL of growth media containing a neutralizing agent, and incubated at optimal conditions for the microorganism. Results The highest D-values for various bacteria were determined for the following solutions: (i 0.1% sodium dichloroisocyanurate (pH 7.0 – E. coli and A. calcoaceticus (D = 5.9 min; (ii sodium hypochlorite (pH 7.0 at 0.025% for B. stearothermophilus (D = 24 min, E. coli and E. cloacae (D = 7.5 min; at 0.05% for B. stearothermophilus (D = 9.4 min and E. coli (D = 6.1 min and 0.1% for B. stearothermophilus (D = 3.5 min and B. subtilis (D = 3.2 min; (iii 2.0% glutaraldehyde (pH 7.4 – B. stearothermophilus, B. subtilis (D = 25 min and E. coli (D = 7.1 min; (iv 0.5% formaldehyde (pH 6.5 – B. subtilis (D = 11.8 min, B. stearothermophilus (D = 10.9 min and A. calcoaceticus (D = 5.2 min; (v 2.0% chlorhexidine (pH 6.2 – B. stearothermophilus (D = 9.1 min, and at 0.4% for E. cloacae (D = 8.3 min; (vi 1.0% Minncare® (peracetic acid and hydrogen peroxide, pH 2.3 – B. stearothermophilus (D = 9.1 min and E. coli (D = 6.7 min. Conclusions The suspension studies were an indication of the disinfectant efficacy on a surface. The data in this study reflect the formulations used and may vary from product to product. The expected effectiveness from the studied formulations showed that the tested agents can be recommended for surface disinfection as stated in present guidelines and emphasizes the importance and need to develop routine and novel programs to

  2. Graphical Table of Contents for Library Collections: The Application of Universal Decimal Classification Codes to Subject Maps

    Directory of Open Access Journals (Sweden)

    Victor Herrero-Solano

    2006-03-01

    Full Text Available The representation of information content by graphical maps is an extended ongoing research topic. The objective of this article consists in verifying whether it is possible to create map displays using Universal Decimal Classification (UDC codes (using co-classification analysis for the purpose of creating a graphical table of contents for a library collection. The application of UDC codes was introduced to subject maps development using the following graphic representation methods: (1 multidimensional scaling; (2 cluster analysis; and (3 neural networks (self-organizing maps. Finally, the authors conclude that the different kinds of maps have slightly different degrees of viability and types of application.

  3. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L

    2012-01-01

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  4. Spin-orbit-coupled superconductivity.

    Science.gov (United States)

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T

    2014-06-25

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.

  5. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  6. Superconducting Technology Assessment

    Science.gov (United States)

    2005-08-01

    of Nb/Al- Nx /NbTiN junctions for SIS mixer applications,” IEEE Trans. Appl. Superconduct., vol. 11, pp. 76–79, Mar. 2001. [48] M. Gurvitch, W. A...Another connector developed by IBM for commercial applications using a dendritic interposer technology. A “beam-on-pad” approach developed by Siemens

  7. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  8. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  9. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  10. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  11. LHC Superconducting Magnets

    CERN Document Server

    Jean Leyder

    2000-01-01

    The LHC is the next step in CERN's quest to unravel the mysteries of the Universe. It will accelerate protons to energies never before achieved in laboratories, and to hold them on course it will use powerful superconducting magnets on an unprecedented scale.

  12. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  13. Superconducting Quantum Circuits

    NARCIS (Netherlands)

    Majer, J.B.

    2002-01-01

    This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough

  14. Checking BEBC superconducting magnet

    CERN Multimedia

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  15. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  16. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  17. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  18. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: sasaki@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: mizushima@mp.es.osaka-u.ac.jp [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2015-07-15

    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  19. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  20. Applications of Superconductivity

    Science.gov (United States)

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  1. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  2. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  3. High temperature interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A., E-mail: adrian.gozar@yale.edu [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  4. Generalised Filtering

    Directory of Open Access Journals (Sweden)

    Karl Friston

    2010-01-01

    Full Text Available We describe a Bayesian filtering scheme for nonlinear state-space models in continuous time. This scheme is called Generalised Filtering and furnishes posterior (conditional densities on hidden states and unknown parameters generating observed data. Crucially, the scheme operates online, assimilating data to optimize the conditional density on time-varying states and time-invariant parameters. In contrast to Kalman and Particle smoothing, Generalised Filtering does not require a backwards pass. In contrast to variational schemes, it does not assume conditional independence between the states and parameters. Generalised Filtering optimises the conditional density with respect to a free-energy bound on the model's log-evidence. This optimisation uses the generalised motion of hidden states and parameters, under the prior assumption that the motion of the parameters is small. We describe the scheme, present comparative evaluations with a fixed-form variational version, and conclude with an illustrative application to a nonlinear state-space model of brain imaging time-series.

  5. Notch filter

    Science.gov (United States)

    Shelton, G. B. (Inventor)

    1977-01-01

    A notch filter for the selective attenuation of a narrow band of frequencies out of a larger band was developed. A helical resonator is connected to an input circuit and an output circuit through discrete and equal capacitors, and a resistor is connected between the input and the output circuits.

  6. Fabrication of band-pass filter using YBCO film at Ka-band frequency; YBCO hakumaku wo mochiita Ka-band taiiki tsuka fuiruta no sakusei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshitake, T.; Hattori, W.; Murakami, S.; Suzuki, S. [NEC Corp., Tokyo (Japan)

    1999-11-10

    In this report, Ka band microstrip band pass filter was produced experimentally using an YBCO system high temperature superconductivity thin film as examination initial stage high temperature superconductivity a thin film superscription communication element. With it, the following were examined: Evaluation method and frequency characteristics of the filter. Especially, the examination on structure of the package and system of measurement using refrigerating machine becomes important in order to evaluate the filter with the high frequency. (NEDO)

  7. Improved scaling of Time-Evolving Block-Decimation algorithm through Reduced-Rank Randomized Singular Value Decomposition

    CERN Document Server

    Tamascelli, D; Plenio, M B

    2015-01-01

    When the amount of entanglement in a quantum system is limited, the relevant dynamics of the system is restricted to a very small part of the state space. When restricted to this subspace the description of the system becomes efficient in the system size. A class of algorithms, exemplified by the Time-Evolving Block-Decimation (TEBD) algorithm, make use of this observation by selecting the relevant subspace through a decimation technique relying on the Singular Value Decomposition (SVD). In these algorithms, the complexity of each time-evolution step is dominated by the SVD. Here we show that, by applying a randomized version of the SVD routine (RRSVD), the power law governing the computational complexity of TEBD is lowered by one degree, resulting in a considerable speed-up. We exemplify the potential gains in efficiency at the hand of some real world examples to which TEBD can be successfully applied to and demonstrate that for those system RRSVD delivers results as accurate as state-of-the-art deterministi...

  8. Polyphase Filter Banks for Embedded Sample Rate Changes in Digital Radio Front-Ends

    DEFF Research Database (Denmark)

    Awan, Mehmood-Ur-Rehman; Le Moullec, Yannick; Koch, Peter

    2011-01-01

    This paper presents efficient processing engines for software-defined radio (SDR) front-ends. These engines, based on a polyphase channelizer, perform arbitrary sample-rate changes, frequency selection, and bandwidth control. This paper presents an M-path polyphase filter bank based on a modified N......-path polyphase filter. Such a system allows resampling by arbitrary ratios while performing baseband aliasing from center frequencies at Nyquist zones that are not multiples of the output sample rate. This resampling technique is based on sliding cyclic data load interacting with cyclic-shifted coefficients....... A non-maximally-decimated polyphase filter bank (where the number of data loads is not equal to the number of M subfilters) processes M subfilters in a time period that is less than or greater than the M data loads. A polyphase filter bank with five different resampling modes is used as a case study...

  9. VLSI Implementation of Novel Class of High Speed Pipelined Digital Signal Processing Filter for Wireless Receivers

    Directory of Open Access Journals (Sweden)

    Rozita Teymourzadeh

    2010-01-01

    Full Text Available Problem statement: The need for high performance transceiver with high Signal to Noise Ratio (SNR has driven the communication system to utilize latest technique identified as over sampling systems. It was the most economical modulator and decimation in communication system. It has been proven to increase the SNR and is used in many high performance systems such as in the Analog to Digital Converter (ADC for wireless transceiver. Approach: This research presented the design of the novel class of decimation and its VLSI implementation which was the sub-component in the over sampling technique. The design and realization of main unit of decimation stage that was the Cascaded Integrator Comb (CIC filter, the associated half band filters and the droop correction are also designed. The Verilog HDL code in Xilinx ISE environment has been derived to describe the proposed advanced CIC filter properties. Consequently, Virtex-II FPGA board was used to implement and test the design on the real hardware. The ASIC design implementation was performed accordingly and resulted power and area measurement on chip core layout. Results: The proposed design focused on the trade-off between the high speed and the low power consumption as well as the silicon area and high resolution for the chip implementation which satisfies wireless communication systems. The synthesis report illustrates the maximum clock frequency of 332 MHz with the active core area of 0.308×0.308 mm2. Conclusion: It can be concluded that VLSI implementation of proposed filter architecture is an enabler in solving problems that affect communication capability in DSP application.

  10. Implementational Aspects of the Contourlet Filter Bank and Application in Image Coding

    Directory of Open Access Journals (Sweden)

    Truong T. Nguyen

    2009-02-01

    Full Text Available This paper analyzed the implementational aspects of the contourlet filter bank (or the pyramidal directional filter bank (PDFB, and considered its application in image coding. First, details of the binary tree-structured directional filter bank (DFB are presented, including a modification to minimize the phase delay factor and necessary steps for handling rectangular images. The PDFB is viewed as an overcomplete filter bank, and the directional filters are expressed in terms of polyphase components of the pyramidal filter bank and the conventional DFB. The aliasing effect of the conventional DFB and the Laplacian pyramid to the directional filters is then considered, and the conditions for reducing this effect are presented. The new filters obtained by redesigning the PDFBs satisfying these requirements have much better frequency responses. A hybrid multiscale filter bank consisting of the PDFB at higher scales and the traditional maximally decimated wavelet filter bank at lower scales is constructed to provide a sparse image representation. A novel embedded image coding system based on the image decomposition and a morphological dilation algorithm is then presented. The coding algorithm efficiently clusters the significant coefficients using progressive morphological operations. Context models for arithmetic coding are designed to exploit the intraband dependency and the correlation existing among the neighboring directional subbands. Experimental results show that the proposed coding algorithm outperforms the current state-of-the-art wavelet-based coders, such as JPEG2000, for images with directional features.

  11. Superconductivity an introduction

    CERN Document Server

    Kleiner, Reinhold

    2016-01-01

    The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An e...

  12. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  13. Statistical mechanics of superconductivity

    CERN Document Server

    Kita, Takafumi

    2015-01-01

    This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...

  14. Superconducting switch pack

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, V.C.; Wollan, J.J.

    1990-07-24

    This patent describes a superconducting switch pack at least one switch element. The switch element including a length of superconductive wire having a switching portion and two lead portions, the switching portion being between the lead portions; means for supporting the switching portion in a plane in a common mold; hardened resin means encapsulating the switching portion in the plane in a solid body; wherein the solid body has an exterior surface which is planar and substantially parallel with and spaced apart from the plane in which the switching portion is positioned. The exterior surface being exposed to the exterior of the switch pack and the resin means filling the space between the exterior surface and the plane of the switching portion so as to provide uninterrupted thermal communication between the plane of the switching portion and the exterior of the switch pack; and a heater element in thermal contact with the switching portion.

  15. Tunable superconducting nanoinductors

    Energy Technology Data Exchange (ETDEWEB)

    Annunziata, Anthony J; Santavicca, Daniel F; Frunzio, Luigi; Rooks, Michael J; Prober, Daniel E [Department of Applied Physics, Yale University, New Haven, CT 06511 (United States); Catelani, Gianluigi [Department of Physics, Yale University, New Haven, CT 06511 (United States); Frydman, Aviad, E-mail: anthony.annunziata@yale.edu, E-mail: daniel.prober@yale.edu [Department of Physics, Bar-Ilan University, Ramat Gan 52900 (Israel)

    2010-11-05

    We characterize inductors fabricated from ultra-thin, approximately 100 nm wide strips of niobium (Nb) and niobium nitride (NbN). These nanowires have a large kinetic inductance in the superconducting state. The kinetic inductance scales linearly with the nanowire length, with a typical value of 1 nH {mu}m{sup -1} for NbN and 44 pH {mu}m{sup -1} for Nb at a temperature of 2.5 K. We measure the temperature and current dependence of the kinetic inductance and compare our results to theoretical predictions. We also simulate the self-resonant frequencies of these nanowires in a compact meander geometry. These nanowire inductive elements have applications in a variety of microwave frequency superconducting circuits.

  16. Time ripe for superconductivity?

    Directory of Open Access Journals (Sweden)

    George Marsh

    2002-04-01

    But there is a crucial deadline and failure to meet it could send superconductivity back to the commercial shadows (at least outside the medical and scientific niches where it is a key enabler in analytical instruments, magnetic resonance imaging, and particle accelerators for another 30 years. Later this decade, the vintage infrastructure of dense copper conductors that supports power distribution in developed countries, in particular in the US, will become due for renewal. (Recent power problems in California were largely those of distribution infrastructure. At the same time, boosting capacity to serve the needs of increasingly affluent populations will pose a challenge. Superconductivity could provide the answer — if the technology matures in time and cost targets are met.

  17. Relativistic Model for two-band Superconductivity

    OpenAIRE

    Ohsaku, Tadafumi

    2003-01-01

    To understand the superconductivity in MgB2, several two-band models of superconductivity were proposed. In this paper, by using the relativistic fermion model, we clearize the effect of the lower band in the superconductivity.

  18. Topological confinement and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  19. Unconventional superconductivity near inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Poenicke, A.F.

    2008-01-25

    After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)

  20. Helical superconducting black holes.

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  1. Silicon superconducting quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F., E-mail: francois.lefloch@cea.fr [Université Grenoble Alpes, CEA - INAC - SPSMS, F-38000 Grenoble (France); Chiodi, F.; Débarre, D. [Université Paris-sud, CNRS - IEF, F-91405 Orsay - France (France); Hasselbach, K. [Université Grenoble Alpes, CNRS - Inst. Néel, F-38000 Grenoble (France); Kirtley, J. R. [Center for probing at nanoscale, Stanford University, Palo Alto, California 94305-4045 (United States)

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  2. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    SECURITY CLASSIFICATION OF: The SQOT (Superconducting Qubit Optical Transducer ) project proposes to build a novel electro-optic system which can...Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: "Superconducting Qubit Optical Transducer " (SQOT) The views, opinions and...journals: Number of Papers published in non peer-reviewed journals: Final Report: "Superconducting Qubit Optical Transducer " (SQOT) Report Title The

  3. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  4. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-04-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  5. US Navy superconductivity program

    Science.gov (United States)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  6. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  7. Superconductivity in CVD diamond films.

    Science.gov (United States)

    Takano, Yoshihiko

    2009-06-24

    A beautiful jewel of diamond is insulator. However, boron doping can induce semiconductive, metallic and superconducting properties in diamond. When the boron concentration is tuned over 3 × 10(20) cm(-3), diamonds enter the metallic region and show superconductivity at low temperatures. The metal-insulator transition and superconductivity are analyzed using ARPES, XAS, NMR, IXS, transport and magnetic measurements and so on. This review elucidates the physical properties and mechanism of diamond superconductor as a special superconductivity that occurs in semiconductors.

  8. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  9. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  10. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  11. CRYSTAL FILTER TEST SET

    Science.gov (United States)

    CRYSTAL FILTERS, *HIGH FREQUENCY, *RADIOFREQUENCY FILTERS, AMPLIFIERS, ELECTRIC POTENTIAL, FREQUENCY, IMPEDANCE MATCHING , INSTRUMENTATION, RADIOFREQUENCY, RADIOFREQUENCY AMPLIFIERS, TEST EQUIPMENT, TEST METHODS

  12. Design of HTS transmit filter using step impedance resonators

    Energy Technology Data Exchange (ETDEWEB)

    Sekiya, N., E-mail: nsekiya@yamanashi.ac.j [University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Nakagawa, Y. [University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Ohshima, S. [Yamagata University, 4-3-16 Johnan, Yonezawa 992-8510 (Japan)

    2010-11-01

    We have designed a high-temperature superconducting (HTS) transmit filter with step impedance resonators (SIRs). A transmit filter using half-wavelength straight-line resonators requires substantial spacing between adjacent resonators. This means that the filter needs a large substrate and that the number of poles is limited. Using SIRs overcomes this problem because SIRs are compact and have weak coupling. An electromagnetic simulator based on the moment method was used to design the SIR filter, which has a center frequency of 5 GHz and a bandwidth of 120 MHz. Simulation showed that it is approximately 19% smaller than a conventional half-wavelength straight-line resonator filter. Additionally, the maximum surface current is approximately 17% less than that of the conventional filter.

  13. Digital filters

    CERN Document Server

    Hamming, Richard W

    1997-01-01

    Digital signals occur in an increasing number of applications: in telephone communications; in radio, television, and stereo sound systems; and in spacecraft transmissions, to name just a few. This introductory text examines digital filtering, the processes of smoothing, predicting, differentiating, integrating, and separating signals, as well as the removal of noise from a signal. The processes bear particular relevance to computer applications, one of the focuses of this book.Readers will find Hamming's analysis accessible and engaging, in recognition of the fact that many people with the s

  14. Optimization of superconducting tiling pattern for superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  15. Birabén, precursor de la clasificación decimal y de la enseñanza bibliotecaria

    OpenAIRE

    Suárez, Reinaldo José

    1980-01-01

    Birabén fue, entre nosotros, el precursor que introdujo en la Argentina el conocimiento y aplicación del novedoso sistema de clasificación decimal universal. Su familia conserva aún —nos facilitó su examen— el ejemplar que perteneciera al Ing. Birabén de la primera edición completa en francés, año 1905, revisada al 1° de abril de 1907, de las tablas de clasificación en un grueso volumen de 354 páginas. Se titulaba Manuel de répertoire bibliographique universel. También fue Birabén e...

  16. Cancer Biochemistry and Host-Tumor Interactions: A Decimal Classification, (Categories 51.6, 51.7, and 51.8).

    Science.gov (United States)

    Schneider, John H.

    This is a hierarchical decimal classification of information related to cancer biochemistry, to host-tumor interactions (including cancer immunology), and to occurrence of cancer in special types of animals and plants. It is a working draft of categories taken from an extensive classification of many fields of biomedical information. Because the…

  17. Dewey Decimal Classification Online Project: Evaluation of a Library Schedule and Index Integrated into the Subject Searching Capabilities of an Online Catalog. Final Report.

    Science.gov (United States)

    Markey, Karen; Demeyer, Anh N.

    In this research project, subject terms from the Dewey Decimal Classification (DDC) Schedules and Relative Index were incorporated into an online catalog as searcher's tools for subject access, browsing, and display. Four features of the DDC were employed to help searchers browse for and match their own subject terms with the online catalog's…

  18. Preservice Teachers' Understanding of the Relation between a Fraction or Integer and its Decimal Expansion: The Case of 0.9 and 1

    Science.gov (United States)

    Dubinsky, Ed; Arnon, Ilana; Weller, Kirk

    2013-01-01

    In this article, we obtain a genetic decomposition of students' progress in developing an understanding of the decimal 0.9 and its relation to 1. The genetic decomposition appears to be valid for a high percentage of the study participants and suggests the possibility of a new stage in APOS Theory that would be the first substantial change in…

  19. Superconducting Microwave Electronics at Lewis Research Center

    Science.gov (United States)

    Warner, Joseph D.; Bhasin, Kul B.; Leonard, Regis F.

    1991-01-01

    Over the last three years, NASA Lewis Research Center has investigated the application of newly discovered high temperature superconductors to microwave electronics. Using thin films of YBa2Cu3O7-delta and Tl2Ca2Ba2Cu3Ox deposited on a variety of substrates, including strontium titanate, lanthanum gallate, lanthanum aluminate and magnesium oxide, a number of microwave circuits have been fabricated and evaluated. These include a cavity resonator at 60 GHz, microstrip resonators at 35 GHz, a superconducting antenna array at 35 GHz, a dielectric resonator at 9 GHz, and a microstrip filter at 5 GHz. Performance of some of these circuits as well as suggestions for other applications are reported.

  20. The Danish Superconducting Cable Project

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1997-01-01

    The design and construction of a superconducting cable is described. The cable has a room temperature dielectric design with the cryostat placed inside the electrical insulation.BSCCO 2223 superconducting tapes wound in helix form around a former are used as the cable conductor. Results from...

  1. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  2. A superconducting magnetic gear

    Science.gov (United States)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  3. Microwave Resonators and Filters

    Science.gov (United States)

    2015-12-22

    Examples of planar superconducting resonators Superconducting resonators are usually one of two types either planar, or three dimensional most often...also been employed. The term lumped element is used because the resonator comprises separated inductor and capacitor. In superconducting resonators the...implementation often is a miniature version in which the capacitor and inductor are combined in the same structure. Fig. 5 shows an example for CPW

  4. Superconductivity in a chiral nanotube

    Science.gov (United States)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  5. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  6. Superconducting dipole electromagnet

    Science.gov (United States)

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  7. 100 years of superconductivity

    CERN Multimedia

    Globe Info

    2011-01-01

    Public lecture by Philippe Lebrun, who works at CERN on applications of superconductivity and cryogenics for particle accelerators. He was head of CERN’s Accelerator Technology Department during the LHC construction period. Centre culturel Jean Monnet, route de Gex Tuesday 11 October from 8.30 p.m. to 10.00 p.m. » Suitable for all – Admission free - Lecture in French » Number of places limited For further information: +33 (0)4 50 42 29 37

  8. TOPICAL REVIEW: Superconducting bearings

    Science.gov (United States)

    Hull, John R.

    2000-02-01

    The physics and technology of superconducting bearings is reviewed. Particular attention is given to the use of high-temperature superconductors (HTSs) in rotating bearings. The basic phenomenology of levitational forces is presented, followed by a brief discussion of the theoretical models that can be used for conceptual understanding and calculations. The merits of various HTS bearing designs are presented, and the behaviour of HTS bearings in typical situations is discussed. The article concludes with a brief survey of various proposed applications for HTS bearings.

  9. Conventional and unconventional superconductivity

    Science.gov (United States)

    Fernandes, R. M.

    2012-02-01

    Superconductivity has been one of the most fruitful areas of research in condensed matter physics, bringing together researchers with distinct interests in a collaborative effort to understand from its microscopic basis to its potential for unprecedented technological applications. The concepts, techniques, and methods developed along its centennial history have gone beyond the realm of condensed matter physics and influenced the development of other fascinating areas, such as particle physics and atomic physics. These notes, based on a set of lectures given at the 2011 Advanced Summer School of Cinvestav, aim to motivate the young undergraduate student in getting involved in the exciting world of conventional and unconventional superconductors.

  10. Superconductivity from correlated hopping

    CERN Document Server

    Batista, C D; Aligia, A A

    1995-01-01

    We consider a chain described by a next-nearest-neighbor hopping combined with a nearest-neighbor spin flip. In two dimensions this three-body term arises from a mapping of the three-band Hubbard model for CuO$_2$ planes to a generalized $t-J$ model and for large O-O hopping favors resonance-valence-bond superconductivity of predominantly $d$-wave symmetry. Solving the ground state and low-energy excitations by analytical and numerical methods we find that the chain is a Luther-Emery liquid with correlation exponent $K_{\\rho} = (2-n)^2/2$, where $n$ is the particle density.

  11. Superconductivity in nanowires

    CERN Document Server

    Bezryadin, Alexey

    2012-01-01

    The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine.One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so i

  12. Introduction to superconductivity

    CERN Document Server

    Rose-Innes, AC

    1978-01-01

    Introduction to Superconductivity differs from the first edition chiefly in Chapter 11, which has been almost completely rewritten to give a more physically-based picture of the effects arising from the long-range coherence of the electron-waves in superconductors and the operation of quantum interference devices. In this revised second edition, some further modifications have been made to the text and an extra chapter dealing with """"high-temperature"""" superconductors has been added. A vast amount of research has been carried out on these since their discovery in 1986 but the results, both

  13. Superconducting Electronic Film Structures

    Science.gov (United States)

    1991-02-14

    cubic, yttria stabilized, zirconia (YSZ) single crystals with (100) orientation and ao = 0.512 to 0.516 nm. Films were magnetron-sputtered... Crown by Solid-State and Vapor-Phase Epitaxy," IEEE Trans. Uagn. 25(2), 2538 (1989). 6. J. H. Kang, R. T. Kampwirth, and K. E. Gray, "Superconductivity...summarized in Fig. 1, are too high for SrTiO3 or yttria- stabilized zirconia (YSZ) to be used in rf applications. MgO, LaAIO 3 , and LaGaO3 have a tan 6

  14. Heavy fermion superconductivity

    Science.gov (United States)

    Brison, Jean-Pascal; Glémot, Loı̈c; Suderow, Hermann; Huxley, Andrew; Kambe, Shinsaku; Flouquet, Jacques

    2000-05-01

    The quest for a precise identification of the symmetry of the order parameter in heavy fermion systems has really started with the discovery of the complex superconducting phase diagram in UPt 3. About 10 years latter, despite numerous experiments and theoretical efforts, this is still not achieved, and we will quickly review the present status of knowledge and the main open question. Actually, the more forsaken issue of the nature of the pairing mechanism has been recently tackled by different groups with macroscopic or microscopic measurement, and significant progress have been obtained. We will discuss the results emerging from these recent studies which all support non-phonon-mediated mechanisms.

  15. A coaxial HOM coupler for a superconducting RF cavity and its low-power measurement results

    Institute of Scientific and Technical Information of China (English)

    SUN An; TANG Ya-Zhe; ZHANG Li-Ping; LI Ying-Min; Han-Sung Kim

    2011-01-01

    A resonant buildup of beam-induced fields in a superconducting radio frequency(RF)cavity may make a beam unstable or a superconducting RF cavity quench. Higher-order mode(HOM)couplers are used for damping higher-order modes to avoid such a resonant buildup. A coaxial HOM coupler based on the TTF (TESLA Test Facility)HOM coupler has been designed for the superconducting RF cavities at the Proton Engineering Frontier Project(PEFP)in order to overcome notch frequency shift and feed-through tip melting issues. In order to confirm the HOM coupler design and finalize its structural dimensions, two prototype HOM couplers have been fabricated and tested. Low-power testing and measurement of the HOM couplers has shown that the HOM coupler has good filter properties and can fully meet the damping requirements of the PEFP low-beta superconducting RF linac.

  16. Overview on superconducting photoinjectors

    CERN Document Server

    Arnold, A

    2011-01-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...

  17. Overview of Superconducting Photoinjectors

    CERN Document Server

    Arnold, A

    2009-01-01

    The success of most of the proposed ERL based electron accelerator projects for future storage ring replacements (SRR) and high power IR-FELs is contingent upon the development of an appropriate source. Electron beams with an unprecedented combination of high brightness, low emittance (0.1 µm rad) and high average current (hundreds of mA) are required to meet the FEL specification [1]. An elegant way to create such an unique beam is to combine the high beam quality of a normal conducting RF photo injector with the superconducting technology to get a superconducting RF photo injector (SRF gun). SRF gun R&D programs based on different approaches are under investigation at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, JLab, Niowave, NPS, Wisconsin University). Lot of progress could be achieved during the last years and first long term operation was demonstrated at the FZD [2]. In the near future, this effort will lead to SRF guns, which are indispensab...

  18. Superconducting magnets for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.

    1984-08-01

    Three types of magnets are currently used to provide the background field required for magnet resonance imaging (MRI). (i) Permanent magnets produce fields of up to 0.3 T in volumes sufficient for imaging the head or up to 0.15 T for whole body imaging. Cost and simplicity of operation are advantages, but relatively low field, weight (up to 100 tonnes) and, to a small extent, instability are limitations. (ii) Water-cooled magnets provide fields of up to 0.25 T in volumes suitable for whole body imaging, but at the expense of power (up to 150 kW for 0.25 T) and water-cooling. Thermal stability of the field requires the maintenance of constant temperature through periods both of use and of quiescence. (iii) Because of the limitations imposed by permanent and resistive magnets, particularly on field strength, the superconducting magnet is now most widely used to provide background fields of up to 2 T for whole body MRI. It requires very low operating power and that only for refrigeration. Because of the constant low temperature, 4.2 K, at which its stressed structure operates, its field is stable. The following review deals principally with superconducting magnets for MRI. However, the sections on field analysis apply to all types of magnet and the description of the source terms of circular coils and of the principals of design of solenoids apply equally to resistive solenoidal magnets.

  19. Convergent Filter Bases

    OpenAIRE

    Coghetto Roland

    2015-01-01

    We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres) and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections).

  20. Convergent Filter Bases

    Directory of Open Access Journals (Sweden)

    Coghetto Roland

    2015-09-01

    Full Text Available We are inspired by the work of Henri Cartan [16], Bourbaki [10] (TG. I Filtres and Claude Wagschal [34]. We define the base of filter, image filter, convergent filter bases, limit filter and the filter base of tails (fr: filtre des sections.

  1. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  2. Meissner effect in superconducting microtraps

    Energy Technology Data Exchange (ETDEWEB)

    Cano, Daniel

    2009-04-30

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  3. LOS ASPECTOS DIDÁCTICOS BÁSICOS DEL SISTEMA DE NUMERACIÓN DECIMAL EN LOS LIBROS DE TEXTO. TEACHING BASIC ASPECTS OF THE DECIMAL NUMBERING SYSTEM IN TEXTBOOKS

    Directory of Open Access Journals (Sweden)

    Ruesga Ramos, Maria Pilar

    2012-05-01

    Full Text Available Esse artigo buscou analisar os aspectos que interveem na aprendizagem do sistema de numeração decimal (SND apresentados em coleções didáticas dos três primeiros anos do Ensino Fundamental. Busca-se analisar as estratégias e procedimentos das atividades referentes ao SND que são propostos nas coleções, assim como os recursos didáticos que contribuem com a apropriação do mesmo. A análise pode ser utilizada também como orientação a professores para selecionar livros didáticos ou as atividades a serem propostas em sala de aula. Por outro lado, os itens criados para essa análise se configuraram em um instrumento de análise o qual foi utilizado para avaliar três coleções espanholas e três brasileiras de grande tiragem em cada país. Os resultados mostram que 72% das atividades se dedicam a aprendizagem do SND. Porém, ficou evidenciado um surpreendente distanciamento da Matemática com a vida cotidiana, o que contraria a concepção universalmente aceita nos dias atuais. This paper is an analysis of the aspects involved in the learning of the decimal numbering system (SND in the first three years of primary school. The strategies and procedures that constitute the essence of the SND are highlighted, as well as the teaching resources that contribute to this purpose and serve as guidance to teachers when choosing a book for their classrooms. All of them were considered in an instrument that has been applied to the texts of three Spanish publishers and other Brazilian ones that are largely used in both countries. The results show that this item is engaged in more than 72% of the activities, so it provides a quite approximate description of the totality of the texts. A surprising distance from everyday life mathematics and from significant learning was also observed, going against what is universally accepted today.

  4. Hardware Architecture of Polyphase Filter Banks Performing Embedded Resampling for Software-Defined Radio Front-Ends

    DEFF Research Database (Denmark)

    Awan, Mehmood-Ur-Rehman; Le Moullec, Yannick; Koch, Peter;

    2012-01-01

    , and power optimization for field programmable gate array (FPGA) based architectures in an M -path polyphase filter bank with modified N -path polyphase filter. Such systems allow resampling by arbitrary ratios while simultaneously performing baseband aliasing from center frequencies at Nyquist zones...... that are not multiples of the output sample rate. A non-maximally decimated polyphase filter bank, where the number of data loads is not equal to the number of M subfilters, processes M subfilters in a time period that is either less than or greater than the M data-load’s time period. We present a load...... of the down-sampled data. In RA, M subfilters processes are efficiently scheduled within N data-load time while simultaneously loading N subfilters. This requires reduced clock rates compared with LPA, and potentially less power is consumed. A polyphase filter bank that uses different resampling factors...

  5. Operational Merits of Maritime Superconductivity

    Science.gov (United States)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  6. Optimized FPGA Implementation of Multi-Rate FIR Filters Through Thread Decomposition

    Science.gov (United States)

    Kobayashi, Kayla N.; He, Yutao; Zheng, Jason X.

    2011-01-01

    Multi-rate finite impulse response (MRFIR) filters are among the essential signal-processing components in spaceborne instruments where finite impulse response filters are often used to minimize nonlinear group delay and finite precision effects. Cascaded (multistage) designs of MRFIR filters are further used for large rate change ratio in order to lower the required throughput, while simultaneously achieving comparable or better performance than single-stage designs. Traditional representation and implementation of MRFIR employ polyphase decomposition of the original filter structure, whose main purpose is to compute only the needed output at the lowest possible sampling rate. In this innovation, an alternative representation and implementation technique called TD-MRFIR (Thread Decomposition MRFIR) is presented. The basic idea is to decompose MRFIR into output computational threads, in contrast to a structural decomposition of the original filter as done in the polyphase decomposition. A naive implementation of a decimation filter consisting of a full FIR followed by a downsampling stage is very inefficient, as most of the computations performed by the FIR state are discarded through downsampling. In fact, only 1/M of the total computations are useful (M being the decimation factor). Polyphase decomposition provides an alternative view of decimation filters, where the downsampling occurs before the FIR stage, and the outputs are viewed as the sum of M sub-filters with length of N/M taps. Although this approach leads to more efficient filter designs, in general the implementation is not straightforward if the numbers of multipliers need to be minimized. In TD-MRFIR, each thread represents an instance of the finite convolution required to produce a single output of the MRFIR. The filter is thus viewed as a finite collection of concurrent threads. Each of the threads completes when a convolution result (filter output value) is computed, and activated when the first

  7. Spinon Superconductivity and Superconductivities Mediated by Spin-Waves and Phonons in Cuprates

    OpenAIRE

    Mourachkine, A.

    1998-01-01

    The disclosure of spinon superconductivity and superconductivity mediated by spin-waves in hole-doped Bi2212 cuprate raises the question about the origin of the superconductivity in other cuprates and specially in an electron-doped NCCO cuprate.

  8. Superconducting interfaces between insulating oxides.

    Science.gov (United States)

    Reyren, N; Thiel, S; Caviglia, A D; Kourkoutis, L Fitting; Hammerl, G; Richter, C; Schneider, C W; Kopp, T; Rüetschi, A-S; Jaccard, D; Gabay, M; Muller, D A; Triscone, J-M; Mannhart, J

    2007-08-31

    At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The superconducting transition temperature of congruent with 200 millikelvin provides a strict upper limit to the thickness of the superconducting layer of congruent with 10 nanometers.

  9. Antiferromagnetic hedgehogs with superconducting cores

    Energy Technology Data Exchange (ETDEWEB)

    Goldbart, P.M.; Sheehy, D.E. [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  10. Superconducting cable connections and methods

    Energy Technology Data Exchange (ETDEWEB)

    van der Laan, Daniel Cornelis

    2017-09-05

    Superconducting cable connector structures include a terminal body (or other structure) onto which the tapes from the superconducting cable extend. The terminal body (or other structure) has a diameter that is sufficiently larger than the diameter of the former of the superconducting cable, so that the tapes spread out over the outer surface of the terminal body. As a result, gaps are formed between tapes on the terminal body (or other structure). Those gaps are filled with solder (or other suitable flowable conductive material), to provide a current path of relatively high conductivity in the radial direction. Other connector structures omit the terminal body.

  11. Domain wall description of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Brito, F.A. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Freire, M.L.F. [Departamento de Física, Universidade Estadual da Paraíba, 58109-753 Campina Grande, Paraíba (Brazil); Mota-Silva, J.C. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970 João Pessoa, Paraíba (Brazil)

    2014-01-20

    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.

  12. Frequency-tunable superconducting resonators via nonlinear kinetic inductance

    Energy Technology Data Exchange (ETDEWEB)

    Vissers, M. R.; Hubmayr, J.; Sandberg, M.; Gao, J. [National Institute of Standards and Technology, Boulder, Colorado 80305 (United States); Chaudhuri, S. [Department of Physics, Stanford University, Stanford, California 94305 (United States); Bockstiegel, C. [Department of Physics, University of California, Santa Barbara, California 93106 (United States)

    2015-08-10

    We have designed, fabricated, and tested a frequency-tunable high-Q superconducting resonator made from a niobium titanium nitride film. The frequency tunability is achieved by injecting a DC through a current-directing circuit into the nonlinear inductor whose kinetic inductance is current-dependent. We have demonstrated continuous tuning of the resonance frequency in a 180 MHz frequency range around 4.5 GHz while maintaining the high internal quality factor Q{sub i} > 180 000. This device may serve as a tunable filter and find applications in superconducting quantum computing and measurement. It also provides a useful tool to study the nonlinear response of a superconductor. In addition, it may be developed into techniques for measurement of the complex impedance of a superconductor at its transition temperature and for readout of transition-edge sensors.

  13. NOVEL MICROWAVE FILTER DESIGN TECHNIQUES.

    Science.gov (United States)

    ELECTROMAGNETIC WAVE FILTERS, MICROWAVE FREQUENCY, PHASE SHIFT CIRCUITS, BANDPASS FILTERS, TUNED CIRCUITS, NETWORKS, IMPEDANCE MATCHING , LOW PASS FILTERS, MULTIPLEXING, MICROWAVE EQUIPMENT, WAVEGUIDE FILTERS, WAVEGUIDE COUPLERS.

  14. Design of Optimized Conditional Speculative Decimal Adders%条件推测性十进制加法器的优化设计

    Institute of Scientific and Technical Information of China (English)

    崔晓平; 王书敏; 刘伟强; 董文雯

    2016-01-01

    There are increasing interests in hardware support for decimal arithmetic due to the demand of high accuracy computation in commercial computing, financial analysis, and other applications. New specifications for decimal floating-point arithmetic have been added to the revised IEEE 754-2008 standard. In this paper, the algorithm and architecture of decimal addition is studied comprehensively. A decimal adder is designed by using the parallel-prefix/carry-select architecture. The parallel-prefix unit is used to optimize the decimal carry select adder. The decimal adder has been realized by Verilog HDL and simulated with ModelSim. The synthesis results of this design by Design Compiler is also given and analyzed under Nangate Open Cell 45nm library. The results show that the delay performance of the proposed circuit can be improved by up to 12.3%.%随着商业计算和金融分析等高精度计算应用领域的高速发展,提供硬件支持十进制算术运算变得越来越重要,新的IEEE 754-2008浮点运算标准也添加了十进制算术运算规范。该文采用目前最佳的条件推测性算法设计十进制加法电路,给出了基于并行前缀/进位选择结构的条件推测性十进制加法器的设计过程,并通过并行前缀单元对十进制进位选择加法器进行优化设计。采用Verilog HDL对32 bit,64 bit和128 bit十进制加法器进行描述并在ModelSim平台上进行了仿真验证,在Nangate Open Cell 45nm标准工艺库下,通过Synopsys公司综合工具Design Compiler进行了综合。与现有的条件推测性十进制加法器相比较,综合结果显示该文所提出的十进制加法器可以提升12.3%的速度性能。

  15. Miniaturized dielectric waveguide filters

    Science.gov (United States)

    Sandhu, Muhammad Y.; Hunter, Ian C.

    2016-10-01

    Design techniques for a new class of integrated monolithic high-permittivity ceramic waveguide filters are presented. These filters enable a size reduction of 50% compared to air-filled transverse electromagnetic filters with the same unloaded Q-factor. Designs for Chebyshev and asymmetric generalised Chebyshev filter and a diplexer are presented with experimental results for an 1800 MHz Chebyshev filter and a 1700 MHz generalised Chebyshev filter showing excellent agreement with theory.

  16. High-Field Superconducting Magnets Supporting PTOLEMY

    Science.gov (United States)

    Hopkins, Ann; Luo, Audrey; Osherson, Benjamin; Gentile, Charles; Tully, Chris; Cohen, Adam

    2013-10-01

    The Princeton Tritium Observatory for Light, Early Universe, Massive Neutrino Yield (PTOLEMY) is an experiment planned to collect data on Big Bang relic neutrinos, which are predicted to be amongst the oldest and smallest particles in the universe. Currently, a proof-of-principle prototype is being developed at Princeton Plasma Physics Laboratory to test key technologies associated with the experiment. A prominent technology in the experiment is the Magnetic Adiabatic Collimation with an Electrostatic Filter (MAC-E filter), which guides tritium betas along magnetic field lines generated by superconducting magnets while deflecting those of lower energies. B field mapping is performed to ensure the magnets produce a minimum field at the midpoint of the configuration of the magnets and to verify accuracy of existing models. Preliminary tests indicate the required rapid decrease in B field strength from the bore of the more powerful 3.35 T magnet, with the field dropping to 0.18 T approximately 0.5 feet from the outermost surface of the magnet.

  17. Aspects of Color Superconductivity

    CERN Document Server

    Hong, D K

    2001-01-01

    I discuss some aspects of recent developments in color superconductivity in high density quark matter. I calculate the Cooper pair gap and the critical points at high density, where magnetic gluons are not screened. The ground state of high density QCD with three light flavors is shown to be a color-flavor locking state, which can be mapped into the low-density hadronic phase. The meson mass at the CFL superconductor is also calculated. The CFL color superconductor is bosonized, where the Fermi sea is identified as a $Q$-matter and the gapped quarks as topological excitations, called superqualitons, of mesons. Finally, as an application of color supercoductivity, I discuss the neutrino interactions in the CFL color superconductor.

  18. Superconducting Hadron Linacs

    CERN Document Server

    Ostroumov, Peter

    2013-01-01

    This article discusses the main building blocks of a superconducting (SC) linac, the choice of SC resonators, their frequencies, accelerating gradients and apertures, focusing structures, practical aspects of cryomodule design, and concepts to minimize the heat load into the cryogenic system. It starts with an overview of design concepts for all types of hadron linacs differentiated by duty cycle (pulsed or continuous wave) or by the type of ion species (protons, H-, and ions) being accelerated. Design concepts are detailed for SC linacs in application to both light ion (proton, deuteron) and heavy ion linacs. The physics design of SC linacs, including transverse and longitudinal lattice designs, matching between different accelerating–focusing lattices, and transition from NC to SC sections, is detailed. Design of high-intensity SC linacs for light ions, methods for the reduction of beam losses, preventing beam halo formation, and the effect of HOMs and errors on beam quality are discussed. Examples are ta...

  19. Superconducting energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  20. Anyon Superconductivity of Sb

    Science.gov (United States)

    Maksoed, Wh-; Parengkuan, August

    2016-10-01

    In any permutatives to Pedro P. Kuczhynski from Peru, for anyon superconductivity sought EZ Kuchinskii et al.: ``Anion height dependence of Tc & d.o.s of Fe-based Superconductors'', 2010 as well as ``on the basis of electron microscopy & AFM measurements, these phenomena are quantified with focus on fractal dimension, particle perimeter & size of the side branch(tip width) in bert Stegemann et al.:Crystallization of Sb nanoparticles-Pattern Formation & Fractal Growth'', J.PhysChem B., 2004. For dendritic & dendrimer fractal characters shown further: ``antimony denrites were found to be composed of well-crystallized nanoflakes with size 20-4 nm''- Bou Zhau, et al., MaterialLetters, 59 (2005). The alkyl triisopropyl attached in TIPSb those includes in DNA, haemoglobin membrane/fixed-bed reactor for instance quotes in Dragony Fu, Nature Review Cancer, 12 (Feb 2012). Heartfelt Gratitudes to HE. Mr. Prof. Ir. Handojo.

  1. Superconductivity of columbium

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D.B.; Zemansky, M.W.; Boorse, H.A.

    1950-11-15

    Isothermal critical magnetic field curves and zero field transitions for several annealed specimens of columbium have been measured by an a.c. mutual inductance method at temperatures from 5.1 deg K to the zero field transition temperature. The H-T curve was found to fit the usual parabolic relationship H = H{sub 0}(1-T(2)/T(2){sub 0}) with H{sub 0} = 8250 oersteds and T{sub 0} = 8.65 deg K. The initial slope of the curve was 1910 oersteds/deg. The electronic specific heat in the normal state calculated from the thermodynamic equations is 0.0375T and the approximate Debye characteristic temperature in the superconducting state, 67 deg K. Results on a different grade of columbium with a tantalum impurity of 0.4 percent, according to neutron scattering measurements, were in agreement, with the data obtained from columbium of 0.2 percent maximum tantalum impurity.

  2. Superconducting pulsed magnets

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  3. Disparity, decimation and the Cambrian "explosion": comparison of early Cambrian and present faunal communities with emphasis on velvet worms (Onychophora).

    Science.gov (United States)

    Monge-Nájera, J; Hou, X

    2000-01-01

    The controversy about a Cambrian "explosion" of morphological disparity (followed by decimation), cladogenesis and fossilization is of central importance for the history of life. This paper revisits the controversy (with emphasis in onychophorans, which include emblematic organisms such as Hallucigenia), presents new data about the Chengjiang (Cambrian of China) faunal community and compares it and the Burgess Shale (Cambrian of Canada) with an ecologically similar but modern tropical marine site where onychophorans are absent, and with a modern neotropical terrestrial onychophoran community. Biovolume was estimated from material collected in Costa Rica and morphometric measurements were made on enlarged images of fossils. Cambrian tropical mudflats were characterized by the adaptive radiation of two contrasting groups: the vagile arthropods and the sessile poriferans. Arthropods were later replaced as the dominant benthic taxon by polychaetes. Vagility and the exoskeleton may explain the success of arthropods from the Cambrian to the modern marine and terrestrial communities, both in population and biovolume. Food ecological displacement was apparent in the B. Shale, but not in Chengjiang or the terrestrial community. When only hard parts were preserved, marine and terrestrial fossil deposits of tropical origin are even less representative than deposits produced by temperate taxa, Chengjiang being an exception. Nutrient limitations might explain why deposit feeding is less important in terrestrial onychophoran communities, where carnivory, scavenging and omnivory (associated with high motility and life over the substrate) became more important. Fossil morphometry supports the interpretation of "lobopod animals" as onychophorans, whose abundance in Chengjiang was equal to their abundance in modern communities. The extinction of marine onychophorans may reflect domination of the infaunal habitat by polychaetes. We conclude that (1) a mature ecological community

  4. Overview on superconducting photoinjectors

    Directory of Open Access Journals (Sweden)

    A. Arnold

    2011-02-01

    Full Text Available The success of most of the proposed energy recovery linac (ERL based electron accelerator projects for future storage ring replacements (SRR and high power IR–free-electron lasers (FELs largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004PSISDG0277-786X10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1  μmrad, and high average current (hundreds of mA are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun. SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University. Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang et al., in Proceedings of the 31st International Free Electron Laser Conference (FEL 09, Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009, p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  5. Superconducting Aero Propulsion Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting electric propulsion systems will yield improvements in total ownership costs due to the simplicity of electric drive when compared with gas turbine...

  6. Mixed-mu superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  7. Superconductivity in all its states

    CERN Multimedia

    Globe Info

    2011-01-01

    Temporary exhibition at the Saint-Genis-Pouilly Tourist Office. For the 100th anniversary of its discovery, take a plunge into the amazing world of superconductivity. Some materials, when cooled down to extreme temperatures, acquire a remarkable property -  they become superconducting. Superconductivity is a rare example of a quantum effect that can be witnessed on the macroscopic scale and is today at the heart of much research. In laboratories, researchers try to gain a better understanding of its origins, study new superconducting materials, explore the phenomenon at the nanometric scale and pursue their indefatigable search for new applications. Monday to Friday: 09:00 a.m. to 12:00 and 2:30 p.m. to 6:30 p.m. Saturday: 10:00 a.m. to 12:00 noon » Open to all – Admission free For further information: +33 (0)4 50 42 29 37

  8. Search for superconductivity in micrometeorites.

    Science.gov (United States)

    Guénon, S; Ramírez, J G; Basaran, Ali C; Wampler, J; Thiemens, M; Taylor, S; Schuller, Ivan K

    2014-12-05

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10(-12) cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures.

  9. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  10. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  11. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to...

  12. Cryogenic Systems and Superconductive Power

    Science.gov (United States)

    The report defines, investigates, and experimentally evaluates the key elements of a representative crogenic turborefrigerator subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system.

  13. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  14. The superconducting bending magnets 'CESAR'

    CERN Document Server

    Pérot, J

    1978-01-01

    In 1975, CERN decided to build two high precision superconducting dipoles for a beam line in the SPS north experimental area. The aim was to determine whether superconducting magnets of the required accuracy and reliability can be built and what their economies and performances in operation will be. Collaboration between CERN and CAE /SACLAY was established in order to make use of the knowledge and experience already acquired in the two laboratories. (0 refs).

  15. Y-Ba Superconducting Ceramics

    Science.gov (United States)

    Shunbao, Tian; Xiaofei, Li; Tinglian, Wen; Zuxiang, Lin; Shichun, Li; Huijun, Yu

    Polycrystalline Y-Ba-Cu-O superconducting materials have been studied. It was found that chemical composition and processing condition may play an important role in the final structure and superconducting properties. The density has been determined and compared with the calculated value according to the structure model reported by Bell Labs. The grain size and the morphology of the materials were observed by SEM.

  16. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  17. Entanglement witnessing in superconducting beamsplitters

    Science.gov (United States)

    Soller, H.; Hofstetter, L.; Reeb, D.

    2013-06-01

    We analyse a large class of superconducting beamsplitters for which the Bell parameter (CHSH violation) is a simple function of the spin detector efficiency. For these superconducting beamsplitters all necessary information to compute the Bell parameter can be obtained in Y-junction setups for the beamsplitter. Using the Bell parameter as an entanglement witness, we propose an experiment which allows to verify the presence of entanglement in Cooper pair splitters.

  18. Superconductivity in domains with corners

    DEFF Research Database (Denmark)

    Bonnaillie-Noel, Virginie; Fournais, Søren

    2007-01-01

    We study the two-dimensional Ginzburg-Landau functional in a domain with corners for exterior magnetic field strengths near the critical field where the transition from the superconducting to the normal state occurs. We discuss and clarify the definition of this field and obtain a complete...... asymptotic expansion for it in the large $\\kappa$ regime. Furthermore, we discuss nucleation of superconductivity at the boundary....

  19. Recent developments in superconducting materials including ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji

    1987-06-01

    This report describes the history of superconduction starting in 1911, when the superconducting phenomenon was first observed in murcury, until the recent discovery of superconducting materials with high critical temperatures. After outlining the BCS theory, basic characteristics are discussed including the critical temperature, magnetic field and current density to be reached for realizing the superconducting state. Various techniques for practical superconducting materials are discussed, including methods for producing extra fine multiconductor wires from such superconducting alloys as Nb-Ti, intermetallic Nb/sub 3/Sn compound and V/sub 3/Ga, as well as methods for producing wires of Nb/sub 3/Al, Nb/sub 3/(Al, Ge) and Nb/sub 3/Ge such as continuous melt quenching, electron beam irradiation, laser beam irradiation and chemical evaporation. Characteristics of superconducting ceramics are described, along with their applications including superconducting magnets and superconducting elements. (15 figs, 1 tab, 19 refs)

  20. Filter quality of pleated filter cartridges.

    Science.gov (United States)

    Chen, Chun-Wan; Huang, Sheng-Hsiu; Chiang, Che-Ming; Hsiao, Ta-Chih; Chen, Chih-Chieh

    2008-04-01

    The performance of dust cartridge filters commonly used in dust masks and in room ventilation depends both on the collection efficiency of the filter material and the pressure drop across the filter. Currently, the optimization of filter design is based only on minimizing the pressure drop at a set velocity chosen by the manufacturer. The collection efficiency, an equally important factor, is rarely considered in the optimization process. In this work, a filter quality factor, which combines the collection efficiency and the pressure drop, is used as the optimization criterion for filter evaluation. Most respirator manufacturers pleat the filter to various extents to increase the filtration area in the limit space within the dust cartridge. Six sizes of filter holders were fabricated to hold just one pleat of filter, simulating six different pleat counts, ranging from 0.5 to 3.33 pleats cm(-1). The possible electrostatic charges on the filter were removed by dipping in isopropyl alcohol, and the air velocity is fixed at 100 cm s(-1). Liquid dicotylphthalate particles generated by a constant output atomizer were used as challenge aerosols to minimize particle loading effects. A scanning mobility particle sizer was used to measure the challenge aerosol number concentrations and size distributions upstream and downstream of the pleated filter. The pressure drop across the filter was monitored by using a calibrated pressure transducer. The results showed that the performance of pleated filters depend not only on the size of the particle but also on the pleat count of the pleated filter. Based on filter quality factor, the optimal pleat count (OPC) is always higher than that based on pressure drop by about 0.3-0.5 pleats cm(-1). For example, the OPC is 2.15 pleats cm(-1) from the standpoint of pressure drop, but for the highest filter quality factor, the pleated filter needed to have a pleat count of 2.65 pleats cm(-1) at particle diameter of 122 nm. From the aspect of

  1. Fútbol, música y narcisismo: algunas conjeturas sobre “Brasil, decime qué se siente”

    Directory of Open Access Journals (Sweden)

    Pablo Alabarces

    2015-02-01

    Full Text Available Durante la Copa del Mundo 2014 en Brasil, los hinchas argentinos viajaron en gran cantidad e inundaron las calles (incluso más que los estadios cantando de modo unánime una canción de aliento, reconocida por su primer verso: “Brasil, decime qué se siente”. La canción, basada en una vieja melodía del grupo de rock norteamericano Creedence Clearwater Revival, fue rápidamente adoptada por centenares de miles de hinchas en Brasil y otros millones en la Argentina, viralizándose asimismo por las redes sociales. A partir de este fenómeno, el trabajo analiza la canción, las tradiciones musicales y políticas sobre las que trabaja, así como la relación entre música y nacionalidad que puede desprenderse de ese análisis; en el mismo sentido, discute esa relación en la historia de las Copas del Mundo. La actuación de los hinchas argentinos se convierte, entonces, en una actuación centralmente musical, en la que es posible leer la cultura futbolística argentina, organizada por el narcisismo y las lógicas del aguante. 

  2. Major P.J. Pretorius and the decimation of the Addo elephant herd in 1919-1920: important reassessments

    Directory of Open Access Journals (Sweden)

    M.T. Hoffman

    1993-09-01

    Full Text Available Between June 1919 and August 1920, the largest population of elephants in South Africa at the time was reduced from about 130 to 16 individuals by one man. Major P. J. Pretorius. Conflict between farmers and the elephants over dwindling water resources, coupled with the threat that the elephants posed to the future agricultural development of the region, precipitated the Provincial Administration's extermination order. Major Pretorius' figure of "120-odd" elephants killed during the year is reasonably accurate and the fate of the animal products is traced. Most of the skins were processed, by Pretorius himself, to make whips. A few specimens can be traced to local and overseas museums. Because records of the sex and age of animals killed by Major Pretorius have either been lost or were never detailed, reconstruction of the Addo elephant herd before the decimation, is difficult. Finally, details of the alleged public debate are discussed. It is concluded that it was probably a handful of individuals that convinced the Provincial Administration to spare 16 animals. The Rev J.R.L. Kingon as well as Major Pretorius himself are two key figures in the debate. There is little evidence to confirm the view that a public outcry, in the modem sense of the word, stopped the killing. Six photographs are included as an appendix. They show Major Pretorius at work in the Addo Bush.

  3. Pseudolikelihood decimation algorithm improving the inference of the interaction network in a general class of Ising models.

    Science.gov (United States)

    Decelle, Aurélien; Ricci-Tersenghi, Federico

    2014-02-21

    In this Letter we propose a new method to infer the topology of the interaction network in pairwise models with Ising variables. By using the pseudolikelihood method (PLM) at high temperature, it is generally possible to distinguish between zero and nonzero couplings because a clear gap separate the two groups. However at lower temperatures the PLM is much less effective and the result depends on subjective choices, such as the value of the ℓ1 regularizer and that of the threshold to separate nonzero couplings from null ones. We introduce a decimation procedure based on the PLM that recursively sets to zero the less significant couplings, until the variation of the pseudolikelihood signals that relevant couplings are being removed. The new method is fully automated and does not require any subjective choice by the user. Numerical tests have been performed on a wide class of Ising models, having different topologies (from random graphs to finite dimensional lattices) and different couplings (both diluted ferromagnets in a field and spin glasses). These numerical results show that the new algorithm performs better than standard PLM.

  4. European roadmap on superconductive electronics - status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Blamire, M.G. [University of Cambridge, Department of Materials Science, Pembroke St, Cambridge CB2 3QZ (United Kingdom); Buchholz, F.-Im. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Crete, D.-G. [Unite Mixte de Physique CNRS/THALES, 1 Avenue Augustin Fresnel, 91767 Palaiseau CEDEx (France); Cristiano, R. [Istituto di Cibernetica CNR, Via Campi Flegrei 34, 80078 Napoli (Italy); Febvre, P. [University of Savoie, IMEP-LAHC, CNRS UMR 5130, Campus scientifique, 73376 Le Bourget du Lac Cedex (France); Fritzsch, L. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Herr, A. [Chalmers University of Technology, Department of Microtechnology and Nanoscience - MC2, SE-412 96 Goeteborg (Sweden); Il' ichev, E. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Kohlmann, J. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Kunert, J., E-mail: juergen.kunert@ipht-jena.d [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Meyer, H.-G. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Niemeyer, J. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Ortlepp, T. [Technische Universitaet Ilmenau, Theoretische Elektrotechnik, PF 10 05 65 D-98684 Ilmenau (Germany); Rogalla, H. [University of Twente, Fac. Science and Technology, P.O. Box 217, 7500 AE Enschede (Netherlands); Schurig, T. [Physikalisch-Technische Bundesanstalt (PTB), Berlin, Abbestr. 2-12, 10587 Berlin (Germany)

    2010-12-15

    Device (SQUID). Amongst many other applications SQUIDs are used as sensors for magnetic heart and brain signals in medical applications, as sensor for geological surveying and food-processing and for non-destructive testing. As amplifiers of electrical signals, SQUIDs can nearly reach the theoretical limit given by Quantum Mechanics. A further important field of application is the detection of very weak signals by 'transition-edge' bolometers, superconducting nanowire single-photon detectors, and superconductive tunnel junctions. Their application as radiation detectors in a wide frequency range, from microwaves to X-rays is now standard. The very low losses of superconductors have led to commercial microwave filter designs that are now widely used in the USA in base stations for cellular phones and in military communication applications. The number of demonstrated applications is continuously increasing and there is no area in professional electronics, in which superconductive electronics cannot be applied and surpasses the performance of classical devices. Superconductive electronics has to be cooled to very low temperatures. Whereas this was a bottleneck in the past, cooling techniques have made a huge step forward in recent years: very compact systems with high reliability and a wide range of cooling power are available commercially, from microcoolers of match-box size with milli-Watt cooling power to high-reliability coolers of many Watts of cooling power for satellite applications. Superconductive electronics will not replace semiconductor electronics and similar room-temperature techniques in standard applications, but for those applications which require very high speed, low-power consumption, extreme sensitivity or extremely high precision, superconductive electronics is superior to all other available techniques. To strengthen the European competitiveness in superconductor electronics research projects have to be set-up in the following field: - Ultra

  5. European roadmap on superconductive electronics - status and perspectives

    Science.gov (United States)

    Anders, S.; Blamire, M. G.; Buchholz, F.-Im.; Crété, D.-G.; Cristiano, R.; Febvre, P.; Fritzsch, L.; Herr, A.; Il'ichev, E.; Kohlmann, J.; Kunert, J.; Meyer, H.-G.; Niemeyer, J.; Ortlepp, T.; Rogalla, H.; Schurig, T.; Siegel, M.; Stolz, R.; Tarte, E.; ter Brake, H. J. M.; Toepfer, H.; Villegier, J.-C.; Zagoskin, A. M.; Zorin, A. B.

    2010-12-01

    many other applications SQUIDs are used as sensors for magnetic heart and brain signals in medical applications, as sensor for geological surveying and food-processing and for non-destructive testing. As amplifiers of electrical signals, SQUIDs can nearly reach the theoretical limit given by Quantum Mechanics. A further important field of application is the detection of very weak signals by ‘transition-edge’ bolometers, superconducting nanowire single-photon detectors, and superconductive tunnel junctions. Their application as radiation detectors in a wide frequency range, from microwaves to X-rays is now standard. The very low losses of superconductors have led to commercial microwave filter designs that are now widely used in the USA in base stations for cellular phones and in military communication applications. The number of demonstrated applications is continuously increasing and there is no area in professional electronics, in which superconductive electronics cannot be applied and surpasses the performance of classical devices. Superconductive electronics has to be cooled to very low temperatures. Whereas this was a bottleneck in the past, cooling techniques have made a huge step forward in recent years: very compact systems with high reliability and a wide range of cooling power are available commercially, from microcoolers of match-box size with milli-Watt cooling power to high-reliability coolers of many Watts of cooling power for satellite applications. Superconductive electronics will not replace semiconductor electronics and similar room-temperature techniques in standard applications, but for those applications which require very high speed, low-power consumption, extreme sensitivity or extremely high precision, superconductive electronics is superior to all other available techniques. To strengthen the European competitiveness in superconductor electronics research projects have to be set-up in the following field: Ultra-sensitive sensing and imaging

  6. Superconducting Quantum Arrays for Wideband Antennas and Low Noise Amplifiers

    Science.gov (United States)

    Mukhanov, O.; Prokopemko, G.; Romanofsky, Robert R.

    2014-01-01

    Superconducting Quantum Iinetference Filters (SQIF) consist of a two-dimensional array of niobium Josephson Junctions formed into N loops of incommensurate area. This structure forms a magnetic field (B) to voltage transducer with an impulse like response at B0. In principle, the signal-to-noise ratio scales as the square root of N and the noise can be made arbitrarily small (i.e. The SQIF chips are expected to exhibit quantum limited noise performance). A gain of about 20 dB was recently demonstrated at 10 GHz.

  7. Composing morphological filters

    NARCIS (Netherlands)

    H.J.A.M. Heijmans (Henk)

    1995-01-01

    textabstractA morphological filter is an operator on a complete lattice which is increasing and idempotent. Two well-known classes of morphological filters are openings and closings. Furthermore, an interesting class of filters, the alternating sequential filters, is obtained if one composes openin

  8. Composing morphological filters

    NARCIS (Netherlands)

    Heijmans, H.J.A.M.

    1995-01-01

    A morphological filter is an operator on a complete lattice which is increasing and idempotent. Two well-known classes of morphological filters are openings and closings. Furthermore, an interesting class of filters, the alternating sequential filters, is obtained if one composes openings and closi

  9. Passive Power Filters

    CERN Document Server

    Künzi, R

    2015-01-01

    Power converters require passive low-pass filters which are capable of reducing voltage ripples effectively. In contrast to signal filters, the components of power filters must carry large currents or withstand large voltages, respectively. In this paper, three different suitable filter struc tures for d.c./d.c. power converters with inductive load are introduced. The formulas needed to calculate the filter components are derived step by step and practical examples are given. The behaviour of the three discussed filters is compared by means of the examples. P ractical aspects for the realization of power filters are also discussed.

  10. The road to superconducting spintronics

    Science.gov (United States)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  11. Superconductivity of lead

    Energy Technology Data Exchange (ETDEWEB)

    Boorse, H.A.; Cook, D.B.; Zemansky, W.M.

    1950-06-01

    Numerous determinations of the zero-field transition temperature of lead have been made. All of these observations except that of Daunt were made by the direct measurement of electrical resistance. Daunt`s method involved the shielding effect of persistent currents in a hollow cylinder. In the authors work on columbium to be described in a forthcoming paper an a.c. induction method was used for the measurement of superconducting transitions. The superconductor was mounted as a cylindrical core of a coil which functioned as the secondary of a mutual inductance. The primary coil was actuated by an oscillator which provided a maximum a.c. field within the secondary of 1.5 oersteds at a frequency of 1000 cycles per second. The secondary e.m.f. which was dependent for its magnitude on the permeability of the core was amplified, rectifie, and observed on a recording potentiometer. During the application of this method to the study of columbium it appeared that a further check on the zero-field transition temperature of lead would be worth while especially if agreement between results for very pure samples could be obtained using this method. Such result would help in establishing the lead transition temperature as a reasonably reproducible reference point in the region between 4 deg and 10 deg K.

  12. High temperature superconducting compounds

    Science.gov (United States)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  13. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  14. Superconductivity basics and applications to magnets

    CERN Document Server

    Sharma, R G

    2015-01-01

    This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.

  15. Disparity, decimation and the Cambrian "explosion": comparison of early Cambrian and Present faunal communities with emphasis on velvet worms (Onychophora

    Directory of Open Access Journals (Sweden)

    Julián Monge-Nájera

    2000-06-01

    Full Text Available The controversy about a Cambrian "explosion" of morphological disparity (followed by decimation, cladogenesis and fossilization is of central importance for the history of life. This paper revisits the controversy (with emphasis in onychophorans, which include emblematic organisms such as Hallucigenia, presents new data about the Chengjiang (Cambrian of China faunal community and compares it and the Burgess Shale (Cambrian of Canada with an ecologically similar but modern tropical marine site where onychophorans are absent, and with a modern neotropical terrestrial onychophoran community. Biovolume was estimated from material collected in Costa Rica and morphometric measurements were made on enlarged images of fossils. Cambrian tropical mudflats were characterized by the adaptive radiation of two contrasting groups: the vagile arthropods and the sessile poriferans. Arthropods were later replaced as the dominant benthic taxon by polychaetes. Vagility and the exoskeleton may explain the success of arthropods from the Cambrian to the modern marine and terrestrial communities, both in population and biovolume. Food ecological displacement was apparent in the B. Shale, but not in Chengjiang or the terrestrial community. When only hard parts were preserved, marine and terrestrial fossil deposits of tropical origin are even less representative than deposits produced by temperate taxa, Chengjiang being an exception. Nutrient limitations might explain why deposit feeding is less important in terrestrial onychophoran communities, where carnivory, scavenging and omnivory (associated with high motility and life over the substrate became more important. Fossil morphometry supports the interpretation of "lobopod animals" as onychophorans, whose abundance in Chengjiang was equal to their abundance in modern communities. The extinction of marine onychophorans may reflect domination of the infaunal habitat by polychaetes. We conclude that (1 a mature ecological

  16. Superconductive articles including cerium oxide layer

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  17. 4. MESOSCOPIC SUPERCONDUCTIVITY: Proximity Action theory of superconductive nanostructures

    Science.gov (United States)

    Skvortsov, M. A.; Larkin, A. I.; Feigel'man, M. V.

    2001-10-01

    We review a novel approach to the superconductive proximity effect in disordered normal-superconducting (N-S) structures. The method is based on the multicharge Keldysh action and is suitable for the treatment of interaction and fluctuation effects. As an application of the formalism, we study the subgap conductance and noise in two-dimensional N-S systems in the presence of the electron-electron interaction in the Cooper channel. It is shown that singular nature of the interaction correction at large scales leads to a nonmonotonuos temperature, voltage and magnetic field dependence of the Andreev conductance.

  18. Method of securing filter elements

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Erik P.; Haslam, Jeffery L.; Mitchell, Mark A.

    2016-10-04

    A filter securing system including a filter unit body housing; at least one tubular filter element positioned in the filter unit body housing, the tubular filter element having a closed top and an open bottom; a dimple in either the filter unit body housing or the top of the tubular filter element; and a socket in either the filter unit body housing or the top of the tubular filter element that receives the dimple in either the filter unit body housing or the top of the tubular filter element to secure the tubular filter element to the filter unit body housing.

  19. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  20. Gifts from the superconducting curiosity shop

    Institute of Scientific and Technical Information of China (English)

    David Mandrus

    2011-01-01

    Superconductivity has just celebrated its 100th birthday,and yet despite its advanced age it has never been more alive.Given that most subfields of materials physics have a half-life of about seven years,what accounts for the enduring popularity of superconductivity? What is it about superconductivity that continues to fascinate?

  1. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  2. Superconductivity, antiferromagnetism, and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, John M., E-mail: jtran@bnl.gov; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-15

    High-temperature superconductivity in both the copper-oxide and the iron–pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues. - Highlights: • High-temperature superconductivity is closely associated with antiferromagnetism. • Antiferromagnetic spin fluctuations coexist with the superconductivity. • Neutron scattering is essential for characterising the full spectrum of spin excitations.

  3. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  4. Domain wall description of superconductivity

    CERN Document Server

    Brito, F A; Silva, J C M

    2012-01-01

    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted as the parameter to move type I to type II domain walls. Alternatively, this means that the domain wall surface is suffering an acceleration as one goes from one type to another. On the other hand, changing from type I to type II state means a formation of a condensate what is in perfect sense of lowering the temperature around the superconductor. One can think of this scenario as an analog of holographic scenarios where this set up is replaced by a black hole near the domain wall.

  5. Generalized Hampel Filters

    Science.gov (United States)

    Pearson, Ronald K.; Neuvo, Yrjö; Astola, Jaakko; Gabbouj, Moncef

    2016-12-01

    The standard median filter based on a symmetric moving window has only one tuning parameter: the window width. Despite this limitation, this filter has proven extremely useful and has motivated a number of extensions: weighted median filters, recursive median filters, and various cascade structures. The Hampel filter is a member of the class of decsion filters that replaces the central value in the data window with the median if it lies far enough from the median to be deemed an outlier. This filter depends on both the window width and an additional tuning parameter t, reducing to the median filter when t=0, so it may be regarded as another median filter extension. This paper adopts this view, defining and exploring the class of generalized Hampel filters obtained by applying the median filter extensions listed above: weighted Hampel filters, recursive Hampel filters, and their cascades. An important concept introduced here is that of an implosion sequence, a signal for which generalized Hampel filter performance is independent of the threshold parameter t. These sequences are important because the added flexibility of the generalized Hampel filters offers no practical advantage for implosion sequences. Partial characterization results are presented for these sequences, as are useful relationships between root sequences for generalized Hampel filters and their median-based counterparts. To illustrate the performance of this filter class, two examples are considered: one is simulation-based, providing a basis for quantitative evaluation of signal recovery performance as a function of t, while the other is a sequence of monthly Italian industrial production index values that exhibits glaring outliers.

  6. Stripes and superconductivity in cuprates

    Science.gov (United States)

    Tranquada, John M.

    2012-06-01

    Holes doped into the CuO2 planes of cuprate parent compounds frustrate the antiferromagnetic order. The development of spin and charge stripes provides a compromise between the competing magnetic and kinetic energies. Static stripe order has been observed only in certain particular compounds, but there are signatures which suggest that dynamic stripe correlations are common in the cuprates. Though stripe order is bad for superconducting phase coherence, stripes are compatible with strong pairing. Ironically, magnetic-field-induced stripe order appears to enhance the stability of superconducting order within the planes.

  7. Stripes and superconductivity in cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, John M., E-mail: jtran@bnl.gov [Condensed Matter Physics and Materials Science Dept., Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2012-06-01

    Holes doped into the CuO{sub 2} planes of cuprate parent compounds frustrate the antiferromagnetic order. The development of spin and charge stripes provides a compromise between the competing magnetic and kinetic energies. Static stripe order has been observed only in certain particular compounds, but there are signatures which suggest that dynamic stripe correlations are common in the cuprates. Though stripe order is bad for superconducting phase coherence, stripes are compatible with strong pairing. Ironically, magnetic-field-induced stripe order appears to enhance the stability of superconducting order within the planes.

  8. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    and the rotation speed is lowered in order to limit the tip speed of the blades. The ability of superconducting materials to carry high current densities with very small losses might facilitate a new class of generators operating with an air gap flux density considerably higher than conventional generators...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...

  9. Hierarchic Models of Turbulence, Superfluidity and Superconductivity

    CERN Document Server

    Kaivarainen, A

    2000-01-01

    New models of Turbulence, Superfluidity and Superconductivity, based on new Hierarchic theory, general for liquids and solids (physics/0102086), have been proposed. CONTENTS: 1 Turbulence. General description; 2 Mesoscopic mechanism of turbulence; 3 Superfluidity. General description; 4 Mesoscopic scenario of fluidity; 5 Superfluidity as a hierarchic self-organization process; 6 Superfluidity in 3He; 7 Superconductivity: General properties of metals and semiconductors; Plasma oscillations; Cyclotron resonance; Electroconductivity; 8. Microscopic theory of superconductivity (BCS); 9. Mesoscopic scenario of superconductivity: Interpretation of experimental data in the framework of mesoscopic model of superconductivity.

  10. MST Filterability Tests

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Duignan, M. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-03-12

    The Savannah River Site (SRS) is currently treating radioactive liquid waste with the Actinide Removal Process (ARP) and the Modular Caustic Side Solvent Extraction Unit (MCU). The low filter flux through the ARP has limited the rate at which radioactive liquid waste can be treated. Recent filter flux has averaged approximately 5 gallons per minute (gpm). Salt Batch 6 has had a lower processing rate and required frequent filter cleaning. Savannah River Remediation (SRR) has a desire to understand the causes of the low filter flux and to increase ARP/MCU throughput. In addition, at the time the testing started, SRR was assessing the impact of replacing the 0.1 micron filter with a 0.5 micron filter. This report describes testing of MST filterability to investigate the impact of filter pore size and MST particle size on filter flux and testing of filter enhancers to attempt to increase filter flux. The authors constructed a laboratory-scale crossflow filter apparatus with two crossflow filters operating in parallel. One filter was a 0.1 micron Mott sintered SS filter and the other was a 0.5 micron Mott sintered SS filter. The authors also constructed a dead-end filtration apparatus to conduct screening tests with potential filter aids and body feeds, referred to as filter enhancers. The original baseline for ARP was 5.6 M sodium salt solution with a free hydroxide concentration of approximately 1.7 M.3 ARP has been operating with a sodium concentration of approximately 6.4 M and a free hydroxide concentration of approximately 2.5 M. SRNL conducted tests varying the concentration of sodium and free hydroxide to determine whether those changes had a significant effect on filter flux. The feed slurries for the MST filterability tests were composed of simple salts (NaOH, NaNO2, and NaNO3) and MST (0.2 – 4.8 g/L). The feed slurry for the filter enhancer tests contained simulated salt batch 6 supernate, MST, and filter enhancers.

  11. Fabrication of a Cryogenic Bias Filter for Ultrasensitive Focal Plane

    Science.gov (United States)

    Chervenak, James; Wollack, Edward

    2012-01-01

    A fabrication process has been developed for cryogenic in-line filtering for the bias and readout of ultrasensitive cryogenic bolometers for millimeter and submillimeter wavelengths. The design is a microstripline filter that cuts out, or strongly attenuates, frequencies (10 50 GHz) that can be carried by wiring staged at cryogenic temperatures. The filter must have 100-percent transmission at DC and low frequencies where the bias and readout lines will carry signal. The fabrication requires the encapsulation of superconducting wiring in a dielectric-metal envelope with precise electrical characteristics. Sufficiently thick insulation layers with high-conductivity metal layers fully surrounding a patterned superconducting wire in arrayable formats have been demonstrated. A degenerately doped silicon wafer has been chosen to provide a metallic ground plane. A metallic seed layer is patterned to enable attachment to the ground plane. Thick silicon dioxide films are deposited at low temperatures to provide tunable dielectric isolation without degrading the metallic seed layer. Superconducting wiring is deposited and patterned using microstripline filtering techniques to cut out the relevant frequencies. A low Tc superconductor is used so that it will attenuate power strongly above the gap frequency. Thick dielectric is deposited on top of the circuit, and then vias are patterned through both dielectric layers. A thick conductive film is deposited conformally over the entire circuit, except for the contact pads for the signal and bias attachments to complete the encapsulating ground plane. Filters are high-aspect- ratio rectangles, allowing close packing in one direction, while enabling the chip to feed through the wall of a copper enclosure. The chip is secured in the copper wall using a soft metal seal to make good thermal and electrical contact to the outer shield.

  12. Guided image filtering.

    Science.gov (United States)

    He, Kaiming; Sun, Jian; Tang, Xiaoou

    2013-06-01

    In this paper, we propose a novel explicit image filter called guided filter. Derived from a local linear model, the guided filter computes the filtering output by considering the content of a guidance image, which can be the input image itself or another different image. The guided filter can be used as an edge-preserving smoothing operator like the popular bilateral filter [1], but it has better behaviors near edges. The guided filter is also a more generic concept beyond smoothing: It can transfer the structures of the guidance image to the filtering output, enabling new filtering applications like dehazing and guided feathering. Moreover, the guided filter naturally has a fast and nonapproximate linear time algorithm, regardless of the kernel size and the intensity range. Currently, it is one of the fastest edge-preserving filters. Experiments show that the guided filter is both effective and efficient in a great variety of computer vision and computer graphics applications, including edge-aware smoothing, detail enhancement, HDR compression, image matting/feathering, dehazing, joint upsampling, etc.

  13. Superconductivity in highly disordered dense carbon disulfide.

    Science.gov (United States)

    Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav

    2013-07-16

    High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.

  14. Phase slips in superconducting weak links

    Energy Technology Data Exchange (ETDEWEB)

    Kimmel, Gregory; Glatz, Andreas; Aranson, Igor S.

    2017-01-01

    Superconducting vortices and phase slips are primary mechanisms of dissipation in superconducting, superfluid, and cold-atom systems. While the dynamics of vortices is fairly well described, phase slips occurring in quasi-one- dimensional superconducting wires still elude understanding. The main reason is that phase slips are strongly nonlinear time-dependent phenomena that cannot be cast in terms of small perturbations of the superconducting state. Here we study phase slips occurring in superconducting weak links. Thanks to partial suppression of superconductivity in weak links, we employ a weakly nonlinear approximation for dynamic phase slips. This approximation is not valid for homogeneous superconducting wires and slabs. Using the numerical solution of the time-dependent Ginzburg-Landau equation and bifurcation analysis of stationary solutions, we show that the onset of phase slips occurs via an infinite period bifurcation, which is manifested in a specific voltage-current dependence. Our analytical results are in good agreement with simulations.

  15. A unified theory of superconductivity

    CERN Document Server

    Huang, Xiuqing

    2008-01-01

    In this work, we argue that the phonon-mediated BCS theory may be incorrect. Two kinds of glues, pairing (pseudogap) glue and superconducting glue, are suggested based on a real space Coulomb confinement effect. The scenarios provide a unified explanation of the pairing symmetry, pseudogap and superconducting states, spin--charge stripe order, magic doping fractions and vortex structures in conventional and unconventional (the high-Tc cuprates, MgB2 and the newly-discovered Fe-based family) superconductors. The theory agrees with the existence of a pseudogap in high-temperature superconductors, while no pseudogap feature could be observed in MgB2, iron-based and most of the conventional superconductors. Our results indicate that the superconducting phase can coexist with a triangular vortex lattice in pure MgB2 single crystal with a charge carrier density n=1.49*10^22/cm3. For iron-based superconductors, the relationship between the superconducting vortex phases and the optimal doping levels are analytically ...

  16. Power applications for superconducting cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Hansen, Steen; Jørgensen, Preben

    2000-01-01

    High temperature superconducting (HTS) cables for use in electric ac power systems are under development around the world today. There are two main constructions under development: the room temperature dielectric design and the cryogenic dielectric design. However, theoretical studies have shown...

  17. Superconductivity by kinetic energy saving?

    NARCIS (Netherlands)

    Van der Marel, D; Molegraaf, HJA; Presura, C; Santoso, [No Value; Hewson, AC; Zlatic,

    2003-01-01

    A brief introduction is given in the generic microscopic framework of superconductivity. The consequences for the temperature dependence of the kinetic energy, and the correlation energy are discussed for two cases: The BCS scenario and the non-Fermi liquid scenario. A quantitative comparison is mad

  18. Superconducting cavity model for LEP

    CERN Multimedia

    1979-01-01

    A superconducting cavity model is being prepared for testing in a vertical cryostat.At the top of the assembly jig is H.Preis while A.Scharding adjusts some diagnostic equipment to the cavity. See also photo 7912501X.

  19. Superconductivity of small metal grains

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Renrong; CHEN; Zhiqian; ZHU; Shunquan

    2005-01-01

    The formulas of the energy gap and superconducting critical temperature appropriate for systems with both odd and even number of electrons are derived; the bases of the derivations are BCS theory and energy level statistics. Numerical results qualitatively agree with the experimental phenomena. i.e., the superconductivity of small metallic grains will first enhance then decrease to zero when the grain are getting smaller and smaller. The calculations indicate that the above phenomena happen in the metallic grains belonging to Gaussian Orthogonal Ensemble (GOE) and Gaussian Unitary ensemble (GUE) with zero spin; The superconductivity of small metallic grains in Gaussian Symplectic Ensemble (GSE) will monotonically decrease to zero with the decreasing of the grain size. The analyses suggest that the superconductivity enhancements come from pairing and the balance of the strengths between spin-orbital coupling and external magnetic field. In order to take the latter into account, it is necessary to include the level statistics given by Random Matrix Theory (RMT) in describing small metallic grains.

  20. Superconductivity by kinetic energy saving?

    NARCIS (Netherlands)

    Van der Marel, D; Molegraaf, HJA; Presura, C; Santoso, [No Value; Hewson, AC; Zlatic,

    2003-01-01

    A brief introduction is given in the generic microscopic framework of superconductivity. The consequences for the temperature dependence of the kinetic energy, and the correlation energy are discussed for two cases: The BCS scenario and the non-Fermi liquid scenario. A quantitative comparison is

  1. Discovering superconductivity an investigative approach

    CERN Document Server

    Ireson, Gren

    2012-01-01

    The highly-illustrated text will serve as excellent introduction for students, with and without a physics background, to superconductivity. With a strong practical, experimental emphasis, it will provide readers with an overview of the topic preparing them for more advanced texts used in more advanced undergraduate and post-graduate courses.

  2. Collaring of Po Superconducting Dipole

    CERN Multimedia

    1983-01-01

    The picture shows the placing of a stack of stainless steel collars around the superconducting coils.Pre-assembled collar stacks were placed under and on top of the coils,the collars interleaving as comb teeth. During the following collaring operation of compression under a press the collars were locked together by means of side wedges. See also photos 8211532X, 7903168

  3. Superconductivity resulting from antiferromagnetic states

    Energy Technology Data Exchange (ETDEWEB)

    Feng Shi-Ping (Department of Physics, Beijing Normal University (CN))

    1989-09-01

    When the dopping is low enough, the holes obey Bose statistics, Bose-Einstein condensation of these holes may lead to occurance of superconductivity. In this framework, we have calculated some physical quantities, the results are in qualitative agreement with experiments.

  4. Superconductivity by kinetic energy saving?

    NARCIS (Netherlands)

    Van der Marel, D; Molegraaf, HJA; Presura, C; Santoso, [No Value; Hewson, AC; Zlatic,

    2003-01-01

    A brief introduction is given in the generic microscopic framework of superconductivity. The consequences for the temperature dependence of the kinetic energy, and the correlation energy are discussed for two cases: The BCS scenario and the non-Fermi liquid scenario. A quantitative comparison is mad

  5. Nonlinear diffusion and superconducting hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States)

    1996-12-31

    Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.

  6. Fireballs from Superconducting Cosmic Strings

    CERN Document Server

    Gruzinov, Andrei

    2016-01-01

    Thermalized fireballs should be created by cusp events on superconducting cosmic strings. This simple notion allows to reliably estimate particle emission from the cusps in a given background magnetic field. With plausible assumptions about intergalactic magnetic fields, the cusp events can produce observable fluxes of high-energy photons and neutrinos with unique signatures.

  7. Fireballs from superconducting cosmic strings

    Science.gov (United States)

    Gruzinov, Andrei; Vilenkin, Alexander

    2017-01-01

    Thermalized fireballs should be created by cusp events on superconducting cosmic strings. This simple notion allows to reliably estimate particle emission from the cusps in a given background magnetic field. With plausible assumptions about intergalactic magnetic fields, the cusp events can produce observable fluxes of high-energy photons and neutrinos with unique signatures.

  8. Superconducting Qubits and Quantum Resonators

    NARCIS (Netherlands)

    Forn-Díaz, P.

    2010-01-01

    Superconducting qubits are fabricated "loss-free" electrical circuits on a chip with size features of tens of nanometers. If cooled to cryogenic temperatures below -273 °C they behave as quantum elements, similar to atoms and molecules. Such a qubit can be manipulated by fast-oscillating magnetic fi

  9. Tutorial on Superconducting Accelerator Magnets

    Science.gov (United States)

    Ball, M. J. Penny; Goodzeit, Carl L.

    1997-05-01

    A multimedia CD-ROM tutorial on the physics and engineering concepts of superconducting magnets for particle accelerators is being developed under a U.S. Dept. of Energy SBIR grant. The tutorial, scheduled for distribution this summer, is targeted to undergraduate junior or senior level science students. However, its unified presentation of the broad range of issues involved in the design of superconducting magnets for accelerators and the extensive detail about the construction process (including animations and video clips) will also be of value to staff of research institutes and industrial concerns with an interest in applied superconductivity or magnet development. The source material, which is based on the world-wide R and D programs to develop superconducting accelerator magnets, is organized in five units with the following themes: Introduction to magnets and accelerators; (2) Superconductors for accelerator magnets; (3) Magnetic design methods for accelerator magnets; (4) Electrical, mechanical, and cryogenic considerations for the final magnet package; (5) Performance characteristics and measurement methods. A detailed outline and examples will be shown.

  10. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  11. Photon-detecting superconducting resonators

    NARCIS (Netherlands)

    Barends, R.

    2009-01-01

    One of the greatest challenges in astronomy is observing star and planetary formation, redshifted distant galaxies and molecular spectral ‘fingerprints’ in the far-infrared spectrum of light, using highly sensitive and large cameras. In this thesis we investigate superconducting resonators for

  12. Restrictions on TWT Helix Voltage Ripple for Acceptable Notch Filter Performance

    Energy Technology Data Exchange (ETDEWEB)

    Hyslop, B.

    1984-12-01

    An ac ripple on the helix voltage of the 1-2 GHz TWT's creates FM sidebands that cause amplitude and phase modulation of the microwave TWT output signal. A limit of 16 volts peak-to-peak is required for acceptable superconducting notch filter performance.

  13. Computer Aided Filter Design.

    Science.gov (United States)

    1987-12-01

    FIR filter can be described in the following. [Ref. 2] 1. FIR filters with exact linear phase can be easily designed. Linear phase filters are important...response for the four cases of linear phase filter , i.e., even or odd symmetry with an even or odd number of terms, can be written in the form: H (eJ ) = e...Ansari, The Design and Application of Optimal FIR Fractional Phase Filters , IEEE on Acoutics, Speech and Signal Processing, Vol. 2, 1987, pp.896-899. 77 14

  14. A unified Kalman filter

    Science.gov (United States)

    Stubberud, Allen R.

    2017-01-01

    When considering problems of linear sequential estimation, two versions of the Kalman filter, the continuous-time version and the discrete-time version, are often used. (A hybrid filter also exists.) In many applications in which the Kalman filter is used, the system to which the filter is applied is a linear continuous-time system, but the Kalman filter is implemented on a digital computer, a discrete-time device. The two general approaches for developing a discrete-time filter for implementation on a digital computer are: (1) approximate the continuous-time system by a discrete-time system (called discretization of the continuous-time system) and develop a filter for the discrete-time approximation; and (2) develop a continuous-time filter for the system and then discretize the continuous-time filter. Generally, the two discrete-time filters will be different, that is, it can be said that discretization and filter generation are not, in general, commutative operations. As a result, any relationship between the discrete-time and continuous-time versions of the filter for the same continuous-time system is often obfuscated. This is particularly true when an attempt is made to generate the continuous-time version of the Kalman filter through a simple limiting process (the sample period going to zero) applied to the discrete-time version. The correct result is, generally, not obtained. In a 1961 research report, Kalman showed that the continuous-time Kalman filter can be obtained from the discrete-time Kalman filter by taking limits as the sample period goes to zero if the white noise process for the continuous-time version is appropriately defined. Using this basic concept, a discrete-time Kalman filter can be developed for a continuous-time system as follows: (1) discretize the continuous-time system using Kalman's technique; and (2) develop a discrete-time Kalman filter for that discrete-time system. Kalman's results show that the discrete-time filter generated in

  15. Bias aware Kalman filters

    DEFF Research Database (Denmark)

    Drecourt, J.-P.; Madsen, H.; Rosbjerg, Dan

    2006-01-01

    . The colored noise filter formulation is extended to correct both time correlated and uncorrelated model error components. A more stable version of the separate filter without feedback is presented. The filters are implemented in an ensemble framework using Latin hypercube sampling. The techniques...... are illustrated on a simple one-dimensional groundwater problem. The results show that the presented filters outperform the standard Kalman filter and that the implementations with bias feedback work in more general conditions than the implementations without feedback. 2005 Elsevier Ltd. All rights reserved....

  16. Superconductivity: The persistence of pairs

    Energy Technology Data Exchange (ETDEWEB)

    Edelman, Alex; Littlewood, Peter

    2015-05-20

    Superconductivity stems from a weak attraction between electrons that causes them to form bound pairs and behave much like bosons. These so-called Cooper pairs are phase coherent, which leads to the astonishing properties of zero electrical resistance and magnetic flux expulsion typical of superconducting materials. This coherent state may be qualitatively understood within the Bose–Einstein condensate (BEC) model, which predicts that a gas of interacting bosons will become unstable below a critical temperature and condense into a phase of matter with a macroscopic, coherent population in the lowest energy state, as happens in 4He or cold atomic gases. The successful theory proposed by Bardeen, Cooper and Schrieffer (BCS) predicts that at the superconducting transition temperature Tc, electrons simultaneously form pairs and condense, with no sign of pairing above Tc. Theorists have long surmised that the BCS and BEC models are opposite limits of a single theory and that strong interactions or low density can, in principle, drive the system to a paired state at a temperature Tpair higher than Tc, making the transition to the superconducting state BEC-like (Fig. 1). Yet most superconductors to date are reasonably well described by BCS theory or its extensions, and there has been scant evidence in electronic materials for the existence of pairing independent of the full superconducting state (though an active debate rages over the cuprate superconductors). Writing in Nature, Jeremy Levy and colleagues have now used ingenious nanostructured devices to provide evidence for electron pairing1. Perhaps surprisingly, the material they have studied is a venerable, yet enigmatic, low-temperature superconductor, SrTiO3.

  17. Ceramic fiber filter technology

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, B.L.; Janney, M.A.

    1996-06-01

    Fibrous filters have been used for centuries to protect individuals from dust, disease, smoke, and other gases or particulates. In the 1970s and 1980s ceramic filters were developed for filtration of hot exhaust gases from diesel engines. Tubular, or candle, filters have been made to remove particles from gases in pressurized fluidized-bed combustion and gasification-combined-cycle power plants. Very efficient filtration is necessary in power plants to protect the turbine blades. The limited lifespan of ceramic candle filters has been a major obstacle in their development. The present work is focused on forming fibrous ceramic filters using a papermaking technique. These filters are highly porous and therefore very lightweight. The papermaking process consists of filtering a slurry of ceramic fibers through a steel screen to form paper. Papermaking and the selection of materials will be discussed, as well as preliminary results describing the geometry of papers and relative strengths.

  18. Reactive Power Compensation and Harmonic Suppression for Power Supply System of HT-7U Superconductive Tokamak

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In this paper, a strategy for the reactive power compensation and harmonic suppression of the power supply system in HT-7U superconductive Tokamak is proposed. The optimizedapproach is given in the parameters design for passive filter. Also a controlling method with fastresponse time and good accuracy is put forward for the compensator, which is more suitable forthe dynamic load.PAGS: 84.70.+p ,52.55. Fa, 84.30. Vn

  19. Design of a 75-140 GHz high-pass printed circuit board dichroic filter

    Science.gov (United States)

    Kim, Dong Hwi; Mohyuddin, Wahab; Woo, Dong Sik; Choi, Hyun Chul; Kim, Kang Wook

    2017-03-01

    A new high-performing PCB (Printed Circuit Board) dichroic filter, which can be used for the KSTAR (Korea Superconducting Tokamak Advanced Research) electron cyclotron emission imaging system, is proposed. The current dichroic filter consists of a triangular lattice array of circular holes on the 6-mm thick metal plate, while circular hole spacing limitation caused relatively narrow passband (˜20 GHz). On the other hand, the proposed PCB dichroic filter utilizes the inexpensive commercial PCB fabrication process with a flexible adjustment of circular hole spacing. Therefore, the proposed PCB dichroic filter provides significantly wider passband (˜60 GHz with 0.84 dB insertion loss) with much reduced weight and expense. Also, it is shown that a steep skirt property can be obtained with the thick PCB filter substrate. The design process, fabrication, and measurement results of the new PCB dichroic filter are described.

  20. Temperature dependence of power handling capability of HTS filter with double-strip resonator

    Science.gov (United States)

    Sekiya, N.; Fujihara, K.

    2016-11-01

    We have investigated the temperature dependence of power handling capability of a high temperature superconducting filter with a double-strip resonator (DSR). The DSR structure consists of two coupled strips and the center pins of the SMA connector as feed line. We designed a four-pole DSR filter with the center frequency of 5 GHz and band width of 50 MHz. The filter was fabricated using two YBa2Cu3Oy thin films on CeO2-buffered r-Al2O3 substrates. The measured frequency responses of the filters were in reasonable agreement with the simulated ones. The measured power handling capability of the DSR filter at 35 K was 3.2 times higher than that of the filter at 70 K.

  1. Three-zone pupil filters

    Science.gov (United States)

    Sheppard, Colin J. R.; Campos, Juan; Escalera, Juan C.; Ledesma, Silvia

    2008-07-01

    The performance of pupil filters consisting of three zones each of constant complex amplitude transmittance is investigated. For filters where the transmittance is real, different classes of potentially useful filter are identified. These include leaky filters with an inner zone of low amplitude transmittance, pure phase filters with phase change of π, and equal area filters.

  2. Generic Kalman Filter Software

    Science.gov (United States)

    Lisano, Michael E., II; Crues, Edwin Z.

    2005-01-01

    The Generic Kalman Filter (GKF) software provides a standard basis for the development of application-specific Kalman-filter programs. Historically, Kalman filters have been implemented by customized programs that must be written, coded, and debugged anew for each unique application, then tested and tuned with simulated or actual measurement data. Total development times for typical Kalman-filter application programs have ranged from months to weeks. The GKF software can simplify the development process and reduce the development time by eliminating the need to re-create the fundamental implementation of the Kalman filter for each new application. The GKF software is written in the ANSI C programming language. It contains a generic Kalman-filter-development directory that, in turn, contains a code for a generic Kalman filter function; more specifically, it contains a generically designed and generically coded implementation of linear, linearized, and extended Kalman filtering algorithms, including algorithms for state- and covariance-update and -propagation functions. The mathematical theory that underlies the algorithms is well known and has been reported extensively in the open technical literature. Also contained in the directory are a header file that defines generic Kalman-filter data structures and prototype functions and template versions of application-specific subfunction and calling navigation/estimation routine code and headers. Once the user has provided a calling routine and the required application-specific subfunctions, the application-specific Kalman-filter software can be compiled and executed immediately. During execution, the generic Kalman-filter function is called from a higher-level navigation or estimation routine that preprocesses measurement data and post-processes output data. The generic Kalman-filter function uses the aforementioned data structures and five implementation- specific subfunctions, which have been developed by the user on

  3. Surface superconductivity in thin cylindrical Bi nanowire.

    Science.gov (United States)

    Tian, Mingliang; Wang, Jian; Ning, Wei; Mallouk, Thomas E; Chan, Moses H W

    2015-03-11

    The physical origin and the nature of superconductivity in nanostructured Bi remains puzzling. Here, we report transport measurements of individual cylindrical single-crystal Bi nanowires, 20 and 32 nm in diameter. In contrast to nonsuperconducting Bi nanoribbons with two flat surfaces, cylindrical Bi nanowires show superconductivity below 1.3 K. However, their superconducting critical magnetic fields decrease with their diameter, which is the opposite of the expected behavior for thin superconducting wires. Quasiperiodic oscillations of magnetoresistance were observed in perpendicular fields but were not seen in the parallel orientation. These results can be understood by a model of surface superconductivity with an enhanced surface-to-bulk volume in small diameter wires, where the superconductivity originates from the strained surface states of the nanowires due to the surface curvature-induced stress.

  4. Nonlinear performance characterization in an eight-pole quasi-elliptic bandpass filter

    Energy Technology Data Exchange (ETDEWEB)

    Mateu, J [Centre Tecnologic de Telecomunicacions de Catalunya, Edifici Nexus, Gran Capita, 2nd Floor, Room 202-203, 08034 Barcelona (Spain); Collado, C [Universitat Politecnica de Catalunya, Department of Signal Theory and Communications, Campus Nord UPC, D3-Jordi Girona, 1-3, 08034 Barcelona (Spain); Menendez, O [Universitat Politecnica de Catalunya, Department of Signal Theory and Communications, Campus Nord UPC, D3-Jordi Girona, 1-3, 08034 Barcelona (Spain); O' Callaghan, J M [Universitat Politecnica de Catalunya, Department of Signal Theory and Communications, Campus Nord UPC, D3-Jordi Girona, 1-3, 08034 Barcelona (Spain)

    2004-05-01

    In this work we predict the nonlinear behaviour of an eight-pole quasi-elliptic bandpass high temperature superconducting (HTS) filter with an equivalent circuit extracted from intermodulation measurements performed at the centre of the filter passband. We present measurements that show that the equivalent circuit is able to predict the intermodulation products produced by the filter when driven by two in-band or out-of-band sinusoidal signals. Numerical techniques based on harmonic balance are used to extract the elements of the equivalent circuit and to simulate its nonlinear performance.

  5. Superconducting Josephson vortex flow transistors

    CERN Document Server

    Tavares, P A C

    2002-01-01

    The work reported in this thesis focuses on the development of high-temperature superconducting Josephson vortex-flow transistors (JVFTs). The JVFT is a particular type of superconducting transistor, i.e. an electromagnetic device capable of delivering gain while keeping the control and output circuits electrically isolated. Devices were fabricated from (100) YBa sub 2 Cu sub 3 O sub 7 sub - subdelta thin films grown by Pulsed Laser Deposition on 24 deg magnesium oxide and strontium titanate bicrystals. The design of the JVFTs was guided by numerical simulations and the devices were optimised for current gain. Improvements were made to the fabrication process in order to accurately pattern the small structures required. The devices exhibited current gains higher than 60 in liquid nitrogen. Gains measured at lower temperatures were significantly higher. As part of the work a data acquisition suite was developed for the characterisation of three-terminal devices and, in particular, of JVFTs.

  6. Superconductivity in the Tungsten Bronzes

    Science.gov (United States)

    Wu, Phillip; Ishii, Satoshi; Tanabe, Kenji; Munakata, Ko; Hammond, Robert H.; Tokiwa, Kazuyasu; Geballe, Theodore H.; Beasley, Malcolm R.

    2015-03-01

    Via pulsed laser deposition and post-annealing, high quality K-doped WO3-y films with reproducible transport properties are obtained. A home built two-coil mutual inductance setup is used to probe the behavior of the films in the superconducting and normal state. The inverse penetration depths and dissipation peaks are measured as a function of temperature and field. Separately, via thin film deposition techniques, we report for the first time stable crystalline hexagonal WO3 on substrates. In order to tune the physical properties of the undoped material, we utilized an ionic liquid gating technique. We observe an insulator-to-metal transition, showing the ionic liquid gate to be a viable technique to alter the electrical transport properties of this material. By comparing the alkali and ionic liquid gated WO3, we conclude with some remarks regarding how superconductivity arises in this system.

  7. Superconducting wires and fractional flux

    Science.gov (United States)

    Sá de Melo, C. A. R.

    1996-05-01

    The quantization of flux quanta in superconductors is revisited and analyzed in a new geometry. The system analyzed is a superconducting wire. The geometry is such that the superconducting wire winds N times around an insulating cylinder and that the wire has its end connected back to its beginning, thus producing an N-loop short circuited solenoid. The winding number N acts as a topological index that controls flux quantization. In this case, fractional flux quanta can be measured through the center of the insulating cylinder, provided that the cylinder radius is small enough. The Little-Parks experiment for an identical geometry is discussed. The period of oscillation of the transition temperature of the wire is found to vary as 1/N in units of flux Φ relative to the flux quantum Φ0. When a SQUID is made in such a geometry the maximal current through the SQUID varies with period Φ0/N.

  8. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  9. Crux vena cava filter.

    Science.gov (United States)

    Murphy, Erin H; Johnson, Eric D; Kopchok, George E; Fogarty, Thomas J; Arko, Frank R

    2009-09-01

    Inferior vena cava filters are widely accepted for pulmonary embolic prophylaxis in high-risk patients with contraindications to anticoagulation. While long-term complications have been associated with permanent filters, retrievable filters are now available and have resulted in the rapid expansion of this technology. Nonetheless, complications are still reported with optional filters. Furthermore, device tilting and thrombus load may prevent retrieval in up to 30% of patients, thereby eliminating the benefits of this technology. The Crux vena cava filter is a novel, self-centering, low-profile filter that is designed for ease of delivery, retrievability and improved efficacy while limiting fatigue-related device complications. This device has been proven safe and user-friendly in an ovine model and has recently been implanted in human subjects.

  10. CrowdFilter

    DEFF Research Database (Denmark)

    Mortensen, Michael Lind; Wallace, Byron C.; Kraska, Tim

    for complex multi-criteria search problems through crowdsourcing. The CrowdFilter system is capable of supporting both criteria-level labels and n-gram rationales, capturing the human decision making process behind each filtering choice. Using the data provided through CrowdFilter we also introduce a novel......Multi-criteria filtering of mixed open/closed-world data is a time-consuming task, requiring significant manual effort when latent open-world attributes are present. In this work we introduce a novel open-world filtering framework CrowdFilter, enabling automatic UI generation and label elicitation...... multi-criteria active learning method; capable of incorporating labels and n-gram rationales per inclusion criteria, and thus capable of determining both clear includes/excludes, as well as complex borderline cases. By incorporating the active learning approach into the elicitation process of Crowd...

  11. Conservative Noise Filters

    Directory of Open Access Journals (Sweden)

    Mona M.Jamjoom

    2016-05-01

    Full Text Available Noisy training data have a huge negative impact on machine learning algorithms. Noise-filtering algorithms have been proposed to eliminate such noisy instances. In this work, we empirically show that the most popular noise-filtering algorithms have a large False Positive (FP error rate. In other words, these noise filters mistakenly identify genuine instances as outliers and eliminate them. Therefore, we propose more conservative outlier identification criteria that improve the FP error rate and, thus, the performance of the noise filters. With the new filter, an instance is eliminated if and only if it is misclassified by a mutual decision of Naïve Bayesian (NB classifier and the original filtering criteria being used. The number of genuine instances that are incorrectly eliminated is reduced as a result, thereby improving the classification accuracy.

  12. Stripes and Superconductivity in Cuprates

    OpenAIRE

    Tranquada, John M.

    2011-01-01

    Holes doped into the CuO2 planes of cuprate parent compounds frustrate the antiferromagnetic order. The development of spin and charge stripes provides a compromise between the competing magnetic and kinetic energies. Static stripe order has been observed only in certain particular compounds, but there are signatures which suggest that dynamic stripe correlations are common in the cuprates. Though stripe order is bad for superconducting phase coherence, stripes are compatible with strong pair...

  13. Superconducting Qubits: A Short Review

    OpenAIRE

    Devoret, M. H.; Wallraff, A.; Martinis, J. M.

    2004-01-01

    Superconducting qubits are solid state electrical circuits fabricated using techniques borrowed from conventional integrated circuits. They are based on the Josephson tunnel junction, the only non-dissipative, strongly non-linear circuit element available at low temperature. In contrast to microscopic entities such as spins or atoms, they tend to be well coupled to other circuits, which make them appealling from the point of view of readout and gate implementation. Very recently, new designs ...

  14. Inelastic tunneling in superconducting junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hlobil, Patrik Christian

    2016-06-10

    In this dissertation a theoretical formalism of elastic and inelastic tunneling spectroscopy is developed for superconductors. The underlying physical processes behind the different two tunneling channels and their implications for the interpretation of experimental tunneling data are investigated in detail, which can explain the background conductance seen in the cuprate and iron-based superconductors. Further, the properties of the emitted light from a superconducting LED are investigated.

  15. Stimulated Superconductivity at Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Ning; Dong, Xi; Silverstein, Eva; Torroba, Gonzalo; /Stanford U., ITP /Stanford U., Phys. Dept. /SLAC

    2011-08-12

    Stimulating a system with time dependent sources can enhance instabilities, thus increasing the critical temperature at which the system transitions to interesting low-temperature phases such as superconductivity or superfluidity. After reviewing this phenomenon in non-equilibrium BCS theory (and its marginal fermi liquid generalization) we analyze the effect in holographic superconductors. We exhibit a simple regime in which the transition temperature increases parametrically as we increase the frequency of the time-dependent source.

  16. RF Characterization of Superconducting Samples

    CERN Document Server

    Junginger, T; Welsch, C

    2009-01-01

    At CERN a compact Quadrupole Resonator has been re-commissioned for the RF characterization of superconducting materials at 400 MHz. In addition the resonator can also be excited at multiple integers of this frequency. Besides Rs it enables determination of the maximum RF magnetic field, the thermal conductivity and the penetration depth of the attached samples, at different temperatures. The features of the resonator will be compared with those of similar RF devices and first results will be presented.

  17. Hybrid Filter Membrane

    Science.gov (United States)

    Laicer, Castro; Rasimick, Brian; Green, Zachary

    2012-01-01

    Cabin environmental control is an important issue for a successful Moon mission. Due to the unique environment of the Moon, lunar dust control is one of the main problems that significantly diminishes the air quality inside spacecraft cabins. Therefore, this innovation was motivated by NASA s need to minimize the negative health impact that air-suspended lunar dust particles have on astronauts in spacecraft cabins. It is based on fabrication of a hybrid filter comprising nanofiber nonwoven layers coated on porous polymer membranes with uniform cylindrical pores. This design results in a high-efficiency gas particulate filter with low pressure drop and the ability to be easily regenerated to restore filtration performance. A hybrid filter was developed consisting of a porous membrane with uniform, micron-sized, cylindrical pore channels coated with a thin nanofiber layer. Compared to conventional filter media such as a high-efficiency particulate air (HEPA) filter, this filter is designed to provide high particle efficiency, low pressure drop, and the ability to be regenerated. These membranes have well-defined micron-sized pores and can be used independently as air filters with discreet particle size cut-off, or coated with nanofiber layers for filtration of ultrafine nanoscale particles. The filter consists of a thin design intended to facilitate filter regeneration by localized air pulsing. The two main features of this invention are the concept of combining a micro-engineered straight-pore membrane with nanofibers. The micro-engineered straight pore membrane can be prepared with extremely high precision. Because the resulting membrane pores are straight and not tortuous like those found in conventional filters, the pressure drop across the filter is significantly reduced. The nanofiber layer is applied as a very thin coating to enhance filtration efficiency for fine nanoscale particles. Additionally, the thin nanofiber coating is designed to promote capture of

  18. Activities on RF superconductivity at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Matheisen, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); TESLA Collaboration

    1996-01-01

    At DESY the HERA electron storage ring is supplied with normal and superconducting cavities. The superconducting system transfers up to 1 MW klystron power to the beam. Experiences are reported on luminosity and machine study runs. Since 1993 one major activity in the field of RF superconducting cavities is the installation of the TESLA Test Facility. Set-up of hardware and first tests of s.c. resonators are presented. (R.P.). 11 refs.

  19. Superconducting electron and hole lenses

    Science.gov (United States)

    Cheraghchi, H.; Esmailzadeh, H.; Moghaddam, A. G.

    2016-06-01

    We show how a superconducting region (S), sandwiched between two normal leads (N), in the presence of barriers, can act as a lens for propagating electron and hole waves by virtue of the so-called crossed Andreev reflection (CAR). The CAR process, which is equivalent to Cooper pair splitting into two N electrodes, provides a unique possibility of constructing entangled electrons in solid state systems. When electrons are locally injected from an N lead, due to the CAR and normal reflection of quasiparticles by the insulating barriers at the interfaces, sequences of electron and hole focuses are established inside another N electrode. This behavior originates from the change of momentum during electron-hole conversion beside the successive normal reflections of electrons and holes due to the barriers. The focusing phenomena studied here are fundamentally different from the electron focusing in other systems, such as graphene p-n junctions. In particular, due to the electron-hole symmetry of the superconducting state, the focusing of electrons and holes is robust against thermal excitations. Furthermore, the effects of the superconducting layer width, the injection point position, and barrier strength are investigated on the focusing behavior of the junction. Very intriguingly, it is shown that by varying the barrier strength, one can separately control the density of electrons or holes at the focuses.

  20. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  1. Ballistic superconductivity in semiconductor nanowires

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-07-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

  2. Oriented Fiber Filter Media

    Directory of Open Access Journals (Sweden)

    R. Bharadwaj

    2008-06-01

    Full Text Available Coalescing filters are widely used throughout industry and improved performance will reduce droplet emissions and operating costs. Experimental observations show orientation of micro fibers in filter media effect the permeability and the separation efficiency of the filter media. In this work two methods are used to align the fibers to alter the filter structure. The results show that axially aligned fiber media improve quality factor on the order of 20% and cutting media on an angle from a thick layered media can improve performance by about 40%. The results also show the improved performance is not monotonically correlated to the average fiber angle of the medium.

  3. Fundamentals of Stochastic Filtering

    CERN Document Server

    Crisan, Dan

    2008-01-01

    The objective of stochastic filtering is to determine the best estimate for the state of a stochastic dynamical system from partial observations. The solution of this problem in the linear case is the well known Kalman-Bucy filter which has found widespread practical application. The purpose of this book is to provide a rigorous mathematical treatment of the non-linear stochastic filtering problem using modern methods. Particular emphasis is placed on the theoretical analysis of numerical methods for the solution of the filtering problem via particle methods. The book should provide sufficient

  4. Interfacing superconducting qubits and single optical photons

    CERN Document Server

    Das, Sumanta; Sørensen, Anders S

    2016-01-01

    We propose an efficient light-matter interface at optical frequencies between a superconducting qubit and a single photon. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit far from the optical axis. We show that high fidelity, photon-mediated, entanglement between distant superconducting qubits can be achieved with incident pulses at the single photon level. Such low light level is highly sought for to overcome the decoherence of the superconducting qubit caused by absorption of optical photons.

  5. Anisotropic superconductivity driven by kinematic interaction

    Science.gov (United States)

    Ivanov, V. A.

    2000-11-01

    We have analysed the effect of kinematic pairing on the symmetry of superconducting order parameter for a square lattice in the frame of the strongly correlated Hubbard model. It is argued that in the first perturbation order the kinematic interaction renormalizes the Hubbard-I dispersions and provides at low doping the mixed singlet (s + s*)-wave superconductivity, giving way at higher doping to the triplet p-wave superconductivity. The obtained phase diagram depends only on the hopping integral parameter. The influence of the Coulomb repulsion on the kinematic superconducting pairing has been estimated. The (s + s*)-wave gap and the thermodynamic critical magnetic field have been derived.

  6. Superconducting fault current limiter for railway transport

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, L. M., E-mail: LMFisher@niitfa.ru; Alferov, D. F.; Akhmetgareev, M. R.; Budovskii, A. I.; Evsin, D. V.; Voloshin, I. F.; Kalinov, A. V. [National Technical Physics and Automation Research Institute (Russian Federation)

    2015-12-15

    A resistive switching superconducting fault current limiter (SFCL) for DC networks with voltage of 3.5 kV and nominal current of 2 kA is developed. The SFCL consists of two series-connected units: block of superconducting modules and high-speed vacuum breaker with total disconnection time not more than 8 ms. The results of laboratory tests of superconducting SFCL modules in current limiting mode are presented. The recovery time of superconductivity is experimentally determined. The possibility of application of SFCL on traction substations of Russian Railways is considered.

  7. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  8. Filter holder and gasket assembly for candle or tube filters

    Science.gov (United States)

    Lippert, Thomas Edwin; Alvin, Mary Anne; Bruck, Gerald Joseph; Smeltzer, Eugene E.

    1999-03-02

    A filter holder and gasket assembly for holding a candle filter element within a hot gas cleanup system pressure vessel. The filter holder and gasket assembly includes a filter housing, an annular spacer ring securely attached within the filter housing, a gasket sock, a top gasket, a middle gasket and a cast nut.

  9. An Efficient Filter Banks Based Multicarrier System in Cognitive Radio Networks (invited paper

    Directory of Open Access Journals (Sweden)

    H. Zhang

    2010-12-01

    Full Text Available In cognitive radio techniques, OFDM is usually regarded as the physical layer candidate. However, the weaknesses of the OFDM technique, i.e., using plain FFT for spectral analysis , decreased bandwidth efficiency due to CP (cyclic prefix, high out-of-band emission, have been pointed out and the introduction of filter banks based multicarrier (FBMC system has been advocated by a number of authors. In this paper, we propose an efficient FBMC system for cognitive radio network. At the transmitter, we propose a decimation transform decomposition method to eliminate the unnecessary zero operations. At the receiver, we utilize the analysis filter banks to sense the spectrum bands. In order to conquer the shortages of the traditional filter banks, we propose a multistage analysis filter banks, which can reduce the computational complexity while improve the detection precision when used to sense the spectrum bands. And with an adaptive threshold scheme in the power estimator, the threshold can be kept very close to the noise power, which can increase the detection probability especially in the condition of low SNR.

  10. Point Spread Function (PSF) noise filter strategy for geiger mode LiDAR

    Science.gov (United States)

    Smith, O'Neil; Stark, Robert; Smith, Philip; St. Romain, Randall; Blask, Steven

    2013-05-01

    LiDAR is an efficient optical remote sensing technology that has application in geography, forestry, and defense. The effectiveness is often limited by signal-to-noise ratio (SNR). Geiger mode avalanche photodiode (APD) detectors are able to operate above critical voltage, and a single photoelectron can initiate the current surge, making the device very sensitive. These advantages come at the expense of requiring computationally intensive noise filtering techniques. Noise is a problem which affects the imaging system and reduces the capability. Common noise-reduction algorithms have drawbacks such as over aggressive filtering, or decimating in order to improve quality and performance. In recent years, there has been growing interest on GPUs (Graphics Processing Units) for their ability to perform powerful massive parallel processing. In this paper, we leverage this capability to reduce the processing latency. The Point Spread Function (PSF) filter algorithm is a local spatial measure that has been GPGPU accelerated. The idea is to use a kernel density estimation technique for point clustering. We associate a local likelihood measure with every point of the input data capturing the probability that a 3D point is true target-return photons or noise (background photons, dark-current). This process suppresses noise and allows for detection of outliers. We apply this approach to the LiDAR noise filtering problem for which we have recognized a speed-up factor of 30-50 times compared to traditional sequential CPU implementation.

  11. Topological superconductivity induced by ferromagnetic metal chains

    Science.gov (United States)

    Li, Jian; Chen, Hua; Drozdov, Ilya K.; Yazdani, A.; Bernevig, B. Andrei; MacDonald, A. H.

    2014-12-01

    Recent experiments have provided evidence that one-dimensional (1D) topological superconductivity can be realized experimentally by placing transition-metal atoms that form a ferromagnetic chain on a superconducting substrate. We address some properties of this type of system by using a Slater-Koster tight-binding model to account for important features of the electronic structure of the transition-metal chains on the superconducting substrate. We predict that topological superconductivity is nearly universal when ferromagnetic transition-metal chains form straight lines on superconducting substrates and that it is possible for more complex chain structures. When the chain is weakly coupled to the substrate and is longer than superconducting coherence lengths, its proximity-induced superconducting gap is ˜Δ ESO/J where Δ is the s -wave pair potential on the chain, ESO is the spin-orbit splitting energy induced in the normal chain state bands by hybridization with the superconducting substrate, and J is the exchange splitting of the ferromagnetic chain d bands. Because of the topological character of the 1D superconducting state, Majorana end modes appear within the gaps of finite length chains. We find, in agreement with the experiment, that when the chain and substrate orbitals are strongly hybridized, Majorana end modes are substantially reduced in amplitude when separated from the chain end by less than the coherence length defined by the p -wave superconducting gap. We conclude that Pb is a particularly favorable substrate material for ferromagnetic chain topological superconductivity because it provides both strong s -wave pairing and strong Rashba spin-orbit coupling, but that there is an opportunity to optimize properties by varying the atomic composition and structure of the chain. Finally, we note that in the absence of disorder, a new chain magnetic symmetry, one that is also present in the crystalline topological insulators, can stabilize multiple

  12. Fast Anisotropic Gauss Filtering

    NARCIS (Netherlands)

    Geusebroek, J.M.; Smeulders, A.W.M.; van de Weijer, J.; Heyden, A.; Sparr, G.; Nielsen, M.; Johansen, P.

    2002-01-01

    We derive the decomposition of the anisotropic Gaussian in a one dimensional Gauss filter in the x-direction followed by a one dimensional filter in a non-orthogonal direction phi. So also the anisotropic Gaussian can be decomposed by dimension. This appears to be extremely efficient from a computin

  13. Multilevel ensemble Kalman filter

    KAUST Repository

    Chernov, Alexey

    2016-01-06

    This work embeds a multilevel Monte Carlo (MLMC) sampling strategy into the Monte Carlo step of the ensemble Kalman filter (EnKF). In terms of computational cost vs. approximation error the asymptotic performance of the multilevel ensemble Kalman filter (MLEnKF) is superior to the EnKF s.

  14. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Wells, George; Beaton, Dorcas E; Tugwell, Peter;

    2014-01-01

    The "Discrimination" part of the OMERACT Filter asks whether a measure discriminates between situations that are of interest. "Feasibility" in the OMERACT Filter encompasses the practical considerations of using an instrument, including its ease of use, time to complete, monetary costs, and inter...

  15. Vena cava filter; Vena-cava-Filter

    Energy Technology Data Exchange (ETDEWEB)

    Helmberger, T. [Klinikum Bogenhausen, Institut fuer Diagnostische und Interventionelle Radiologie und Nuklearmedizin, Muenchen (Germany)

    2007-05-15

    Fulminant pulmonary embolism is one of the major causes of death in the Western World. In most cases, deep leg and pelvic venous thrombosis are the cause. If an anticoagulant/thrombotic therapy is no longer possible or ineffective, a vena cava filter implant may be indicated if an embolism is threatening. Implantation of the filter is a simple and safe intervention. Nevertheless, it is necessary to take into consideration that the data base for determining the indications for this treatment are very limited. Currently, a reduction in the risk of thromboembolism with the use of filters of about 30%, of recurrences of almost 5% and fatal pulmonary embolism of 1% has been reported, with a risk of up to 20% of filter induced vena cava thrombosis. (orig.) [German] Die fulminante Lungenembolie zaehlt zu den Haupttodesursachen in der westlichen Welt. In der Mehrzahl der Faelle sind tiefe Bein- und Beckenvenenthrombosen ursaechlich verantwortlich. Ist eine antikoagulative/-thrombotische Therapie nicht (mehr) moeglich oder unwirksam, kann bei drohender Emboliegefahr die Vena-cava-Filterimplantation indiziert sein. Die Filterimplantation ist eine einfache und sehr sichere Intervention. Dennoch muss bei der Indikationsstellung beruecksichtigt werden, dass die Datenlage zur Wirksamkeit sehr limitiert ist. So wird aktuell ueber eine Reduktion des Thrombembolierisikos um 30% bei Embolierezidiven von knapp 5% und fatalen Lungenembolien von 1% unter Filterprophylaxe berichtet, bei einem Risiko von bis zu 20% fuer die filterinduzierte Vena-cava-Thrombose. (orig.)

  16. Hardware Architecture of Polyphase Filter Banks Performing Embedded Resampling for SoftwareDefined Radio FrontEnds

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    In this paper, we describe resourceefficient hardware architectures for softwaredefined radio (SDR) frontends. These architectures are made efficient by using a polyphase channelizer that performs arbitrary sample rate changes, frequency selection, and bandwidth control. We discuss area, time, and power optimization for field programmable gate array (FPGA) based architectures in an Mpath polyphase filter bank with modified Npath polyphase filter. Such systems allow resampling by arbitrary ratios while simultaneously performing baseband aliasing from center frequencies at Nyquist zones that are not multiples of the output sample rate. A nonmaximally decimated polyphase filter bank, where the number of data loads is not equal to the number of M subfilters, processes M subfilters in a time period that is either less than or greater than the Mdataload ' s time period. We present a loadprocess architecture (LPA) and a runtime architecture (RA) (based on serial polyphase structure) which have different scheduling. In LPA, Nsubfilters are loaded, and then M subfilters are processed at a clock rate that is a multiple of the input data rate. This is necessary to meet the output time constraint of the down-sampled data. In RA, Msubfilters processes are efficiently scheduled within Ndataload time while simultaneously loading N subfilters. This requires reduced clock rates compared with LPA, and potentially less power is consumed. A polyphase filter bank that uses different resampling factors for maximally decimated, underdecimated, overdecimated, and combined upand downsampled scenarios is used as a case study, and an analysis of area, time, and power for their FPGA architectures is given. For resourceoptimized SDR frontends, RA is superior for reducing operating clock rates and dynamic power consumption. RA is also superior for reducing area resources, except when indices are prestored in LUTs.

  17. Weighted guided image filtering.

    Science.gov (United States)

    Li, Zhengguo; Zheng, Jinghong; Zhu, Zijian; Yao, Wei; Wu, Shiqian

    2015-01-01

    It is known that local filtering-based edge preserving smoothing techniques suffer from halo artifacts. In this paper, a weighted guided image filter (WGIF) is introduced by incorporating an edge-aware weighting into an existing guided image filter (GIF) to address the problem. The WGIF inherits advantages of both global and local smoothing filters in the sense that: 1) the complexity of the WGIF is O(N) for an image with N pixels, which is same as the GIF and 2) the WGIF can avoid halo artifacts like the existing global smoothing filters. The WGIF is applied for single image detail enhancement, single image haze removal, and fusion of differently exposed images. Experimental results show that the resultant algorithms produce images with better visual quality and at the same time halo artifacts can be reduced/avoided from appearing in the final images with negligible increment on running times.

  18. Robustifying Vector Median Filter

    Directory of Open Access Journals (Sweden)

    Valentín Gregori

    2011-08-01

    Full Text Available This paper describes two methods for impulse noise reduction in colour images that outperform the vector median filter from the noise reduction capability point of view. Both methods work by determining first the vector median in a given filtering window. Then, the use of complimentary information from componentwise analysis allows to build robust outputs from more reliable components. The correlation among the colour channels is taken into account in the processing and, as a result, a more robust filter able to process colour images without introducing colour artifacts is obtained. Experimental results show that the images filtered with the proposed method contain less noisy pixels than those obtained through the vector median filter. Objective measures demonstrate the goodness of the achieved improvement.

  19. Filter cake breaker systems

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, Marcelo H.F. [Poland Quimica Ltda., Duque de Caxias, RJ (Brazil)

    2004-07-01

    Drilling fluids filter cakes are based on a combination of properly graded dispersed particles and polysaccharide polymers. High efficiency filter cakes are formed by these combination , and their formation on wellbore walls during the drilling process has, among other roles, the task of protecting the formation from instantaneous or accumulative invasion of drilling fluid filtrate, granting stability to well and production zones. Filter cake minimizes contact between drilling fluid filtrate and water, hydrocarbons and clay existent in formations. The uniform removal of the filter cake from the entire interval is a critical factor of the completion process. The main methods used to breaking filter cake are classified into two groups, external or internal, according to their removal mechanism. The aim of this work is the presentation of these mechanisms as well their efficiency. (author)

  20. Naive Bayesian for Email Filtering

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The paper presents a method of email filter based on Naive Bayesian theory that can effectively filter junk mail and illegal mail. Furthermore, the keys of implementation are discussed in detail. The filtering model is obtained from training set of email. The filtering can be done without the users specification of filtering rules.

  1. Superconducting integrated submillimeter receiver for TELIS

    NARCIS (Netherlands)

    Koshelets, Valery P.; Ermakov, Andrey B.; Filippenko, Lyudmila V.; Khudchenko, Andrey V.; Kiselev, Oleg S.; Sobolev, Alexander S.; Torgashin, Mikhail Yu.; Yagoubov, Pavel A.; Hoogeveen, Ruud W. M.; Wild, Wolfgang

    2007-01-01

    In this report an overview of the results on the development of a single-chip superconducting integrated receiver for the Terahertz Limb Sounder (TELIS) balloon project intended to measure a variety of stratosphere trace gases is presented. The Superconducting Integrated Receiver (SIR) comprises in

  2. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept...

  3. 17th International Conference on RF Superconductivity

    CERN Document Server

    2015-01-01

    RF superconductivity is the key technology of accelerators for particle physics, nuclear physics and light sources. SRF 2015 covered the latest advances in the science, technology, and applications of superconducting RF. There was also an industrial exhibit during the conference with the key vendors in the community available to discuss their capabilities and products.

  4. Superconducting magnets. Citations from NTIS data base

    Science.gov (United States)

    Reimherr, G. W.

    1980-10-01

    The cited reports discuss research on materials studies, theory, design and applications of superconducting magnets. Examples of applications include particle accelerators, MHD power generation, superconducting generators, nuclear fusion research devices, energy storage systems, and magnetic levitation. This updated bibliography contains 218 citations, 88 of which are new entries to the previous edition.

  5. Superconducting Materials, Magnets and Electric Power Applications

    Science.gov (United States)

    Crabtree, George

    2011-03-01

    The surprising discovery of superconductivity a century ago launched a chain of convention-shattering innovations and discoveries in superconducting materials and applications that continues to this day. The range of large-scale applications grows with new materials discoveries - low temperature NbTi and Nb3 Sn for liquid helium cooled superconducting magnets, intermediate temperature MgB2 for inexpensive cryocooled applications including MRI magnets, and high temperature YBCO and BSSCO for high current applications cooled with inexpensive liquid nitrogen. Applications based on YBCO address critical emerging challenges for the electricity grid, including high capacity superconducting cables to distribute power in urban areas; transmission of renewable electricity over long distances from source to load; high capacity DC interconnections among the three US grids; fast, self-healing fault current limiters to increase reliability; low-weight, high capacity generators enabling off-shore wind turbines; and superconducting magnetic energy storage for smoothing the variability of renewable sources. In addition to these grid applications, coated conductors based on YBCO deposited on strong Hastelloy substrates enable a new generation of all superconducting high field magnets capable of producing fields above 30 T, approximately 50% higher than the existing all superconducting limit based on Nb3 Sn . The high fields, low power cost and the quiet electromagnetic and mechanical operation of such magnets could change the character of high field basic research on materials, enable a new generation of high-energy colliding beam experiments and extend the reach of high density superconducting magnetic energy storage.

  6. Superconducting chip receivers for imaging application

    NARCIS (Netherlands)

    Shitov, SV; Koshelets, VP; Ermakov, AB; Filippenko, LV; Baryshev, AM; Luinge, W; Gao, [No Value

    1999-01-01

    Experimental details of a unique superconducting imaging array receiver are discussed. Each pixel contains an internally pumped receiver chip mounted on the back of the elliptical microwave lens. Each chip comprises a quasi-optical SIS mixer integrated with a superconducting flux-flow oscillator (FF

  7. Diagram of a LEP superconducting cavity

    CERN Multimedia

    1991-01-01

    This diagram gives a schematic representation of the superconducting radio-frequency cavities at LEP. Liquid helium is used to cool the cavity to 4.5 degrees above absolute zero so that very high electric fields can be produced, increasing the operating energy of the accelerator. Superconducting cavities were used only in the LEP-2 phase of the accelerator, from 1996 to 2000.

  8. 17th International Conference on RF Superconductivity

    CERN Document Server

    Laxdal, Robert E.; Schaa, Volker R.W.

    2015-01-01

    RF superconductivity is the key technology of accelerators for particle physics, nuclear physics and light sources. SRF 2015 covered the latest advances in the science, technology, and applications of superconducting RF. There was also an industrial exhibit during the conference with the key vendors in the community available to discuss their capabilities and products.

  9. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig; Sakai, S

    1998-01-01

    We derive an analytical solution for the Josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low-T-c systems with magnetic coupling between the superconducting layers. but many features of our results are more general, and thus an application...

  10. Research progresses shed light on superconductivity mechanism

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The spring of 2008 saw substantial breakthroughs in superconductivity research. Four groups of physicists, one after another, achieved remarkable progresses in the study of iron-based materials after the breakthrough made by H. Hosono's group in Japan, providing renewed insights into the fundamental mechanism of high-temperature superconductivity (HTSC), a perplexing enigma on the frontier of condensed matter physics.

  11. Josephson plasma resonance in superconducting multilayers

    DEFF Research Database (Denmark)

    Pedersen, Niels Falsig

    1999-01-01

    We derive an analytical solution for the josephson plasma resonance of superconducting multilayers. This analytical solution is derived mainly for low T-c systems with magnetic coupling between the superconducting layers, but many features of our results are more general, and thus an application...

  12. Interfacing superconducting qubits and single optical photons

    NARCIS (Netherlands)

    Das, Sumanta; Faez, Sanli; Sørensen, Anders S.

    2016-01-01

    We propose an efficient light-matter interface at optical frequencies between a superconducting qubit and a single photon. The desired interface is based on a hybrid architecture composed of an organic molecule embedded inside an optical waveguide and electrically coupled to a superconducting qubit

  13. Interaction between ionic lattices and superconducting condensates

    OpenAIRE

    2007-01-01

    The interaction of the ionic lattice with the superconducting condensate is treated in terms of the electrostatic force in superconductors. It is shown that this force is similar but not identical to the force suggested by the volume difference of the normal and superconducting states. The BCS theory shows larger deviations than the two-fluid model.

  14. Superconductivity in compensated and uncompensated semiconductors.

    Science.gov (United States)

    Yanase, Youichi; Yorozu, Naoyuki

    2008-12-01

    We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  15. Superconductivity in compensated and uncompensated semiconductors

    Directory of Open Access Journals (Sweden)

    Youichi Yanase and Naoyuki Yorozu

    2008-01-01

    Full Text Available We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  16. Method for producing substrates for superconducting layers

    DEFF Research Database (Denmark)

    2013-01-01

    There is provided a method for producing a substrate (600) suitable for supporting an elongated superconducting element, wherein, e.g., a deformation process is utilized in order to form disruptive strips in a layered solid element, and where etching is used to form undercut volumes (330, 332......) between an upper layer (316) and a lower layer (303) of the layered solid element. Such relatively simple steps enable providing a substrate which may be turned into a superconducting structure, such as a superconducting tape, having reduced AC losses, since the undercut volumes (330, 332) may be useful...... for separating layers of material. In a further embodiment, there is placed a superconducting layer on top of the upper layer (316) and/or lower layer (303), so as to provide a superconducting structure with reduced AC losses....

  17. Superconducting Radio Frequency Technology: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel

    2003-06-01

    Superconducting RF cavities are becoming more often the choice for larger scale particle accelerator projects such as linear colliders, energy recovery linacs, free electron lasers or storage rings. Among the many advantages compared to normal conducting copper structures, the superconducting devices dissipate less rf power, permit higher accelerating gradients in CW operation and provide better quality particle beams. In most cases these accelerating cavities are fabricated from high purity bulk niobium, which has superior superconducting properties such as critical temperature and critical magnetic field when compared to other superconducting materials. Research during the last decade has shown, that the metallurgical properties--purity, grain structure, mechanical properties and oxidation behavior--have significant influence on the performance of these accelerating devices. This contribution attempts to give a short overview of the superconducting RF technology with emphasis on the importance of the material properties of the high purity niobium.

  18. STRIPES AND SUPERCONDUCTIVITY IN CUPRATE SUPERCONDUCTORS

    Energy Technology Data Exchange (ETDEWEB)

    TRANQUADA, J.M.

    2005-08-22

    One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.

  19. Stripes and superconductivity in cuprate superconductors

    Science.gov (United States)

    Tranquada, J. M.

    2005-08-01

    One type of order that has been observed to compete with superconductivity in cuprates involves alternating charge and antiferromagnetic stripes. Recent neutron scattering studies indicate that the magnetic excitation spectrum of a stripe-ordered sample is very similar to that observed in superconducting samples. In fact, it now appears that there may be a universal magnetic spectrum for the cuprates. One likely implication of this universal spectrum is that stripes of a dynamic form are present in the superconducting samples. On cooling through the superconducting transition temperature, a gap opens in the magnetic spectrum, and the weight lost at low energy piles up above the gap; the transition temperature is correlated with the size of the spin gap. Depending on the magnitude of the spin gap with respect to the magnetic spectrum, the enhanced magnetic scattering at low temperature can be either commensurate or incommensurate. Connections between stripe correlations and superconductivity are discussed.

  20. Free-standing oxide superconducting articles

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A substrate-free, free-standing epitaxially oriented superconductive film including a layer of a template material and a layer of a ceramic superconducting material is provided together with a method of making such a substrate-free ceramic superconductive film by coating an etchable material with a template layer, coating the template layer with a layer of a ceramic superconductive material, coating the layer of ceramic superconductive material with a protective material, removing the etchable material by an appropriate means so that the etchable material is separated from a composite structure including the template lay This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  1. Development of Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2012-01-01

    (HTS); and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are however not without their challenges. The superconductors have to be cooled down......In this paper the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... to somewhere between 4K and 50K, depending on what type of superconductor is employed, which poses a significant challenge both from a construction and operation point of view. The high temperature superconductors can facilitate a higher operation temperature and simplified cooling, but the current price...

  2. All-optical 4-bit binary to binary coded decimal converter with the help of semiconductor optical amplifier-assisted Sagnac switch

    Science.gov (United States)

    Bhattachryya, Arunava; Kumar Gayen, Dilip; Chattopadhyay, Tanay

    2013-04-01

    All-optical 4-bit binary to binary coded decimal (BCD) converter has been proposed and described, with the help of semiconductor optical amplifier (SOA)-assisted Sagnac interferometric switches in this manuscript. The paper describes all-optical conversion scheme using a set of all-optical switches. BCD is common in computer systems that display numeric values, especially in those consisting solely of digital logic with no microprocessor. In many personal computers, the basic input/output system (BIOS) keep the date and time in BCD format. The operations of the circuit are studied theoretically and analyzed through numerical simulations. The model accounts for the SOA small signal gain, line-width enhancement factor and carrier lifetime, the switching pulse energy and width, and the Sagnac loop asymmetry. By undertaking a detailed numerical simulation the influence of these key parameters on the metrics that determine the quality of switching is thoroughly investigated.

  3. A Generic Data Type: the Decimal Floating Point Data%一种通用的数据类型 ——十进制浮点数

    Institute of Scientific and Technical Information of China (English)

    黄惠生

    2001-01-01

    为智能仪表提供一种"十进制浮点数",其特点是值域宽、值准确,它能代替整型、长整型、三字节浮点数、四字节浮点数、BCD码数。用它通信可简化和统一仪表的通信协议,为制定仪表通用通信协议标准创造条件。%A decimal floating point data type is stated for intelligent instruents. Its features include wide value domain and high precision. It can replace integral, long integral, three-byte floating point data, four-byte floating data and BCD code data. The communication can be simplified and the protocol can be uniformed by using this data type. Thus it creates the basis for drawing up the generic commication protocol.

  4. Adaptabilidad de la Clasificación Decimal Dewey para la organización de contenidos: de los estantes a la Web

    OpenAIRE

    Wilmer Arturo Moyano-Grimaldo

    2017-01-01

    Desde el año 1876, cuando Melvil Dewey publicó la primera edición de su sistema de clasificación bibliográfico, este ha ido evolucionando como un sistema de clasificación muy firme y adaptable que permite organizar de manera práctica el conocimiento, incluso en la Internet. El presente artículo, es derivado de una investigación doctoral desarrollada durante 5 años acerca de diferentes aspectos semánticos, epistemológicos, históricos y tecnológicos de la Clasificación Decimal Dewey, intentará...

  5. Quantum Memristors with Superconducting Circuits

    Science.gov (United States)

    Salmilehto, J.; Deppe, F.; di Ventra, M.; Sanz, M.; Solano, E.

    2017-02-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.

  6. Superconductivity in Metals and Alloys

    Science.gov (United States)

    1963-02-01

    sintered material (Reed, Gatos , LaFleur, and Roddy, 1962). It has great importance for any materials work, since generalizations based only on stoichio...1961),Phys. Rev. Letters 6, 597. Goodman, B. B., (1962) IBM J. Research and Development 6, 63. Gor’kov, L. P., (1960), Soy . Phys. JETP 10, 998...34Superconductivity in Metals and Alloys-Technical Documentary Report No. ASD-TDR-62-269, Contract No. AF 33(616)-640 5. Reed, T. B., Gatos , H. C., LaFleur, W. j

  7. The crystallography of color superconductivity

    CERN Document Server

    Bowers, J A; Bowers, Jeffrey A.; Rajagopal, Krishna

    2003-01-01

    We describe the crystalline phase of color superconducting quark matter. This phase may occur in quark matter at densities relevant for compact star physics, with possible implications for glitch phenomena in pulsars. We use a Ginzburg-Landau approach to determine that the crystal has a face-centered-cubic (FCC) structure. Moreover, our results indicate that the phase is robust, with gaps, critical temperature, and free energy comparable to those of the color-flavor-locked (CFL) phase. Our calculations also predict ``crystalline superfluidity'' in ultracold gases of fermionic atoms.

  8. Superconductivity, antiferromagnetism, and neutron scattering

    Science.gov (United States)

    Tranquada, John M.; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-01

    High-temperature superconductivity in both the copper-oxide and the iron-pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues.

  9. Superconductivity a very short introduction

    CERN Document Server

    Blundell, Stephen

    2009-01-01

    Superconductivity is one of the most exciting areas of research in physics today. Outlining the history of its discovery, and the race to understand its many mysterious and counter-intuitive phenomena, this Very Short Introduction explains in accessible terms the theories that have been developed, and how they have influenced other areas of science, including the Higgs boson of particle physics and ideas about the early Universe. It is an engaging and informative accountof a fascinating scientific detective story, and an intelligible insight into some deep and beautiful ideas of physics

  10. Quantum Memristors with Superconducting Circuits

    Science.gov (United States)

    Salmilehto, J.; Deppe, F.; Di Ventra, M.; Sanz, M.; Solano, E.

    2017-01-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system. PMID:28195193

  11. Superconductive Signal-Processing Circuits

    Science.gov (United States)

    1994-08-01

    September 1991. 13. P. H. Xiao, E. Charbon , A. Sangiovanni-Vincentelli, T. Van Duzer,and S.W. Whiteley, "INDEX: An inductance extractor for superconducting...wideband analog-to-digital to a useful binary representation. In order to achieve an N-bit converter reported earlier [1]. The original design has been...rises, the SQUID Parameter Original Modified switches to the voltage state, and the output goes high. Ic(J1) 337 367 I tA S gaicGate: The comparator

  12. Fermionic models with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2015-12-01

    We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)

  13. Terahertz superconducting plasmonic hole array

    CERN Document Server

    Tian, Zhen; Han, Jiaguang; Gu, Jianqiang; Xing, Qirong; Zhang, Weili

    2010-01-01

    We demonstrate thermally tunable superconductor hole array with active control over their resonant transmission induced by surface plasmon polaritons . The array was lithographically fabricated on high temperature YBCO superconductor and characterized by terahertz-time domain spectroscopy. We observe a clear transition from the virtual excitation of the surface plasmon mode to the real surface plasmon mode. The highly tunable superconducting plasmonic hole arrays may have promising applications in the design of low-loss, large dynamic range amplitude modulation, and surface plasmon based terahertz devices.

  14. Origini Concettuali di Errori che si Riscontrano Nel Confrontare Numeri Decimali e Frazioni=Conceptual Sources of Difficulties Concerning the Ordering of Decimal Numbers and the Comparison of Fractions.

    Science.gov (United States)

    Bonotto, C.

    1993-01-01

    Examined fifth-grade students' survey responses to investigate incorrect rules that derive from children's efforts to interpret decimals as integers or as fractions. Regarding fractions, difficulties arise because only the whole-part approach to fractions is presented in elementary school. (Author/MDH)

  15. Origini Concettuali di Errori che si Riscontrano Nel Confrontare Numeri Decimali e Frazioni=Conceptual Sources of Difficulties Concerning the Ordering of Decimal Numbers and the Comparison of Fractions.

    Science.gov (United States)

    Bonotto, C.

    1993-01-01

    Examined fifth-grade students' survey responses to investigate incorrect rules that derive from children's efforts to interpret decimals as integers or as fractions. Regarding fractions, difficulties arise because only the whole-part approach to fractions is presented in elementary school. (Author/MDH)

  16. The Development and Operation of a System to Reclassify Older Books Under the Library of Congress Classification System for a Public Library Currently Employing the Dewey Decimal Classification. Final Report.

    Science.gov (United States)

    Pinson, Leo A.

    Objectives of this project were: (1) to uncover problems a public library might encounter in reclassifying its collection from the Dewey Decimal Classification to the Library of Congress Classification, (2) to apply data processing to the tasks, (3) to establish procedures for reclassification, and (4) to provide a cost estimate for the conversion…

  17. Derivative free filtering using Kalmtool

    DEFF Research Database (Denmark)

    Bayramoglu, Enis; Hansen, Søren; Ravn, Ole;

    2010-01-01

    In this paper we present a toolbox enabling easy evaluation and comparison of different filtering algorithms. The toolbox is called Kalmtool 4 and is a set of MATLAB tools for state estimation of nonlinear systems. The toolbox contains functions for extended Kalman filtering as well as for DD1...... filter and the DD2 filter. It also contains functions for Unscented Kalman filters as well as several versions of particle filters. The toolbox requires MATLAB version 7, but no additional toolboxes are required....

  18. Fabrication and laboratory testing of a high-temperature superconducting subsystem for DSC1800 mobile communications

    CERN Document Server

    LiuKun; Zhu Mei Hong; Wei Bin; Liu Bang Chang; Zhang Xia; Gao Long Ma; Zhang Guo Yong; He Wen Jun; Gao Bao Xin

    2002-01-01

    In this paper, we report on the design, fabrication and testing of a 20-pole high-temperature superconducting (HTS) filter for DSC1800 mobile communications with the pass band from 1710 to 1785 MHz. The test results show that the insertion loss of the pass band is less than 0.3 dB, the out-of-band rejection is better than 65 dB, and the steepness of the band edges is greater than 14 dB MHz sup - sup 1. We also tested an HTS subsystem, which consists of the HTS filter, a low-noise amplifier (LNA) with 21 dB gain and a Stirling Cooler, and a traditional subsystem, which consists of a traditional filter and a LNA with 23 dB gain. The results show that the HTS subsystem is much better than the conventional subsystem.

  19. Circuits and filters handbook

    CERN Document Server

    Chen, Wai-Kai

    2003-01-01

    A bestseller in its first edition, The Circuits and Filters Handbook has been thoroughly updated to provide the most current, most comprehensive information available in both the classical and emerging fields of circuits and filters, both analog and digital. This edition contains 29 new chapters, with significant additions in the areas of computer-aided design, circuit simulation, VLSI circuits, design automation, and active and digital filters. It will undoubtedly take its place as the engineer's first choice in looking for solutions to problems encountered in the design, analysis, and behavi

  20. EMI filter design

    CERN Document Server

    Ozenbaugh, Richard Lee

    2011-01-01

    With today's electrical and electronics systems requiring increased levels of performance and reliability, the design of robust EMI filters plays a critical role in EMC compliance. Using a mix of practical methods and theoretical analysis, EMI Filter Design, Third Edition presents both a hands-on and academic approach to the design of EMI filters and the selection of components values. The design approaches covered include matrix methods using table data and the use of Fourier analysis, Laplace transforms, and transfer function realization of LC structures. This edition has been fully revised

  1. Randomized Filtering Algorithms

    DEFF Research Database (Denmark)

    Katriel, Irit; Van Hentenryck, Pascal

    2008-01-01

    of AllDifferent and is generalization, the Global Cardinality Constraint. The first delayed filtering scheme is a Monte Carlo algorithm: its running time is superior, in the worst case, to that of enforcing are consistency after every domain event, while its filtering effectiveness is analyzed...... in the expected sense. The second scheme is a Las Vegas algorithm using filtering triggers: Its effectiveness is the same as enforcing are consistency after every domain event, while in the expected case it is faster by a factor of m/n, where n and m are, respectively, the number of nodes and edges...

  2. Superconductivity applications for infrared and microwave devices II; Proceedings of the Meeting, Orlando, FL, Apr. 4, 5, 1991

    Science.gov (United States)

    Heinen, Vernon O. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Topics discussed include thin-film technology, microwave transmission lines and resonators, microwave devices and circuits, infrared detectors and bolometers, and superconducting junctions. Papers are presented on possible enhancement in bolometric response using free-standing film of YBa2Cu3O(x), aging and surface instability in high-Tc superconductors, epitaxial Tl2Ba2CaCu2O8 thin films on LaAlO3 and their microwave device properties, the performance of stripline resonators using sputtered YBCO films, and a coplanar waveguide microwave filter of YBa2Cu3O7. Attention is also given to the performance characteristics of Y-Ba-Cu-O microwave superconducting detectors, high-Tc bolometer developments for planetary missions, infrared detectors from YBaCuO thin films, high-temperature superconductor junction technology, and submillimeter receiver components using superconducting tunnel junctions.

  3. Analysis of cutoff frequency in one dimensional ternary superconducting photonic crystal

    Science.gov (United States)

    K. P., Sreejith; Maria D'souza, Nirmala; Mathew, Vincent

    2017-09-01

    By means of two fluid model and transfer matrix method, we have theoretically investigated the transmittance property of a one dimensional ternary photonic crystal consist of a pair of superconducting materials and a dielectric in the infrared frequency region. We mainly focus on the analysis of cutoff frequency since the calculations can be useful in the fabrication of optical devices such as reflector, high pass filter etc. The study reveals that the cutoff frequency is sensitive to thickness of superconducting materials, dielectric layer thickness, operating temperature and refractive index of intermediate dielectric. Cutoff frequency shifted to higher frequency region on increasing number of periods and superconductor layer thickness where as it reduces on increasing dielectric thickness, operating temperature and refractive index of intermediate dielectric. Furthermore, we compared the cutoff frequency of three different 1D ternary photonic crystals comprising of a dielectric and a pair of high-high, high-low and low-low temperature superconducting materials. Our comparison results shows that the cutoff frequency can be effectively modified with different combination of superconducting materials.

  4. Air Filter Simulation by Geodict

    Institute of Scientific and Technical Information of China (English)

    WANG Xin-peng; Kitai Kim; Changhwan Lee; Jooyong Kim

    2006-01-01

    In this paper, we discussed the relationship of filter efficiency and pressure drop with the porosity, fiber diameter and filter thickness by Geodict. We found that filter efficiency will increase when filter porosity and fiber diameter decreasing or filter thickness increasing. And the pressure drop has a linear relationship with filter thickness and non-linear relationship with filter porosity and fiber diameter. We also compared the simulation results with the real test results by TSI 3160. Although there are some differences, I think Geodict can be used to predict filter efficiency and pressure drop.

  5. Characterization of superconducting multilayers samples

    CERN Document Server

    Antoine, C Z; Berry, S; Bouat, S; Jacquot, J F; Villegier, J C; Lamura, G; Gurevich, A

    2009-01-01

    Best RF bulk niobium accelerating cavities have nearly reached their ultimate limits at rf equatorial magnetic field H  200 mT close to the thermodynamic critical field Hc. In 2006 Gurevich proposed to use nanoscale layers of superconducting materials with high values of Hc > HcNb for magnetic shielding of bulk niobium to increase the breakdown magnetic field inside SC RF cavities [1]. Depositing good quality layers inside a whole cavity is rather difficult but we have sputtered high quality samples by applying the technique used for the preparation of superconducting electronics circuits and characterized these samples by X-ray reflectivity, dc resistivity (PPMS) and dc magnetization (SQUID). Dc magnetization curves of a 250 nm thick Nb film have been measured, with and without a magnetron sputtered coating of a single or multiple stack of 15 nm MgO and 25 nm NbN layers. The Nb samples with/without the coating clearly exhibit different behaviors. Because SQUID measurements are influenced by edge an...

  6. Recent developments in superconducting receivers

    Science.gov (United States)

    Richards, Paul L.

    1990-09-01

    A description is given of recent work at Berkeley on superconducting mixers and detectors for infrared and millimeter wavelengths. The first report is a review article which summarizes the status of development of superconducting components for infrared and millimeter wave receivers. The next report describes accurate measurements and also theoretical modeling of an SIS quasiparticle waveguide mixer for W-band which uses very high quality Ta junctions. The best mixer noise is only 1.3 times the quantum limit. Both the mixer gain and the noise are in quantitative agreement with the quantum theory. Next, a report is given on measurements and theoretical modeling of the absorptivity (surface resistance) of high quality epitaxial films of the high Tc superconductor YBCO from 750 GHz to 21 THz. Finally, there are reports on the design and experimental performance of two different types of high Tc bolometric detectors. One is a conventional bolometer with a gold-black absorber. The other is an antenna coupled microbolometer.

  7. Superconducting rf development at ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.; Kedzie, M.; Clifft, B.E. [Argonne National Lab., IL (United States); Roy, A.; Potukuchi, P. [Nuclear Science Centre, New Delhi (India); Givens, J.; Potter, J.; Crandall, K. [AccSys Technology, Inc., Pleasanton, CA (United States); Added, N. [Sao Paulo Univ., SP (Brazil)

    1993-12-31

    The ATLAS superconducting heavy-ion linac began operation in 1978 and has operated nearly continuously since that time, while undergoing a series of upgrades and expansions, the most recent being the ``uranium upgrade`` completed earlier this year and described below. In its present configuration the ATLAS linac consists of an array of 64 resonant cavities operating from 48 to 145 MHz, which match a range of particle velocities .007 < {beta} = v/c < .2. The linac provides approximately 50 MV of effective accelerating potential for ions of q/m > 1/10 over the entire periodic table. Delivered beams include 5 {minus} 7 pnA of {sup 238}U{sup 39+} at 1535 MeV. At present more than 10{sup 6} cavity-hours of operation at surface electric fields of 15 MV/m have been accumulated. Superconducting structure development at ATLAS is aimed at improving the cost/performance of existing low velocity structures both for possible future ATLAS upgrades, and also for heavy-ion linacs at other institutions. An application of particular current interest is to develop structures suitable for accelerating radioactive ion beams. Such structures must accelerate very low charge to mass ratio beams and must also have very large transverse acceptance.

  8. DC superconducting fault current limiter

    Science.gov (United States)

    Tixador, P.; Villard, C.; Cointe, Y.

    2006-03-01

    There is a lack of satisfying solutions for fault currents using conventional technologies, especially in DC networks, where a superconducting fault current limiter could play a very important part. DC networks bring a lot of advantages when compared to traditional AC ones, in particular within the context of the liberalization of the electric market. Under normal operation in a DC network, the losses in the superconducting element are nearly zero and only a small, i.e. a low cost, refrigeration system is then required. The absence of zero crossing of a DC fault current favourably accelerates the normal zone propagation. The very high current slope at the time of the short circuit in a DC grid is another favourable parameter. The material used for the experiments is YBCO deposited on Al2O3 as well as YBCO coated conductors. The DC limitation experiments are compared to AC ones at different frequencies (50-2000 Hz). Careful attention is paid to the quench homogenization, which is one of the key issues for an SC FCL. The University of Geneva has proposed constrictions. We have investigated an operating temperature higher than 77 K. As for YBCO bulk, an operation closer to the critical temperature brings a highly improved homogeneity in the electric field development. The material can then absorb large energies without degradation. We present tests at various temperatures. These promising results are to be confirmed over long lengths.

  9. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  10. Three-flavor color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Malekzadeh, H.

    2007-12-15

    I investigate some of the inert phases in three-flavor, spin-zero color-superconducting quark matter: the CFL phase (the analogue of the B phase in superfluid {sup 3}He), the A and A{sup *} phases, and the 2SC and sSC phases. I compute the pressure of these phases with and without the neutrality condition. Without the neutrality condition, after the CFL phase the sSC phase is the dominant phase. However, including the neutrality condition, the CFL phase is again the energetically favored phase except for a small region of intermediate densities where the 2SC/A{sup *} phase is favored. It is shown that the 2SC phase is identical to the A{sup *} phase up to a color rotation. In addition, I calculate the self-energies and the spectral densities of longitudinal and transverse gluons at zero temperature in color-superconducting quark matter in the CFL phase. I find a collective excitation, a plasmon, at energies smaller than two times the gap parameter and momenta smaller than about eight times the gap. The dispersion relation of this mode exhibits a minimum at some nonzero value of momentum, indicating a van Hove singularity. (orig.)

  11. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Kirwan, John R; Boers, Maarten; Hewlett, Sarah

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes that are......OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter presupposes an explicit framework for identifying the relevant core outcomes...... that are universal to all studies of the effects of intervention effects. There is no published outline for instrument choice or development that is aimed at measuring outcome, was derived from broad consensus over its underlying philosophy, or includes a structured and documented critique. Therefore, a new proposal...

  12. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    D'Agostino, Maria-Antonietta; Boers, Maarten; Kirwan, John

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides a framework for the validation of outcome measures for use in rheumatology clinical research. However, imaging and biochemical measures may face additional validation challenges because of their technical nature. The Imagin...

  13. Paul Rodgersi filter Kohilas

    Index Scriptorium Estoniae

    2000-01-01

    28. I Kohila keskkoolis kohaspetsiifiline skulptuur ja performance "Filter". Kooli 130. aastapäeva tähistava ettevõtmise eesotsas oli skulptor Paul Rodgers ja kaks viimase klassi noormeest ئ Marko Heinmäe, Hendrik Karm.

  14. Updating the OMERACT filter

    DEFF Research Database (Denmark)

    Tugwell, Peter; Boers, Maarten; D'Agostino, Maria-Antonietta

    2014-01-01

    OBJECTIVE: The Outcome Measures in Rheumatology (OMERACT) Filter provides guidelines for the development and validation of outcome measures for use in clinical research. The "Truth" section of the OMERACT Filter requires that criteria be met to demonstrate that the outcome instrument meets...... the criteria for content, face, and construct validity. METHODS: Discussion groups critically reviewed a variety of ways in which case studies of current OMERACT Working Groups complied with the Truth component of the Filter and what issues remained to be resolved. RESULTS: The case studies showed...... that there is broad agreement on criteria for meeting the Truth criteria through demonstration of content, face, and construct validity; however, several issues were identified that the Filter Working Group will need to address. CONCLUSION: These issues will require resolution to reach consensus on how Truth...

  15. Paul Rodgersi filter Kohilas

    Index Scriptorium Estoniae

    2000-01-01

    28. I Kohila keskkoolis kohaspetsiifiline skulptuur ja performance "Filter". Kooli 130. aastapäeva tähistava ettevõtmise eesotsas oli skulptor Paul Rodgers ja kaks viimase klassi noormeest ئ Marko Heinmäe, Hendrik Karm.

  16. HEPA air filter (image)

    Science.gov (United States)

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  17. Perspectives on Nonlinear Filtering

    KAUST Repository

    Law, Kody

    2015-01-07

    The solution to the problem of nonlinear filtering may be given either as an estimate of the signal (and ideally some measure of concentration), or as a full posterior distribution. Similarly, one may evaluate the fidelity of the filter either by its ability to track the signal or its proximity to the posterior filtering distribution. Hence, the field enjoys a lively symbiosis between probability and control theory, and there are plenty of applications which benefit from algorithmic advances, from signal processing, to econometrics, to large-scale ocean, atmosphere, and climate modeling. This talk will survey some recent theoretical results involving accurate signal tracking with noise-free (degenerate) dynamics in high-dimensions (infinite, in principle, but say d between 103 and 108 , depending on the size of your application and your computer), and high-fidelity approximations of the filtering distribution in low dimensions (say d between 1 and several 10s).

  18. Cryogenic coaxial microwave filters

    CERN Document Server

    Tancredi, G; Meeson, P J

    2014-01-01

    At millikelvin temperatures the careful filtering of electromagnetic radiation, especially in the microwave regime, is critical for controlling the electromagnetic environment for experiments in fields such as solid-state quantum information processing and quantum metrology. We present a design for a filter consisting of small diameter dissipative coaxial cables that is straightforward to construct and provides a quantitatively predictable attenuation spectrum. We describe the fabrication process and demonstrate that the performance of the filters is in good agreement with theoretical modelling. We further perform an indicative test of the performance of the filters by making current-voltage measurements of small, underdamped Josephson Junctions at 15 mK and we present the results.

  19. Holographic interference filters

    Science.gov (United States)

    Diehl, Damon W.

    Holographic mirrors have wavelength-selection properties and thus qualify as a class of interference filters. Two theoretical methods for analyzing such structures are developed. The first method uses Hill's matrix method to yield closed-forms solutions in terms of the Floquet-Bloch waves within a periodic structure. A process is developed for implementing this solution method on a computer, using sparse-matrix memory allocation, numerical root-finding algorithms, and inverse-iteration techniques. It is demonstrated that Hill's matrix method is valid for the analysis of finite and multi-periodic problems. The second method of theoretical analysis is a transfer-matrix technique, which is herein termed thin-film decomposition. It is shown that the two methods of solution yield results that differ by, at worst, a fraction of a percent. Using both calculation techniques, a number of example problems are explored. Of key importance is the construction of a set of curves that are useful for the design and characterization of holographic interference filters. In addition to the theoretical development, methods are presented for the fabrication of holographic interference filters using DuPont HRF-800X001 photopolymer. Central to the exposure system is a frequency-stabilized, tunable dye laser. The types of filters fabricated include single-tone reflection filters, two types of multitone reflection filters, and reflection filters for infrared wavelengths. These filters feature index profiles that are not easily attainable through other fabrication methods. As a supplement to the body of the dissertation, the computer algorithms developed to implement Hill's matrix method and thin-film decomposition are also included as an appendix. Further appendices provide more information on Floquet's theorem and Hill's matrix method. A final appendix presents a design for an infrared laser spectrophotometer.

  20. The Endogenous Kalman Filter

    OpenAIRE

    Brad Baxter; Liam Graham; Stephen Wright

    2007-01-01

    We relax the assumption of full information that underlies most dynamic general equilibrium models, and instead assume agents optimally form estimates of the states from an incomplete information set. We derive a version of the Kalman filter that is endogenous to agents' optimising decisions, and state conditions for its convergence. We show the (restrictive) conditions under which the endogenous Kalman filter will at least asymptotically reveal the true states. In general we show that incomp...