WorldWideScience

Sample records for superconducting transmission cable

  1. Energy losses of superconducting power transmission cables in the grid

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Okholm, Jan; Lomholt, Karin

    2001-01-01

    One of the obvious motives for development of superconducting power transmission cables is reduction of transmission losses. Loss components in superconducting cables as well as in conventional cables have been examined. These losses are used for calculating the total energy losses of conventional...... as well as superconducting cables when they are placed in the electric power transmission network. It is concluded that high load connections are necessary to obtain energy saving by the use of HTSC cables. For selected high load connections, an energy saving of 40% is expected. It is shown...... that the thermal insulation and cooling machine efficiency are the most important loss element in a superconducting cable system...

  2. Development of superconducting transmission cable. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.; Stovall, J.P. [Oak Ridge National Lab., TN (United States); Hughey, R.L.; Sinha, U.K. [Southwire Co., Carrollton, GA (United States)

    1997-10-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Southwire Company is to develop the technology necessary to proceed to commercialization of high-temperature superconducting (HTS) transmission cables. Power transmission cables are a promising near-term electric utility application for high-temperature superconductivity. Present HTS wires match the needs for a three-phase transmission cable: (1) the wires must conduct high currents in self-field, (2) there are no high forces developed, and (3) the cables may operate at relatively low current density. The commercially-available HTS wires, in 100-m lengths, make construction of a full three-phase, alternating current (ac) transmission cable possible. If completed through the pre-commercialization phase, this project will result in a new capability for electric power companies. The superconducting cable will enable delivery with greater efficiency, higher power density, and lower costs than many alternatives now on the market. Job creation in the US is expected as US manufacturers supply transmission cables to the expanding markets in Asia and to the densely populated European cities where pipe-type cable is prevalent. Finally, superconducting cables may enable delivery of the new, diverse and distributed sources of electricity that will constitute the majority of new installed electrical generation in the world during the coming decades.

  3. Analysis of DC Power Transmission Using High Tc Superconducting Cables

    Institute of Scientific and Technical Information of China (English)

    Jun-Lian Zhang; Jian-Xun Jin

    2008-01-01

    A conceptual superconducting DC cable model is designed and its magnetic fields distribution is analyzed with Ansoft/Maxwell soft. A DC Power transmission system is also studied by using the Matlab/Simulink. With the DC Line and AC Ground Fault, the system losses analysis is introduced.The analysis results mainly include the magnetic fields distribution of the HTS cable model with Ansoft/Maxwell, the system loss, the DC Line and AC Ground Fault with Matlab/Simulation.

  4. Cryogenic System for a High Temperature Superconducting Power Transmission Cable

    Energy Technology Data Exchange (ETDEWEB)

    Demko, J.A.; Gouge, M.J.; Hughey, R.L.; Lue, J.W.; Martin, R.; Sinha, U.; Stovall, J.P.

    1999-07-12

    High-temperature superconducting (HTS) cable systems for power transmission are under development that will use pressurized liquid nitrogen to provide cooling of the cable and termination hardware. Southwire Company and Oak Ridge National Laboratory have been operating a prototype HTS cable system that contains many of the typical components needed for a commercial power transmission application. It is being used to conduct research in the development of components and systems for eventual commercial deployment. The cryogenic system was built by Air Products and Chemicals, Allentown, Pennsylvania, and can circulate up to 0.35 kg/s of liquid nitrogen at temperatures as low as 67 K at pressures of 1 to 10 bars. Sufficient cooling is provided for testing a 5-m-long HTS transmission cable system that includes the terminations required for room temperature electrical connections. Testing of the 5-m HTS transmission cable has been conducted at the design ac conditions of 1250 A and 7.5 kV line to ground. This paper contains a description of the essential features of the HTS cable cryogenic system and performance results obtained during operation of the system. The salient features of the operation that are important in large commercial HTS cable applications will be discussed.

  5. Insulation systems for superconducting transmission cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1996-01-01

    the electrical insulation is placed outside both the superconducting tube and the cryostat. The superconducting tube is cooled by liquid nitrogen which is pumped through the hollow part of the tube.2) The cryogenic dielectric design, where the electrical insulation is placed inside the cryostat and thus is kept...

  6. Superconducting cables: Long distance energy transmission. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The bibliography contains citations concerning the design, development, and evaluation of superconducting cables and power transmission lines for long distance energy transmission. Topics include methods of cryogenic refrigeration and electrical insulation, fabrication and development of niobium alloy conductors, energy loss analysis, and dielectric design of superconducting power transmission systems. Government research reports on superconducting technology for electric power transmission and distribution are also reviewed.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  7. The US market for high-temperature superconducting wire in transmission cable applications

    Energy Technology Data Exchange (ETDEWEB)

    Forbes, D

    1996-04-01

    Telephone interviews were conducted with 23 utility engineers concerning the future prospects for high-temperature superconducting (HTS) transmission cables. All have direct responsibility for transmission in their utility, most of them in a management capacity. The engineers represented their utilities as members of the Electric Power Research Institute`s Underground Transmission Task Force (which has since been disbanded). In that capacity, they followed the superconducting transmission cable program and are aware of the cryogenic implications. Nineteen of the 23 engineers stated the market for underground transmission would grow during the next decade. Twelve of those specified an annual growth rate; the average of these responses was 5.6%. Adjusting that figure downward to incorporate the remaining responses, this study assumes an average growth rate of 3.4%. Factors driving the growth rate include the difficulty in securing rights-of-way for overhead lines, new construction techniques that reduce the costs of underground transmission, deregulation, and the possibility that public utility commissions will allow utilities to include overhead costs in their rate base. Utilities have few plans to replace existing cable as preventive maintenance, even though much of the existing cable has exceeded its 40-year lifetime. Ten of the respondents said the availability of a superconducting cable with the same life-cycle costs as a conventional cable and twice the ampacity would induce them to consider retrofits. The respondents said a cable with those characteristics would capture 73% of their cable retrofits.

  8. AC Loss of Ripple Current in Superconducting DC Power Transmission Cable

    Science.gov (United States)

    Yoshitomi, K.; Otabe, E. S.; Vyatkin, V. S.; Kiuchi, M.; Matsushita, T.; Hamabe, M.; Yamaguchi, S.; Inada, R.

    As a method of largely reducing the transmission loss in the electric power grid, superconducting direct current (DC) power transmission cable has been investigated. Using superconducting DC power transmission cables, large amounts of current and energy can be transferred compared to conventional copper cables. In this case, an alternating current (AC) is converted to DC and superposed AC which is known as ripple current, and the energy loss by the ripple current is generated. Therefore it is desired to estimate the energy loss density for the case of DC current and superposed AC current for a design of DC transmission cable system. In this study, the hysteresis loss for DC current of 2 kA rectified from 60 Hz alternating current is calculated using the Bean model, and coupling loss was also estimated. The diameter of the cable was 40 mm. The ripple currents generated by multi-pulse rectifiers, 6-pulse, 12-pulse, and 24-pulse were considered. It is found that the total AC loss including the hysteresis loss and the coupling loss is considerably smaller than the supposed heat loss of 0.5 W/m which is obtained with a newly developed cable.

  9. Concepts and methods of refrigeration for superconducting power transmission cables. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Manatt, S.A.; Wapato, P.G.; Stanko, J.; Baumgartner, J.P.

    1976-06-01

    An analysis of refrigeration system requirements for the superconducting power transmission cables currently under study at the three principal US cable development centers indicates the need for cable system design considering the interrelated performance of the various cable system elements to successfully develop these systems for commercial operation in the 1990's. Hardware alternatives, compatible with the application timeframe, are evaluated to establish reliable refrigerator system design to a composite requirement typical of the range of refrigerator requirements presented by the cables currently under development. In addition, a methodology is presented and utilized to establish an estimate of hardware reliability and to evaluate redundancy requirements to a specific refrigerator system reliability allocation for a cable system used in previous cable development center studies. Reliability and performance of several compressor systems are evaluated. The oil-flooded screw compressor is felt to be the superior positive displacement compressor; however, the efficiency advantage resulting from preliminary design analysis of a multistage compliant toll process gas bearing centrifugal compressor system indicates a potential major operating cost reduction and the elimination of the need for oil lubrication and its subsequent cleanup requirements. Heat exchangers and expansion engines are evaluated. A preliminary design for a compliant foil process gas bearing permanent magnet turboalternator operating entirely at expansion turbine temperatures is discussed.

  10. Current Sharing Technology in Transmission Conductors of Cold Dielectric High Temperature Superconducting Cables Using Second-generation HTS Wires

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiahui; BAO Xuzheng; QIU Ming

    2012-01-01

    The cold dielectric high temperature superconducting (CD HTS) cable has multilayer conductors. The non-uniform AC current distribution in these multilayer conductors will increase the AC loss and decrease the current transmission efficiency. So it is important to understand the current sharing among layers in order to fully exploit the performance of the HTS cable.

  11. Economical Aspects of Superconducting Cable

    Science.gov (United States)

    Ohya, Masayoshi

    High-temperature superconducting (HTS) cables are expected to resolve technical problems with power grids because they put large-capacity, low-loss power transmission into a compact package. One problem is replacing old 275-kV oil filled (OF) cables with cross-linked polyethylene insulated vinyl sheath cables (XLPE cables). This is difficult because XLPE cable has a lower transmission capacity than OF cable. In addition, the high concentration of public infrastructure underground makes it extremely difficult to build new ones. However, if 66-kV HTS cables can be installed inside existing underground conduits and can achieve a power capacity equivalent to conventional 275-kV cables, construction costs could be significantly reduced. Moreover, if XLPE cables are used for a 1,000 MVA-class transmission line, then three circuits of nine 275-kV single-core cables would be required, which would incur a transmission loss of 90 W/m/cct. Three circuits of three 66-kV Three-in-One HTS cables, however, with an AC loss of 1 W/m/ph@3 kA, heat invasion of 2 W/m, and cooling system efficiency of 0.1, would reduce transmission loss to less than three-fifths that of XLPE cables.

  12. Investigation of structure of superconducting power transmission cables with LN2 counter-flow cooling

    Science.gov (United States)

    Furuse, Mitsuho; Fuchino, Shuichiro; Higuchi, Noboru

    2003-04-01

    Establishment of long-distance cooling techniques and design of a compact cross section are required for development of HTC superconducting underground power cables. To save space of return coolant, a counter-flow cooling system appears promising. However, it is difficult to cool down long cables because of heat exchange between counter-flows due to high thermal conductivity of dielectric materials which separate both flows in range of liquid nitrogen temperature. We estimated temperature distributions analytically along model HTS power cables with counter-flow. Results of calculation showed that when liquid-nitrogen-impregnated polypropylene laminated paper was chosen for a dielectric material, great thickness was required to reduce heat exchange between counter-flows. We investigated various cable structures to optimize the counter-flow cooling system and cable size.

  13. Power applications for superconducting cables in Denmark

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Østergaard, Jacob; Olsen, S. Krüger

    1999-01-01

    In Denmark a growing concern for environmental protection has lead to wishes that the open country is kept free of overhead lines as far as possible. New lines under 100 kV and existing 60/50 kV lines should be established as underground cables. Superconducting cables represent an interesting...... alternative to conventional cables, as they are able to transmit two or more times the energy than a conventional cable. HTS cables with a room temperature dielectric design are especially interesting as a target for replacing overhead lines. Superconducting cables in the overall network are of interest...... in cases such as transmission of energy into cities and through areas of special interest. The planned large groups of windmills in Denmark generating up to 2000 MVA or more both on dry land and off-shore will be an obvious case for the application of superconducting AC or DC cables. These opportunities...

  14. The Danish Superconducting Cable Project

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1997-01-01

    The design and construction of a superconducting cable is described. The cable has a room temperature dielectric design with the cryostat placed inside the electrical insulation.BSCCO 2223 superconducting tapes wound in helix form around a former are used as the cable conductor. Results from...

  15. Brookhaven superconducting cable test facility

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, E.B.; Gibbs, R.J.

    1976-08-17

    Construction has started on an outdoor testing station for flexible ac superconducting power transmission cables. It is intended to serve as an intermediate step between laboratory-scale experiments and qualification testing of prototype-scale cables. The permanent equipment includes a 500 W supercritical helium refrigerator using a screw compressor and multistage turbine expanders. Helium storage for 250,000 cu ft of helium at 250 psi is provided. Initially, the cables will be tested in a horizontal cryostat some 250 ft long. High-voltage 60 Hz tests will be performed with the cable in a series resonant mode with a maximum line to ground capability of 240 kV, this is adequate for a 138 kV system design. Impulse testing up to about 650 kV is planned. The cable conductor will be energized by current transformers, initially at about 4 kA and later up to fault levels of 40 kA. The refrigerator is now at the site and testing on a dummy load will commence in the Fall of 1976. The cryostat will be installed in 1977 followed about a year later by the first cable tests.

  16. Semiannual report for the period October 1, 1978 to March 31, 1979 of work on: (1) superconducting power transmission system development; and (2) cable insulation development

    Energy Technology Data Exchange (ETDEWEB)

    1979-05-11

    The objective of the program is to develop an underground superconducting power transmission system which is economical and technically attractive to the utility industry. The system would be capable of carrying very large blocks of electric power, thus enabling it to supplant overhead lines in urban and suburban areas and regions of natural beauty. The program consisted initially of work in the laboratory to develop suitable materials, cryostats, and cable concepts. The materials work covers the development and testing of suitable superconductors, and dielectric insulation. The laboratory work has now been extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. The facility will allow cables several hundred feet long to be tested under realistic conditions. In addition, the refrigerator has been designed for optimum service for utility applications. Progress in cable conductor and cable insulation development and in the engineering facilities for fabricating and testing the superconducting cables is reported. (LCL)

  17. Current and field distributions of a superconducting power transmission cable composed of helical tape conductors

    Science.gov (United States)

    Tominaka, Toshiharu

    2009-12-01

    The current distributions within a power transmission cable composed of helically wound long tape superconductors have been studied by solving the circuit equation with the inductance matrix among divided segments within a tape conductor under the Bean model. The self- and mutual inductances of helical thin tape conductors are calculated from the analytical expressions in the form of an infinite series. In addition, it is shown that the distinction between the right-handed and left-handed helixes is generally necessary in the mutual inductance between two long coaxial helical conductors.

  18. Current and field distributions of a superconducting power transmission cable composed of helical tape conductors

    Energy Technology Data Exchange (ETDEWEB)

    Tominaka, Toshiharu, E-mail: tominaka@mext.go.j, E-mail: tominaka@riken.j [Ministry of Education, Culture, Sports, Science and Technology (MEXT), 3-2-2 Kasumigaseki, Chiyoda-ku, Tokyo 100-8959 (Japan); RIKEN - Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2009-12-15

    The current distributions within a power transmission cable composed of helically wound long tape superconductors have been studied by solving the circuit equation with the inductance matrix among divided segments within a tape conductor under the Bean model. The self- and mutual inductances of helical thin tape conductors are calculated from the analytical expressions in the form of an infinite series. In addition, it is shown that the distinction between the right-handed and left-handed helixes is generally necessary in the mutual inductance between two long coaxial helical conductors.

  19. Superconducting power cables in Denmark - a case study

    DEFF Research Database (Denmark)

    Østergaard, Jacob

    1997-01-01

    A case study of a 450 MVA, 132 kV high temperature superconducting (HTS) power transmission cable has been carried out. In the study, a superconducting cable system is compared to a conventional cable system which is under construction for an actual transmission line in the Danish grid. The study...... that HTS cables will be less expensive for high power ratings, have lower losses for lines with a high load, and have a reduced reactive power production. The use of superconducting cables in Denmark accommodate plans by the Danish utility to make a substantial conversion of overhead lines to underground...

  20. Superconducting cable connections and methods

    Energy Technology Data Exchange (ETDEWEB)

    van der Laan, Daniel Cornelis

    2017-09-05

    Superconducting cable connector structures include a terminal body (or other structure) onto which the tapes from the superconducting cable extend. The terminal body (or other structure) has a diameter that is sufficiently larger than the diameter of the former of the superconducting cable, so that the tapes spread out over the outer surface of the terminal body. As a result, gaps are formed between tapes on the terminal body (or other structure). Those gaps are filled with solder (or other suitable flowable conductive material), to provide a current path of relatively high conductivity in the radial direction. Other connector structures omit the terminal body.

  1. High Temperature Superconducting Underground Cable

    Energy Technology Data Exchange (ETDEWEB)

    Farrell, Roger, A.

    2010-02-28

    The purpose of this Project was to design, build, install and demonstrate the technical feasibility of an underground high temperature superconducting (HTS) power cable installed between two utility substations. In the first phase two HTS cables, 320 m and 30 m in length, were constructed using 1st generation BSCCO wire. The two 34.5 kV, 800 Arms, 48 MVA sections were connected together using a superconducting joint in an underground vault. In the second phase the 30 m BSCCO cable was replaced by one constructed with 2nd generation YBCO wire. 2nd generation wire is needed for commercialization because of inherent cost and performance benefits. Primary objectives of the Project were to build and operate an HTS cable system which demonstrates significant progress towards commercial progress and addresses real world utility concerns such as installation, maintenance, reliability and compatibility with the existing grid. Four key technical areas addressed were the HTS cable and terminations (where the cable connects to the grid), cryogenic refrigeration system, underground cable-to-cable joint (needed for replacement of cable sections) and cost-effective 2nd generation HTS wire. This was the world’s first installation and operation of an HTS cable underground, between two utility substations as well as the first to demonstrate a cable-to-cable joint, remote monitoring system and 2nd generation HTS.

  2. Assessment and study of existing concepts and methods of cryogenic refrigeration for superconducting transmission cables. Progress report, 1 September 1975--31 October 1975. [Operation of helium liquefiers

    Energy Technology Data Exchange (ETDEWEB)

    Kadi, F J; Longsworth, R C

    1975-01-01

    Progress made in a six task program on methods for cryogenic refrigeration for superconducting transmission cables is reported. The current report period included a review of equipment versus requirements, development of an optimization criteria, and evaluation of component reliability and efficiency. The results and findings of the helium refrigerator user visits, system and component manufacturers responses to questionnaires, telephone calls and visits, and the information obtained from a review of APCI standard N/sub 2/ plant experience are presented.

  3. Power applications for superconducting cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Hansen, Steen; Jørgensen, Preben

    2000-01-01

    High temperature superconducting (HTS) cables for use in electric ac power systems are under development around the world today. There are two main constructions under development: the room temperature dielectric design and the cryogenic dielectric design. However, theoretical studies have shown...

  4. Semiannual report for the period April 1 to September 30, 1978 of work on: (1) superconducting power transmission system development; (2) cable insulation development. Power Transmission Project technical note No. 83

    Energy Technology Data Exchange (ETDEWEB)

    1978-11-07

    Progress in the development, fabrication and testing of superconductors for HVAC power transmission systems is reported. Information is included on the materials evaluation of superconducting alloys, production of tapes from these alloys, principally Nb/sub 3/Sn cable insulation requirements and development, and the cryogenic equipment used in this research program. (LCL)

  5. DC Characterization of the Coaxial Superconducting Cable

    Science.gov (United States)

    Šouc, J.; Gömöry, F.; Vojenčiak, M.; Frolek, L.; Isfort, D.; Ehrenberg, J.; Bock, J.

    2008-01-01

    Coaxial cable model with superconducting core and superconducting shield conductor was constructed and tested in DC regime. While the core was already examined in our previous works, in this contribution the detailed study of the superconducting shield conductor in DC conditions is presented. It consists of 16 ReBCO coated tapes with critical current 35 A each connected in parallel. Using shunts with known values placed in series the currents in individual tapes were possible to measure. Distribution of the total cable current into the individual tapes was monitored and its influence on critical current of the cable is discussed.

  6. TESTING AND EVALUATION OF SUPERCONDUCTING CABLES FOR THE LHC.

    Energy Technology Data Exchange (ETDEWEB)

    THOMAS,R.; GHOSH,A.; MCCHESNEY,D.; JAIN,A.

    1999-03-29

    As one of the activities of the US-LHC Accelerator Project, BNL is testing short samples of superconducting cables that will be used in the main LHC dipoles and quadrupoles. The purpose of these tests is to verify that the reels of superconducting cables as supplied by the vendors meet the required critical current specifications. The short-sample testing facility and the computer-assisted testing techniques for acquiring the data will be described. We also describe the data analysis, data storage, and data transmission methods.

  7. High-temperature superconducting conductors and cables

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, D.E.; Maley, M.P.; Boulaevskii, L.; Willis, J.O.; Coulter, J.Y.; Ullmann, J.L.; Cho, Jin; Fleshler, S.

    1996-09-01

    This is the final report of a 3-year LDRD project at LANL. High-temperature superconductivity (HTS) promises more efficient and powerful electrical devices such as motors, generators, and power transmission cables; however this depends on developing HTS conductors that sustain high current densities J{sub c} in high magnetic fields at temperatures near liq. N2`s bp. Our early work concentrated on Cu oxides but at present, long wire and tape conductors can be best made from BSCCO compounds with high J{sub c} at low temperatures, but which are degraded severely at temperatures of interest. This problem is associated with thermally activated motion of magnetic flux lines in BSCCO. Reducing these dc losses at higher temperatures will require a high density of microscopic defects that will pin flux lines and inhibit their motion. Recently it was shown that optimum defects can be produced by small tracks formed by passage of energetic heavy ions. Such defects result when Bi is bombarded with high energy protons. The longer range of protons in matter suggests the possibility of application to tape conductors. AC losses are a major limitation in many applications of superconductivity such as power transmission. The improved pinning of flux lines reduces ac losses, but optimization also involves other factors. Measuring and characterizing these losses with respect to material parameters and conductor design is essential to successful development of ac devices.

  8. Semiannual report for the period October 1, 1979-March 31, 1980 of work on: (1) superconducting power transmission system development; (2) cable insulation development. Power Transmission Project Technical Note No. 106

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-07

    Progress is reported in a program whose objective is to develop an underground superconducting power transmission system which is economical and technically attractive to the utility industry. The system would be capable of carrying very large blocks of electric power, and would supplant overhead lines in urban and suburban areas and regions of natural beauty. The program consisted initially of work in the laboratory to develop suitable materials, cryostats, and cable concepts. The materials work covers the development and testing of suitable superconductors and dielectric insulation. The laboratory work has now been extended to an outside test facility which represents an intermediate step between the laboratory scale and a full-scale system. The facility will allow cables several hundred feet long to be tested under realistic conditions. In addition, the refrigerator has been designed for optimum service for utility applications.

  9. Assessment and study of existing concepts and methods of cryogenic refrigeration for superconducting transmission cables. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kadi, F J; Longsworth, R C

    1976-02-01

    A review of current programs to develop superconducting power transmission shows that current plans require helium refrigerators operating at 5 to 13/sup 0/K and 3 to 15 atm pressure with compressor power input in the range of 1,300 to 3,500 HP. Future requirements will probably trend toward slightly higher temperatures and larger refrigerators. Present large helium refrigerators and APCI standard nitrogen plants were studied and an average outage frequency of about 18 per year is found to be typical for both. Cost and reliability studies of alternate refrigeration systems based on studies of components shows that the best current system which would have a failure rate of once in 20 years would consist of two full size oil flooded screw compressors in parallel, manifolded to two full size cold boxes and a liquid helium back up dewar. The principal area of development needed to implement this system is in the switch over mechanisms. These include switching to an auxillary power source in the event of power interruption, switching to the standby compressor, and switching to the back up liquid helium dewar. Costs are projected as being only slightly greater than preliminary estimates.

  10. Development and testing of a 50 KA, pulsed superconducting cable

    Energy Technology Data Exchange (ETDEWEB)

    Wollan; DeClerc, J.; Hamilton, W.; Zeitlin, B.

    1983-05-01

    Prototype cables for 7.5 T, pulsed field application in tokamak poloidal field coils have been designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  11. AC Losses of Prototype HTS Transmission Cables

    Energy Technology Data Exchange (ETDEWEB)

    Demko, J.A.; Dresner, L.; Hughey, R.L.; Lue, J.W.; Olsen, S.K.; Sinha, U.; Tolbert, J.C.

    1998-09-13

    Since 1995 Southwire Company and Oak Ridge National Laboratory (ORNL) have jointly designed, built, and tested nine, l-m long, high temperature superconducting (HTS) transmission cable prototypes. This paper summarizes the AC loss measurements of five of the cables not reported elsewhere, and compares the losses with each other and with theory developed by Dresner. Losses were measured with both a calorimetric and an electrical technique. Because of the broad resistive transition of the HTS tapes, the cables can be operated stably beyond their critical currents. The AC losses were measured in this region as well as below critical currents. Dresner's theory takes into account the broad resistive transition of the HTS tapes and calculates the AC losses both below and above the critical current. The two sets of AC 10SS data agree with each other and with the theory quite welL In particular, at low currents of incomplete penetration, the loss data agree with the theoretical prediction of hysteresis loss based on only the outer two Iayers carrying the total current.

  12. Results from the Danish high temperature superconducting power cable project

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Østergaard, Jacob

    2002-01-01

    For the first time, a high temperature superconducting (HTS) demonstration cable system has been installed in a utility network supplying electricity to consumers. The cable is a 30-m long, 30kVrms, 2, 000Arms cable, installed in the network of Copenhagen Energy at a substation supplying approxim......For the first time, a high temperature superconducting (HTS) demonstration cable system has been installed in a utility network supplying electricity to consumers. The cable is a 30-m long, 30kVrms, 2, 000Arms cable, installed in the network of Copenhagen Energy at a substation supplying...

  13. Ultrafast response of superconducting transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Chwalek, J.M.; Dykaar, D.R.; Whitaker, J.F.; Sobolewski, R.; Grupta, S.; Hsiang, T.Y.; Mourou, G.A.

    1989-03-01

    The authors report investigations of picosecond transient propagation on normal and superconducting transmission lines and new results for a variety of lines that include YBa/sub 2/Cu/sub 3/O/sub 7-x/ (YBCO) coplanar lines, a superconducting coaxial cable, and a dielectric-matched gold-line structure. A previously developed algorithm for analyzing transient propagation was used to identify the dominant mechanisms for signal distortion in most of these cases, and the essential properties of all lines tested to date are summarized for a direct comparison.

  14. Results from the Danish high temperature superconducting power cable project

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Østergaard, Jacob

    2002-01-01

    For the first time, a high temperature superconducting (HTS) demonstration cable system has been installed in a utility network supplying electricity to consumers. The cable is a 30-m long, 30kVrms, 2, 000Arms cable, installed in the network of Copenhagen Energy at a substation supplying approxim...

  15. Analytical Solution for the Current Distribution in Multistrand Superconducting Cables

    CERN Document Server

    Bottura, L; Fabbri, M G

    2002-01-01

    Current distribution in multistrand superconducting cables can be a major concern for stability in superconducting magnets and for field quality in particle accelerator magnets. In this paper we describe multistrand superconducting cables by means of a distributed parameters circuit model. We derive a system of partial differential equations governing current distribution in the cable and we give the analytical solution of the general system. We then specialize the general solution to the particular case of uniform cable properties. In the particular case of a two-strand cable, we show that the analytical solution presented here is identical to the one already available in the literature. For a cable made of N equal strands we give a closed form solution that to our knowledge was never presented before. We finally validate the analytical solution by comparison to numerical results in the case of a step-like spatial distribution of the magnetic field over a short Rutherford cable, both in transient and steady ...

  16. Feasibility study of superconducting power cables for DC electric railway feeding systems in view of thermal condition at short circuit accident

    Science.gov (United States)

    Kumagai, Daisuke; Ohsaki, Hiroyuki; Tomita, Masaru

    2016-12-01

    A superconducting power cable has merits of a high power transmission capacity, transmission losses reduction, a compactness, etc., therefore, we have been studying the feasibility of applying superconducting power cables to DC electric railway feeding systems. However, a superconducting power cable is required to be cooled down and kept at a very low temperature, so it is important to reveal its thermal and cooling characteristics. In this study, electric circuit analysis models of the system and thermal analysis models of superconducting cables were constructed and the system behaviors were simulated. We analyzed the heat generation by a short circuit accident and transient temperature distribution of the cable to estimate the value of temperature rise and the time required from the accident. From these results, we discussed a feasibility of superconducting cables for DC electric railway feeding systems. The results showed that the short circuit accident had little impact on the thermal condition of a superconducting cable in the installed system.

  17. Frequency Dependent Losses in Transmission Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdóttir, Unnur Stella

    2011-01-01

    Denmark is taking on the exciting project of undergrounding the electricity transmission grid. In 2009 it was decided by the Danish government to underground large parts of the 400 kV and the entire 132-150 kV transmission network before the end of 2030. For ensuring network stability...... and economical gain, such severe network changes necessitate correct estimation and optimisation of load conditions in the cable grid. Both IEC and IEEE have published standards for rating transmission cables' current carrying capacity. These standards are based on assumptions of a number of parameters...... of better calculation of the AC resistance of transmission cable conductors, in particular regarding higher frequencies. In this way, also losses under harmonics can be covered. Furthermore, the model is suitable for modelling of transient attenuation in high voltage cables. The AC resistance is calculated...

  18. Analysis of Electrical Coupling Parameters in Superconducting Cables

    CERN Document Server

    Bottura, L; Rosso, C

    2003-01-01

    The analysis of current distribution and redistribution in superconducting cables requires the knowledge of the electric coupling among strands, and in particular the interstrand resistance and inductance values. In practice both parameters can have wide variations in cables commonly used such as Rutherford cables for accelerators or Cable-in-Conduits for fusion and SMES magnets. In this paper we describe a model of a multi-stage twisted cable with arbitrary geometry that can be used to study the range of interstrand resistances and inductances that is associated with variations of geometry. These variations can be due to cabling or compaction effects. To describe the variations from the nominal geometry we have adopted a cable model that resembles to the physical process of cabling and compaction. The inductance calculation part of the model is validated by comparison to semi-analytical results, showing excellent accuracy and execution speed.

  19. Levitation of Superconductive Cable in Earth Magnetic Field

    Directory of Open Access Journals (Sweden)

    Bohus Ulrych

    2006-01-01

    Full Text Available The paper represents an introductory study about a superconductive cable levitating in Earth’s magnetic field. Built are two mathematical models of the problem providing both the shape of the arc of the cable and forces acting along it. The theoretical analysis is supplemented with an illustrative example.

  20. Loss and Inductance Investigation in Superconducting Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Søren Krüger; Tønnesen, Ole; Træholt, Chresten

    1999-01-01

    An important parameter in the design and optimization of a superconducting cable conductor is the control of the current distribution among single tapes and layers. This distribution is to a large degree determined by inductances, since the resistances are low. The self and mutual inductances...... of the layers are therefore studied theoretically. The current distribution between the superconducting layers is monitored as a function of transport current, and the results are compared with the expected current distribution given by our electrical circuit model.The AC-losses are measured as a function...... of transport current and current distribution.This presentation is based on a number of experiments performed on prototype superconducting cable conductors. The critical current (1uV/cm) of the conductor at 77K was 1590 A (cable #1) and 3240 A (cable #2) respectively.At an rms current of 2 kA (50 Hz) the AC...

  1. Analytical Calculation of Current Distribution in Multistrand Superconducting Cables

    CERN Document Server

    Bottura, L; Fabbri, M G

    2003-01-01

    In recent years the problem of current distribution in multistrand superconducting cables has received increasing attention for large scale superconductivity applications due to its effect on the stability of fusion magnets and the field quality of accelerator magnets. A modelling approach based on distributed parameters has revealed to be very effective in dealing with long cables made of some tens or hundreds of strands. In this paper we present a fully analytical solution equation for a distributed parameters model in cables made of an arbitrary number of strands, whose validity is subjected to symmetry conditions generally satisfied in practical cables. We give in particular analytical formulae of practical use for the estimation of the maximum strand currents, time constants and redistribution lengths as a function of the cable properties and the external voltage source.

  2. Frequency Dependent Losses in Transmission Cable Conductors

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdóttir, Unnur Stella

    2011-01-01

    , such as thermal conditions in and around the cable, as well as the heat generated in conductors, screens, armours etc., taking into account proximity and skin effects. The work performed and presented in this paper is concerned with an improved determination of the losses generated in the conductor, by means...... of better calculation of the AC resistance of transmission cable conductors, in particular regarding higher frequencies. In this way, also losses under harmonics can be covered. Furthermore, the model is suitable for modelling of transient attenuation in high voltage cables. The AC resistance is calculated...

  3. Development of scaling rules for Rutherford type superconducting cables

    Energy Technology Data Exchange (ETDEWEB)

    Royet, J.M.; Scanlan, R.M.

    1990-09-01

    During the R D phase of the Superconducting Supercollider (SSC) program, LBL was responsible for establishing the parameters for cables used in SSC dipole and quadrupole magnets. In addition, the design and fabrication of a new cable for use in the Low Beta Quadrupoles. As a result of the development work on these and other cables, we have arrived a set of scaling rules which provide guidelines for choosing the parameters for a wide range of superconducting cables. These parameters include strand size, strand number, keystone angle, percent compaction, cable pitch and compacted cable dimensions. In addition, we have defined the tolerance ranges for the key cable manufacturing parameters such as mandrel size and shape, stand tension, and Turkshead temperature control. In this paper, we present the results on cables ranging from 8 strands to 36 strands of 0.65mm wire and from 8 strands to 30 strands of 0.8mm wire. We use these results to demonstrate the application of the scaling rules for Rutherford-type cable.

  4. A superconducting transformer system for high current cable testing.

    Science.gov (United States)

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  5. Electrothermal Coordination in Cable Based Transmission Grids

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Gudmundsdottir, Unnur Stella

    2013-01-01

    Electrothermal coordination (ETC) is introduced for cable based transmission grids. ETC is the term covering operation and planning of transmission systems based on temperature, instead of current. ETC consists of one part covering the load conditions of the system and one covering the thermal...... to be beneficial for both operator and system planner. It is shown how the thermal behavior can be monitored in real-time during normal dynamic load and during emergencies. In that way, ETC enables cables to be loaded above their normal rating, while maintaining high reliability of the system, which potentially...

  6. Dynamic Loadability of Cable Based Transmission Grids

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt

    This thesis is the product of three years research within the field of dynamic loadability of cable based transmission grids. The report contains a summary of the three year PhD project which has been conducted in a collaboration between the Danish Transmission System Operator (TSO), Energinet...... supervised 2 master projects, as well as 5 special courses at DTU. Furthermore I created and taught a cable course, with approximately 25 students, throughout 13 weeks during the spring of 2011. The PhD project has until now contributed with 3 journal papers and 4 conference papers. Selected papers can...

  7. Method and system for controlling chemical reactions between superconductors and metals in superconducting cables

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Tengming

    2016-11-15

    A method, system, and apparatus for fabricating a high-strength Superconducting cable comprises pre-oxidizing at least one high-strength alloy wire, coating at least one Superconducting wire with a protective layer, and winding the high-strength alloy wire and the Superconducting wire to form a high-strength Superconducting cable.

  8. Calculation of AC loss in two-layer superconducting cable with equal currents in the layers

    Science.gov (United States)

    Erdogan, Muzaffer

    2016-12-01

    A new method for calculating AC loss of two-layer SC power transmission cables using the commercial software Comsol Multiphysics, relying on the approach of the equal partition of current between the layers is proposed. Applying the method to calculate the AC-loss in a cable composed of two coaxial cylindrical SC tubes, the results are in good agreement with the analytical ones of duoblock model. Applying the method to calculate the AC-losses of a cable composed of a cylindrical copper former, surrounded by two coaxial cylindrical layers of superconducting tapes embedded in an insulating medium with tape-on-tape and tape-on-gap configurations are compared. A good agreement between the duoblock model and the numerical results for the tape-on-gap cable is observed.

  9. The creation of high-temperature superconducting cables of megawatt range in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Sytnikov, V. E., E-mail: vsytnikov@gmail.com; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A. [JSC NTTs FSC EES (Russian Federation); Popov, D. A.; Fedotov, E. V.; Komandenko, O. V. [JSC Irkutskkabel (Russian Federation)

    2015-12-15

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  10. The creation of high-temperature superconducting cables of megawatt range in Russia

    Science.gov (United States)

    Sytnikov, V. E.; Bemert, S. E.; Krivetsky, I. V.; Romashov, M. A.; Popov, D. A.; Fedotov, E. V.; Komandenko, O. V.

    2015-12-01

    Urgent problems of the power industry in the 21st century require the creation of smart energy systems, providing a high effectiveness of generation, transmission, and consumption of electric power. Simultaneously, the requirements for controllability of power systems and ecological and resource-saving characteristics at all stages of production and distribution of electric power are increased. One of the decision methods of many problems of the power industry is the development of new high-efficiency electrical equipment for smart power systems based on superconducting technologies to ensure a qualitatively new level of functioning of the electric power industry. The intensive research and development of new types of electrical devices based on superconductors are being carried out in many industrialized advanced countries. Interest in such developments has especially increased in recent years owing to the discovery of so-called high-temperature superconductors (HTS) that do not require complicated and expensive cooling devices. Such devices can operate at cooling by inexpensive and easily accessible liquid nitrogen. Taking into account the obvious advantages of superconducting cable lines for the transmission of large power flows through an electrical network, as compared with conventional cables, the Federal Grid Company of Unified Energy System (JSC FGC UES) initiated a research and development program including the creation of superconducting HTS AC and DC cable lines. Two cable lines for the transmitted power of 50 MVA/MW at 20 kV were manufactured and tested within the framework of the program.

  11. Advanced superconducting power cable for MV urban power supply

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Frank [Nexans Deutschland GmbH, Hannover (Germany); Merschel, Frank [RWE Deutschland AG, Essen (Germany); Noe, Mathias [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-07-01

    In recent years the technology of superconducting power cable systems has progressed such that the technical hurdles preparing for commercial applications have been mastered. Several field tests of large scale prototypes for the applications of superconducting cables as well as superconducting fault current limiters have been successfully accomplished and the technology of such systems is ready for commercialization. The presentation will give a detailed overview of the German AmpaCity project. An overview will be given on the development, manufacturing and installation of the 10 kV, 40 MVA HTS system consisting of a fault current limiter and of a 1 km cable in the city of Essen. Since it is the first time that a one kilometer HTS cable system is installed together with an HTS fault current limiter in a real grid application between two substations within a city center area, AmpaCity serves as a lighthouse project. In addition it is worldwide the longest installed HTS cable system so far. It is expected that relatively large technical advances will be made in the future of the comparatively new HTS technology, which in turn will bring associated cost reductions. For this reason, the AmpaCity pilot project in the downtown area of Essen in Germany will be an important step on the way to achieving more widespread application of HTS technology.

  12. Considerations about an improved superconducting cable for Linear Collider Detectors

    CERN Document Server

    Gaddi, A

    2009-01-01

    This note puts together arguments, discussed within the Linear Collider Detector community in the last months, about setting up an R&D program aiming to demonstrate the industrial feasibility and build a significant prototype length (tbd) of superconducting cable for next HEP detector magnets.

  13. Cryostat for a high-temperature superconducting power cable

    NARCIS (Netherlands)

    Chevtchenko, O.A.; Smit, J.J.; Geschiere, A.

    2010-01-01

    Cryostat for a high-temperature superconducting power cable, comprising concentric tubes, an annular region between said tubes, wherein a multilayer thermal insulation and getter material for supporting high vacuum conditions are provided in said annular region, and wherein the multilayer insulation

  14. Performance Improvement of a Measurement Station for Superconducting Cable Test

    CERN Document Server

    Arpaia, P; Montenero, G; Le Naour, S

    2012-01-01

    A fully digital system, improving measurements flexibility, integrator drift, and current control of superconducting transformers for cable test, is proposed. The system is based on a high-performance integration of Rogowski coil signal and a flexible direct control of the current into the secondary windings. This allows state-of-the-art performance to be overcome by means of out-of-the-shelf components: on a full-scale of 32 kA, current measurement resolution of 1 A, stability below 0.25 Amin-1, and controller ripple less than 50 ppm. The system effectiveness has been demonstrated experimentally on the superconducting transformer of the Facility for the Research of Superconducting Cables at the European Organization for Nuclear Research (CERN).

  15. Development and testing of a 50-kA, pulsed superconducting cable

    Science.gov (United States)

    Wollan, J. J.; Hamilton, W. C.; Declerc, J.; Zeitlin, B. A.

    1982-11-01

    Prototype cables for 7.5-T, pulsed field application in Tokamak poloidal coils were designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  16. Development and testing of a 50-kA, pulsed superconducting cable

    Energy Technology Data Exchange (ETDEWEB)

    Wollan, J.J.; Hamilton, W.C.; DeClerc, J.; Zeitlin, B.A.

    1982-01-01

    Prototype cables for 7.5-T, pulsed field application in tokamak poloidal field coils have been designed, fabricated, and evaluated. Successful fabrication of a 10 m superconducting sample represents the largest superconducting cable ever made. Details of the fabrication, the problems expected and encountered, and the solutions to those problems are discussed. Results of stability measurements on the superconducting prototype also are presented.

  17. Current Redistribution around the Superconducting-to-normal Transition in Superconducting Nb-Ti Rutherford Cables

    CERN Document Server

    Willering, G P; ten Kate, H H J

    2008-01-01

    Sufficient thermal-electromagnetic stability against external heat sources is an essential design criterion for superconducting Rutherford cables, especially if operated close to the critical current. Due to the complex phenomena contributing to stability such as helium cooling, inter-strand current and heat transfer, its level is difficult to quantify. In order to improve our understanding, many stability tests were performed on different cable samples, each incorporating several point-like heaters. The current redistribution around the heat front is measured after inducing a local normal zone in one strand of the cable. By using voltage taps, expansion of the normal zone is monitored in the initially quenched strand as well as in adjacent strands. An array of Hall probes positioned at the cable edge is used to scan the selffield generated by the cable by which it becomes possible to estimate the inter-strand current transfer. In this paper it is demonstrated that two different stability regimes can be disti...

  18. Superconducting Cable and Magnets for the Large Hadron Collider

    CERN Document Server

    Rossi, L

    2004-01-01

    The Large Hadron Collider (LHC) is a high energy, high luminosity particle accelerator under construction at CERN and it will be the largest application of superconductivity. Most of the existing 27 km underground tunnel will be filled with superconducting magnets, mainly 15 m long dipoles and 3 m long quadrupoles. These 1232 dipole and 400 quadrupole magnets as well as many other magnets, are wound with copper stabilized NbTi Rutherford cables and will be operated at 1.9 K by means of pressurized superfluid helium. The operating dipole field is 8.33 T; however the whole system is designed for possible operation up to 9 T. The coils are powered at about 12 kA and about 12 GJ of magnetic energy will be stored in superconducting devices. After a brief review of the main characteristics of the superconductors and of the magnets, the special measures taken to fulfill the mass production with the necessary accuracy are presented. The results on one third of the superconducting cable production and on the first f...

  19. Distance Protection of Cross-Bonded Transmission Cable-Systems

    DEFF Research Database (Denmark)

    Bak, Claus Leth; F. Jensen, Christian

    2014-01-01

    In this paper the problems of protecting a cross-bonded cable system using distance protection are analysed. The combination of the desire to expand the high voltage transmission grid and the public's opinion towards new installations of overhead lines (OHL), more and more transmission cable syst...

  20. Status of the LHC Superconducting Cable Mass Production

    CERN Document Server

    Adam, J D; Cavallari, Giorgio; Charifoulline, Z; Denarié, C H; Le Naour, S; Leroy, D F; Oberli, L R; Richter, D; Verweij, A P; Wolf, R

    2002-01-01

    Six contracts have been placed with industrial companies for the production of 1200 tons of the superconducting (SC) cables needed for the main dipoles and quadrupoles of the Large Hadron Collider (LHC). In addition, two contracts have been placed for the supply of 470 tons of NbTi and 26 tons of Nb sheets. The main characteristic of the specification is that it is functional. This means that the physical, mechanical and electrical properties of strands and cables are specified without defining the manufacturing processes. Facilities for the high precision measurements of the wire and cable properties have been implemented at CERN, such as strand and cable critical current, copper to superconductor ratio, interstrand resistance, magnetisation, RRR at 4.2 K and 1.9 K. The production has started showing that the highly demanding specifications can be fulfilled. This paper reviews the organisation of the contracts, the test facilities installed at CERN, the various types of measurements and the results of the ma...

  1. Measuring ac-loss in high temperature superconducting cable-conductors using four probe methods

    DEFF Research Database (Denmark)

    Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten; Olsen, Søren Krüger;

    1999-01-01

    Measuring the ac-loss of superconducting cable conductors have many aspects in common with measuring the ac-loss of single superconducting tapes. In a cable conductor all tapes are connected to each other and to the test circuit through normal metal joints in each end. This makes such measurement...

  2. Analysis of FCL effect caused by superconducting DC cables for railway systems

    Science.gov (United States)

    Nishihara, Taichi; Hoshino, Tsutomu; Tomita, Masaru

    2017-02-01

    DC superconducting cable that is expected for railway system has been developed in the world, since the introduction effects were expected to energy saving. However, behaviour under unsteady states such as a short circuit accident are not entirely clear, and appropriate method of protection has not been established. Therefore, simulation model of the superconducting cable under direct current system was built and analyzed. Analysis result suggests the superconducting cable has the effect of Fault Current Limited (FCL) and critical current rise was effective method for temperature-rise suppression under unsteady states. Trade-off between cable temperature rise and overcurrent was confirmed.

  3. Loss and Inductance Investigations in a 4-layer Superconducting Prototype Cable Conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Olsen, Søren Krüger; Kühle (fratrådt), Anders Van Der Aa;

    1999-01-01

    One important issue in the design and optimization of a superconducting cable conductor is the control of the current distribution between single tapes and layers. This presentation is based on a number of experiments performed on a 4-layer three meter long prototype superconducting cable conductor......-losses are measured as a function of transport current and a given current distribution and compared with the monoblock model. Recommendations for design of future cable conductor prototypes are given....

  4. The design and fabrication of a reverse Brayton cycle cryocooler system for the high temperature superconductivity cable cooling

    Science.gov (United States)

    Park, Jae Hong; Kwon, Yong Ha; Kim, Young Soo

    2005-01-01

    A high temperature superconductivity cable must be cooled below the nitrogen liquefaction temperature to apply the cable to power generation and transmission systems under superconducting state. To maintain the superconducting state, a reliable cryocooler system is also required. The design and fabrication of a cryocooler system have been performed with a reverse Brayton cycle using neon gas as a refrigerant. The system consists of a compressor, a recuperator, a cold-box, and control valves. The design of the system is made to have 1 kW cooling capacity. The heat loss through multilayer insulators is calculated. Conduction heat loss is about 7 W through valves and access ports and radiation heat loss is about 18 W on the surface of a cryocooler. The design factors are discussed in detail.

  5. Fabrication of a superconducting cable for construction of Hi-Lumi Magnet

    CERN Multimedia

    2016-01-01

    A Rutherford cabling machine is operated in the superconducting laboratory in building 163. The machine was used for the production of the Nb-Ti cables in the LHC magnets. Today, it is operated for the assembly of the high-performance cables made from state-of-the-art Nb3Sn conductor. The video shows the production of a long length Nb3Sn cable that will be use in a 11 T High Luminosity LHC dipole magnet.

  6. metrological performance improvement of a superconducting cable test station

    CERN Document Server

    Montenero, Giuseppe; Ballarino, Amalia

    The work presented in this PhD thesis concerns the metrological performance improvement of a superconducting cable test station based on superconducting transformers. The main cable’s parameter to be assessed –as a function of temperature and magnetic field– is the critical current, i.e. beyond this limit the phase transition to the normal state occurs. Ramping the current at levels in the order of the tens of kA can be achieved with superconducting transformers at moderate capital and operational cost. But, issues such as (i) accurate/precise measurements and (ii) monitoring of the secondary current during the device operation have to be addressed. In this regard, the goals of the thesis are the design, prototyping, and validation of a new cryogenic current transducer and effective monitoring system for test stations transformer-based. Among the available transducers for current sensing at room temperature, the DC current transformer (DCCT) provides measurement accuracy in the order of the hundreds of ...

  7. Model inverse calculation of current distributions in the cross-section of a superconducting cable

    Energy Technology Data Exchange (ETDEWEB)

    Usak, P. [Institute of Electrical Engineering, Department of Electrodynamics of Superconductors, Slovak Academy of Sciences, Bratislava (Slovakia)]. E-mail: elekusak@savba.sk; Sastry, P.V.P.S.S. [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States); Schwartz, J. [Center for Advanced Power Systems, Florida State University, Tallahassee, FL 32310 (United States); National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310 (United States); Department of Mechanical Engineering, FAMU-FSU College of Engineering, Tallahassee, FL 32310 (United States)

    2006-02-01

    The solution of an inverse problem for magnetic field mapping, and the related current distribution in the cross-section of a superconducting cable are generally not unique. Nevertheless, for many natural configurations of a transport current distribution in the cross-section of a superconducting cable, the resulting magnetic field can be used for the reconstruction of a current distribution even in the presence of noise to a degree. We show it using several examples. To perform the inverse calculation, the Tichonov method of regularization was successfully applied. The approach was applied for superconducting cables, but its application is general.

  8. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2016-01-01

    This paper is a second of two presenting a review of research results in underground cable transmission obtained by the Department of Energy Technology, Aalborg University ET/AAU and Danish TSO Energinet.dk within the last six years. The main core of the results are obtained by PhD students...... researching electrical engineering topics related to using underground cables for power transmission at EHV level and including the 420 kV level. The research topics were laid down by ET/AAU and Energinet.dk in the DANPAC (DANish Power systems with Ac Cables) research project. The main topics are discussed...

  9. Residual Resistivity Ratio (RRR) Measurements of LHC Superconducting NbTi Cable Strands

    CERN Document Server

    Charifoulline, Z

    2006-01-01

    The Rutherford-type superconducting NbTi cables of the LHC accelerator are currently manufactured by six industrial companies. As a part of the acceptance tests, the Residual Resistivity Ratio (RRR) of superconducting strands is systematically measured on virgin strands to qualify the strands before cabling and on extracted strands to qualify the cables and to check the final heat treatment (controlled oxidation to control interstrand resistance). More than 12000 samples of virgin and extracted strands have been measured during last five years. Results show good correlation with the measurements done by the companies and reflect well the technological process of cable production (strand annealing, cabling, cable heat treatment). This paper presents a description of the RRR-test station and the measurement procedure, the summary of the results over all suppliers and finally the correlation between RRR-values of the cables and the magnets.

  10. Fabrication of Rutherford-type superconducting cables for construction of dipole magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, R.M.; Royet, J.; Hannaford, R.

    1988-05-01

    An experimental cabling machine has been constructed and used to investigate the fabrication of a variety of superconducting cables. These include the 23-strand and 30-strand NbTi alloy cables for the Superconducting Supercollider (SSC) and a number of experimental cables. The experimental cables include 24-strands and 36-strands as well as two-level cables with a 6 or 7-strand first level and 23 or 30-strand second level. These results were used to aid in selecting the optimum cable for the SSC dipole and quadrupole magnets. As a result of these studies, cable can now be fabricated to exacting mechanical tolerances (+/- .006 mm) and with low critical current degradation (2-5%). In addition, tooling design studies have been performed and a Prototype SSC Production Cabling Machine has been designed. The results of the cable optimization studies and the tooling design studies will be discussed. SSC cable production experience on the experimental cabling machine and the production cabling machine will be reported.

  11. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2012-08-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  12. High Voltage AC underground cable systems for power transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Silva, Filipe Miguel Faria da

    2016-01-01

    This paper is a first of two presenting a review of research results in underground cable transmission obtained by the Department of Energy Technology, Aalborg University ET/AAU and Danish TSO Energinet.dk within the last 6 years. The main core of the results are obtained by PhD students research......This paper is a first of two presenting a review of research results in underground cable transmission obtained by the Department of Energy Technology, Aalborg University ET/AAU and Danish TSO Energinet.dk within the last 6 years. The main core of the results are obtained by PhD students...... researching electrical engineering topics related to using underground cables for power transmission at EHV level and including the 420 kV level. The research topics were laid down by ET/AAU and Energinet.dk in the DANPAC (DANish Power systems with AC Cables) research project. The main topics are discussed...

  13. Review of the R&D and Supply of the LHC Superconducting Cables

    CERN Document Server

    Leroy, D

    2006-01-01

    The construction of the superconducting magnets for the LHC machine has required the supply of ~ 7350 km of superconducting cables. The delivery of cables which is completed at 97% has made use of a large part of the world wide production capacity. Ten contracts have been placed with firms in Europe, Japan, USA. The Nb-Ti and the Nb materials have been contracted by CERN. Before tendering and placing the contracts, a R&D program has combined studies at CERN and orders of finished cables of significant lengths to industry. The report will present the main results of the R&D program, the characteristics of the LHC cables, the encountered difficulties and the obtained successes during the long duration fabrication contracts of the highly sophisticated LHC superconducting cables.

  14. Quench Property of Twisted-Pair MgB$_2$ Superconducting Cables in Helium Gas

    CERN Document Server

    Spurrell, J; Falorio, I; Pelegrin, J; Ballarino, A; Yang, Y

    2015-01-01

    CERN's twisted-pair superconducting cable is a novel design which offers filament transposition, low cable inductance and is particularly suited for tape conductors such as 2G YBCO coated conductors, Ag-sheathed Bi2223 tapes and Ni/Monel-sheathed MgB2 tapes. A typical design of such twistedpair cables consists of multiple superconducting tapes intercalated with thin copper tapes as additional stabilizers. The copper tapes are typically not soldered to the superconducting tapes so that sufficient flexibility is retained for the twisting of the tape assembly. The electrical and thermal contacts between the copper and superconducting tapes are an important parameter for current sharing, cryogenic stability and quench propagation. Using an MgB2 twisted-pair cable assembly manufactured at CERN, we have carried out minimum quench energy (MQE) and propagation velocity (vp) measurements with point-like heat deposition localized within a tape. Furthermore, different contacts between the copper and superconductor aroun...

  15. Design of a termination for a high temperature superconduction power cable

    DEFF Research Database (Denmark)

    Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa; Tønnesen, Ole

    1999-01-01

    In this presentation we discuss the design of a termination for a high temperature superconducting power cable with the following design: A cable conductor consisting of superconducting tapes wound onto a tight flexible tube (former) is placed inside a thermally insulating jacet (cryostat......). This assembly is electrically insulated with an extruded polymer dielectric kept at room temperature. Cooling is provided by a flow of liquid nitrogen inside the former. The purpose of the termination is to connect the superconducting cable conductor at cryogenic temperature to the existing power grid at room...... temperature and to connect an external cooling machine at ground potential to the cable. Some of the aspects that have to be considered include the thermal insulation of the termination, the transition from superconducting tapes to a normal conductor, the current lead carrying current between high and low...

  16. Design criteria for warm temperature dielectric superconducting dc cables: Impact of co-pole magnetic fields

    Science.gov (United States)

    Grant, P. M.; Hassenzahl, W. V.; Gregory, B.; Eckroad, S. W.

    2008-02-01

    HTSC dc superconducting cables are under consideration for a variety of applications ranging from bi-directional interties between regional ac grids ("back-to-backs"), internal connection within, and out-feeds from, low voltage solar or wind farm generators, and up to multi-gigawatt transmission trunks linking remote nuclear clusters to urban load centers. In every instance, there are two principal design choices - coaxial, or "cold temperature dielectric; and mono-axial, also termed "warm temperature dielectric." In the former, both poles may be serviced by concentric conductors in the same physical package, separated by insulation held at the temperature necessary for superconducting operation, and in the latter, the poles are contained in two separate cables of more or less conventional design, each holding a cryostat enclosing the superconductor surrounded by a dielectric material at ambient temperature. Both have "pluses and minuses." CTD has the advantage of compactness, but requires a cryogenic dielectric, whereas WTD is simpler to manufacture and less costly overall as well. However, depending on the dimensional separation of the two poles and their containment infrastructure, WTD can experience considerable outward compressive physical forces and some reduction in critical state properties due to interpenetration of their respective magnetic fields. Recent progress in introducing homogeneous pinning in YBCO coated conductors could considerably ameliorate this latter issue, and thus the WTD design could engage a range of applications formerly out of reach of BSCCO tapes. We will examine these two issues in detail.

  17. Measurements of interstrand thermal and electrical conductance in multistrand superconducting cables

    CERN Document Server

    Yuan Zhong Lei; Yin Ming Dai; Heli, Nan

    2002-01-01

    A new apparatus has been developed to investigate interstrand contact properties of multistrand superconducting cables. The apparatus can measure interstrand electrical and thermal conductance simultaneously. Two NbTi samples were measured and influences of surface coating, contact force and pressing history on contact properties were investigated. These measurements provide essential data for theoretical analyses of stability of multistrand superconducting cable against local disturbances. (9 refs).

  18. A transmission calibration method for superconducting resonators

    CERN Document Server

    Cataldo, Giuseppe; Barrentine, Emily M; Brown, Ari D; Moseley, Samuel H; U-Yen, Kongpop

    2014-01-01

    A method is proposed and experimentally explored for \\textit{in-situ} calibration of complex transmission data for superconducting microwave resonators. This cryogenic calibration method accounts for the instrumental transmission response between the vector network analyzer reference plane and the device calibration plane. Once calibrated, the observed resonator response was modeled in detail by two approaches. The first, a phenomenological model based on physically realizable rational functions, enables the extraction of multiple resonance frequencies and widths for coupled resonators without explicit specification of the circuit network. In the second, an ABCD-matrix representation for the distributed transmission line circuit is used to model the observed response from the characteristic impedance and propagation constant. When used in conjunction with electromagnetic simulations, the kinetic inductance fraction can be determined with this method with an accuracy of 2%. Datasets for superconducting microst...

  19. Statistical correlations for thermophysical properties of Supercritical Argon (SCAR) used in cooling of futuristic High Temperature Superconducting (HTS) cables

    Energy Technology Data Exchange (ETDEWEB)

    Kalsia, Mohit [School of Mechanical Engineering, Lovely Professional University, Phagwara, 144 401 (India); Dondapati, Raja Sekhar, E-mail: drsekhar@ieee.org [School of Mechanical Engineering, Lovely Professional University, Phagwara, 144 401 (India); Usurumarti, Preeti Rao [Department of Mechanical Engineering, PVK Institute of Technology, Anantpur, 515 001 (India)

    2017-05-15

    Highlights: • The developed correlations can be integrated into thermohydraulic analysis of HTS cables. • This work also explains the phenomenon of flow with less pumping power and maximum heat transfer in HTS cables. • Pumping power required to circulate the SCAR for cooling of HTS cables would be significantly lower. • For Hg-based high temperature superconductors (T{sub c} > 134 K), SCAR found to be a suitable coolant. - Abstract: High Temperature Superconducting (HTS) cables are emerging as an alternative to conventional cables in efficient power transmission. However, these HTS cables require cooling below the critical temperature of superconductors used to transmit larger currents. With the invention of high temperature superconductors whose critical temperatures are up to 134 K (Hg based), it is a great challenge to identify a suitable coolant which can carry away the heating load on the superconductors. In order to accomplish such challenge, an attempt has been made in the present work to propose supercritical Argon (SCAR) as the alternative to cool the HTS cables. Further, a statistical correlation has been developed for the thermophysical properties such as density, viscosity, specific heat and thermal conductivity of SCAR. In addition, the accuracy of developed correlations is established with the help of few statistical parameters and validated with standard database available in the literature. These temperature dependent accurate correlations are useful in predicting the pressure drop and heat transfer behaviour in HTS cables using numerical or computational techniques. In recent times, with the sophistication of computer technology, solving of various complex transport equations along with the turbulence models became popular and hence the developed correlations would benefit the technological community. It is observed that, a decrease in pressure, density and viscosity are found to be decreasing whereas the thermal conductivity and specific

  20. Statistical correlations for thermophysical properties of Supercritical Argon (SCAR) used in cooling of futuristic High Temperature Superconducting (HTS) cables

    Science.gov (United States)

    Kalsia, Mohit; Dondapati, Raja Sekhar; Usurumarti, Preeti Rao

    2017-05-01

    High Temperature Superconducting (HTS) cables are emerging as an alternative to conventional cables in efficient power transmission. However, these HTS cables require cooling below the critical temperature of superconductors used to transmit larger currents. With the invention of high temperature superconductors whose critical temperatures are up to 134 K (Hg based), it is a great challenge to identify a suitable coolant which can carry away the heating load on the superconductors. In order to accomplish such challenge, an attempt has been made in the present work to propose supercritical Argon (SCAR) as the alternative to cool the HTS cables. Further, a statistical correlation has been developed for the thermophysical properties such as density, viscosity, specific heat and thermal conductivity of SCAR. In addition, the accuracy of developed correlations is established with the help of few statistical parameters and validated with standard database available in the literature. These temperature dependent accurate correlations are useful in predicting the pressure drop and heat transfer behaviour in HTS cables using numerical or computational techniques. In recent times, with the sophistication of computer technology, solving of various complex transport equations along with the turbulence models became popular and hence the developed correlations would benefit the technological community. It is observed that, a decrease in pressure, density and viscosity are found to be decreasing whereas the thermal conductivity and specific heat increase significantly. It can be concluded that higher heat transfer rate and lower pumping power can be achieved with SCAR as coolant in the HTS cables.

  1. Analysis of a Liquid Nitrogen-Cooled Tri-Axial High-Temperature Superconducting Cable System

    Science.gov (United States)

    Demko, J. A.; Lue, J. W.; Gouge, M. J.; Fisher, P. W.; Lindsay, D.; Roden, M.

    2004-06-01

    This tri-axial high-temperature superconducting (HTS) cable design uses three concentric superconducting layers for the phase conductors, separated by a cold dielectric material. The design offers an efficient HTS cable configuration by reducing the amount of superconductor needed and places all three phases in a single cryostat. The tri-axial cable cooling circuit analyzed includes heat loads at the ends for the cable terminations and cable heat loads due to ac, dielectric, and thermal losses. The HTS cable critical current and ac loss are functions of the local temperature that must be determined by the analysis. The radial heat transfer also has an influence on these parameters due to the relatively low thermal conductivity of the dielectric material separating the HTS phases. The study investigates whether the tri-axial cable must be cooled both inside the former and outside of the cable. In this study, the range of operating parameters for a tri-axial HTS cable system and refrigeration requirements are determined based on expected HTS tape performance.

  2. Real Time Load Optimisation of Cable Based Transmission Grids

    DEFF Research Database (Denmark)

    Olsen, Rasmus Schmidt; Holbøll, Joachim; Guðmundsdottir, Unnur Stella

    2011-01-01

    Energinet.dk has launched an investigation of dynamic current ratings of cable based transmission grids, where both internal and external parameters are variables. The first topic was to investigate state of the art within calculating the current carrying capacity (ampacity or loadability...

  3. Heat transfer between the superconducting cables of the LHC accelerator magnets and the superfluid helium bath

    CERN Document Server

    Granieri, Pier Paolo; Tommasini, D

    In this thesis work we investigate the heat transfer through the electrical insulation of superconducting cables cooled by superfluid helium. The cable insulation constitutes the most severe barrier for heat extraction from the superconducting magnets of the CERN Large Hadron Collider (LHC). We performed an experimental analysis, a theoretical modeling and a fundamental research to characterize the present LHC insulation and to develop new ideas of thermally enhanced insulations. The outcome of these studies allowed to determine the thermal stability of the magnets for the LHC and its future upgrades. An innovative measurement technique was developed to experimentally analyze the heat transfer between the cables and the superfluid helium bath. It allowed to describe the LHC coil behavior using the real cable structure, an appropriate thermometry and controlling the applied pressure. We developed a new thermally enhanced insulation scheme based on an increased porosity to superfluid helium. It aims at withstan...

  4. Test of a cryogenic set-up for a 10 meter long liquid nitrogen cooled superconducting power cable

    DEFF Research Database (Denmark)

    Træholt, Chresten; Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa

    2000-01-01

    cable. We report on our experimental set-up for testing a 10 meter long high temperature superconducting cable with a critical current of 3.2 kA at 77K. The set-up consists of a custom designed cable end termination, current lead, coolant feed-through, liquid nitrogen closed loop circulation system...

  5. Test of a cryogenic set-up for a 10 meter long liquid nitrogen cooled superconducting power cable

    DEFF Research Database (Denmark)

    Træholt, Chresten; Rasmussen, Carsten; Kühle (fratrådt), Anders Van Der Aa;

    2000-01-01

    High temperature superconducting power cables may be cooled by a forced flow of sub-cooled liquid nitrogen. One way to do this is to circulate the liquid nitrogen (LN2) by means of a mechanical pump through the core of the cable and through a sub-cooler.Besides the cooling station, the cryogenics...... cable. We report on our experimental set-up for testing a 10 meter long high temperature superconducting cable with a critical current of 3.2 kA at 77K. The set-up consists of a custom designed cable end termination, current lead, coolant feed-through, liquid nitrogen closed loop circulation system...

  6. EHV/HV Underground Cable Systems for Power Transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth

    Power transmission is facing its largest challenges ever with regards to handling a transition from today’s fossil‐based power production into renewable sources of generation. We can no longer place power plants close to centres of consumption; they must be located where the natural resources...... the role of interconnecting these generation/load centres, ensuring fair reliability and redundancy of supply. Nowadays, the power transmission system must be able to handle the various sources of renewable generation in a flexible electricity market. This has the consequence that the original layout...... cables is given, and secondly, the modelling approach and validation of this is discussed. Thirdly, making up the main core of the work presented, dynamics of underground cable systems are discussed and important cases to study are highlighted, and next, protection and fault location are discussed...

  7. State of the art analysis of online fault location on AC cables in underground transmission systems

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Gudmundsdottir, Unnur Stella; Bak, Claus Leth

    2011-01-01

    In this article the state of the art research for online fault location on cross-bonded transmission level cables is presented. The article is focused on the difficulties in using the algorithms developed for OHL-systems and distribution cables directly on cross-bonded transmission cables. Impeda...

  8. Detail of photo 7903109 stack of superconducting cables in the modulus measuring device

    CERN Multimedia

    1979-01-01

    The picture shows an assembly of insulated superconducting cables of the type used in the Po dipole magnet inserted in the elastic modulus measuring device (photos 7903547X and 7903169) in order to measures its mechanical properties under azimuthal compression. See also 7903547X, 7903169, 8307552X.

  9. Smart monitoring system based on adaptive current control for superconducting cable test

    Energy Technology Data Exchange (ETDEWEB)

    Arpaia, Pasquale [Department of Electrical Engineering and Information Technology, University of Naples Federico II, 80125 Napoli (Italy); Technology Department, European Organization for Nuclear Research (CERN), 1217 Geneva (Switzerland); Ballarino, Amalia; Montenero, Giuseppe [Technology Department, European Organization for Nuclear Research (CERN), 1217 Geneva (Switzerland); Daponte, Vincenzo [Technology Department, European Organization for Nuclear Research (CERN), 1217 Geneva (Switzerland); Department of Electronics, Information, and Bioengineering, Polytechnic of Milan, 20133 Milano (Italy); Svelto, Cesare [Department of Electronics, Information, and Bioengineering, Polytechnic of Milan, 20133 Milano (Italy)

    2014-12-15

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, “Performance improvement of a measurement station for superconducting cable test,” Rev. Sci. Instrum.83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  10. Smart monitoring system based on adaptive current control for superconducting cable test.

    Science.gov (United States)

    Arpaia, Pasquale; Ballarino, Amalia; Daponte, Vincenzo; Montenero, Giuseppe; Svelto, Cesare

    2014-12-01

    A smart monitoring system for superconducting cable test is proposed with an adaptive current control of a superconducting transformer secondary. The design, based on Fuzzy Gain Scheduling, allows the controller parameters to adapt continuously, and finely, to the working variations arising from transformer nonlinear dynamics. The control system is integrated in a fully digital control loop, with all the related benefits, i.e., high noise rejection, ease of implementation/modification, and so on. In particular, an accurate model of the system, controlled by a Fuzzy Gain Scheduler of the superconducting transformer, was achieved by an experimental campaign through the working domain at several current ramp rates. The model performance was characterized by simulation, under all the main operating conditions, in order to guide the controller design. Finally, the proposed monitoring system was experimentally validated at European Organization for Nuclear Research (CERN) in comparison to the state-of-the-art control system [P. Arpaia, L. Bottura, G. Montenero, and S. Le Naour, "Performance improvement of a measurement station for superconducting cable test," Rev. Sci. Instrum. 83, 095111 (2012)] of the Facility for the Research on Superconducting Cables, achieving a significant performance improvement: a reduction in the system overshoot by 50%, with a related attenuation of the corresponding dynamic residual error (both absolute and RMS) up to 52%.

  11. Cryogenic helium gas circulation system for advanced characterization of superconducting cables and other devices

    Science.gov (United States)

    Pamidi, Sastry; Kim, Chul Han; Kim, Jae-Ho; Crook, Danny; Dale, Steinar

    2012-04-01

    A versatile cryogenic test bed, based on circulating cryogenic helium gas, has been designed, fabricated, and installed at the Florida State University Center for Advanced Power Systems (FSU-CAPS). The test bed is being used to understand the benefits of integrating the cryogenic systems of multiple superconducting power devices. The helium circulation system operates with four sets of cryocooler and heat exchanger combinations. The maximum operating pressure of the system is 2.1 MPa. The efficacy of helium circulation systems in cooling superconducting power devices is evaluated using a 30-m-long simulated superconducting cable in a flexible cryostat. Experiments were conducted at various mass flow rates and a variety of heat load profiles. A 1-D thermal model was developed to understand the effect of the gas flow parameters on the thermal gradients along the cable. Experimental results are in close agreement with the results from the thermal model.

  12. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2013-01-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  13. Ultrasound Diagnostics of the Superconducting Cable Connections between the Main Ring Magnets of LHC

    CERN Document Server

    Caspers, Friedhelm; Kulka, J; Tock, J-P; Williams, L R

    2007-01-01

    As part of the LHC assembly program, the super-conducting magnets are interconnected after installation. Electrical continuity between the magnets is ensured via a specifically designed cable junction box which allows the cables to be electrically joined by an automated low temperature soldering technique. The electrical resistance and mechanical strength of the cable junctions depend on the quality of the soldered joint. An ultrasound diagnostic of the soldered junction has been developed to accompany the visual inspection and reinforce the quality control process. Non-standard ultrasound diagnostic techniques, without using matching liquids or gel in the harsh and congested working environment, applied to the sandwich structure of the cable junction box, which presents high ultra-sonic losses due to multiple scattering, have been developed. The equipment and methods implemented are described in detail, together with results of quality control tests made in the production environment.

  14. Characterization of superconducting transmission line resonators

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Summer, Philipp; Meier, Sebastian; Haeberlein, Max; Wulschner, Karl Friedrich; Eder, Peter; Fischer, Michael; Schwarz, Manuel; Deppe, Frank; Fedorov, Kirill; Huebl, Hans; Menzel, Edwin [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Krawczyk, Marta; Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Baust, Alexander; Xie, Edwar; Zhong, Ling; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TU Muenchen, Garching (Germany); Nanosystems Initiative Munich (NIM), Muenchen (Germany)

    2015-07-01

    Superconducting transmission line resonators are widely used in circuit quantum electrodynamics experiments as quantum bus or storage devices. For these applications, long coherence times, which can be linked to the internal quality factor of the resonators, are crucial. Here, we show a systematic study of the internal quality factor of niobium thin film resonators. We analyze different cleaning methods and substrate parameters for coplanar waveguide as well as microstrip geometries. In addition, we investigate the impact of a niobium-aluminum interface which is necessary for galvanically coupled flux qubits made from aluminum. This interface can be avoided by fabricating the complete resonator-qubit structure using Al/AlO{sub x}/Al technology during fabrication.

  15. Development of (RE)BCO cables for HTS power transmission lines

    Science.gov (United States)

    Mukoyama, S.; Yagi, M.; Masuda, T.; Amemiya, N.; Ishiyama, A.; Kashima, N.; Nagaya, S.; Aoki, Y.; Yoshizumi, M.; Yamada, Y.; Izumi, T.; Shiohara, Y.

    2009-10-01

    High-temperature superconducting (HTS) power cables transmit bulk power with lower loss than conventional cables. Moreover, HTS cables are expected to be constructed as a new underground cable in urban areas at lower cost compared to a high voltage XLPE cable. To put promising HTS cables to practical use, we need (RE)BCO tapes with long length, high critical current, and low cost. Recently many organizations have improved the performance of the (RE)BCO tapes, such as YBCO tapes, or other coated conductor tapes that are made with a variety of different processes. We have fabricated the conductors for the HTS power cable that was constructed of different kinds of (RE)BCO tapes and measured the I c and AC losses. We achieved significantly low AC loss of 0.1 W/m at 1 kA in the HTS conductor using narrow slit tapes that were cut by laser. Moreover, a 20 m long HTS power cable model and a cable intermediate joint were developed. Short circuit current tests were conducted on the cable system that consisted of two 10 m cables, a cable joint, and two terminations. The cables and the joint withstood the short circuit current of 31.5 kA for 2 s without damage.

  16. Development of (RE)BCO cables for HTS power transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Mukoyama, S., E-mail: mukoyama@ch.furukawa.co.j [Furukawa Electric Co. Ltd., Ichihara 290-8555 (Japan); Yagi, M. [Furukawa Electric Co. Ltd., Ichihara 290-8555 (Japan); Masuda, T. [Sumitomo Electric Industries, Ltd., Osaka 554-0024 (Japan); Amemiya, N. [Kyoto University, Kyoto 615-8510 (Japan); Ishiyama, A. [Waseda University, Tokyo 169-8555 (Japan); Kashima, N.; Nagaya, S. [Chubu Electric Power Co. Inc., Nagoya 459-8522 (Japan); Aoki, Y. [Showa Cable System Co. Ltd., Sagamihara 229-1133 (Japan); Yoshizumi, M.; Yamada, Y.; Izumi, T.; Shiohara, Y. [Superconductivity Research Laboratory, Tokyo 135-0062 (Japan)

    2009-10-15

    High-temperature superconducting (HTS) power cables transmit bulk power with lower loss than conventional cables. Moreover, HTS cables are expected to be constructed as a new underground cable in urban areas at lower cost compared to a high voltage XLPE cable. To put promising HTS cables to practical use, we need (RE)BCO tapes with long length, high critical current, and low cost. Recently many organizations have improved the performance of the (RE)BCO tapes, such as YBCO tapes, or other coated conductor tapes that are made with a variety of different processes. We have fabricated the conductors for the HTS power cable that was constructed of different kinds of (RE)BCO tapes and measured the I{sub c} and AC losses. We achieved significantly low AC loss of 0.1 W/m at 1 kA in the HTS conductor using narrow slit tapes that were cut by laser. Moreover, a 20 m long HTS power cable model and a cable intermediate joint were developed. Short circuit current tests were conducted on the cable system that consisted of two 10 m cables, a cable joint, and two terminations. The cables and the joint withstood the short circuit current of 31.5 kA for 2 s without damage.

  17. Optical data transmission at the superconducting super collider

    Energy Technology Data Exchange (ETDEWEB)

    Leskovar, B. [Lawrence Berkeley Lab., CA (United States)

    1989-04-01

    Digital and analog data transmissions via fiber optics for the Superconducting Super Collider have been investigated. The state of the art of optical transmitters, low loss fiber waveguides, receivers and associated electronics components are reviewed and summarized. Emphasis is placed on the effects of the radiation environment on the performance of an optical data transmission system components. Also, the performance of candidate components of the wide band digital and analog transmission systems intended for deployment in the Superconducting Super Collider Detector is discussed.

  18. Aerodynamic instability of cables in transmission power lines; Inestabilidad aerodinamica en cables de lineas de transmision

    Energy Technology Data Exchange (ETDEWEB)

    Lopez Lopez, Alberto; Vilar Rojas, Jorge Ivan; Munoz Black, Celso J. [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1995-12-31

    One of the aerodynamic instabilities of transmission power lines cables is galloping, which consists in the appearance of important cable vibrations, mainly when the wind hits orthogonally the power line. In some cases the maximum amplitude that occurs reaches several meters, even when the wind velocities in a region are well below the value used for the mechanical design of the power lines. In general terms, galloping is associated with particular climatic conditions such as low temperatures and high humidities. In these conditions a coating of ice that adheres to the cable is formed, changing its transverse cross section, propitiating the galloping, although some authors have reported galloping without ice. These climatic conditions are presented mainly in the Northern part of our country and in the high regions of the mountain zones; nevertheless, the galloping phenomenon has been reported in few cases by Comision Federal de Electricidad (CFE). The possible expansion of the power lines in these regions of the country leads to prevent the measures needed to diminish the appearance of this phenomenon. In this paper mention is made in particular of the solution adopted to the galloping problem that has appeared in the transmission power line of Salamayuca to Reforma, Ciudad Juarez, Chihuahua (CFE,1991). [Espanol] Una de las inestabilidades aerodinamicas que se presentan en los cables de lineas de transmision es el galopeo, el cual consiste en la aparicion de vibraciones importantes de los cables, sobre todo cuando el flujo del viento incide ortogonalmente a la linea. En algunos casos las amplitudes maximas que se presentan llegan a ser de varios metros, aun cuando las velocidades del viento en una region esten muy por debajo del valor empleado para el diseno mecanico de las lineas. Generalmente, el galopeo se asocia con condiciones climaticas particulares como son las bajas temperaturas y altas humedades. En estas condiciones se forma una cubierta de hielo que se

  19. Optimization of operating parameters of internally cooled superconducting cables; Optimale Betriebsparameter fuer intern gekuehlte Supraleiterkabel

    Energy Technology Data Exchange (ETDEWEB)

    Katheder, H. [Max-Planck-Inst. fuer Plasmaphysik, Garching (Germany). NET Team

    1995-12-31

    Large superconducting coils such as are used for fusion experiments (Tokamak or Stellarator confiurations) are best equipped with internally cooled superconducting cables. These cables, which are cooled with helium at 4 Kcable can be cooled with minimum mass flow. The present paper deals with the thermodynamic behaviour of flowing helium in conduits and with the thermal load which may occur in a cable. It describes a mehtod of optimising the operating paramters and gives a numerical calculation using typical cable data. (orig.) [Deutsch] Bei grossen supraleitenden Spulen z.B. fuer Fusionsexperimente (Tokamak- oder Stellarator Anordnungen) werden mit Vorteil intern gekuehlte Supraleiterkabel eingesetzt. Seit einigen Jahren werden solche Kabel, gekuehlt mit Helium bei 4

  20. Optical transmission modules for multi-channel superconducting quantum interference device readouts

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Mok, E-mail: jmkim@kriss.re.kr; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong [Brain Cognition Measurement Center, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2013-12-15

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  1. Optical transmission modules for multi-channel superconducting quantum interference device readouts

    Science.gov (United States)

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong

    2013-12-01

    We developed an optical transmission module consisting of 16-channel analog-to-digital converter (ADC), digital-noise filter, and one-line serial transmitter, which transferred Superconducting Quantum Interference Device (SQUID) readout data to a computer by a single optical cable. A 16-channel ADC sent out SQUID readouts data with 32-bit serial data of 8-bit channel and 24-bit voltage data at a sample rate of 1.5 kSample/s. A digital-noise filter suppressed digital noises generated by digital clocks to obtain SQUID modulation as large as possible. One-line serial transmitter reformed 32-bit serial data to the modulated data that contained data and clock, and sent them through a single optical cable. When the optical transmission modules were applied to 152-channel SQUID magnetoencephalography system, this system maintained a field noise level of 3 fT/√Hz @ 100 Hz.

  2. Heat Transfer through Cable Insulation of Nb–Ti Superconducting Magnets Operating in He II

    CERN Document Server

    Granieri, P P

    2013-01-01

    The operation of Nb–Ti superconducting magnets in He II relies on superfluidity to overcome the severe thermal barrier represented by the cable electrical insulation. In wrapped cable insulations, like those used for the main magnets of the Large Hadron Collider (LHC) particle accelerator, the micro-channels network created by the insulation wrappings allows to efficiently transfer the heat deposited or generated in the cable to the He bath. In this paper, available experimental data of heat transfer through polyimide electrical insulation schemes are analyzed. A steady-state thermal model is developed to describe the insulation of the LHC main dipole magnets and the Enhanced Insulation proposed for the High Luminosity LHC upgrade (HL-LHC), according to the relevant geometric parameters. The model is based on the coupled mechanisms of heat transfer through the bulk of the dielectric insulation and through micro-channels between the insulation tapes. A good agreement is found between calculations and tests p...

  3. Cooling unit for a superconducting power cable. Two years successful operation

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Friedhelm [Messer Group GmbH, Krefeld (Germany); Kutz, Thomas [Messer Industriegase GmbH, Bad Soden (Germany); Stemmle, Mark [Nexans Deutschland GmbH, Hannover (Germany); Kugel, Torsten [Westnetz GmbH, Essen (Germany)

    2016-07-01

    High temperature super conductors (HTS) can efficiently be cooled with liquid nitrogen down to a temperature of 64 K (-209 C). Lower temperatures are not practical, because nitrogen becomes solid at 63 K (-210 C). To achieve this temperature level the coolant has to be vaporized below atmospheric pressure. Messer has developed a cooling unit with an adequate vacuum subcooler, a liquid nitrogen circulation system, and a storage vessel for cooling an HTS power cable. The cooling unit was delivered in 2013 for the German AmpaCity project of RWE Deutschland AG, Nexans and Karlsruhe Institute of Technology. Within this project RWE and Nexans installed the worldwide longest superconducting power cable in the city of Essen, Germany. The cable is in operation since March 10th, 2014.

  4. A model for calculating a.c. losses in multistage superconducting cables

    Science.gov (United States)

    Schild, T.; Ciazynski, D.

    Superconducting magnets in tokamaks for fusion experiments are subjected to fast variations in magnetic field. As the high current conductors used in these magnets are made of multistage cables, these variations induce interstrand coupling currents that create losses. These losses are usually characterized by the so-called time constant of the conductor. A model is given to calculate this time constant. Working formulas are also proposed to calculate the current induced in the different cabling stages. This model takes into account the strand characteristics and the detailed cabling pattern. Using it, a method is also given to deduce the time constant from resistive measurements. The influence of the resistive barrier (chrome plating, CuNi shell, outer bronze matrix) is pointed out. Finally, this model is applied to a conductor that is foreseen for the toroidal coils of the International Thermonuclear Experimental Reactor (ITER).

  5. An Analytical Benchmark for the Calculation of Current Distribution in Superconducting Cables

    CERN Document Server

    Bottura, L; Fabbri, M G

    2002-01-01

    The validation of numerical codes for the calculation of current distribution and AC loss in superconducting cables versus experimental results is essential, but could be affected by approximations in the electromagnetic model or incertitude in the evaluation of the model parameters. A preliminary validation of the codes by means of a comparison with analytical results can therefore be very useful, in order to distinguish among different error sources. We provide here a benchmark analytical solution for current distribution that applies to the case of a cable described using a distributed parameters electrical circuit model. The analytical solution of current distribution is valid for cables made of a generic number of strands, subjected to well defined symmetry and uniformity conditions in the electrical parameters. The closed form solution for the general case is rather complex to implement, and in this paper we give the analytical solutions for different simplified situations. In particular we examine the ...

  6. AC loss of the short coaxial superconducting cable model made from ReBCO coated tapes

    Energy Technology Data Exchange (ETDEWEB)

    Souc, J; Goemoery, F; Vojenciak, M; Frolek, L [Institute of Electrical Engineering., Centre of Excellence CENG, SAS, 841 04 Bratislava (Slovakia); Isfort, D; Ehrenberg, J; Bock, J [Nexans SuperConductors GmbH, Chemiepark Knapsack 50351, Huerth (Germany); Usoskin, A; Rutt, A [EHTS GmbH and Co. KG, Alzenau, (EAS, HANAU) (Germany)], E-mail: eleksouc@savba.sk

    2008-02-15

    Coaxial cable model with both the core as well as the shield conductor made from high-temperature superconducting tapes of the 2nd generation was constructed. AC current was fed to the model of 0.5 m length using a cold core transformer system. The core consists of 14 EHTS YBCO tapes of 4 mm width, and its properties have been published already. Now the system was completed by the shield conductor using 16 ReBCO tapes of 10 mm width produced by Nexans. In this contribution, the properties of the shield conductor are reported in detail. The experimental data on ac transport loss are presented and compared with ac transport loss of the superconducting core. The currents in individual tapes and the total cable current was monitored using Rogowski coils. Significant non-uniformity of the current distribution was found, which is a common issue in short cable models. Therefore, the AC transport loss of the shield conductor was measured by 16 lifted loops placed along the cable, using the averaging method to extract the true loss voltage.

  7. Materials, Strands, and Cables for Superconducting Accelerator Magnets. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sumption, Mike D. [Ohio State University, Columbia, OH (United States); Collings, Edward W. [Ohio State University, Columbia, OH (United States)

    2014-09-19

    This report focuses on Materials, Strands and Cables for High Energy Physics Particle accelerators. In the materials area, work has included studies of basic reactions, diffusion, transformations, and phase assemblage of Nb3Sn. These materials science aspects have been married to results, in the form of flux pinning, Bc2, Birr, and transport Jc, with an emphasis on obtaining the needed Jc for HEP needs. Attention has also been paid to the “intermediate-temperature superconductor”, magnesium diboride emphasis being placed on (i) irreversibility field enhancement, (ii) critical current density and flux pinning, and (iii) connectivity. We also report on studies of Bi-2212. The second area of the program has been in the area of “Strands” in which, aside from the materials aspect of the conductor, its physical properties and their influence on performance have been studied. Much of this work has been in the area of magnetization estimation and flux jump calculation and control. One of the areas of this work was strand instabilities in high-performance Nb3Sn conductors due to combined fields and currents. Additionally, we investigated quench and thermal propagation in YBCO coated conductors at low temperatures and high fields. The last section, “Cables”, focussed on interstrand contact resistance, ICR, it origins, control, and implications. Following on from earlier work in NbTi, the present work in Nb3Sn has aimed to make ICR intermediate between the two extremes of too little contact (no current sharing) and too much (large and unacceptable magnetization and associated beam de-focussing). Interstrand contact and current sharing measurements are being made on YBCO based Roebel cables using transport current methods. Finally, quench was investigated for YBCO cables and the magnets wound from them, presently with a focus on 50 T solenoids for muon collider applications.

  8. The Electrical Aspects of the choice of Former in a High T-c Superconducting Power Cable

    DEFF Research Database (Denmark)

    Däumling, Manfred; Kühle (fratrådt), Anders Van Der Aa; Olsen, Søren Krüger

    1999-01-01

    Centrally located in a superconducting power cable the former supplies a rigid means onto which to wind the superconducting tapes and enables a continuous supply of cooling power via a flow of liquid cryogen through it. Therefore, the choice of former has a broad impact on the construction...... and design of a cable. The diameter of the former determines the overall diameter of the total cable, influences the heat loss to the ambient and enters into the total AC-losses. Depending on whether the former is made of a good or poor electrical conductor eddy currents in the former itself may also...... contribute significantly to the AC-loss of the cable; the choice between an open and a closed former determines how and where the pressure load (pressurized coolant) has to be accommodated. In this work the electrical impact of the choice of material and diameter of the former on the AC-loss of a cable...

  9. HVAC cable systems with forced water cooling for wind energy transmission

    Energy Technology Data Exchange (ETDEWEB)

    Brakelmann, Heinrich; Zhang, Dongping [Duisburg-Essen Univ., Duisburg (DE). Dept. Energy Transport and Storage (ETS)

    2008-07-01

    This paper presents a solution for an efficient wind energy transmission onshore: HVAC cable system with forced water cooling, which provides a substantial increase of the cable ampacity without any modification of the cable construction and design. This work shows the projecting and planning of such HVAC cable systems in combination with a cooling system, especially considering the faulty (n-1)-case. The efficiency utilizing the short-term load capacity of the cable systems transmitting wind energy is shown by computations provided by specialized and adapted FEM (Finite Element Method) software. (orig.)

  10. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high temperature superconductors to 2nd generation (2G) YBCO based high temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current limiting matrix.

  11. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  12. Heat transfer through cable insulation of Nb-Ti superconducting magnets operating in He II

    Science.gov (United States)

    Granieri, P. P.

    2013-01-01

    The operation of Nb-Ti superconducting magnets in He II relies on superfluidity to overcome the severe thermal barrier represented by the cable electrical insulation. In wrapped cable insulations, like those used for the main magnets of the Large Hadron Collider (LHC) particle accelerator, the micro-channels network created by the insulation wrappings allows to efficiently transfer the heat deposited or generated in the cable to the He bath. In this paper, available experimental data of heat transfer through polyimide electrical insulation schemes are analyzed. A steady-state thermal model is developed to describe the insulation of the LHC main dipole magnets and the Enhanced Insulation proposed for the High Luminosity LHC upgrade (HL-LHC), according to the relevant geometric parameters. The model is based on the coupled mechanisms of heat transfer through the bulk of the dielectric insulation and through micro-channels between the insulation tapes. A good agreement is found between calculations and tests performed at different applied pressures and heating configurations. The model allows identifying the heat fluxes in the cable cross-section as well as the dimensions of the micro-channels. These dimensions are confirmed by microscope images of the two insulations schemes.

  13. Aluminum strand coating for increasing the interstrand contact resistance in Rutherford type superconducting cables

    CERN Document Server

    Scheuerlein, C; Verweij, A; Bonasia, A; Oberli, L; Taborelli, M; Richter, R

    2009-01-01

    The interstrand contact resistance (Rc) in Rutherford type cables for fast cycling superconducting magnets must be sufficiently high in order to limit eddy current losses. The required value for Rc depends on the cable and magnet geometries and on the foreseen cycling rate, but is typically of the order of one mW. Such values can be reached with a dedicated strand coating or with a resistive internal cable barrier. As a possible candidate Al strand coatings have been tested. For a Rutherford type inner conductor cable of the Large Hadron Collider (LHC) made of Al coated strands Rc values higher than 500 Omega are achieved. The native Al2O3 oxide layer formed at ambient temperature in air is sufficient to reach this high contact resistance. A 6 h-200 °C oxidation heat treatment in air with 100% relative humidity further increases Rc to values above 600 μOmega . Due to the high thermal and mechanical stability of Al2O3 only a relatively moderate Rc drop of about 40 % is obtained during a 190 °C heat treatmen...

  14. THELMA code electromagnetic model of ITER superconducting cables and application to the ENEA stability experiment

    Science.gov (United States)

    Ciotti, M.; Nijhuis, A.; Ribani, P. L.; Savoldi Richard, L.; Zanino, R.

    2006-10-01

    The new THELMA code, including a thermal-hydraulic (TH) and an electro-magnetic (EM) model of a cable-in-conduit conductor (CICC), has been developed. The TH model is at this stage relatively conventional, with two fluid components (He flowing in the annular cable region and He flowing in the central channel) being particular to the CICC of the International Thermonuclear Experimental Reactor (ITER), and two solid components (superconducting strands and jacket/conduit). In contrast, the EM model is novel and will be presented here in full detail. The results obtained from this first version of the code are compared with experimental results from pulsed tests of the ENEA stability experiment (ESE), showing good agreement between computed and measured deposited energy and subsequent temperature increase.

  15. Online Location of Faults on AC Cables in Underground Transmission Systems

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær

    parts; The preliminaries, a part which deals with the use of impedance-based fault location methods on crossbonded cables, a part which deals with travelling wave-based fault location, a part listing the conclusions and contributions of the thesis and an appendix. A state-of-the-art analysis......A transmission grid is normally laid out as an almost pure overhead line (OHL) network. The introduction of transmission voltage level XLPE cables and the increasing interest in the environmental impact of OHL has resulted in an increasing interest in the use of underground cables on transmission...... level. In Denmark for instance, the entire 150 kV, 132 kV and 220 kV and parts of the 400 kV transmission network will be placed underground before 2030. To reduce the operating losses of a cable-based transmission system, crossbonding schemes are normally used. The use of crossbonding introduces new...

  16. Electromagnetic losses in a three-phase high temperature superconducting cable determined by calorimetric measurements

    DEFF Research Database (Denmark)

    Traeholt, C.; Veje, E.; Tønnesen, Ole

    2002-01-01

    A 10 m long high temperature superconducting (HTS) cable conductor was placed in a plane three-phase arrangement. The test-bed enabled us to study the conductor losses for different separations between the phases. The superconductor was fixed symmetrically in the centre, whilst the two outer conv...... a calorimetric technique where the temperature increase in the flowing LN2 was measured with a set of thermo-couples. Results indicate that the total AC loss increases significantly when the separation between the conductors is reduced....

  17. Electromagnetic losses in a three-phase high temperature superconducting cable determined by calorimetric measurements

    DEFF Research Database (Denmark)

    Traeholt, C.; Veje, E.; Tønnesen, Ole

    2002-01-01

    A 10 m long high temperature superconducting (HTS) cable conductor was placed in a plane three-phase arrangement. The test-bed enabled us to study the conductor losses for different separations between the phases. The superconductor was fixed symmetrically in the centre, whilst the two outer conv...... a calorimetric technique where the temperature increase in the flowing LN2 was measured with a set of thermo-couples. Results indicate that the total AC loss increases significantly when the separation between the conductors is reduced....

  18. Analytical Model of Thermo-electrical Behaviour in Superconducting Resistive Core Cables

    CERN Document Server

    Calvi, M; Breschi, M; Coccoli, M; Granieri, P; Iriart, G; Lecci, F; Siemko, A

    2006-01-01

    High field superconducting Nb3Sn accelerators magnets above 14 T, for future High Energy Physics applications, call for improvements in the design of the protection system against resistive transitions. The longitudinal quench propagation velocity (vq) is one of the parameters defining the requirements of the protection. Up to now vq has been always considered as a physical parameter defined by the operating conditions (the bath temperature, cooling conditions, the magnetic field and the over all current density) and the type of superconductor and stabilizer used. It is possible to enhance the quench propagation velocity by segregating a percent of the stabilizer into the core, although keeping the total amount constant and tuning the contact resistance between the superconducting strands and the core. Analytical model and computer simulations are presented to explain the phenomenon. The consequences with respect to minimum quench energy are evidenced and the strategy to optimize the cable designed is discuss...

  19. Electrical and Mechanical Performance of an Enhanced Cable Insulation Scheme for Superconducting Magnets

    CERN Document Server

    Fessia, P; Luzieux, S; Tommasini, D; Gerardin, A; Guinchard, M; Regis, F; Sgobba, S; Zaghloul, A

    2010-01-01

    New polyimide cable insulation schemes improving the cooling of Nb-Ti superconducting coils were recently developed to face the severe heat loads at which the next generation of superconducting accelerator magnets will work. In order to qualify the new insulation, a test campaign was realized to assess both its electrical and mechanical features with respect to the standard LHC insulation. The electrical tests assessed the dielectric strength and inter-turn leakage current to be satisfactory. The mechanical tests investigated the insulation thickness under load and the stress relaxation at ambient temperature, thus providing essential information for the magnetic and mechanical design of the final focusing magnets for the LHC upgrade phase I.

  20. SC Power leads and cables - Nominal Current Test Performance of 2 kA-Class High-Tc Superconducting Cable Conductors and Its Implications for Cooling Systems for Utility Cables

    DEFF Research Database (Denmark)

    Willen, D. W. A; Daumling, M.; Rasmussen, C. N.

    2000-01-01

    at high currents. The critical currents of these conductors are in the range of 1-3 kA, and ac losses smaller than 1 W/m are measured at 2 kArms. AC currents with peak values exceeding the dc critical currents are applied. Increased losses, in excess of the expected magnitization losses are observed when...... individual layers in the cables saturate. The loss-contributions from other components of the cable system are discussed,and the implications for the cooling apparatus for superconducting utility cables are determined....

  1. Study of Nb{sub 3}Sn cables for superconducting quadrupoles; Etude de cables Nb{sub 3}Sn pour quadripoles supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Otmani, R

    1999-10-01

    In particle physics, the quest for higher energies may be satisfied by the use of niobium-tin superconducting magnets. Such magnets are made of Rutherford type cables which are wound from superconducting strands. The strands are made by the 'internal tin' method. The aim of this study is to determine the main parameters for the fabrication of a quadrupole. The two main requirements the cable must fulfill are high critical current and low losses. The main parameters were determined from different measurements and models. Thus, the key parameters for the current transport capacity are the number and the diameter of the filaments, the number of sub-elements, the surface of superconductor and the copper-to-non-copper ratio. For the hysteresis losses, the main parameters appear to be the effective filament diameter and the spacing of the filaments. For intra-strand losses, the main parameters appear to be the filaments' diameter, the filament spacing, the nature of the diffusion barrier and the Residual Resistivity Ratio (RRR) of the copper. The interstrand resistances for the cable are the key parameters for the losses. Thus, the nature of the strands coating or the presence of a stainless steel core can strongly diminish the cable losses. Finally, a design, for the strands and the cables for the fabrication of a quadrupole is proposed. (author)

  2. First tests of twisted-pair HTS 1 kA range cables for use in superconducting links

    CERN Document Server

    Ballarino, A; Hurte, J; Sitko, M; Willering, G

    2011-01-01

    The requirement at CERN for 1 kA range High Temperature Superconducting (HTS) cables optimized for long electrical transfer has led to the design and assembly of a novel type of cable that can be made from pre-reacted MgB2, Bi-2223 or YBCO tapes. The cable consists of an assembly of twisted pairs, each of which is made from three superconducting tapes with the required copper stabilizer. The twisted pair cable is designed to transfer a DC current of ± 600 A in helium gas environment. The paper reports on the results of the electrical tests performed on twisted-pair cables of identical structure and made from commercially available MgB2, Bi-2223 and YBCO tapes. The twist pitch of the cables is adapted to match the mechanical properties of the different superconductors. Critical current tests were performed at both liquid helium and liquid nitrogen temperature. The electrical performance of several cables made from different conductors is reported and compared.

  3. Effects of submarine power transmission cables on a glass sponge reef and associated megafaunal community.

    Science.gov (United States)

    Dunham, A; Pegg, J R; Carolsfeld, W; Davies, S; Murfitt, I; Boutillier, J

    2015-06-01

    We examined the effects of submarine power transmission cable installation and operation on glass sponge reef condition and associated megafauna. Video and still imagery were collected using a Remotely Operated Vehicle twice a year for 4 years following cable installation. The effects of cables on glass sponges were assessed by comparing sponge cover along fixed transects and at marked index sites. Megafauna counts along transects were used to explore the effects on associated community. We found no evidence of cable movement across the sponge reef surface. Live sponge cover was found to be consistently lower along cable transects and at cable index sites compared to controls. Live sponge cover was the lowest (55 ± 1.1% decrease) at cable index sites 1.5 years after installation and recovered to 85 ± 30.6% of the original size over the following 2 years. Our data suggest 100% glass sponge mortality along the direct cable footprint and 15% mortality in the surrounding 1.5 m corridor 3.5 years after cable installation. Growth rate of a new glass sponge was 1 and 3 cm/year in first and second year, respectively, and appeared to be seasonal. We observed a diverse megafaunal community with representatives from 7 phyla and 14 classes. Total megafauna, spot prawn, and other Arthropoda abundances were slightly lower along cable transects although the effect of cable presence was not statistically significant. The following measures could be taken to reduce the amount of damage to glass sponge reefs and associated fauna: routing the cable around reefs, whenever possible, minimizing cable movement across the surface of the reef at installation and routine operation, and assessing potential damage to glass sponges prior to decommissioning. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  4. Case study on the US superconducting power transmission program

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, E.F.

    1996-02-01

    After the 1911 discovery of superconductivity (the abrupt loss of electrical resistance in certain materials at very low temperatures), attempts were made to make practical use of this phenomenon. Initially these attempts failed, but in the early 1960s (after 50 years of research) they succeeded. By then, the projected growth in the production and consumption of electrical energy required much higher capacity power transmission capabilities than were available or likely to become available from incremental improvements in existing transmission technology. Since superconductors were capable in principle of transmitting huge amounts of power, research programs to develop and demonstrate superconducting transmission lines were initiated in the US and abroad. The history of the US program, including the participants, their objectives, funding and progress made, is outlined. Since the R&D program was terminated before the technology was completely demonstrated, the reasons for and consequences of this action are discussed in a final section.

  5. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  6. Current dependence of heat leak on the terminals in the superconducting DC transmission and distribution system of CASER-2

    Science.gov (United States)

    Kawahara, Toshio; Watanabe, Hirofumi; Emoto, Masahiko; Hamabe, Makoto; Yamaguchi, Sataro; Hikichi, Yasuo; Minowa, Masahiro

    2012-12-01

    Superconductivity can solve the energy problems in the world as energy saving technologies. In particular, superconducting direct current (DC) transmission and distribution (T&D) systems is promising, as it can be easily extended to large scale energy transmission systems for energy sharing. We are developing criogenic systems for effective cooling of superconducting T&D systems. In the cooling experiments with the 200 m-class superconducting DC T&D system at Chubu University (CASER-2), we have estimated the performance of the system. For example, our superconducting cable is connected to the outside at the terminals using Peltier current leads (PCLs). The PCL is composed of a thermoelectric material and a copper lead. Small thermal conductivity and large thermopower of the thermoelectric modules can effectively insulate the heat leak to the low temperature end. We measured the temperature along the current leads and the heat leak at the terminals. As current leads have an optimal shape factor, the optimum operation current exists. The current dependence of the system performance is discussed.

  7. Laplace Synthesis Validation through Measurements on Underground Transmission Cables

    Directory of Open Access Journals (Sweden)

    Uribe-Campos Felipe Alejandro

    2014-10-01

    Full Text Available Underground cable electrical parameters ZY as well as their modal propagation characteristics are highly frequency dependent which in certain cases turns its analysis difficult. To perform electromagnetic transient studies of cables the calculation of electrical parameters is essential to obtain the waves propagation solution through the multiconductor system. At the same time this requires to solve the inverse Laplace transform on a numerical form. Although the analytic Laplace transform has an indisputable accuracy, the application of its numerical version up-to-date has not been completely accepted. A complete methodology is developed in this work to guide analyst engineers or graduate students in the calculation of electromagnetic transients of underground cable systems. Finally, to help the validation of the numerical inverse Laplace transform a scaled prototype experiment is performed in the laboratory in which a transient step-response at the remote end of an energized conductor is measured.

  8. Heat transfer through Rutherford superconducting cable with novel pattern of polyimide electrical insulation in pressurized superfluid helium environment

    Science.gov (United States)

    Chorowski, Maciej; Polinski, Jaroslaw; Strychalski, Michal

    2012-06-01

    Future LHC accelerator luminosity upgrade will increase a beam losses heat deposition in the superconducting magnet coils. Main barrier of the heat evacuation from the coils made of Rutherford type cables is a cable electrical insulation. The insulation is made of polyimide tapes wrapped around the cable in a special configuration. Presently used insulation wrapping schemes constitute very good electrical insulation with relatively low heat transport ability. Therefore a new insulation wrapping schemes with enhanced helium permeability and adequate dielectric properties have been developed at CERN. An experimental comparative study of heat transfer perpendicular to the Rutherford type cable, for an old and new insulation wrapping schemes have been accomplished at Wroclaw University of Technology. The tests have been performed in pressurized superfluid helium conditions, and at 60 MPa of the sample applied external pressure simulating the Lorentz forces. This paper presents the measurements methodology and gives experimental results.

  9. Measuring ac losses in superconducting cables using a resonant circuit:Resonant current experiment (RESCUE)

    DEFF Research Database (Denmark)

    Däumling, Manfred; Olsen, Søren Krüger; Rasmussen, Carsten;

    1998-01-01

    be recorded using, for example, a digital oscilloscope. The amplitude decay of the periodic voltage or current accurately reflects the power loss in the system. It consists of two components-an ohmic purely exponential one (from leads, contacts, etc.), and a nonexponential component originating from......A simple way to obtain true ac losses with a resonant circuit containing a superconductor, using the decay of the circuit current, is described. For the measurement a capacitor is short circuited with a superconducting cable. Energy in the circuit is provided by either charging up the capacitors...... with a certain voltage, or letting a de flow in the superconductor. When the oscillations are started-either by opening a switch in case a de is flowing or by closing a switch to connect the charged capacitors with the superconductor-the current (via a Rogowski coil) or the voltage on the capacitor can...

  10. Assessment of seafloor burial of proposed OTEC power transmission cables. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tate, K.W.; Chern, C.; Tudor, W.J.

    1982-01-01

    This study assesses the need for protection of the seafloor OTEC power transmission cables, identifies the means, or development requirements for accomplishing the required protection, and determines the costs and benefits associated with this protection. Protection of the bottom cable along the entire route from the shoreline to the riser cable were evaluated at four specific sites. These sites were chosen mainly to represent the rather diverse bottom conditions expected in the OTEC program. Three of the four sites are island sites; they are immediately offshore of: (1) Kahe Point, Oahu, Hawaii; (2) Punta Yeguas, Puerto Rico; and (3) Cabras Island, Guam. The fourth site is in the Gulf of Mexico, due west of Tampa, Florida. A total of 1061 submarine communication cable faults were accumulated and analyzed during the initial portion of this study. For three of the proposed OTEC sites, namely Hawaii, Puerto Rico and Guam, a 90% chance of avoiding the hazards of chafing, corrosion, anchors, and trawling can be achieved by using the proper protection techniques over approximately 1 to 2 nautical miles from shore. The status of seafloor cable protection technology is also addressed in this study. A comprehensive summary identifying the most suitable commercial system has been conducted. Both cable and pipeline protection systems were included as well as previous relevant experience and operating conditions. Guidelines, methods, and procedures for cable protection are given in general for the four proposed OTEC plant sites and cable routes, together with seafloor scenarios and protection strategies for each of the four sites.

  11. The Oxidation of Sn-Ag coated Superconducting Cables for the Large Hadron Collider (LHC)

    CERN Document Server

    Scheuerlein, C; Cantoni, M

    2006-01-01

    The oxides formed on the Sn-Ag coated LHC superconducting cables during a 200°C heat treatment in air are described and the oxide composition is compared with the interstrand contact resistance (Rc). The analysis of more than 250 interstrand contact areas shows that the higher the average Cu content with respect to the Sn content in the oxide, the higher is Rc. During the 200°C heat treatment, Sn in the coating is transformed into a Cu3Sn layer, on which an oxide grows that consists essentially of a thin outermost layer of CuO on top of Cu2O, similar to the oxide structure formed on bare Cu. The underlying Cu3Sn layer acts as an O diffusion barrier that prevents O diffusion into the Cu bulk during the subsequent cable heat treatment under high pressure. On contact zones where the Cu3Sn layer is not formed during the 200°C heat treatment mainly Sn oxide grows and Rc is comparatively low.

  12. An Insight on Right of Way and its Cost for Power Transmission Cable and Conventional Overhead Transmission Lines

    Science.gov (United States)

    Khandelwal, P.; Pachori, A.; Khandelwal, T.

    2013-12-01

    This paper provides the complete information related to Right of Way (RoW) for the construction of new power transmission line (TL) in terms of present cost for overhead transmission line and underground XLPE transmission cable. The former part of the paper describes the general procedure and rules for acquisition of land for RoW by transmission asset owner (TAO) while in the later part the cost associated to acquire RoW and its impact on the cost of adjacent land have been detailed. It also discusses the actual dismantling cost including the cost of waste metal what TAO get after completion of lifecycle of TL due to increase in metal prices. In this paper cost of RoW after completion of lifecycle of TL is also highlighted. This paper compares the cost of RoW for overhead transmission line and underground XLPE transmission cable for construction of new TL. Also for old transmission infrastructure cost of RoW for change from overhead transmission line to underground XLPE transmission cable is detailed by application of replacement model.

  13. Onshore continuation of bipolar cable systems for bulk wind power transmission

    Energy Technology Data Exchange (ETDEWEB)

    Brakelmann, Heinrich; Brueggmann, Jan; Stammen, Joerg [Duisburg-Essen Univ., Duisburg (Germany). Dept. of Electrical Engineering

    2009-07-01

    Offshore windfarms have to be connected to the onshore grid by means of high voltage submarine cables. Typical windfarms (pilot-phase) may have an installed power of 400 MW. Several windfarms can be arranged to a cluster with a common grid connection which has to be designed for e.g. 2000 MW. For such tasks of bulk power transmission, the HVAC bipolar cable system was proposed. By use of three 245 kV bipolar four-core submarine cables, the desired 2000 MW can be transmitted over distances of more than 150 km. Hence, HVAC bipolar systems offer an efficient bulk power transmission with flexibility in installation and operation. Onshore, such connections have to find a continuation by use of land cables. In order to enable extreme transmission capacities, cable routes are analysed, which are equipped with standard 245 kV single-core XLPE-cables in bipolar configurations and with special, thermally improved backfill. Time varying loads and partially dried-out soil are considered. (orig.)

  14. Power cables and transmission lines. A special issue; Kabels en lijnen. Special

    Energy Technology Data Exchange (ETDEWEB)

    Franken, B. [Vakgroep Electrische Energiesystemen, Technische Universiteit Eindhoven, Eindhoven (Netherlands); Hendriks Boers, M.H.A.J.; Bloemhof, G.A.; Pultrum, E.; Van der Wey, A.H.; Cremers, R. [KEMA Transport en Distributie, Arnhem (Netherlands); Rogier, J. [Dienst Methoden - Technische Assistentie, Departement Netten, Tractebel, Brussels (Belgium); Wiersma, J.A. [Regionale Energiemaatschappij Utrecht REMU, Utrecht (Netherlands); Birkhoelzer, W.A.; Lommen, P.P.C. [MEGA Limburg, Maastricht (Netherlands); Van Oirsouw, P. [KEMA Procesautomatisering en Informatietechnologie, Arnhem (Netherlands); Emous, K. [ed.

    1996-10-01

    In 8 articles several aspects with regard to cables and lines, applied in the electric power industry, are discussed. In the first article attention is paid to a new detection method for weak spots in cables. In the second article it is discussed that loading cables in a power distribution network more heavily has an impact on the reliability of the power supply. In article three the reliability of systems to protect the network against power failures is dealt with. The concept of a KEMA-developed computer program (PRORANK or Protection Reliability Analysis KEMA) is described and illustrated by two case studies. In article four the activities of CIGRE to realize a standard format for a database to maintaine and manage above-ground transmission lines are outlined. In article five the most important results and conclusions of a CIGRE working group on high-voltage cables and high-voltage lines are summarized. In the sixth article the developments with regard to discharge measurements for the diagnosis of cables are discussed, as well as the option of distributed optical measurement in high-voltage transmission cables. In article seven the so-called Power-Donut{sup TM} system is described by which the conductor temperature in high-voltage transmission lines can be determined. In the last article a KEMA-developed computer program (GAIA) for safety grounding analysis is discussed

  15. Cryogenic Tests of 30 m Flexible Hybrid Energy Transfer Line with Liquid Hydrogen and Superconducting MgB2 Cable

    Science.gov (United States)

    Vysotsky, V. S.; Antyukhov, I. V.; Firsov, V. P.; Blagov, E. V.; Kostyuk, V. V.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Rachuk, V. S.; Katorgin, B. I.

    Recently we reported about first in the world test of 10 m hybrid energy transfer line with liquid hydrogen and MgB2 superconducting cable. In this paper we present the new development of our second hybrid energy transfer line with 30 m length. The flexible 30 m hydrogen cryostat has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen shield and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were performed at temperatures from 20 to 26 K, hydrogen flow from 100 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation practically eliminated completely heat transfer from room temperature to liquid hydrogen in the 10 m section. AEC thermal insulation method can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable have been passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was ∼3500 A. The 30 m hybrid energy system developed is able to deliver up to 135 MW of chemical and electrical power in total.

  16. Design of a cryogenic system for a 20m direct current superconducting MgB2 and YBCO power cable

    Science.gov (United States)

    Cheadle, Michael J.; Bromberg, Leslie; Jiang, Xiaohua; Glowacki, Bartek; Zeng, Rong; Minervini, Joseph; Brisson, John

    2014-01-01

    The Massachusetts Institute of Technology, the University of Cambridge in the United Kingdom, and Tsinghua University in Beijing, China, are collaborating to design, construct, and test a 20 m, direct current, superconducting MgB2 and YBCO power cable. The cable will be installed in the State Key Laboratory of Power Systems at Tsinghua University in Beijing beginning in 2013. In a previous paper [1], the cryogenic system was briefly discussed, focusing on the cryogenic issues for the superconducting cable. The current paper provides a detailed discussion of the design, construction, and assembly of the cryogenic system and its components. The two-stage system operates at nominally 80 K and 20 K with the primary cryogen being helium gas. The secondary cryogen, liquid nitrogen, is used to cool the warm stage of binary current leads. The helium gas provides cooling to both warm and cold stages of the rigid cryostat housing the MgB2 and YBCO conductors, as well as the terminations of the superconductors at the end of the current leads. A single cryofan drives the helium gas in both stages, which are thermally isolated with a high effectiveness recuperator. Refrigeration for the helium circuit is provided by a Sumitomo RDK415 cryocooler. This paper focuses on the design, construction, and assembly of the cryostat, the recuperator, and the current leads with associated superconducting cable terminations.

  17. Strengthening future electricity grid of the Netherlands by integration of HTS transmission cables

    Science.gov (United States)

    Zuijderduin, Roy; Chevtchenko, Oleg; Smit, Johan; Aanhaanen, Gert; Ross, Rob

    2014-05-01

    The electricity grid of the Netherlands is changing. There is a call of society to use more underground cables, less overhead lines (OHL) and to reduce magnetic emissions. At the same time, parts of the future transmission grid need strengthening depending on the electricity demand in the coming decades [1]. Novel high temperature superconductor (HTS) AC transmission cables can play a role in strengthening the grid. The advantages as compared to alternatives, are: economic, underground, higher power capacity, lower losses, reduced magnetic field emissions in (existing) OHL, compact: less occupation of land and less permits needed, a possibility to keep 380 kV voltage level in the grid for as long as needed. The main obstacles are: the relatively high price of HTS tapes and insufficient maturity of the HTS cable technology. In the paper we focus on a 34 km long connection in the transmission grid (to be strengthened in three of the four of TenneT scenarios [1]), present the network study results, derive the requirements for corresponding HTS transmission cable system and compare HTS system to the alternatives (OHLs and XLPE cables).

  18. Live-Grid Operation and Maintenance of the 35 kV/121 MVA Superconducting Cable System

    Institute of Scientific and Technical Information of China (English)

    Huan-Huan Li; An-Lin Ren; Ying Xin; Hui Hong; Zhi-Li Chen; Lin-Na Shi

    2008-01-01

    A 33.5 m, 35 kV/121 MVA, three-phase, warm dielectric HTS power cable system was successfully installed and activated in China Southern Power Grid at the Puji substation in Kunming on April 19th of 2004, supplying electricity to four industrial customers (including two metallurgical refineries) and a residential population of about 100000. In this paper, we give an update on the operation and maintenance status of the system and comments on reliability issues. We conclude that the superconducting cable system is currently quite robust and feasible for particular utility applications, and it will be improved by advancement in cryogenic equipment and system technology.

  19. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T

    Energy Technology Data Exchange (ETDEWEB)

    van der Laan, D. C.; Noyes, P. D.; Miller, G. E.; Weijers, H. W.; Willering, G. P.

    2013-02-13

    The next generation of high-ï¬eld magnets that will operate at magnetic ï¬elds substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a flexible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured at 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.

  20. Characterization of a high-temperature superconducting conductor on round core cables in magnetic fields up to 20 T

    Energy Technology Data Exchange (ETDEWEB)

    van der Laan, D. C.; Noyes, P. D.; Miller, G. E.; Weijers, H. W.; Willering, G. P.

    2013-02-13

    The next generation of high-ï¬eld magnets that will operate at magnetic ï¬elds substantially above 20 T, or at temperatures substantially above 4.2 K, requires high-temperature superconductors (HTS). Conductor on round core (CORC) cables, in which RE-Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (RE = rare earth) (REBCO) coated conductors are wound in a helical fashion on a flexible core, are a practical and versatile HTS cable option for low-inductance, high-field magnets. We performed the first tests of CORC magnet cables in liquid helium in magnetic fields of up to 20 T. A record critical current I{sub c} of 5021 A was measured at 4.2 K and 19 T. In a cable with an outer diameter of 7.5 mm, this value corresponds to an engineering current density J{sub e} of 114 A mm{sup -2} , the highest J{sub e} ever reported for a superconducting cable at such high magnetic fields. Additionally, the first magnet wound from an HTS cable was constructed from a 6 m-long CORC cable. The 12-turn, double-layer magnet had an inner diameter of 9 cm and was tested in a magnetic field of 20 T, at which it had an I{sub c} of 1966 A. The cables were quenched repetitively without degradation during the measurements, demonstrating the feasibility of HTS CORC cables for use in high-field magnet applications.

  1. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank; Marzahn, Erik

    2010-05-04

    A superconductor cable is described, having a superconductive flexible cable core (1) , which is laid in a cryostat (2, 3, 4), in which the cable core (1) runs in the cryostat (2, 3, 4) in the form of a wave or helix at room temperature.

  2. High temperature superconductors as a technological discontinuity in the power cable industry

    Science.gov (United States)

    Beales, T. P.; Mccormack, J. S.

    1995-01-01

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibers. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables.

  3. High temperature superconductors as a technological discontinuity in the power cable industry

    Energy Technology Data Exchange (ETDEWEB)

    Beales, T.P.; McCormack, J.S. [BICC Cables Ltd., Hebburn (United Kingdom)

    1994-12-31

    The advent of superconductivity above 77 K represents to the power cable industry a technological discontinuity analogous to that seen in the copper telecommunications industry by the arrival of optical fibres. This phenomenon is discussed along with technical criteria and performance targets needed for high temperature superconducting wire to have an economic impact in transmission cables.

  4. Increased range of ultrasonic guided wave testing of overhead transmission line cables using dispersion compensation.

    Science.gov (United States)

    Legg, Mathew; Yücel, Mehmet K; Kappatos, Vassilios; Selcuk, Cem; Gan, Tat-Hean

    2015-09-01

    Overhead Transmission Line (OVTL) cables can experience structural defects and are, therefore, inspected using Non-Destructive Testing (NDT) techniques. Ultrasonic Guided Waves (UGW) is one NDT technique that has been investigated for inspection of these cables. For practical use, it is desirable to be able to inspect as long a section of cable as possible from a single location. This paper investigates increasing the UGW inspection range on Aluminium Conductor Steel Reinforced (ACSR) cables by compensating for dispersion using dispersion curve data. For ACSR cables, it was considered to be difficult to obtain accurate dispersion curves using modelling due to the complex geometry and unknown coupling between wire strands. Group velocity dispersion curves were, therefore, measured experimentally on an untensioned, 26.5m long cable and a method of calculating theoretical dispersion curves was obtained. Attenuation and dispersion compensation were then performed for a broadband Maximum Length Sequence (MLS) excitation signal. An increase in the Signal to Noise Ratio (SNR) of about 4-8dB compared to that of the dispersed signal was obtained. However, the main benefit was the increased ability to resolve the individual echoes from the end of the cable and an introduced defect in the form of a cut, which was 7 to at least 13dB greater than that of the dispersed signal. Five echoes were able to be clearly detected using MLS excitation signal, indicating the potential for an inspection range of up to 130m in each direction. To the best of the authors knowledge, this is the longest inspection range for ACSR cables reported in the literature, where typically cables, which were only one or two meter long, have been investigated previously. Narrow band tone burst and Hann windowed tone burst excitation signal also showed increased SNR and ability to resolve closely spaced echoes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Voltage spike observation in superconducting cable-in-conduit conductor under ramped magnetic fields. Pt. 1: Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sangkwon Jeong; Schultz, J.H.; Takayasu, Makoto; Vysotsky, Vitaly; Michael, P.C. [Massachusetts Inst. of Technology, Plasma Fusion Center, Cambridge, MA (United States); Warnes, William [Oregan State Univ., Corvallis, OR (United States); Shen, Stewart [Lawrence Livermore National Lab., Livermore, CA (United States)

    1997-06-01

    A 27-strand hybrid superconducting cable-in-conduit conductor (CICC) was fabricated and tested under quickly-ramped high magnetic fields. When the field increased linearly on the CICC, the voltage signal showed several intermittent spikes before it quenched. This paper describes an observation of peculiar voltage spikes during these ramp-rate limitation experiments. The voltage spikes are interpreted as quench precursors and understood as current redistribution events within the local cable inside the conduit. A quantitative correlation is obtained for the magnetic field at which the first voltage spike occurs during ramping fields. The non-uniform current distribution among the strands and the induced loop current in the cable, which is generated by ramped fields, are found to be responsible for the voltage spikes. (author)

  6. Proposal for the award of two contracts, each for the supply of 60 km of superconducting multi-wire cable

    CERN Document Server

    2001-01-01

    This document concerns the award of two contracts, each for the supply of 60 km of superconducting multi-wire cable. Following a market survey carried out among sixteen firms in six Member States, Japan and the USA, a call for tenders (IT-2563/LHC/LHC) was sent on 6 December 2000 to four firms in four Member States. By the closing date, CERN had received three tenders from three firms in three Member States. The Finance Committee is invited to agree to the negotiation of contracts with: - ALSTOM (FR), the lowest bidder, for the supply of 60 km of superconducting multi-wire cable for a total amount of 751 531 euros (1 157 599 Swiss francs), subject to revision after 31 December 2001, with options for 9 km of superconducting multi-wire cable, for an additional amount of 114 267 euros (176 008 Swiss francs), subject to revision after 31 December 2001, bringing the total amount to 865 798 euros (1 333 607 Swiss francs), subject to revision after 31 December 2001. The rate of exchange which has been used is that s...

  7. Design and Manufacture of a Large-Bore 10 T Superconducting Dipole for the CERN Cable Test Facility

    CERN Document Server

    Leroy, D; Verweij, A P; Boschmann, H; Dubbeldam, R L; González-Pelayo, J

    2000-01-01

    A large-bore 10 T superconducting dipole magnet was designed and fabricated in close cooperation between CERN and HMA Power Systems. The dipole has a length of about 1.7 m and an aperture of 88 mm and is composed of two two-layer poles wound with NbTi cables cooled to 1.9 K to reach magnetic inductions close to 10 T. This dipole will be installed at the CERN cable test facility and used as a background field magnet to test LHC superconducting cables. In its large aperture up to four cable samples can be tested at the same time. The mechanical design of the magnet is such that coil prestress variations between warm and cold conditions are kept within 20 MPa. A short model was also built and cooled down in order to check and confirm with test results the mechanical behavior of the dipole. Magnetic measurements, at room temperature, were performed upon its arrival at CERN prior to installation in the test facility. The dipole was recently cooled down and tested. This paper will discuss the design, the main manu...

  8. Strengthening future electricity grid of the Netherlands by integration of HTS transmission cables

    NARCIS (Netherlands)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J.J.; Aanhaanen, G.; Ross, R.

    2014-01-01

    The electricity grid of the Netherlands is changing. There is a call of society to use more underground cables, less overhead lines (OHL) and to reduce magnetic emissions. At the same time, parts of the future transmission grid need strengthening depending on the electricity demand in the coming dec

  9. Simulation of the ice accretion process on a transmission line cable with differential twisting

    Energy Technology Data Exchange (ETDEWEB)

    Fu, P.; Farzaneh, M. [Quebec Univ., Chicoutimi, PQ (Canada). Dept. des Sciences Appliquees

    2007-02-15

    Transmission line cables are very flexible and tend to rotate when asymmetrical ice builds up on the surface. This article presented the results of a study that modelled and simulated cable rotation caused by ice accretion. The modelling considered both ice loads and wind-on-ice loads. By integrating air pressure and air shear along the airflow boundary, the quantity for the wind-on-ice loads was obtained. Time-dependent airflow computations were used to evaluate both air pressure and air shear. The new model was used to examine two types of overhead ground wire. Several conclusions were drawn. The validity and reliability of the modelling methods were confirmed by comparing the simulation results with those obtained from experimental measurements. The article described the basic principles of the study. The rate of the cable icing process was found to be directly influenced by the rigidity of the cylinder. Soft cylinders collected more ice while rotating at a higher speed during icing events. Small-sized cable were found to have a higher icing rate than large-sized cables under similar icing conditions. The contribution of aerodynamic torque to the cable rotation process varied over time under icing conditions and exerted a significant influence at an early stage of icing. 10 refs., 4 tabs., 12 figs.

  10. Modeling of unusual nonlinear behaviors in superconducting microstrip transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Javadzadeh, S. Mohammad Hassan, E-mail: smh_javadzadeh@ee.sharif.edu [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Farzaneh, Forouhar; Fardmanesh, Mehdi [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)

    2013-03-15

    Highlights: ► Avoiding of considering just quadratic or modulus nonlinearity. ► Proposing a nonlinear model to predict unusual nonlinear behaviors at low temperatures. ► Description of temperature dependency of nonlinear behaviors in superconducting lines. ► Analytical formulation for each parameter in our proposed model. ► Obtaining very good results which shows this model can predict unusual nonlinear behavior. -- Abstract: There are unusual nonlinear behaviors in superconducting materials, especially at low temperatures. This paper describes the procedure to reliably predict this nonlinearity in superconducting microstrip transmission lines (SMTLs). An accurate nonlinear distributed circuit model, based on simultaneously considering of both quadratic and modulus nonlinearity dependences, is proposed. All parameters of the equivalent circuit can be calculated analytically using proposed closed-form expressions. A numerical method based on Harmonic Balance approach is used to predict nonlinear phenomena like intermodulation distortions and third harmonic generations. Nonlinear analyses of the SMTLs at the different temperatures and the input powers have been presented. This proposed model can describe the unusual behaviors of the nonlinearity at low temperatures, which are frequently observed in the SMTLs.

  11. The reactive Mg-liquid infiltration to obtain long superconducting MgB$_{2}$ cables

    CERN Document Server

    Giunchi, G

    2009-01-01

    An alternative “in situ” process to the MgB2 wire manufacturing is represented by the Reactive Mg-Liquid Infiltration (Mg-RLI) process [1], in which the precursor wire is constituted by a metallic sheath encasing a central Mg rod, surrounded by the B powders. We demonstrated that this peculiar “internal Mg” assembly is able to produce very dense superconducting material of high critical current density, with an acceptable fill factor, up to 0.28. Furthermore the Mg-RLI allows also to easily dope the MgBB2 material either by carbon or nanoSiC powders. In order to realize long cables with this technique, two different approaches may be applied. The first one relies on the assembly of thin wires, fine enough that the liquid Mg cannot freely percolate along the wire during the reaction, and the second one relies on the assembly of thick hollow wires, reacted with a continuous supply of Mg to avoid deficiency of Mg in some part of the precursor wire. Both techniques have been demonstrated feasible and the ...

  12. Possibility of a gas-cooled Peltier current lead in the 200 m-class superconducting direct current transmission and distribution system of CASER-2

    Science.gov (United States)

    Kawahara, Toshio; Emoto, Masahiko; Watanabe, Hirofumi; Hamabe, Makoto; Yamaguchi, Sataro; Hikichi, Yasuo; Minowa, Masahiro

    Global energy problems should be solved quickly, and superconducting applications are highly demanded as energy saving technologies. Among them, long-distance superconducting transmission seems to be one of the most promising for energy saving by energy sharing. On the other hand, such large systems can be constructed from smaller network systems that can be enhanced by scaling up to the superconducting grid. Reducing heat leak to the low temperature end is the most important aspect of technology for practical superconducting applications, and heat leak reduction at the terminal is a key goal especially for small-length applications. At Chubu University, we have developed a 200 m-class superconducting direct current transmission and distribution system (CASER-2), in which we also used a Peltier current lead (PCL) as heat insulation at the terminal. PCL is composed of a thermoelectric material and a copper lead. In actual transmission and distribution applications, the cables are also cooled by the coolant. After the circulation, the coolant could also be used to cool the current lead. We will discuss the performance of such gas-cooled systems as the total performance of applied superconducting systems using the experimental parameters obtained in CASER-2.

  13. Power transmission cable development for the Space Station Freedom electrical power system

    Science.gov (United States)

    Schmitz, Gregory V.; Biess, John J.

    1989-01-01

    Power transmission cable is presently being evaluated under a NASA Lewis Research Center advanced development contract for application in the Space Station Freedom (SSF) electrical power system (EPS). Evaluation testing has been performed by TRW and NASA Lewis Research Center. The results of this development contract are presented. The primary cable design goals are to provide (1) a low characteristic inductance to minimize line voltage drop at 20 kHz, (2) electromagnetic compatibility control of the 20-kHz ac power current, (3) a physical configuration that minimizes ac resistance and (4) release of trapped air for corona-free operation.

  14. Flexible superconducting Nb transmission lines on thin film polyimide for quantum computing applications

    Science.gov (United States)

    Tuckerman, David B.; Hamilton, Michael C.; Reilly, David J.; Bai, Rujun; Hernandez, George A.; Hornibrook, John M.; Sellers, John A.; Ellis, Charles D.

    2016-08-01

    We describe progress and initial results achieved towards the goal of developing integrated multi-conductor arrays of shielded controlled-impedance flexible superconducting transmission lines with ultra-miniature cross sections and wide bandwidths (dc to >10 GHz) over meter-scale lengths. Intended primarily for use in future scaled-up quantum computing systems, such flexible thin-film niobium/polyimide ribbon cables could provide a physically compact and ultra-low thermal conductance alternative to the rapidly increasing number of discrete coaxial cables that are currently used by quantum computing experimentalists to transmit signals between the several low-temperature stages (from ˜4 K down to ˜20 mK) of a dilution refrigerator. We have concluded that these structures are technically feasible to fabricate, and so far they have exhibited acceptable thermo-mechanical reliability. S-parameter results are presented for individual 2-metal layer Nb microstrip structures having 50 Ω characteristic impedance; lengths ranging from 50 to 550 mm were successfully fabricated. Solderable pads at the end terminations allowed testing using conventional rf connectors. Weakly coupled open-circuit microstrip resonators provided a sensitive measure of the overall transmission line loss as a function of frequency, temperature, and power. Two common microelectronic-grade polyimide dielectrics, one conventional and the other photo-definable (PI-2611 and HD-4100, respectively) were compared. Our most striking result, not previously reported to our knowledge, was that the dielectric loss tangents of both polyimides, over frequencies from 1 to 20 GHz, are remarkably low at deep cryogenic temperatures, typically 100× smaller than corresponding room temperature values. This enables fairly long-distance (meter-scale) transmission of microwave signals without excessive attenuation, and also permits usefully high rf power levels to be transmitted without creating excessive dielectric

  15. An ultrasonic guided wave approach for the inspection of overhead transmission line cables

    DEFF Research Database (Denmark)

    Kappatos, Vasileios; Yücel, Mehmet K.; Legg, Mathew

    2017-01-01

    Inspection of overhead transmission line cables is performed using various non-destructive testing techniques, such as visual, temperature, and eddy current-based inspection; yet each of these techniques have their respective shortcomings and safety concerns. The use of ultrasonic guided waves...... as a non-destructive testing technique is well established for simple geometries such as plates, pipes, and rods. However, its application for multi-wire cables is still in development. In this study, ultrasonic guided waves excited by a shear mode transducer collar are utilised as a defect detection...... technique for untensioned aluminium conductor steel reinforced cable specimens. The identification and analysis of wave propagation for a broad range of frequencies is performed using a laser scanning vibrometer, and the effect of defect size on wave propagation is studied. Signal processing algorithms...

  16. Assessment of seafloor burial of proposed OTEC power-transmission cables

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    This study assesses the need for protection of the seafloor OTEC power transmission cables, identifies the means, or development requirements, for accomplishing the required protection, and determines the costs and benefits associated with this protection. Protection of the bottom cable along the entire route from the shoreline to the riser cable were evaluated at four specific sites. Three of the four sites are ''island sites''; they are immediately offshore of: (1) Kahe Point, Oahu, Hawaii; (2) Punta Yeguas, Puerto Rico; and (3) Cabras Island, Guam. The fourth site is in the Gulf of Mexico, due West of Tampa, Florida. All four sites are located in the tropical zones and are fully exposed to open ocean wind waves and currents. Cable routes from the shore to platform site are generally normal to the depth contours fronting the offshore slopes. All four sites are subject to severe hurricane winds and wave action. A total of 1061 sumarine communication cable faults were accumulated and analyzed during the initial portion of this study. These faults cover 101 years (1879 to 1980) of data collection and are reported in probabilistic terms keyed to water depth. Chafing and corrosion were found to be the most common hazard causing just over half of the reported incidents. Fishing activities, specifically trawlers and dredgers, wee the second most common hazard, accounting for approximately one-quarter of the reported incidents. The status of seafloor cable protection technology is also addressed in this study. A comprehensive summary identifying the most suitable commercial systems has been conducted. Both cable and pipeline protection systems were included as well as previous relevant experience and operating conditions.

  17. HTS Transmission Cable System for installation in the Long Island Power Grid

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Frank [American Superconductor Corporation, Devens, MA (United States); Durand, Fabien [American Superconductor Corporation, Devens, MA (United States); Maguire, James [American Superconductor Corporation, Devens, MA (United States)

    2015-10-05

    Department of Energy (DOE) Award DE-FC26-07NT43240 was issued on October 1, 2007. Referred to as LIPA2, the principal objectives of the project were to develop key components required to deploy and demonstrate second-generation (2G) high temperature superconductor (HTS) cables in a 600 meter (2000 feet) underground segment of a 138kV three-phase transmission circuit of the Long Island Power Authority (LIPA) power grid. A previous effort under DOE Award DE-FC36-03GO13032 (referred to as LIPA1) resulted in installation (and subsequent successful operation) of first-generation (1G) HTS cables at the LIPA site. As with LIPA1, American Superconductor (AMSC) led the effort for LIPA2 and was responsible for overall management of the project and producing sufficient 2G wire to fabricate the required cable. Nexans' tasks included design/manufacture/installation of the cable, joint (splice), cable terminations and field repairable cryostat; while work by Air Liquide involved engineering and installation support for the refrigeration system modifications.

  18. Characterization of superconducting wires and cables by X-ray micro-tomography

    Energy Technology Data Exchange (ETDEWEB)

    Tiseanu, Ion, E-mail: tiseanu@infim.ro [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Street 409, Bucharest, Magurele (Romania); Zani, Louis [JT60-SA EU Home Team, Fusion for Energy, Boltzmannstrasse 2, 85748 Garching (Germany); Craciunescu, Teddy [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Street 409, Bucharest, Magurele (Romania); Cotorobai, Florin [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Street 409, Bucharest, Magurele (Romania); National Institute for Material Physics, Atomistilor Street, 105bis, Bucharest, Magurele (Romania); Dobrea, Cosmin; Sima, Adrian [National Institute for Laser, Plasma and Radiation Physics, Atomistilor Street 409, Bucharest, Magurele (Romania)

    2013-10-15

    Highlights: • A methodology in support of quality controls monitoring of Cable-in-Conduit-Conductor (CICC) to be used in tokamak magnet systems was developed. • High resolution (≈40 μm) X-ray tomography images of CICC section up to 300 mm long have been obtained. • All constitutive elements of CICC (316SS jacket, NbTi and Cu strands and external wrapper foil) can be noninvasively inspected. • Derivation of quantities like void fraction and void homogeneity at the local and global level, automatic identification of individual NbTi and Cu strands. • Derivation of geometric parameters like: trajectory, pitch angle and their space distribution. -- Abstract: Due to their mechanical strength and ability to withstand the large electromagnetic force applied to the superconductors in large magnets during excitation, the Cable-in-Conduit-Conductor (CICC) type superconductors will be employed in the next stage of fusion magnets. Here, we discuss the recent results on the application of a non-invasive method for the characterization of CCIC by X-ray micro-tomography (μXCT). The experiments have been carried out on a high resolution X-ray tomograph in INFLPR ( (http://tomography.inflpr.ro)). An open type nanofocus X-ray source with maximum high voltage of 225 kVp at 15–30 W maximum power and multiple targets of W on different windows materials (Be, Al, Cu or diamond) is the main component. X-rays are detected by means of amorphous silicon flat panel sensor in the cone-beam configuration and high-energy efficient line sensor based on individual scintillators in the fan-beam scanning configuration. The quality of tomographic images (≈40 μm space resolution) allowed the majority of strands of analyzed CICC samples to be fully reconstructed along the investigated segment (up to 300 mm long). Our method provides: (i) local and global void fractions (over a 300 mm length of the sample), (ii) void homogeneity factor as the ratio between void space surface and

  19. EHV/HV Underground Cable Systems for Power Transmission

    DEFF Research Database (Denmark)

    Bak, Claus Leth

    are to be found. One very good example of this is offshore wind power plants. The current transmission system is laid out in a traditional manner, which is based on the idea of not transporting power over longer distances as the power plants have been located near centres of consumption. It has merely played....... Many interesting research topics are still open, especially with regards to asset management tools....

  20. AmpaCity. Superconducting cables and fault current limiters for the energy supply in conurbations; AmpaCity. Supraleitende Kabel und Strombegrenzer fuer die Energieverteilung in Ballungsgebieten

    Energy Technology Data Exchange (ETDEWEB)

    Merschel, F. [RWE Deutschland AG, Essen (Germany); Noe, M. [Karlsruher Institute of Technology (KIT), Karlsruhe (Germany); Stemmle, M. [Nexans Deutschland GmbH, Hannover (Germany); Hobl, A. [Nexans SuperConductors GmbH, Huerth (Germany); Sauerbach, O. [Westnetz GmbH, Essen (Germany)

    2013-07-01

    In 2013 RWE Germany is working jointly with cable manufacturer Nexans and with the scientific support of the Karlsruhe Institute of Technology (KIT) to install world's longest superconducting cable in the downtown area electricity grid of Essen. The AmpaCity project is partly funded by the German Federal Ministry of Economics and Technology and is playing an exemplary role in the further development of electricity grids in major cities worldwide. The project consortium presents AmpaCity as a convincing system solution especially with respect to economics and security of supply. Components of the system are a superconducting three-phase AC cable with two terminations and one connection joint in combination with a fault current limiter, which is also based on superconducting materials. The superconducting system is designed for 10 kV nominal voltage and 40 MW nominal power. It will replace a 110 kV cable system of equal capacity. At the same time, the project partners are paving the way for high failsafe performance, as the cable in conjunction with the fault current limiter cannot be overloaded by short circuit currents in the event of faults in the grid. Planning and follow up on the civil works in Essen posed a major challenge. Cable laying in the inner city, with various crossings of major highways, tramways, as well as already dense cable routes necessitated very thorough preparation and coordination. The civil works in Essen started in April 2013. At around the same time, after the cable had passed the type test, it went into production. Cable laying is scheduled for late summer. After commissioning, planned for the end of 2013, the field trial will run for at least two years under real grid conditions, to demonstrate this technology's suitability for wider deployment.

  1. The Effect of CuSn Intermetallics on the Interstrand Contact Resistance in Superconducting Cables for the Large Hadron Collider (LHC)

    CERN Document Server

    Scheuerlein, C; Jacob, P; Leroy, D; Oberli, L R; Taborelli, M

    2005-01-01

    The LHC superconducting cables are submitted to a 200°C heat-treatment in air in order to increase the resistance between the crossing strands (RC) within the cable. During this treatment the as-applied Sn-Ag alloy strand coating is transformed into a CuSn intermetallic compound layer. The microstructure, the surface topography and the surface chemistry of the non-reacted and reacted coatings have been characterised by different techniques, notably focused ion beam (FIB), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Based on the results obtained by these techniques the different influences that the intermetallics have on RC are discussed. The desired RC is obtained only when a continuous Cu3Sn layer is formed, i.e. a sufficient wetting of the Cu substrate by the tinning alloy is crucial. Among other effects the formation of the comparatively hard intermetallics roughens the surface and, thus, reduces the true contact area and i...

  2. Optical fiber cable for transmission of high power laser energy over great distances

    Science.gov (United States)

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Moxley, Joel F.; Koblick, Yeshaya

    2016-05-24

    There is provided a system and apparatus for the transmission of high power laser energy over great distances without substantial power loss and without the presence of stimulated Raman scattering. There is further provided systems and optical fiber cable configurations and optical fiber structures for the delivering high power laser energy over great distances to a tool or surface to perform an operation or work with the tool or upon the surface.

  3. Optical fiber cable for transmission of high power laser energy over great distances

    Energy Technology Data Exchange (ETDEWEB)

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Moxley, Joel F.; Koblick, Yeshaya

    2016-05-24

    There is provided a system and apparatus for the transmission of high power laser energy over great distances without substantial power loss and without the presence of stimulated Raman scattering. There is further provided systems and optical fiber cable configurations and optical fiber structures for the delivering high power laser energy over great distances to a tool or surface to perform an operation or work with the tool or upon the surface.

  4. Steady state heat transfer experimental studies of LHC superconducting cables operating in cryogenic environment of superfluid helium

    CERN Document Server

    Santandrea, Dario; Tuccillo, Raffaele; Granieri, Pier Paolo

    The heat management is a basic and fundamental aspect of the superconducting magnets used in the CERN Large Hadron Collider. Indeed, the coil temperature must be kept below the critical value, despite the heat which can be generated or deposited in the magnet during the normal operations. Therefore, this thesis work aims at determining the heating power which can be extracted from the superconducting cables of the LHC, specially through their electrical insulation which represents the main thermal barrier. An experimental measurement campaign in superfluid helium bath was performed on several samples reproducting the main LHC magnets. The heating power was generated in the sample by Joule heating and the temperature increase was measured by means of Cernox bare chip and thermocouples. An innovative instrumentation technique which also includes the in-situ calibration of the thermocouples was developed. A thorough uncertainty analysis on the overall measurement chain concluded the experimental setup. The prese...

  5. Electromagnetic analysis of a superconducting transformer for high current characterization of cable in conduit conductors in background magnetic field

    Science.gov (United States)

    Wu, Xiangyang; Tan, Yunfei; Fang, Zhen; Jiang, Donghui; Chen, Zhiyou; Chen, Wenge; Kuang, Guangli

    2017-10-01

    A large cable-in-conduit-conductor (CICC) test facility has been designed and fabricated at the High Magnetic Field Laboratory of the Chinese Academy of Sciences (CHMFL) in order to meet the test requirement of the conductors which are applied to the future fusion reactor. The critical component of the test facility is an 80 kA superconducting transformer which consists of a multi-turn primary coil and a minor-turn secondary coil. As the current source of the conductor samples, the electromagnetic performance of the superconducting transformer determines the stability and safety of the test facility. In this paper, the key factors and parameters, which have much impact on the performance of the transformer, are analyzed in detail. The conceptual design and optimizing principles of the transformer are discussed. An Electromagnetic-Circuit coupled model built in ANSYS Multiphysics is successfully used to investigate the electromagnetic characterization of the transformer under the dynamic operation condition.

  6. DC measurement of electrical contacts between strands in superconducting cables for the LHC main magnets

    CERN Document Server

    Richter, D; Depond, J M; Leroy, D; Oberli, L R

    1996-01-01

    In the LHC main magnets, using Rutherford type cable, the eddy current loss and dynamic magnetic field error depend largely on the electrical resistance between crossing (Rc) and adjacent (Ra) strands. Cables made of strands with pre-selected coatings have been studied at low temperature using a DC electrical method. The significance of the inter-strand contact is explained. The properties of resistive barriers, the DC method used for the resistance measurement on the cable, and sample preparation are described. Finally the resistances are presented under various conditions, and the effect is discussed that the cable treatment has on the contact resistance.

  7. CUDI A Model for Calculation of Electrodynamic and Thermal Behaviour of Superconducting Rutherford Cables

    CERN Document Server

    Verweij, A

    2006-01-01

    CUDI is the extended Fortran code to calculate the electrodynamic and thermal behaviour of any type of Rutherford cable subject to global and/or local variations in field, transport current, and external heat release. The internal parameters of the cable can be freely varied along the length and across the width, such as contact resistances, critical current, cooling rates etc. In this way, all the typical non-uniformities occurring in a cable, e.g. broken filaments, strand welds, cable joints, and edge degradation can be simulated. Also the characteristics of the strands in the cable can be varied from strand to strand. Heat flows through the matrix, through the interstrand contacts, and to the helium are incorporated, as well as the self-field and self- and mutual inductances between the strands. The main features and structure of the program will be discussed.

  8. Current distribution among layers of single phase HTS cable conductor

    Science.gov (United States)

    Zheng, Y. B.; Wang, Y. S.; Pi, W.; Ju, P.; Wang, Y. S.

    2014-12-01

    High temperature superconducting (HTS) power cable shows high application prospect in modern power transmission, as it is superior over conventional transmission lines in high engineering current density and environmental friendliness. Its configuration is generally composed of several HTS layers designed with the principle of uniform current distribution, but there are few experimental results to verify the distribution. In this paper, a HTS cable model was designed based on the principle of uniform current, and the current distributions among layers in an HTS cable model were measured by Rogowski coils. The results provide an important basis for design of multi-layer HTS cable.

  9. Superconductor cable

    Science.gov (United States)

    Allais, Arnaud; Schmidt, Frank (Langenhagen, DE

    2009-12-15

    A superconductor cable includes a superconductive cable core (1) and a cryostat (2) enclosing the same. The cable core (1) has a superconductive conductor (3), an insulation (4) surrounding the same and a shielding (5) surrounding the insulation (4). A layer (3b) of a dielectric or semiconducting material is applied to a central element (3a) formed from a normally conducting material as a strand or tube and a layer (3c) of at least one wire or strip of superconductive material is placed helically on top. The central element (3a) and the layer (3c) are connected to each other in an electrically conducting manner at the ends of the cable core (1).

  10. The wave phase velocity in superconducting transmission lines near T{sub c}

    Energy Technology Data Exchange (ETDEWEB)

    Kuzhakhmetov, A.R.; Lobov, G.D.; Shtykov, V.V.; Zhgoon, S.A. [Moscow Power Engineering Inst. (Russian Federation). Radio Engineering Dept.

    1998-06-01

    A peculiarity in behavior of electromagnetic waves phase velocity ({nu}{sub ph}), propagating in superconducting planar transmission lines, in the vicinity of the transition temperature (T{sub c}) was observed in experiment and deduced theoretically. (orig.) 5 refs.

  11. Cable television transmission over a 1550-nm infrared indoor optical wireless link

    Science.gov (United States)

    Sakib Chowdhury, M. I.; Kavehrad, Mohsen; Zhang, Weizhi

    2013-10-01

    We experimentally demonstrate transmission of cable television (CATV) radio frequency signals over a pointed indoor optical wireless link. The length of the optical link was 15 m. Collimators used at both the transmitter and the receiver sides required good alignment before sufficient optical power could be received. The system was placed at a height of 2 m, which is more than average human height, so human movements throughout the room did not obstruct the link. The optical wireless propagation path was almost lossless. The originality in this experimental demonstration is the transmission of full range of CATV signals compared to other works in this area. This experiment of radio over free-space optics showed that point-to-point indoor optical wireless links can be utilized as an alternative means for transmission of multimedia data.

  12. Analysis and characterizations of planar transmission structures and components for superconducting and monolithic integrated circuits

    Science.gov (United States)

    Itoh, Tatsuo

    1992-01-01

    The research effort was continued to design and characterize superconducting transmission line structures. The research during this period was concentrated on the implementation of a superconductor into coplanar waveguide structures. First, the superconducting coplanar waveguide was examined, and compared with a superconducting microstrip line in terms of loss characteristics and their design aspects. Then, the research was carried on the design and characterization of the coplanar waveguide family in the packaging environment. The transition between the coaxial line to the conductor backed coplanar waveguide was also designed for the measurement of the superconducting conductor backed coplanar waveguide.

  13. AC Cable: Yokohama Project

    Science.gov (United States)

    Masuda, Takato

    High Temperature Superconducting (HTS) cables can transmit large amounts of electricity in a compact size with minimal losses. Therefore, they are expected to save the construction cost of underground lines in urban areas and decrease transmission losses. Several HTS cables have recently been demonstrated in networks around the world, and full-scale commercialization is expected in the near future. In Japan, the development of compact HTS cables suitable for urban deployment has been underway since the early 1990s. In 2007, a national project was started to verify their operational performance and long-term reliability in the grid. An HTS cable 240 m long was installed at the Asahi substation of the Tokyo Electric Power Company (TEPCO) in Yokohama; then a joint, terminations and cooling system was constructed in 2011. After successful performance tests, the cable was connected to the grid for the first time in Japan, and started to deliver electricity to 70,000 households in October 2012. This trouble-free in-grid service continued for over a year. We can conclude that the HTS cable system performs well and has the stability required for long-term in-grid operations.

  14. AC HTS Transmission Cable for Integration into the Future EHV Grid of the Netherlands

    Science.gov (United States)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Aanhaanen, G.; Melnik, I.; Geschiere, A.

    Due to increasing power demand, the electricity grid of the Netherlands is changing. The future grid must be capable to transmit all the connected power. Power generation will be more decentralized like for instance wind parks connected to the grid. Furthermore, future large scale production units are expected to be installed near coastal regions. This creates some potential grid issues, such as: large power amounts to be transmitted to consumers from west to east and grid stability. High temperature superconductors (HTS) can help solving these grid problems. Advantages to integrate HTS components at Extra High Voltage (EHV) and High Voltage (HV) levels are numerous: more power with less losses and less emissions, intrinsic fault current limiting capability, better control of power flow, reduced footprint, etc. Today's main obstacle is the relatively high price of HTS. Nevertheless, as the price goes down, initial market penetration for several HTS components is expected by year 2015 (e.g.: cables, fault current limiters). In this paper we present a design of intrinsically compensated EHV HTS cable for future grid integration. Discussed are the parameters of such cable providing an optimal power transmission in the future network.

  15. Identification of problems when using long high voltage AC cable in transmission system I: Switching transient problems

    DEFF Research Database (Denmark)

    Rahimi, Saeed; Wiechowski, W.; Randrup, M

    2008-01-01

    Due to political and environmental pressures from the public and government side, upgrading and building new transmission facilities are becoming more and more difficult and in some cases the expansion of overhead transmission lines are impossible. This means that underground cable technology...

  16. submitter Superconducting transmission lines – Sustainable electric energy transfer with higher public acceptance?

    CERN Document Server

    Thomas, Heiko; Chervyakov, Alexander; Stückrad, Stefan; Salmieri, Delia; Rubbia, Carlo

    2016-01-01

    Despite the extensive research and development investments into superconducting science and technology, both at the fundamental and at the applied levels, many benefits of superconducting transmission lines (SCTL) remain unknown to the public and decision makers at large. This paper aims at informing about the progress in this important research field. Superconducting transmission lines have a tremendous size advantage and lower total electrical losses for high capacity transmission plus a number of technological advantages compared to solutions based on standard conductors. This leads to a minimized environmental impact and enables an overall more sustainable transmission of electric energy. One of the direct benefits may be an increased public acceptance due to the low visual impact with a subsequent reduction of approval time. The access of remote renewable energy (RE) sources with high-capacity transmission is rendered possible with superior efficiency. That not only translates into further reducing $CO_2...

  17. Final Report: MATERIALS, STRANDS, AND CABLES FOR SUPERCONDUCTING ACCELERATOR MAGNETS [Grant Number DE-SC0010312

    Energy Technology Data Exchange (ETDEWEB)

    Sumption, Mike D. [The Ohio State Univ., Columbus, OH (United States). Center for Superconducting and Magnetic Materials (CSMM); Collings, Edward W. [The Ohio State Univ., Columbus, OH (United States). Center for Superconducting and Magnetic Materials (CSMM)

    2014-10-29

    Our program consisted of the two components: Strand Research and Cable Research, with a focus on Nb3Sn, Bi2212, and YBCO for accelerator magnet applications. We demonstrated a method to refine the grains in Nb3Sn by a factor of two, reaching 45 nm grain sizes, and layer Jcs of 6 kA/mm2 at 12 T. W also measured conductor magnetization for field quality. This has been done both with Nb3Sn conductor, as well as Bi:2212 strand. Work in support of quench studies of YBCO coils was also performed. Cable loss studies in Nb3Sn focused on connecting and comparing persistent magnetization and coupling magnetization for considering their relative impact on HEP machines. In the area of HTS cables, we have investigated both the quench in multistrand YBCO CORC cables, as well as the magnetization of these cables for use in high field magnets. In addition, we examined the magnetic and thermal properties of large (50 T) solenoids.

  18. Dynamic temperature estimation and real time emergency rating of transmission cables

    DEFF Research Database (Denmark)

    Olsen, R. S.; Holboll, J.; Gudmundsdottir, Unnur Stella

    2012-01-01

    enables real time emergency ratings, such that the transmission system operator can make well-founded decisions during faults. Hereunder is included the capability of producing high resolution loadability vs. time schedules within few minutes, such that the TSO can safely control the system.......This paper is concerned with the development of a fast computational methodology for dynamical estimation of the temperature in transmission cables solely based on current measurements and an enhanced version of the lumped parameters model, also denoted thermo electric equivalents (TEE......). It is found that the calculated temperature estimations are fairly accurate — within 1.5oC of the finite element method (FEM) simulation to which it is compared — both when looking at the temperature profile (time dependent) and the temperature distribution (geometric dependent). The methodology moreover...

  19. Design and simulation of a cable-pulley-based transmission for artificial ankle joints

    Science.gov (United States)

    Liu, Huaxin; Ceccarelli, Marco; Huang, Qiang

    2016-06-01

    In this paper, a mechanical transmission based on cable pulley is proposed for human-like actuation in the artificial ankle joints of human-scale. The anatomy articular characteristics of the human ankle is discussed for proper biomimetic inspiration in designing an accurate, efficient, and robust motion control of artificial ankle joint devices. The design procedure is presented through the inclusion of conceptual considerations and design details for an interactive solution of the transmission system. A mechanical design is elaborated for the ankle joint angular with pitch motion. A multi-body dynamic simulation model is elaborated accordingly and evaluated numerically in the ADAMS environment. Results of the numerical simulations are discussed to evaluate the dynamic performance of the proposed design solution and to investigate the feasibility of the proposed design in future applications for humanoid robots.

  20. Identification of problems when using long high voltage AC cable in transmission system II: Resonance & Harmonic resonance

    DEFF Research Database (Denmark)

    Rahimi, Saeed; Wiechowski, W.; Randrup, M.;

    2008-01-01

    cable in transmission system. The objective of this paper and the companion paper is to address the most important problems expected in transmission system with relatively larger share of long HV underground cables. The end goal will be a guideline to special solutions and precautions to avoid dangerous...... over voltage problems and also resonance problems in a transmission network with future increased share of cables. Two major categories of problems are switching transient and resonance problems. In each category of the possible problems, first some theoretical background is provided...... and then the problem and countermeasures are discussed. In this paper most important resonance problems are addressed and discussed. Three main categories of resonance problems are: Near Resonance, Harmonic resonance and Ferroresonance....

  1. Study for installation of fiber optic cables on operating transmission lines; Estudo para instalacao de cabos opticos em LTs em operacao

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Arnaldo Cursino [Eletronet, Rio de Janeiro, RJ (Brazil); Pardauil, Nagib Bechara [ELETRONORTE, Belem, PA (Brazil)

    2002-10-01

    This article performs a comparison among the various alternatives for implantation of an optical system in existing transmission lines. The work takes into consideration the substitution of lightning conductors by OPGW cables, the installation of self-sustained cables, the using of spined optical cables, the installation of a new transmission line and a case study for the 500 kV section between the Tucurui and Presidente Dutra substations.

  2. Modeling heat transfer from quench protection heaters to superconducting cables in Nb3Sn magnets

    CERN Document Server

    Salmi, T; Caspi, S; Felice, H; Prestemon, S; Chlachidze, G; Kate, H H J ten

    2013-01-01

    We use a recently developed quench protection heater modeling tool for an analysis of heater delays in superconducting high-field Nb3Sn accelerator magnets. The results suggest that the calculated delays are consistent with experimental data, and show how the heater delay depends on the main heater design parameters.

  3. AC Loss in the Superconducting Cables of the CERN Fast Cycled Magnet Prototype

    NARCIS (Netherlands)

    Borgnolutti, F.; Bottura, L.; Nijhuis, A.; Zhou, C.; Liu, B.; Miyoshi, Y.; Krooshoop, H.J.G.; Richter, D.

    2012-01-01

    Fast Cycled Superconducting Magnets (FCM's) are an option of interest for the long-term consolidation and upgrade plan of the LHC accelerator complex. The economical advantage of FCM's in the range of 2 T bore field, continuously cycled at 0.5 Hz repetition rate, depends critically on the AC loss pr

  4. XLPE power cables with optimised conductor properties. Increasing transmission capacity; VPE-Hochleistungskabel mit optimierten Leitereigenschaften. Erhoehung der Uebertragungsleistung

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Sigurdur A. [Suedkabel GmbH, Mannheim (Germany)

    2009-11-02

    Conductors laid up of segments in combination with additional design measures can considerably increase the current carrying capacity of XLPE power cables. Compared to conductors of circular stranded design without the described improving methods the permissible transmission rating will be raised by approx. 15%. (orig.)

  5. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid.

    Science.gov (United States)

    Yu, Deshui; Valado, María Martínez; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-12-06

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa.

  6. Quantum State Transmission in a Superconducting Charge Qubit-Atom Hybrid

    CERN Document Server

    Yu, Deshui; Hufnagel, Christoph; Kwek, Leong Chuan; Amico, Luigi; Dumke, Rainer

    2016-01-01

    Hybrids consisting of macroscopic superconducting circuits and microscopic components, such as atoms and spins, have the potential of transmitting an arbitrary state between different quantum species, leading to the prospective of high-speed operation and long-time storage of quantum information. Here we propose a novel hybrid structure, where a neutral-atom qubit directly interfaces with a superconducting charge qubit, to implement the qubit-state transmission. The highly-excited Rydberg atom located inside the gate capacitor strongly affects the behavior of Cooper pairs in the box while the atom in the ground state hardly interferes with the superconducting device. In addition, the DC Stark shift of the atomic states significantly depends on the charge-qubit states. By means of the standard spectroscopic techniques and sweeping the gate voltage bias, we show how to transfer an arbitrary quantum state from the superconducting device to the atom and vice versa.

  7. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  8. Development of Superconducting Strang and Cable with Improved Properties for Use in SSC Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, R.M.

    1989-02-01

    The critical current requirement for the NbTi superconductor strand was set at 2750 A/mm{sup 2} (5 T, 4.2 K) in the SSC Conceptual Design, compared with a value of 1800 A/mm{sup 2} which was specified for the strand used in the Tevatron dipoles. In addition, a filament diameter of 5 {micro}m, instead of the 9 {micro}m diameter used in the Tevatron. was chosen to reduce field distonion at injection. In order to meet the requirements for field homogeneity, the dimensional requirements for both strand and cable were also tightened. The technical solutions employed to achieve these improved properties and the resulting specifications will be discussed.

  9. Short-circuit experiments on a high Tc-superconducting cable conductor

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Jensen, E.H.; Traholt, C.

    2002-01-01

    A high temperature superconductor (HTS) cable conductor (CC) with a critical current of 2.1 kA was tested over a range of short-circuit currents up to 20 kA. The duration of the short-circuit currents is 1 s. Between each short-circuit test the critical current of the HTS CC was measured in order...... to detect degradation due to the short-circuit current. During the over-current testing the current and voltage along the CC were measured as well as its temperature. Significant warming above the critical temperature occurs for short-circuit currents of 10 kA and above. No critical current degradation...

  10. A New Concept for Superconducting DC Transmission from a Wind Farm

    DEFF Research Database (Denmark)

    Østergaard, Jacob; Tønnesen, Ole; Pedersen, Jørgen Kaas;

    2002-01-01

    Projects with large offshore wind farms (up to 500 MW) are in progress. Connecting the parks to the power grid with conventional AC transmission technique is difficult due to non-controllable power flow and voltage stability problems. A new concept for connecting remotely located wind farms is su...... is suggested and described. The concept is based on combining superconducting DC power transmission and cooled power electronic....

  11. A feasibility study of photosensor charge signal transmission to preamplifier using long cable for development of hybrid PET-MRI.

    Science.gov (United States)

    Kang, Jihoon; Choi, Yong; Hong, Key Jo; Jung, Jin Ho; Hu, Wei; Huh, Yoon Suk; Lim, Hyunkeong; Kim, Byung-Tae

    2010-11-01

    A new positron emission tomography (PET) detector signal processing method, the charge signal transmission approach, is proposed for the development of a hybrid PET-magnetic resonance imaging (MRI). A number of experiments were performed to demonstrate that the Geiger-mode avalanche photodiode (GAPD) charge output could be transmitted to a preamplifier using a long cable without degrading the PET signal performance. A PET module consisted of LYSO and a GAPD with a 4 x 4 array. The GAPD output was transmitted to the preamplifier through flexible flat cables. The effect of the cable length on the PET performance was examined using seven different lengths ranging from 10 to 300 cm outside and inside the 7 T animal MRI. Four parameters (rise time, fall time, amplitude, and area of the preamplifier output) were measured as a function of the cable length using a 10 GS/s oscilloscope and three parameters (photopeak position, energy resolution, and time resolution) were measured using a 100 MS/s DAQ unit. The effect of the cable length on the MR phantom images was investigated. In addition, the effect of the PET module configuration on its temperature stability was assessed by acquiring the energy and time spectra. There were no significant changes in the PET module performance as a function of the cable length, both outside and inside MRI. The performance changes in energy information, such as the amplitude, area, photopeak position, and energy resolution, were <3% with cable lengths ranging from 10 to 300 cm and the change in the time resolution was <6%. There were no obvious artifacts or changes in the line profile in the MR phantom images. Moreover, no manifest changes in the photopeak position and coincidence counting rate were observed in the PET modules employing the charge signal transmission approach, whereas considerable degradation of the PET module performance was observed in the voltage signal transmission approach. This study demonstrated that it is feasible

  12. Fiber Optic Cryogenic Sensors for Superconducting Magnets and Superconducting Power Transmission lines at CERN

    CERN Document Server

    Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Giordano, M; Breglio, G; Palmieri, L

    2014-01-01

    The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.

  13. Modelling of long High Voltage AC Cables in the Transmission System

    DEFF Research Database (Denmark)

    Gudmundsdottir, Unnur Stella

    , EMTDC/PSCAD is provided. A typical HV AC underground power cable is formed by 4 main layers, namely; Conductor-Insulation-Screen-Insulation. In addition to these main layers, the cable also has semiconductive screens, swelling tapes and metal foil. For high frequency modelling in EMT-based software...... and field measurement results. This is because of intersheath mode reflecting from the crossbonding points. The second main part of the work deals with improving the cable model based on the findings from analysis of the field measurements. The existing EMT-based models have the configuration for cables...

  14. Cryogenic design and test results of 30-m flexible hybrid energy transfer line with liquid hydrogen and superconducting MgB2 cable

    Science.gov (United States)

    Kostyuk, V. V.; Blagov, E. V.; Antyukhov, I. V.; Firsov, V. P.; Vysotsky, V. S.; Nosov, A. A.; Fetisov, S. S.; Zanegin, S. Yu.; Svalov, G. G.; Rachuk, V. S.; Katorgin, B. I.

    2015-03-01

    In this paper we present the development of a new hybrid energy transfer line with 30 m length. The line is essentially a flexible 30 m hydrogen cryostat that has three sections with different types of thermal insulation in each section: simple vacuum superinsulation, vacuum superinsulation with liquid nitrogen precooling and active evaporating cryostatting (AEC) system. We performed thermo-hydraulic tests of the cryostat to compare three thermo-insulating methods. The tests were made at temperatures from 20 to 26 K, hydrogen flow from 70 to 450 g/s and pressure from 0.25 to 0.5 MPa. It was found that AEC thermal insulation was the most effective in reducing heat transfer from room temperature to liquid hydrogen in ∼10 m section of the cryostat, indicating that it can be used for long superconducting power cables. High voltage current leads were developed as well. The current leads and superconducting MgB2 cable passed high voltage DC test up to 50 kV DC. Critical current of the cable at ∼21 K was 3500 A. It means that the 30 m hybrid energy system developed is able to deliver ∼50-60 MW of chemical power and ∼50-75 MW of electrical power, i.e. up to ∼135 MW in total.

  15. Integration of High-Tc Superconducting Cables in the Dutch Power Grid of the Future

    NARCIS (Netherlands)

    Zuijderduin, R.

    2016-01-01

    Worldwide there is an increasing need for a more sustainable form of electrical power delivery with a growing share of renewable energy generation. In the distribution and transmission network, large-scale and small-scale wind and solar power plants will be introduced, in proportion to the annual ec

  16. The power supply system model of the process submersible device with AC power transmission over the cable-rope

    Science.gov (United States)

    Rulevskiy, V. M.; Bukreev, V. G.; Kuleshova, E. O.; Shandarova, E. B.; Shandarov, S. M.; Vasilyeva, Yu Z.

    2017-02-01

    A practical problem of power supply system modeling for the process submersible device with AC power transmission over the cable-rope was considered. The problem is highly relevant in developing and operation of submersible centrifugal pumps and submersibles. The results of modeling a symmetrical three-phase power supply system and their compliance with the real data are given at the paper. The obtained results in the mathematical and simulation models were similar.

  17. Online Fault Location on AC Cables in Underground Transmission Systems using Sheath Currents

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Nanayakkarab, Kasun; Rajapakse, Athula

    2014-01-01

    This paper studies online travelling wave methods for fault location on a crossbonded cable system using sheath currents. During the construction of the electrical connection to the 400 MW off shore wind farm Anholt, it was possible to perform measurements on a 38.4 km crossbonded cable system. A...

  18. Online fault location on AC cables in underground transmission systems using screen currents

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Nanayakkara, O.M.K.K; Rajapakse, Athula

    This paper studies online travelling wave methods for fault location on a crossbonded cable system using screen currents. During the construction of the electrical connection to the 400 MW off shore wind farm Anholt, it was possible to perform measurements on a 38.4 km crossbonded cable system. A...

  19. 37 CFR 256.2 - Royalty fee for compulsory license for secondary transmission by cable systems.

    Science.gov (United States)

    2010-07-01

    ... section, 3.75 per centum of the gross receipts of the cable systems for each distant signal equivalent... market, (i) .599 per centum of such gross receipts for the first distant signal equivalent; (ii) .377 per... additional distant signal equivalent thereafter; (2) For cable systems located wholly or in part within...

  20. Superconducting fault-current limiter and inductor design

    Science.gov (United States)

    Rogers, J. D.; Boenig, H. J.; Chowdhuri, P.; Schermer, R. I.; Wollan, J. J.; Weldon, D. M.

    1982-11-01

    A superconducting fault current limiter (SFCL) that uses a biased superconducting inductor in a diode or thyristor bridge circuit was analyzed for transmission systems in 69, 138, and 230 rms kV utility transmission systems. The limiter was evaluated for costs with all components, superconducting coil, diode and/or SCR power electronics, high voltage insulation, high voltage bushings and vapor cooled leads, dewar, and refrigerator, included. A design was undertaken for the superconducting cable and coils for both diode and SCR 69 kV limiter circuits.

  1. Superconducting fault-current limiter and inductor design

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Boenig, H.J.; Chowdhuri, P.; Schermer, R.I.; Wollan, J.J.; Weldon, D.M.

    1982-01-01

    A superconducting fault current limiter (SFCL) that uses a biased superconducting inductor in a diode or thyristor bridge circuit was analyzed for transmission systems in 69, 138, and 230 rms kV utility transmission systems. The limiter was evaluated for costs with all components - superconducting coil, diode and/or SCR power electronics, high voltage insulation, high voltage bushings and vapor cooled leads, dewar, and refrigerator - included. A design was undertaken for the superconducting cable and coils for both diode and SCR 69 kV limiter circuits.

  2. High speed data transmission on small gauge cables for the ATLAS Phase-II Pixel detector upgrade

    Science.gov (United States)

    Shahinian, J.; Volk, J.; Fadeyev, V.; Grillo, A. A.; Meimban, B.; Nielsen, J.; Wilder, M.

    2016-03-01

    The High Luminosity LHC will present a number of challenges for the upgraded ATLAS detector. In particular, data transmission requirements for the upgrade of the ATLAS Pixel detector will be difficult to meet. The expected trigger rate and occupancy imply multi-gigabit per second transmission rates will be required but radiation levels at the smallest radius preclude completely optical solutions. Electrical transmission up to distances of 7m will be necessary to move optical components to an area with lower radiation levels. Here, we explore the use of small gauge electrical cables as a high-bandwidth, radiation hard solution with a sufficiently small radiation length. In particular, we present a characterization of various twisted wire pair (TWP) configurations of various material structures, including measurements of their bandwidth, crosstalk, and radiation hardness. We find that a custom ``hybrid'' cable consisting of 1m of a multi-stranded TWP with Poly-Ether-Ether-Ketone (PEEK) insulation and a thin Al shield followed by 6m of a thin twin-axial cable presents a low-mass solution that fulfills bandwidth requirements and is expected to be sufficiently radiation hard. Additionally, we discuss preliminary results of using measured S-parameters to produce a SPICE model for a 1m sample of the custom TWP to be used for the development of new pixel readout chips.

  3. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  4. Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm.

    Science.gov (United States)

    Malkin, S Y; Meysman, F J R

    2015-02-01

    Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These "cable bacteria" are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments.

  5. Optical and electrical enhancement of the propagation time in superconducting transmission lines

    CERN Document Server

    Cho, S H

    2000-01-01

    optical pulse energy and current controlled delays in the propagation time of electrical picosecond pulses in YBa sub 2 Cu sub 3 O sub 7 sub - sub x (YBCO) superconducting transmission lines have been investigated by using picosecond optoelectronic techniques. Electrical pulses, generated using silicon-on-sapphire photoconductive switches driven by a mode-locked Nd:YAG pumped dye laser, are propagated on superconducting transmission lines. The lines are patterned in the geometry of a microstrip and illuminated by the frequency-doubled output of an Nd:YAG laser. The measured propagation time shows a squared dependence on the optical pulse energy. For the applied current dependence, the delay through the line is tuned by 16 psec by varying the bias from zero to 190 mA. The results are in good agreement with the Ginzburg-Landau theory for the case of a uniform current density through a thin film.

  6. Low-temperature transmission electron microscopy study of superconducting Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Schierning, G.; Theissmann, R. [Faculty of Engineering and CeNIDE, University of Duisburg-Essen, Bismarckstr. 81, 47057 Duisburg (Germany); Acet, M. [Experimentalphysik and CeNIDE, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg (Germany); Hoelzel, M. [Fachbereich Materialwissenschaften, Technical University of Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany); FRM-II, Technical University of Munich, 85747 Garching (Germany); Gruendmayer, J.; Zweck, J. [Physics Faculty, University of Regensburg, 93047 Regensburg (Germany)

    2010-08-15

    By low-temperature transmission electron microscopy we have found nanodomains in a polycrystalline Nb{sub 3}Sn sample. We interpret that these nanodomains form due to a tetragonal distortion. Because twinning seems to be a prominent feature of the real structure of many high T{sub c} superconductors, possible interactions between a twinned structure and superconductivity are briefly discussed. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  7. Modelling of Dynamic Transmission Cable Temperature Considering Soil-Specific Heat, Thermal Resistivity, and Precipitation

    DEFF Research Database (Denmark)

    Olsen, Rasmus; Anders, George J.; Holboell, Joachim

    2013-01-01

    This paper presents an algorithm for the estimation of the time-dependent temperature evolution of power cables, when real-time temperature measurements of the cable surface or a point within its vicinity are available. The thermal resistivity and specific heat of the cable surroundings are varied...... as functions of the moisture content which is known to vary with time. Furthermore, issues related to the cooling effect during rainy weather are considered. The algorithm is based on the lumped parameters model and takes as input distributed temperature sensing measurements as well as the current and ambient...... temperature. The concept is verified by studying a laboratory setup of a 245 kV cable system....

  8. Rapid Redox Signal Transmission by “Cable Bacteria” beneath a Photosynthetic Biofilm

    OpenAIRE

    Malkin, S.Y.; Meysman, F. J. R.

    2014-01-01

    Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These “cable bacteria” are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthe...

  9. High Frequency Tan Delta Measurement Method for 132kV Transmission Underground Cables

    Directory of Open Access Journals (Sweden)

    A.R. Avinash

    2015-07-01

    Full Text Available Tangent Delta is a measurement technique to investigate cables insulation strength. Current techniques utilize Very Low Frequency (VLF at 0.1 Hz and power frequency at 50 Hz. However, high voltages are required, thus requiring larger space and cost. Proposed method of tangent delta testing utilizes High frequency Low voltage diagnoses. The phase between the current and the voltage is utilized to determine the tangent delta (tan δ. The aim of this study is to develop a low voltage high frequency tangent delta measurement method and test if it can discriminate manufactured 132 kV good conditioned cable sample from defect induced cables with void, scotched and contamination in its insulation. Impurities are clearly discriminated using this method. Comparison of Tangent Delta of cables manufactured simultaneously in good condition and defect induced is performed using High Frequency Tangent Delta method and in 50 Hz conventional method to validate the effectiveness of the measurement technique. The High Frequency AC setup utilizes a small testing environment which can sample small lengths with minimum 1 m length of cable. The small lengths will result in the reduction of total capacitance of the cable but using High Frequency induces high electric stress on XLPE layer thus resulting in measureable dielectric current.

  10. 故障电流冲击下高温超导电缆磁-热耦合特性数值计算与分析%Numerical Analysis on Coupled Magneto-thermal Properties of High Temperature Superconducting Cables Subjected to Fault Currents

    Institute of Scientific and Technical Information of China (English)

    诸嘉慧; 栗会峰; 丘明; 李振明; 刘伟; 来小康; 方进; 袁炜嘉

    2015-01-01

    冷绝缘高温超导(cold dielectric high temperature superconducting,CD HTS)电缆在电力系统输电运行中,不可避免地会受到故障电流的冲击。在故障持续时间内,超导电缆产生大量热量,导致温度升高,从而使超导电缆由超导态向正常态转变,对超导电缆载流性能产生影响。通过建立故障电流下超导电缆等效电路模型与热传导模型,提出了超导电缆在故障电流冲击时的各层电流瞬态分布解析算法,通过耦合电磁计算与传热分析模型,提出了超导电缆故障电流冲击下的温度分布数值计算法。最后,对110 kV/3 kA冷绝缘高温超导电缆在25 kA、持续3 s故障电流冲击时的电流分布和温度分布情况进行了计算分析。结果表明:在故障时间内,伴随导体层温度逐渐上升,各个导体层电流呈下降趋势,各层的温度在92 K前后上升速率不再相同,铜骨架承受近96%的故障电流,分流作用明显。分析结果为设计故障电流冲击下超导电缆的故障保护策略提供了参考依据,对保障超导电缆的稳定运行具有指导意义。%In the power grid, a cold dielectric high temperature superconducting (CD HTS) cable usually subjects to the impact of fault currents in the transmission system. During the fault, a large amount of Joule heat is generated, causing the temperature of HTS cable rise and leading a transformation of HTS elements therein from a superconducting state to a normal state which would deteriorate the current carrying capacity of HTS cables. This paper proposes a new method for calculating transient currents and temperature distributions in CD HTS cables by coupling an equivalent circuit mathematical model with a thermal conduction model of HTS cables considering the impact of fault currents. The proposed method is applied to an 110 kV/3 kA CD HTS cable consisted of YBCO coated conductor with a fault current of 25 kA rms lasting 3 s

  11. Rapid Redox Signal Transmission by “Cable Bacteria” beneath a Photosynthetic Biofilm

    Science.gov (United States)

    Meysman, F. J. R.

    2014-01-01

    Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These “cable bacteria” are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferring these electrons along their longitudinal axes to oxygen present near the sediment-water interface. In the present work, we investigated the relationship between cable bacteria and a photosynthetic algal biofilm. In a first experiment, we investigated sediment that hosted both cable bacteria and a photosynthetic biofilm and tested the effect of an imposed diel light-dark cycle by continuously monitoring sulfide at depth. Changes in photosynthesis at the sediment surface had an immediate and repeatable effect on sulfide concentrations at depth, indicating that cable bacteria can rapidly transmit a geochemical effect to centimeters of depth in response to changing conditions at the sediment surface. We also observed a secondary response of the free sulfide at depth manifest on the time scale of hours, suggesting that cable bacteria adjust to a moving oxygen front with a regulatory or a behavioral response, such as motility. Finally, we show that on the time scale of days, the presence of an oxygenic biofilm results in a deeper and more acidic suboxic zone, indicating that a greater oxygen supply can enable cable bacteria to harvest a greater quantity of electrons from marine sediments. Rapid acclimation strategies and highly efficient electron harvesting are likely key advantages of cable bacteria, enabling their success in high sulfide generating coastal sediments. PMID:25416774

  12. Proposal for the award of a contract for the provision of inspection services for the series manufacture of superconducting cables, magnets and cryostat components

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the provision of inspection services for the series manufacture of superconducting cables, magnets and cryostat components for the LHC. Following a market survey carried out among 63 firms in twelve Member States, a call for tenders (IT-2651/LHC/LHC) was sent on 21 December 2000 to four firms and five consortia in eight Member States. By the closing date, CERN had received seven tenders from three firms and four consortia in eight Member States. The Finance Committee is invited to agree to the negotiation of a contract with ISQ (PT), the lowest bidder, for the provision of inspection services for the series manufacture of superconducting cables, magnets and cryostat components over the years 2001-2005 for a total amount of 7 458 077 euros (11 472 760 Swiss francs), not subject to revision until 1 January 2002, with an option covering the provision of four additional inspectors over a period of four years, for an additional amount of 1 665 660 euros (2 562 285...

  13. Online fault location on AC cables in underground transmission systems using screen currents

    DEFF Research Database (Denmark)

    Jensen, Christian Flytkjær; Nanayakkara, O.M.K.K; Rajapakse, Athula

    This paper studies online travelling wave methods for fault location on a crossbonded cable system using screen currents. During the construction of the electrical connection to the 400 MW off shore wind farm Anholt, it was possible to perform measurements on a 38.4 km crossbonded cable system...... coils if the screen currents contain the necessary information for accurate fault location. In this paper, this is examined by analysis of field measurements and through a study of simulations. The wavelet transform and visual inspection methods are used and the accuracy is compared. Field measurements...... and simulations are compared for testing the reliability of using simulations for studying fault location methods....

  14. Project solutions adopted by COPEL for OPGW cables installation in existing transmission lines; Solucoes de projeto adotadas pela COPEL para instalacao de cabos OPGW em LTs existentes

    Energy Technology Data Exchange (ETDEWEB)

    Prosdocimo, Nelson; Martin, Claudio [Companhia Paranaense de Energia (COPEL), Curitiba, PR (Brazil)

    1995-12-31

    In order to make feasible the establishment of a communication system through the utilization of OPGW cable, COPEL (Parana State electric power public utility) and TELEPAR (Parana State telephone public utility) have signed in 1992 a technical cooperation term. This report approaches the first project for the installation of OPGW cables in COPEL`s 69 kV and 138 kV transmission lines 2 refs., 9 figs.

  15. Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yu Kyeong; Hwang, Jun Won; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of)

    2016-03-15

    The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

  16. Continuous Tera-Hertz wave transmission spectroscopy of Nb double superconducting split-ring resonator array

    Science.gov (United States)

    Zuo, JunWei; Liu, RuiYuan; Zhou, YuRong; Li, YanRong; Wang, YunPing

    2012-02-01

    Transmission spectroscopy of two Nb double superconducting split-ring samples with different thicknesses on MgO substrates was measured by a continuous Tera-Hertz spectrometer. The transmission curves of two different samples with the thicknesses of 50 and 150 nm at 7.5 K show dips at 480, 545 GHz, respectively, which origin from the different capacities and inductances of the samples. For the sample of 50 nm, the dip shifts to lower frequency, also decreases in depth and increases in width with temperature or field increasing below T c of Nb film, while the sample of 150 nm does not show such a phenomenon. This thickness-dependent transmission behavior is due to the kinetic inductance and conductivity change of superfluid electrons in Nb film and may suggest a practical tunable THz filter based on the thinner samples.

  17. A test of a 2 Tesla superconducting transmission line magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Piekarz, Henryk; Carcagno, Ruben; Claypool, Brad; Foster, George W.; Hays, Steven L.; Huang, Yuenian; Kashikhin, Vladimir; Malamud, Ernest; Mazur, Peter O.; Nehring,; Oleck, Andrew; Rabehl, Roger; Schlabach, Phil; Sylvester, Cosmore; Velev, Gueorgui; Volk, James; /Fermilab; Wake, Masayoshi; /KEK, Tsukuba

    2005-09-01

    Superconducting transmission line magnet test system for an injector accelerator of a staged VLHC proton-proton colliding beam accelerator has been built and operated at Fermilab. The 1.5 m long, twin-aperture, combined function dipole magnet of 2 Tesla field is excited by a single turn 100 kA transmission line superconductor. The 100 kA dc current is generated using dc-dc switching converters powered by a bulk 240 kW supply. A pair of horizontally placed conventional leads facilitates transfer of this current to the magnet transmission line superconductor operating at liquid helium temperature. Fabrication of magnet components and magnet assembly work are described. The magnet test system and its operation are presented, and the performance is summarized.

  18. Normal modes of a superconducting transmission-line resonator with embedded lumped element circuit components

    Science.gov (United States)

    Mortensen, Henrik Lund; Mølmer, Klaus; Andersen, Christian Kraglund

    2016-11-01

    We present a method to identify the coupled, normal modes of a superconducting transmission line with an embedded lumped element circuit. We evaluate the effective transmission-line nonlinearities in the case of Kerr-like Josephson interactions in the circuit and in the case where the embedded circuit constitutes a qubit degree of freedom, which is Rabi coupled to the field in the transmission line. Our theory quantitatively accounts for the very high and positive Kerr nonlinearities observed in a recent experiment [M. Rehák, P. Neilinger, M. Grajcar, G. Oelsner, U. Hübner, E. Il'ichev, and H.-G. Meyer, Appl. Phys. Lett. 104, 162604 (2014), 10.1063/1.4873719], and we can evaluate the accomplishments of modified versions of the experimental circuit.

  19. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  20. Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm

    NARCIS (Netherlands)

    Malkin, S.Y.; Meysman, F.J.R.

    2015-01-01

    Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These “cable bacteria” are capable of harvesting electrons from free sulfide in deeper sediment horizons and

  1. Rapid redox signal transmission by "Cable Bacteria" beneath a photosynthetic biofilm

    NARCIS (Netherlands)

    Malkin, S.Y.; Meysman, F.J.R.

    2015-01-01

    Recently, long filamentous bacteria, belonging to the family Desulfobulbaceae, were shown to induce electrical currents over long distances in the surface layer of marine sediments. These “cable bacteria” are capable of harvesting electrons from free sulfide in deeper sediment horizons and transferr

  2. Scientific Presentations on Superconductivity from 2002-2005

    Science.gov (United States)

    2006-01-01

    homopolar and synchronous superconducting motors to drive the US Navy’s future all-electric ship. HTS wire technology can be used in many of the system...components for these military applications such as motors , power generators, transformers, power converters/inductors, primary power cabling, and high...capability for the YBCO conductor leads to commercialization in electric power applications such as transformers, transmission cables, motors , fault

  3. Test up to 80 kA of an Al-Stabilized NbTi Cable With the Upgraded Saclay Superconducting Transformer

    CERN Document Server

    Berriaud, C; Donati, A; Gharib, A; Peiro, G; Willering, G

    2014-01-01

    An ATLAS Barrel Toroid conductor was tested in the Saclay High Current Test Facility. The conductor is a Nb-Ti Rutherford cable imbedded in a high purity aluminum stabilizer. The conductor's width was reduced from 57 mm to 30 mm in order to be able to use an existing sample holder. We tried to measure the critical current in background fields of up to 3 T. The field was produced by a 0.8 m long superconducting dipole magnet. The test station was equipped with a superconducting transformer transferring maximum primary and secondary currents of respectively 174 A and 80 kA. The secondary current was measured with flux coils and with a superconducting Direct Control Current Transducer (DCCT), a modified version of the ``Macc+{''} 600 A commercial DCCT from Hitec, which was operated at currents of up to 57 kA. This paper reports on the performance of the test station, on the results of the quench current measurements performed on the stabilized ATLAS conductor and on the difficulties to measure the critical curre...

  4. CAD model for circuit parameters of superconducting-based hybrid planar transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Mohebbi, Hamid Reza; Hamed Majedi, A, E-mail: hmohebbi@maxwell.uwaterloo.c, E-mail: ahmajedi@maxwell.uwaterloo.c [Integrated Quantum Optoelectronics Lab (IQOL), Department of ECE, Institute for Quantum Computing (IQC), University of Waterloo, Waterloo, N2L 3G1 (Canada)

    2009-12-15

    Using the concept of surface impedance associated with a superconductor or normal conductor's plate, we extend the CAD (computer aided design) formalisms on modeling and simulation of superconducting and normal transmission lines (STL and NTL) in order to include hybrid transmission lines (HTL). STL and NTL are entirely made of superconductor or normal conductor materials, respectively. In this paper, HTL refers to a planar transmission line (TL) such as parallel plate (PPTL), microstrip ({mu}TL) and coplanar waveguide (CPW) whose ground plate is superconducting and whose top/center strip is a normal conductor or vice versa. We develop and present a set of closed-form equations in a tidy and succinct form for each configuration (STL, NTL and HTL) for widely-used planar TLs (PPTL, {mu}TL and CPW). They can be easily implemented in a systematic way by the user for the purpose of fast TL design. The results obtained with this CAD tool are compared with previously reported results in the literature, and good agreement is observed.

  5. Realisation and instrumentation of high current power station for superconducting cables testing; Realisation et instrumentation d'une station fort courant pour le test de cables supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Regnaud, S

    2000-05-01

    This report deals with the designing of a high current station able to test electric properties of superconductors. This test station will be used for testing the superconducting wires of large hadron collider detectors in CERN. The high current test station will have to generate high intensity continuous current in a magnetic field of 0 to 5 tesla and in temperature conditions of 4.2 K. The length of wire samples submitted to the uniform magnetic field is 300 mm and the installation is fitted with equipment able to measure the magnetic field perpendicular to either faces of the wire. The peculiarity of this station is to use a superconducting transformer in order to generate the high current. The first part of this work recalls important notions concerning superconductivity. The second part presents the high current station by describing the superconducting transformer and the sample-holder. We have studied the designing of a transformer able to yield a secondary current whose intensity reaches 100 kA, such intensity generates powerful electromagnetic forces (566 kN/m) in case of defect, so the sample-holder has to be carefully design to bear them. The third part presents the cryogenic component of the station, the instrumentation of the sample-holder and the method used to measure secondary currents. In the last part we present the performance of a prototype transformer, this prototype is able to deliver a 22 kA secondary current for a 160 A primary current, the uncertainty on the measured value of the secondary current is about 3%.

  6. Electrical Model of Balanced AC HTS Power Cable

    Science.gov (United States)

    Zuijderduin, R.; Chevtchenko, O.; Smit, J. J.; Willén, D.; Melnik, I.; Geschiere, A.

    The future electricity grid will be more sustainable and it will have more power transmission and distribution capability with more electrical power added from decentralized sources on distribution level and from wind parks and other large sources on transmission level. More interconnections and more underground transmission and distribution will be put up. Use of high temperature superconducting (HTS) power cables provides solutions to many of the future grid problems caused by these trends. In this paper we present an electrical model of a balanced 6 km-long three phase triaxial HTS power cable for the Dutch project being developed by a consortium of Alliander, Ultera™ and TUD. The cable currents in all three phases are balanced by selecting proper twist pitches and insulation thickness. The paper focuses on determining inductances, capacitances and AC losses of the balanced cable. Using the developed model, we also determine the voltage drop as function of the cable length, the neutral current and the effect of the imbalanced capacitances on the current distribution of the Dutch distribution cable. The model is validated and it can be used for accurate simulation of the electrical behaviour of triaxial HTS cables in electrical grids.

  7. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  8. Experimental and analytical study of the DC breakdown characteristics of polypropylene laminated paper with a butt gap condition considering the insulation design of superconducting cable

    Science.gov (United States)

    Seo, In-jin; Choi, Won; Seong, Jae-gyu; Lee, Bang-wook; Koo, Ja-yoon

    2014-08-01

    It has been reported that the insulation design under DC stress is considered as one of the critical factors in determining the performance of high-voltage direct current (HVDC) superconducting cable. Therefore, it is fundamentally necessary to investigate the DC breakdown characteristics of the composite insulation system consisting of liquid nitrogen (LN2)/polypropylene-laminated-paper (PPLP). In particular, the insulation characteristics under DC polarity reversal condition should be verified to understand the polarity effect of the DC voltage considering the unexpected incidents taking place at line-commutated-converters (LCC) under service at a DC power grid. In this study, to examine the variation of DC electric field strength, the step voltage and polarity reversal breakdown tests are performed under DC stress. Also, we investigate the electric field distributions in a butt gap of the LN2/PPLP condition considering the DC polarity reversal by using simulation software.

  9. Construction and 1st Experiment of the 500-meter and 1000-meter DC Superconducting Power Cable in Ishikari

    Science.gov (United States)

    Yamaguchi, S.; Ivanov, Y.; Watanabe, H.; Chikumoto, N.; Koshiduka, H.; Hayashi, K.; Sawamura, T.

    Ishikari project constructs two lines. The length of the Line 1 is 500 m, and connects the photovoltaic cell to the internet-data center. The other line is 1 km length, and it is a test facility and called Line 2. The structures of the cable systems are not same to test their performance. The construction was started from 2014 in the field, the Line 1 was completed in May 2015, and it was cooled down and do the current experiment, and warmed up. The Line 2 is almost complete in October 2015. It will be tested in November and December, 2015. In order to reduce the stress of the cable induced by the thermal expansion and contraction, we adopted the way of the helical deformation of the cable. The force of the cable is reduced to 1/3 of an usual cable test. Because the cryogenic pipes are welded in the field and we cannot use the baking of the vacuum chamber of the cryogenic pipe, a new vacuum pumping method was proposed and tested for the cryogenic pipe. Since the straight pipes are used to compose the cryogenic pipe, the pressure drop of the circulation would be 1/100 of the corrugated pipe in the present condition, and it is suitable for longer cable system. The heat leak of the cryogenic pipe is ∼1.4W/m including the cable pipe's and the return pipe's. The heat leak of the current lead is ∼30W/kA in the test bench. Finally the current of 6kA/3 sec and the current of 5kA/15 min were achieved in Line 1. The reduction of heat leak will be a major subject of the longer cable system. The cost of the construction will be almost twice higher than that of the copper and aluminum over-head line with the iron tower in the present Japan. The cost construction of the over-head line is an average value, and depends on the newspaper.

  10. Ceramic insulation for superconducting Nb{sub 3}Sn cables; Isolation ceramique pour cables supraconducteurs en Nb{sub 3}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Puigsegur, A

    2005-01-15

    Nb{sub 3}Sn is the best superconductor candidate for the realization of high field magnets (>11 Tesla), its implementation remains delicate because of the great brittleness of material after the heat treatment necessary to the formation of Nb{sub 3}Sn compounds. The conventional insulation for Nb{sub 3}Sn requires to perform, after the heat treatment, a vacuum resin impregnation, which adds to the cost and raises failure risk. We have proposed an innovating ceramic insulation deposited directly on the unreacted conducting cable. After the heat treatment of the niobium tin, we obtain a coil having a mechanical cohesion, while maintaining a proper conductor positioning and a suitable electric insulation. After a rheological study, to characterize the impregnated suspension, we have shown that using this insulation in a coil manufacture process does not affect the electrical properties of the Nb{sub 3}Sn wires. A solenoid of small dimensions was tested with success in high external magnetic fields and has produced a magnetic field of 3.8 T under 740 A. (author)

  11. Theoretical Analysis of Measurement in Operation Efficiency in Optical Cable Transmission Networks

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    It is necessary to study dynamic operation efficiency of transmission networks in order to realize high intensification of communication networks. The operation efficiency discussed here should exist not only in logic-circuit layer, but also in both path layer and medium layer. A theoretical method of the measurement of layers and comprehensive evaluations is presented based on the concept of transmission efficiency.

  12. Capricious Cables: Understanding the Key Concepts in Transmission Expansion Planning and Its Models

    Energy Technology Data Exchange (ETDEWEB)

    Donohoo, P.; Milligan, M.

    2014-06-01

    The extra-high-voltage transmission network is the bulk transport network of the electric power system. To understand how the future power system may react to planning decisions today, wide-area transmission models are increasingly used to aid decision makers and stakeholders. The goal of this work is to illuminate these models for a broader audience that may include policy makers or relative newcomers to the field of transmission planning. This paper explains the basic transmission expansion planning model formulation. It highlights six of the major simplifications made in transmission expansion planning models and the resulting need to contextualize model results using knowledge from other models and knowledge not captured in the modeling process.

  13. Active photonic sensor communication cable for field application of optical data and power transmission

    Science.gov (United States)

    Suthau, Eike; Rieske, Ralf; Zerna, Thomas

    2014-10-01

    Omitting electrically conducting wires for sensor communication and power supply promises protection for sensor systems and monitored structures against lightning or high voltages, prevention of explosion hazards, and reduction of susceptibility to tampering. The ability to photonically power remote systems opens up the full range of electrical sensors. Power-over-fiber is an attractive option in electromagnetically sensitive environments, particularly for longterm, maintenance-free applications. It can deliver uninterrupted power sufficient for elaborate sensors, data processing or even actuators alongside continuous high speed data communication for remote sensor application. This paper proposes an active photonic sensor communication system, which combines the advantages of optical data links in terms of immunity to electromagnetic interference (EMI), high bandwidth, hardiness against tampering or eavesdropping, and low cable weight with the robustness one has come to expect from industrial or military electrical connectors. An application specific integrated circuit (ASIC) is presented that implements a closed-loop regulation of the sensor power supply to guarantee continuous, reliable data communications while maintaining a highly efficient, adaptive sensor supply scheme. It is demonstrated that the resulting novel photonic sensor communication cable can handle sensors and actuators differing orders of magnitude with respect to power consumption. The miniaturization of the electro-optical converters and driving electronics is as important to the presented development as the energy efficiency of the detached, optically powered sensor node. For this reason, a novel photonic packaging technology based on wafer-level assembly of the laser power converters by means of passive alignment will be disclosed in this paper.

  14. Magnetic field dependence of the coupling efficiency of a superconducting transmission line due to the proximity effect

    NARCIS (Netherlands)

    Zhu, S.; Zijlstra, T.; Golubov, A.A.; Van den Bemt, M.; Baryshev, A.M.; Klapwijk, T.M.

    2009-01-01

    The coupling efficiency of a Nb superconducting transmission line has been measured using a Fourier transform spectrometer for different magnetic fields. It is found that the coupling decreases with increasing magnetic field when the frequency is close to the gap of the Nb superconductor. This is at

  15. Superconducting qubit in a nonstationary transmission line cavity: Parametric excitation, periodic pumping, and energy dissipation

    Science.gov (United States)

    Zhukov, A. A.; Shapiro, D. S.; Remizov, S. V.; Pogosov, W. V.; Lozovik, Yu. E.

    2017-02-01

    We consider a superconducting qubit coupled to the nonstationary transmission line cavity with modulated frequency taking into account energy dissipation. Previously, it was demonstrated that in the case of a single nonadiabatical modulation of a cavity frequency there are two channels of a two-level system excitation which are due to the absorption of Casimir photons and due to the counterrotating wave processes responsible for the dynamical Lamb effect. We show that the parametric periodical modulation of the resonator frequency can increase dramatically the excitation probability. Remarkably, counterrotating wave processes under such a modulation start to play an important role even in the resonant regime. Our predictions can be used to control qubit-resonator quantum states as well as to study experimentally different channels of a parametric qubit excitation.

  16. Transmission lines with lightning arresters cables energized by optical fibers; Linhas de transmissao com cabos para-raios energizados com fibra optica

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Fumitaka; Cicarelli, Liliane Dias [Alcoa Aluminio S.A. (Brazil); D`Ajuz, Ary [ELETRONORTE, Belem, PA (Brazil); Martinez, Manuel L.B. [Escola Federal de Engenharia de Itajuba, MG (Brazil); Masuda, Mario [Tecname Engenharia (Brazil)

    1995-12-31

    Recently, the implementation of optical systems has been possible through the utilization of the existent transmission lines structure by the sharing between electric power and telecommunications enterprises, using Op-GW cables instead of conventional lightning-arresters cables. In order to make such optical sharing feasible, the enterprise ALCOA Aluminio S.A is developing the energized lightning-arrester system with optical fiber in it. This work presents such system and show its great advantages specially when implemented in low population density regions in order to supply electric power demand at lower costs 6 refs., 5 figs.

  17. AmpaCity. Superconducting prototype cable connects two substations in the inner city of Essen; AmpaCity. Supraleiter-Teststrecke verbindet zwei Umspannanlagen in der Innenstadt von Essen

    Energy Technology Data Exchange (ETDEWEB)

    Merschel, F. [RWE Deutschland AG, Essen (Germany); Noe, M. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Stemmle, M. [Nexans Deutschland GmbH, Hannover (Germany); Hobl, A. [Nexans SuperConductors GmbH, Huerth (Germany)

    2012-07-01

    The German Utility RWE Deutschland is going to show new ways in the area of electric power supply for conurbations in a world-wide unique project: in the year 2013, the present longest high temperature superconducting cable (HTS cable) will be installed and commissioned in the German city of Essen. The project partners apart from RWE Deutschland are Nexans as a manufacturer for cables and cable systems, Nexans SuperConductors and the Karlsruhe Institute of Technology (KIT); the Projekttraeger Juelich (PTJ) attends the project. Due to the innovative character, special advantages, and the perspectives of superconductors in the future energy distribution, the project ''Ampacity'' is funded by the German Federal Ministry of Economics and Technology. In the downtown area of Essen, an HTS system consisting of a concentric three phase cable system and a fault current limiter will connect two substation, replacing conventional 110 kV cables on a length of one kilometre. This will be the world's first application for this use. The project ''AmpaCity'' is based on a comprehensive feasibility study in which was investigated, how and to what extent existing large high voltage installations in inner cities can be replaced. From the current perspective expanding grid using HTS medium voltage cables is the only technically and economically appropriate option for avoiding the expansion of inner city power grids using high voltage cables and reducing the number of high voltage transformer substations in downtown areas. A field test under real load conditions will show the reliability and economy of the HTS system for use in energy distribution grids. (orig.)

  18. Cryogenic Fiber Optic Sensors for Superconducting Magnets and Power Transmission Lines in High Energy Physics Applications

    CERN Document Server

    AUTHOR|(CDS)2081689; Bajko, Marta

    In the framework of the Luminosity upgrade of the Large Hadron Collider (HL - LHC), a remarkable R&D effort is now ongoing at the European Organization for Nuclear Research (CERN) in order to develop a new generation of accelerator magnets and superconducting power transmission lines. The magnet technology will be based on Nb3Sn enabling to operate in the 11 - 13 T range. In parallel, in order to preserve the power converters from the increasing radiation level, high power transmission lines are foreseen to feed the magnets from free - radiation zones. These will be based on high temperature superconductors cooled down with helium gas in the range 5 - 30 K. The new technologies will require advanced design and fabrication approaches as well as adapted instrumentation for monitoring both the R&D phase and operation. Resistive sensors have been used so far for voltage, temperature and strain monitoring but their integration still suffers from the number of electrical wires and the complex compensation o...

  19. Calorimetric measurements of losses in HTS cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Veje, Niels Erling Winsløv; Rasmussen, Carsten

    2001-01-01

    A calorimetric test rig is used to investigate various loss components in a 10 m long superconducting cable model. A calorimetric technique, based on thermocouple measurements, is used to measure the losses of the 10 m long superconducting cable model. The current dependent losses are also measured...

  20. Development of a Peltier Current Lead for the 200-m-Class Superconducting Direct Current Transmission and Distribution System

    Science.gov (United States)

    Kawahara, Toshio; Emoto, Masahiko; Watanabe, Hirofumi; Hamabe, Makoto; Yamaguchi, Sataro; Hikichi, Yasuo; Minowa, Masahiro

    2013-07-01

    Reducing cryogenic heat leaks is critical for superconducting applications. Reduction of heat leak at the terminals is essential for uses with short-length applications, where cryogenic losses at the terminals dominate. We are developing a 200-m-class superconducting direct current (DC) transmission and distribution system (CASER-2), and have used a Peltier current lead (PCL) for heat insulation at the terminals. The PCL consists of thermoelectric elements and copper leads, which enhance the performance of superconducting systems. As DC flows through the current lead, thermoelectric elements on opposite terminations of a superconducting line can be used to decrease the heat ingress to the cryogenic environment ( n-type on one end, p-type on the opposite end). During the current feeding and cooling test, a large temperature difference was observed across thermoelectric elements in the PCL. This demonstrates that we have successfully insulated the heat leak at the current lead. During the fourth cooling test, we established a new PCL design with p-type elements at terminal B, and then compared the performance of the terminals. Several improvements were implemented, including balancing the resistances of the PCL to enhance the stability of the superconducting systems.

  1. Information technology -- Local and metropolitan area networks -- Token ring access method and physical layer specifications -- Recommended practice for use of unshielded twisted pair cable (UTP) for token ring data transmission at 4-Mbit/s

    CERN Document Server

    International Organization for Standardization. Geneva

    1993-01-01

    Information technology -- Local and metropolitan area networks -- Token ring access method and physical layer specifications -- Recommended practice for use of unshielded twisted pair cable (UTP) for token ring data transmission at 4-Mbit/s

  2. Superconducting Materials, Magnets and Electric Power Applications

    Science.gov (United States)

    Crabtree, George

    2011-03-01

    The surprising discovery of superconductivity a century ago launched a chain of convention-shattering innovations and discoveries in superconducting materials and applications that continues to this day. The range of large-scale applications grows with new materials discoveries - low temperature NbTi and Nb3 Sn for liquid helium cooled superconducting magnets, intermediate temperature MgB2 for inexpensive cryocooled applications including MRI magnets, and high temperature YBCO and BSSCO for high current applications cooled with inexpensive liquid nitrogen. Applications based on YBCO address critical emerging challenges for the electricity grid, including high capacity superconducting cables to distribute power in urban areas; transmission of renewable electricity over long distances from source to load; high capacity DC interconnections among the three US grids; fast, self-healing fault current limiters to increase reliability; low-weight, high capacity generators enabling off-shore wind turbines; and superconducting magnetic energy storage for smoothing the variability of renewable sources. In addition to these grid applications, coated conductors based on YBCO deposited on strong Hastelloy substrates enable a new generation of all superconducting high field magnets capable of producing fields above 30 T, approximately 50% higher than the existing all superconducting limit based on Nb3 Sn . The high fields, low power cost and the quiet electromagnetic and mechanical operation of such magnets could change the character of high field basic research on materials, enable a new generation of high-energy colliding beam experiments and extend the reach of high density superconducting magnetic energy storage.

  3. Transmission delay and temperature variations in overhead optic links installed along distribution lines due to meteorological effects; Haidensen tenka hikari cable senro no denso chien to ondo no hendo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Serizawa, Y.; Myosin, M.; Kitamura, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan)

    1996-03-01

    Transmission delay and temperature variation characteristics in overhead fiber optic links were measured by the whole system time synchronous network evaluation test unit, to clarify the relation between the above and meteorological conditions. The transmission delay measured in the round-trip 25 km overhead links showed daily variations, which was the same as the OPGW (optical ground wire) line. As a result of the regression analysis using meteorological conditions, the transmission delay variation at 5:00 in early morning was greatly affected by the atmospheric temperature, and that at 13:00 in the daytime was affected greatly by the atmospheric temperature and the solar radiation. The coefficients of delay variation with respect to atmospheric temperature were 82 to 97 ps/km/{degree}C for a 48-core cable with 6-core optical fiber unit structure, and 70 to 84 ps/km/{degree}C for a 128-core cable using two-package-core cable. The coefficients depended greatly on the cable structure including OPGW. For the relation between the transmission delay and the mean temperature of cable in the total length, or meteorological conditions, the cable temperature rose more than 10{degree}C at maximum due to solar radiation. Increase of the cable temperature due to solar radiation could be easily estimated only from the atmospheric temperature and delay data. 9 refs., 13 figs.

  4. Power transmission project: progress through fiscal year 1976

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-27

    One year's work on the development of helium-cooled niobium-tin superconducting cables for 550 kV or higher power transmission lines is summarized. Information is included on: conductor research involving the fabrication, materials testing, and performance testing of Nb/sub 3/Sn tapes; design, materials testing and performance testing of cable insulation; mechanical and cryogenic engineering of transmission line components and of test facilities; and accumulated data on the design and testing of existing helium-cooled transmission lines in the Pennsylvania, study, Philadelphia Electric study, and LILCO (Long Island) study. (LCL)

  5. 现代架空线输电系统中的高压电缆段%Aspects of High Voltage Cable Sections in Modern Overhead Line Transmission Systems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Electrical power transmission is dominated by overhead line systems at present. This is mainly based on more than hundred years of experience of utilities in running overhead lines. Furthermore, overhead lines have proven their operational reliability and functional assurance. In the past, cables were used in distribution networks in urban areas for the most part with the exception of direct current submarine cables. New developments of high voltage XLPE cables make it possible to use this technology for EHV level applications in transmission networks. Within this paper, mixed network configurations, consisting of overhead lines and high voltage cables, are investigated. An exemplary EHV transmission line with a total length of about 100 km, which is quite typical for Central Europe, has been studied. Several different line combinations are discussed with varied rates between overhead line sections and cable sections length in practice. The length of the cable sections are ranging from several kilometers up to lengths of 100 km. In this paper the work focuses on the transient behavior of combined 400 kV overhead and cable lines during switching processes and lightning impacts. A number of calculations were carried out to get an overview of the transient stress in numerous network nodes along the transmission system. Numerical programs like ATP/EMTP have been used for these simulations. Peak values and wave shapes of the transient voltage stress have been evaluated, based on different systems and within possible combinations. In respect of the insulation coordination and transient stress at network nodes, the voltage-time trends are also analyzed. The combination of high voltage overhead and cable transmission systems, especially such with lengths of more than about 50 km, are making tightened and extended demands to the network design, to the operational management and of course to the network protection also. As an output of this investigations, the results might

  6. Current distribution among layers of single phase HTS cable conductor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Y.B., E-mail: yeaber@ncepu.edu.cn [Key Laboratory of HV and EMC Beijing, State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206 (China); Wang, Y.S., E-mail: yswang@ncepu.edu.cn [Key Laboratory of HV and EMC Beijing, State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206 (China); Pi, W., E-mail: ppiiwei@ncepu.edu.cn [Key Laboratory of HV and EMC Beijing, State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206 (China); Ju, P., E-mail: jupeng-cool@153.com [Key Laboratory of HV and EMC Beijing, State Key Laboratory for Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, No. 2 Beinong Road, Changping District, Beijing 102206 (China); Wang, Y.S., E-mail: wangyixuan@epri.sgcc.com.cn [Power System Department, China Electric Power Research Institute, No. 15 Qinghexiaoying East Road, Haidian District, Beijing 100198 (China)

    2014-12-15

    Highlights: • A 1.5 m long HTS model cable with 4 layers designed by the uniform current principle has been built. • It is testified that the current distribution is influenced by the proximity effect. • The magnetic flux density and current density have been analyzed. • AC losses of tested current are larger than those of uniform current. - Abstract: High temperature superconducting (HTS) power cable shows high application prospect in modern power transmission, as it is superior over conventional transmission lines in high engineering current density and environmental friendliness. Its configuration is generally composed of several HTS layers designed with the principle of uniform current distribution, but there are few experimental results to verify the distribution. In this paper, a HTS cable model was designed based on the principle of uniform current, and the current distributions among layers in an HTS cable model were measured by Rogowski coils. The results provide an important basis for design of multi-layer HTS cable.

  7. 10BASE5 Ethernet Cable & Vampire Tap

    CERN Multimedia

    1983-01-01

    10BASE5 Thick Ethernet Cable, 10Mbit/sec. In the 1980s and early 1990's, Ethernet became more popular and provided a much faster data transmission rate. This cable is one of the first ethernet cables from 1983, a thick, bulky affair. Computers were attached via "Vampire Taps" which were connectors screwed straight through the shielding of the cable.

  8. Design and Evaluation of 275 kV-3 kA HTS Power Cable

    Science.gov (United States)

    Yagi, M.; Mukoyama, S.; Mitsuhashi, T.; Jun, T.; Liu, J.; Nakayama, R.; Hayakawa, N.; Wang, X.; Ishiyama, A.; Amemiya, N.; Hasegawa, T.; Saitoh, T.; Ohkuma, T.; Maruyama, O.

    A 275 kV 3 kA high temperature superconducting (HTS) cable has been developed in the Materials & Power Applications of Coated Conductors (M-PACC) project. The cable is expected to be put to practical use as the backbone power line in the future because the capacity of 1.5 GW is about the same as overhead transmission lines. The 30 m cable has been designed on the basis of design values that had been obtained by various voltage tests, AC loss measurement tests, short circuit tests, and other elementary tests. Cable insulation was determined by the design stresses and test conditions based on IEC, JEC (Japan electrical standards), and other HTS demonstrations. This cable was also designed to withstand the short circuit test of 63 kA for 0.6 seconds and to have low losses, including AC loss and dielectric loss of 0.8 W/m at 3kA, 275 kV. Based on the design, a 30 m cable was manufactured, and short samples during this manufacturing process were confirmed to have the designed characteristics. Furukawa Electric prepared a demonstration of the 30 m cable with two terminations and a cable joint. The long-term test under a current of 3 kA, and test voltage determined from 30 years of insulation degradation has been conducted since November 2012 at Shenyang in China.

  9. Optimization of force-cooled power transmission cables by means of 3D FEM simulations; Optimierung zwangsgekuehlter Energiekabel durch dreidimensionale FEM-Simulationen

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongping

    2009-10-26

    Lateral forced cooling can significantly increase the temporary overload capacity of a cable system, but the design of such systems requires a time-dependent 3D analysis of the nonlinear thermal behavior as the cooling water along the cable is heated up, resulting in position-dependent and time-dependent heat uptake. For this, a new calculation method was developed on the basis of an available 3D FEM software. The new method enables 3D simulation of force-cooled cables in consideration of the potential partial dryout of soil and of thermal stabilizations. The new method was first applied to a 110 kV wind power transmission cable for different configurations and grid conditions. It was found that with lateral forced cooling, the 110 kV will have a temporal 50 percent overload capacity. Further, the thermal characteristics and limiting capacity of a force-cooled 380 kV cable system were investigated. According to the results so far, laterally cooled cable systems open up new operating options, with advantages in terms of availability, economic efficiency, and flexibility. (orig.) [German] Eine laterale Zwangskuehlung kann die temporaere Ueberlastbarkeit einer Kabelanlage signifikant erhoehen. Der Entwurf solcher zwangsgekuehlter Kabelanlagen erfordert jedoch eine zeitabhaengige, dreidimensionale Analyse des nichtlinearen thermischen Verhaltens, da sich das Kuehlwasser entlang der Trasse erwaermt und sich so eine orts- und zeitabhaengige Waermeaufnahme ergibt. Zu diesem Zweck wurde auf der Basis eines vorhandenen zweidimensionalen FEM-Programms ein neues Berechnungsverfahren entwickelt, das die dreidimensionale Simulation zwangsgekuehlter Kabelanlagen unter Beruecksichtigung einer moeglicherweise auftretenden partiellen Bodenaustrocknung und von thermischen Stabilisierungen erlaubt. Mit Hilfe dieses Berechnungsverfahrens wurde zuerst eine 110-kV-Kabelanlage zur Windenergieuebertragung bei unterschiedlichen Anordnungen und unterschiedlichen Netzsituationen untersucht

  10. Microwave properties of YBa2Cu3O(7-delta) high-transition-temperature superconducting thin films measured by the power transmission method

    Science.gov (United States)

    Miranda, F. A.; Gordon, W. L.; Bhasin, K. B.; Heinen, V. O.; Warner, J. D.

    1991-01-01

    The microwave response of YBa2Cu3O(7-delta) superconducting thin films deposited on LaAlO3, MgO, YSZ, and LaGaO3 substrates are studied. It is found that the microwave transmission properties are very weakly dependent on temperature in the normal state but change drastically upon transition to the superconducting state. In particular, the transmission decreases and there is a negative phase shift with respect to the phase at room temperature when the sample is cooled through its transition temperature. The magnetic penetration depth for all the films was determined from the surface reactance of the films. The microwave complex conductivity is determined in both the normal and the superconducting state. It is observed that both sigma1 and sigma2 increase in transition to the superconducting state. The surface resistivity is calculated for all the films.

  11. Analysis of reflection-coefficient by wireless power transmission using superconducting coils

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, In Sung; Choi, Hyo Sang [Chosun University, Gwangju (Korea, Republic of); Chung, Dong Chul [Korea Institute of Carbon Convergence Technology, Jeonju (Korea, Republic of)

    2017-06-15

    The use of electronic devices such as mobile phones and tablet PCs has increased of late. However, the power which is supplied through wires has a limitation of the free use of devices and portability. Magnetic-resonance wireless power transfer (WPT) can achieve increased transfer distance and efficiency compared to the existing electromagnetic inductive coupling. A superconducting coil can be applied to increase the efficiency and distance of magnetic-resonance WPT. As superconducting coils have lower resistance than copper coils, they can increase the quality factor (Q-factor) and can overcome the limitations of magnetic-resonance WPT. In this study, copper coils were made from ordinary copper under the same condition as the superconducting coils for a comparison experiment. Superconducting coils use liquid nitrogen to keep the critical temperature. As there is a difference of medium between liquid nitrogen and air, liquid nitrogen was also used in the normal conductor coil to compare the experiment with under the same condition. It was confirmed that superconducting coils have a lower reflection-coefficient(S11) than the normal conductor coils.

  12. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  13. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  14. Effect of Temperature-frequency on Transmission Parameters of Coaxial Cable%温度-频率对同轴电缆传输参数的影响

    Institute of Scientific and Technical Information of China (English)

    杨建保; 李春泉; 黄红艳; 张明; 邹梦强

    2015-01-01

    针对汽车信号传输线在温度-频率变化下的信号传输性能问题 ,应用节点电压法建立环境温度下同轴电缆的等效热路模型 ,分析并得出信号传输线在焦耳热和环境温度共同影响下的温度分布.通过实例分析 ,揭示了信号传输线传输参数随温度-频率的变化规律.%For the analysis of signal transmission performance of automotive signal transmission lines in temperature-frequency change ,the equivalent thermal circuit model of the coaxial cable is set up by use of the node voltage method ,which takes environ-ment temperature into account .The temperature distribution of signal transmission lines in the combined effect of Joule heating and environment temperature is analyzed and obtained .Through the case analysis ,the change law of transmission parameters of signal transmission lines with temperature-frequency is revealed .

  15. Optical fibre-lightning arrester cable appliances. Its repercussion in concrete unconventional power transmission lines projects; Aplicacao de cabo para-raios composto com fibra optica. Sua repercursao em projetos de LT`s concreto nao convencionais

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Ramon Sade [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)

    1993-12-31

    With the adoption of lightning rod cables made of Optical Fibre, (in systems over Europe, Japan and North America), these became very popular in Countries capable of installing the system. The Brazilian electrical party was then challenged by a new technological experience: the lightning rod cable for lines of transmission has specific characteristics. The particularity of the electrical system in Brazil in relation to the diversity of the parameters involved, and the necessity to clarifying the concepts, take us to new strategies in planning and measuring our Power Transmission Lines 4 refs., 1 tab.

  16. Dynamic testing of cable structures

    Directory of Open Access Journals (Sweden)

    Caetano Elsa

    2015-01-01

    Full Text Available The paper discusses the role of dynamic testing in the study of cable structures. In this context, the identification of cable force based on vibration measurements is discussed. Vibration and damping assessment are then introduced as the focus of dynamic monitoring systems, and particular aspects of the structural behaviour under environmental loads are analysed. Diverse application results are presented to support the discussion centred on cable-stayed bridges, roof structures, a guyed mast and a transmission line.

  17. Conceptual study of superconducting urban area power systems

    Science.gov (United States)

    Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian

    2010-06-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  18. ANALYSIS OF TRANSMISSION RANGE FOR INSTRUMENT SIGNAL CABLE IN CHEMICAL PLANT%化工装置仪表信号电缆传输距离分析

    Institute of Scientific and Technical Information of China (English)

    王丽娟

    2012-01-01

    介绍本质安全系统的构成,分析电缆传输距离对于本质安全系统安全性的影响;对于隔爆系统,以隔爆电磁阀为例,明确电缆传输距离带来的线路压降对仪表工作性能的重要影响,列举工程应用实例,提出在工程设计中要考虑不确定因素。%The composition of intrinsically-safe system is introduced and the effect of cable transmis sion range on the safety of intrinsically-safe system analyzed;by taking the solenoid valve of explosion suppression as an example the important effect of circuit voltage-drop brought forward by the cable transmission range on the instrument service behavior is definite;the application examples are listed and some uncertainty to be considered in the engineering design suggested.

  19. Interpretation of transmission through type II superconducting thin film on dielectric substrate as observed by laser thermal spectroscopy

    Science.gov (United States)

    Šindler, M.; Tesař, R.; Koláček, J.; Skrbek, L.

    2012-12-01

    We provide a thorough analysis of THz properties of BCS-like superconducting thin films. Temperature and frequency dependence of complex conductivity in zero magnetic field is discussed by utilizing the Zimmerman et al. explicit BCS based formula [Physica C 183 (1991) 99]. We extend this approach by employing the effective medium theory and develop a phenomenological model capable of accounting for the influence of external magnetic field. Using Yeh powerful formalism [Surface Sci. 96 (1980) 41] we calculate optical transmission of linearly polarized laser beam normally incident to a multilayered sample consisting of a thin NbN film grown on birefringent sapphire substrate, entirely covering ranges of interest in temperature and frequency. A proposal to exploit linear polarization of the incident beam parallel with principal axes of conductivity tensor is explained and theoretical predictions for a realistic NbN sample are computed and discussed.

  20. A Novel Electrical Insulating Material for 275 kV High-Voltage HTS Cable with Low Dielectric Loss

    Science.gov (United States)

    Hayakawa, N.; Nishimachi, S.; Maruyama, O.; Ohkuma, T.; Liu, J.; Yagi, M.

    2014-05-01

    In the case of high temperature superconducting (HTS) power transmission cables at high voltage operation, the electrical insulation technique in consideration of the dielectric loss reduction becomes crucial. In this paper, we focused on a Tyvek/polyethylene (PE) sheet, instead of the conventional polypropylene laminated paper (PPLP). We obtained the dielectric characteristics (epsilonr, tanδ) and partial discharge inception strength (PDIE) of PPLP, Tyvek and Tyvek/PE. We pointed out that the dielectric loss of 275 kV HTS cable with Tyvek/PE insulation will be reduced to 21 % of that with PPLP, and the total electrical loss including the AC loss will be reduced to 41 %.

  1. Superconductors for the medium-voltage grid. A superconducting power cable running through the inner city of Essen passes a two-year field test; Supraleiter fuer das Mittelspannungsnetz. Ein supraleitendes Stromkabel quer durch die Essener Innenstadt besteht zweijaehrigen Feldtest

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Franz

    2017-04-01

    Scientists are testing the longest high-temperature superconducting cable in the world under real conditions in Essen. One kilometre long, it connects two substations in the inner city. It replaces a conventional 110 kV line and renders one substation in the inner city obsolete. After two years of testing, it has passed the field test. It could be a blueprint for the future power supply system in urban areas. [German] Wissenschaftler testen in Essen das laengste Hochtemperatur-Supraleiterkabel der Welt unter realen Bedingungen. Mit einer Laenge von einem Kilometer verbindet es zwei Umspannstationen quer durch die Innenstadt. Es ersetzt eine konventionelle 110-kV-Leitung und macht eine Umspannanlage im Stadtzentrum ueberfluessig. In einer zweijaehrigen Erprobung hat es den Praxistest bestanden. Es koennte eine Blaupause fuer die kuenftige Stromversorgung in Ballungsraeumen sein.

  2. Development of a novel method for the exploration of the thermal response of superfluid helium cooled superconducting cables to pulse heat loads

    NARCIS (Netherlands)

    Winkler, T.; Koettig, T.; Weelderen, van R.; Bremer, J.; Brake, ter H.J.M.

    2015-01-01

    Management of transient heat deposition in superconducting magnets and its extraction from the aforementioned is becoming increasingly important to bring high energy particle accelerator performance to higher beam energies and intensities. Precise knowledge of transient heat deposition phenomena in

  3. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  4. Algorithm for spectral response analysis of superconducting microwave transmission-line resonator

    CERN Document Server

    Hanif, Muhammad

    2013-01-01

    It has always been a challenge for researchers to efficiently and accurately post process experimental data which is distorted by the noise. Superconducting microwave devices e.g. resonators, directional filters, beam-splitters etc. operate at frequency of several GHz to THz and temperatures well below critical temperature (Tc) with few exceptions like transition edge sensors where devices are operated at temperatures close to Tc. These devices are measured usually with vector network analyser in terms of scattering parameters. Two kinds of errors, systematic and drift can easily be removed from the measurements taken with VNA. However, random errors are not easy to address and remove due to their unpredictability and randomness. In this manuscript we will present an algorithm to post process experimental data to cope with measurements that have been corrupted or useful spectral response is buried in spurious signal. We have developed a robust and efficient algorithm, implemented in MATLAB, to detect peaks in...

  5. Lattice parameters guide superconductivity in iron-arsenides

    Science.gov (United States)

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  6. Applications of high-temperature superconductors in power technology[8470 High-current and high-voltage technology: power systems; power transmission lines and cables;

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R [Energy Technology Division, Argonne National Laboratory, Argonne, IL 60439 (United States)

    2003-11-01

    Since the discovery of the first high-temperature superconductors (HTSs) in the late 1980s, many materials and families of materials have been discovered that exhibit superconductivity at temperatures well above 20 K. Of these, several families of HTSs have been developed for use in electrical power applications. Demonstration of devices such as motors, generators, transmission lines, transformers, fault-current limiters, and flywheels in which HTSs and bulk HTSs have been used has proceeded to ever larger scales. First-generation wire, made from bismuth-based copper oxides, was used in many demonstrations. The rapid development of second-generation wire, made by depositing thin films of yttrium-based copper oxide on metallic substrates, is expected to further accelerate commercial applications. Bulk HTSs, in which large single-grain crystals are used as basic magnetic components, have also been developed and have potential for electrical power applications.

  7. Anisotropic behaviour of transmission through thin superconducting NbN film in parallel magnetic field

    Science.gov (United States)

    Šindler, M.; Tesař, R.; Koláček, J.; Skrbek, L.

    2017-02-01

    Transmission of terahertz waves through a thin layer of the superconductor NbN deposited on an anisotropic R-cut sapphire substrate is studied as a function of temperature in a magnetic field oriented parallel with the sample. A significant difference is found between transmitted intensities of beams linearly polarised parallel with and perpendicular to the direction of applied magnetic field.

  8. 高温超导电缆及其低温绝缘研究现状%Present Research Status of High Temperature Superconducting Cable and Its Cryogenic Insulation

    Institute of Scientific and Technical Information of China (English)

    杜伯学; 邢云琪; 傅明利; 侯帅

    2015-01-01

    The research history and current status of high temperature superconducting (HTS)cable in the world are summarized,and the basic structure and insulation requirements of HTS cable body are introduced. Then,the structure and problem of the main insula-tion for HTS cable are analyzed. For liquid nitrogen (LN2 )and several solid insulation materials under low temperature applied in HTS cables,related researches are put forward separately on their dielectric property under low temperature. It can be concluded that, in LN2 ,the breakdown strength of insulation material is higher in DC field than that in ac field;the breakdown strength of polyimide is higher than that of polypropylene laminated paper (PPLP)in both ac and dc field;low temperature can suppress the growth of the electrical tree in epoxy resin.%概述了世界上高温超导电缆的研究历史和现状,介绍了高温超导电缆本体的基本结构及绝缘要求,分析了高温超导电缆主绝缘的结构及存在的问题。针对高温超导电缆中使用的液氮和几种低温固体绝缘材料,分别介绍了其在低温环境下介电性能的相关研究进展。总结发现:液氮的击穿场强受到气泡和电极材料的影响;液氮下绝缘材料的直流击穿场强高于交流击穿场强;聚酰亚胺在液氮下的交直流击穿场强高于聚丙烯层压纸;低温会抑制环氧树脂中电树枝的生长。

  9. Critical Current and Stability of MgB$_2$ Twisted-Pair DC Cable Assembly Cooled by Helium Gas

    CERN Document Server

    AUTHOR|(CDS)2069632; Ballarino, Amalia; Yang, Yifeng; Young, Edward Andrew; Bailey, Wendell; Beduz, Carlo

    2013-01-01

    Long length superconducting cables/bus-bars cooled by cryogenic gases such as helium operating over a wider temperature range are a challenging but exciting technical development prospects, with applications ranging from super-grid transmission to future accelerator systems. With limited existing knowledge and previous experiences, the cryogenic stability and quench protection of such cables are crucial research areas because the heat transfer is reduced and temperature gradient increased compared to liquid cryogen cooled cables. V-I measurements on gas-cooled cables over a significant length are an essential step towards a fully cryogenic stabilized cable with adequate quench protection. Prototype twisted-pair cables using high-temperature superconductor and MgB2 tapes have been under development at CERN within the FP7 EuCARD project. Experimental studies have been carried out on a 5-m-long multiple MgB$_2$ cable assembly at different temperatures between 20 and 30 K. The subcables of the assembly showed sim...

  10. Stationary levitation and vibration transmission characteristic in a superconducting seismic isolation device with a permanent magnet system and a copper plate

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S., E-mail: s.sasaki@ecei.tohoku.ac.j [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Shimada, K.; Yagai, T.; Tsuda, M.; Hamajima, T. [Electrical Engineering Department, Graduate School, Tohoku University, 6-6-05 Aoba Aramaki, Aoba-ku, Sendai, Miyagi 980-8579 (Japan); Kawai, N.; Yasui, K. [Okumura Corporation, 5-6-1 Shiba, Minato-ku, Tokyo 180-8381 (Japan)

    2010-11-01

    We have devised a magnetic levitation type superconducting seismic isolation device taking advantage of the specific characteristic of HTS bulk that the HTS bulk returns to its original position by restoring force against a horizontal displacement. The superconducting seismic isolation device is composed of HTS bulks and permanent magnets (PM rails). The PMs are fixed on an iron plate to realize the same polarities in the longitudinal direction and the different polarities in the transverse direction. The superconducting seismic isolation device can theoretically remove any horizontal vibrations completely. Therefore, the vibration transmissibility in the longitudinal direction of the PM rail becomes zero in theory. The zero vibration transmissibility and the stationary levitation, however, cannot be achieved in the real device because a uniform magnetic field distribution in the longitudinal direction of PM rail cannot be realized due to the individual difference of the PMs. Therefore, to achieve stationary levitation in the real device we adopted a PM-PM system that the different polarities are faced each other. The stationary levitation could be achieved by the magnetic interaction between the PMs in the PM-PM system, while the vibration transmitted to the seismic isolation object due to the magnetic interaction. We adopted a copper plate between the PMs to reduce the vibration transmissibility. The PM-PM system with the copper plate is very useful for realizing the stationary levitation and reducing the vibration transmissibility.

  11. Mathematical model for the power supply system of an autonomous object with an AC power transmission over a cable rope

    Science.gov (United States)

    Rulevskiy, V. M.; Bukreev, V. G.; Shandarova, E. B.; Kuleshova, E. O.; Shandarov, S. M.; Vasilyeva, Yu Z.

    2017-02-01

    A modeling problem of the power system, which provides an AC power transmission to a submersible device over the conducting rope, was considered. The power supply system units and their parameters are described. The system multi-dimensional mathematical model in the variables state space with regard to the nonlinear characteristic of system elements is proposed.

  12. Simulation of the cabling process for Rutherford cables: An advanced finite element model

    Science.gov (United States)

    Cabanes, J.; Garlasche, M.; Bordini, B.; Dallocchio, A.

    2016-12-01

    In all existing large particle accelerators (Tevatron, HERA, RHIC, LHC) the main superconducting magnets are based on Rutherford cables, which are characterized by having: strands fully transposed with respect to the magnetic field, a significant compaction that assures a large engineering critical current density and a geometry that allows efficient winding of the coils. The Nb3Sn magnets developed in the framework of the HL-LHC project for improving the luminosity of the Large Hadron Collider (LHC) are also based on Rutherford cables. Due to the characteristics of Nb3Sn wires, the cabling process has become a crucial step in the magnet manufacturing. During cabling the wires experience large plastic deformations that strongly modify the geometrical dimensions of the sub-elements constituting the superconducting strand. These deformations are particularly severe on the cable edges and can result in a significant reduction of the cable critical current as well as of the Residual Resistivity Ratio (RRR) of the stabilizing copper. In order to understand the main parameters that rule the cabling process and their impact on the cable performance, CERN has developed a 3D Finite Element (FE) model based on the LS-Dyna® software that simulates the whole cabling process. In the paper the model is presented together with a comparison between experimental and numerical results for a copper cable produced at CERN.

  13. Development of HTS power cable using YBCO coated conductor

    Science.gov (United States)

    Mukoyama, Shinichi; Yagi, Masashi; Hirano, Hironobu; Yamada, Yutaka; Izumi, Teruo; Shiohara, Yuh

    2006-10-01

    Reductions of AC losses and of cost of HTS power cables are important to put it into practical power networks. Since an YBCO-coated-conductor (YBCO tape) has higher Jc and better magnetic property than a Bi2223-Ag-sheathed-tape, an AC power cable using YBCO tapes will obtain higher performance than XLPE-cables and HTS cables using BSCCO tapes in future. Especially, an YBCO HTS cable will be expected to become a higher economical cable than a Bi cable because an YBCO tape reduced its AC losses and its wire cost. We have started developing HTS power cables using YBCO tapes. Mechanical properties, superconducting properties and other electro magnetic properties of YBCO tapes have been measured to estimate the applicability to the HTS cable. Moreover, we have developed some technologies to bring out latent potentials of YBCO tapes.

  14. Signature of the Collaboration agreement contract between CERN and IASS on High Current, Long Distance Superconducting Power Transmission Lines signed Dr.Steve Myers Director of Acc Tech and Prof. Carlo Rubbia.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    Signature of the Collaboration agreement contract between CERN and IASS on High Current, Long Distance Superconducting Power Transmission Lines signed Dr.Steve Myers Director of Acc Tech and Prof. Carlo Rubbia.

  15. Innovation on Energy Power Technology(5)A History on Development of 500kV XLPE Cable for Long Distance Power Transmission

    Science.gov (United States)

    Tanaka, Hideo

    The history in the development of 500kV XLPE cable, especially the struggles in the development work and field application by the engineers has been described in this article. Power cables are one of the large-sized industrial products; however, 500kV XLPE cable requires very sophisticated and fine technologies in its realization. On the way to the goal of its realization, engineers had many struggles against never-experienced subjects and finally they could overcome such difficulties. Field application of 500kV XLPE cable, including installation and jointing, had been established based on the much effort of many engineers.

  16. Understanding losses in three core armoured submarine cables

    DEFF Research Database (Denmark)

    Silva, Filipe Miguel Faria da; Ebdrup, Thomas; Bak, Claus Leth

    2016-01-01

    . For practical an economical reasons the preferred choice of cable for both the array and the transmission cables are three-core armoured submarine cables. Therefore, it has becoming increasingly important to be able to calculate the ampacity of such cables accurately. At present time, the ampacity of three......-core armoured submarine cables is calculated according to IEC 60287-1-1 [1]. Various measurements conducted both by cable manufacturers and transmission system operators (TSO) have shown that using the cable rating method stated in IEC 60287-1-1 underestimates the cable ampacity [2]-[6]. Furthermore....... However, research performed in this paper shows that while the armour is responsible for the extra losses, the main calculation error for typical HVAC submarine cables may be in the screen’s loss factor (λ1). Overestimation of the cable losses may result in core cross-sections too large with more material...

  17. Cable tensiometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, B.V

    1989-05-30

    This patent describes a weight beam for measuring load on a cable. The weight beam consists of: a beam body; load cell means mounted on the beam body, the load cell means being spaced a predetermined distance from the beam body; clamp means connected to the load cell means and adapted to grip a cable whose tension is to be measured; and adjusting means connected to the load cell to deflect the cable and put the load cell under a tension load, the clamp means and the adjusting means being structurally distinct.

  18. First Russian long length HTS power cable

    Science.gov (United States)

    Volkov, Eduard P.; Vysotsky, Vitaly S.; Firsov, Valery P.

    2012-11-01

    The Russian R&D Program for superconducting power devices is underway, supported both by government and electric power companies. In this program R&D on HTS power cables is considered as most advanced and close to commercialization. In the framework of the program, several, heavily instrumented, 5 m cables have been tested following by the 30 m - 3 phase experimental power cable development and testing in 2008-2009. The latest achievement is development and testing of the first long length 3 × 200 m power cable with rating 1.5/2 kA-20 kV. In parallel with just the cable development the innovative cryogenic system has been developed as well for the cable cooling. The system is using neon as working substance and radial turbo-machines in refrigerator. Cooling power is up to ∼8 kW at 65 K, inter-maintenance time ∼30,000 h. The cryogenic pump with superconducting motor can be used to provide subcooled liquid nitrogen flow ∼0.1-1.5 kg/s at 0.1-2.5 MPa pressure. After extensive tests at special test facility, HTS power cable and cryogenic system are planning to be installed at some substation in Moscow utility grid. In this review some details about Russian HTS power application program, 200 m cable and cryogenic system designs and tests results are presented.

  19. Development of High - voltage Pulse - transmission Electric Cable for Plasma Drill%等离子体钻机高压脉冲传输电缆的研制

    Institute of Scientific and Technical Information of China (English)

    季念迎; 裴彦良; 闫克平; 刘晨光; 章志成

    2012-01-01

    设计了等离子钻机高压脉冲传输电缆的结构,讨论了高压绝缘层的设计及材料选择.在此基础上,开展了高压脉冲传输电缆的绝缘阻抗和波阻抗测试实验.实验测试结果表明,所研制的传输电缆具有较高的绝缘性能和较小的波阻抗,可基本满足等离子体钻机的需要.%The structure of the high - voltage pulse - transmission electric cable was designed. The design of high - voltage insulation layer and the insulation material were discussed. Based on what mentioned above, the insulating resistance and the wave resistance tests of the high - voltage pulse - transmission electric cable were carried out. The test results show that the high - voltage pulse - transmission electric cable has good insulating property and little wave resistance, which meets the challenges of the plasma drill.

  20. Thermal Insulation Performance of Flexible Piping for Use in HTS Power Cables

    Science.gov (United States)

    Fesmire, James E.; Augustynowicz, S. D.; Demko, J. A.; Thompson, Karen (Technical Monitor)

    2001-01-01

    High-temperature superconducting (HTS) cables that typically operate at temperatures below 80 K are being developed for power transmission. The practical application of HTS power cables will require the use of flexible piping to contain the cable and the liquid nitrogen coolant. A study of thermal performance of multilayer insulation (MLI) was conducted in geometries representing both rigid and flexible piping. This experimental study performed at the Cryogenics Test Laboratory of NASA Kennedy Space Center provides a framework for the development of cost-effective, efficient thermal insulation systems that will support these long-distance flexible lines containing HTS power cables. The overall thermal performance of the insulation system for a rigid configuration and for a flexible configuration, simulating a flexible HTS power cable, was determined by the steady-state liquid nitrogen boiloff method under the full range of vacuum levels. Two different cylindrically rolled material systems were tested: a standard MLI and a layered composite insulation (LCI). Comparisons of ideal MLI, MLI on rigid piping, and MLI between flexible piping are presented.

  1. Bending behavior of lapped plastic ehv cables

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, G H; Muller, A C

    1980-01-01

    One of the factors delaying the development of lapped polymeric cables has been their reputed poor bending characteristics. Complementary programs were begun at BNL several years ago to mathematically model the bending of synthetic tape cables and to develop novel plastic tapes designed to have moduli more favorable to bending. A series of bend tests was recently completed to evaluate the bending performance of several tapes developed for use in experimental superconducting cables. The program is discussed and the results of the bend tests are summarized.

  2. Аnalysis of factors influencing physical and mechanical properties of icing on wires and cables of overhead power transmission lines

    OpenAIRE

    Mezerjy, A. J.; Zanykhaylo, Y. O.

    2014-01-01

    У статті розглянуто фактори, які впливають на фізико-механічні властивості ожеледі на проводах і тросах повітряних ліній електропередачі. В статті була побудована структурна схема, виявлено ступінь впливу різних факторів на фізико-механічні властивості ожеледі. The paper considers factors influencing physical and mechanical properties of icing on wires and cables of overhead power transmission lines. The paper presents a schematic diagram, founds the degree of influence of various...

  3. Field application of a cable NDT system for cable-stayed bridge using MFL sensors integrated

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ju Won; Choi, Jun Sung; Park, Seung Hee [Sungkyunkwan University, Seoul (Korea, Republic of); Lee, Eun Chan [Korea Maintance Co., Ltd., Seoul (Korea, Republic of)

    2014-02-15

    In this study, an automated cable non-destructive testing(NDT) system was developed to monitor the steel cables that are a core component of cable-stayed bridges. The magnetic flux leakage(MFL) method, which is suitable for ferromagnetic continuum structures and has been verified in previous studies, was applied to the cable inspection. A multi-channel MFL sensor head was fabricated using hall sensors and permanent magnets. A wheel-based cable climbing robot was fabricated to improve the accessibility to the cables, and operating software was developed to monitor the MFL-based NDT research and control the climbing robot. Remote data transmission and robot control were realized by applying wireless LAN communication. Finally, the developed element techniques were integrated into an MFL-based cable NDT system, and the field applicability of this system was verified through a field test at Seohae Bridge, which is a typical cable-stayed bridge currently in operation.

  4. Study of Transient Heat Transport Mechanisms in Superfluid Helium Cooled Rutherford-Cables

    CERN Document Server

    AUTHOR|(CDS)2100615

    The Large Hadron Collider leverages superconducting magnets to focus the particle beam or keep it in its circular track. These superconducting magnets are composed of NbTi-cables with a special insulation that allows superfluid helium to enter and cool the superconducting cable. Loss mechanisms, e.g. continuous random loss of particles escaping the collimation system heating up the magnets. Hence, a local temperature increase can occur and lead to a quench of the magnets when the superconductor warms up above the critical temperature. A detailed knowledge about the temperature increases in the superconducting cable (Rutherford type) ensures a secure operation of the LHC. A sample of the Rutherford cable has been instrumented with temperature sensors. Experiments with this sample have been performed within this study to investigate the cooling performance of the helium in the cable due to heat deposition. The experiment uses a superconducting coil, placed in a cryostat, to couple with the magnetic field loss m...

  5. Superconducting generators and motors and methods for employing same

    Energy Technology Data Exchange (ETDEWEB)

    Tomsic, Michael J.; Long, Larry

    2017-08-29

    A superconducting electrical generator or motor having a plurality of cryostats is described. The cryostats contain coolant and a first cryostat encloses at least one of a plurality of superconducting coils. A first coil is in superconducting electrical communication with a second coil contained in a second cryostat through a superconducting conduction cooling cable enclosing a conductor. The first cryostat and the second cryostat may be in fluid communication through at least one cryogen channel within the at least one superconducting conduction cooling cable. In other embodiments, none of the plurality of cryostats may be in fluid communication and the cable may be cooled by conduction along the conductor from the first or second cryostat, or from both. The conductor may have different segments at temperatures equal to or above the temperature of the coolant and the superconducting conduction cooling cables may be connected through quick connect fittings.

  6. Down hole transmission system

    Science.gov (United States)

    Hall, David R.; Hall, Jr., H. Tracy

    2007-07-24

    A transmission system in a downhole component comprises a data transmission element in both ends of the downhole component. Each data transmission element houses an electrically conducting coil in a MCEI circular trough. The electrically conducting coil comprises at least two generally fractional loops. In the preferred embodiment, the transmission elements are connected by an electrical conductor. Preferably, the electrical conductor is a coaxial cable. Preferably, the MCEI trough comprises ferrite. In the preferred embodiment, the fractional loops are connected by a connecting cable. In one aspect of the present invention, the connecting cable is a pair of twisted wires. In one embodiment the connecting cable is a shielded pair of twisted wires. In another aspect of the present invention, the connecting cable is a coaxial cable. The connecting cable may be disposed outside of the MCEI circular trough.

  7. Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements

    Science.gov (United States)

    Bhasin, K. B.; Warner, J. D.; Miranda, F. A.; Gordon, W. L.; Newman, H. S.

    1991-01-01

    A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approximately 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approximately 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approximately 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition superconducting thin films at microwave frequencies.

  8. Determination of surface resistance and magnetic penetration depth of superconducting YBa2Cu3O(7-delta) thin films by microwave power transmission measurements

    Science.gov (United States)

    Bhasin, K. B.; Warner, J. D.; Miranda, F. A.; Gordon, W. L.; Newman, H. S.

    1991-01-01

    A novel waveguide power transmission measurement technique was developed to extract the complex conductivity of superconducting thin films at microwave frequencies. The microwave conductivity was taken of two laser ablated YBa2Cu3O(7-delta) thin films on LaAlO3 with transition temperatures of approximately 86.3 and 82 K, respectively, in the temperature range 25 to 300 K. From the conductivity values, the penetration depth was found to be approximately 0.54 and 0.43 micron, and the surface resistance (R sub s) to be approximately 24 and 36 micro-Ohms at 36 GHz and 76 K for the two films under consideration. The R sub s values were compared with those obtained from the change in the Q-factor of a 36 GHz Te sub 011-mode (OFHC) copper cavity by replacing one of its end walls with the superconducting sample. This technique allows noninvasive characterization of high transition superconducting thin films at microwave frequencies.

  9. Cable Television: Its Urban Context and Programming.

    Science.gov (United States)

    Warthman, Forrest

    Cable television's future in urban settings is discussed in the context of alternative media capable of serving similar markets with similar programing. In addition to cable television, other transmission networks such as the telephone network, radio and television broadcasting, microwave networks, domestic satellites, and recording media are…

  10. Testing of 3-meter Prototype Fault Current Limiting Cables

    Energy Technology Data Exchange (ETDEWEB)

    Gouge, Michael J [ORNL; Duckworth, Robert C [ORNL; Demko, Jonathan A [ORNL; Rey, Christopher M [ORNL; Thompson, James R [ORNL; Lindsay, David T [ORNL; Tolbert, Jerry Carlton [ORNL; Willen, Dag [Ultera; Lentge, Heidi [Ultera; Thidemann, Carsten [Ultera; Carter, Bill [AMSC

    2009-01-01

    Two 3-m long, single-phase cables have been fabricated by Ultera from second generation (2G) superconductor supplied by American Superconductor. The first cable was made with two layers of 2G tape conductor and had a critical current of 5,750 A while the second cable had four layers and a critical current of 8,500 A. AC loss was measured for both cables at ac currents of up to 4 kArms. Ultera performed initial fault current studies of both cables in Denmark with limited currents in the range from 9.1 to 44 kA. Results from these tests will provide a basis for a 25-m long, three-phase, prototype cable to be tested at ORNL early next year and a 300-m long, fault current limiting, superconducting cable to be installed in a ConEd substation in New York City.

  11. Development of Heat-resistant XLPE Cable and Accessories

    Science.gov (United States)

    Yamada, Hiroyuki; Nakagawa, Shinichi; Murata, Yoshinao; Kishi, Kouji; Katakai, Shoshi

    We have developed heat-resistant XLPE cable and accessories that can be operated at 105°C as the maximum permissible conductor temperature in normal operation. Through this cable system, greater transmission capacity can be achieved using existing cable ducts and without increasing the conductor size of the cable. We have developed heat-resistant XLPE insulation material which has a higher melting point than that of conventional XLPE. The breakdown strength of heat-resistant XLPE cable at 105°C is almost the same as that of conventional XLPE cable at 90°C. The heat deformation of the new cable at 105°C is almost the same as that of conventional XLPE cable at 90°C. Conventional self-pressurized rubber joints can be applied to heat-resistant cable lines with the new waterproof joint compound with low heat resistivity.

  12. Strand critical current degradation in $Nb_{3}$ Sn Rutherford cables

    CERN Document Server

    Barzi, E; Higley, H C; Scanlan, R M; Yamada, R; Zlobin, A V

    2001-01-01

    Fermilab is developing 11 Tesla superconducting accelerator magnets based on Nb/sub 3/Sn superconductor. Multifilamentary Nb/sub 3/Sn strands produced using the modified jelly roll, internal tin, and powder-in-tube technologies were used for the development and test of the prototype cable. To optimize the cable geometry with respect to the critical current, short samples of Rutherford cable with packing factors in the 85 to 95% range were fabricated and studied. In this paper, the results of measurements of critical current, n-value and RRR made on the round virgin strands and on the strands extracted from the cable samples are presented. (5 refs).

  13. Telepresence and real-time data transmission from Axial Seamount: implications for education and community engagement utilizing the OOI-RSN cabled observatory

    Science.gov (United States)

    Fundis, A. T.; Kelley, D. S.; Sautter, L. R.; Proskurowski, G.; Kawka, O.; Delaney, J. R.

    2011-12-01

    Axial Seamount, the most robust volcanic system on the Juan de Fuca Ridge, is a future site of the cabled observatory component of the National Science Foundation's Ocean Observatories Initiative (OOI) (see Delaney et al; Proskurowski et al., this meeting). In 2014, high-bandwidth data, high-definition video and digital still imagery will be streamed live from the cable observatory at Axial Seamount via the Internet to researchers, educators, and the public. The real-time data and high-speed communications stream will open new approaches for the onshore public and scientists to experience and engage in sea-going research as it is happening. For the next 7 years, the University of Washington and the OOI will collaboratively support an annual multi-week cruise aboard the research vessel Thomas G. Thompson. These "VISIONS" cruises will include scientific and maintenance operations related to the cabled network, the OOI Regional Scale Nodes (RSN). Leading up to 2014, VISIONS cruises will also be used to engage students, educators, scientists and the public in science focused at Axial Seamount through avenues that will be adaptable for the live data stream via the OOI-RSN cable. Here we describe the education and outreach efforts employed during the VISIONS'11 cruise to Axial Seamount including: 1) a live HD video stream from the seafloor and the ship to onshore scientists, educators, and the public; 2) a pilot program to teach undergraduates from the ship via live and taped broadcasts; 3) utilizing social media from the ship to communicate with scientists, educators, and the public onshore; and 4) providing undergraduate and graduate students onboard immersion into sea-going research. The 2011 eruption at Axial Seamount (see Chadwick et al., this meeting) is a prime example of the potential behind having these effective tools in place to engage the scientific community, students, and the public when the OOI cabled observatory comes online in 2014.

  14. Superconducting pulsed magnets

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  15. Superconducting optical modulator

    Science.gov (United States)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  16. Cable Sliding at Supports in Cable Structures

    Institute of Scientific and Technical Information of China (English)

    魏建东

    2004-01-01

    To develop an effective numerical method for the cable sliding problem in cable structures, two-node catenary cable element was built to model the cables based on analytical solution of elastic catenary. Cooperated with Newton method, continuation method was used to solve the nonlinear equations. This approach is more efficient than using Newton method only and has a wider range to select initial values for the process to converge. The relationship between the tension on a cable segment and its unstrained length was derived and used to calculate the unbalanced cable tensions at the supports. An example is presented to show the correctness and efficiency of the proposed method.

  17. Research and Application of Anti-lighting System in Cable Radio and TV Transmission Network%有线广播电视传输网络防雷系统的研究与成功应用

    Institute of Scientific and Technical Information of China (English)

    陆利根

    2012-01-01

    With an analysis on the lighting surges occurring on Cable Radio and TV transmission network, this paper discusses the lighting damage effects to the transmission equipments and explores ways of anti-lighting, and finally provides successful methods and experience.%主要是对广播电视传输设备的防雷进行分析,重点探讨雷电对广播电视传输设备的危害及防雷措施,并提出解决的办法和经验,以保证供电安全和网络传输安全,进一步提高广播电视的服务质量。

  18. VT Cable Systems 2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VT Cable dataset (CABLE2013) includes lines depicting the extent of Vermont's cable modem broadband system as of 6/30/2013 in addition to...

  19. A superconducting shield to protect astronauts

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The CERN Superconductors team in the Technology department is involved in the European Space Radiation Superconducting Shield (SR2S) project, which aims to demonstrate the feasibility of using superconducting magnetic shielding technology to protect astronauts from cosmic radiation in the space environment. The material that will be used in the superconductor coils on which the project is working is magnesium diboride (MgB2), the same type of conductor developed in the form of wire for CERN for the LHC High Luminosity Cold Powering project.   Image: K. Anthony/CERN. Back in April 2014, the CERN Superconductors team announced a world-record current in an electrical transmission line using cables made of the MgB2 superconductor. This result proved that the technology could be used in the form of wire and could be a viable solution for both electrical transmission for accelerator technology and long-distance power transportation. Now, the MgB2 superconductor has found another application: it wi...

  20. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  1. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  2. A nontrivial factor in determining current distribution in an ac HTS cable-proximity effect

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A superconductor has zero resistance at the superconducting state. This unique property creates many exceptional phenomena, of which some are known and the others are not. Our experiments with multilayer high temperature superconductor (HTS) cable samples revealed a new phenomenon that alternating current had a tendency to flow in the inner and outer layers of the cables. We attribute the cause of this phenomenon to the electromagnetic interaction in an infinite electrical conductivity medium and term it "super-proximity-effect". This effect will greatly affect the performance of a multilayer superconducting cable and other superconducting devices which are involved with alternating current transportation.

  3. Design, processing, and properties of Bi 2212\\/Ag Rutherford cables

    CERN Document Server

    Collings, E W; Scanlan, R M; Dietderich, D R; Motowidlo, L R; Sokolowski, R S; Aoki, Y; Hasegawa, T

    1999-01-01

    In a program intended to explore the use of high temperature superconducting (HTSC) cables in high field synchrotron dipole magnets model Bi:2212/Ag Rutherford cables were designed bearing in mind the needs for mechanical integrity, relatively high tensile strength, and low coupling losses. To satisfy these needs a core-type cable design was selected and a readily available heat-resistant core material acquired. Cables were wound for critical current- and AC loss measurement. Both winding-induced (mechanical) and core-induced (chemical) critical current degradation was examined. Interstrand coupling loss was measured calorimetrically on model cable samples with bare- and oxide-coated cores. From the results it was predicted that the losses of full-scale Bi:2212/Ag-wound LHC-type Rutherford cables would fall close to the acceptability range for the windings of high-field accelerator dipoles. (10 refs).

  4. Cable Television Service; Cable Television Relay Service.

    Science.gov (United States)

    Federal Register, 1972

    1972-01-01

    The rules and regulations of the Federal Communications Commission (FCC) concerning cable television service and cable relay service are presented along with the comments of the National Cable Television Association, the National Association of Broadcasters, the Association of Maximum Service Telecasters, and a major group of program suppliers.…

  5. Evaluation of foam-skin cables for aerial applications

    Science.gov (United States)

    Samuelson, G. R.

    Since the introduction of foam-skin filled cables, there has been considerable discussion within the Industry, both pro and con, regarding the acceptability of foam-skin filled cables for aerial application. This paper reports on results obtained from a study undertaken to evaluate the changes in transmission properties of such cables in a simulated aerial environment. Cable samples produced by six cable manufacturers using conventional, high-temperature drip-resistant filling compounds with a petrolatum base were subjected to temperature cycling from -40 F to 140 F. Transmission parameters were measured at 1, 150 and 772 kHz and compared to initial values. A solid polypropylene insulated filled cable was included for reference. The results show that foam-skin petrolatum based filled cables exhibit stable electrical characteristics when exposed to cycled temperature extremes.

  6. Introduction of CORC® wires: highly flexible, round high-temperature superconducting wires for magnet and power transmission applications

    Science.gov (United States)

    Weiss, Jeremy D.; Mulder, Tim; ten Kate, Herman J.; van der Laan, Danko C.

    2017-01-01

    Conductor on Round Core (CORC®) technology has achieved a long sought-after benchmark by enabling the production of round, multifilament, (RE)Ba2Ca3O7-x coated conductors with practical current densities for use in magnets and power applications. Recent progress, including the demonstration of engineering current density beyond 300 Amm-2 at 4.2 K and 20 T, indicates that CORC® cables are a viable conductor for next generation high field magnets. Tapes with 30 μm substrate thickness and tape widths down to 2 mm have improved the capabilities of CORC® technology by allowing the production of CORC® wires as thin as 3 mm in diameter with the potential to enhance the engineering current density further. An important benefit of the thin CORC® wires is their improved flexibility compared to thicker (7-8 mm diameter) CORC® cables. Critical current measurements were carried out on tapes extracted from CORC® wires made using 2 and 3 mm wide tape after bending the wires to various diameters from 10 to 3.5 cm. These thin wires are highly flexible and retain close to 90% of their original critical current even after bending to a diameter of 3.5 cm. A small 5-turn solenoid was constructed and measured as a function of applied magnetic field, exhibiting an engineering current density of 233 Amm-2 at 4.2 K and 10 T. CORC® wires thus form an attractive solution for applications between 4.2 and 77 K, including high-field magnets that require high current densities with small bending diameters, benefiting from a ready-to-use form (similar to NbTi and contrary to Nb3Sn wires) that does not require additional processing following coil construction.

  7. Cable Tensiometer for Aircraft

    Science.gov (United States)

    Nunnelee, Mark (Inventor)

    2008-01-01

    The invention is a cable tensiometer that can be used on aircraft for real-time, in-flight cable tension measurements. The invention can be used on any aircraft cables with high precision. The invention is extremely light-weight, hangs on the cable being tested and uses a dual bending beam design with a high mill-volt output to determine tension.

  8. Modeling and simulation of HTS cables for scattering parameter analysis

    Science.gov (United States)

    Bang, Su Sik; Lee, Geon Seok; Kwon, Gu-Young; Lee, Yeong Ho; Chang, Seung Jin; Lee, Chun-Kwon; Sohn, Songho; Park, Kijun; Shin, Yong-June

    2016-11-01

    Most of modeling and simulation of high temperature superconducting (HTS) cables are inadequate for high frequency analysis since focus of the simulation's frequency is fundamental frequency of the power grid, which does not reflect transient characteristic. However, high frequency analysis is essential process to research the HTS cables transient for protection and diagnosis of the HTS cables. Thus, this paper proposes a new approach for modeling and simulation of HTS cables to derive the scattering parameter (S-parameter), an effective high frequency analysis, for transient wave propagation characteristics in high frequency range. The parameters sweeping method is used to validate the simulation results to the measured data given by a network analyzer (NA). This paper also presents the effects of the cable-to-NA connector in order to minimize the error between the simulated and the measured data under ambient and superconductive conditions. Based on the proposed modeling and simulation technique, S-parameters of long-distance HTS cables can be accurately derived in wide range of frequency. The results of proposed modeling and simulation can yield the characteristics of the HTS cables and will contribute to analyze the HTS cables.

  9. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  10. Two-way cable television system characterization

    Science.gov (United States)

    Schauer, Paul T.

    1995-11-01

    This presentation is a report of the testing activities of the CableLabs Network Integrity Working Group. The working group consisted of several CableLabs member companies which conducted rf analog and digital bit-error testing at five CATV networks in the U.S. and Canada. The purpose of the working group was to measure the reliability and availability of the contemporary CATV network as specified by traditional switched access telephony performance parameters. Transmission data was collected for both forward and reverse (sub- split) paths of the rf broadband network, in both traditional and hybrid fiber/coax architectures, and for baseline and controlled variation events. The basic premise of this testing was to ascertain which cable television network elements adversely affected transmission of a 'generic' digital communications system and how they can be managed or controlled. The digital transmission utilized in the test was a QPSK modulated, T-1 rate (1.544 Mbit/second), modem without error correction. The intent was not to derive the necessary modulation technique and error correction scheme to properly operate in every cable television system, but rather to determine the principal sources of impairments existing in these networks and deduce corrective measures. The full report of the Network Integrity Working Group is published by CableLabs, Inc., and is titled, 'Two-Way Cable Television System Characterization -- Final Report', April 1995.

  11. Condition Monitoring of Power Cables

    OpenAIRE

    Lewin, P L; L. Hao; Swaffield, D J; Swingler, S.G.

    2007-01-01

    A National Grid funded research project at Southampton has investigated possible methodologies for data acquisition, transmission and processing that will facilitate on-line continuous monitoring of partial discharges in high voltage polymeric cable systems. A method that only uses passive components at the measuring points has been developed and is outlined in this paper. More recent work, funded through the EPSRC Supergen V, UK Energy Infrastructure (AMPerES) grant in collaboration with UK ...

  12. Interaction between Current Imbalance and Magnetization in LHC Cables

    CERN Document Server

    Bottura, L; Kuijper, A; den Ouden, A; ten Haken, B; ten Kate, H H J

    2001-01-01

    The quality of the magnetic field in superconducting accelerator magnets is associated with the properties of the superconducting cable. Current imbalances due to coupling currents DI, as large as 100 A, are induced by spatial variations of the field sweep rate and contact resistances. During injection at a constant field all magnetic field components show a decay behavior. The decay is caused by a diffusion of coupling currents into the whole magnet. This results in a redistribution of the transport current among the strands and causes a demagnetization of the superconducting cable. As soon as the field is ramped up again after the end of injection, the magnetization rapidly recovers from the decay and follows the course of the original hysteresis curve. In order to clarify the interactions between the changes in current and magnetization during injection we performed a number of experiments. A magnetic field with a spatially periodic pattern was applied to a superconducting wire in order to simulate the cou...

  13. Superconducting materials for large scale applications

    Energy Technology Data Exchange (ETDEWEB)

    Scanlan, Ronald M.; Malozemoff, Alexis P.; Larbalestier, David C.

    2004-05-06

    Significant improvements in the properties ofsuperconducting materials have occurred recently. These improvements arebeing incorporated into the latest generation of wires, cables, and tapesthat are being used in a broad range of prototype devices. These devicesinclude new, high field accelerator and NMR magnets, magnets for fusionpower experiments, motors, generators, and power transmission lines.These prototype magnets are joining a wide array of existing applicationsthat utilize the unique capabilities of superconducting magnets:accelerators such as the Large Hadron Collider, fusion experiments suchas ITER, 930 MHz NMR, and 4 Tesla MRI. In addition, promising newmaterials such as MgB2 have been discovered and are being studied inorder to assess their potential for new applications. In this paper, wewill review the key developments that are leading to these newapplications for superconducting materials. In some cases, the key factoris improved understanding or development of materials with significantlyimproved properties. An example of the former is the development of Nb3Snfor use in high field magnets for accelerators. In other cases, thedevelopment is being driven by the application. The aggressive effort todevelop HTS tapes is being driven primarily by the need for materialsthat can operate at temperatures of 50 K and higher. The implications ofthese two drivers for further developments will be discussed. Finally, wewill discuss the areas where further improvements are needed in order fornew applications to be realized.

  14. Safer cables; Des cables plus surs

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-02-01

    Sixteen years after its adoption, the European construction products directive (CPD) will have soon a strong impact on the characteristics of electrical and communication cables used in European buildings and facilities. Among the six main requirements of this directive, the fire protection safety is a growing up concern and the electric cables have to be tested with respect to their fire resistance to become conformable with the directive. The cable industry has taken up the challenge. (J.S.)

  15. Transient analysis of an HTS DC power cable with an HVDC system

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun; Yang, Byeongmo

    2013-11-01

    The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  16. Series Transmission Line Transformer

    Science.gov (United States)

    Buckles, Robert A.; Booth, Rex; Yen, Boris T.

    2004-06-29

    A series transmission line transformer is set forth which includes two or more of impedance matched sets of at least two transmissions lines such as shielded cables, connected in parallel at one end ans series at the other in a cascading fashion. The cables are wound about a magnetic core. The series transmission line transformer (STLT) which can provide for higher impedance ratios and bandwidths, which is scalable, and which is of simpler design and construction.

  17. Scheme for realizing quantum computation and quantum information transfer with superconducting qubits coupling to a 1D transmission line resonator

    Institute of Scientific and Technical Information of China (English)

    Shi Zhen-Gang; Chen Xiong-Wen; Zhu Xi-Xiang; Song Ke-Hui

    2009-01-01

    This paper proposes a simple scheme for realizing one-qubit and two-qubit quantum gates as well as multiqubit entanglement based on dc-SQUID charge qubits through the control of their coupling to a ID transmission line resonator (TLR). The TLR behaves effectively as a quantum data-bus mode of a harmonic oscillator, which has several practical advantages including strong coupling strength, reproducibility, immunity to 1// noise, and suppressed spontaneous emission. In this protocol, the data-bus does not need to stay adiabatically in its ground state, which results in not only fast quantum operation, but also high-fidelity quantum information processing. Also, it elaborates the transfer process with the 1D transmission line.

  18. UtilityTelecom_CABLE2005

    Data.gov (United States)

    Vermont Center for Geographic Information — The VT Cable System dataset (CABLE2005) includes lines depicting the extent of Vermont's cable system as of 12/31/2005. Numerous cable companies provide service in...

  19. Concept design of the high voltage transmission system for the collider tunnel

    Science.gov (United States)

    Norman, L. S.

    1992-03-01

    In order to provide electrical service to the Superconducting Super Collider Laboratory (SSCL) 54-mile-circumference collider of 125 MVA at 69 kV or 155 MVA at 138 kV of distributed power, it must be demonstrated that the concept design for a high-voltage transmission system can meet the distribution requirements of the collider electrical system with its cryogenic system's large motor loads and its pulsed power technical systems. It is a practical design, safe for operating personnel and cost-effective. The normal high-voltage transmission techniques of overhead and underground around the 54-mile collider tunnel could not be applied because of technical and physical constraints, or was environmentally unacceptable. The approach taken to solve these problems is the installation of 69-kV or 138-kV exposed solid dielectric transmission cable inside the collider tunnel with the superconducting magnets, cryogenic piping, electrical medium, and low-voltage distribution systems, and electronic/instrumentation wiring systems. This mixed-use approach has never been attempted in a collider tunnel. Research into all aspects of the engineering and installation problems and consultation with transmission cable manufacturers, electrical utilities, and European entities with similar installations--such as the Channel Tunnel--demonstrate that the concept design is feasible and practical. This paper presents a history of the evolution of the concept design. Design studies are underway to determine the system configuration and voltages. Included in this report are tunnel transmission cable system considerations and evaluation of solid dielectric high-voltage cable design.

  20. Thin semi-rigid coaxial cables for cryogenics applications

    Science.gov (United States)

    Kushino, Akihiro; Kasai, Soichi

    2013-03-01

    We have developed cryogenic coaxial cables for low temperature signal readout from sensitive devices, such as transition edge sensors, superconducting tunnel junctions, and kinetic inductance detectors. In order to reduce heat penetration into cryogenic stages, low thermal conductivity metals were chosen for both center and outer electrical conductors. Various types of coaxial cables, employing stainless-steel, cupro-nickel, brass, beryllium-copper, phosphor-bronze, niobium, and niobium-titanium, were manufactured using drawing dies. Thermal and electrical properties were investigated between 1 and 8 K. Coaxial cables made of copper alloys showed thermal conductance roughly consistent with literature, meanwhile Nb coaxial cable must be affected by the drawing process and thermal conductance was lowered. Attenuation of superconducting Nb and NbTi coaxial cables were observed to be adequately small up to above 10 GHz compared to those of normal conducting coaxial cables, which are subject to the Wiedemann-Franz law. We also measured normal conducting coaxial cables with silver-plated center conductors to improve high frequency performance.

  1. 77 FR 61351 - Cable Television Technical and Operational Requirements

    Science.gov (United States)

    2012-10-09

    ...In this document, the Federal Communications Commission proposes to update technical and operational rules related to cable television systems and other multichannel video programming distributors that operate coaxial cable systems. The Commission seeks comments on rules that would update its minimum signal quality standards and signal leakage detection and monitoring for digital transmission. Additionally, the Commission proposes numerous corrections and updates to its to its cable television technical rules.

  2. Applying Diagnostics to Enhance Cable System Reliability (Cable Diagnostic Focused Initiative, Phase II)

    Energy Technology Data Exchange (ETDEWEB)

    Hartlein, Rick [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Hampton, Nigel [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Perkel, Josh [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Hernandez, JC [Univ. de Los Andes, Merida (Venezuela); Elledge, Stacy [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); del Valle, Yamille [Georgia Tech Research Corporation (GTRC), Atlanta, GA (United States). National Electric Energy Testing, Research and Applications Center (NEETRAC); Grimaldo, Jose [Georgia Inst. of Technology, Atlanta, GA (United States). School of Electrical and Computer Engineering; Deku, Kodzo [Georgia Inst. of Technology, Atlanta, GA (United States). George W. Woodruff School of Mechanical Engineering

    2016-02-01

    The Cable Diagnostic Focused Initiative (CDFI) played a significant and powerful role in clarifying the concerns and understanding the benefits of performing diagnostic tests on underground power cable systems. This project focused on the medium and high voltage cable systems used in utility transmission and distribution (T&D) systems. While many of the analysis techniques and interpretations are applicable to diagnostics and cable systems outside of T&D, areas such as generating stations (nuclear, coal, wind, etc.) and other industrial environments were not the focus. Many large utilities in North America now deploy diagnostics or have changed their diagnostic testing approach as a result of this project. Previous to the CDFI, different diagnostic technology providers individually promoted their approach as the “the best” or “the only” means of detecting cable system defects.

  3. Research on Special Maintenance Tool of Straight Line Tower Ground and OPGW Cable in Overhead Transmission Line%线路直线塔地线及光缆金具维护

    Institute of Scientific and Technical Information of China (English)

    杨军

    2014-01-01

    本文在对架空输电线路直线塔地线支架和地线、 OPGW光缆金具组装方式及杆塔荷载的分析计算基础上,结合机械设计基础理论,确定了初步的专用工具研制方案。通过自行购买材料、零部件,在加工、装配和试用过程中不断完善后,成功研制出一套地线、 OPGW光缆金具维护的专用工具。该专用工具通过在不同电压等级线路、荷载情况下的4次现场试用,完全满足对35 kV~500 kV线路通用通用直线塔地线、 OPGW光缆金具的维护工作,而且与传统的作业方法相比明显提高了作业安全性和工作效率。%Based on the basis of the calculation,combining with the basic mechanical design theory, and analysis of straight wire bracket and a ground wire,OPGW cable for overhead power transmission line and tower load, the special maintenance tool is pre-liminary designed. Through the purchase of materials, parts, continuous improvement in processing, assembly and trial process,successfully developed a set of wire,OPGW cable maintenance special tool. The special tool is through the field test for 4 times in different voltage grade line,load conditions,to meet the needs of 35 kV-500 kV line general linear tower wire,OPGW cable main-tenance work,and compared with the traditional operating method significantly improves the operation safety and efficiency.

  4. Cable Television: Franchising Considerations.

    Science.gov (United States)

    Baer, Walter S.; And Others

    This volume is a comprehensive reference guide to cable television technology and issues of planning, franchising, and regulating a cable system. It is intended for local government officials and citizens concerned with the development of cable television systems in their communities, as well as for college and university classes in…

  5. Cable Television: Franchising Considerations.

    Science.gov (United States)

    Baer, Walter S.; And Others

    This volume is a comprehensive reference guide to cable television technology and issues of planning, franchising, and regulating a cable system. It is intended for local government officials and citizens concerned with the development of cable television systems in their communities, as well as for college and university classes in…

  6. Colleges and Cable Franchising.

    Science.gov (United States)

    Glenn, Neal D.

    After noting issues of audience appeal and financial and philosophical support for educational broadcasting, this paper urges community colleges to play an active role in the process of cable franchising. The paper first describes a cable franchise as a contract between a government unit and the cable television (CATV) company which specifies what…

  7. Cable Supported Bridges

    DEFF Research Database (Denmark)

    Gimsing, Niels Jørgen

    Cable supported bridges in the form of suspension bridges and cable-stayed bridges are distinguished by their ability to overcome large spans.The book concentrates on the synthesis of cable supported bridges, covering both design and construction aspects. The analytical part covers simple methods...

  8. Self-contained cable systems offer advantages

    Energy Technology Data Exchange (ETDEWEB)

    Morello, A.S.; Occhini, E.

    1977-05-01

    Low-pressure oil-filled (LPOF) cable systems, while seldom used in this country, have several advantages of interest to engineers. Less oil and insulating paper is required for low-pressure than for the more commonly used high-pressure systems because of the single core. The lower pessure offers safety features in the event of accidental oil loss. LPOF cables are used internationally because of their good thermal characteristics. Applications besides ac transmission lines include underground and submarine cables, such as those connecting islands with mainland facilities. Cooling can be accomplished either by circulating oil inside the central duct or circulating water through parallel nonmetallic pipes. Forced-cooling of the LPOF cables is less complicated, which allows them to have higher current ratings and makes them more adaptable to thermal transients. Conductor cooling, which increases capacity but prohibits overloads in LPOF cables, is the only system available to high voltage (HVDC) cables. Several experimental and demonstration cable systems are described. (DCK)

  9. Time Transient Effects in Superconducting Magnets

    CERN Document Server

    AUTHOR|(CDS)2051280; Russenschuck, Stephan; Palumbo, Luigi

    2004-01-01

    The subject of this thesis is the study of time transient effects in super- conducting cables, with applications to accelerator magnets, and the development of a simulation code. The superconducting cables are modeled at the strand level as a lumped resistor, inductor generator circuit. The analysis in time domain of the circuit currents discloses the transient effects. The code developed can solve Rutherford type cable of any size, shape geometry under any exciting external field. The code has been implemented in Roxie where it is used to compute ramp dependent field error and heat losses.

  10. Polyethylene Nanocomposites for the Next Generation of Ultralow-Transmission-Loss HVDC Cables: Insulation Containing Moisture-Resistant MgO Nanoparticles.

    Science.gov (United States)

    Pourrahimi, Amir Masoud; Pallon, Love K H; Liu, Dongming; Hoang, Tuan Anh; Gubanski, Stanislaw; Hedenqvist, Mikael S; Olsson, Richard T; Gedde, Ulf W

    2016-06-15

    The use of MgO nanoparticles in polyethylene for cable insulation has attracted considerable interest, although in humid media the surface regions of the nanoparticles undergo a conversion to a hydroxide phase. A facile method to obtain MgO nanoparticles with a large surface area and remarkable inertness to humidity is presented. The method involves (a) low temperature (400 °C) thermal decomposition of Mg(OH)2, (b) a silicone oxide coating to conceal the nanoparticles and prevent interparticle sintering upon exposure to high temperatures, and (c) heat treatment at 1000 °C. The formation of the hydroxide phase on these silicone oxide-coated MgO nanoparticles after extended exposure to humid air was assessed by thermogravimetry, infrared spectroscopy, and X-ray diffraction. The nanoparticles showed essentially no sign of any hydroxide phase compared to particles prepared by the conventional single-step thermal decomposition of Mg(OH)2. The moisture-resistant MgO nanoparticles showed improved dispersion and interfacial adhesion in the LDPE matrix with smaller nanosized particle clusters compared with conventionally prepared MgO. The addition of 1 wt % moisture-resistant MgO nanoparticles was sufficient to decrease the conductivity of polyethylene 30 times. The reduction in conductivity is discussed in terms of defect concentration on the surface of the moisture-resistant MgO nanoparticles at the polymer/nanoparticle interface.

  11. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  12. Insulation design of the 110kV cold dielectric high temperature superconducting cable%110kV冷绝缘高温超导电缆本体绝缘设计

    Institute of Scientific and Technical Information of China (English)

    夏占军; 郭立杰; 诸嘉慧

    2011-01-01

    In this paper, we designed the insulation of the first 110kV cold dielectric (CD) cable using YBCO coated conductor in China. According to the structure of the CD HTS cable, dielectric properties of different insulation materials were analyzed , electric - field distribution of the HTS cable was calculated by the finite element numerical analysis method, the quantitative relationships, between insulation thickness and the partial discharge inception stress were studied based on the theoretical model. Finally, a design proposal about the insulation materials and its thickness for of the 110kV CD HTS cable was given.%对国内第一根基于YBCO涂层导体的110kV冷绝缘高温超导(CD HTS)电缆本体绝缘进行了设计.根据冷绝缘HTS电缆的结构特点,通过分析不同绝缘材料的介电特性,应用电场有限元数值分析模型和理论模型,计算了超导电缆本体电场分布,研究了超导电缆主绝缘厚度与局部放电起始场强的定量化关系,最后给出了110kV冷绝缘HTS电缆主绝缘材料与厚度的设计方案.

  13. Materials science challenges for high-temperature superconducting wire.

    Science.gov (United States)

    Foltyn, S R; Civale, L; Macmanus-Driscoll, J L; Jia, Q X; Maiorov, B; Wang, H; Maley, M

    2007-09-01

    Twenty years ago in a series of amazing discoveries it was found that a large family of ceramic cuprate materials exhibited superconductivity at temperatures above, and in some cases well above, that of liquid nitrogen. Imaginations were energized by the thought of applications for zero-resistance conductors cooled with an inexpensive and readily available cryogen. Early optimism, however, was soon tempered by the hard realities of these new materials: brittle ceramics are not easily formed into long flexible conductors; high current levels require near-perfect crystallinity; and--the downside of high transition temperature--performance drops rapidly in a magnetic field. Despite these formidable obstacles, thousands of kilometres of high-temperature superconducting wire have now been manufactured for demonstrations of transmission cables, motors and other electrical power components. The question is whether the advantages of superconducting wire, such as efficiency and compactness, can outweigh the disadvantage: cost. The remaining task for materials scientists is to return to the fundamentals and squeeze as much performance as possible from these wonderful and difficult materials.

  14. Superconductivity program for electric systems, Superconductivity Technology Center, Los Alamos National Laboratory, annual progress report for fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.O.; Newnam, B.E. [eds.; Peterson, D.E.

    1999-03-01

    Development of high-temperature superconductors (HTS) has undergone tremendous progress during the past year. Kilometer tape lengths and associated magnets based on BSCCO materials are now commercially available from several industrial partners. Superconducting properties in the exciting YBCO coated conductors continue to be improved over longer lengths. The Superconducting Partnership Initiative (SPI) projects to develop HTS fault current limiters and transmission cables have demonstrated that HTS prototype applications can be produced successfully with properties appropriate for commercial applications. Research and development activities at LANL related to the HTS program for Fiscal Year 1997 are collected in this report. LANL continues to support further development of Bi2223 and Bi2212 tapes in collaboration with American Superconductor Corporation (ASC) and Oxford Superconductivity Technology, Inc. (OSTI), respectively. The tape processing studies involving novel thermal treatments and microstructural characterization have assisted these companies in commercializing these materials. The research on second-generation YBCO-coated conductors produced by pulsed-laser deposition (PLD) over buffer template layers produced by ion beam-assisted deposition (IBAD) continues to lead the world. The applied physics studies of magnetic flux pinning by proton and heavy ion bombardment of BSCCO and YBCO tapes have provided many insights into improving the behavior of these materials in magnetic fields. Sections 4 to 7 of this report contain a list of 29 referred publications and 15 conference abstracts, a list of patent and license activities, and a comprehensive list of collaborative agreements in progress and completed.

  15. On-line partial discharge measurements and off-line dielectric spectroscopy measurements of six 115 kV XLPE cable systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper reported on a study in which partial discharge (PD) measurements were performed on 6 underground transmission cable circuits to determine the effectiveness of PD measurements on fluid fill cables. The cables were between 37 and 56 years old. PD activity was detected from the terminations of H11L and H3L Cable 2. However, for cables from H3L Basin TS to Mill Street junction, PD activity was detected originating from within the main cable insulation.

  16. Testing of an HTS Power Cable Made from YBCO Tapes

    Energy Technology Data Exchange (ETDEWEB)

    Gouge, Michael J [ORNL; Duckworth, Robert C [ORNL; Demko, Jonathan A [ORNL; Rey, Christopher M [ORNL; Lindsay, David T [ORNL; Roden, Mark L [ORNL; Tolbert, Jerry Carlton [ORNL

    2007-01-01

    Oak Ridge National Laboratory (ORNL) has designed, built, and tested a 1.25-m-long, prototype high temperature superconducting (HTS) power cable made from second-generation YBa2Cu3Ox (YBCO)-coated conductor tapes. Electrical tests of this cable were performed in liquid nitrogen at 77 K. DC testing of the HTS cable included determination of the V-I curve with a critical current of about 2100 A, which was consistent with the critical currents of the two layers of 4.4-mm wide YBCO tapes. AC testing of the cable was conducted at currents up to about 1500 Arms. The ac losses were determined calorimetrically by measuring the response of a calibrated temperature sensor placed on the former and electrically by use of a Rogowski coil with a lock-in amplifier. Over-current testing was conducted at peak current values up to 4.9 kA for pulse lengths of 0.3-0.5 s. Test results are compared to earlier data from a 1.25-m-long power cable made from 1-cm-wide YBCO tapes and also comparable BSCCO cables. This commercial-grade HTS cable demonstrated the feasibility of second-generation YBCO tapes in an ac cable application.

  17. Cable Television for Librarians. Cable Television Primer

    Science.gov (United States)

    Briscoe, Wallace C.

    1973-01-01

    The development of cable television, its present state, and future prospects, including a possible role for libraries, are discussed. (Other conference materials are LI 503071 and 503073 through 503084.) (SJ)

  18. An Analytical Study of Power Line Effect on UTP Cable using Lumped Circuit Components

    Directory of Open Access Journals (Sweden)

    Mitamoni Sarma

    2013-11-01

    Full Text Available The paper defines the term electrical noise with its types. Electromagnetic Interference (EMI, which is one type of electrical noise, is also defined and general techniques used for controlling EMI are described. Networking cables are affected by the EMI effect caused by a nearby power cable and data transmission through Unshielded Twisted Pair (UTP cable, which is the mostly effected cable by EMI, may be degraded for it. Today, UTP cable is the most popular networking cable supporting 10G Ethernet. The most common effective methods for reduction of EMI effect on UTP cable, physical separation and use of shielding are described. EMI is caused by coupling mechanisms between source of interference and receptor. The two types of couplings are capacitive coupling and inductive coupling. The paper analyses and models the two couplings using lumped circuit components and electric circuit analysis considering power cable as the source of interference and networking cable as the receptor circuit of EMI.

  19. Computation of Electric Field and Thermal Properties of 3-Phase Cable

    Directory of Open Access Journals (Sweden)

    Hemsingh Lunavath

    2012-06-01

    Full Text Available The high voltage electric power is generally transmitted by underground cable in urban, considering about the high cost for underground cable, it is necessary for us to get accurately biggest ampacity of cables in order to ensure the operation of cables in safe. The Cross linked polyethylene (XLPE insulated power cables are used for transmission and distribution of electrical power for higher voltage level. In this paper a three phase high voltage power cable buried in soil and it can be used to investigate electrical and thermal properties of cable. An underground cable of 132kV electric field, voltage distribution using finite element method (FEM, analytical method for calculating ampacity of cable and temperature distribution is presented and verified same by using COMSOL multiphysics software.

  20. Vacuum-Insulated, Flexible Cryostats for Long HTS Cables: Requirements, Status, and Prospects.

    Energy Technology Data Exchange (ETDEWEB)

    Gouge, Michael J [ORNL; Demko, Jonathan A [ORNL; Roden, Mark L [ORNL; Maguire, J. F. [American Superconductor Corporation, Westborough, MA; Weber, C. S. [SuperPower Incorporated, Schenectady, New York

    2008-01-01

    Several high temperature superconducting (HTS) cable demonstration projects have begun operation on the electric grid in the last few years with the liquid nitrogen-cooled cable contained in one or more vacuum-insulated, flexible cryostats with lengths up to 600 meters. These grid demonstration projects are prototypes of the anticipated commercial market which will require superconducting cable lengths in the multiple kilometer range with the vacuum-jacketed cryostats in underground ducts providing acceptable thermal insulation for decades. The current state-of-the art for flexible cryostats (installation constraints, heat loads with a good and degraded vacuum, impact of cable bends, getter lifetime and reliability) is discussed. Further development needed to meet the challenging commercial HTS cable application is outlined.

  1. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  2. Sample of superconducting wiring  (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix.  Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resis...

  3. Development of superconducting power devices in Europe

    Science.gov (United States)

    Tixador, Pascal

    2010-11-01

    Europe celebrated last year (2008) the 100-year anniversary of the first liquefaction of helium by H. Kammerling Onnes in Leiden. It led to the discovery of superconductivity in 1911. Europe is still active in the development of superconducting (SC) devices. The discovery of high critical temperature materials in 1986, again in Europe, has opened a lot of opportunities for SC devices by broking the 4 K cryogenic bottleneck. Electric networks experience deep changes due to the emergence of dispersed generation (renewable among other) and to the advances in ICT (Information Communication Technologies). The networks of the future will be “smart grids”. Superconductivity will offer “smart” devices for these grids like FCL (Fault Current Limiter) or VLI (Very Low Inductance) cable and would certainly play an important part. Superconductivity also will participate to the required sustainable development by lowering the losses and enhancing the mass specific powers. Different SC projects in Europe will be presented (Cable, FCL, SMES, Flywheel and Electrical Machine) but the description is not exhaustive. Nexans has commercialized the first two FCLs without public funds in the European grid (UK and Germany). The Amsterdam HTS cable is an exciting challenge in term of losses for long SC cables. European companies (Nexans, Air Liquide, Siemens, Converteam, …) are also very active for projects outside Europe (LIPA, DOE FCL, …).

  4. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  5. Cable Tester Box

    Science.gov (United States)

    Lee, Jason H.

    2011-01-01

    Cables are very important electrical devices that carry power and signals across multiple instruments. Any fault in a cable can easily result in a catastrophic outcome. Therefore, verifying that all cables are built to spec is a very important part of Electrical Integration Procedures. Currently, there are two methods used in lab for verifying cable connectivity. (1) Using a Break-Out Box and an ohmmeter this method is time-consuming but effective for custom cables and (2) Commercial Automated Cable Tester Boxes this method is fast, but to test custom cables often requires pre-programmed configuration files, and cables used on spacecraft are often uniquely designed for specific purposes. The idea is to develop a semi-automatic continuity tester that reduces human effort in cable testing, speeds up the electrical integration process, and ensures system safety. The JPL-Cable Tester Box is developed to check every single possible electrical connection in a cable in parallel. This system indicates connectivity through LED (light emitting diode) circuits. Users can choose to test any pin/shell (test node) with a single push of a button, and any other nodes that are shorted to the test node, even if they are in the same connector, will light up with the test node. The JPL-Cable Tester Boxes offers the following advantages: 1. Easy to use: The architecture is simple enough that it only takes 5 minutes for anyone to learn how operate the Cable Tester Box. No pre-programming and calibration are required, since this box only checks continuity. 2. Fast: The cable tester box checks all the possible electrical connections in parallel at a push of a button. If a cable normally takes half an hour to test, using the Cable Tester Box will improve the speed to as little as 60 seconds to complete. 3. Versatile: Multiple cable tester boxes can be used together. As long as all the boxes share the same electrical potential, any number of connectors can be tested together.

  6. Electrical power cable engineering

    CERN Document Server

    Thue, William A

    2011-01-01

    Fully updated, Electrical Power Cable Engineering, Third Edition again concentrates on the remarkably complex design, application, and preparation methods required to terminate and splice cables. This latest addition to the CRC Press Power Engineering series covers cutting-edge methods for design, manufacture, installation, operation, and maintenance of reliable power cable systems. It is based largely on feedback from experienced university lecturers who have taught courses on these very concepts.The book emphasizes methods to optimize vital design and installation of power cables used in the

  7. UtilityTelecom_CABLE2013

    Data.gov (United States)

    Vermont Center for Geographic Information — The VT Cable dataset (CABLE2013) includes lines depicting the extent of Vermont's cable modem broadband system as of 6/30/2013 in addition to those companies who do...

  8. Cryogenic cooling system for HTS cable

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Shigeru [Taiyo Nippon Sanso, Tsukuba (Japan)

    2017-06-15

    Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

  9. Transient analysis of an HTS DC power cable with an HVDC system

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, Minh-Chau, E-mail: thanchau7787@gmail.com [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Ju, Chang-Hyeon; Kim, Jin-Geun; Park, Minwon [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yu, In-Keun, E-mail: yuik@cwnu.ac.kr [Department of Electrical Engineering, Changwon National University, 9 Sarim-Dong, Changwon 641-773 (Korea, Republic of); Yang, Byeongmo [Korea Electric Power Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejon 305-760 (Korea, Republic of)

    2013-11-15

    Highlights: •A model of an HTS DC power cable was developed using real time digital simulator. •The simulations of the HTS DC power cable in connection with an HVDC system were performed. •The transient analysis results of the HTS DC power cable were presented. -- Abstract: The operational characteristics of a superconducting DC power cable connected to a highvoltage direct current (HVDC) system are mainly concerned with the HVDC control and protection system. To confirm how the cable operates with the HVDC system, verifications using simulation tools are needed. This paper presents a transient analysis of a high temperature superconducting (HTS) DC power cable in connection with an HVDC system. The study was conducted via the simulation of the HVDC system and a developed model of the HTS DC power cable using a real time digital simulator (RTDS). The simulation was performed with some cases of short circuits that may have caused system damage. The simulation results show that during the faults, the quench did not happen with the HTS DC power cable because the HVDC controller reduced some degree of the fault current. These results could provide useful data for the protection design of a practical HVDC and HTS DC power cable system.

  10. Cable Diagnostic Focused Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Hartlein, R.A.; Hampton, R.N.

    2010-12-30

    This report summarizes an extensive effort made to understand how to effectively use the various diagnostic technologies to establish the condition of medium voltage underground cable circuits. These circuits make up an extensive portion of the electric delivery infrastructure in the United States. Much of this infrastructure is old and experiencing unacceptable failure rates. By deploying efficient diagnostic testing programs, electric utilities can replace or repair circuits that are about to fail, providing an optimal approach to improving electric system reliability. This is an intrinsically complex topic. Underground cable systems are not homogeneous. Cable circuits often contain multiple branches with different cable designs and a range of insulation materials. In addition, each insulation material ages differently as a function of time, temperature and operating environment. To complicate matters further, there are a wide variety of diagnostic technologies available for assessing the condition of cable circuits with a diversity of claims about the effectiveness of each approach. As a result, the benefits of deploying cable diagnostic testing programs have been difficult to establish, leading many utilities to avoid the their use altogether. This project was designed to help address these issues. The information provided is the result of a collaborative effort between Georgia Tech NEETRAC staff, Georgia Tech academic faculty, electric utility industry participants, as well as cable system diagnostic testing service providers and test equipment providers. Report topics include: •How cable systems age and fail, •The various technologies available for detecting potential failure sites, •The advantages and disadvantages of different diagnostic technologies, •Different approaches for utilities to employ cable system diagnostics. The primary deliverables of this project are this report, a Cable Diagnostic Handbook (a subset of this report) and an online

  11. HEAT TRANSFER EXPERIMENTS AND ANALYSIS OF A SIMULATED HTS CABLE

    Energy Technology Data Exchange (ETDEWEB)

    Demko, J. A. [Oak Ridge National Laboratory (ORNL); Duckworth, R. C. [Oak Ridge National Laboratory (ORNL); Gouge, M. J. [Oak Ridge National Laboratory (ORNL); Knoll, D. [Oak Ridge National Laboratory (ORNL)

    2010-01-01

    Long-length high temperature superconducting (HIS) cable projects, over 1 km, are being designed that are cooled by flowing liquid nitrogen. The compact counter-flow cooling arrangement which has the supply and return stream in a single cryostat offers several advantages including smallest space requirement, least heat load, and reduced cost since a return cryostat is not required. One issue in long length HIS cable systems is the magnitude of the heat transfer radially through the cable. It is extremely difficult to instrument an HIS cable in service on the grid with the needed thermometry because of the issues associated with installing thermometers on high voltage components. A 5-meter long test system has been built that simulates a counter-flow cooled, HIS cable using a heated tube to simulate the cable. Measurements of the temperatures in the flow stream and on the tube wall can be made and compared to analysis. These data can be used to benchmark different HIS cable heat transfer and fluid flow analysis approaches.

  12. FEM Analysis of Nb-Sn Rutherford-type Cables

    Energy Technology Data Exchange (ETDEWEB)

    Barzi, Emanuela; Gallo, Giuseppe; Neri, Paolo; /Fermilab

    2011-01-01

    An important part of superconducting accelerator magnet work is the conductor. To produce magnetic fields larger than 10 T, brittle conductors are typically used. For instance, for Nb{sub 3}Sn the original round wire, in the form of a composite of Copper, Niobium and Tin, is assembled into a so-called Rutherford-type cable, which is used to wind the magnet. The magnet is then subjected to a high temperature heat treatment to produce the chemical reactions that make the material superconducting. At this stage the superconductor is brittle and its superconducting properties sensitive to strain. This work is based on the development of a 2D finite element model, which simulates the mechanical behavior of Rutherford-type cable before heat treatment. The model was applied to a number of different cable architectures. To validate a critical criterion adopted into the single Nb-Sn wire analysis, the results of the model were compared with those measured experimentally on cable cross sections.

  13. Test Results For a 25-m Prototype Fault Current Limiting HTS Cable for Project Hydra

    Energy Technology Data Exchange (ETDEWEB)

    Rey, Christopher M [ORNL; Duckworth, Robert C [ORNL; Demko, Jonathan A [ORNL; Ellis, Alvin R [ORNL; Gouge, Michael J [ORNL; James, David Randy [ORNL; Tuncer, Enis [ORNL

    2010-01-01

    The Oak Ridge National Laboratory (ORNL) has tested a 25-m long prototype High Temperature Superconducting (HTS) cable with inherent Fault-Current Limiting (FCL) capability at its recently upgraded HTS cable test facility in Oak Ridge, TN. The HTS-FCL cable and terminations were designed and fabricated by Ultera, which is a joint venture of Southwire and nkt cables with FCL features and HTS wire provided by American Superconductor Corporation. The overall project is sponsored by the U.S. Department of Homeland Security. The ultimate goal of the 25-m HTS-FCL cable test program was to verify the design and ensure the operational integrity for the eventual installation of a ~ 200-m fully functional HTS-FCL cable in the Consolidated Edison electric grid located in downtown New York City. The 25-m HTS-FCL cable consisted of a three-phase (3- ) Triax design with a cold dielectric between the phases. The HTS-FCL cable had an operational voltage of 13.8 kV phase-to-phase and an operating current of 4000 Arms per phase, which is the highest operating current to date of any HTS cable. The 25-m HTS-FCL cable was subjected to a series of cryogenic and electrical tests. Test results from the 25-m HTS-FCL cable are presented and discussed.

  14. Multistrand superconductor cable

    Science.gov (United States)

    Borden, Albert R.

    1985-01-01

    Improved multistrand Rutherford-type superconductor cable is produced by using strands which are preformed, prior to being wound into the cable, so that each strand has a variable cross section, with successive portions having a substantially round cross section, a transitional oval cross section, a rectangular cross section, a transitional oval cross section, a round cross section and so forth, in repetitive cycles along the length of the strand. The cable is wound and flattened so that the portions of rectangular cross section extend across the two flat sides of the cable at the strand angle. The portions of round cross section are bent at the edges of the flattened cable, so as to extend between the two flat sides. The rectangular portions of the strands slide easily over one another, so as to facilitate flexing and bending of the cable, while also minimizing the possibility of causing damage to the strands by such flexing or bending. Moreover, the improved cable substantially maintains its compactness and cross-sectional shape when the cable is flexed or bent.

  15. Concept of a Hybrid (Normal and Superconducting) Bending Magnet based on Iron Magnetization for 80-100km Lepton/Hadron Colliders

    CERN Document Server

    Milanese, A; Piekarz, H

    2014-01-01

    We present a concept of twin aperture iron dominated bending magnets. These compact “transmission line” dipoles are meant to be installed in the same 80-100 km tunnel of the Future Circular Colliders (FCC) currently being studied at CERN, where they shall be used for the high energy injector synchrotrons. The main feature is the coupling of a resistive cable (for first use in a leptons machine) with a superconducting one (for hadrons operation, presumably in a second phase of FCC). The main challenges in terms of operating field range are commented in the light of similar magnets already built.

  16. Determination of the residual strength of PE medium voltage cables. FGH testing of aged PE cables; Bestimmung von Restspannungsfestigkeiten an Polyethylen-Mittelspannungskabeln. FGH-Stufentest an gealterten PE-Kabeln

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Uwe; Barsch, Dietrich [Technische Univ., Chemnitz (Germany). Professur fuer Energie- und Hochspannungstechnik

    2010-11-15

    Many power transmission grids in East Germany still have PE cables of the NA2YHCaY type (TGL cables) that are more than 30 years old. As the cables are ageing, tests of their residual electric strength become necessary. (orig.)

  17. Cable Television; A Bibliographic Review.

    Science.gov (United States)

    Schoenung, James

    This bibliographic review of publications in the field of cable television begins with an introduction to cable television and an outline of the history and development of cable television. Particular attention is given to the regulatory activities of the Federal Communications Commission and the unfulfilled potential of cable television. The…

  18. 二代高温超导电缆在电网中的应用前景%Application Prospect of the Second High Temperature Superconductor Cable in Power Network

    Institute of Scientific and Technical Information of China (English)

    夏芳敏; 郭慧; 林中山; 王醒东

    2014-01-01

    As the age of new energy is coming, the superconducting technology is of great impor-tance to solve the challenges the transmission network will face. Compared with the normal cable, the superconducting cable has advances of low losses, large capacity, light weight, small size, and no fire hidden trouble and electromagnetic pollution. It provides an effective way to transmit elec-tricity with high efficiency, large capacity and low losses. In this paper, the history and structure of the second generation high temperature superconductor cables are introduced. Based on the re-searching progress in and outside China, the application prospect of the 2G HTS cables in the transmission network is analyzed.%新能源变革背景下,超导输电技术将成为解决现有输电网络所面临挑战的主要方式之一。与传统电缆相比,超导电缆具有损耗低、容量大、重量轻、无火灾隐患和电磁污染等优点,为低损耗、大容量、高效率输电提供了有效途径。本文介绍了二代高温超导带材和电缆的基本结构及发展历程,结合目前的研究现状分析了二代高温超导电缆在输电系统中的应用前景。

  19. NORPAS - NORdic program of applied superconductivity. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mikkonen, R. [ed.

    1995-12-31

    High temperature superconducting (HTS) wire is rapidly maturing into a working material being produced in ever larger quantities and being used in more significant demonstrations and prototypes. Conductor is now produced routinely in several hundred meter lengths with reproducible results. Current density has progressed to a level suitable for demonstration on many applications. As with any technology trying to find a niche, widespread commercialization can only occur if the new technology can match the performance of an existing technology at a lower cost, or the new technology represents a breakthrough in capabilities, irrespective of cost, in turn enabling functionality previously thought impossible. There are two obvious areas where HTS will have significant benefit. The first is all applications which will notably benefit from a reduction in refrigeration power. The second area is the market of very high field magnets where there is no viable alternative. Applications under consideration for HTS include: (1) Rotating electrical machines (synchronous ac and homopolar dc motors), (2) Underground transmission cables, (3) Superconducting Magnetic Energy Storage (SMES), (4) Utility distribution equipment such as transformers and current limiters, (5) Commercial processing applications such as magnetic separation. (6) Military applications such as mine clearing, (7) Specialty magnets such as high field inserts

  20. submitter Geometrical Behavior of $Nb_{3}Sn$ Rutherford Cables During Heat Treatment

    CERN Document Server

    Durante, Maria; Ferracin, Paolo; Manil, Pierre; Perez, Juan Carlos; Rifflet, Jean-Michel; Rondeaux, Francoise

    2016-01-01

    In $Nb_{3}Sn$ accelerator magnets, non-superconducting precursor cables are wound into their final coil shape and then heat treated at a high temperature to form the A15 superconducting phase. The growth of cable strands during reaction and the differential thermal dilatation in the coil components lead to both stress in the cable and geometrical deformations of the winding, with possible consequences on magnet performances. An experimental campaign on different types of Rutherford cables has been carried out at CEA Saclay, in collaboration with CERN, in order to measure cable dimension changes in all directions, with respect to cable configuration and winding geometry. A 700-mm-long versatile test bench has been designed for several cable topologies up to 22 mm in width. This paper describes the tooling and presents the results of the experimental campaign led on the cables, made of powder-in-tube and restacked-rod-process strands, of FRESCA2, a 13-T dipole magnet

  1. Energy dispatching analysis of lightning surges on underground cables in a cable connection station

    Energy Technology Data Exchange (ETDEWEB)

    Hong-Chan Chang; Fu-Hsien Chen; Tai-Hsiang Chen [Department of Electrical Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd., Taipei (China); Cheng-Chien Kuo [Department of Electrical Engineering, St. John' s University, 499, Sec. 4, TamKing Rd., Tamsui, Taipei (China)

    2011-01-15

    The paper aimed to simulate the transient over-voltage phenomena which occur at 345 kV and 161 kV underground cables, when lighting strikes on or near the cable connection station, by using the Electro-Magnetic Transients Program (EMTP). A feasibility study on changing related parameters, as well as cable connections and grounding methods to reduce the impact caused by lightning strikes, will be thoroughly conducted. The various components required for a detailed simulation including; lightning surges, transmission line and tower, arrester, and underground cables are all considered. Then, the transient voltage of the cables will be analyzed under different situations including; connection methods, grounding locations, length of the grounding wire of arrester, and the grounding resistance for different locations. The simulation results show that the length of the grounding wire is more sensitive to the transient over-voltage which occurred when a common grounding topology was adopted. In contrast, the use of an independent grounding topology resulted in a reduction of the grounding resistance, which effectively decreased the over-voltage, thereby avoiding surpassing the shielding voltage level of the cable, caused by the rise of ground voltage. (author)

  2. Energy dispatching analysis of lightning surges on underground cables in a cable connection station

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hong-Chan, E-mail: hcchang@mail.ntust.edu.t [Department of Electrical Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd., Taipei, Taiwan (China); Chen, Fu-Hsien, E-mail: fu@mail.sju.edu.t [Department of Electrical Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd., Taipei, Taiwan (China); Kuo, Cheng-Chien, E-mail: cckuo@mail.sju.edu.t [Department of Electrical Engineering, St. John' s University, 499, Sec. 4, TamKing Rd., Tamsui, Taipei, Taiwan (China); Chen, Tai-Hsiang, E-mail: thchen@yahoo.com.t [Department of Electrical Engineering, National Taiwan University of Science and Technology, 43, Sec. 4, Keelung Rd., Taipei, Taiwan (China)

    2011-01-15

    The paper aimed to simulate the transient over-voltage phenomena which occur at 345 kV and 161 kV underground cables, when lighting strikes on or near the cable connection station, by using the Electro-Magnetic Transients Program (EMTP). A feasibility study on changing related parameters, as well as cable connections and grounding methods to reduce the impact caused by lightning strikes, will be thoroughly conducted. The various components required for a detailed simulation including; lightning surges, transmission line and tower, arrester, and underground cables are all considered. Then, the transient voltage of the cables will be analyzed under different situations including; connection methods, grounding locations, length of the grounding wire of arrester, and the grounding resistance for different locations. The simulation results show that the length of the grounding wire is more sensitive to the transient over-voltage which occurred when a common grounding topology was adopted. In contrast, the use of an independent grounding topology resulted in a reduction of the grounding resistance, which effectively decreased the over-voltage, thereby avoiding surpassing the shielding voltage level of the cable, caused by the rise of ground voltage.

  3. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  4. Effect of corrugated characteristics on the liquid nitrogen temperature field of HTS cable

    Science.gov (United States)

    Li, Z. M.; Li, Y. X.; Zhao, Y. Q.; Gao, C.; Qiu, M.; Chen, G. F.; Gong, M. Q.; Wu, J. F.

    2014-01-01

    In the high temperature superconducting (HTS) cable system, liquid nitrogen is usually chosen to be the coolant because of its low saturation temperature and large latent heat of vaporization. Thus, it is very important for superconducting cables that the liquid nitrogen temperature field keeps stable. However, the cryostat is usually made of flexible corrugated pipes and multi-layer insulation materials. The characteristics (e.g. wave pitch and wave depth) of corrugated pipes may have an effect on the heat exchange between cable and liquid nitrogen, even the whole temperature field of liquid nitrogen. In this paper, a two-dimensional model for 30 m long HTS cable has been modified to analyze the effect of corrugated characteristics on the temperature field of liquid nitrogen. The liquid nitrogen temperature difference between the outlet and the inlet of passage gradually increases as the wave pitch of the corrugated tube decreases and the wave depth increases.

  5. End moldings for cable dielectrics

    Energy Technology Data Exchange (ETDEWEB)

    Roose, L.D.

    1993-12-31

    End moldings for high-voltage cables are described wherein the dielectric insulator of the cable is heated and molded to conform to a desired shape. As a consequence, high quality substantially bubble- free cable connectors suitable for mating to premanufactured fittings are made. Disclosed are a method for making the cable connectors either in the field or in a factory, molds suitable for use with the method, and the molded cable connectors, themselves.

  6. Robotic Arm Biobarrier Cable

    Science.gov (United States)

    2008-01-01

    This image, taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander on the 14th Martian day of the mission (June 7, 2008), shows the cable that held the Robotic Arm's biobarrier in place during flight has snapped. The cable's springs retracted to release the biobarrier right after landing. To the lower right of the image a spring is visible. Extending from that spring is a length of cable that snapped during the biobarrier's release. A second spring separated from the cable when it snapped and has been photographed on the ground under the lander near one of the legs. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Robotic Arm Biobarrier Cable

    Science.gov (United States)

    2008-01-01

    This image, taken by the Surface Stereo Imager on NASA's Phoenix Mars Lander on the 14th Martian day of the mission (June 7, 2008), shows the cable that held the Robotic Arm's biobarrier in place during flight has snapped. The cable's springs retracted to release the biobarrier right after landing. To the lower right of the image a spring is visible. Extending from that spring is a length of cable that snapped during the biobarrier's release. A second spring separated from the cable when it snapped and has been photographed on the ground under the lander near one of the legs. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  8. Triaxial HTS Cable for the AEP Bixby Project

    Energy Technology Data Exchange (ETDEWEB)

    Demko, Jonathan A [ORNL; Gouge, Michael J [ORNL; Lindsay, David T [ORNL; Roden, Mark L [ORNL; Tolbert, Jerry Carlton [ORNL

    2007-01-01

    Ultera has installed a single 200-meter long high temperature superconducting (HTS) 3-phase triaxial design cable at the American Electric Power (AEP) Bixby substation in Columbus, Ohio. The cable connects a 132/13.8 kV transformer to the distribution switchgear serving seven outgoing circuits. It was designed to carry 3000 Arms. Testing of 3- to 5-meter length prototype cables, including a 5-meter prototype with full scale terminations tested at ORNL was conducted prior to the manufacture and installation of the AEP triaxial cable. These prototypes were used to demonstrate the crucial operating conditions including steady state operation at the 3000 Arms design current, high voltage operation, high voltage withstand and 110 kV impulse, and overcurrent fault capability. A summary of the results from the thermal analysis and testing conducted by Ultera and ORNL will be presented. Some analysis of the cable thermal-hydraulic response based on the testing that were used to determine some of the cable cryogenic system requirements are also presented.

  9. Buoyant Cable Antenna System

    Science.gov (United States)

    2008-07-02

    comprise a mechanical jacket surrounding a hollow core enclosing the seismic sensor and signal transfer means. Elongated axial stress elements for...to S. H. Bittleston, discloses a semi-dry marine seismic streamer cable that consists of a number of connected streamer cable sections which each...transmitting axial loads and a radial reinforcement member for relieving radial loads are provided in the jacket . The core is filled with a fluid or fluid

  10. Modeling of cable vibration effects of cable-stayed bridges

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The analysis of dynamic responses of cable-stayed bridges subjected to wind and earthquake loads generallyconsiders only the motions of the bridge deck and pylons. The influence of the stay cable vibration on the responses of the bridgeis either ignored or considered by approximate procedures. The transverse vibration of the stay cables, which can be significant insome cases, are usually neglected in previous research. In the present study, a new three-node cable element has been developed tomodel the transverse motions of the cables. The interactions between the cable behavior and the other parts of the bridgesuperstructure are considered by the concept of dynamic stiffness. The nonlinear effect of the cable caused by its self-weight isincluded in the formulation. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed model.The impact of cable vibration behavior on the dynamic characteristics of cable-stayed bridges is discussed.

  11. Analysis of Cable-in-Conduit Conductors' DC Performance in Light of Strand's Experimental Properties

    Institute of Scientific and Technical Information of China (English)

    TAN Yunfei; WENG Peide; LIU Fang; LI Shaolei

    2007-01-01

    Conductor qualification will be carried out with four Cable-in-Conduit Conductor (CICC) samples made of superconducting strands. The direct current (DC) performance of these samples will be tested in the SULTAN facility. The critical current densities of the strands can be well simulated by empirical equations. In this paper, a model is illustrated to predict the DC behaviour of the cable in light of the single strand's experimental properties. The simulation results were compared with experimental results.

  12. Aerodynamic stability of cable-supported bridges using CFRP cables

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-jun; YING Lei-dong

    2007-01-01

    To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are designed, in which the cable's cross-sectional area is determined by the principle of equivalent axial stiffness.Numerical investigations on the aerodynamic stability of the two bridges are conducted by 3D nonlinear aerodynamic stability analysis. The results showed that as CFRP cables are used in cable-supported bridges, for suspension bridge, its aerodynamic stability is superior to that of the case using steel cables due to the great increase of the torsional frequency; for cable-stayed bridge,its aerodynamic stability is basically the same as that of the case using steel stay cables. Therefore as far as the wind stability is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable's cross-sectional area should be determined by the principle of equivalent axial stiffness.

  13. Fiber Optic Cable Thermal Preparation to Ensure Stable Operation

    Science.gov (United States)

    Thoames Jr, William J.; Chuska, Rick F.; LaRocca, Frank V.; Switzer, Robert C.; Macmurphy, Shawn L.; Ott, Melanie N.

    2008-01-01

    Fiber optic cables are widely used in modern systems that must provide stable operation during exposure to changing environmental conditions. For example, a fiber optic cable on a satellite may have to reliably function over a temperature range of -50 C up to 125 C. While the system requirements for a particular application will dictate the exact method by which the fibers should be prepared, this work will examine multiple ruggedized fibers prepared in different fashions and subjected to thermal qualification testing. The data show that if properly conditioned the fiber cables can provide stable operation, but if done incorrectly, they will have large fluctuations in transmission.

  14. 30 CFR 77.605 - Breaking trailing cable and power cable connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power cable... OF UNDERGROUND COAL MINES Trailing Cables § 77.605 Breaking trailing cable and power cable connections. Trailing cable and power cable connections between cables and to power sources shall not be...

  15. Energy analysis of the basic materials utilized in electric power transmission systems

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-30

    The energy content per mile of installed underground and overhead power transmission systems has been calculated for the following types of systems: self-contained oil-filled cables; HPOF pipe-type cables; extruded dielectric cables; compressed-gas-insulated systems; overhead lines (ac and dc) and two proposed superconducting systems (ac and dc). The system operating voltages analyzed included 138, 230, 345, 500, 765 and 1,200 kV for ac systems, but all systems were not analyzed at the higher voltages. The dc overhead lines operated at +-200, +-400, +-600 and +-800 kV. Total installed energy content for these systems ranged from 4 x 10/sup 9/ to 1.2 x 10/sup 11/ Btu per mile. Installation energy requirements were generally 10% or less of the inherent system energy content based on the materials used in each system. Most of the energy content in each system can be attributed to the metallic components; plastic and insulating oil also contribute significantly. The energy content of 36 materials and basic products, in terms of Btu per ton, was calculated as part of this study. Substitution of conductor materials (e.g., aluminum for copper) in cable systems resulted in changes in the total system energy content on the order of 15%.

  16. Qualification of Fiber Optic Cables for Martian Extreme Temperature Environments

    Science.gov (United States)

    Ramesham, Rajeshuni; Lindensmith, Christian A.; Roberts, William T.; Rainen, Richard A.

    2011-01-01

    Means have been developed for enabling fiber optic cables of the Laser Induced Breakdown Spectrometer instrument to survive ground operations plus the nominal 670 Martian conditions that include Martian summer and winter seasons. The purpose of this development was to validate the use of the rover external fiber optic cabling of ChemCam for space applications under the extreme thermal environments to be encountered during the Mars Science Laboratory (MSL) mission. Flight-representative fiber optic cables were subjected to extreme temperature thermal cycling of the same diurnal depth (or delta T) as expected in flight, but for three times the expected number of in-flight thermal cycles. The survivability of fiber optic cables was tested for 600 cumulative thermal cycles from -130 to +15 C to cover the winter season, and another 1,410 cumulative cycles from -105 to +40 C to cover the summer season. This test satisfies the required 3 times the design margin that is a total of 2,010 thermal cycles (670 x 3). This development test included functional optical transmission tests during the course of the test. Transmission of the fiber optic cables was performed prior to and after 1,288 thermal cycles and 2,010 thermal cycles. No significant changes in transmission were observed on either of the two representative fiber cables subject through the 3X MSL mission life that is 2,010 thermal cycles.

  17. Overview of Superconductivity and Challenges in Applications

    Science.gov (United States)

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.

  18. An Annotated Bibliography of High-Voltage Direct-Current Transmission and Flexible AC Transmission (FACTS) Devices, 1991-1993.

    Energy Technology Data Exchange (ETDEWEB)

    Litzenberger, Wayne; Lava, Val

    1994-08-01

    References are contained for HVDC systems, converter stations and components, overhead transmission lines, cable transmission, system design and operations, simulation of high voltage direct current systems, high-voltage direct current installations, and flexible AC transmission system (FACTS).

  19. Overview of Superconductivity and Challenges in Applications

    CERN Document Server

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device...

  20. Cable-Dispensing Cart

    Science.gov (United States)

    Bredberg, Alan S.

    2003-01-01

    A versatile cable-dispensing cart can support as many as a few dozen reels of cable, wire, and/or rope. The cart can be adjusted to accommodate reels of various diameters and widths, and can be expanded, contracted, or otherwise reconfigured by use of easily installable and removable parts that can be carried onboard. Among these parts are dispensing rods and a cable guide that enables dispensing of cables without affecting the direction of pull. Individual reels can be mounted on or removed from the cart without affecting the other reels: this feature facilitates the replacement or reuse of partially depleted reels, thereby helping to reduce waste. Multiple cables, wires, or ropes can be dispensed simultaneously. For maneuverability, the cart is mounted on three wheels. Once it has been positioned, the cart is supported by rubber mounts for stability and for prevention of sliding or rolling during dispensing operations. The stability and safety of the cart are enhanced by a low-center-of-gravity design. The cart can readily be disassembled into smaller units for storage or shipping, then reassembled in the desired configuration at a job site.

  1. AC Losses in Bi2Sr2Ca2Cu3O10+x Tapes and a 3.15-m-Long Single-Phase Cable

    DEFF Research Database (Denmark)

    Juul, Jeppe; Mølgaard, Ebsen T.; Jensen, Jens;

    2011-01-01

    The alternating-current losses in superconducting multifilament BiSCCO-2223 tapes and a 3.15-m single-phase test cable were measured at 77 K using an electrical transport method. The cable had an inner diameter of 42 mm; it was composed of a single layer of 31 multifilament tapes and had a critic...

  2. AC Losses in Bi2Sr2Ca2Cu3O10+x Tapes and a 3.15-m-Long Single-Phase Cable

    DEFF Research Database (Denmark)

    Juul, Jeppe Søgaard; Mølgaard, Esben Tore; Jensen, Jens

    2011-01-01

    The alternating-current losses in superconducting multifilament BiSCCO-2223 tapes and a 3.15-m single-phase test cable were measured at 77 K using an electrical transport method. The cable had an inner diameter of 42 mm; it was composed of a single layer of 31 multifilament tapes and had a critic...

  3. The surface discharge and breakdown characteristics of HTS DC cable and stop joint box

    Science.gov (United States)

    Kim, W. J.; Kim, H. J.; Cho, J. W.; Kim, S. H.

    2014-09-01

    A high temperature superconducting (HTS) DC cable system consists of a HTS cable and cable joint. The HTS DC cable should be electrically connected in joint boxes because of the unit length of HTS cable is limited to several-hundred meters. In particular, the stop joint box (SJB) must be developed for a compact cooling system. Polypropylene laminated paper (PPLP) and epoxy maybe used as insulating materials for HTS DC cable and SJB. To develop a HTS DC cable, it is necessary to develop the cryogenic insulation technology, materials and the joint methods. In this paper, we will mainly discuss on the DC and impulse characteristics of epoxy and PPLP in liquid nitrogen (LN2). The surface discharge characteristics of epoxy included fillers, PPLP and epoxy with PPLP composite (epoxy + PPLP) were measured under 0.4 MPa. Also, the PPLP-insulated mini-model cable was fabricated and then DC, impulse and DC polarity reversal breakdown strength of mini-model cable under 0.4 MPa were investigated.

  4. Two-way cable television project

    Science.gov (United States)

    Wilkens, H.; Guenther, P.; Kiel, F.; Kraus, F.; Mahnkopf, P.; Schnee, R.

    1982-02-01

    The market demand for a multiuser computer system with interactive services was studied. Mean system work load at peak use hours was estimated and the complexity of dialog with a central computer was determined. Man machine communication by broadband cable television transmission, using digital techniques, was assumed. The end to end system is described. It is user friendly, able to handle 10,000 subscribers, and provides color television display. The central computer system architecture with remote audiovisual terminals is depicted and software is explained. Signal transmission requirements are dealt with. International availability of the test system, including sample programs, is indicated.

  5. VT Cable Modem Systems 2013

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VT Cable Modem dataset (CABLEMOD2013) includes lines depicting the extent of Vermont's cable modem broadband system as of 6/30/2013. This data...

  6. VT Cable Modem Systems 2005

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) The VT Cable Modem dataset (CABLEMOD2005) includes lines depicting the extent of Vermont's cable modem broadband system as of 12/31/2005. This...

  7. Cable historical operating temperature estimator

    Energy Technology Data Exchange (ETDEWEB)

    Leon de, F.; St-Roch, P.; Beauregard, C. [Cyme International, St-Bruno, PQ (Canada)

    2006-07-01

    A tool designed to accurately determine the thermal age of underground cables was described. The cable historical operating temperature estimate (CHOTE) is a software application designed to identify which cables have exceeded their normal and emergency operating temperatures. CHOTE is also capable of predicting when cables are likely to reach their maximum design temperature in the future. The system operates by processing archived loading information from data acquisition systems in order to automatically analyze all the thermal sections of a system. Cables that exceed their emergency and normal temperatures for the longest amount of time are ranked first, and outputs display when and where the hot spots have occurred. CHOTE is also able to study the impact of the addition of new cables and to determine the remaining ampacity of cables installed in a given duct bank. It was concluded that the CHOTE system can help in the efficient management of cable repairs and installations. 28 refs., 7 figs.

  8. Space Flight Cable Model Development

    Science.gov (United States)

    Spak, Kaitlin

    2013-01-01

    This work concentrates the modeling efforts presented in last year's VSGC conference paper, "Model Development for Cable-Harnessed Beams." The focus is narrowed to modeling of space-flight cables only, as a reliable damped cable model is not yet readily available and is necessary to continue modeling cable-harnessed space structures. New experimental data is presented, eliminating the low-frequency noise that plagued the first year's efforts. The distributed transfer function method is applied to a single section of space flight cable for Euler-Bernoulli and shear beams. The work presented here will be developed into a damped cable model that can be incorporated into an interconnected beam-cable system. The overall goal of this work is to accurately predict natural frequencies and modal damping ratios for cabled space structures.

  9. Lightweight, Flexible, High-Performance Carbon Nanotube Cables Made by Scalable Flow Coating.

    Science.gov (United States)

    Mirri, Francesca; Orloff, Nathan D; Forster, Aaron M; Ashkar, Rana; Headrick, Robert J; Bengio, E Amram; Long, Christian J; Choi, April; Luo, Yimin; Walker, Angela R Hight; Butler, Paul; Migler, Kalman B; Pasquali, Matteo

    2016-02-01

    Coaxial cables for data transmission are ubiquitous in telecommunications, aerospace, automotive, and robotics industries. Yet, the metals used to make commercial cables are unsuitably heavy and stiff. These undesirable traits are particularly problematic in aerospace applications, where weight is at a premium and flexibility is necessary to conform with the distributed layout of electronic components in satellites and aircraft. The cable outer conductor (OC) is usually the heaviest component of modern data cables; therefore, exchanging the conventional metallic OC for lower weight materials with comparable transmission characteristics is highly desirable. Carbon nanotubes (CNTs) have recently been proposed to replace the metal components in coaxial cables; however, signal attenuation was too high in prototypes produced so far. Here, we fabricate the OC of coaxial data cables by directly coating a solution of CNTs in chlorosulfonic acid (CSA) onto the cable inner dielectric. This coating has an electrical conductivity that is approximately 2 orders of magnitude greater than the best CNT OC reported in the literature to date. This high conductivity makes CNT coaxial cables an attractive alternative to commercial cables with a metal (tin-coated copper) OC, providing comparable cable attenuation and mechanical durability with a 97% lower component mass.

  10. Superconductivity an introduction

    CERN Document Server

    Kleiner, Reinhold

    2016-01-01

    The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An e...

  11. High Voltage Power Transmission for Wind Energy

    Science.gov (United States)

    Kim, Young il

    The high wind speeds and wide available area at sea have recently increased the interests on offshore wind farms in the U.S.A. As offshore wind farms become larger and are placed further from the shore, the power transmission to the onshore grid becomes a key feature. Power transmission of the offshore wind farm, in which good wind conditions and a larger installation area than an onshore site are available, requires the use of submarine cable systems. Therefore, an underground power cable system requires unique design and installation challenges not found in the overhead power cable environment. This paper presents analysis about the benefit and drawbacks of three different transmission solutions: HVAC, LCC/VSC HVDC in the grid connecting offshore wind farms and also analyzed the electrical characteristics of underground cables. In particular, loss of HV (High Voltage) subsea power of the transmission cables was evaluated by the Brakelmann's theory, taking into account the distributions of current and temperature.

  12. 30 CFR 75.607 - Breaking trailing cable and power cable connections.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Breaking trailing cable and power cable... LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Trailing Cables § 75.607 Breaking trailing cable and power cable connections. Trailing cable and power cable connections...

  13. Optimization of power cable thermal performance using finite-element generated gradient

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saud, M.S.; El-Kady, M.A.; Findlay, R.D. [McMaster Univ., Hamilton, ON (Canada). Dept. of Electrical and Computer Engineering

    2007-07-01

    This paper addressed the issue of optimizing the performance of underground power cables used in modern power transmission and distribution grids. The objective was to reduce operating cost through optimized cable performance under a range of loading conditions, soil parameters and ambient conditions. The thermal performance of an underground cable depends on its design, operation and environmental parameters. The cable ampacity is influenced by cable insulation and structure; thermal conductivity of the surrounding soil; ambient temperature and cable loading. This paper proposed a new method for calculating cable thermal field and ampacity using a concept of perturbed finite element which involves the use of derived sensitivity coefficients associated with different cable parameters. The model provides the optimal solution subject to user-defined constraints. The design problem of choosing the optimal parameter values of the thermal circuit parameters, including the thermal conductivities, boundary conditions and heat generation, was formulated using a multi-dimensional gradient optimization method. The technique takes into account all thermal circuit parameters. The model represents a generalization of the nonlinear programming formulation to include practical cases of the cable design objective functions which may include the thermal parameters and the cable temperatures (ampacity) subjected to upper and lower bounds on the design parameters, linear system of equations constrains, or nonlinear constrains. In order to obtain a reliable cable design, this optimization analysis included the ampacity sensitivity profiles of the soil temperature fluctuations with respect to the thermal circuit parameters. 9 refs., 9 figs.

  14. Pediatrics and Cable Television.

    Science.gov (United States)

    Wallerstein, Edward; And Others

    The Department of Community Medicine of the Mount Sinai School of Medicine (New York City), in cooperation with the TelePrompTer Corporation and with funding from the Health Services and Mental Health Administration of the Department of Health, Education, and Welfare, has developed a bidirectional television system using coaxial cable which links…

  15. Cable Aerodynamic Control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth

    to a categorization of the different control technics together with an identification of two key mechanisms for reduction of the design drag force. During this project extensive experimental work examining the aerodynamics of the currently used cable surface modifications together with new innovative proposals have...

  16. Comparison of cable ageing

    Science.gov (United States)

    Plaček, Vít; Kohout, Tomáš

    2010-03-01

    Two cable types, which currently are used in nuclear power plants (NPP) and which are composed by jacket/insulation materials, i.e. PVC/PVC and PVC/PE, were exposed to accelerated ageing conditions, in order to simulate their behavior after 10 years in service. The cables were aged under two different test conditions: With relatively high accelerating ageing speed:Radiation ageing was carried out at room temperature at a dose rate of 2900 Gy/h, followed by thermal ageing at 100 °C. This accelerated ageing condition was fairly fast, but still in compliance with the standards. With moderate ageing speed:The radiation and thermal ageing was performed simultaneously (superimposed) at a dose rate of 2.7-3.7Gy/h and a temperature of 68-70 °C. Such a test condition seems to be very close to the radiation and temperature impact onto the cables in the real NPP service. Finally, mechanical properties were measured to characterize the ageing status of the cables. The purpose of this study was to compare degradation effects, derived from both ageing methods, and to demonstrate that results obtained from high values of accelerating parameters and from fast ageing simulation can be very different from reality. The observed results corroborated this assumption.

  17. Lightweight Electric Power Cable.

    Science.gov (United States)

    1982-09-01

    8I~ .4 111 162 MICROCi Pi RL’ LUHION TESI CHARI "LIGHTWEIGHT ELECTRIC POWER CABLE" FINAL TECHNICAL REPORT SEPTEMBER 30, 1981 to SEPTEMBER 30, 1982... Vulcanized by heat to crosslink. TPE (Thermoplastic Elastomer) - Polymers having elastomeric proper- ties. Used as thermoplastics - melt formed by

  18. Handbook for photovoltaic cabling

    Energy Technology Data Exchange (ETDEWEB)

    Klein, D. N.

    1980-08-01

    This volume, originally written as part of the Interim Performance Criteria Document Development Implementation Plan and Procedures for Photovoltaic Energy Systems, is an analysis of the several factors to be considered in selecting cabling for photovoltaic purposes. These factors, correspoonding to chapter titles, are electrical, structural, safety, durability/reliability, and installation. A glossary of terms used within the volume is included for reference.

  19. 49 CFR 234.243 - Wire on pole line and aerial cable.

    Science.gov (United States)

    2010-10-01

    ... Maintenance, Inspection, and Testing Maintenance Standards § 234.243 Wire on pole line and aerial cable. Wire... transmission line operating at voltage of 750 volts or more shall be placed not less than 4 feet above the... 49 Transportation 4 2010-10-01 2010-10-01 false Wire on pole line and aerial cable....

  20. Resistive cryogenic cable, phase III. Final report, April 18, 1974--March 31, 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    Work performed during 3 years of research on development of a foam-insulated underground cryogenic power transmission cable is reported. Information is included on the cryogenic envelope investigation; evaluation and aging study of electrical insulation; test system specifications; and cable system design and cost studies. (LCL)

  1. Current and Voltage Induced on the Cable by Flash of Lightning between Clouds

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Based on the transmission line equations, this paper has developed computing formulas of current and voltage induced on the cable over the ground plane by Flash of Lightning Between Clouds (FBC), and estimated current and voltage on the cable of metal shielded sheath and analyzed the results.

  2. Risk assessment of 170 kV GIS connected to combined cable/OHL network

    DEFF Research Database (Denmark)

    Bak, Claus Leth; Kessel, Jakob; Atlason, Vidir

    2009-01-01

    This paper concerns different investigations of lightning simulation of a combined 170 kV overhead line/cable connected GIS. This is interesting due to the increasing amount of underground cables and GIS in the Danish transmission system. This creates a different system with respect to lightning ...

  3. VHF partial discharge detection during after-laying testing of power cables

    NARCIS (Netherlands)

    Meijer, S.; Jongen, R.A.; Gulski, E.; Seitz, P.P.; Hermans, T.J.W.H.; Lamballais, L.

    2007-01-01

    In this paper the results of after-laying testing of transmission power cable accessories using a nonconventional technique are being presented. The nonconventional system is based on the detection of high frequency signals being emitted by the partial discharge. Therefore, each power cable accessor

  4. Flat conductor cable commercialization project

    Science.gov (United States)

    Hogarth, P.; Wadsworth, E.

    1977-01-01

    An undercarpet flat conductor cable and a baseboard flat conductor cable system were studied for commercialization. The undercarpet system is designed for use in office and commercial buildings. It employs a flat power cable, protected by a grounded metal shield, that terminates in receptacles mounted on the floor. It is designed to interface with a flat conductor cable telephone system. The baseboard system consists of a flat power cable mounted in a plastic raceway; both the raceway and the receptacles are mounted on the surface of the baseboard. It is designed primarily for use in residential buildings, particularly for renovation and concrete and masonry construction.

  5. Tapping the television cable.

    Science.gov (United States)

    Clarke, M; Findlay, A; Canac, J F; Vergez, A

    1996-01-01

    Immediate access to patient data is essential to support good clinical decision making and support. However, away from the surgery, the doctor is currently unable to have any access to the clinical database. Solutions exist to support remote access, such as modems or radio data networks, but these are slow, with typical speeds in the 2-10 kbaud region. We propose a novel solution, to use the TV cable already installed in many homes. Using this technology, a suitably equipped computer (RF modern) is capable of connecting at speeds in excess of 500 kbaud and will run applications in exactly the same way as if connected to a surgery network: the cable TV becomes a LAN, but on a metropolitan scale. Brunel University, in collaboration with the Cable Corporation, has been piloting such a network. Issues include not only levels of service, but also security on the network and access, since the data are being effectively received in every home. However, close scrutiny of channel use can create closed networks reserved for specific users. The technology involves use of an RF modem to transmit data on a reverse channel (based at 16 MHz) on each subnet to a router at the head end of the cable network. This frequency translates the packet and retransmits it to all the subnets on a forward channel (based at 178 MHz). Each channel occupies the bandwidth normally allocated to one TV channel. Access is based on a modified CSMA/CD protocol, so treating the cable network as single multiple access network. The modem comes as a standard card installed in a PC and appears much as an ethernet card, but at reduced speed. With an NDIS driver it is quite able to support almost any network software, and has successfully demonstrated Novell and TCP/IP. We describe the HomeWorker network and the results from a pilot study being undertaken to determine the performance of the system and its impact on working practice.

  6. Nanostructural features degrading the performance of superconducting radio frequency niobium cavities revealed by transmission electron microscopy and electron energy loss spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trenikhina, Y., E-mail: yuliatr@fnal.gov [Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States); Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Romanenko, A., E-mail: aroman@fnal.gov [Fermi National Accelerator Laboratory, Batavia, Illinois 60510 (United States); Kwon, J.; Zuo, J.-M. [Materials Science and Engineering Department, University of Illinois, Urbana, Illinois 61801 (United States); Zasadzinski, J. F. [Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616 (United States)

    2015-04-21

    Nanoscale defect structure within the magnetic penetration depth of ∼100 nm is key to the performance limitations of niobium superconducting radio frequency cavities. Using a unique combination of advanced thermometry during cavity RF measurements, and TEM structural and compositional characterization of the samples extracted from cavity walls, we discover the existence of nanoscale hydrides in electropolished cavities limited by the high field Q slope, and show the decreased hydride formation in the electropolished cavity after 120 °C baking. Furthermore, we demonstrate that adding 800 °C hydrogen degassing followed by light buffered chemical polishing restores the hydride formation to the pre-120 °C bake level. We also show absence of niobium oxides along the grain boundaries and the modifications of the surface oxide upon 120 °C bake.

  7. Numerical calculation of transient field effects in quenching superconducting magnets

    CERN Document Server

    Schwerg, Nikolai; Russenschuck, Stephan

    2009-01-01

    The maximum obtainable magnetic induction of accelerator magnets, relying on normal conducting cables and iron poles, is limited to around 2 T because of ohmic losses and iron saturation. Using superconducting cables, and employing permeable materials merely to reduce the fringe field, this limit can be exceeded and fields of more than 10 T can be obtained. A quench denotes the sudden transition from the superconducting to the normal conducting state. The drastic increase in electrical resistivity causes ohmic heating. The dissipated heat yields a temperature rise in the coil and causes the quench to propagate. The resulting high voltages and excessive temperatures can result in an irreversible damage of the magnet - to the extend of a cable melt-down. The quench behavior of a magnet depends on numerous factors, e.g. the magnet design, the applied magnet protection measures, the external electrical network, electrical and thermal material properties, and induced eddy current losses. The analysis and optimizat...

  8. MIC-Large Scale Magnetically Inflated Cable Structures for Space Power, Propulsion, Communications and Observational Applications

    Science.gov (United States)

    Powell, James; Maise, George; Rather, John

    2010-01-01

    A new approach for the erection of rigid large scale structures in space-MIC (Magnetically Inflated Cable)-is described. MIC structures are launched as a compact payload of superconducting cables and attached tethers. After reaching orbit, the superconducting cables are energized with electrical current. The magnet force interactions between the cables cause them to expand outwards into the final large structure. Various structural shapes and applications are described. The MIC structure can be a simple flat disc with a superconducting outer ring that supports a tether network holding a solar cell array, or it can form a curved mirror surface that concentrates light and focuses it on a smaller region-for example, a high flux solar array that generates electric power, a high temperature receiver that heats H2 propellant for high Isp propulsion, and a giant primary reflector for a telescope for astronomy and Earth surveillance. Linear dipole and quadrupole MIC structures are also possible. The linear quadrupole structure can be used for magnetic shielding against cosmic radiation for astronauts, for example. MIC could use lightweight YBCO superconducting HTS (High Temperature Superconductor) cables, that can operate with liquid N2 coolant at engineering current densities of ~105 amp/cm2. A 1 kilometer length of MIC cable would weigh only 3 metric tons, including superconductor, thermal insulations, coolant circuits, and refrigerator, and fit within a 3 cubic meter compact package for launch. Four potential MIC applications are described: Solar-thermal propulsion using H2 propellant, space based solar power generation for beaming power to Earth, a large space telescope, and solar electric generation for a manned lunar base. The first 3 applications use large MIC solar concentrating mirrors, while the 4th application uses a surface based array of solar cells on a magnetically levitated MIC structure to follow the sun. MIC space based mirrors can be very large and light

  9. Accelerator Technology: Magnets, Normal and Superconducting

    CERN Document Server

    Bottura, L

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.1 Magnets, Normal and Superconducting' of the Chapter '8 Accelerator Technology' with the content: 8.1 Magnets, Normal and Superconducting 8.1.1 Introduction 8.1.2 Normal Conducting Magnets 8.1.2.1 Magnetic Design 8.1.2.2 Coils 8.1.2.3 Yoke 8.1.2.4 Costs 8.1.2.5 Undulators, Wigglers, Permanent Magnets 8.1.2.6 Solenoids 8.1.3 Superconducting Magnets 8.1.3.1 Superconducting Materials 8.1.3.2 Superconducting Cables 8.1.3.3 Stability and Margins, Quench and Protection 8.1.3.4 Magnetization, Coupling and AC Loss 8.1.3.5 Magnetic Design of Superconducting Accelerator Magnets 8.1.3.6 Current Leads 8.1.3.7 Mechanics, Insulation, Cooling and Manufacturing Aspects

  10. The insulation coordination and surge arrester design for HTS cable system in Icheon substation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hansang, E-mail: Hansang80@korea.ac.kr [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Yoon, Dong-Hee [Department of New and Renewable Energy, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Lee, Seung-Ryul [Korea Electrotechnology Research Institute, Naeson-dong, Uiwang-si, Gyeonggi-do 437-080 (Korea, Republic of); Yang, Byeong-Mo [Korea Electric Power Research Institute, Munji-dong, Yuseong-gu, Daejeon 305-760 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2013-01-15

    Highlights: ► It is necessary to study lightning response of the HTS cable. ► The analytic model has been developed for the HTS cable in the Icheon substation. ► Well-designed surge arrester has been verified through PSCAD/EMTDC simulations. -- Abstract: This paper proposes an insulation coordination and surge arrester design for HTS (High-Temperature Superconducting) cable system in Icheon substation in Korea. In the aspect of the economic analysis, since the HTS cable is very expensive, the insulation coordination to prevent the dielectric breakdown caused by the lightning surge should be considered carefully. Also, in the aspect of the power system reliability, since the HTS cable has much more capacity compared than conventional power cables and the ripple effect from the HTS cable failure may lead to the wide area blackout, an intensive study for insulation coordination from lightning surge is one of the most important considerations. In this paper, the insulation coordination for lightning surge is verified using HTS cable and power equipment models and the design of the proper surge arrester is proposed.

  11. Electromagnetic coupling into two standard calibration shields on the Sandia cable tester

    Energy Technology Data Exchange (ETDEWEB)

    Warne, Larry Kevin; Basilio, Lorena I.; Langston, William L.; Chen, Kenneth C.; Hudson, Howard Gerald; Morris, M. E.; Stronach, S.L.; Johnson, W. A.; Derr, W.

    2014-02-01

    This report presents analytic transmission line models for calculating the shielding effectiveness of two common calibration standard cables. The two cables have different canonical aperture types, which produce the same low frequency coupling but different responses at resonance. The dominant damping mechanism is produced by the current probe loads at the ends of the cables, which are characterized through adaptor measurements. The model predictions for the cables are compared with experimental measurements and good agreement between the results is demonstrated. This setup constitutes a nice repeatable geometry that nevertheless exhibits some of the challenges involved in modeling non-radio frequency geometries.

  12. Compact Joint for 154kV Class XLPE and Oil-filled Cable

    Science.gov (United States)

    Gotoh, Shinichi; Tanaka, Hideo; Mituyama, Yasuichi; Niinobe, Hiroshi

    The joint of XLPE and Oil-filled cable is necessary and indispensable to meet the switch needs in replacing the oil-filled cable along with making of the underground power transmission system. However, because only connected space of the joint for the oil-filled cable is secured in narrow space of the existing manhole, the problem might be brought up to construction in the structure of the old model from the size and weight. Then, the compact joint that had reduced by about 80% of a structural size so far was developed by applying the high electric field technology according to making of EHV XLPE cable and the joint.

  13. Temperature Distribution and Critical Current of Long HTS Cables Cooled with Subcooled Liquid Nitrogen

    Science.gov (United States)

    Vyatkin, V. S.; Ivanov, Y. V.; Watanabe, H.; Chikumoto, N.; Yamaguchi, S.

    2017-07-01

    Cooling of the long HTS power transmission lines performs by pumping of subcooled liquid nitrogen (LN2) along the cable. The temperature of LN2 along the cable increases due to the heat losses of the cryostat and heat generation in the HTS cable. The experiment using test cable line in Ishikari shows that flow rate of 35 L/min retains increasing of LN2 temperature by 1 K per 1 km of length. The technology when the back flow of LN2 cools the radiation shield surrounding the cable pipe is also applied in Ishikari-2 project. In this case the ambient heat flow into cable pipe is 50 times less than that without radiation shield. Back flow of LN2 removes almost all heat coming from the environment. When transport current is close to the critical value the Joule heat of HTS cable is significant. This heat additionally increases the temperature of LN2 flowing along the HTS cable. Near the outlet the temperature of HTS cable is maximal and the local critical current is minimal. The current matching critical current criterion of average electrical field of E 0 = 10-4 V/m provides the voltage drop and significant Joule heat at the hot end of the cable. It can lead the damage of the cable. The present work contains analysis of temperature distribution along the cable and the way to achieve the fail-safe operation of long HTS cable cooled by subcooled LN2. We also performed extrapolation of obtained results for several times longer cable lines by decreasing the LN2 flow rate.

  14. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  15. Experimental results of current distribution in Rutherford-type LHC cables

    CERN Document Server

    Verweij, A P

    2000-01-01

    Current distribution among the wires of multi-strand superconducting cables is an important item for accelerator magnets. A non-uniform distribution could cause additional field distortions in the magnet bore and can as well be one of the reasons of premature quenching. Since two years electrical measurements on superconducting Rutherford-type cables are performed at CERN as part of the reception tests for the Large Hadron Collider (LHC). Cable samples of 2.4 m length are tested at currents up to 32 kA, temperatures around 1.9 and 4.3 K, and fields up to 10 T, applied perpendicularly as well as parallel to the broad face of the cable. Last year, an array of 24 Hall probes was installed in the test set-up in order to measure the self-field of the cable samples along one cable pitch. Each of the probes measures the local field generated by the current in the strands close by, and the results of the all probes reflect therefore the distribution of the strand currents. Experiments are done varying the applied fie...

  16. Thermal and mechanical properties of advanced impregnation materials for HTS cables and coils

    Science.gov (United States)

    Bagrets, N.; Otten, S.; Weiss, K.-P.; Kario, A.; Goldacker, W.

    2015-12-01

    In the growing field of high-temperature superconducting (HTS) applications, finding an appropriate impregnation material for cables and coils remains a challenging task. In HTS cables and coils, tapes have to be able to withstand mechanical loads during operation. Impregnation is playing a role as mechanical stabilization. However, material properties usually change significantly when going to low temperatures which can decrease performance of superconducting devices. For example, a large mismatch in thermal expansion between a conductor and impregnation material at low temperatures can lead to delamination and to degradation of the critical current. Impregnation materials can insulate tapes thermally which can lead to damage of the superconducting device in case of quench. Thus, thermal conductivity is an important property which is responsible for the temperature distribution in a superconducting cable or in a coil. Due to Lorentz forces acting on structural materials in a superconducting device, the mechanical properties of these materials should be investigated at operating temperatures of this device. Therefore, it is important to identify an advanced impregnation material meeting all specific requirements. In this paper, thermal and mechanical properties of impregnation material candidates with added fillers are presented in a temperature range from 300 K to 4 K.

  17. Method to improve superconductor cable

    Science.gov (United States)

    Borden, A.R.

    1984-03-08

    A method is disclosed of making a stranded superconductor cable having improved flexing and bending characteristics. In such method, a plurality of superconductor strands are helically wound around a cylindrical portion of a mandrel which tapers along a transitional portion to a flat end portion. The helically wound strands form a multistrand hollow cable which is partially flattened by pressure rollers as the cable travels along the transitional portion. The partially flattened cable is impacted with repeated hammer blows as the hollow cable travels along the flat end portion. The hammer blows flatten both the internal and the external surfaces of the strands. The cable is fully flattened and compacted by two sets of pressure rollers which engage the flat sides and the edges of the cable after it has traveled away from the flat end portion of the mandrel. The flattened internal surfaces slide easily over one another when the cable is flexed or bent so that there is very little possibility that the cable will be damaged by the necessary flexing and bending required to wind the cable into magnet coils.

  18. INFLUENCE OF CONSTRUCTIVE AND TECHNOLOGICAL DEFECTS ON COAXIAL RADIO-FREQUENCY CABLE IMPEDANCE

    Directory of Open Access Journals (Sweden)

    G.V. Bezprozvannych

    2013-04-01

    Full Text Available Coaxial user's radio-frequency cables belong to a category of cable television network elements parameters of which essentially specify the system capabilities as a whole. The cable working frequency spectrum spreading to 1000 MHz along with digital television and soundtrack signals transmission and high-definition television introduction causes more rigid requirements for wave impedance and, consequently, for the cable design. The established norms on user's cable impedance deviations fail to answer the state-of-the-art requirements for granting a complex of interactive services. On the basis of calculations performed, values of internal and external conductor diameters deviations as well as dielectric permeability of the insulation material are validated. For up-to-date user's radio-frequency cables, the impedance deviation from the normalized average value of 75 Ohm should not exceed ± 2 Ohm.

  19. Iodine doped carbon nanotube cables exceeding specific electrical conductivity of metals

    Science.gov (United States)

    Zhao, Yao; Wei, Jinquan; Vajtai, Robert; Ajayan, Pulickel M.; Barrera, Enrique V.

    2011-09-01

    Creating highly electrically conducting cables from macroscopic aggregates of carbon nanotubes, to replace metallic wires, is still a dream. Here we report the fabrication of iodine-doped, double-walled nanotube cables having electrical resistivity reaching ~10-7 Ω.m. Due to the low density, their specific conductivity (conductivity/weight) is higher than copper and aluminum and is only just below that of the highest specific conductivity metal, sodium. The cables exhibit high current-carrying capacity of 104~105 A/cm2 and can be joined together into arbitrary length and diameter, without degradation of their electrical properties. The application of such nanotube cables is demonstrated by partly replacing metal wires in a household light bulb circuit. The conductivity variation as a function of temperature for the cables is five times smaller than that for copper. The high conductivity nanotube cables could find a range of applications, from low dimensional interconnects to transmission lines.

  20. EIGENFREQUENCY ANALYSIS OF CABLE STRUCTURES WITH INCLINED CABLES

    Institute of Scientific and Technical Information of China (English)

    William Paulsen; Greg Slayton

    2006-01-01

    The approximate eigenfrequencies for the in-plane vibrations of a cable structure consisting of inclined cables, together with point masses at various points were computed. It was discovered that the classical transfer matrix method was inadequate for this task, and hence the larger exterior matrices were used to determine the eigenfrequency equation. Then predictions of the dynamics of the general cable structure based on the asymptotic estimates of the exterior matrices were made.

  1. The Investigation on Welding Processes for SUS316LN Tubes Used in Superconducting Magnetic System of EAST

    Institute of Scientific and Technical Information of China (English)

    Wu Jiefeng; Chen Siyue; Weng Peide; Gao Daming

    2005-01-01

    The force flow cooled superconducting cable-in-conduit conductor (CICC) is used in both of EAST toroidal field (TF) and poloidal field (PF) coils. The conductor consists of multi-stage NbTi superconducting cable and 1.5 mm thick square jacket. The cable is pulled through in a thin wall circular jacket and then compacted to square cross-section conductor. The jacket material is SUS316LN austenitic stainless steel seamless tubes (about 10 m each), which is assembled by butt-welding up to 600 m. The results of the welding procedure investigation and quality assurance procedures carrying out are described in this paper.

  2. Assessment of 69 kV Underground Cable Thermal Ratings using Distributed Temperature Sensing

    Science.gov (United States)

    Stowers, Travis

    Underground transmission cables in power systems are less likely to experience electrical faults, however, resulting outage times are much greater in the event that a failure does occur. Unlike overhead lines, underground cables are not self-healing from flashover events. The faulted section must be located and repaired before the line can be put back into service. Since this will often require excavation of the underground duct bank, the procedure to repair the faulted section is both costly and time consuming. These added complications are the prime motivators for developing accurate and reliable ratings for underground cable circuits. This work will review the methods by which power ratings, or ampacity, for underground cables are determined and then evaluate those ratings by making comparison with measured data taken from an underground 69 kV cable, which is part of the Salt River Project (SRP) power subtransmission system. The process of acquiring, installing, and commissioning the temperature monitoring system is covered in detail as well. The collected data are also used to evaluate typical assumptions made when determining underground cable ratings such as cable hot-spot location and ambient temperatures. Analysis results show that the commonly made assumption that the deepest portion of an underground power cable installation will be the hot-spot location does not always hold true. It is shown that distributed cable temperature measurements can be used to locate the proper line segment to be used for cable ampacity calculations.

  3. Modelling and transmission-line calculations of the final superconducting dipole and quadrupole chains of CERN's LHC collider methods and results

    CERN Document Server

    Dahlerup-Petersen, K

    2001-01-01

    Summary form only given, as follows. A long chain of superconducting magnets represents a complex load impedance for the powering and turns into a complex generator during the energy extraction. Detailed information about the circuit is needed for the calculation of a number of parameters and features, which are of vital importance for the choice of powering and extraction equipment and for the prediction of the circuit performance under normal and fault conditions. Constitution of the complex magnet chain impedance is based on a synthesized, electrical model of the basic magnetic elements. This is derived from amplitude and phase measurements of coil and ground impedances from d.c. to 50 kHz and the identification of poles and zeros of the impedance and transfer functions. An electrically compatible RLC model of each magnet type was then synthesized by means of a combination of conventional algorithms. Such models have been elaborated for the final, 15-m long LHC dipole (both apertures in series) as well as ...

  4. Modelling and Control of the Multi-stage Cable Pulley-driven Flexible-joint Robot

    OpenAIRE

    Phongsaen Pitakwatchara

    2014-01-01

    This work is concerned with the task space impedance control of a robot driven through a multi-stage nonlinear flexible transmission system. Specifically, a two degrees-of-freedom cable pulley-driven flexible-joint robot is considered. Realistic modelling of the system is developed within the bond graph modelling framework. The model captures the nonlinear compliance behaviour of the multi-stage cable pulley transmission system, the spring effect of the augmented counterbalancing mechanism, t...

  5. 14 CFR 23.689 - Cable systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cable systems. 23.689 Section 23.689... Systems § 23.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley used must meet approved specifications. In addition— (1) No cable smaller than 1/8 inch diameter may be used...

  6. Cable networks, services, and management

    CERN Document Server

    2015-01-01

    Cable Networks, Services, and Management is the first book to cover cable networks, services, and their management, in-depth, for network operators, engineers, researchers, and students. Thirteen experts in various fields have contributed their knowledge of network architectures and services, Operations, Administration, Maintenance, Provisioning, Troubleshooting (OAMPT) for residential and business services, cloud, Software Defined Networks (SDN), as well as virtualization concepts and their applications as part of the future directions of cable networks. The book begins by introducing architecture and services for Data Over Cable Service Interface Specification (DOCSIS) 3.0/ 3.1, Converged Cable Access Platform (CCAP), Content Distribution Networks (CDN, IP TV, and Packet Cable and Wi-Fi for Residential Services. Topics that are discussed in proceeding chapters include: operational systems and management architectures, service orders, provisioning, fault manageme t, performance management, billing systems a...

  7. Technology for long cable erection of a thousand-meter scale cable-stayed bridge

    Institute of Scientific and Technical Information of China (English)

    Rao Huarong; Deng Huibin

    2009-01-01

    In the background of the construction of Sutong Yangtze River Bridge (short as Sutong Bridge), the cable construction method and techniques of a thousand-meter scale cable-stayed bridge are introduced. Some key construction techniques, such as outspreading cable on deck, installing cable at pylon, pulling and fixing cable at the attachment with decks and cable PE sheath protection are discussed.

  8. The first cable for the HL-LHC producted at CERN

    CERN Multimedia

    Brice, Maximilien

    2016-01-01

    A Rutherford cabling machine is operated in the superconducting laboratory in building 163. The machine was used for the production of the Nb-Ti cables in the LHC magnets. Today, it is operated for the assembly of the high-performance cables, made from state-of-the-art Nb3Sn conductor, for the LHC High Luminosity Upgrade. Key elements of the machine are of a precision Turkshead equipped with a variable power drive, a caterpillar, a dimensional control bench, a data acquisition system, and a take-up unit. The video shows the production of a long length Rutherford cable, made from 40 Nb3Sn strands, that will be use in a 11 T LHC High Luminosity dipole magnet. The wiring machine is the only one left in Europe able to do such a job.

  9. Cable Bacteria in Freshwater Sediments

    OpenAIRE

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B.; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the fre...

  10. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  11. Electromagnetic transients in power cables

    CERN Document Server

    da Silva, Filipe Faria

    2013-01-01

    From the more basic concepts to the most advanced ones where long and laborious simulation models are required, Electromagnetic Transients in Power Cables provides a thorough insight into the study of electromagnetic transients and underground power cables. Explanations and demonstrations of different electromagnetic transient phenomena are provided, from simple lumped-parameter circuits to complex cable-based high voltage networks, as well as instructions on how to model the cables.Supported throughout by illustrations, circuit diagrams and simulation results, each chapter contains exercises,

  12. STATIC ANALYSIS OF CABLE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    HUANG Yan; LAN Wei-ren

    2006-01-01

    Based on the nonlinear geometric relation between strain and displacement for flexible cable, the equilibrium equation under self-weight and influence of temperature was established and an analytical solution of displacement and tension distribution defined in Eulerian coordinate system was accurately obtained. The nonlinear algebraic equations caused by cable structure were solved directly using the modified Powell hybrid algorithm with high precision routine DNEQNE of Fortran. For example, a cable structure consisting of three cables jointly supported by a vertical spring and all the other ends fixed was calculated and compared with various methods by other scholars.

  13. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  14. TRANSFORMER FOR JOINING UNBALANCED TO BALANCED TRANSMISSION MEANS

    Science.gov (United States)

    Bittner, B.J.; Opperman, R.H.

    1960-06-28

    An improved transformer is invented for joining an unbalanced transmission means to a balanced transmission means and is useful, for example, in transmitting an electromagnetic signal from a coaxial cable to a balanced dipole antenna.

  15. Stability Analysis of the LHC Cables for Transient Heat Depositions

    CERN Document Server

    Granieri, P P; Xydi, P; Baudouy, B; Bocian, D; Bottura, L; Breschi, M; Siemko, A

    2008-01-01

    The commissioning and the exploitation of the LHC require a good knowledge of the stability margins of the superconducting magnets with respect to beam induced heat depositions. Previous studies showed that simple numerical models are suitable to carry out stability calculations of multi-strands cables, and highlighted the relevance of the heat transfer model with the surrounding helium. In this paper we present a systematic scan of the stability margin of all types of LHC cables working at 1.9 Kagainst transient heat depositions. We specifically discuss the dependence of the stability margin on the parameters of the model, which provide an estimate of the uncertainty of the values quoted. The stability margin calculations have been performed using a zero-dimensional (0-D) numerical model, and a cooling model taking into account the relevant helium phases which may appear during a stability experiment: it includes Kapitza thermal resistance in superfluid He, boundary layer formation and heat transfer in He I,...

  16. Structural Parameter Optimization of Multilayer Conductors in HTS Cable

    Institute of Scientific and Technical Information of China (English)

    Yan Mao; Jie Qiu; Xin-Ying Liu; Zhi-Xuan Wang; Shu-Hong Wang; Jian-Guo Zhu; You-Guang Guo; Zhi-Wei Lin; Jian-Xun Jin

    2008-01-01

    In this paper, the design optimization of the structural parameters of multilayer conductors in high temperature superconducting (HTS) cable is reviewed. Various optimization methods, such as the particle swarm optimization (PSO), the genetic algorithm (GA), and a robust optimization method based on design for six sigma (DFSS), have been applied to realize uniform current distribution among the multi- layer HTS conductors. The continuous and discrete variables, such as the winding angle, radius, and winding direction of each layer, are chosen as the design parameters. Under the constraints of the mechanical properties and critical current, PSO is proven to be a more powerful tool than GA for structural parameter optimization, and DFSS can not only achieve a uniform current distribution, but also improve significantly the reliability and robustness of the HTS cable quality.

  17. Study on AC loss measurements of HTS power cable for standardizing

    Science.gov (United States)

    Mukoyama, Shinichi; Amemiya, Naoyuki; Watanabe, Kazuo; Iijima, Yasuhiro; Mido, Nobuhiro; Masuda, Takao; Morimura, Toshiya; Oya, Masayoshi; Nakano, Tetsutaro; Yamamoto, Kiyoshi

    2017-09-01

    High-temperature superconducting power cables (HTS cables) have been developed for more than 20 years. In addition of the cable developments, the test methods of the HTS cables have been discussed and proposed in many laboratories and companies. Recently the test methods of the HTS cables is required to standardize and to common in the world. CIGRE made the working group (B1-31) for the discussion of the test methods of the HTS cables as a power cable, and published the recommendation of the test method. Additionally, IEC TC20 submitted the New Work Item Proposal (NP) based on the recommendation of CIGRE this year, IEC TC20 and IEC TC90 started the standardization work on Testing of HTS AC cables. However, the individual test method that used to measure a performance of HTS cables hasn’t been established as world’s common methods. The AC loss is one of the most important properties to disseminate low loss and economical efficient HTS cables in the world. We regard to establish the method of the AC loss measurements in rational and in high accuracy. Japan is at a leading position in the AC loss study, because Japanese researchers have studied on the AC loss technically and scientifically, and also developed the effective technologies for the AC loss reduction. The JP domestic commission of TC90 made a working team to discussion the methods of the AC loss measurements for aiming an international standard finally. This paper reports about the AC loss measurement of two type of the HTS conductors, such as a HTS conductor without a HTS shield and a HTS conductor with a HTS shield. The AC loss measurement method is suggested by the electrical method..

  18. Status and Progress of a Fault Current Limiting Hts Cable to BE Installed in the con EDISON Grid

    Science.gov (United States)

    Maguire, J.; Folts, D.; Yuan, J.; Henderson, N.; Lindsay, D.; Knoll, D.; Rey, C.; Duckworth, R.; Gouge, M.; Wolff, Z.; Kurtz, S.

    2010-04-01

    In the last decade, significant advances in the performance of second generation (2G) high temperature superconducting wire have made it suitable for commercially viable applications such as electric power cables and fault current limiters. Currently, the U.S. Department of Homeland Security is co-funding the design, development and demonstration of an inherently fault current limiting HTS cable under the Hydra project with American Superconductor and Consolidated Edison. The cable will be approximately 300 m long and is being designed to carry 96 MVA at a distribution level voltage of 13.8 kV. The underground cable will be installed and energized in New York City. The project is led by American Superconductor teamed with Con Edison, Ultera (Southwire and nkt cables joint venture), and Air Liquide. This paper describes the general goals, design criteria, status and progress of the project. Fault current limiting has already been demonstrated in 3 m prototype cables, and test results on a 25 m three-phase cable will be presented. An overview of the concept of a fault current limiting cable and the system advantages of this unique type of cable will be described.

  19. Low AC Loss in a 3 kA HTS Cable of the Dutch Project

    DEFF Research Database (Denmark)

    Chevtchenko, Oleg; Zuijderduin, Roy; Smit, Johan

    2012-01-01

    in the cable, potentially affecting public acceptance of the project. A way out would be to substantially reduce AC losses from 1 down to about 0.1W/m per phase at rated current of 3 kArms, frequency of 50Hz and temperature of 77K. In this paper we discuss a strategy towards this ambitious goal, a concept......Requirements for a 6km long high temperature superconducting (HTS) AC power cable of the Amsterdam project are: a cable has to fit in an annulus of 160mm, with two cooling stations at the cable ends only. Existing solutions for HTS cables would lead to excessively high coolant pressure drop...... design of the single phase cable 3 kA conductor made of YBCO tapes and present corresponding experimental and simulation data supporting the developed approach leading directly to this goal. HTS cable model was made that show a drastically reduced AC loss. The low loss was achieved by using appropriate...

  20. Discussion on operation and maintenance of cable TV cable line%有线电视光缆线路的运行维护工作探讨

    Institute of Scientific and Technical Information of China (English)

    余海

    2015-01-01

    Optical fiber optic cable transmission has excellent performance,which is widely used in cable TV signal transmission. With the devel-opment of China's cable TV,cable channel number also is increasing,its function has also been deep development and utilization,take what kind of measures to effectively carries on the maintenance of cable television cable lines,and become the relevant staff to ponder the question. In this paper, the author combined with their own many years engaged in cable TV cable line maintenance work experience,a brief discussion on how to do a good job of cable TV cable line maintenance work.%有线电视光缆的传输性能较好,近年来在广播电视信号传输中也得到了非常普遍的应用,随着当前我国广播电视事业的飞速发展,有线电视的相关的功能也有了进一步的开发与利用。那么,选择何种方式来对有线电视光缆线路进行维护,成为了摆在广电工作人员面前的一个重要课题。现结合笔者实际工作经验,就几种有线电视光缆线路的运行维护工作进行了探讨。

  1. 2008 LHC Open Days: Super(-conducting) events and activities

    CERN Multimedia

    2008-01-01

    Superconductivity will be one of the central themes of the programme of events and discovery activities of the forthcoming LHC Open Days on 5 and 6 April. Visitors will be invited to take part in a range of activities, experiments and exchanges all about this amazing aspect of the LHC project. Why superconductivity? Simply because it’s the principle on which the very operation of the LHC is based. At the heart of the LHC magnets lie 7000 kilometres of superconducting cables, each strand containing between 6000 and 9000 filaments of the superconducting alloy niobium-titanium in a copper coating. These cables, cooled to a temperature close to absolute zero, are able to conduct electricity without resistance. 12000 amp currents - an intensity some 30000 times greater than that of a 100 watt light bulb - pass through the cables of the LHC magnets.   Programme:   BLDG 163 (Saturday 5 and Sunday 6 April): See weird and wonderful experiments with your own eyes In the workshop where the 2...

  2. The Basic Properties of PPLP for HTS DC Cable

    Science.gov (United States)

    Kim, W. J.; Kim, H. J.; Cho, J. W.; Kim, S. H.

    In order to develop high temperature superconducting (HTS) DC cable, it is important to understand the cooling system, high voltage insulation and materials at cryogenic temperature. Especially, the basic properties of insulating materials must be solved for the long life, reliability and compact of system. In this paper, we will discuss mainly on the electrical and the mechanical properties of polypropylene laminated paper (PPLP) in liquid nitrogen (LN2). The polarity effect of DC and impulse voltage, the volume resistivity and the space charge distribution and frost were studied. Furthermore, the mechanical properties such as tensile strength of PPLP at LN2 (77 K) and room temperature (300 K) were studied.

  3. Calculation of minimum quench energies in Rutherford cables

    CERN Document Server

    Wilson, M N

    1996-01-01

    The Minimum Quench Energy MQE of a conductor may give some indication about the likelihood of training in magnets. We have used a numerical solution of the heat flow equation to calculate the MQE of a single superconducting wire and have found the results to be in good agreement with experiment. This model was then extended to an approximate representation of Rutherford cable by including current and heat transfer between strands. Reasonable agreement with experiment has been found, although in some cases it appears that the effective thermal contact between strands is greater than expected from electrical resistance measurements.

  4. Exfoliated YBCO filaments for second-generation superconducting cable

    Science.gov (United States)

    Solovyov, Vyacheslav; Farrell, Paul

    2017-01-01

    The second-generation high temperature superconductor (2G HTS) wire is the most promising conductor for high-field magnets such as accelerator dipoles and compact fusion devices. The key element of the wire is a thin Y1Ba2Cu3O7 (YBCO) layer deposited on a flexible metal substrate. The substrate, which becomes incorporated in the 2G conductor, reduces the electrical and mechanical performance of the wire. This is a process that exfoliates the YBCO layer from the substrate while retaining the critical current density of the superconductor. Ten-centimeter long coupons of exfoliated YBCO layers were manufactured, and detailed structural, electrical, and mechanical characterization were reported. After exfoliation, the YBCO layer was supported by a 75 μm thick stainless steel foil, which makes for a compact, mechanically stronger, and inexpensive conductor. The critical current density of the filaments was measured at both 77 K and 4.2 K. The exfoliated YBCO retained 90% of the original critical current. Similarly, tests in an external magnetic field at 4.2 K confirmed that the pinning strength of the YBCO layer was also retained following exfoliation.

  5. Developments of electrical joints for aluminum-stabilized superconducting cables

    CERN Document Server

    Curé, B

    1999-01-01

    Electrical joints for the aluminum-stabilized conductors of the LHC experiment magnets have been studied. Two techniques have been tested: electron beam welding and MIG welding. The joint resistance was measured as a function of the magnetic field on ring shaped samples using the MA.RI.S.A. test facility, wherein current is induced in the test conductor by a varying magnetic field. The resistance is obtained by measuring either the voltage drop or the decay time. Calculation and finite-element simulation have been performed in order to separate the effect of both the copper-aluminum contact resistivity and the aluminum resistivity from the effect due to the joint technique (joint configuration, resistivity of the filler material, increasing of aluminum resistivity in the welding zone). The copper-aluminum contact resistivity and the current transfer length were obtained by measurements of the joint resistance of butt welded samples. (2 refs).

  6. Cable ampacity. A Finnish perspective

    Energy Technology Data Exchange (ETDEWEB)

    Millar, R.J.; Lehtonen, M.

    2006-07-01

    This report is primarily the practical application of a new method to calculate cable conductor temperatures in real time. A brief summary of various thermal parameter measurements in southern Finland is provided, an algorithm to compute cable temperatures in real time when both moisture migration and overall moisture content change are occurring is outlined, potential outcomes of extended loading are demonstrated, installation configurations are compared, steady-state and cyclic ratings are given for HV and MV installations, and emergency loading scenarios are evaluated. A more rational approach to cable rating in Finnish conditions is established. Conservative transient-based rating tends to give back the ampacity that might be lost due to worst possible environmental conditions for installed cables. Nevertheless, it is suggested that MV cables be derated by 20 % from their nominal catalogue ratings. orig.)

  7. Length of a Hanging Cable

    Directory of Open Access Journals (Sweden)

    Eric Costello

    2011-01-01

    Full Text Available The shape of a cable hanging under its own weight and uniform horizontal tension between two power poles is a catenary. The catenary is a curve which has an equation defined by a hyperbolic cosine function and a scaling factor. The scaling factor for power cables hanging under their own weight is equal to the horizontal tension on the cable divided by the weight of the cable. Both of these values are unknown for this problem. Newton's method was used to approximate the scaling factor and the arc length function to determine the length of the cable. A script was written using the Python programming language in order to quickly perform several iterations of Newton's method to get a good approximation for the scaling factor.

  8. Cable Bacteria in Freshwater Sediments

    DEFF Research Database (Denmark)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus

    2015-01-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable...... marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary...... bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures...

  9. Photonic-powered cable assembly

    Science.gov (United States)

    Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

    2013-01-22

    A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

  10. 13 kA Superconducting Busbars Manufacturing Process

    CERN Document Server

    Principe, R; Fornasiere, E

    2012-01-01

    In the LHC, the superconducting Main Bending magnets and Quadrupole magnets are series-connected electrically in different excitation circuits by means of superconducting busbars, carrying a maximum current of 13 kA. These superconducting busbars consist of a superconducting Rutherford cable thermally and electrically coupled to a copper section all along the length. The function of the copper section is essentially to provide an alternative path for the magnet current in case of resistive transition. The production of these components was originally outsourced. The decision to import the technology at CERN led to a global re-engineering of the standard process. Although based on the procedures adopted during the LHC construction, a few modifications and improvements have been implemented, profiting of the experience gained in the last few years. This document details the manufacturing process of the 13 kA busbars as it is actually performed at CERN, emphasizing the new solutions adopted during the first mon...

  11. Strand and Cable R\\&D for Fast Cycled Magnets at CERN

    CERN Document Server

    Bottura, L; Borgnolutti, F; Richter, D; Gaertner, W; Sikler, G; Willering, G; Peiro, G; Bonasia, A; Oberli, L; Salmi, T

    2011-01-01

    Fast cycled superconducting magnets (FCM's) are an option of interest for the long-term consolidation and upgrade plan of the LHC accelerator complex. In the past two years we have conducted an R\\&D targeted at investigating the feasibility, operational issues and economical advantage of FCM's in the range of 2 T bore field, continuously cycled at 1 Hz. In this paper we report the main results on the development of strands and cables suitable for this application, providing details on the strands tested and the cable manufacturing and performance.

  12. Strand and Cable R&D for Fast Cycled Magnets at CERN

    CERN Document Server

    Bottura, L; Borgnolutti, F; Gaertner, W; Le Naour, S; Oberli, L; Peiro, G; Richter, D; Salmi, T; Sikler, G; Willering, G

    2011-01-01

    Fast cycled superconducting magnets (FCM's) are an option of interest for the long-term consolidation and upgrade plan of the LHC accelerator complex. In the past two years we have conducted an R&D targeted at investigating the feasibility, operational issues and economical advantage of FCM's in the range of 2 T bore field, continuously cycled at 1 Hz. In this paper we report the main results on the development of strands and cables suitable for this application, providing details on the strands tested and the cable manufacturing and performance.

  13. New Passive Methodology for Power Cable Monitoring and Fault Location

    Science.gov (United States)

    Kim, Youngdeug

    The utilization of power cables is increasing with the development of renewable energy and the maintenance replacement of old overhead power lines. Therefore, effective monitoring and accurate fault location for power cables are very important for the sake of a stable power supply. The recent technologies for power cable diagnosis and temperature monitoring system are described including their intrinsic limitations for cable health assessment. Power cable fault location methods are reviewed with two main categories: off-line and on-line data based methods. As a diagnostic and fault location approach, a new passive methodology is introduced. This methodology is based on analyzing the resonant frequencies of the transfer function between the input and output of the power cable system. The equivalent pi model is applied to the resonant frequency calculation for the selected underground power cable transmission system. The characteristics of the resonant frequencies are studied by analytical derivations and PSCAD simulations. It is found that the variation of load magnitudes and change of positive power factors (i.e., inductive loads) do not affect resonant frequencies significantly, but there is considerable movement of resonant frequencies under change of negative power factors (i.e., capacitive loads). Power cable fault conditions introduce new resonant frequencies in accordance with fault positions. Similar behaviors of the resonant frequencies are shown in a transformer (TR) connected power cable system with frequency shifts caused by the TR impedance. The resonant frequencies can be extracted by frequency analysis of power signals and the inherent noise in these signals plays a key role to measure the resonant frequencies. Window functions provide an effective tool for improving resonant frequency discernment. The frequency analysis is implemented on noise laden PSCAD simulation signals and it reveals identical resonant frequency characteristics with theoretical

  14. VIDEO TRANSMISSION SYSTEM IN ITV APPLICATION

    Institute of Scientific and Technical Information of China (English)

    WangYancai; WangQunwei; WangZhaohui

    1996-01-01

    The transmission characteristics of video transmission mediums,coaxial cable and optical fiber ,are discussed in the paper. The formulas for frequency bandwidthare given to evaluate the video transmission distance. For typical video transmissionsystems with BB/IM and PFM/IM using optical fiber as the channel, expressions andcalculating results for both SIN and sensitivity are given. Finally. the principle for selecting different type of transmission systems according to transmission distances of the industrial TV is presented.

  15. Cable Bacteria in Freshwater Sediments.

    Science.gov (United States)

    Risgaard-Petersen, Nils; Kristiansen, Michael; Frederiksen, Rasmus B; Dittmer, Anders Lindequist; Bjerg, Jesper Tataru; Trojan, Daniela; Schreiber, Lars; Damgaard, Lars Riis; Schramm, Andreas; Nielsen, Lars Peter

    2015-09-01

    In marine sediments cathodic oxygen reduction at the sediment surface can be coupled to anodic sulfide oxidation in deeper anoxic layers through electrical currents mediated by filamentous, multicellular bacteria of the Desulfobulbaceae family, the so-called cable bacteria. Until now, cable bacteria have only been reported from marine environments. In this study, we demonstrate that cable bacteria also occur in freshwater sediments. In a first step, homogenized sediment collected from the freshwater stream Giber Å, Denmark, was incubated in the laboratory. After 2 weeks, pH signatures and electric fields indicated electron transfer between vertically separated anodic and cathodic half-reactions. Fluorescence in situ hybridization revealed the presence of Desulfobulbaceae filaments. In addition, in situ measurements of oxygen, pH, and electric potential distributions in the waterlogged banks of Giber Å demonstrated the presence of distant electric redox coupling in naturally occurring freshwater sediment. At the same site, filamentous Desulfobulbaceae with cable bacterium morphology were found to be present. Their 16S rRNA gene sequence placed them as a distinct sister group to the known marine cable bacteria, with the genus Desulfobulbus as the closest cultured lineage. The results of the present study indicate that electric currents mediated by cable bacteria could be important for the biogeochemistry in many more environments than anticipated thus far and suggest a common evolutionary origin of the cable phenotype within Desulfobulbaceae with subsequent diversification into a freshwater and a marine lineage.

  16. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  17. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  18. Directly modulated cable television transport systems using negative dispersion fiber

    Science.gov (United States)

    Lu, Hai-Han; Liaw, Je-Wei; Lee, Yi-Shiuan; Tsai, Wan-Lin; Ji, Yu-Jie

    2005-03-01

    A directly modulated AM-VSB cable-television transport system using negative dispersion fiber (NDF) as the transmission medium is proposed and successfully demonstrated. Good performances of carrier-to-noise radio, composite second order, and composite triple beat were obtained over a 70-km NDF transport without optical amplification. The directly modulated laser has a positive chirp, while NDF has a negative dispersion property in the transmission fiber. This negative dispersion property compensates for the laser chirp and results in a system with better transmission performance.

  19. Cable-in-conduit superconductors for fusion magnets: electro-magnetic modelling for understanding and optimizing their transport properties

    NARCIS (Netherlands)

    Rolando, Gabriella

    2013-01-01

    Cable-In-Conduit conductors feature large current-carrying capacity and stability against local and transient heat deposition. As such they are suitable for application in superconducting magnets for nuclear fusion, as the ones of the International Thermonuclear Experimental Reactor (ITER). Due to

  20. Intra wire resistance and strain affecting the transport properties of Nb3Sn strands in cable-in-conduit conductors

    NARCIS (Netherlands)

    Zhou, C.

    2014-01-01

    The aim of this thesis work is to arrive at a deeper understanding of the effects of strain and filament fracture on the electric properties of superconducting strands and cable-in-conduit conductors that are subjected to various mechanical loads. Since inter-filamentary current redistribution plays

  1. Cable-in-conduit superconductors for fusion magnets: electro-magnetic modelling for understanding and optimizing their transport properties

    NARCIS (Netherlands)

    Rolando, G.

    2013-01-01

    Cable-In-Conduit conductors feature large current-carrying capacity and stability against local and transient heat deposition. As such they are suitable for application in superconducting magnets for nuclear fusion, as the ones of the International Thermonuclear Experimental Reactor (ITER). Due to t

  2. 14 CFR 27.1365 - Electric cables.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Electric cables. 27.1365 Section 27.1365... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Electrical Systems and Equipment § 27.1365 Electric cables. (a) Each electric connecting cable must be of adequate capacity. (b) Each cable that would...

  3. Cable Television, Market Power and Regulation.

    Science.gov (United States)

    Thorpe, Kenneth E.

    The goals of this dissertation are to provide an empirical examination of the impact of competing technologies on cable television firms and to document existing pricing behavior in the cable and pay programming industry. The introduction provides a brief overview of the cable television industry, including the impact of cable on federal policy…

  4. Cable Television: Citizen Participation in Planning.

    Science.gov (United States)

    Yin, Robert K.

    The historical background of citizen participation in local affairs and its relevance at the onset of community concern about cable television are briefly discussed in this report. The participation of citizens, municipal officials, and cable operators in laying the groundwork for a cable system as well as the pros and cons of cable television as…

  5. 14 CFR 25.689 - Cable systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Cable systems. 25.689 Section 25.689... STANDARDS: TRANSPORT CATEGORY AIRPLANES Design and Construction Control Systems § 25.689 Cable systems. (a) Each cable, cable fitting, turnbuckle, splice, and pulley must be approved. In addition— (1) No...

  6. Design and performance of ultra-high-density optical fiber cable with rollable optical fiber ribbons

    Science.gov (United States)

    Hogari, Kazuo; Yamada, Yusuke; Toge, Kunihiro

    2010-08-01

    This paper proposes a novel ultra-high-density optical fiber cable that employs rollable optical fiber ribbons. The cable has great advantages in terms of cable weight and diameter, and fiber splicing workability. Moreover, it will be easy to install in a small space in underground ducts and on residential and business premises. The structural design of the rollable optical fiber ribbon is evaluated theoretically and experimentally, and an optimum adhesion pitch P in the longitudinal direction is obtained. In addition, we examined the performance of ultra-high-density cables with a small diameter that employ rollable optical fiber ribbons and bending-loss insensitive optical fibers. The transmission, mechanical and mid-span access performance of these cables was confirmed to be excellent.

  7. Study of quench propagation velocity in superconducting magnets for UNK

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanov, I.V.; Sheherbakov, P.A.; Snitko, V.P.; Tkachenko, N.P.; Vasiliev, L.M.; Vybornov, M.G.; Ziobin, A.V.

    1989-03-01

    Two superconducting magnet models, warm-iron and cold-iron designs are studied within the frames of work on UNK. The present note describes the method and results on measuring quench propagation velocity in the superconducting cables with a transport current in external field under the cooling conditions typical for those of the magnet winding. The results on measuring quench propagation velocities in warm-iron and cold-iron designs are presented. The results obtained for short samples and model coils are compared.

  8. Thermal analysis of underground power cable system

    Science.gov (United States)

    Rerak, Monika; Ocłoń, Paweł

    2017-10-01

    The paper presents the application of Finite Element Method in thermal analysis of underground power cable system. The computations were performed for power cables buried in-line in the ground at a depth of 2 meters. The developed mathematical model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil and cable backfill thermal conductivity on the maximum temperature of the cable conductor. Also, the effect of cable diameter on the temperature of cable core was studied. Numerical analyses were performed based on a program written in MATLAB.

  9. PE/PVC materials in HV cable jackets. Breakdown voltage of PE/PVC materials; PE/PVC-Materialien in Aussenmaenteln von Hochspannungskabeln. Durchschlagspannung von PE/PVC-Materialien

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Uwe; Xu, Liang; Schufft, Wolfgang [Technische Univ. Chemnitz-Zwickau, Chemnitz (Germany). Fakultaet fuer Elektrotechnik und Informationstechnik

    2010-12-13

    Cables are spaced across increasingly longer distances in HV engineering. Integration of offshore wind farms and the construction of new transmission and distribution grids would be impossible without cables. Voltages and overvoltages in operation are managed according to international standards using overvoltage protection systems. However, there may be instances in which voltage occur that exceed the strength of the cable jacket. (orig.)

  10. Oahu Wind Integration and Transmission Study (OWITS): Hawaiian Islands Transmission Interconnection Project

    Energy Technology Data Exchange (ETDEWEB)

    Woodford, D.

    2011-02-01

    This report provides an independent review included an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands.

  11. Phase 2 Report: Oahu Wind Integration and Transmission Study (OWITS); Hawaiian Islands Transmission Interconnection Project

    Energy Technology Data Exchange (ETDEWEB)

    Woodford, D.

    2011-02-01

    This report provides an independent review including an initial evaluation of the technical configuration and capital costs of establishing an undersea cable system and examining impacts to the existing electric transmission systems as a result of interconnecting the islands

  12. Demonstration of superconducting micromachined cavities

    Energy Technology Data Exchange (ETDEWEB)

    Brecht, T., E-mail: teresa.brecht@yale.edu; Reagor, M.; Chu, Y.; Pfaff, W.; Wang, C.; Frunzio, L.; Devoret, M. H.; Schoelkopf, R. J. [Department of Applied Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2015-11-09

    Superconducting enclosures will be key components of scalable quantum computing devices based on circuit quantum electrodynamics. Within a densely integrated device, they can protect qubits from noise and serve as quantum memory units. Whether constructed by machining bulk pieces of metal or microfabricating wafers, 3D enclosures are typically assembled from two or more parts. The resulting seams potentially dissipate crossing currents and limit performance. In this letter, we present measured quality factors of superconducting cavity resonators of several materials, dimensions, and seam locations. We observe that superconducting indium can be a low-loss RF conductor and form low-loss seams. Leveraging this, we create a superconducting micromachined resonator with indium that has a quality factor of two million, despite a greatly reduced mode volume. Inter-layer coupling to this type of resonator is achieved by an aperture located under a planar transmission line. The described techniques demonstrate a proof-of-principle for multilayer microwave integrated quantum circuits for scalable quantum computing.

  13. A success story LHC cable production at ALSTOM-MSA

    CERN Document Server

    Mocaer, P; Köhler, C; Verwaerde, C

    2005-01-01

    ITER, when constructed, will be the equipment using the largest amount of superconductor strands ever built (Nb3Sn and NbTi). ALSTOM- MSA Magnets and Superconductors SA, "ALSTOM-MSA" received in 1998 the largest orders to date for the delivery of superconducting strands and cables (3100 km of cables for dipole and quadrupole magnets and various strands) for the Large Hadron Collider (LHC) being built at CERN Geneva. These orders to ALSTOM-MSA correspond to more than 600 metric tons of superconducting strands, an amount to be compared to around 600 metric tons of Nb3Sn strands and 250 metric tons of NbTi strands necessary for ITER. Starting from small and short R&D programs in the early nineties, ALSTOM-MSA has reached its industrial targets and has, as of September 2004, delivered around 74% of the whole orders with products meeting high quality standards. Production is going on at contractual delivery rate and with satisfactory financial results to finish deliveries around end 2005, taking into account a...

  14. MgB2 superconducting wires basics and applications

    CERN Document Server

    2016-01-01

    The compendium gives a complete overview of the properties of MgB2 (Magnesium Diboride), a superconducting compound with a transition temperature of Tc = 39K, from the fundamental properties to the fabrication of multifilamentary wires and to the presentation of various applications. Written by eminent researchers in the field, this indispensable volume not only discusses superconducting properties of MgB2 compounds, but also describes known preparation methods of thin films and of bulk samples obtained under high pressure methods. A unique selling point of the book is the detailed coverage of various applications based on MgB2, starting with MRI magnets and high current cables, cooled by Helium (He) vapor. High current cables cooled by liquid hydrogen are also highlighted as an interesting alternative due to the shrinking He reserves on earth. Other pertinent subjects comprise permanent magnets, ultrafine wires for space applications and wind generator projects.

  15. Static and Dynamic Characteristics of a Long-Span Cable-Stayed Bridge with CFRP Cables

    Directory of Open Access Journals (Sweden)

    Xu Xie

    2014-06-01

    Full Text Available In this study, the scope of CFRP cables in cable-stayed bridges is studied by establishing a numerical model of a 1400-m span of the same. The mechanical properties and characteristics of CFRP stay cables and of a cable-stayed bridge with CFRP cables are here subjected to comprehensive analysis. The anomalies in the damping properties of free vibration, nonlinear parametric vibration and wind fluctuating vibration between steel cables and CFRP cables are determined. The structural stiffness, wind resistance and traffic vibration of the cable-stayed bridge with CFRP cables are also analyzed. It was found that the static performances of a cable-stayed bridge with CFRP cables and steel cables are basically the same. The natural frequencies of CFRP cables do not coincide with the major natural frequencies of the cable-stayed bridge, so the likelihood of CFRP cable-bridge coupling vibration is minuscule. For CFRP cables, the response amplitudes of both parametric vibration and wind fluctuating vibration are smaller than those of steel cables. It can be concluded from the research that the use of CFRP cables does not change the dynamic characteristics of the vehicle-bridge coupling vibration. Therefore, they can be used in long-span cable-stayed bridges with an excellent mechanical performance.

  16. The Development and Demonstration of a 360m/10 kA HTS DC Power Cable

    Science.gov (United States)

    Xiao, Liye

    With the quick development of renewable energy, it is expected that the electric power from renewable energy would be the dominant one for the future power grid. Due to the specialty of the renewable energy, the HVDC power transmission would be very useful for the transmission of electric power from renewable energy. DC power cable made of High Tc Superconductor (HTS) would be a possible alternative for the construction of HVDC power transmission system. In this chapter, we report the development and demonstration of a 360 m/10 kA HTS DC power cable and the test results.

  17. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  18. Electromagnetic Transients in Power Cables

    DEFF Research Database (Denmark)

    Silva, Filipe Faria Da; Bak, Claus Leth

    of the method. The chapter continues by analysing the frequency-spectrums of cable-based networks which have lower resonance frequencies than usual because of the larger capacitance of the cables. At the same time, a technique that may help save time when plotting the frequency spectrum of a network is proposed...... typically used for the screens of cables (both-ends bonding and cross-boding) and also presents methods that can be used to estimate the maximum current of a cable for different types of soils, i.e. thermal calculations. The end of the chapter introduces the shunt reactor, which is an important element....... It is true that in many cases, software is used to run simulations, and the reader may be tempted to think that only those designing the software need to know how to use modal theory. However, several phenomena require at least a minimum knowledge of the topic and for that reason, the book provides...

  19. Motility of electric cable bacteria

    DEFF Research Database (Denmark)

    Bjerg, Jesper Tataru; Damgaard, Lars Riis; Holm, Simon Agner

    2016-01-01

    Cable bacteria are filamentous bacteria that electrically couple sulfide oxidation and oxygen reduction at centimeter distances, and observations in sediment environments have suggested that they are motile. By time-lapse microscopy, we found that cable bacteria used gliding motility on surfaces...... with a highly variable speed of 0.50.3 ms1 (meanstandard deviation) and time between reversals of 155108 s. They frequently moved forward in loops, and formation of twisted loops revealed helical rotation of the filaments. Cable bacteria responded to chemical gradients in their environment, and around the oxic......-anoxic interface, they curled and piled up, with straight parts connecting back to the source of sulfide. Thus, it appears that motility serves the cable bacteria in establishing and keeping optimal connections between their distant electron donor and acceptors in a dynamic sediment environment....

  20. Design and development of 500 m long HTS cable system in the KEPCO power grid, Korea

    Science.gov (United States)

    Sohn, S. H.; Lim, J. H.; Yang, B. M.; Lee, S. K.; Jang, H. M.; Kim, Y. H.; Yang, H. S.; Kim, D. L.; Kim, H. R.; Yim, S. W.; Won, Y. J.; Hwang, S. D.

    2010-11-01

    In Korea, two long-term field demonstrations for high temperature superconducting (HTS) cable have been carried out for several years; Korea Electric Power Corporation (KEPCO) and LS Cable Ltd. (LSC) independently. Encouraged at the result of the projects performed in parallel, a new project targeting the real grid operation was launched in the fourth quarter of 2008 with the Korean government's financial support. KEPCO and LSC are jointly collaborating in the selection of substation, determination of cable specification, design of cryogenic system, and the scheme of protection coordination. A three phase 500 m long HTS cable at a distribution level voltage of 22.9 kV is to be built at 154/22.9 kV Icheon substation located in near Seoul. A hybrid cryogenic system reflecting the contingency plan is being designed including cryocoolers. The HTS cable system will be installed in the second quarter of 2010, being commissioned by the fall of 2010. This paper describes the objectives of the project and design issues of the cable and cryogenic system in detail.

  1. Progress of 275 kV-3 kA YBCO HTS cable

    Science.gov (United States)

    Yagi, M.; Mukoyama, S.; Amemiya, N.; Ishiyama, A.; Wang, X.; Aoki, Y.; Saito, T.; Ohkuma, T.; Maruyama, O.

    2011-11-01

    A 275 kV-3 kA high temperature superconducting (HTS) cable has been developed in the Materials & Power Applications of Coated Conductors (M-PACC) project. AC loss reduction of a two-layer HTS conductor was undertaken by removing the edges of YBCO tapes with low critical current density. The HTS conductor using these tapes was fabricated, and low loss of 0.235 W/m at 3 kA rms was achieved. The 275 kV-3 kA cable was designed, and the 2 m model cables were fabricated. This cable had 325 mm 2 copper stranded former inside the HTS conductor and a 310 mm 2 copper shield layer on the HTS shield layer for over-current protection. These cables withstood an over-current of 63.0 kA for 0.6 s, which is the worst situation for 275 kV systems. The partial discharge (PD) and V- t characteristics of a liquid nitrogen (LN 2)/polypropylene (PP) laminated paper composite insulation system have been integrated into the design of the insulation for the 275 kV cable. The results revealed that the PD inception stress (PDIE) did not depend on the insulation thickness, and that lifetime indices of V- t characteristics at PD inception were as high as about 80-100.

  2. Nuclear instrumentation cable end seal

    Science.gov (United States)

    Cannon, Collins P.; Brown, Donald P.

    1979-01-01

    An improved coaxial end seal for hermetically sealed nuclear instrumentation cable exhibiting an improved breakdown pulse noise characteristic under high voltage, high temperature conditions. A tubular insulator body has metallized interior and exterior surface portions which are braze sealed to a center conductor and an outer conductive sheath. The end surface of the insulator body which is directed toward the coaxial cable to which it is sealed has a recessed surface portion within which the braze seal material terminates.

  3. ELECTROSTATIC PROCESSES IN POWER CABLES

    Directory of Open Access Journals (Sweden)

    G.V. Bezprozvannych

    2013-09-01

    Full Text Available Observation of contact electrification of power cable samples is made. It is revealed that the contact potential difference and the capacity formed under separation of free charges on the surfaces of the contacting materials depend on cable design, applied materials, and inspection schemes. Time series of capacity drift and dielectric loss tangent caused by instability of triboelectric charging of the contacting surfaces are presented.

  4. Industrial Large Scale Applications of Superconductivity -- Current and Future Trends

    Science.gov (United States)

    Amm, Kathleen

    2011-03-01

    Since the initial development of NbTi and Nb3Sn superconducting wires in the early 1960's, superconductivity has developed a broad range of industrial applications in research, medicine and energy. Superconductivity has been used extensively in NMR low field and high field spectrometers and MRI systems, and has been demonstrated in many power applications, including power cables, transformers, fault current limiters, and motors and generators. To date, the most commercially successful application for superconductivity has been the high field magnets required for magnetic resonance imaging (MRI), with a global market well in excess of 4 billion excluding the service industry. The unique ability of superconductors to carry large currents with no losses enabled high field MRI and its unique clinical capabilities in imaging soft tissue. The rapid adoption of high field MRI with superconducting magnets was because superconductivity was a key enabler for high field magnets with their high field uniformity and image quality. With over 30 years of developing MRI systems and applications, MRI has become a robust clinical tool that is ever expanding into new and developing markets. Continued innovation in system design is continuing to address these market needs. One of the key questions that innovators in industrial superconducting magnet design must consider today is what application of superconductivity may lead to a market on the scale of MRI? What are the key considerations for where superconductivity can provide a unique solution as it did in the case of MRI? Many companies in the superconducting industry today are investigating possible technologies that may be the next large market like MRI.

  5. Approach for Wide Use of Diagnostic Method for XLPE Cables Using Harmonics in AC Loss Current

    Science.gov (United States)

    Tsujimoto, Tomiyuki; Nakade, Masahiko; Yagi, Yukihiro; Ishii, Noboru

    Water tree is one of the degradation aspects of XLPE cables used for under-ground distribution or transmission lines. We have developed the loss current method using 3rd harmonic in AC loss current for cable diagnosis. Harmonic components in loss current arise as a result of the non-linear voltage-current characteristics of water trees. We confirmed that the 3rd harmonic in AC loss current had good correlation with water tree growth and break down strength. After that, we have applied this method to the actual 66kV XLPE cable lines. Up to now, the number of the application results is more than 130 lines. In case of cable lines terminated at gas-insulated switchgear (GIS), we have to remove the lightning arrestor (LA) and the potential transformer (PT) out of the test circuit. The reason is that we are afraid that each of LA and PT disturbs the degradation signal from cable lines. It takes extra time (1 or 2 days) and costs more to remove LA and PT in GIS out of a circuit. In order to achieve easy and reasonable diagnosis, we have developed a new method for cable lines terminated at GIS, by utilizing a technique, which enables to reduce signal of LA and PT from disturbed signal of cable lines. We confirmed the effect of the new method by experiments with actual cables.

  6. Radiation hard micro-coaxial cables for the ATLAS liquid argon calorimeters

    CERN Document Server

    Bonivento, W; Imbert, P; de La Taille, C

    2000-01-01

    The ATLAS collaboration has chosen for the electromagnetic barrel calorimeter and for all the end-cap calorimeters a sampling technique, with liquid argon as the active medium. The read-out electronics and the calibration pulsers are located in boxes outside the cryostats housing the detectors. Signals are transmitted between the detectors and the electronic boxes through custom-designed micro- coaxial cables, which are the subject of this paper. These cables have to satisfy very stringent tolerances in terms of signal transmission, dimensions and radiation hardness. Following a successful pre-series production, these cables have been selected for equipping the ATLAS calorimeter. (16 refs).

  7. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  8. Non destructive testing of medium and high voltage cables with a transportable radiography system

    OpenAIRE

    2010-01-01

    A power cable is the most important part in a power transmission system. The cables must be total quality dedicated andcertified for development, manufacturing and installation, however are exposed to a corrosive environment. The purpose ofthis paper is to show that the fast neutron radiography with a transportable system is a solution to find defects in the cablesand reduce the cost of inspection. The design, regarding the materials considered, was compatible with the European UnionDirective...

  9. A fiber-optical cable television system using a reflective semiconductor optical amplifier

    Science.gov (United States)

    Peng, P. C.; Shiu, K. C.; Liu, W. C.; Chen, K. J.; Lu, H. H.

    2013-02-01

    This investigation demonstrates a fiber-optical cable television system using a reflective semiconductor optical amplifier (RSOA) for uplink transmission. The downstream signal is cable television and the upstream signal is generated by remodulating the downstream signal via an RSOA with a radio-frequency signal. Favorable carrier-to-noise ratio, composite second-order, and composite triple beat are obtained for the downstream and the upstream signal is successfully transmitted over 60 km of single-mode fiber.

  10. Parametric Vibration and Vibration Reduction of Cables in Cable-stayed Space Latticed Structure

    Institute of Scientific and Technical Information of China (English)

    BAO Yan; ZHOU Dai; LIU Jie

    2008-01-01

    Mechanical model and vibration equation of a cable in cable-stayed sparse latticed structure (CSLS) under external axial excitation were founded. Determination of the mass lumps and natural frequencies supplied by the space latticed structure (SLS) was analyzed. Multiple scales method (MSM) was introduced to analyze the characteristics of cable's parametric vibration, and the precise time-integration method (PTIM) was used to solve vibration equation. The vibration behavior of a cable is closely relative to the frequency ratio of the cable and SLS. The cable's parametric vibration caused by the external axial excitation easily occurs if the frequency ratio of the cable and SLS is in a certain range, and the cable's vibration amplitude varies greatly even if the initial disturbance supplied by SLS changes a little. Furthermore, the mechanical model and vibration equation of the composite cable system consisting of main cables and assistant cables were studied. The parametric analysis such as the pre-tension level and arrangement of the assistant cables was carried out. Due to the assistant cables, the single-cable vibration mode can be transferred to the global vibration mode, and the stiffness and damping of the cable system are enhanced. The natural frequencies of the composite cable system with the curve line arrangement of assistant cables are higher than those with the straight-line arrangement and the former is more effective than the latter on the cable's vibration suppression.

  11. Long-term operating characteristics of Japan’s first in-grid HTS power cable

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, Tetsutaro, E-mail: nakano.tetsutaro@tepco.co.jp [Tokyo Electric Power Company, 4-1 Egasaki-cho, Tsurumi-ku, Yokohama 230-8510 (Japan); Maruyama, Osamu; Honjo, Shoichi [Tokyo Electric Power Company, 4-1 Egasaki-cho, Tsurumi-ku, Yokohama 230-8510 (Japan); Watanabe, Michihiko; Masuda, Takato; Hirose, Masayuki [Sumitomo Electric Industries, Ltd., 1-1-3 Shimaya, Konohana-ku, Osaka 554-004 (Japan); Shimoda, Masahiro; Nakamura, Naoko; Yaguchi, Hiroharu; Machida, Akito [Mayekawa Mfg. Co., Ltd., 2000 Tatsuzawa, Moriya-shi, Ibaraki 302-0018 (Japan)

    2015-11-15

    Highlights: • The in-grid operation had continued for more than one year without serious troubles. • The LN{sub 2} temperature and pressure were controlled stably within the preset range. • No degradation of I{sub c} occurred against the designed value after in-grid operation. • The degradation rate of cooling power differed among the refrigerators. - Abstract: Tokyo Electric Power Company, Sumitomo Electric Industries, Ltd and Mayekawa Mfg. Co., Ltd have jointly conducted the first in-grid demonstration test of a high-temperature superconducting (HTS) cable in Japan, from FY2007 to FY2013. The objective of this project is to evaluate the reliability, stability and other characteristics of the system. The cable structure used in this project is the type of three-in-one cable. As a coolant, sub-cooled liquid nitrogen flows through the gap between the corrugated cryostat and the three cable cores. This structure can realize compactness and reduce heat invasion compared with three single-core HTS cables housed in separate cryostats. The cooling system consists of six refrigerators, two circulation pumps and a reservoir tank. Each refrigerator has a cooling power of 1.0 kW at 77 K, 0.8 kW at 67 K. The number of operating refrigerators is controlled so that the coolant temperature at the cable inlet is kept to preset value. The HTS cable was connected to the live electricity grid from October 29, 2012 to December 25, 2013. In-grid operation continued for more than one year without any accidental interruption of operation or other operating issues. During this time, we studied the operating performance of the HTS cable in dependence on the sub-cooled LN{sub 2} temperature.

  12. Improvement of superconducting cylindrical linear induction motor; Chodendo entokeitan ichiji rinia yudo mota no tokusei kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kikuma, T.; Tomita, M.; Ishiyama, A. [Waseda Univ., Tokyo (Japan)

    1999-11-10

    For the purpose of we examining the effect of characteristics and ac loss under real machine operating environment of the alternating current superconductivity winding for a realization of the superconductive AC machine vessel, cylindrical shortness first linear guiding motor which used NbTi/CuNi superconducting cable for the primary winding was produced experimentally. The coil number was increased from 6 in 14 this time, and the optimization of the primary current was done, and the improvement on characteristics was attempted. Here, starting torque characteristics, quenching detection protection control circuit are reported. (NEDO)

  13. Optical Measurement of Cable and String Vibration

    Directory of Open Access Journals (Sweden)

    Y. Achkire

    1998-01-01

    Full Text Available This paper describes a non contacting measurement technique for the transverse vibration of small cables and strings using an analog position sensing detector. On the one hand, the sensor is used to monitor the cable vibrations of a small scale mock-up of a cable structure in order to validate the nonlinear cable dynamics model. On the other hand, the optical sensor is used to evaluate the performance of an active tendon control algorithm with guaranteed stability properties. It is demonstrated experimentally, that a force feedback control law based on a collocated force sensor measuring the tension in the cable is feasible and provides active damping in the cable.

  14. Installation of optical shieldwire on existing transmission lines

    Energy Technology Data Exchange (ETDEWEB)

    Trausch, S. (Fluor Daniel, Chicago, IL (US))

    1988-01-01

    The author reports the development of a communication network between Minneapolis and Chicago. The fiber optics cable was installed, with a few exceptions, on existing transmission lines. Most of the utilized transmission structures are 138-161 kV wood pole H-frame structures with two shield wires. One of the shield wires was removed and replaced by the fiber optic cable. In a 30-mile section the fiber optic cable was installed on 345 kV lines supported on steel poles and steel lattice towers. Generally, however, 345 kV lines were avoided because it was difficult to obtain outages for the installation of the optic ground wire (OPGW). In some cases, where existing transmission line structures could not be used, the fiber optic cable was installed on 30- to 50-foot single wood pole structures designed to support this cable.

  15. A wave lab inside a coaxial cable

    Science.gov (United States)

    Serra, João M.; Brito, Miguel C.; Alves, J. Maia; Vallera, A. M.

    2004-09-01

    The study of electromagnetic wave propagation in a coaxial cable can be a powerful approach to the study of waves at an undergraduate level. This study can explore different experimental situations, going from those where the finite velocity of propagation must be considered (distributed or transmission line behaviour), to those where this velocity may be considered infinite (lumped behaviour). We believe that the student observation of the existence of these two regimes can be important for the understanding of wave phenomena in general. In this work we show that this can be achieved using low-cost equipment and a set of quite simple experiments, such as the measurement of wave propagation velocity or the study of standing waves and resonance. The results obtained in a coherent set of selected experiments are discussed.

  16. Nexan receives two CMS Awards of the Year 2002 for its work in superconductivity

    CERN Multimedia

    2002-01-01

    Nexans has received one Crystal and one Gold CMS award for its contribution to the Compact Muon Solenoid Detector project. The CMS detector is designed to study the fundamental constituents of matter. The prizes recompense the excellent quality of Nexans' service in the supply of the necessary low-temperature superconducting cables sheathed in extruded aluminium.

  17. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  18. Basic principle of superconductivity

    OpenAIRE

    De Cao, Tian

    2007-01-01

    The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

  19. Advanced Power Transmission of the Future

    OpenAIRE

    Rabinowitz, Mario

    2003-01-01

    Electric power is a vital ingredient of modern society. This article is written to provide an insight into the physics and engineering that go into the transmission of electric power and its potential modernization. Topics covered will be Transmission and Distribution, Comparing Overhead and Underground Delivery, Pros and Cons of Underground Delivery, Superconducting Transmission, Cryorisistive Delivery, Hyperconductivity, and Metal-Plated Graphite Fibers.

  20. AC losses in circular arrangements of parallel superconducting tapes

    DEFF Research Database (Denmark)

    Kühle (fratrådt), Anders Van Der Aa; Træholt, Chresten; Däumling, Manfred

    1998-01-01

    The DC and AC properties of superconducting tapes connected in parellel and arranged in a single closed layer on two tubes (correspondig to power cable models with infinite pitch) with different diameters are compared. We find that the DC properties, i.e. the critical currents of the two arrangem......The DC and AC properties of superconducting tapes connected in parellel and arranged in a single closed layer on two tubes (correspondig to power cable models with infinite pitch) with different diameters are compared. We find that the DC properties, i.e. the critical currents of the two...... arrangements, scale with the number of tapes and hence appear to be independent of the diameter.However, the AC loss per tape (for a given current per tape) appears to decrease with increasing diameter of the circular arrangement. Compared to a model for the AC loss in a continuous superconducting layer...... (Monoblock model) the measured values are about half an order of magnitude higher than expected for the small diameter arrangement. When compared to the AC loss calculated for N individual superconducting tapes using a well known model ( Norris elliptical) the difference is slightly smaller....