WorldWideScience

Sample records for superconducting tokamak reactors

  1. Conceptual design of superconducting magnet systems for the Argonne Tokamak Experimental Power Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, S.T.; Turner, L.R.; Mills, F.E.; DeMichele, D.W.; Smelser, P.; Kim, S.H.

    1976-01-01

    As an integral effort in the Argonne Tokamak Experimental Power Reactor Conceptual Design, the conceptual design of a 10-tesla, pure-tension superconducting toroidal-field (TF) coil system has been developed in sufficient detail to define a realistic design for the TF coil system that could be built based upon the current state of technology with minimum technological extrapolations. A conceptual design study on the superconducting ohmic-heating (OH) coils and the superconducting equilibrium-field (EF) coils were also completed. These conceptual designs are developed in sufficient detail with clear information on high current ac conductor design, cooling, venting provision, coil structural support and zero loss poloidal coil cryostat design. Also investigated is the EF penetration into the blanket and shield.

  2. The ARIES tokamak reactor study

    Energy Technology Data Exchange (ETDEWEB)

    1989-10-01

    The ARIES study is a community effort to develop several visions of tokamaks as fusion power reactors. The aims are to determine the potential economics, safety, and environmental features of a range of possible tokamak reactors, and to identify physics and technology areas with the highest leverage for achieving the best tokamak reactor. Three ARIES visions are planned, each having a different degree of extrapolation from the present data base in physics and technology. The ARIES-I design assumes a minimum extrapolation from current tokamak physics (e.g., 1st stability) and incorporates technological advances that can be available in the next 20 to 30 years. ARIES-II is a DT-burning tokamak which would operate at a higher beta in the 2nd MHD stability regime. It employs both potential advances in the physics and expected advances in technology and engineering. ARIES-II will examine the potential of the tokamak and the D{sup 3}He fuel cycle. This report is a collection of 14 papers on the results of the ARIES study which were presented at the IEEE 13th Symposium on Fusion Engineering (October 2-6, 1989, Knoxville, TN). This collection describes the ARIES research effort, with emphasis on the ARIES-I design, summarizing the major results, the key technical issues, and the central conclusions.

  3. STARFIRE: a commercial tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The purpose of this document is to provide an interim status report on the STARFIRE project for the period of May to September 1979. The basic objective of the STARFIRE project is to develop a design concept for a commercial tokamak fusion electric power plant based on the deuterium/tritium/lithium fuel cycle. The key technical objective is to develop the best embodiment of the tokamak as a power reactor consistent with credible engineering solutions to design problems. Another key goal of the project is to give careful attention to the safety and environmental features of a commercial fusion reactor.

  4. Prospects for Tokamak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sheffield, J.; Galambos, J.

    1995-04-01

    This paper first reviews briefly the status and plans for research in magnetic fusion energy and discusses the prospects for the tokamak magnetic configuration to be the basis for a fusion power plant. Good progress has been made in achieving fusion reactor-level, deuterium-tritium (D-T) plasmas with the production of significant fusion power in the Joint European Torus (up to 2 MW) and the Tokamak Fusion Test Reactor (up to 10 MW) tokamaks. Advances on the technologies of heating, fueling, diagnostics, and materials supported these achievements. The successes have led to the initiation of the design phases of two tokamaks, the International Thermonuclear Experimental Reactor (ITER) and the US Toroidal Physics Experiment (TPX). ITER will demonstrate the controlled ignition and extended bum of D-T plasmas with steady state as an ultimate goal. ITER will further demonstrate technologies essential to a power plant in an integrated system and perform integrated testing of the high heat flux and nuclear components required to use fusion energy for practical purposes. TPX will complement ITER by testing advanced modes of steady-state plasma operation that, coupled with the developments in ITER, will lead to an optimized demonstration power plant.

  5. Structural materials for large superconducting magnets for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Long, C.J.

    1976-12-01

    The selection of structural materials for large superconducting magnets for tokamak-type fusion reactors is considered. The important criteria are working stress, radiation resistance, electromagnetic interaction, and general feasibility. The most advantageous materials appear to be face-centered-cubic alloys in the Fe-Ni-Cr system, but high-modulus composites may be necessary where severe pulsed magnetic fields are present. Special-purpose structural materials are considered briefly.

  6. SLPX: superconducting long-pulse tokamak experiment. [NbTi

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.; File, J.; Bronner, G.

    1978-09-25

    The principal objectives of the SLPX (Superconducting Long-Pulse Experiment) are: (1) to demonstrate quasi-steady operation of 3 to 5 MA hydrogen and deuterium tokamak plasmas at high temperature and high thermal wall loading, and (2) to develop reliable operation of prototypical tokamak reactor magnetics systems featuring a toroidal assembly of high-field niobium-tin coils, and a system of pulsed niobium-titanium superconducting poloidal-field coils. This paper describes the status of the engineering design features of the SLPX, with emphasis on the magnetics systems. The toroidal-field coils have an aperture of 3.1 x 4.8 m and can operate with a maximum field at the conductor of 12 T. The superconducting poloidal field magnetics system consists of a pulsed NbTi central solenoid and a set of dc NbTi equilibrium-field coils. The entire machine is enclosed in an outer vacuum container equipped with re-entrant ports that provide ambient access to the room-temperature plasma vessel.

  7. Conceptual design study of the moderate size superconducting spherical tokamak power plant

    Science.gov (United States)

    Gi, Keii; Ono, Yasushi; Nakamura, Makoto; Someya, Youji; Utoh, Hiroyasu; Tobita, Kenji; Ono, Masayuki

    2015-06-01

    A new conceptual design of the superconducting spherical tokamak (ST) power plant was proposed as an attractive choice for tokamak fusion reactors. We reassessed a possibility of the ST as a power plant using the conservative reactor engineering constraints often used for the conventional tokamak reactor design. An extensive parameters scan which covers all ranges of feasible superconducting ST reactors was completed, and five constraints which include already achieved plasma magnetohydrodynamic (MHD) and confinement parameters in ST experiments were established for the purpose of choosing the optimum operation point. Based on comparison with the estimated future energy costs of electricity (COEs) in Japan, cost-effective ST reactors can be designed if their COEs are smaller than 120 mills kW-1 h-1 (2013). We selected the optimized design point: A = 2.0 and Rp = 5.4 m after considering the maintenance scheme and TF ripple. A self-consistent free-boundary MHD equilibrium and poloidal field coil configuration of the ST reactor were designed by modifying the neutral beam injection system and plasma profiles. The MHD stability of the equilibrium was analysed and a ramp-up scenario was considered for ensuring the new ST design. The optimized moderate-size ST power plant conceptual design realizes realistic plasma and fusion engineering parameters keeping its economic competitiveness against existing energy sources in Japan.

  8. Simulations of burn dynamics in tokamak fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mantsinen, M.J.; Salomaa, R.R.E.

    1997-10-01

    The global dynamics of tokamak reactors is investigated with the time-dependent, volume-averaged (0D) particle and power balance code FRESCO (Fusion REactor Simulation COde). The main emphasis is on studies of reactivity transients during tokamak start-up and shut down, as well as after sudden changes in plasma and tokamak parameters. In particular, the plasma responses to changes in the confinement, fuelling rates and impurity concentrations are considered. 76 refs.

  9. Tokamak experimental power reactor conceptual design. Volume I

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    A conceptual design has been developed for a tokamak Experimental Power Reactor to operate at net electrical power conditions with a plant capacity factor of 50 percent for 10 years. The EPR operates in a pulsed mode at a frequency of approximately 1/min., with an approximate 75 percent duty cycle, is capable of producing approximately 72 MWe and requires 42 MWe. The annual tritium consumption is 16 kg. The EPR vacuum chamber is 6.25 m in major radius and 2.4 m in minor radius, is constructed of 2-cm thick stainless steel, and has 2-cm thick detachable, beryllium-coated coolant panels mounted on the interior. An 0.28 m stainless steel blanket and a shield ranging from 0.6 to 1.0 m surround the vacuum vessel. The coolant is H/sub 2/O. Sixteen niobium-titanium superconducting toroidal-field coils provide a field of 10 T at the coil and 4.47 T at the plasma. Superconducting ohmic-heating and equilibrium-field coils provide 135 V-s to drive the plasma current. Plasma heating is accomplished by 12 neutral beam-injectors, which provide 60 MW. The energy transfer and storage system consists of a central superconducting storage ring, a homopolar energy storage unit, and a variety of inductor-converters.

  10. Decommissioning of the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    E. Perry; J. Chrzanowski; C. Gentile; R. Parsells; K. Rule; R. Strykowsky; M. Viola

    2003-10-28

    The Tokamak Fusion Test Reactor (TFTR) at the Princeton Plasma Physics Laboratory was operated from 1982 until 1997. The last several years included operations with mixtures of deuterium and tritium. In September 2002, the three year Decontamination and Decommissioning (D&D) Project for TFTR was successfully completed. The need to deal with tritium contamination as well as activated materials led to the adaptation of many techniques from the maintenance work during TFTR operations to the D&D effort. In addition, techniques from the decommissioning of fission reactors were adapted to the D&D of TFTR and several new technologies, most notably the development of a diamond wire cutting process for complex metal structures, were developed. These techniques, along with a project management system that closely linked the field crews to the engineering staff who developed the techniques and procedures via a Work Control Center, resulted in a project that was completed safely, on time, and well below budget.

  11. Tokamak reactor cost model based on STARFIRE/WILDCAT costing

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K. Jr.

    1983-03-01

    A cost model is presented which is useful for survey and comparative studies of tokamak reactors. The model is heavily based on STARFIRE and WILDCAT costing guidelines, philosophies, and procedures and reproduces the costing for these devices quite accurately.

  12. Feasibility of a multi-purpose demonstration neutron source based on a compact superconducting spherical tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Guillemaut, C., E-mail: christophe.guillemaut@ccfe.ac.uk [Insituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Ciudad Universitaria, 04511 Coyoacán, D.F. (Mexico); Herrera Velázquez, J.J.E. [Insituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A.P. 70-543, Ciudad Universitaria, 04511 Coyoacán, D.F. (Mexico); Suarez, A. [Laboratorio Nacional de Fusión, Asociación EURATOM-CIEMAT, 28040 Madrid (Spain)

    2013-12-15

    Tokamak neutron sources would allow near term applications of fusion such as fusion–fission hybrid reactors, elimination of nuclear wastes, production of radio-isotopes for nuclear medicine, material testing and tritium production. The generation of neutrons with fusion plasmas does not require energetic efficiency; thus, nowadays tokamak technologies would be sufficient for such purposes. This paper presents some key technical details of a compact (∼1.8 m{sup 3} of plasma) superconducting spherical tokamak neutron source (STNS), which aims to demonstrate the capabilities of such a device for the different possible applications already mentioned. The T-11 transport model was implemented in ASTRA for 1.5 D simulations of heat and particle transport in the STNS core plasma. According to the model predictions, total neutron production rates of the order of ∼10{sup 15} s{sup −1} and ∼10{sup 13} s{sup −1} can be achieved with deuterium/tritium and deuterium/deuterium respectively, with 9 MW of heating power, 1.4 T of toroidal magnetic field and 1.5 MA of plasma current. Engineering estimates indicate that such scenario could be maintained during ∼20 s and repeated every ∼5 min. The viability of most of tokamak neutron source applications could be demonstrated with a few of these cycles and around ∼100 cycles would be required in the worst cases.

  13. Impurity control in near-term tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Stacey, W.M. Jr.; Smith, D.L.; Brooks, J.N.

    1976-10-01

    Several methods for reducing impurity contamination in near-term tokamak reactors by modifying the first-wall surface with a low-Z or low-sputter material are examined. A review of the sputtering data and an assessment of the technological feasibility of various wall modification schemes are presented. The power performance of a near-term tokamak reactor is simulated for various first-wall surface materials, with and without a divertor, in order to evaluate the likely effect of plasma contamination associated with these surface materials.

  14. Conceptual studies of toroidal field magnets for the tokamak experimental power reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Buncher, B.R.; Chi, J.W.H.; Fernandez, R.

    1976-10-26

    This report documents the principal results of a Conceptual Design Study for the Superconducting Toroidal Field System for a Tokamak Experimental Power Reactor. Two concepts are described for peak operating fields at the windings of 8 tesla, and 12 tesla, respectively. The design and manufacturing considerations are treated in sufficient detail that cost and schedule estimates could be developed. Major uncertainties in the design are identified and their potential impact discussed, along with recommendations for the necessary research and development programs to minimize these uncertainties. The minimum dimensions of a sub-size test coil for experimental qualification of the full size design are developed and a test program is recommended.

  15. Status of neutron diagnostics on the experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, G. Q.; Hu, L. Q., E-mail: lqhu@ipp.ac.cn; Pu, N.; Zhou, R. J.; Xiao, M.; Cao, H. R.; Li, K.; Huang, J.; Xu, G. S.; Wan, B. N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Zhu, Y. B. [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States); Fan, T. S.; Peng, X. Y.; Du, T. F.; Ge, L. J. [School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Chengfu Road 201, 100871 Beijing (China)

    2016-11-15

    Neutron diagnostics have become a significant means to study energetic particles in high power auxiliary heating plasmas on the Experimental Advanced Superconducting Tokamak (EAST). Several kinds of neutron diagnostic systems have been implemented for time-resolved measurements of D-D neutron flux, fluctuation, emission profile, and spectrum. All detectors have been calibrated in laboratory, and in situ calibration using {sup 252}Cf neutron source in EAST is in preparation. A new technology of digitized pulse signal processing is adopted in a wide dynamic range neutron flux monitor, compact recoil proton spectrometer, and time of flight spectrometer. Improvements will be made continuously to the system to achieve better adaptation to the EAST’s harsh γ-ray and electro-magnetic radiation environment.

  16. Observation of MHD phenomenon for SST-1 superconducting tokamak

    Science.gov (United States)

    Bhandarkar, Manisha; Dhongde, Jasraj; Pradhan, Subrata

    2017-04-01

    Steady State Superconducting Tokamak (SST-1) is a medium size Tokamak (major radius = 1.1 m, minor radius = 0.2 m) and is operational at the Institute for Plasma Research (IPR), India. In the last few experimental campaigns SST-1 has successfully achieved plasma current in order of 60-70kA and plasma duration in excess of ∼ 500 ms at a central magnetic field of 1.5T. An attempt has made to study the behavior of the magneto-hydrodynamic (MHD) activity during different phases of plasma pulse which leads to major/minor disruptions, its present modes (poloidal/toroidal mode number i.e. m = 2, n = 1) impact on plasma confinement and signature of lock mode and its frequency in the SST-1 plasma using experimental data from Mirnov signals. Observed MHD phenomenon has also been correlated with other diagnostics (i.e. ECE, Density, Soft X-Ray etc.) and heating system (ECRH) for the recent campaigns of SST-1.

  17. Development of frequency modulation reflectometer for Korea Superconducting Tokamak Advanced Research tokamak.

    Science.gov (United States)

    Seo, Seong-Heon; Park, Jinhyung; Wi, H M; Lee, W R; Kim, H S; Lee, T G; Kim, Y S; Kang, Jin-Seob; Bog, M G; Yokota, Y; Mase, A

    2013-08-01

    Frequency modulation reflectometer has been developed to measure the plasma density profile of the Korea Superconducting Tokamak Advanced Research tokamak. Three reflectometers are operating in extraordinary polarization mode in the frequency range of Q band (33.6-54 GHz), V band (48-72 GHz), and W band (72-108 GHz) to measure the density up to 7 × 10(19) m(-3) when the toroidal magnetic field is 2 T on axis. The antenna is installed inside of the vacuum vessel. A new vacuum window is developed by using 50 μm thick mica film and 0.1 mm thick gold gasket. The filter bank of low pass filter, notch filter, and Faraday isolator is used to reject the electron cyclotron heating high power at attenuation of 60 dB. The full frequency band is swept in 20 μs. The mixer output is directly digitized with sampling rate of 100 MSamples/s. The phase is obtained by using wavelet transform. The whole hardware and software system is described in detail and the measured density profile is presented as a result.

  18. Tokamak fusion reactors with less than full tritium breeding

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K. Jr.; Gilligan, J.G.; Jung, J.

    1983-05-01

    A study of commercial, tokamak fusion reactors with tritium concentrations and tritium breeding ratios ranging from full deuterium-tritium operation to operation with no tritium breeding is presented. The design basis for these reactors is similar to those of STARFIRE and WILDCAT. Optimum operating temperatures, sizes, toroidal field strengths, and blanket/shield configurations are determined for a sequence of reactor designs spanning the range of tritium breeding, each having the same values of beta, thermal power, and first-wall heat load. Additional reactor parameters, tritium inventories and throughputs, and detailed costs are calculated for each reactor design. The disadvantages, advantages, implications, and ramifications of tritium-depleted operation are presented and discussed.

  19. Improvement of system code importing evaluation of Life Cycle Analysis of tokamak fusion power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kobori, Hikaru [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Kasada, Ryuta, E-mail: r-kasada@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan); Hiwatari, Ryoji [Central Research Institute of Electric Power Industry, Tokyo (Japan); Konishi, Satoshi [Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011 (Japan)

    2016-11-01

    Highlights: • We incorporated the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code. • We calculated CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. • We found that the objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. • The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. • The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant. - Abstract: This study incorporate the Life Cycle Analysis (LCA) of tokamak type DEMO reactor and following commercial reactors as an extension of a system code to calculate CO{sub 2} emissions from reactor construction, operation and decommissioning that is considered as a major environmental cost. Competitiveness of tokamak fusion power reactors is expected to be evaluated by the cost and environmental impact represented by the CO{sub 2} emissions, compared with present and future power generating systems such as fossil, nuclear and renewables. Result indicated that (1) The objective of conceptual design of the tokamak fusion power reactor is moved by changing evaluation index. (2) The tokamak fusion reactor can reduce CO{sub 2} emissions in the life cycle effectively by reduction of the amount involved in the replacement of internal components. (3) The tokamak fusion reactor achieves under 0.174$/kWh electricity cost, the tokamak fusion reactor is contestable with 1500 degrees-class LNG-fired combined cycle power plant.

  20. Diamagnetic loop measurement in Korea Superconducting Tokamak Advanced Research machine.

    Science.gov (United States)

    Bak, J G; Lee, S G; Kim, H S

    2011-06-01

    Diamagnetic loop (DL), which consists of two poloidal loops inside the vacuum vessel, is used to measure the diamagnetic flux during a plasma discharge in the Korea Superconducting Tokamak Advanced Research (KSTAR) machine. The vacuum fluxes in the DL signal can be compensated up to 0.1 mWb by using the coefficients, which are obtained from experimental investigations, in the vacuum flux measurements during vacuum shots under same operational conditions of magnetic coils for plasma experiment in the KSTAR machine. The maximum error in the diamagnetic flux measurement due to the errors of the coefficients was estimated as ∼0.22 mWb. From the diamagnetic flux measurements for the ohmically heated circular plasmas in the KSTAR machine, the stored energy agrees well with the estimated kinetic energy within the discrepancy of 25%. When the electron cyclotron heating, the neutral beam injection, and the ion cyclotron resonance heating are added to the ohmically heated limiter plasmas, the additional heating effects can be clearly observed from the increase of the stored energy evaluated in the DL measurement. © 2011 American Institute of Physics

  1. Photo-neutron Production on HT-7 Superconducting Tokamak

    Science.gov (United States)

    Zhu, Yubao

    2005-10-01

    Experimental studies of photo-neutron production on HT-7 superconducting tokamak are presented. Time-resolved and spatial-distributed neutron fluxes are obtained using several polyethylene moderated BF3 and ^3He proportional counters as well as ZnS(Ag) scintillator. Comparisons of neutron production between helium and deuterium discharges are performed. Beside the commonly observed photo-neutron at the early times of plasma start-up and the late disruption stage, remarkable photo-neutrons are also observed on the discharges plateau period under low plasma density regime and non-inductively current driven conditions. The magnitude and time-evolution of neutron flux correlate very well with hard X-ray and γ emissions. Photo-neutron flux distribution has a characteristic of toroidal asymmetry, which implies the localization of photonuclear reactions. The analyses confirm that photo-neutron productions are closely related to plasma density, loop voltage, MHD instability, energetic particles, impurity population and plasma-wall interactions.

  2. WILDCAT: a catalyzed D-D tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    Evans, K. Jr.; Baker, C.C.; Brooks, J.N.

    1981-11-01

    WILDCAT is a conceptual design of a catalyzed D-D, tokamak, commercial, fusion reactor. WILDCAT utilizes the beneficial features of no tritium breeding, while not extrapolating unnecessarily from existing D-T designs. The reactor is larger and has higher magnetic fields and plasma pressures than typical D-T devices. It is more costly, but eliminates problems associated with tritium breeding and has tritium inventories and throughputs approximately two orders of magnitude less than typical D-T reactors. There are both a steady-state version with Alfven-wave current drive and a pulsed version. Extensive comparison with D-T devices has been made, and cost and safety analyses have been included. All of the major reactor systems have been worked out to a level of detail appropriate to a complete, conceptual design.

  3. Alpha Particle Physics Experiments in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Budny, R.V.; Darrow, D.S.; Medley, S.S.; Nazikian, R.; Zweben, S.J.; et al.

    1998-12-14

    Alpha particle physics experiments were done on the Tokamak Fusion Test Reactor (TFTR) during its deuterium-tritium (DT) run from 1993-1997. These experiments utilized several new alpha particle diagnostics and hundreds of DT discharges to characterize the alpha particle confinement and wave-particle interactions. In general, the results from the alpha particle diagnostics agreed with the classical single-particle confinement model in magnetohydrodynamic (MHD) quiescent discharges. Also, the observed alpha particle interactions with sawteeth, toroidal Alfvén eigenmodes (TAE), and ion cyclotron resonant frequency (ICRF) waves were roughly consistent with theoretical modeling. This paper reviews what was learned and identifies what remains to be understood.

  4. 3-D Monte Carlo analyses of the shielding system in a tokamak fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gallina, M.; Petrizzi, L.; Rado, V. (ENEA, Frascati (Italy). Centro Ricerche Energia)

    1990-01-01

    As part of the ITER (International Tokamak Experimental Reactor) design program, 3D neutronics calculations have been carried out to assess the shielding system performance in the basic machine configuration by means of the Monte Carlo Neutron Photon (MCNP) transport code (3-B version). The main issue is the estimation of the nuclear heat and radiation loads on the toroidal field superconducting coils. ''Self generated weight windows'' and source biasing technique have been used to treat deep penetration through the bulk shield and streaming through the system gaps and openings. The main results are reported together with a discussion of the computing methods, especially of the variance reduction techniques adopted. (author).

  5. 3-D Monte Carlo analyses of shielding system in tokamak fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gallina, M.; Petrizzi, L.; Rado, V.

    1990-09-01

    Within the framework of the ITER (International Tokamak Experimental Reactor) design program, 3D neutronics calculations were carried out to assess system shielding performances in the basic machine configuration by means of the Monte Carlo Neutron Photon (MCNP) code (3-B version). The main issue concerns the estimation of the nuclear heat and radiation loads on the toroidal field superconducting coils. 'Self generated weight windows' (w.w.) and source biasing techniques were used to treat the deep penetration through the bulk shield and streaming through the system gaps and openings. The main results are reported together with a discussion of the computing methods, especially of the variance reduction techniques adopted.

  6. New dual gas puff imaging system with up-down symmetry on experimental advanced superconducting tokamak

    DEFF Research Database (Denmark)

    Liu, S. C.; Shao, L. M.; Zweben, S. J.

    2012-01-01

    advanced superconducting tokamak (EAST). The two views are up-down symmetric about the midplane and separated by a toroidal angle of 66.6 degrees. A linear manifold with 16 holes apart by 10 mm is used to form helium gas cloud at the 130x130 mm (radial versus poloidal) objective plane. A fast camera...

  7. Maintenance features of the Compact Ignition Tokamak fusion reactor

    Energy Technology Data Exchange (ETDEWEB)

    Spampinato, P.T.; Hager, E.R.

    1987-01-01

    The Compact Ignition Tokamak (CIT) is envisaged to be the next experimental machine in the US Fusion Program. Its use of deuterium/tritium fuel requires the implementation of remote handling technology for maintenance and disassembly operations. The reactor is surrounded by a close-proximity nuclear shield which is designed to permit personnel access within the test cell, one day after shutdown. With the shield in place, certain maintenance activities in the cell may be done hands-on. Maintenance on the reactor is accomplished remotely using a boom-mounted manipulator after disassembling the shield. Maintenance within the plasma chamber is accomplished with two articulated boom manipulators that are capable of operating in a vacuum environment. They are stored in a vacuum enclosure behind movable shield plugs.

  8. R&D on glass fiber reinforced epoxy resin composites for superconducting Tokamak.

    Science.gov (United States)

    Hu, Nannan; Wang, Ke; Ma, Hongming; Pan, Wanjiang; Chen, Qingqing

    2016-01-01

    The glass fiber reinforced epoxy resin composites play an important role in superconducting Tokamak, which are used to insulate the metal components, such as superconducting winding, cooling pipes, metal electrodes and so on. For the components made of metal and glass fiber reinforced epoxy resin composites, thermal shrinkage leads to non-ignorable thermal stress, therefore, much attention should be paid on the thermal shrinkage rate of glass fiber reinforced epoxy resin composites. The structural design of glass fiber reinforced epoxy resin composites should aim at reducing thermal stress. In this paper, the density, glass fiber content and thermal shrinkage rate of five insulation tubes were tested. The testing results will be applied in structural design and mechanical analysis of isolators for superconducting Tokamak.

  9. Design study of toroidal magnets for tokamak experimental power reactors. [NbTi alloys

    Energy Technology Data Exchange (ETDEWEB)

    Stekly, Z.J.J.; Lucas, E.J. (eds.)

    1976-12-01

    This report contains the results of a six-month study of superconducting toroidal field coils for a Tokamak Experimental Power Reactor to be built in the late 1980s. The designs are for 8 T and 12 T maximum magnetic field at the superconducting winding. At each field level two main concepts were generated; one in which each of the 16 coils comprising the system has an individual vacuum vessel and the other in which all the coils are contained in a single vacuum vessel. The coils have a D shape and have openings of 11.25 m x 7.5 m for the 8 T coils and 10.2 m x 6.8 m for the 12 T coils. All the designs utilize rectangular cabled conductor made from copper stabilized Niobium Titanium composite which operates at 4.2 K for the 8 T design and at 2.5 K for the 12 T design. Manufacturing procedures, processes and schedule estimates are also discussed.

  10. Simulations of the operational control of a cryogenic plant for a superconducting burning-plasma tokamak

    CERN Document Server

    Mitchell, N

    2001-01-01

    In recent proposals for next generation superconducting tokamaks, such as the ITER project, the nuclear burning plasma is confined by magnetic fields generated from a large set (up to 100 GJ stored energy) of superconducting magnets. These magnets suffer heat loads in operation from thermal and nuclear radiation from the surrounding components and plasma as well as eddy currents and AC losses generated within the magnets, together with the heat conduction through supports and resistive heat generated at the current lead transitions to room temperature. The initial cryoplant for such a tokamak is expected to have a steady state capacity of up to about 85 kW at 4.5 K, comparable to the system installed for LHC at CERN. Experimental tokamaks are expected to operate at least initially in a pulsed mode with 20-30 short plasma pulses and plasma burn periods each day. A conventional cryoplant, consisting of a cold box and a set of primary heat exchangers, is ill-suited to such a mode of operation as the instantaneou...

  11. Superconducting shielded core reactor with reduced AC losses

    Science.gov (United States)

    Cha, Yung S.; Hull, John R.

    2006-04-04

    A superconducting shielded core reactor (SSCR) operates as a passive device for limiting excessive AC current in a circuit operating at a high power level under a fault condition such as shorting. The SSCR includes a ferromagnetic core which may be either closed or open (with an air gap) and extends into and through a superconducting tube or superconducting rings arranged in a stacked array. First and second series connected copper coils each disposed about a portion of the iron core are connected to the circuit to be protected and are respectively wound inside and outside of the superconducting tube or rings. A large impedance is inserted into the circuit by the core when the shielding capability of the superconducting arrangement is exceeded by the applied magnetic field generated by the two coils under a fault condition to limit the AC current in the circuit. The proposed SSCR also affords reduced AC loss compared to conventional SSCRs under continuous normal operation.

  12. Influence of helium puff on divertor asymmetry in experimental advanced superconducting tokamak

    DEFF Research Database (Denmark)

    Liu, S. C.; Guo, H. Y.; Xu, G. S.

    2014-01-01

    Divertor asymmetries with helium puffing are investigated in various divertor configurations on Experimental Advanced Superconducting Tokamak (EAST). The outer divertor electron temperature decreases significantly during the gas injection at the outer midplane. As soon as the gas is injected...... parameters are measured by reciprocating probes at the outer midplane, showing that the electron temperature and density increase but the parallel Mach number decreases significantly due to the gas injection. Effects of poloidal E × B drifts and parallel SOL flows on the divertor asymmetry observed in EAST...

  13. Tokamak Fusion Core Experiment: design studies based on superconducting and hybrid toroidal field coils. Design overview

    Energy Technology Data Exchange (ETDEWEB)

    Flanagan, C.A. (ed.)

    1984-10-01

    This document is a design overview that describes the scoping studies and preconceptual design effort performed in FY 1983 on the Tokamak Fusion Core Experiment (TFCX) class of device. These studies focussed on devices with all-superconducting toroidal field (TF) coils and on devices with superconducting TF coils supplemented with copper TF coil inserts located in the bore of the TF coils in the shield region. Each class of device is designed to satisfy the mission of ignition and long pulse equilibrium burn. Typical design parameters are: major radius = 3.75 m, minor radius = 1.0 m, field on axis = 4.5 T, plasma current = 7.0 MA. These designs relay on lower hybrid (LHRH) current rampup and heating to ignition using ion cyclotron range of frequency (ICRF). A pumped limiter has been assumed for impurity control. The present document is a design overview; a more detailed design description is contained in a companion document.

  14. Scoping study for compact high-field superconducting net energy tokamaks

    Science.gov (United States)

    Mumgaard, R. T.; Greenwald, M.; Freidberg, J. P.; Wolfe, S. M.; Hartwig, Z. S.; Brunner, D.; Sorbom, B. N.; Whyte, D. G.

    2016-10-01

    The continued development and commercialization of high temperature superconductors (HTS) may enable the construction of compact, net-energy tokamaks. HTS, in contrast to present generation low temperature superconductors, offers improved performance in high magnetic fields, higher current density, stronger materials, higher temperature operation, and simplified assembly. Using HTS along with community-consensus confinement physics (H98 =1) may make it possible to achieve net-energy (Q>1) or burning plasma conditions (Q>5) in DIII-D or ASDEX-U sized, conventional aspect ratio tokamaks. It is shown that, by operating at high plasma current and density enabled by the high magnetic field (B>10T), the required triple products may be achieved at plasma volumes under 20m3, major radii under 2m, with external heating powers under 40MW. This is at the scale of existing devices operated by laboratories, universities and companies. The trade-offs in the core heating, divertor heat exhaust, sustainment, stability, and proximity to known plasma physics limits are discussed in the context of the present tokamak experience base and the requirements for future devices. The resulting HTS-based design space is compared and contrasted to previous studies on high-field copper experiments with similar missions. The physics exploration conducted with such HTS devices could decrease the real and perceived risks of ITER exploitation, and aid in quickly developing commercially-applicable tokamak pilot plants and reactors.

  15. Remote servicing considerations for near term tokamak power reactors (TNS). Final summary

    Energy Technology Data Exchange (ETDEWEB)

    Spampinato, P.T.

    1977-01-01

    Next generation Tokamaks require special consideration for remote servicing. Three major problems are highlighted: (1) movement of heavy components, (2) remote connection/disconnection of joints, and (3) remote cutting, welding, and leak detection. The first problem is assumed to be handled with existing expertise and is not considered. The remaining problems are thought to be minimized by considering two engineering departures from conventional tokamak design; locating the field shaping coils outside of the toroidal coils and enclosing the total device within an evacuated reactor cell. Five topics under this vacuum building concept are discussed: incremental cost, vacuum pumping, tritium containment, activation topology, and first year operations.

  16. First results from solid state neutral particle analyzer on experimental advanced superconducting tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. Z.; Zhao, J. L.; Wan, B. N.; Li, J. G. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhu, Y. B., E-mail: y.zhu@uci.edu; Heidbrink, W. W. [Department of Physics and Astronomy, University of California, Irvine, California 92697 (United States)

    2016-11-15

    Full function integrated, compact solid state neutral particle analyzers (ssNPA) based on absolute extreme ultraviolet silicon photodiode have been successfully implemented on the experimental advanced superconducting tokamak to measure energetic particle. The ssNPA system has been operated in advanced current mode with fast temporal and spatial resolution capabilities, with both active and passive charge exchange measurements. It is found that the ssNPA flux signals are increased substantially with neutral beam injection (NBI). The horizontal active array responds to modulated NBI beam promptly, while weaker change is presented on passive array. Compared to near-perpendicular beam, near-tangential beam brings more passive ssNPA flux and a broader profile, while no clear difference is observed on active ssNPA flux and its profile. Significantly enhanced intensities on some ssNPA channels have been observed during ion cyclotron resonant heating.

  17. Combined hydrogen and lithium beam emission spectroscopy observation system for Korea Superconducting Tokamak Advanced Research

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, M. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); BME NTI, Budapest (Hungary); Anda, G.; Réfy, D.; Zoletnik, S. [Wigner RCP, Euratom Association-HAS, Budapest (Hungary); Czopf, A.; Erdei, G. [Department of Atomic Physics, BME IOP, Budapest (Hungary); Guszejnov, D.; Kovácsik, Á.; Pokol, G. I. [BME NTI, Budapest (Hungary); Nam, Y. U. [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2015-07-15

    A novel beam emission spectroscopy observation system was designed, built, and installed onto the Korea Superconducting Tokamak Advanced Research tokamak. The system is designed in a way to be capable of measuring beam emission either from a heating deuterium or from a diagnostic lithium beam. The two beams have somewhat complementary capabilities: edge density profile and turbulence measurement with the lithium beam and two dimensional turbulence measurement with the heating beam. Two detectors can be used in parallel: a CMOS camera provides overview of the scene and lithium beam light intensity distribution at maximum few hundred Hz frame rate, while a 4 × 16 pixel avalanche photo-diode (APD) camera gives 500 kHz bandwidth data from a 4 cm × 16 cm region. The optics use direct imaging through lenses and mirrors from the observation window to the detectors, thus avoid the use of costly and inflexible fiber guides. Remotely controlled mechanisms allow adjustment of the APD camera’s measurement location on a shot-to-shot basis, while temperature stabilized filter holders provide selection of either the Doppler shifted deuterium alpha or lithium resonance line. The capabilities of the system are illustrated by measurements of basic plasma turbulence properties.

  18. Fishbone activity in experimental advanced superconducting tokamak neutral beam injection plasma

    Science.gov (United States)

    Xu, Liqing; Zhang, Jizong; Chen, Kaiyun; Hu, Liqun; Li, Erzhong; Lin, Shiyao; Shi, Tonghui; Duan, Yanmin; Zhu, Yubao

    2015-12-01

    Repetitive fishbones near the trapped ion procession frequency were observed for the first time in the neutral beam injection high confinement plasmas in Experimental Advanced Superconducting Tokamak (EAST) tokamak, and diagnosed using a solid-state neutral particle analyzer based on a compact silicon photodiode together with an upgraded high spatial-temporal-resolution multi-arrays soft X-ray (SX) system. This 1/1 typical internal kink mode propagates in the ion-diamagnetism direction with a rotation speed faster than the bulk plasma in the plasma frame. From the SX measurements, this mode frequency is typical of chirping down and the energetic particle effect related to the twisting mode structure. This ion fishbone was found able to trigger a multiple core sawtooth crashes with edge-2/1 sideband modes, as well as to lead to a transition from fishbone to long lived saturated kink mode to fishbone. Furthermore, using SX tomography, a correlation between mode amplitude and mode frequency was found. Finally, a phenomenological prey-predator model was found to reproduce the fishbone nonlinear process well.

  19. Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Meglicki, Z

    1995-09-19

    We describe in detail the implementation of a weighted differences code, which is used to simulate a tokamak using the Maschke-Perrin solution as an initial condition. The document covers the mainlines of the program and the most important problem-specific functions used in the initialization, static tests, and dynamic evolution of the system. The mathematics of the Maschke-Perrin solution is discussed in parallel with its realisation within the code. The results of static and dynamic tests are presented in sections discussing their implementation.The code can also be obtained by ftp -anonymous from cisr.anu.edu.au Directory /pub/papers/meglicki/src/tokamak. This code is copyrighted. (author). 13 refs.

  20. TOKOPS: Tokamak Reactor Operations Study: The influence of reactor operations on the design and performance of tokamaks with solid-breeder blankets: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conn, R.W.; Ghoniem, N.M.; Firestone, M.A. (eds.)

    1986-09-01

    Reactor system operation and procedures have a profound impact on the conception and design of power plants. These issues are studied here using a model tokamak system employing a solid-breeder blanket. The model blanket is one which has evolved from the STARFIRE and BCSS studies. The reactor parameters are similar to those characterizing near-term fusion engineering reactors such as INTOR or NET (Next European Tokamak). Plasma startup, burn analysis, and methods for operation at various levels of output power are studied. A critical, and complicating, element is found to be the self-consistent electromagnetic response of the system, including the presence of the blanket and the resulting forces and loadings. Fractional power operation, and the strategy for burn control, is found to vary depending on the scaling law for energy confinement, and an extensive study is reported. Full-power reactor operation is at a neutron wall loading pf 5 MW/m/sup 2/ and a surface heat flux of 1 MW/m/sup 2/. The blanket is a pressurized steel module with bare beryllium rods and low-activation HT-9-(9-C-) clad LiAlO/sub 2/ rods. The helium coolant pressure is 5 MPa, entering the module at 297/sup 0/C and exiting at 550/sup 0/C. The system power output is rated at 1000 MW(e). In this report, we present our findings on various operational scenarios and their impact on system design. We first start with the salient aspects of operational physics. Time-dependent analyses of the blanket and balance of plant are then presented. Separate abstracts are included for each chapter.

  1. Spectra of heliumlike krypton from tokamak fusion test reactor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M.; Hsuan, H.; Bush, C.; Cohen, S.; Cummings, C.J.; Grek, B.; Hill, K.W.; Schivell, J.; Zarnstorff, M. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Beiersdorfer, P.; Osterheld, A. (Lawrence Livermore National Lab., CA (United States)); Smith, A. (Lock Haven Univ., Lock Haven, PA (United States)); Fraenkel, B. (Hebrew Univ., Jerusalem (Israel))

    1993-04-01

    Krypton has been injected into ohmically-heated TFTR plasmas with peak electron temperatures of 6 key to study the effects of krypton on the plasma performance and to investigate the emitted krypton line radiation, which is of interest for future-generation tokamaks such as ITER, both as a diagnostic of the central ion temperature and for the control of energy release from the plasma by radiative cooling. The emitted radiation was monitored with a bolometer array, an X-ray pulse height analysis system, and a high-resolution Johann-type crystal spectrometer; and it was found to depend very sensitively on the electron temperature profile. Satellite spectra of heliumlike krypton, KrXXXV, near 0.95 [Angstrom] including lithiumlike, berylliumlike and boronlike features were recorded in second order Bragg reflection. Radiative cooling and reduced particle recycling at the plasma edge region were observed as a result of the krypton injection for all investigated discharges. The observations are in reasonable agreement with modeling calculations of the krypton ion charge state distribution including radial transport.

  2. Spectra of heliumlike krypton from tokamak fusion test reactor plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bitter, M.; Hsuan, H.; Bush, C.; Cohen, S.; Cummings, C.J.; Grek, B.; Hill, K.W.; Schivell, J.; Zarnstorff, M. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Beiersdorfer, P.; Osterheld, A. [Lawrence Livermore National Lab., CA (United States); Smith, A. [Lock Haven Univ., Lock Haven, PA (United States); Fraenkel, B. [Hebrew Univ., Jerusalem (Israel)

    1993-04-01

    Krypton has been injected into ohmically-heated TFTR plasmas with peak electron temperatures of 6 key to study the effects of krypton on the plasma performance and to investigate the emitted krypton line radiation, which is of interest for future-generation tokamaks such as ITER, both as a diagnostic of the central ion temperature and for the control of energy release from the plasma by radiative cooling. The emitted radiation was monitored with a bolometer array, an X-ray pulse height analysis system, and a high-resolution Johann-type crystal spectrometer; and it was found to depend very sensitively on the electron temperature profile. Satellite spectra of heliumlike krypton, KrXXXV, near 0.95 {Angstrom} including lithiumlike, berylliumlike and boronlike features were recorded in second order Bragg reflection. Radiative cooling and reduced particle recycling at the plasma edge region were observed as a result of the krypton injection for all investigated discharges. The observations are in reasonable agreement with modeling calculations of the krypton ion charge state distribution including radial transport.

  3. Neutronics and pumping power analyses on the Tokamak reactor for the fusion-biomass hybrid concept

    Energy Technology Data Exchange (ETDEWEB)

    Ibano, Kenzo, E-mail: kibano@gmail.com [Graduate School of Energy Science, Kyoto University, Uji (Japan); Kasada, Ryuta [Graduate School of Energy Science, Kyoto University, Uji (Japan); Yamamoto, Yasushi [Faculty of Engineering Science, Kansai University, Suita, Osaka (Japan); Konishi, Satoshi [Graduate School of Energy Science, Kyoto University, Uji (Japan)

    2013-11-15

    Highlights: • MCNP analyses on a Tokamak with LiPb-cooled components shows concentrations of nuclear heating at the in-board region in addition to the out-board region. • Required pumping power of LiPb coolants for the nuclear heating exponentially increases as fusion power increases. • Pumping power analysis for the divertor also indicates the increasing pumping power as the fusion power increases. -- Abstract: The authors aim to develop a fusion-biomass combined plant concept with a small power fusion reactor. A concern for the small power reactor is the coolant pumping power which may significantly decreases the apparent energy outcome. Thus pressure loss and corresponding pumping power were studied for a designed Tokamak reactor: GNOME. First, 3-D Monte-Carlo Neutron transport analysis for the reactor model with dual-coolant blankets was taken in order to simulate the tritium breeding ability and the distribution of nuclear heat. Considering calculated concentration of nuclear heat on the in-board blankets, pressure loss of the liquid LiPb at coolant pipes due to MHD and friction forces was analyzed as a function of fusion power. It was found that as the fusion power increases, the pressure loss and corresponding pumping power exponentially increase. Consequently, the proportion of the pumping power to the fusion power increases as the fusion power increases. In case of ∼360 MW fusion power operation, pumping power required for in-board cooling pipes was estimated as ∼1% of the fusion power.

  4. Edge multi-energy soft x-ray diagnostic in Experimental Advanced Superconducting Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. L.; Xu, G. S.; Wan, B. N.; Lan, H.; Liu, Y. L.; Wei, J.; Zhang, W.; Hu, G. H.; Wang, H. Q.; Duan, Y. M.; Zhao, J. L.; Wang, L.; Liu, S. C.; Ye, Y.; Li, J.; Lin, X.; Li, X. L. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Tritz, K. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218 (United States); Zhu, Y. B. [Department of Physics and Astronomy, University of California, Irvine, California 92697-4575 (United States)

    2015-12-15

    A multi-energy soft x-ray (ME-SXR) diagnostic has been built for electron temperature profile in the edge plasma region in Experimental Advanced Superconducting Tokamak (EAST) after two rounds of campaigns. Originally, five preamplifiers were mounted inside the EAST vacuum vessel chamber attached to five vertically stacked compact diode arrays. A custom mechanical structure was designed to protect the detectors and electronics under constraints of the tangential field of view for plasma edge and the allocation of space. In the next experiment, the mechanical structure was redesigned with a barrel structure to absolutely isolate it from the vacuum vessel. Multiple shielding structures were mounted at the pinhole head to protect the metal foils from lithium coating. The pre-amplifiers were moved to the outside of the vacuum chamber to avoid introducing interference. Twisted copper cooling tube was embedded into the back-shell near the diode to limit the temperature of the preamplifiers and diode arrays during vacuum vessel baking when the temperature reached 150 °C. Electron temperature profiles were reconstructed from ME-SXR measurements using neural networks.

  5. Upgrades of the high resolution imaging x-ray crystal spectrometers on experimental advanced superconducting tokamak.

    Science.gov (United States)

    Lu, B; Wang, F; Shi, Y; Bitter, M; Hill, K W; Lee, S G; Fu, J; Li, Y; Wan, B

    2012-10-01

    Two imaging x-ray crystal spectrometers, the so-called "poloidal" and "tangential" spectrometers, were recently implemented on experimental advanced superconducting tokamak (EAST) to provide spatially and temporally resolved impurity ion temperature (T(i)), electron temperature (T(e)) and rotation velocity profiles. They are derived from Doppler width of W line for Ti, the intensity ratio of Li-like satellites to W line for Te, and Doppler shift of W line for rotation. Each spectrometer originally consisted of a spherically curved crystal and a two-dimensional multi-wire proportional counter (MWPC) detector. Both spectrometers have now been upgraded. The layout of the tangential spectrometer was modified, since it had to be moved to a different port, and the spectrometer was equipped with two high count rate Pilatus detectors (Model 100 K) to overcome the count rate limitation of the MWPC and to improve its time resolution. The poloidal spectrometer was equipped with two spherically bent crystals to record the spectra of He-like and H-like argon simultaneously and side by side on the original MWPC. These upgrades are described, and new results from the latest EAST experimental campaign are presented.

  6. Analysis of pedestal gradient characteristic on the Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Wang, Teng Fei; Han, Xiao Feng; Zang, Qing; Xiao, Shu Mei; Tian, Bao Gang; Hu, Ai Lan; Zhao, Jun Yu

    2016-05-01

    A pedestal database was built based on type I edge localized mode H-modes in the Experimental Advanced Superconducting Tokamak. The most common functional form hyperbolic tangent function (tanh) method is used to analyze pedestal characteristics. The pedestal gradient scales linearly with its pedestal top and the normalized pedestal pressure gradient α shows a strong correlation with electron collisionality. The connection among pedestal top value, gradient, and width is established with the normalized pedestal pressure gradient. In the core region of the plasma, the nature of the electron temperature stiffness reflects a proportionality between core and pedestal temperature while the increase proportion is lower than that expected in the high temperature region. However, temperature profile stiffness is limited or even disappears at the edge of the plasma, while the gradient length ratio ( ηe ) on the pedestal is important. The range of ηe is from 0.5 to 2, varying with the plasma parameters. The pedestal temperature brings a more significant impact on ηe than pedestal density.

  7. Plasma-material Interactions in Current Tokamaks and their Implications for Next-step Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Federici, G.; Skinner, C.H.; Brooks, J.N.; Coad, J.P.; Grisolia, C. [and others

    2001-01-10

    The major increase in discharge duration and plasma energy in a next-step DT [deuterium-tritium] fusion reactor will give rise to important plasma-material effects that will critically influence its operation, safety, and performance. Erosion will increase to a scale of several centimeters from being barely measurable at a micron scale in today's tokamaks. Tritium co-deposited with carbon will strongly affect the operation of machines with carbon plasma-facing components. Controlling plasma wall interactions is critical to achieving high performance in present-day tokamaks and this is likely to continue to be the case in the approach to practical fusion reactors. Recognition of the important consequences of these phenomena has stimulated an internationally coordinated effort in the field of plasma-surface interactions supporting the Engineering Design Activities of the International Thermonuclear Experimental Reactor (ITER) project and significant progress has been made in better under standing these issues. This paper reviews the underlying physical processes and the existing experimental database of plasma-material interactions both in tokamaks and laboratory simulation facilities for conditions of direct relevance to next-step fusion reactors. Two main topical groups of interactions are considered: (i) erosion/redeposition from plasma sputtering and disruptions, including dust and flake generation, (ii) tritium retention and removal. The use of modeling tools to interpret the experimental results and make projections for conditions expected in future devices is explained. Outstanding technical issues and specific recommendations on potential R and D [Research and Development] avenues for their resolution are presented.

  8. Tokamak reactor for treating fertile material or waste nuclear by-products

    Science.gov (United States)

    Kotschenreuther, Michael T.; Mahajan, Swadesh M.; Valanju, Prashant M.

    2012-10-02

    Disclosed is a tokamak reactor. The reactor includes a first toroidal chamber, current carrying conductors, at least one divertor plate within the first toroidal chamber and a second chamber adjacent to the first toroidal chamber surrounded by a section that insulates the reactor from neutrons. The current carrying conductors are configured to confine a core plasma within enclosed walls of the first toroidal chamber such that the core plasma has an elongation of 1.5 to 4 and produce within the first toroidal chamber at least one stagnation point at a perpendicular distance from an equatorial plane through the core plasma that is greater than the plasma minor radius. The at least one divertor plate and current carrying conductors are configured relative to one another such that the current carrying conductors expand the open magnetic field lines at the divertor plate.

  9. Systems code assessment of innovations, major design drivers, and minimum sizes of INTOR (International Tokamak Reactor) and ETR-like designs

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, J.D.; Peng, Y.K.M.; Strickler, D.J.; Reid, R.L.

    1987-10-01

    System studies of next-generation superconducting tokamaks are presented here. These studies include examining design changes suggested for the International Tokamak Reactor (INTOR) as a means of reducing the size and simplifying the device and assessing the impact of a series of more aggressive design assumptions suggested in recent Engineering Test Reactor (ETR) studies. Also, a set of candidate design points offering small machines (major radius = 4 m) with a relatively conservative mix of design assumptions is proposed. Some of the design assumptions found to have a major effect on the minimum size are TF coil current density, noninductive current drive, plasma elongation and edge q, plasma temperature for current drive, maximum allowable plasma beta, the minimum required wall load, and assumptions on fixed radial dimensions such as shield thickness, gaps, and plasma scrapeoff. Some design assumptions with less impact on the device size are the OH coil current density, PF configuration (limiter/divertor), and plasma current level. 22 refs., 5 figs., 6 tabs.

  10. Conceptual design of a Commercial Tokamak Hybrid Reactor (CTHR)

    Science.gov (United States)

    1980-12-01

    This design was developed as a first generation commercial plant for the production of fissile fuel to support a significant number of client light water reactor (LWR) plants. The study was carried out in sufficient depth of indicate no insurmountable technical problems exist, assuming the physics of the fusion driver is verified, and has provided a basis for deriving cost estimates of the hybrid plant as well as estimates of the hybrid/LWR symbiotic system busbar electricity costs. This energy system has the potential to be optimized such that the net cost of electricity becomes competitive with conventional LWR plants as the price of U308 exceeds $100 per pound.

  11. Industrial Hygiene Concerns during the Decontamination and Decommissioning of the Tokamak Fusion Test Reactor

    CERN Document Server

    Lumia, M E

    2002-01-01

    A significant industrial hygiene concern during the Decontamination and Decommissioning (D and D) of the Tokamak Fusion Test Reactor (TFTR) was the oxidation of the lead bricks' surface, which were utilized for radiation shielding. This presented both airborne exposure and surface contamination issues for the workers in the field removing this material. This paper will detail the various protection and control methods tested and implemented to protect the workers, including those technologies deployed to decontaminate the work surfaces. In addition, those techniques employed to recycle the lead for additional use at the site will be discussed.

  12. Evaluating and planning the radioactive waste options for dismantling the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Rule, K.; Scott, J.; Larson, S. [Princeton Plasma Physics Lab., NJ (United States)] [and others

    1995-12-31

    The Tokamak Fusion Test Reactor (TFTR) is a one-of-a kind tritium fusion research reactor, and is planned to be decommissioned within the next several years. This is the largest fusion reactor in the world and as a result of deuterium-tritum reactions is tritium contaminated and activated from 14 Mev neutrons. This presents many unusual challenges when dismantling, packaging and disposing its components and ancillary systems. Special containers are being designed to accommodate the vacuum vessel, neutral beams, and tritium delivery and processing systems. A team of experienced professionals performed a detailed field study to evaluate the requirements and appropriate methods for packaging the radioactive materials. This team focused on several current and innovative methods for waste minimization that provides the oppurtunmost cost effective manner to package and dispose of the waste. This study also produces a functional time-phased schedule which conjoins the waste volume, weight, costs and container requirements with the detailed project activity schedule for the entire project scope. This study and project will be the first demonstration of the decommissioning of a tritium fusion test reactor. The radioactive waste disposal aspects of this project are instrumental in demonstrating the viability of a fusion power reactor with regard to its environmental impact and ultimate success.

  13. A ceramic breeder in a poloidal tube blanket for a tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    Amici, A.; Anzidei, L.; Gallina, M.; Rado, V.; Simbolotti, G.; Violante, V.; Zampaglione, V.; Petrizzi, L. (Associazione Euratom-CNEN sulla Fusione, Centro di Frascati (Italy))

    1989-04-01

    A conceptual study of a helium-cooled solid breeder blanket for a tokamak reactor is presented. Tritium breeding capability together with system reliability are taken as the main design criteria. The blanket consists of tubular poloidal modules made of a central bundle of ceramic rods ({gamma}LiAlO/sub 2/) with a coaxial distribution of the inlet/outlet coolant flow (He) surrounded by a multiplier material (Be) in the form of bored bricks. The Be to {gamma}LiAlO/sub 2/ volume ratio is 4/1. The He inlet and outlet branches are cooling Be and {gamma}LiAlO/sub 2/, respectively. A purge He flow running through small central holes of the ceramic rods is derived from the main flow. Under the typical conditions of a tokamak reactor (neutron wall load=2 MW/m/sup 2/), a full coverage tritium breeding ratio of 1.47 is achieved for the following design and operating parameters: outlet He temperature=570/sup 0/C; inlet He temperature=250/sup 0/; total extracted power=2700 MW; He pumping power percentage=2%; minimum/maximum {gamma}LiAlO/sub 2/ temperature=400/900/sup 0/C; maximum structural temperature=475/sup 0/C; and maximum Be temperature=525/sup 0/C. (orig.).

  14. Study of the L–I–H transition with a new dual gas puff imaging system in the EAST superconducting tokamak

    DEFF Research Database (Denmark)

    Xu, G.S.; Shao, L.M.; Liu, S.C.

    2014-01-01

    The intermediate oscillatory phase during the L–H transition, termed the I-phase, is studied in the EAST superconducting tokamak using a newly developed dual gas puff imaging (GPI) system near the L–H transition power threshold. The experimental observations suggest that the oscillatory behaviour...

  15. First observation of a new zonal-flow cycle state in the H-mode transport barrier of the experimental advanced superconducting Tokamak

    DEFF Research Database (Denmark)

    Xu, G.S.; Wang, H. Q.; Wan, B. N.

    2012-01-01

    A new turbulence-flow cycle state has been discovered after the formation of a transport barrier in the H-mode plasma edge during a quiescent phase on the EAST superconducting tokamak. Zonal-flow modulation of high-frequency-broadband (0.05-1MHz) turbulence was observed in the steep-gradient regi...

  16. Overview of data acquisition and central control system of steady state superconducting Tokamak (SST-1)

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, S., E-mail: pradhan@ipr.res.in; Mahajan, K.; Gulati, H.K.; Sharma, M.; Kumar, A.; Patel, K.; Masand, H.; Mansuri, I.; Dhongde, J.; Bhandarkar, M.; Chudasama, H.

    2016-11-15

    Highlights: • The paper gives overview on SST-1 data acquisition and central control system and future upgrade plans. • The lossless PXI based data acquisition of SST-1 is capable of acquiring around 130 channels with sampling frequency ranging from 10 KHz to 1 MHz sampling frequency. • Design, architecture and technologies used for central control system (CCS) of SST-1. • Functions performed by CCS. - Abstract: Steady State Superconducting Tokamak (SST-1) has been commissioned successfully and has been carrying out limiter assisted ohmic plasma experiments since the beginning of 2014 achieving a maximum plasma current of 75 kA at a central field of 1.5 T and the plasma duration ∼500 ms. In near future, SST-1 looks forward to carrying out elongated plasma experiments and stretching plasma pulses beyond 1 s. The data acquisition and central control system (CCS) for SST-1 are distributed, modular, hierarchical and scalable in nature The CCS has been indigenously designed, developed, implemented, tested and validated for the operation of SST-1. The CCS has been built using well proven technologies like Redhat Linux, vxWorks RTOS for deterministic control, FPGA based hardware implementation, Ethernet, fiber optics backbone for network, DSP for real-time computation & Reflective memory for high-speed data transfer etc. CCS in SST-1 controls & monitors various heterogeneous SST-1 subsystems dispersed in the same campus. The CCS consists of machine control system, basic plasma control system, GPS time synchronization system, storage area network (SAN) for centralize data storage, SST-1 networking system, real-time networks, SST-1 control room infrastructure and many other supportive systems. Machine Control System (MCS) is a multithreaded event driven system running on Linux based servers, where each thread of the software communicates to a unique subsystem for monitoring and control from SST-1 central control room through network programming. The CCS hardware

  17. The Tokamak Fusion Test Reactor decontamination and decommissioning project and the Tokamak Physics Experiment at the Princeton Plasma Physics Laboratory. Environmental Assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-05-27

    If the US is to meet the energy needs of the future, it is essential that new technologies emerge to compensate for dwindling supplies of fossil fuels and the eventual depletion of fissionable uranium used in present-day nuclear reactors. Fusion energy has the potential to become a major source of energy for the future. Power from fusion energy would provide a substantially reduced environmental impact as compared with other forms of energy generation. Since fusion utilizes no fossil fuels, there would be no release of chemical combustion products to the atmosphere. Additionally, there are no fission products formed to present handling and disposal problems, and runaway fuel reactions are impossible due to the small amounts of deuterium and tritium present. The purpose of the TPX Project is to support the development of the physics and technology to extend tokamak operation into the continuously operating (steady-state) regime, and to demonstrate advances in fundamental tokamak performance. The purpose of TFTR D&D is to ensure compliance with DOE Order 5820.2A ``Radioactive Waste Management`` and to remove environmental and health hazards posed by the TFTR in a non-operational mode. There are two proposed actions evaluated in this environmental assessment (EA). The actions are related because one must take place before the other can proceed. The proposed actions assessed in this EA are: the decontamination and decommissioning (D&D) of the Tokamak Fusion Test Reactor (TFTR); to be followed by the construction and operation of the Tokamak Physics Experiment (TPX). Both of these proposed actions would take place primarily within the TFTR Test Cell Complex at the Princeton Plasma Physics Laboratory (PPPL). The TFTR is located on ``D-site`` at the James Forrestal Campus of Princeton University in Plainsboro Township, Middlesex County, New Jersey, and is operated by PPPL under contract with the United States Department of Energy (DOE).

  18. Modeling of neutral hydrogen velocities in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Stotler, D.P.; Skinner, C.H.; Budny, R.V.; Ramsey, A.T. [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States); Ruzic, D.N.; Turkot, R.B. Jr. [University of Illinois, 103 South Goodwin Avenue, Urbana, Illinois 61801 (United States)

    1996-11-01

    Monte Carlo neutral transport simulations of hydrogen velocities in the Tokamak Fusion Test Reactor (TFTR) [K. M. McGuire {ital et} {ital al}., Phys. Plasmas {bold 2}, 2176 (1995)] are compared with experiment using the Doppler-broadened Balmer-{alpha} spectral line profile. Good agreement is obtained under a range of conditions, validating the treatment of charge exchange, molecular dissociation, surface reflection, and sputtering in the neutral gas code DEGAS [D. Heifetz {ital et} {ital al}., J. Comput. Phys. {bold 46}, 309 (1982)]. A residual deficiency of 10{endash}100 eV neutrals in most of the simulations indicates that further study of the energetics of H{sup +}{sub 2} dissociation for electron energies in excess of 100 eV is needed. {copyright} {ital 1996 American Institute of Physics.}

  19. Machine size reduction effect and feasibility outlook for CS-free Tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Satoshi; Tobita, Kenji; Sato, Masayasu; Nakamura, Yukiharu [Japan Atomic Energy Agency, Ibaraki-ken (Japan). Naka Fusion Research Establishment

    2007-07-01

    A slimming down or discard of the CS (center solenoid) coil leads to a tokamak machine significant reduction in weight. The effects are quantitatively evaluated. Major effect appears on a TF (toroidal field) coil weight, and is caused by an aspect ratio lowering. This effect can be called ST (spherical torus) effect. The aspect ratio lowering opens up high plasma performances e.g. higher elongation and higher beta. Therefore the requirement for the toroidal field strength is mitigated. Another effect of the aspect ratio lowering on the reactor structural configuration is a wide open area between the adjacent TF coils with a help of the TF coil slimming down. The wide open area allows us to choose a so-called Hot cell maintenance approach where the sectors are removed from the power core to the hot cell for refurbishment. On the other hand, the departure from the power transformer causes the plasma current control difficult. Focusing on the CS-free tokamak plasma, the plasma initiation (break down), current ramp up, current sustain and current ramp down are simulated with consideration of the plasma parameters (temperature, density and current) profile effects. As the non-inductive external current drive devices, a NBI (neutral beam injection) system or an ECW (electron cyclotron wave) system are adopted. The current drive efficiency of the NBI system is twice higher than the ECW system. In the meantime, the ECW system can be arranged without adversely affecting the maintenance (replacement of torus sectors) performance. This may be more essential than the drive efficiency for the power reactor. The current ramp up time is estimated as about one hour both for these drivers. Even for the lower efficient driver i.e. the ECW system, the fusion gain Q is higher than 25 when a bootstrap current fraction is higher than 80%. The fusion gain Q of 25 seems to be acceptable level for the power plant. (orig.)

  20. Safety and Environment aspects of Tokamak- type Fusion Power Reactor- An Overview

    Science.gov (United States)

    Doshi, Bharat; Reddy, D. Chenna

    2017-04-01

    Power Reactor). This paper describes an overview of safety and environmental merits of fusion power reactor, issues and design considerations and need for R&D on safety and environmental aspects of Tokamak type fusion reactor.

  1. First results obtained from the soft x-ray pulse height analyzer on experimental advanced superconducting tokamak.

    Science.gov (United States)

    Xu, P; Lin, S Y; Hu, L Q; Duan, Y M; Zhang, J Z; Chen, K Y; Zhong, G Q

    2010-06-01

    An assembly of soft x-ray pulse height analyzer system, based on silicon drift detector (SDD), has been successfully established on the experimental advanced superconducting tokamak (EAST) to measure the spectrum of soft x-ray emission (E=1-20 keV). The system, including one 15-channel SDD linear array, is installed on EAST horizontal port C. The time-resolved radial profiles of electron temperature and K(alpha) intensities of metallic impurities have been obtained with a spatial resolution of around 7 cm during a single discharge. It was found that the electron temperatures derived from the system are in good agreement with the values from Thomson scattering measurements. The system can also be applied to the measurement of the long pulse discharge for EAST. The diagnostic system is introduced and some typical experimental results obtained from the system are also presented.

  2. Observations of compound sawteeth in ion cyclotron resonant heating plasma using ECE imaging on experimental advanced superconducting tokamak

    Science.gov (United States)

    Hussain, Azam; Zhao, Zhenling; Xie, Jinlin; Zhu, Ping; Liu, Wandong; Ti, Ang

    2016-04-01

    The spatial and temporal evolutions of compound sawteeth were directly observed using 2D electron cyclotron emission imaging on experimental advanced superconducting tokamak. The compound sawtooth consists of partial and full collapses. After partial collapse, the hot core survives as only a small amount of heat disperses outwards, whereas in the following full collapse a large amount of heat is released and the hot core dissipates. The presence of two q = 1 surfaces was not observed. Instead, the compound sawtooth occurs mainly at the beginning of an ion cyclotron resonant frequency heating pulse and during the L-H transition phase, which may be related to heat transport suppression caused by a decrease in electron heat diffusivity.

  3. Design and characterization of a 32-channel heterodyne radiometer for electron cyclotron emission measurements on experimental advanced superconducting tokamak.

    Science.gov (United States)

    Han, X; Liu, X; Liu, Y; Domier, C W; Luhmann, N C; Li, E Z; Hu, L Q; Gao, X

    2014-07-01

    A 32-channel heterodyne radiometer has been developed for the measurement of electron cyclotron emission (ECE) on the experimental advanced superconducting tokamak (EAST). This system collects X-mode ECE radiation spanning a frequency range of 104-168 GHz, where the frequency coverage corresponds to a full radial coverage for the case with a toroidal magnetic field of 2.3 T. The frequency range is equally spaced every 2 GHz from 105.1 to 167.1 GHz with an RF bandwidth of ~500 MHz and the video bandwidth can be switched among 50, 100, 200, and 400 kHz. Design objectives and characterization of the system are presented in this paper. Preliminary results for plasma operation are also presented.

  4. Outward particle transport by coherent mode in the H-mode pedestal in the Experimental Advanced Superconducting Tokamak (EAST)

    Science.gov (United States)

    Zhang, T.; Han, X.; Gao, X.; Liu, H. Q.; Shi, T. H.; Liu, J. B.; Liu, Y.; Kong, D. F.; Liu, Z. X.; Qu, H.; Xiang, H. M.; Geng, K. N.; Wang, Y. M.; Wen, F.; Zhang, S. B.; Ling, B. L.; the EAST Team

    2017-06-01

    A coherent mode (CM) in the edge pedestal region has been observed on different fluctuation quantities, including density fluctuation, electron temperature fluctuation and magnetic fluctuation in H mode plasma on the Experimental Advanced Superconducting Tokamak (EAST) tokamak. Measurements at different poloidal positions show that the local poloidal wavenumber is smallest at the outboard midplane and will increase with poloidal angle. This poloidal asymmetry is consistent with the flute-like assumption (i.e. k// ˜ 0) from which the toroidal mode number of the mode has been estimated as between 12 and 17. It was further found that the density fluctuation amplitude of the CM also demonstrated poloidal asymmetry. The appearance of a CM can clearly decrease or even stop the increase in the edge density, while the disappearance of a CM will lead to an increase in the pedestal density and density gradient. Statistical analysis showed there was a trend that as the CM mode amplitude increased, the rate of increase of the edge density decreased and the particle flux (Γdiv) onto the divertor plate increased. The CM sometimes showed burst behavior, and these bursts led bursts on Γdiv with a time of about 230 μs, which is close to the time for particle flow from the outer midplane to the divertor targets along the scrape-off layer magnetic field line. This evidence showed that the CM had an effect on the outward transport of particles.

  5. Economic considerations of commercial tokamak options

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, A.E.

    1986-05-01

    Systems studies have been performed to assess commercial tokamak options. Superconducting, as well as normal, magnet coils in either first or second stability regimes have been considered. A spherical torus (ST), as well as an elongated tokamak (ET), is included in the study. The cost of electricity (COE) is selected as the figure of merit, and beta and first-wall neutron wall loads are selected to represent the physics and technology characteristics of various options. The results indicate that an economical optimum for tokamaks is predicted to require a beta of around 10%, as predicted to be achieved in the second stability regime, and a wall load of about 5 MW/m/sup 2/, which is assumed to be optimum technologically. This tokamak is expected to be competitive with fission plants if efficient, noninductive current drive is developed. However, if this regime cannot be attained, all other tokamaks operating in the first stability regime, including spherical torus and elongated tokamak and assuming a limiting wall load of 5 MW/m/sup 2/, will compete with one another with a COE of about 50 mill/kWh. This 40% higher than the COE for the optimum reactor in the second stability regime with fast-wave current drive. The above conclusions pertain to a 1200-MW(e) net electric power plant. A comparison was also made between ST, ET, and superconducting magnets in the second stability regime with fast-wave current drive at 600 MW(e).

  6. A fission-fusion hybrid reactor in steady-state L-mode tokamak configuration with natural uranium

    Energy Technology Data Exchange (ETDEWEB)

    Reed, Mark; Parker, Ronald R.; Forget, Benoit [Department of Nuclear Science and Engineering, Massachusetts Institute of Technology 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-06-19

    This work develops a conceptual design for a fusion-fission hybrid reactor operating in steady-state L-mode tokamak configuration with a subcritical natural or depleted uranium pebble bed blanket. A liquid lithium-lead alloy breeds enough tritium to replenish that consumed by the D-T fusion reaction. The fission blanket augments the fusion power such that the fusion core itself need not have a high power gain, thus allowing for fully non-inductive (steady-state) low confinement mode (L-mode) operation at relatively small physical dimensions. A neutron transport Monte Carlo code models the natural uranium fission blanket. Maximizing the fission power gain while breeding sufficient tritium allows for the selection of an optimal set of blanket parameters, which yields a maximum prudent fission power gain of approximately 7. A 0-D tokamak model suffices to analyze approximate tokamak operating conditions. This fission blanket would allow the fusion component of a hybrid reactor with the same dimensions as ITER to operate in steady-state L-mode very comfortably with a fusion power gain of 6.7 and a thermal fusion power of 2.1 GW. Taking this further can determine the approximate minimum scale for a steady-state L-mode tokamak hybrid reactor, which is a major radius of 5.2 m and an aspect ratio of 2.8. This minimum scale device operates barely within the steady-state L-mode realm with a thermal fusion power of 1.7 GW. Basic thermal hydraulic analysis demonstrates that pressurized helium could cool the pebble bed fission blanket with a flow rate below 10 m/s. The Brayton cycle thermal efficiency is 41%. This reactor, dubbed the Steady-state L-mode non-Enriched Uranium Tokamak Hybrid (SLEUTH), with its very fast neutron spectrum, could be superior to pure fission reactors in terms of breeding fissile fuel and transmuting deleterious fission products. It would likely function best as a prolific plutonium breeder, and the plutonium it produces could actually be more

  7. Preparations for deuterium--tritium experiments on the Tokamak Fusion Test Reactor*

    Energy Technology Data Exchange (ETDEWEB)

    Hawryluk, R.J.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J.L.; Anderson, J.W.; Arunasalam, V.; Ascione, G.; Aschroft, D.; Barnes, C.W.; Barnes, G.; Batchelor, D.B.; Bateman, G.; Batha, S.; Baylor, L.A.; Beer, M.; Bell, M.G.; Biglow, T.S.; Bitter, M.; Blanchard, W.; Bonoli, P.; Bretz, N.L.; Brunkhorst, C.; Budny, R.; Burgess, T.; Bush, H.; Bush, C.E.; Camp, R.; Caorlin, M.; Carnevale, H.; Chang, Z.; Chen, L.; Cheng, C.Z.; Chrzanowski, J.; Collazo, I.; Collins, J.; Coward, G.; Cowley, S.; Cropper, M.; Darrow, D.S.; Daugert, R.; DeLooper, J.; Duong, H.; Dudek, L.; Durst, R.; Efthimion, P.C.; Ernst, D.; Faunce, J.; Fonck, R.J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G.Y.; Furth, H.P.; Garzotto, V.; Gentile, C.; Gettelfinger, G.; Gilbert, J.; Gioia, J.; Goldfinger, R.C.; Golian, T.; Gorelenkov, N.; Gouge, M.J.; Grek, B.; Grisham, L.R.; Hammett, G.; Hanson, G.R.; Heidbrink, W.; Hermann, H.W.; Hill, K.W.; Hirshman, S.; Hoffman, D.J.; Hosea, J.; Hulse, R.A.; Hsuan, H.; Ja

    1994-05-01

    The final hardware modifications for tritium operation have been completed for the Tokamak Fusion Test Reactor (TFTR) [Fusion Technol. [bold 21], 1324 (1992)]. These activities include preparation of the tritium gas handling system, installation of additional neutron shielding, conversion of the toroidal field coil cooling system from water to a Fluorinert[sup TM] system, modification of the vacuum system to handle tritium, preparation, and testing of the neutral beam system for tritium operation and a final deuterium--deuterium (D--D) run to simulate expected deuterium--tritium (D--T) operation. Testing of the tritium system with low concentration tritium has successfully begun. Simulation of trace and high power D--T experiments using D--D have been performed. The physics objectives of D--T operation are production of [approx]10 MW of fusion power, evaluation of confinement, and heating in deuterium--tritium plasmas, evaluation of [alpha]-particle heating of electrons, and collective effects driven by alpha particles and testing of diagnostics for confined [alpha] particles. Experimental results and theoretical modeling in support of the D--T experiments are reviewed.

  8. Neutral beam energy and power requirements for expanding radius and full bore startup of tokamak reactors

    Energy Technology Data Exchange (ETDEWEB)

    Houlberg, W.A.; Mense, A.T.; Attenberger, S.E.

    1979-09-01

    Natural beam power and energy requirements are compared for full density full bore and expanding radius startup scenarios in an elongated plasma, The Next Step (TNS), as a function of beam pulse time and plasma density. Because of the similarity of parameters, the results should also be applicable to Engineering Test Facility (ETF) and International Tokamak Reactor (INTOR) studies. A transport model consisting of neoclassical ion conduction and anomalous electron conduction and diffusion based on ALCATOR scaling leads to average densities in the range approx. 0.8 to 1.2 x 10/sup 14/ cm/sup -3/ being sufficient for ignition. Neutral deuterium beam energies in the range 120 to 180 keV are adequate for penetration, with the required power injected into the plasma decreasing with increasing beam energy. The neutral beam power decreases strongly with increasing beam pulse length b/sub b/ until t/sub b/ exceeds a few total energy confinement times, yielding b/sub b/ approx. = 4 to 6 s for the TNS plasma.

  9. Conceptual studies of toroidal field magnets for the tokamak (fusion) experimental power reactor. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1976-11-01

    This report presents the results of ''Conceptual Studies of Toroidal Field Magnets for the Tokamak Experimental Power Reactor'' performed for the Energy Research and Development Administration, Oak Ridge Operations. Two conceptual coil designs are developed. One design approach to produce a specified 8 Tesla maximum field uses a novel NbTi superconductor design cooled by pool-boiling liquid helium. For a highest practicable field design, a unique NbSn/sub 3/ conductor is used with forced-flow, single-phase liquid helium cooling to achieve a 12 Tesla peak field. Fabrication requirements are also developed for these approximately 7 meter horizontal bore by 11 meter vertical bore coils. Cryostat design approaches are analyzed and a hybrid cryostat approach selected. Structural analyses are performed for approaches to support in-plane and out-of-plane loads and a structural approach selected. In addition to the conceptual design studies, cost estimates and schedules are prepared for each of the design approaches, major uncertainties and recommendations for research and development identified, and test coil size for demonstration recommended.

  10. Review of deuterium--tritium results from the Tokamak Fusion Test Reactor*

    Energy Technology Data Exchange (ETDEWEB)

    McGuire, K. M.; Adler, H.; Alling, P.; Ancher, C.; Anderson, H.; Anderson, J. L.; Anderson, J W.; Arunasalam, V.; Ascione, G.; Ashcroft, D.; Barnes, C. W.; Barnes, G.; Batha, S.; Bateman, G.; Beer, M; Bell, M. G.; Bell, R.; Bitter, M.; Blanchard, W.; Bretz, N. L.; Brunkhorst, C.; Budny, R.; Bush, C. E.; Camp, R.; Caorlin, M.; Carnevale, H.; Cauffman, S.; Chang, Z.; Chang, C. S.; Cheng, C. Z.; Chrzanowski, J.; Collins, J.; Coward, G.; Cropper, M.; Darrow, D. S; Daugert, R.; DeLooper, J.; Dendy, R.; Dorland, W.; Dudek, L.; Duong, H.; Durst, R.; Efthimion, P. C.; Ernst, D.; Evenson, H.; Fisch, N.; Fisher, R.; Fonck, R. J.; Fredd, E.; Fredrickson, E.; Fromm, N.; Fu, G. Y.; Fujita, T.; Furth, H. P.; Garzotto, V.; Gentile, C.; Gilbert, J.; Gioia, J.; Gorelenkov, N.; Grek, B.; Grisham, L. R.; Hammett, G.; Hanson, G. R.; Hawryluk, R. J.; Heidbrink, W.; Herrmann, H. W.; Hill, K. W.; Hosea, J.; Hsuan, H.; Hughes, M.; Hulse, R.; Janos, A.; Jassby, D. L.; Jobes, F. C.; Johnson, D. W.; Johnson, L. C.; Kalish, M.; Kamperschroer, J.; Kesner, J.; Kugel, H.; Labik, G.; Lam, N. T.; LaMarche, P. H.; Lawson, E.; LeBlanc, B.; Levine, J.; Levinton, F. M.; Loesser, D.; Long, D.; Loughlin, M. J.; Machuzak, J.; Majeski, R.; Mansfield, D. K.; Marmar, E. S.; Marsala, R.; Martin, A.; Martin, G.; Mazzucato, E.; Mauel, M.; McCarthy, M. P.; McChesney, J.; McCormack, B.; McCune, D. C.; McKee, G.; Meade, D. M.; Medley, S. S.; Mikkelsen, D. R.; Mirnov, S. V.; Mueller, D.; Murakami, M.; Murphy, J. A.; Nagy, A.; Navratil, G. A.; Nazikian, R.; Newman, R.; Norris, M.; O`Connor, T.; Oldaker, M.; Ongena, J.; Osakabe, M.; Owens, D. K.; Park, H.; Park, W.; Parks, P.; Paul, S. F.; Pearson, G.; Perry, E.; Persing, R.; Petrov, M.; Phillips, C. K.; Phillips, M.; Pitcher, S.; Pysher, R.; Qualls, A. L.; Raftopoulos, S.; Ramakrishnan, S.; Ramsey, A.; Rasmussen, D. A.; Redi, M. H.; Renda, G.; Rewoldt, G.; Roberts, D.; Rogers, J.; Rossmassler, R.; Roquemore, A. L.; Ruskov, E.; Sabbagh, S. A.; Sasao, M.; Schilling, G.; Schivell, J.; Schmidt, G.; Scillia, R.; Scott, S. D.; Semenov, I.; Senko, T.; Sesnic, S.; Sissingh, R.; Skinner, C. H.; Snipes, J.; Stencel, J.; Stevens, J.; Stevenson, T.; Stratton, B. C.; Strachan, J. D.; Stodiek, W.; Swanson, J.; Synakowski, E.; Takahashi, H.; Tang, W.; Taylor, G.; Terry, J.; Thompson, M. E.; Tighe, W.; Timberlake, J. R.; Tobita, K.; Towner, H. H.; Tuszewski, M.; Halle, A. Von; Vannoy, C.; Viola, M.; Goeler, S. Von; Voorhees, D.; Walters, R. T.; Wester, R.; White, R.; Wieland, R.; Wilgen, J. B.; Williams, M.; Wilson, J. R.; Winston, J.; Wright, K.; Wong, K. L.; Woskov, P.; Wurden, G. A.; Yamada, M.; Yoshikawa, S.; Young, K. M.; Zarnstorff, M. C.; Zavereev, V.; Zweben, S. J.

    1995-01-01

    The first magnetic fusion experiments to study plasmas using nearly equal concentrations of deuterium and tritium have been carried out on TFTR. At present the maximum fusion power of 10.7 MW, using 39.5 MW of neutral-beam heating, in a supershot discharge and 6.7 MW in a high-βp discharge following a current rampdown. The fusion power density in a core of the plasma is ≈ 2.8 MW m₋3, exceeding that expected in the International Thermonuclear Experimental Reactor (ITER) at 1500 MW total fusion power. The energy confinement time, τE, is observed to increase in D–T, relative to D plasmas, by 20% and the ni (0) Ti(0) τE product by 55%. The improvement in thermal confinement is caused primarily by a decrease in ion heat conductivity in both supershot and limiter-H-mode discharges. Extensive lithium pellet injection increased the confinement time to 0.27 s and enabled higher current operation in both supershot and high-βp discharges. Ion cyclotron range of frequencies (ICRF) heating of a D–T plasma, using the second harmonic of tritium, has been demonstrated. First measurements of the confined alpha particles have been performed and found to be in good agreement with TRANSP simulations. Initial measurements of the alpha ash profile have been compared with simulations using particle transport coefficients from He gas puffing experiments. The loss of alpha particles to a detector at the bottom of the vessel is well described by the first-orbit loss mechanism. No loss due to alpha-particle-driven instabilities has yet been observed. D–T experiments on TFTR will continue to explore the assumptions of the ITER design and to examine some of the physics issues associated with an advanced tokamak reactor.

  11. Development of a high-speed vacuum ultraviolet (VUV) imaging system for the Experimental Advanced Superconducting Tokamak

    Science.gov (United States)

    Zhou, Fan; Ming, Tingfeng; Wang, Yumin; Wang, Zhijun; Long, Feifei; Zhuang, Qing; Li, Guoqiang; Liang, Yunfeng; Gao, Xiang

    2017-07-01

    A high-speed vacuum ultraviolet (VUV) imaging system for edge plasma studies is being developed on the Experimental Advanced Superconducting Tokamak (EAST). Its key optics is composed of an inverse type of Schwarzschild telescope made of a set of Mo/Si multilayer mirrors, a micro-channel plate (MCP) equipped with a P47 phosphor screen and a high-speed camera with CMOS sensors. In order to remove the contribution from low-energy photons, a Zr filter is installed in front of the MCP detector. With this optics, VUV photons with a wavelength of 13.5 nm, which mainly come from the line emission from intrinsic carbon (C vi: n = 4-2 transition) or the Ly-α line emission from injected Li iii on the EAST, can be selectively measured two-dimensionally with both high temporal and spatial resolutions. At present, this system is installed to view the plasma from the low field side in a horizontal port in the EAST. It has been operated routinely during the 2016 EAST experiment campaign, and the first result is shown in this work. To roughly evaluate the system performance, synthetic images are created. And it indicates that this system mainly measures the edge localized emissions by comparing the synthetic images and experimental data.

  12. Study on H-mode access at low density with lower hybrid current drive and lithium-wall coatings on the EAST superconducting tokamak

    DEFF Research Database (Denmark)

    Xu, G.S.; Wan, B.N.; Li, J.G.

    2011-01-01

    The first high-confinement mode (H-mode) with type-III edge localized modes at an H factor of HIPB98(y,2) ~ 1 has been obtained with about 1 MW lower hybrid wave power on the EAST superconducting tokamak. The first H-mode plasma appeared after wall conditioning by lithium (Li) evaporation before...... plasma breakdown and the real-time injection of fine Li powder into the plasma edge. The threshold power for H-mode access follows the international tokamak scaling even in the low density range and a threshold in density has been identified. With increasing accumulation of deposited Li the H......, which is considered the main mechanism for the H-mode power threshold reduction by the Li wall coatings....

  13. A study on tokamak fusion reactor - Numerical analyses of MHD equilibrium= and edge plasma transport in tokamak fusion reactor with divertor configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hee; Lim, Ki Hang; Kang, Kyung Doo; Ryu, Ji Myung; Kim, Duk Kyu [Seoul National University, Seoul (Korea, Republic of); Cho, Soo Won [Kyungki Unviersity, Suwon (Korea, Republic of)

    1995-08-01

    In the present project for developing the numerical codes of 2-DMHD equilibrium, edge plasma transport and neutral particle transport for the tokamak plasmas, we compute the plasma equilibrium of double null type and calculate the external coil currents and the plasma parameters used for operation and control data. Also the numerical algorithm is developed to analyse the behavior of edge plasmas in poloidal and radial directions and the programming and debugging of a 2-D transport code are completed. Furthermore, a neutral particle transport code for the edge region is developed and then used for the analysis of the neutral transport phenomena giving the sources in the fluid equations, and expected to supply the input parameters for the edge plasma transport code. 34 refs., 5 tabs., 28 figs. (author)

  14. Application of advanced composites in tokamak magnet systems

    Energy Technology Data Exchange (ETDEWEB)

    Long, C. J.

    1977-11-01

    The use of advanced (high-modulus) composites in superconducting magnets for tokamak fusion reactors is discussed. The most prominent potential application is as the structure in the pulsed poloidal-field coil system, where a significant reduction in eddy currents could be achieved. Present low-temperature data on the advanced composites are reviewed briefly; they are too meager to do more than suggest a broad class of composites for a particular application.

  15. A fast-time-response extreme ultraviolet spectrometer for measurement of impurity line emissions in the Experimental Advanced Superconducting Tokamak.

    Science.gov (United States)

    Zhang, Ling; Morita, Shigeru; Xu, Zong; Wu, Zhenwei; Zhang, Pengfei; Wu, Chengrui; Gao, Wei; Ohishi, Tetsutarou; Goto, Motoshi; Shen, Junsong; Chen, Yingjie; Liu, Xiang; Wang, Yumin; Dong, Chunfeng; Zhang, Hongmin; Huang, Xianli; Gong, Xianzu; Hu, Liqun; Chen, Junlin; Zhang, Xiaodong; Wan, Baonian; Li, Jiangang

    2015-12-01

    A flat-field extreme ultraviolet (EUV) spectrometer working in the 20-500 Å wavelength range with fast time response has been newly developed to measure line emissions from highly ionized tungsten in the Experimental Advanced Superconducting Tokamak (EAST) with a tungsten divertor, while the monitoring of light and medium impurities is also an aim in the present development. A flat-field focal plane for spectral image detection is made by a laminar-type varied-line-spacing concave holographic grating with an angle of incidence of 87°. A back-illuminated charge-coupled device (CCD) with a total size of 26.6 × 6.6 mm(2) and pixel numbers of 1024 × 255 (26 × 26 μm(2)/pixel) is used for recording the focal image of spectral lines. An excellent spectral resolution of Δλ0 = 3-4 pixels, where Δλ0 is defined as full width at the foot position of a spectral line, is obtained at the 80-400 Å wavelength range after careful adjustment of the grating and CCD positions. The high signal readout rate of the CCD can improve the temporal resolution of time-resolved spectra when the CCD is operated in the full vertical binning mode. It is usually operated at 5 ms per frame. If the vertical size of the CCD is reduced with a narrow slit, the time response becomes faster. The high-time response in the spectral measurement therefore makes possible a variety of spectroscopic studies, e.g., impurity behavior in long pulse discharges with edge-localized mode bursts. An absolute intensity calibration of the EUV spectrometer is also carried out with a technique using the EUV bremsstrahlung continuum at 20-150 Å for quantitative data analysis. Thus, the high-time resolution tungsten spectra have been successfully observed with good spectral resolution using the present EUV spectrometer system. Typical tungsten spectra in the EUV wavelength range observed from EAST discharges are presented with absolute intensity and spectral identification.

  16. TCODE: a computer code for analysis of tritium and vacuum systems for tokamak fusion reactors

    Energy Technology Data Exchange (ETDEWEB)

    Clemmer, R.G.

    1978-08-01

    TCODE can be used for either near-term experimental reactors or for commercial reactors. The code provides options for items that may be included in a commercial reactor such as a divertor, neutral beam heating, and a breeding blanket. The code was used to calculate tritium and vacuum system parameters for the near term reactors ITR, TNS-UP and EPR as well as for some commercial reactor designs, the UWMAK series. A selected sample of the tritium and vacuum parameters for these reactor designs is shown. Also shown are parameters for a hypothetical reactor UWMAK-III M having similar characteristics to UWMAK-III but with a higher fractional burnup (5.0% cf. 0.83%). The impact of the reactor design scenario upon major tritium and vacuum systems is discussed.

  17. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  18. Radiation-driven m  =  2 island formation and dynamics near density limit in experimental advanced superconducting tokamak ohmic plasma

    Science.gov (United States)

    Xu, Liqing; Duan, Yanmin; Chen, Kaiyun; Zhao, Hailin; Luo, Zhenping; Zheng, Zhen; Liu, Yong; Liu, Haiqing; Chen, Yingjie; Yi, Yuan; Hu, Liqun; Du, Hongfei; Shi, Tonghui

    2017-12-01

    A radiation-driven m  =  2 island was observed in the experimental advanced superconducting tokamak (EAST) ohmic plasma, near the density limit. The mode onset occurs when the the ohmic heating input is less than the radiative cooling loss, which agrees with the mode onset behavior of the thermo-resistive model. The evolution of the equilibrium during the mode process was obtained using the ONETWO transport code, with inputs comprising the experimental electron temperature and density profiles. A large m  =  2 island can drive an m  =  1 sideband mode, which leads to an internal crash that appears as a large change in temperature that occurs not only in the q  =  2 region but also in the core.

  19. Progress of JT-60SA Project: EU-JA joint efforts for assembly and fabrication of superconducting tokamak facilities and its research planning

    Energy Technology Data Exchange (ETDEWEB)

    Shirai, Hiroshi, E-mail: shirai.hiroshi@jaea.go.jp [JT-60SA Project Team, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Barabaschi, Pietro [JT-60SA EU-Home Team, Fusion for Energy, Boltsmannstr 2, Garching 85748 (Germany); Kamada, Yutaka [JT-60SA JA-Home Team, Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2016-11-01

    Highlights: • JT-60SA Project is promoted under the BA Agreement and JA national programme. • JT-60SA is designed to operate in break-even equivalent condition for a long period. • JT-60SA Project supports and complements the ITER project, and promotes DEMO design. • Fabrication of JT-60SA components and assembly in Naka are steadily going on. • JT-60SA Research Plan has been developed jointly by EU and JA fusion communities. - Abstract: Aiming at supporting the early realization of fusion energy, the JT-60SA Project has shown steady progress for several years toward the first plasma in 2019 under the dual frameworks: the Satellite Tokamak Programme of the Broader Approach Agreement between EU and Japan, and the Japanese national programme. JT-60SA is a superconducting tokamak designed to operate in break-even equivalent conditions for a long pulse duration (typically 100 s) with a maximum plasma current of 5.5 MA. A variety of plasma control capabilities enable JT-60SA to contribute directly to the ITER project and also to DEMO by addressing key engineering and physics issues for advanced plasma operation. Design and fabrication of JT-60SA components, shared by the EU and Japan, started in 2007. Assembly in the torus hall started in January 2013, and welding work of the vacuum vessel sectors (seven 40° sectors and two 30° sectors) is currently ongoing on the cryostat base. Other components such as TF coils, PF coils, power supplies, cryogenic system, cryostat vessel, thermal shields and so on were or are being delivered to the Naka site for installation, assembly and commissioning. This paper gives technical progress on fabrication, installation and assembly of tokamak components and ancillary systems, as well as progress of the JT-60SA Research Plan being developed jointly by European and Japanese fusion communities.

  20. Superconductivity

    Science.gov (United States)

    Yeo, Yung K.

    Many potential high-temperature superconductivity (HTS) military applications have been demonstrated by low-temperature superconductivity systems; they encompass high efficiency electric drives for naval vessels, airborne electric generators, energy storage systems for directed-energy weapons, electromechanical launchers, magnetic and electromagnetic shields, and cavity resonators for microwave and mm-wave generation. Further HST applications in militarily relevant fields include EM sensors, IR focal plane arrays, SQUIDs, magnetic gradiometers, high-power sonar sources, and superconducting antennas and inertial navigation systems. The development of SQUID sensors will furnish novel magnetic anomaly detection methods for ASW.

  1. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  2. High power 1 MeV neutral beam system and its application plan for the international tokamak experimental reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hemsworth, R.S. [ITER Joint Central Team, Naka, Ibaraki (Japan)

    1997-03-01

    This paper describes the Neutral Beam Injection system which is presently being designed for the International Tokamak Experimental Reactor, ITER, in Europe Japan and Russia, with co-ordination by the Joint Central Team of ITER at Naka, Japan. The proposed system consists of three negative ion based neutral injectors, delivering a total of 50 MW of 1 MeV D{sup 0} to the ITER plasma for a pulse length of >1000 s. Each injectors uses a single caesiated volume arc discharge negative ion source, and a multi-grid, multi-aperture accelerator, to produce about 40 A of 1 MeV D{sup -}. This will be neutralized by collisions with D{sub 2} in a sub-divided gas neutralizer, which has a conversion efficiency of about 60%. The charged fraction of the beam emerging from the neutralizer is dumped in an electrostatic residual ion dump. A water cooled calorimeter can be moved into the beam path to intercept the neutral beam, allowing commissioning of the injector independent of ITER. ITER is scheduled to produce its first plasma at the beginning of 2008, and the planning of the R and D, construction and installation foresees the neutral injection system being available from the start of ITER operations. (author)

  3. Tokamak Fusion Test Reactor. Final conceptual design report. [Overall cost and scheduling program

    Energy Technology Data Exchange (ETDEWEB)

    1976-02-01

    The TFTR is the first U.S. magnetic confinement device planned to demonstrate the fusion of D-T at reactor power levels. This report addresses the physics objectives and the engineering goals of the TFTR project. Technical, cost, and schedule aspects of the project are included. (MOW)

  4. Design of a tokamak fusion reactor first wall armor against neutral beam impingement

    Energy Technology Data Exchange (ETDEWEB)

    Myers, R.A.

    1977-12-01

    The maximum temperatures and thermal stresses are calculated for various first wall design proposals, using both analytical solutions and the TRUMP and SAP IV Computer Codes. Beam parameters, such as pulse time, cycle time, and beam power, are varied. It is found that uncooled plates should be adequate for near-term devices, while cooled protection will be necessary for fusion power reactors. Graphite and tungsten are selected for analysis because of their desirable characteristics. Graphite allows for higher heat fluxes compared to tungsten for similar pulse times. Anticipated erosion (due to surface effects) and plasma impurity fraction are estimated. Neutron irradiation damage is also discussed. Neutron irradiation damage (rather than erosion, fatigue, or creep) is estimated to be the lifetime-limiting factor on the lifetime of the component in fusion power reactors. It is found that the use of tungsten in fusion power reactors, when directly exposed to the plasma, will cause serious plasma impurity problems; graphite should not present such an impurity problem.

  5. Anomalous loss of DT alpha particles in the Tokamak Fusion Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, Hans W. [Princeton Univ., NJ (United States)

    1997-09-01

    An escaping alpha collector probe has been developed for TFTR`s DT phase. Energy distributions of escaping alphas have been determined by measuring the range of α-particles implanted into nickel foils located within the alpha collector. Results at 1.0 MA of plasma current are in good agreement with predictions for first orbit alpha loss. Results at 1.8 MA, however, show a significant anomalous loss of partially thermalized alphas (in addition to the expected first orbit loss), which is not observed with the lost alpha scintillator detectors in DT plasmas, but does resemble the anomalous delayed loss seen in DD plasmas. None of the candidate explanations proposed thus far are fully consistent with the anomalous loss observations. An experiment designed to study the effect of plasma major radius shifts on α-particle loss has led to a better understanding of α-particle dynamics in tokamaks. Intuitively, one might suppose that confined marginally passing α-particles forced to move toward higher magnetic field during an inward major radius shift (i.e., compression) would mirror and become trapped particles, leading to increased alpha loss. Such an effect was looked for during the shift experiment, however, no significant changes in alpha loss to the 90° lost alpha scintillator detector were observed during the shifts. It is calculated that the energy gained by an α-particle during the inward shift is sufficient to explain this result. However, an unexpected loss of partially thermalized α-particles near the passing/trapped boundary was observed to occur between inward and outward shifts at an intermediate value of plasma current (1.4 MA). This anomalous loss feature is not yet understood.

  6. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  7. Power supplies and quench protection for the Tokamak Physics Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Neumeyer, C.L. [Raytheon Engineers & Constructors, Princeton, NJ (United States). EBASCO Div.

    1994-07-01

    The Tokamak Physics Experiment (TPX) is an advanced tokamak project aimed at the production of quasi-steady state plasmas with advanced shape, heating, and particle control. TPX is to be built at the Princeton Plasma Physics Laboratory (PPPL) using many of the facilities from the Tokamak Fusion Test Reactor (TFTR). First plasma is scheduled for the year 2000. TPX will be the first tokamak to utilize superconducting (SC) magnets in both the toroidal field (TF) and poloidal field (PF) systems. This is a new feature which requires not only a departure from the traditional tokamak power supply schemes but also that ultra-reliable quench protection devices be used to rapidly discharge the stored energy from the magnets in the event of a quench. This paper describes the plan and basis for the adaptation and augmentation of the PPPL/TFTR power system facilities to supply TPX. Following a description of the basic operational requirements, four major areas are addressed, namely the AC power system, the TF power supply, the PF power supply, and quench protection for the TF and PF systems.

  8. Superconductivity:

    Science.gov (United States)

    Sacchetti, N.

    In this paper a short historical account of the discovery of superconductivity and of its gradual development is given. The physical interpretation of its various aspects took about forty years (from 1911 to 1957) to reach a successful description of this phenomenon in terms of a microscopic theory At the very end it seemed that more or less everything could be reasonably interpreted even if modifications and refinements of the original theory were necessary. In 1986 the situation changed abruptly when a cautious but revolutionary paper appeared showing that superconductivity was found in certain ceramic oxides at temperatures above those up to then known. A rush of frantic experimental activity started world-wide and in less than one year it was shown that superconductivity is a much more widespread phenomenon than deemed before and can be found at temperatures well above the liquid air boiling point. The complexity and the number of the substances (mainly ceramic oxides) involved call for a sort of modern alchemy if compounds with the best superconducting properties are to be manufactured. We don't use the word alchemy in a deprecatory sense but just to emphasise that till now nobody can say why these compounds are what they are: superconductors.

  9. STARFIRE: a commercial tokamak fusion power plant study

    Energy Technology Data Exchange (ETDEWEB)

    1980-09-01

    STARFIRE is a 1200 MWe central station fusion electric power plant that utilizes a deuterium-tritium fueled tokamak reactor as a heat source. Emphasis has been placed on developing design features which will provide for simpler assembly and maintenance, and improved safety and environmental characteristics. The major features of STARFIRE include a steady-state operating mode based on continuous rf lower-hybrid current drive and auxiliary heating, solid tritium breeder material, pressurized water cooling, limiter/vacuum system for impurity control and exhaust, high tritium burnup and low vulnerable tritium inventories, superconducting EF coils outside the superconducting TF coils, fully remote maintenance, and a low-activation shield. A comprehensive conceptual design has been developed including reactor features, support facilities and a complete balance of plant. A construction schedule and cost estimate are presented, as well as study conclusions and recommendations.

  10. Fabrication and Characterization of Samples for a Material Migration Experiment on the Experimental Advanced Superconducting Tokamak (EAST).

    Energy Technology Data Exchange (ETDEWEB)

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Van Deusen, Stuart B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    This report documents work done for the ITER International Fusion Energy Organization (Sponsor) under a Funds-In Agreement FI 011140916 with Sandia National Laboratories. The work consists of preparing and analyzing samples for an experiment to measure material erosion and deposition in the EAST Tokamak. Sample preparation consisted of depositing thin films of carbon and aluminum onto molybdenum tiles. Analysis consists of measuring the thickness of films before and after exposure to helium plasma in EAST. From these measurements the net erosion and deposition of material will be quantified. Film thickness measurements are made at the Sandia Ion Beam Laboratory using Rutherford backscattering spectrometry and nuclear reaction analysis, as described in this report. This report describes the film deposition and pre-exposure analysis. Results from analysis after plasma exposure will be given in a subsequent report.

  11. Advanced commercial tokamak study

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, S.L.; Dabiri, A.E.; Keeton, D.C.; Brown, T.G.; Bussell, G.T.

    1985-12-01

    Advanced commercial tokamak studies were performed by the Fusion Engineering Design Center (FEDC) as a participant in the Tokamak Power Systems Studies (TPSS) project coordinated by the Office of Fusion Energy. The FEDC studies addressed the issues of tokamak reactor cost, size, and complexity. A scoping study model was developed to determine the effect of beta on tokamak economics, and it was found that a competitive cost of electricity could be achieved at a beta of 10 to 15%. The implications of operating at a beta of up to 25% were also addressed. It was found that the economics of fusion, like those of fission, improve as unit size increases. However, small units were found to be competitive as elements of a multiplex plant, provided that unit cost and maintenance time reductions are realized for the small units. The modular tokamak configuration combined several new approaches to develop a less complex and lower cost reactor. The modular design combines the toroidal field coil with the reactor structure, locates the primary vacuum boundary at the reactor cell wall, and uses a vertical assembly and maintenance approach. 12 refs., 19 figs.

  12. Superconductivity and fusion energy—the inseparable companions

    Science.gov (United States)

    Bruzzone, Pierluigi

    2015-02-01

    Although superconductivity will never produce energy by itself, it plays an important role in energy-related applications both because of its saving potential (e.g., power transmission lines and generators), and its role as an enabling technology (e.g., for nuclear fusion energy). The superconducting magnet’s need for plasma confinement has been recognized since the early development of fusion devices. As long as the research and development of plasma burning was carried out on pulsed devices, the technology of superconducting fusion magnets was aimed at demonstrations of feasibility. In the latest generation of plasma devices, which are larger and have longer confinement times, the superconducting coils are a key enabling technology. The cost of a superconducting magnet system is a major portion of the overall cost of a fusion plant and deserves significant attention in the long-term planning of electricity supply; only cheap superconducting magnets will help fusion get to the energy market. In this paper, the technology challenges and design approaches for fusion magnets are briefly reviewed for past, present, and future projects, from the early superconducting tokamaks in the 1970s, to the current ITER (International Thermonuclear Experimental Reactor) and W7-X projects and future DEMO (Demonstration Reactor) projects. The associated cryogenic technology is also reviewed: 4.2 K helium baths, superfluid baths, forced-flow supercritical helium, and helium-free designs. Open issues and risk mitigation are discussed in terms of reliability, technology, and cost.

  13. Large superconducting magnets

    CERN Document Server

    Pérot, J

    1981-01-01

    Discusses the use of large superconducting magnets in the areas of particle physics, thermonuclear fusion, and magnetohydrodynamics. In addition to considering the physics of the superconducting state, the article considers machines such as BEBC (Big European Bubble Chamber) at CERN, the LINAC at SLAC and possible Tokamak applications. The future application of superconductors to high speed trains is discussed. (0 refs).

  14. Structure design of the Westinghouse superconducting magnet for the Large Coil Program

    Energy Technology Data Exchange (ETDEWEB)

    Domeisen, F.N.; Hackworth, D.T.; Stuebinger, L.R.

    1978-01-01

    In the on-going development of superconducting toroidal field coils for tokamak reactors, the Large Coil Program (LCP) managed by Union Carbide Corporation will include the design, fabrication, and testing of large superconducting coils to determine their feasibility for use in the magnetic fusion energy effort. Structural analysis of the large coil is essential to ensure adequate safety in the test coil design and confidence in the scalability of the design. This paper will discuss the action of tensile and shear loads on the various materials used in the coil. These loads are of magnetic and thermal origin.

  15. Fusion potential for spherical and compact tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sandzelius, Mikael

    2003-02-01

    The tokamak is the most successful fusion experiment today. Despite this, the conventional tokamak has a long way to go before being realized into an economically viable power plant. In this master thesis work, two alternative tokamak configurations to the conventional tokamak has been studied, both of which could be realized to a lower cost. The fusion potential of the spherical and the compact tokamak have been examined with a comparison of the conventional tokamak in mind. The difficulties arising in the two configurations have been treated from a physical point of view concerning the fusion plasma and from a technological standpoint evolving around design, materials and engineering. Both advantages and drawbacks of either configuration have been treated relative to the conventional tokamak. The spherical tokamak shows promising plasma characteristics, notably a high {beta}-value but have troubles with high heat loads and marginal tritium breeding. The compact tokamak operates at a high plasma density and a high magnetic field enabling it to be built considerably smaller than any other tokamak. The most notable down-side being high heat loads and neutron transport problems. With the help of theoretical reactor studies, extrapolating from where we stand today, it is conceivable that the spherical tokamak is closer of being realized of the two. But, as this study shows, the compact tokamak power plant concept offers the most appealing prospect.

  16. Observation of a new turbulence-driven limit-cycle state in H-modes with lower hybrid current drive and lithium-wall conditioning in the EAST superconducting tokamak

    DEFF Research Database (Denmark)

    Wang, H.Q.; Xu, G.S.; Guo, H.Y.

    2012-01-01

    The first high confinement H-mode plasma has been obtained in the Experimental Advanced Superconducting Tokamak (EAST) with about 1 MW lower hybrid current drive after wall conditioning by lithium evaporation and real-time injection of Li powder. Following the L–H transition, a small-amplitude, low...... correlated with each other, with nearly no phase differences poloidally and toroidally, and finite phase difference radially, thus providing strong evidence for zonal flows. The growth, saturation and disappearance of the zonal flows are strongly correlated with those of the high-frequency turbulence....... And the measurements demonstrate that the energy gain of zonal flows is of the same order as the energy loss of turbulence. This strongly suggests the interactions between zonal flows and high-frequency turbulences at the pedestal during the limit-cycle state....

  17. A study on the fusion reactor - Numerical analyses of MHD equilibrium and= edge plasma transport in tokamak fusion reactor with divertor configurations

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sang Hee; Kang, Kyung Doo; Ryu, Ji Myung; Kim, Deok Kyu; Chung, TaeKyun; Chung, Mo Se [Seoul National University, Seoul (Korea, Republic of); Cho, Su Won [Kyungki University, Suwon (Korea, Republic of)

    1995-08-01

    In the present project for developing the numerical codes of 2-D MHD equilibrium, edge plasma transport and neutral particle transport for the tokamak plasmas, we computed the MHD equilibria of single and double null configurations and determined the external coil currents and the plasma parameters used for operation and control data. Also we numerically acquired the distributions of edge plasma parameters in poloidal and radial directions= and the design-related values according to the various operating conditions using the developed plasma transport code. Furthermore, a neutral particle transport code for the edge region is developed and them used for the analysis of the neutral particle behavior yielding the source terms in the fluid transport equations, and expected to supply the input parameters for the edge plasma transport code. 53 refs., 12 tabs., 44 figs. (author)

  18. Testing the {rho}* scaling of thermal transport models: predicted and measured temperatures in the Tokamak Fusion Test Reactor dimensionless scaling experiments

    Energy Technology Data Exchange (ETDEWEB)

    Mikkelsen, D.R.; Scott, S.D. [Princeton Univ., NJ (United States). Plasma Physics Lab.; Dorland, W. [Texas Univ., Austin, TX (United States). Inst. for Fusion Studies

    1997-04-01

    Theoretical predictions of ion and electron thermal diffusivities are tested by comparing calculated and measured temperatures in low (L) mode plasmas from the Tokamak Fusion Test Reactor [D. J. Grove and D. M. Meade, Nucl. Fusion 25 , 1167 (1985)] nondimensional scaling experiments. The DIII-D [J. L. Luxon and L. G. Davis, Fusion Technol. 8 , 441 (1985)] L-mode {rho}* scalings, the transport models of Rebut-Lallia-Watkins (RLW), Boucher`s modification of RLW, and the Institute for Fusion Studies-Princeton Plasma Physics Laboratory (IFS-PPPL) model for transport due to ion temperature gradient modes are tested. The predictions use the measured densities in order to include the effects of density profile shape variations on the transport models. The uncertainties in the measured and predicted temperatures are discussed. The predictions based on the DIII- D scalings are within the measurement uncertainties. All the theoretical models predict a more favorable {rho}* dependence for the ion temperatures than is seen. Preliminary estimates indicate that sheared ow stabilization is important for some discharges, and that inclusion of its effects may bring the predictions of the IFS-PPPL model into agreement with the experiments.

  19. Superconducting RF Linacs Driving Subcritical Reactors for Profitable Disposition of Surplus Weapons-grade Plutonium

    Science.gov (United States)

    Cummings, Mary Anne; Johnson, Rolland

    Acceptable capital and operating costs of high-power proton accelerators suitable for profitable commercial electric-power and process-heat applications have been demonstrated. However, studies have pointed out that even a few hundred trips of an accelerator lasting a few seconds would lead to unacceptable thermal stresses as each trip causes fission to be turned off in solid fuel structures found in conventional reactors. The newest designs based on the GEM*STAR concept take such trips in stride by using molten-salt fuel, where fuel pin fatigue is not an issue. Other aspects of the GEM*STAR concept which address all historical reactor failures include an internal spallation neutron target and high temperature molten salt fuel with continuous purging of volatile radioactive fission products such that the reactor contains less than a critical mass and almost a million times fewer volatile radioactive fission products than conventional reactors. GEM*STAR is a reactor that without redesign will burn spent nuclear fuel, natural uranium, thorium, or surplus weapons material. It will operate without the need for a critical core, fuel enrichment, or reprocessing making it an excellent candidate for export. As a first application, the design for a pilot plant is described for the profitable disposition of surplus weapons-grade plutonium by using process heat to produce green diesel fuel for the Department of Defense (DOD) from natural gas and renewable carbon.

  20. Electromagnetic properties of REBaCuO superconducting tapes considered for magnets of fusion reactors.

    Czech Academy of Sciences Publication Activity Database

    Jirsa, Miloš; Rameš, Michal; Ďuran, Ivan; Entler, Slavomír; Melíšek, T.; Kováč, P.; Viererbl, L.

    2017-01-01

    Roč. 124, November (2017), s. 73-76 ISSN 0920-3796. [SOFT 2016: Symposium on Fusion Technology /29./. Prague, 05.09.2016-09.09.2016] EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 ; RVO:68378271 Keywords : Superconducting REBaCuO tapes * Magnetic hysteresis loops * Transport currents * Engineering currents * Angular dependence * Neutron irradiation Subject RIV: BM - Solid Matter Physics ; Magnetism; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.319, year: 2016 www.sciencedirect.com/science/article/pii/S0920379617304829

  1. Impact of an integrated core/SOL description on the R and B T optimization of tokamak fusion reactors

    Science.gov (United States)

    Siccinio, M.; Fable, E.; Angioni, C.; Saarelma, S.; Scarabosio, A.; Zohm, H.

    2018-01-01

    An updated and improved version of the 0D divertor and scrape-off layer (SOL) model published in Siccinio et al (2016 Plasma Phys. Control. Fusion 58 125011) was coupled with the 1.5D transport code ASTRA (Pereverzev 1991 IPP Report 5/42, Pereverzev and Yushmanov 2002 IPP Report 5/98 and Fable et al 2013 Plasma Phys. Control. Fusion 55 124028). The resulting numerical tool was employed for various scans in the major radius R and in the toroidal magnetic field B T—for different safety factors q, allowable loop voltages V loop and H factors—in order to identify the most convenient choices for an electricity producing tokamak. Such a scenario analysis was carried out evaluating self-consistently, and simultaneously, the core profile and transport effects, which significantly impact on the fusion power outcome, and the divertor heat loads, which represent one of the most critical issues in view of the realization of fusion power plants (Zohm et al 2013 Nucl. Fusion 53 073019 and Wenninger et al 2017 Nucl. Fusion 57 046002). The main result is that, when divertor limits are enforced, the curves at constant electrical power output are closed on themselves in the R-BT plane, and a maximum achievable power exists—i.e. no benefits would be obtained from a further increase in R and B T once the optimum is reached. This result appears as an intrinsic physical limit for all those devices where a radiative SOL is needed to deal with the power exhaust, and where a lower limit on the power crossing the separatrix (e.g. because of the L–H transition) is present.

  2. Transient Behaviour of Superconducting Magnet Systems of Fusion Reactor ITER during Safety Discharge

    Directory of Open Access Journals (Sweden)

    A. M. Miri

    2008-01-01

    Full Text Available To investigate the transient behaviour of the toroidal and poloidal field coils magnet systems of the International Thermonuclear Experimental Reactor during safety discharge, network models with lumped elements are established. Frequency-dependant values of the network elements, that is, inductances and resistances are calculated with the finite element method. That way, overvoltages can be determined. According to these overvoltages, the insulation coordination of coils has to be selected.

  3. Physics design of a 100 keV acceleration grid system for the diagnostic neutral beam for international tokamak experimental reactor.

    Science.gov (United States)

    Singh, M J; De Esch, H P L

    2010-01-01

    This paper describes the physics design of a 100 keV, 60 A H(-) accelerator for the diagnostic neutral beam (DNB) for international tokamak experimental reactor (ITER). The accelerator is a three grid system comprising of 1280 apertures, grouped in 16 groups with 80 apertures per beam group. Several computer codes have been used to optimize the design which follows the same philosophy as the ITER Design Description Document (DDD) 5.3 and the 1 MeV heating and current drive beam line [R. Hemsworth, H. Decamps, J. Graceffa, B. Schunke, M. Tanaka, M. Dremel, A. Tanga, H. P. L. De Esch, F. Geli, J. Milnes, T. Inoue, D. Marcuzzi, P. Sonato, and P. Zaccaria, Nucl. Fusion 49, 045006 (2009)]. The aperture shapes, intergrid distances, and the extractor voltage have been optimized to minimize the beamlet divergence. To suppress the acceleration of coextracted electrons, permanent magnets have been incorporated in the extraction grid, downstream of the cooling water channels. The electron power loads on the extractor and the grounded grids have been calculated assuming 1 coextracted electron per ion. The beamlet divergence is calculated to be 4 mrad. At present the design for the filter field of the RF based ion sources for ITER is not fixed, therefore a few configurations of the same have been considered. Their effect on the transmission of the electrons and beams through the accelerator has been studied. The OPERA-3D code has been used to estimate the aperture offset steering constant of the grounded grid and the extraction grid, the space charge interaction between the beamlets and the kerb design required to compensate for this interaction. All beamlets in the DNB must be focused to a single point in the duct, 20.665 m from the grounded grid, and the required geometrical aimings and aperture offsets have been calculated.

  4. Tokamak power systems studies, FY 1985

    Energy Technology Data Exchange (ETDEWEB)

    Baker, C.C.; Brooks, J.N.; Ehst, D.A.; Smith, D.L.; Sze, D.K.

    1985-12-01

    The Tokamak Power System Studies (TPSS) at ANL in FY-1985 were devoted to exploring innovative design concepts which have the potential for making substantial improvements in the tokamak as a commercial power reactor. Major objectives of this work included improved reactor economics, improved environmental and safety features, and the exploration of a wide range of reactor plant outputs with emphasis on reduced plant sizes compared to STARFIRE. The activities concentrated on three areas: plasma engineering, impurity control, and blanket/first wall/shield technology. 205 refs., 125 figs., 107 tabs.

  5. Aspects of Tokamak toroidal magnet protection

    Energy Technology Data Exchange (ETDEWEB)

    Green, R.W.; Kazimi, M.S.

    1979-07-01

    Simple but conservative geometric models are used to estimate the potential for damage to a Tokamak reactor inner wall and blanket due to a toroidal magnet field collapse. The only potential hazard found to exist is due to the MHD pressure rise in a lithium blanket. A survey is made of proposed protection methods for superconducting toroidal magnets. It is found that the two general classifications of protection methods are thermal and electrical. Computer programs were developed which allow the toroidal magnet set to be modeled as a set of circular filaments. A simple thermal model of the conductor was used which allows heat transfer to the magnet structure and which includes the effect of temperature dependent properties. To be effective in large magnets an electrical protection system should remove at least 50% of the stored energy in the protection circuit assuming that all of the superconductor in the circuit quenches when the circuit is activated. A protection system design procedure based on this criterion was developed.

  6. Electron cyclotron emission diagnostics on KSTAR tokamak.

    Science.gov (United States)

    Jeong, S H; Lee, K D; Kogi, Y; Kawahata, K; Nagayama, Y; Mase, A; Kwon, M

    2010-10-01

    A new electron cyclotron emission (ECE) diagnostics system was installed for the Second Korea Superconducting Tokamak Advanced Research (KSTAR) campaign. The new ECE system consists of an ECE collecting optics system, an overmode circular corrugated waveguide system, and 48 channel heterodyne radiometer with the frequency range of 110-162 GHz. During the 2 T operation of the KSTAR tokamak, the electron temperatures as well as its radial profiles at the high field side were measured and sawtooth phenomena were also observed. We also discuss the effect of a window on in situ calibration.

  7. Robust Sliding Mode Control for Tokamaks

    Directory of Open Access Journals (Sweden)

    I. Garrido

    2012-01-01

    Full Text Available Nuclear fusion has arisen as an alternative energy to avoid carbon dioxide emissions, being the tokamak a promising nuclear fusion reactor that uses a magnetic field to confine plasma in the shape of a torus. However, different kinds of magnetohydrodynamic instabilities may affect tokamak plasma equilibrium, causing severe reduction of particle confinement and leading to plasma disruptions. In this sense, numerous efforts and resources have been devoted to seeking solutions for the different plasma control problems so as to avoid energy confinement time decrements in these devices. In particular, since the growth rate of the vertical instability increases with the internal inductance, lowering the internal inductance is a fundamental issue to address for the elongated plasmas employed within the advanced tokamaks currently under development. In this sense, this paper introduces a lumped parameter numerical model of the tokamak in order to design a novel robust sliding mode controller for the internal inductance using the transformer primary coil as actuator.

  8. TIBER: Tokamak Ignition/Burn Experimental Research. Final design report

    Energy Technology Data Exchange (ETDEWEB)

    Henning, C.D.; Logan, B.G.; Barr, W.L.; Bulmer, R.H.; Doggett, J.N.; Johnson, B.M.; Lee, J.D.; Hoard, R.W.; Miller, J.R.; Slack, D.S.

    1985-11-01

    The Tokamak Ignition/Burn Experimental Research (TIBER) device is the smallest superconductivity tokamak designed to date. In the design plasma shaping is used to achieve a high plasma beta. Neutron shielding is minimized to achieve the desired small device size, but the superconducting magnets must be shielded sufficiently to reduce the neutron heat load and the gamma-ray dose to various components of the device. Specifications of the plasma-shaping coil, the shielding, coaling, requirements, and heating modes are given. 61 refs., 92 figs., 30 tabs. (WRF)

  9. Design studies of innovatively small fusion reactor based on biomass-fusion hybrid concept: GNOME

    Energy Technology Data Exchange (ETDEWEB)

    Ibano, K., E-mail: kibano@iae.kyoto-u.ac.jp [Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto 611-0011 (Japan); Utoh, H.; Tobita, K. [Japan Atomic Energy Agency, Naka-shi, Ibaraki 311-0193 (Japan); Yamamoto, Y.; Konishi, S. [Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto 611-0011 (Japan)

    2011-10-15

    Conceptual design of an innovatively small tokamak reactor 'GNOME' based on a non-fission biomass-fusion hybrid concept is proposed. This fusion plant concept intends to use high-temperature heat from the blanket to generate hydrogen or synthetic fuels out of waste biomass. Since energy multiplication is expected by utilizing chemical energy of biomass, the requirement for the fusion plasma for net plant energy output is reduced to Q {>=} 5. As a result, the GNOME reactor has been designed to produce 320 MW fusion power with a 5.2 m major radius, 3.1 normalized beta and 11 T maximum field. This relatively small maximum field can be achieved by using Nb{sub 3}Sn superconducting magnets. Besides, this reactor allows 3.0 m diameter space for its center solenoid coil and requires 60 MW of the input power. These features require minimal technical extensions from ITER.

  10. Electron thermal transport in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Konings, J.A.

    1994-11-30

    The process of fusion of small nuclei thereby releasing energy, as it occurs continuously in the sun, is essential for the existence of mankind. The same process applied in a controlled way on earth would provide a clean and an abundant energy source, and be the long term solution of the energy problem. Nuclear fusion requires an extremely hot (10{sup 8} K) ionized gas, a plasma, that can only be maintained if it is kept insulated from any material wall. In the so called `tokamak` this is achieved by using magnetic fields. The termal insulation, which is essential if one wants to keep the plasma at the high `fusion` temperature, can be predicted using basic plasma therory. A comparison with experiments in tokamaks, however, showed that the electron enery losses are ten to hundred times larger than this theory predicts. This `anomalous transport` of thermal energy implies that, to reach the condition for nuclear fusion, a fusion reactor must have very large dimensions. This may put the economic feasibility of fusion power in jeopardy. Therefore, in a worldwide collaboration, physicists study tokamak plasmas in an attempt to understand and control the energy losses. From a scientific point of view, the mechanisms driving anomalous transport are one of the challenges in fudamental plasma physics. In Nieuwegein, a tokamak experiment (the Rijnhuizen Tokamak Project, RTP) is dedicated to the study of anomalous transport, in an international collaboration with other laboratories. (orig./WL).

  11. Tokamak engineering mechanics

    CERN Document Server

    Song, Yuntao; Du, Shijun

    2013-01-01

    Tokamak Engineering Mechanics offers concise and thorough coverage of engineering mechanics theory and application for tokamaks, and the material is reinforced by numerous examples. Chapter topics include general principles, static mechanics, dynamic mechanics, thermal fluid mechanics and multiphysics structural mechanics of tokamak structure analysis. The theoretical principle of the design and the methods of the analysis for various components and load conditions are presented, while the latest engineering technologies are also introduced. The book will provide readers involved in the study

  12. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  13. Tokamaks: from A D Sakharov to the present (the 60-year history of tokamaks)

    Science.gov (United States)

    Azizov, E. A.

    2012-02-01

    The paper is prepared on the basis of the report presented at the session of the Physical Sciences Division of the Russian Academy of Sciences (RAS) at the Lebedev Physical Institute, RAS on 25 May 2011, devoted to the 90-year jubilee of Academician Andrei D Sakharov - the initiator of controlled nuclear fusion research in the USSR. The 60-year history of plasma research work in toroidal devices with a longitudinal magnetic field suggested by Andrei D Sakharov and Igor E Tamm in 1950 for the confinement of fusion plasma and known at present as tokamaks is described in brief. The recent (2006) agreement among Russia, the EU, the USA, Japan, China, the Republic of Korea, and India on the joint construction of the international thermonuclear experimental reactor (ITER) in France based on the tokamak concept is discussed. Prospects for using the tokamak as a thermonuclear (14 MeV) neutron source are examined.

  14. Preliminary conceptual design of a medium sized tokamak (IST-1)

    Science.gov (United States)

    Bagerpour, M.; Alinejad, N.; Sobhanian, S.

    2015-08-01

    In this paper an attempt is made to estimate the main parameters of the Iranian superconducting tokamak as a medium sized tokamak. In the first stage, the production and confinement of ohmically heated plasma is considered. Considering the aim of the design and the kink stability limit, three main parameters are assumed to be known. Using the known theoretical, empirical scale laws and numerical solution of Grad-Shafranov equation for a D-shaped plasmas and also considering the correction terms due to triangularity of the torus cross section, other physical and geometrical parameters have been estimated. The magnetic flux surfaces, plasma pressure and toroidal current density profiles are found by solving of Grad-Shafranov equation as an eigenvalue problem using finite element method. The preliminary results are compared with some recent tokamaks now in operation in different research centers.

  15. Tokamak foundation in USSR/Russia 1950-1990

    Science.gov (United States)

    Smirnov, V. P.

    2010-01-01

    In the USSR, nuclear fusion research began in 1950 with the work of I.E. Tamm, A.D. Sakharov and colleagues. They formulated the principles of magnetic confinement of high temperature plasmas, that would allow the development of a thermonuclear reactor. Following this, experimental research on plasma initiation and heating in toroidal systems began in 1951 at the Kurchatov Institute. From the very first devices with vessels made of glass, porcelain or metal with insulating inserts, work progressed to the operation of the first tokamak, T-1, in 1958. More machines followed and the first international collaboration in nuclear fusion, on the T-3 tokamak, established the tokamak as a promising option for magnetic confinement. Experiments continued and specialized machines were developed to test separately improvements to the tokamak concept needed for the production of energy. At the same time, research into plasma physics and tokamak theory was being undertaken which provides the basis for modern theoretical work. Since then, the tokamak concept has been refined by a world-wide effort and today we look forward to the successful operation of ITER.

  16. Vertical compact torus injection into the STOR-M tokamak

    Science.gov (United States)

    Liu, Dazhi

    Central fuelling is a fundamental issue in the next generation tokamak-ITER (International Thermonuclear Experimental Reactor). It is essential for optimization of the bootstrap current which is proportional to the pressure gradient of trapped particles. The conventional fusion reactor fuelling techniques, such as gas puffing and cryogenic pellet injection, are considered inadequate to fulfill this goal due to premature ionization caused by high plasma temperature and density. Compact Torus (CT) injection is a promising fuelling technique for central fuelling a reactor-grade tokamak. An accelerated CT is expected to penetrate into the core region and deposit fuel there provided the CT kinetic energy density exceeds the magnetic energy density in a target plasma. This process is complicated and involves CT penetration into an external magnetic field, a CT stopping mechanism, magnetic reconnection, and excitation of plasma waves. CTs can be injected at different angles with respect to the tokamak toroidal magnetic field, either horizontally or vertically. Normally, CTs are injected radially in the mid-plane of a tokamak. In this configuration, CTs will undergo a decelerating force due to the gradient of the tokamak toroidal magnetic field. CTs will stop inside the tokamak chamber or bunce back depending on the relation between kinetic energy density of injected CTs and the tokamak toroidal magnetic field energy density. In the case of vertical injection, deeper penetration is expected due to the absence of the gradient of the tokamak toroidal field in that direction. Experimental investigations on vertical CT injection into a tokamak will be of great significance. The aim of this thesis is to experimentally investigate the feasibility of vertical CT injection into a tokamak and effects of CTs on tokamak plasma confinements. The Saskatchewan Torus-Modified (STOR-M) tokamak is currently the only tokamak equipped with a CT injector in the world. Vertical CT injection

  17. Texas Experimental Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.

  18. Particle transport in tokamak plasmas, theory and experiment

    Energy Technology Data Exchange (ETDEWEB)

    Angioni, C [Max-Planck Institut fuer Plasmaphysik, IPP-EURATOM Association, D-85748 Garching (Germany); Fable, E; Maslov, M; Weisen, H [Centre de Recherches en Physique des Plasmas, Association EURATOM-Confederation Suisse, EPFL, 1015 Lausanne (Switzerland); Greenwald, M [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, MA (United States); Peeters, A G [Centre for Fusion, Space and Astrophysics, University of Warwick, CV4 7AL, Coventry (United Kingdom); Takenaga, H [Japan Atomic Energy Agency, 801-1 Mukouyama, Naka, Ibaraki 311-0193 (Japan)

    2009-12-15

    The physical processes producing electron particle transport in the core of tokamak plasmas are described. Starting from the gyrokinetic equation, a simple analytical derivation is used as guidance to illustrate the main mechanisms driving turbulent particle convection. A review of the experimental observations on particle transport in tokamaks is presented and the consistency with the theoretical predictions is discussed. An overall qualitative agreement, and in some cases even a specific quantitative agreement, emerges between complex theoretical predictions and equally complex experimental observations, exhibiting different dependences on plasma parameters under different regimes. By these results, the direct connection between macroscopic transport properties and the character of microscopic turbulence is pointed out, and an important confirmation of the paradigm of microinstabilities and turbulence as the main cause of transport in the core of tokamaks is obtained. Finally, the impact of these results on the prediction of the peaking of the electron density profile in a fusion reactor is illustrated.

  19. New design of cable-in-conduit conductor for application in future fusion reactors

    NARCIS (Netherlands)

    Qin, J.; Wu, Y.; Li, J.; Liu, Fang; Dai, Chao; Shi, Y.; Liu, H.; Mao, Z.; Nijhuis, Arend; Zhou, Chao; Yagotyntsev, Kostyantyn; Lubkemann, Ruben; Anvar, Valiyaparambil Abdulsalam; Devred, A.

    2017-01-01

    The China Fusion Engineering Test Reactor (CFETR) is a new tokamak device whose magnet system includes toroidal field, central solenoid (CS) and poloidal field coils. The main goal is to build a fusion engineering tokamak reactor with about 1 GW fusion power and self-sufficiency by blanket. In order

  20. Compact fusion reactors

    CERN Multimedia

    CERN. Geneva

    2015-01-01

    Fusion research is currently to a large extent focused on tokamak (ITER) and inertial confinement (NIF) research. In addition to these large international or national efforts there are private companies performing fusion research using much smaller devices than ITER or NIF. The attempt to achieve fusion energy production through relatively small and compact devices compared to tokamaks decreases the costs and building time of the reactors and this has allowed some private companies to enter the field, like EMC2, General Fusion, Helion Energy, Lawrenceville Plasma Physics and Lockheed Martin. Some of these companies are trying to demonstrate net energy production within the next few years. If they are successful their next step is to attempt to commercialize their technology. In this presentation an overview of compact fusion reactor concepts is given.

  1. Multiplex tokamak power plant

    Energy Technology Data Exchange (ETDEWEB)

    Dabiri, A.E.

    1986-07-01

    The concept of multiplexing for a fusion power core as an option for producing power is explored. Superconducting, as well as normal magnet, coils in either first or second stability regimes are considered. The results show that multiplex plants with superconducting magnets operating in the second stability regime could be competitive with the single-unit plants in some unit sizes. The key issues that impact the expected benefits of multiplexing must be investigated further. These are factory fabrication, economy of scale, the extent of equipment sharing, inherent safety, maintainability, and utility load management.

  2. High-pressure, flux-conserving tokamak equilibria

    Energy Technology Data Exchange (ETDEWEB)

    Dory, R.A.; Peng, Y.K.M.

    1976-08-01

    Magnetohydrodynamic (MHD) tokamak equilibria are found with values of ..beta.. up to 20 percent and prescribed MHD safety factor values (e.g., q(axis) = 1 and q(edge) = 4.8) for tokamaks with aspect ratio A = 4 and D-shaped cross section. If such equilibria could be attained experimentally, they would be very attractive for decreasing the projected costs of tokamak power reactors substantially. In the flux-conserving tokamak (FCT) model, where rapid heating is applied to an already relatively hot plasma, these high ..beta.. equilibria are achievable. We study the quasi-static evolution of FCT equilibria as ..beta.. increases. An operating window is found in the pressure profile width w/sub p/: for high ..beta.. the values of w/sub p/ must lie between 0.40 and 0.55 of the plasma minor width. Within this window, plasma current and poloidal ..beta.. increase monotonically with ..beta... For fixed plasma boundary, significant poloidal surface currents are induced, but these can be eliminated by small increases in the plasma minor radius, the pressure profile width, and the vacuum toroidal field.

  3. New design of cable-in-conduit conductor for application in future fusion reactors

    Science.gov (United States)

    Qin, Jinggang; Wu, Yu; Li, Jiangang; Liu, Fang; Dai, Chao; Shi, Yi; Liu, Huajun; Mao, Zhehua; Nijhuis, Arend; Zhou, Chao; Yagotintsev, Konstantin A.; Lubkemann, Ruben; Anvar, V. A.; Devred, Arnaud

    2017-11-01

    The China Fusion Engineering Test Reactor (CFETR) is a new tokamak device whose magnet system includes toroidal field, central solenoid (CS) and poloidal field coils. The main goal is to build a fusion engineering tokamak reactor with about 1 GW fusion power and self-sufficiency by blanket. In order to reach this high performance, the magnet field target is 15 T. However, the huge electromagnetic load caused by high field and current is a threat for conductor degradation under cycling. The conductor with a short-twist-pitch (STP) design has large stiffness, which enables a significant performance improvement in view of load and thermal cycling. But the conductor with STP design has a remarkable disadvantage: it can easily cause severe strand indentation during cabling. The indentation can reduce the strand performance, especially under high load cycling. In order to overcome this disadvantage, a new design is proposed. The main characteristic of this new design is an updated layout in the triplet. The triplet is made of two Nb3Sn strands and one soft copper strand. The twist pitch of the two Nb3Sn strands is large and cabled first. The copper strand is then wound around the two superconducting strands (CWS) with a shorter twist pitch. The following cable stages layout and twist pitches are similar to the ITER CS conductor with STP design. One short conductor sample with a similar scale to the ITER CS was manufactured and tested with the Twente Cable Press to investigate the mechanical properties, AC loss and internal inspection by destructive examination. The results are compared to the STP conductor (ITER CS and CFETR CSMC) tests. The results show that the new conductor design has similar stiffness, but much lower strand indentation than the STP design. The new design shows potential for application in future fusion reactors.

  4. Stabilized Spheromak Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fowler, T

    2007-04-03

    The U.S. fusion energy program is focused on research with the potential for studying plasmas at thermonuclear temperatures, currently epitomized by the tokamak-based International Thermonuclear Experimental Reactor (ITER) but also continuing exploratory work on other plasma confinement concepts. Among the latter is the spheromak pursued on the SSPX facility at LLNL. Experiments in SSPX using electrostatic current drive by coaxial guns have now demonstrated stable spheromaks with good heat confinement, if the plasma is maintained near a Taylor state, but the anticipated high current amplification by gun injection has not yet been achieved. In future experiments and reactors, creating and maintaining a stable spheromak configuration at high magnetic field strength may require auxiliary current drive using neutral beams or RF power. Here we show that neutral beam current drive soon to be explored on SSPX could yield a compact spheromak reactor with current drive efficiency comparable to that of steady state tokamaks. Thus, while more will be learned about electrostatic current drive in coming months, results already achieved in SSPX could point to a productive parallel development path pursuing auxiliary current drive, consistent with plans to install neutral beams on SSPX in the near future. Among possible outcomes, spheromak research could also yield pulsed fusion reactors at lower capital cost than any fusion concept yet proposed.

  5. Toroidal high temperature superconducting coils for ISTTOK

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, H., E-mail: hf@ipfn.ist.utl.pt [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Goemoery, F. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Corte, A. della; Celentano, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy); Souc, J. [Institute of Electrical Engineering, Slovak Academy of Sciences, Dubravska cesta 9, 84104 Bratislava (Slovakia); Silva, C.; Carvalho, I.; Gomes, R. [Associacao Euratom/IST, Instituto de Plasmas e Fusao Nuclear, Laboratorio Associado, Instituto Superior Tecnico, 1049-001 Lisboa (Portugal); Di Zenobio, A.; Messina, G. [ENEA C.R. Frascati, Via E. Fermi 45, 00044 Frascati (Italy)

    2011-10-15

    High temperature superconductors (HTS) are very attractive to be used in fusion devices mainly due to lower operations costs. The HTS technology has reached a point where the construction of toroidal field coils for a tokamak is possible. The feasibility of a tokamak operating with HTS is extremely relevant and ISTTOK is the ideal candidate for a meaningful test due to its small size (and consequently lower cost) and the possibility to operate in a steady-state inductive regime. In this paper, a conceptual study of the ISTTOK upgrade to a superconducting device is presented, along with the relevant boundary conditions to achieve a permanent toroidal field with HTS. It is shown that the actual state of the art in HTS allows the design of a toroidal field coil capable of generating the appropriate field on plasma axis while respecting the structural specification of the machine.

  6. Energy and particle core transport in tokamaks and stellarators compared

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, Marc; Angioni, Clemente; Beidler, Craig; Dinklage, Andreas; Fuchert, Golo; Hirsch, Matthias; Puetterich, Thomas; Wolf, Robert [Max-Planck-Institut fuer Plasmaphysik, Greifswald/Garching (Germany)

    2016-07-01

    The paper discusses expectations for core transport in the Wendelstein 7-X stellarator (W7-X) and presents a comparison to tokamaks. In tokamaks, the neoclassical trapped-particle-driven losses are small and turbulence dominates the energy and particle transport. At reactor relevant low collisionality, the heat transport is limited by ion temperature gradient limited turbulence, clamping the temperature gradient. The particle transport is set by an anomalous inward pinch, yielding peaked profiles. A strong edge pedestal adds to the good confinement properties. In traditional stellarators the 3D geometry cause increased trapped orbit losses. At reactor relevant low collisionality and high temperatures, these neoclassical losses would be well above the turbulent transport losses. The W7-X design minimizes neoclassical losses and turbulent transport can become dominant. Moreover, the separation of regions of bad curvature and that of trapped particle orbits in W7-X may have favourable implications on the turbulent electron heat transport. The neoclassical particle thermodiffusion is outward. Without core particle sources the density profile is flat or even hollow. The presence of a turbulence driven inward anomalous particle pinch in W7-X (like in tokamaks) is an open topic of research.

  7. Alcator C-Mod Tokamak

    Data.gov (United States)

    Federal Laboratory Consortium — Alcator C-Mod at the Massachusetts Institute of Technology is operated as a DOE national user facility. Alcator C-Mod is a unique, compact tokamak facility that uses...

  8. PREFACE: Superconducting materials Superconducting materials

    Science.gov (United States)

    Charfi Kaddour, Samia; Singleton, John; Haddad, Sonia

    2011-11-01

    The discovery of superconductivity in 1911 was a great milestone in condensed matter physics. This discovery has resulted in an enormous amount of research activity. Collaboration among chemists and physicists, as well as experimentalists and theoreticians has given rise to very rich physics with significant potential applications ranging from electric power transmission to quantum information. Several superconducting materials have been synthesized. Crucial progress was made in 1987 with the discovery of high temperature superconductivity in copper-based compounds (cuprates) which have revealed new fascinating properties. Innovative theoretical tools have been developed to understand the striking features of cuprates which have remained for three decades the 'blue-eyed boy' for researchers in superconductor physics. The history of superconducting materials has been notably marked by the discovery of other compounds, particularly organic superconductors which despite their low critical temperature continue to attract great interest regarding their exotic properties. Last but not least, the recent observation of superconductivity in iron-based materials (pnictides) has renewed hope in reaching room temperature superconductivity. However, despite intense worldwide studies, several features related to this phenomenon remain unveiled. One of the fundamental key questions is the mechanism by which superconductivity takes place. Superconductors continue to hide their 'secret garden'. The new trends in the physics of superconductivity have been one of the two basic topics of the International Conference on Conducting Materials (ICoCoM2010) held in Sousse,Tunisia on 3-7 November 2010 and organized by the Tunisian Physical Society. The conference was a nice opportunity to bring together participants from multidisciplinary domains in the physics of superconductivity. This special section contains papers submitted by participants who gave an oral contribution at ICoCoM2010

  9. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, G.O.; Del Bosco, E.; Ferreira, J.G.; Berni, L.A.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Ueda, M.; Barroso, J.J.; Castro, P.J. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma; Barbosa, L.F.W. [Universidade do Vale do Paraiba (UNIVAP), Sao Jose dos Campos, SP (Brazil). Faculdade de Engenharia, Arquitetura e Urbanismo; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Div. de Mecanica Espacial e Controle; The high-power microwave sources group

    2003-12-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the steps in the development of the ETE (Experimento Tokamak Esferico) project, its research program, technical characteristics and operating conditions as of December, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  10. The ETE spherical Tokamak project

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Andrade, Maria Celia Ramos de; Barbosa, Luis Filipe Wiltgen [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] [and others]. E-mail: ludwig@plasma.inpe.br

    1999-07-01

    This paper describes the general characteristics of spherical tokamaks, with a brief overview of work in the area of spherical torus already performed or in progress at several institutions. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and status of construction in September, 1998 at the Associated plasma Laboratory (LAP) of the National Institute for Space Research (INPE) in Brazil. (author)

  11. Spherical tokamak development in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Bosco, Edson Del; Ferreira, Julio Guimaraes [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma] (and others)

    2003-07-01

    The general characteristics of spherical tokamaks, or spherical tori, with a brief view of work in this area already performed or in progress at several institutions worldwide are described. The paper presents also the steps in the development of the ETE (Experiment Tokamak spheric) project, its research program, technical characteristics and operating conditions as of December, 2002 a the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  12. Ignition curves for deuterium/helium-3 fuel in spherical tokamak ...

    Indian Academy of Sciences (India)

    Ignition curves for deuterium/helium-3 fuel in spherical tokamak reactor. S M MOTEVALLI1,∗ and F FADAEI2. 1Department of Physics, Faculty of Science, University of Mazandaran,. P.O. Box 47415-416, Babolsar, Iran. 2Department of Physics, Payam Noor University, P.O. Box 19395-3697, Tehran, Iran. ∗. Corresponding ...

  13. Diagnostics and control for the steady state and pulsed tokamak DEMO

    Czech Academy of Sciences Publication Activity Database

    Orsitto, F.P.; Villari, R.; Moro, F.; Todd, T.N.; Lilley, S.; Jenkins, I.; Felton, R.; Biel, W.; Silva, A.; Scholz, M.; Rzadkiewicz, J.; Ďuran, Ivan; Tardocchi, M.; Gorini, G.; Morlock, C.; Federici, G.; Litnovsky, A.

    2016-01-01

    Roč. 56, č. 2 (2016), č. článku 026009. ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : measurement systems, fusion reactor, fusion plasma diagnostics * fusion reactor * fusion plasma diagnostics * DEMO * Hall sensors * tokamak Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/0029-5515/56/2/026009

  14. Ion cyclotron emission in tokamak plasmas; Emission cyclotronique ionique dans les plasmas de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Fraboulet, D.

    1996-09-17

    Detection of {alpha}(3.5 MeV) fusion products will be of major importance for the achievement of self sustained discharges in fusion thermonuclear reactors. Due to their cyclotronic gyration in the confining magnetic field of a tokamak, {alpha} particles are suspected to radiate in the radio-frequency band [RF: 10-500 MHz]. Our aim is to determine whether detection of RF emission radiated from a reactor plasma can provide information concerning those fusion products. We observed experimentally that the RF emission radiated from fast ions situated in the core of the discharge is detectable with a probe located at the plasma edge. For that purpose, fast temporal acquisition of spectral power was achieved in a narrow frequency band. We also propose two complementary models for this emission. In the first one, we describe locally the energy transfer between the photon population and the plasma and we compute the radiation equilibrium taking place in the tokamak. {alpha} particles are not the unique species involved in the equilibrium and it is necessary to take into account all other species present in the plasma (Deuterium, Tritium, electrons,...). Our second model consists in the numerical resolution of the Maxwell-Vlasov with the use of a variational formulation, in which all polarizations are considered and the 4 first cyclotronic harmonics are included in a 1-D slab geometry. The development of this second model leads to the proposal for an experimental set up aiming to the feasibility demonstration of a routine diagnostic providing the central {alpha} density in a reactor. (author). 166 refs.

  15. Three-dimensional analysis of tokamaks and stellarators.

    Science.gov (United States)

    Garabedian, Paul R

    2008-09-16

    The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project.

  16. Three-dimensional analysis of tokamaks and stellarators

    Science.gov (United States)

    Garabedian, Paul R.

    2008-01-01

    The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments. When the mesh size is comparable to the island width, an accurate radial difference scheme in conservation form captures magnetic islands successfully despite a nested surface hypothesis imposed by the mathematics. Three-dimensional asymmetries in bifurcated numerical solutions of the axially symmetric tokamak problem are relevant to the observation of unstable neoclassical tearing modes and edge localized modes in experiments. Islands in compact stellarators with quasiaxial symmetry are easier to control, so these configurations will become good candidates for magnetic fusion if difficulties with safety and stability are encountered in the International Thermonuclear Experimental Reactor (ITER) project. PMID:18768807

  17. Three-dimensional equilibria in axially symmetric tokamaks

    Science.gov (United States)

    Garabedian, Paul R.

    2006-01-01

    The NSTAB and TRAN computer codes have been developed to study equilibrium, stability, and transport in fusion plasmas with three-dimensional (3D) geometry. The numerical method that is applied calculates islands in tokamaks like the Doublet III-D at General Atomic and the International Thermonuclear Experimental Reactor. When bifurcated 3D solutions are used in Monte Carlo computations of the energy confinement time, a realistic simulation of transport is obtained. The significance of finding many 3D magnetohydrodynamic equilibria in axially symmetric tokamaks needs attention because their cumulative effect may contribute to the prompt loss of α particles or to crashes and disruptions that are observed. The 3D theory predicts good performance for stellarators. PMID:17159158

  18. Bibliography of fusion product physics in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Hively, L. M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Sigmar, D. J. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1989-09-01

    Almost 700 citations have been compiled as the first step in reviewing the recent research on tokamak fusion product effects in tokamaks. The publications are listed alphabetically by the last name of the first author and by subject category.

  19. Plasma heating systems planned for the Argonne experimental power reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bertoncini, P.; Brooks, J.; Fasolo, J.; Mills, F.; Moretti, A.; Norem, J.

    1976-01-01

    A scoping study and conceptual design of a tokamak experimental power reactor (TEPR) have been completed. The design objectives of the TEPR are to operate for ten years at or near electrical power breakeven conditions with a duty factor of greater than or equal to 50 percent and to demonstrate the feasibility of tokamak fusion power reactor techniques. These objectives can be met by a design which has a major radius of 6.25 m and a plasma radius of 2.1 m. Parameters for this reactor are listed, and a diagram is given. This paper will describe TEPR plasma heating systems. Neutral beam heating and rf heating are described.

  20. Korea Superconducting tokamak advanced research project - Development of heating system

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Byung Ho [Korea Atomic Energy Research Institute, Taejon (Korea)

    1998-10-01

    The heating and current drive systems for KSTAR based on multiple technologies (neutral beam, ion cyclotron, lower hybrid and electron cyclotron) have been designed to provide heating and current drive capabilities as well as flexibility in the control of current density and pressure profiles needed to meet the mission and research objectives of the machine. They are designed to operate for long-pulse lengths of up to 300 s. The NBI system initially delivers 8 MW of neutral beam power to the plasma from one co-directed beam line and shall be upgraded to provide 20 MW of neutral beam power with two co-directed beam lines plus one counter-directed beam line. It will be capable of being reconfigured such that the source arrangement is changed from horizontal to vertical stacking, with 6 MW beam power to the plasmas per beam line, in order to facilitate profile control. The RF system initially delivers 6 MW of rf power to the plasma, using a single four-strap antenna mounted in a midplane port. The system will be upgraded to proved 12 MW of rf power through 2 adjacent ports. In the first phase, we completed the basic design of RF system and the system have the capabilities to be operationable for pulse length up to 300 sec and in the 25-60 MHz frequency range. Lower hybrid system initially provides 1.5 MW LH rf power to the plasma at 3.7 GHz through a horizontal port, which has a capability to be operated for pulse length up to 300 sec, and shall be upgraded to provide 4.5 MW of LH rf power to the plasma. In the first phase, we completed the basic design of LHCD system which incorporate the TPX-type launcher and independently phase-changeable transmission system for the fully phased coupler. The ECH system will deliver up to 0.5 MW of power to the plasma for up to 0.5 sec. In the first phase, we completed the basic design of ECH system which includes an 84 GHz gyrotron system, a transmission system, and a launcher. The basic design of the low loss transmission system and regulated high voltage power supply for gyrotron was finished. (author). 8 refs., 197 figs., 23 tabs.

  1. Moving Divertor Plates in a Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    S.J. Zweben, H. Zhang

    2009-02-12

    Moving divertor plates could help solve some of the problems of the tokamak divertor through mechanical ingenuity rather than plasma physics. These plates would be passively heated on each pass through the tokamak and cooled and reprocessed outside the tokamak. There are many design options using varying plate shapes, orientations, motions, coatings, and compositions.

  2. Prospects for pilot plants based on the tokamak, spherical tokamak and stellarator

    Science.gov (United States)

    Menard, J. E.; Bromberg, L.; Brown, T.; Burgess, T.; Dix, D.; El-Guebaly, L.; Gerrity, T.; Goldston, R. J.; Hawryluk, R. J.; Kastner, R.; Kessel, C.; Malang, S.; Minervini, J.; Neilson, G. H.; Neumeyer, C. L.; Prager, S.; Sawan, M.; Sheffield, J.; Sternlieb, A.; Waganer, L.; Whyte, D.; Zarnstorff, M.

    2011-10-01

    A potentially attractive next-step towards fusion commercialization is a pilot plant, i.e. a device ultimately capable of small net electricity production in as compact a facility as possible and in a configuration scalable to a full-size power plant. A key capability for a pilot-plant programme is the production of high neutron fluence enabling fusion nuclear science and technology (FNST) research. It is found that for physics and technology assumptions between those assumed for ITER and nth-of-a-kind fusion power plant, it is possible to provide FNST-relevant neutron wall loading in pilot devices. Thus, it may be possible to utilize a single facility to perform FNST research utilizing reactor-relevant plasma, blanket, coil and auxiliary systems and maintenance schemes while also targeting net electricity production. In this paper three configurations for a pilot plant are considered: the advanced tokamak, spherical tokamak and compact stellarator. A range of configuration issues is considered including: radial build and blanket design, magnet systems, maintenance schemes, tritium consumption and self-sufficiency, physics scenarios and a brief assessment of research needs for the configurations.

  3. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  4. Overview of wall probes for erosion and deposition studies in the TEXTOR tokamak

    Directory of Open Access Journals (Sweden)

    M. Rubel

    2017-05-01

    Full Text Available An overview of diagnostic tools – test limiters and collector probes – used over the years for material migration studies in the TEXTOR tokamak is presented. Probe transfer systems are shown and their technical capabilities are described. This is accompanied by a brief presentation of selected results and conclusions from the research on material erosion – deposition processes including tests of candidate materials (e.g. W, Mo, carbon-based composites for plasma-facing components in controlled fusion devices. The use of tracer techniques and methods for analysis of materials retrieved from the tokamak are summarized. The impact of research on the reactor wall technology is addressed.

  5. Who will save the tokamak - Harry Potter, Arnold Schwarzenegger, or Shaquille O'Neil?

    Science.gov (United States)

    Freidberg, J.; Mangiarotti, F.; Minervini, J.

    2014-10-01

    The tokamak is the current leading contender for a fusion power reactor. The reason for the preeminence of the tokamak is its high quality plasma physics performance relative to other concepts. Even so, it is well known that the tokamak must still overcome two basic physics challenges before becoming viable as a DEMO and ultimately a reactor: (1) the achievement of non-inductive steady state operation, and (2) the achievement of robust disruption free operation. These are in addition to the PMI problems faced by all concepts. The work presented here demonstrates by means of a simple but highly credible analytic calculation that a ``standard'' tokamak cannot lead to a reactor - it is just not possible to simultaneously satisfy all the plasma physics plus engineering constraints. Three possible solutions, some more well-known than others, to the problem are analyzed. These visual image generating solutions are defined as (1) the Harry Potter solution, (2) the Arnold Schwarzenegger solution, and (3) the Shaquille O'Neil solution. Each solution will be described both qualitatively and quantitatively at the meeting.

  6. Transport Barriers in Bootstrap Driven Tokamaks

    Science.gov (United States)

    Staebler, Gary

    2017-10-01

    Maximizing the bootstrap current in a tokamak, so that it drives a high fraction of the total current, reduces the external power required to drive current by other means. Improved energy confinement, relative to empirical scaling laws, enables a reactor to more fully take advantage of the bootstrap driven tokamak. Experiments have demonstrated improved energy confinement due to the spontaneous formation of an internal transport barrier in high bootstrap fraction discharges. Gyrokinetic analysis, and quasilinear predictive modeling, demonstrates that the observed transport barrier is due to the suppression of turbulence primarily due to the large Shafranov shift. ExB velocity shear does not play a significant role in the transport barrier due to the high safety factor. It will be shown, that the Shafranov shift can produce a bifurcation to improved confinement in regions of positive magnetic shear or a continuous reduction in transport for weak or negative magnetic shear. Operation at high safety factor lowers the pressure gradient threshold for the Shafranov shift driven barrier formation. The ion energy transport is reduced to neoclassical and electron energy and particle transport is reduced, but still turbulent, within the barrier. Deeper into the plasma, very large levels of electron transport are observed. The observed electron temperature profile is shown to be close to the threshold for the electron temperature gradient (ETG) mode. A large ETG driven energy transport is qualitatively consistent with recent multi-scale gyrokinetic simulations showing that reducing the ion scale turbulence can lead to large increase in the electron scale transport. A new saturation model for the quasilinear TGLF transport code, that fits these multi-scale gyrokinetic simulations, can match the data if the impact of zonal flow mixing on the ETG modes is reduced at high safety factor. This work was supported by the U.S. Department of Energy under DE-FG02-95ER54309 and DE-FC02

  7. User's manual for COAST 4: a code for costing and sizing tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sink, D. A.; Iwinski, E. M.

    1979-09-01

    The purpose of this report is to document the computer program COAST 4 for the user/analyst. COAST, COst And Size Tokamak reactors, provides complete and self-consistent size models for the engineering features of D-T burning tokamak reactors and associated facilities involving a continuum of performance including highly beam driven through ignited plasma devices. TNS (The Next Step) devices with no tritium breeding or electrical power production are handled as well as power producing and fissile producing fusion-fission hybrid reactors. The code has been normalized with a TFTR calculation which is consistent with cost, size, and performance data published in the conceptual design report for that device. Information on code development, computer implementation and detailed user instructions are included in the text.

  8. Steady-state current drive in tokamaks workshop summary

    Energy Technology Data Exchange (ETDEWEB)

    1979-02-01

    The purpose of the workshop was to identify the most promising techniques and to outline the expectations for tokamak reactor concepts. The group which included beam and rf specialists were asked to assist in the preparation of specific recommendations for the establishment of a program directed at demonstrating current drive. This report includes the recommendations and conclusions as prepared by A. Bers, D. Jassby, and T. Hsu and the summary papers submitted by the participants describing the various experiments and studies presented at the workshop.

  9. Tokamak operation with safety factor q95 MHD stability.

    Science.gov (United States)

    Piovesan, P; Hanson, J M; Martin, P; Navratil, G A; Turco, F; Bialek, J; Ferraro, N M; La Haye, R J; Lanctot, M J; Okabayashi, M; Paz-Soldan, C; Strait, E J; Turnbull, A D; Zanca, P; Baruzzo, M; Bolzonella, T; Hyatt, A W; Jackson, G L; Marrelli, L; Piron, L; Shiraki, D

    2014-07-25

    Magnetic feedback control of the resistive-wall mode has enabled the DIII-D tokamak to access stable operation at safety factor q(95) = 1.9 in divertor plasmas for 150 instability growth times. Magnetohydrodynamic stability sets a hard, disruptive limit on the minimum edge safety factor achievable in a tokamak, or on the maximum plasma current at a given toroidal magnetic field. In tokamaks with a divertor, the limit occurs at q(95) = 2, as confirmed in DIII-D. Since the energy confinement time scales linearly with current, this also bounds the performance of a fusion reactor. DIII-D has overcome this limit, opening a whole new high-current regime not accessible before. This result brings significant possible benefits in terms of fusion performance, but it also extends resistive-wall mode physics and its control to conditions never explored before. In present experiments, the q(95) < 2 operation is eventually halted by voltage limits reached in the feedback power supplies, not by intrinsic physics issues. Improvements to power supplies and to control algorithms have the potential to further extend this regime.

  10. Optimization study of normal conductor tokamak for commercial neutron source

    Science.gov (United States)

    Fujita, T.; Sakai, R.; Okamoto, A.

    2017-05-01

    The optimum conceptual design of tokamak with normal conductor coils was studied for minimizing the cost for producing a given neutron flux by using a system code, PEC. It is assumed that the fusion neutrons are used for burning transuranics from the fission reactor spent fuel in the blanket and a fraction of the generated electric power is circulated to opearate the tokamak with moderate plasma fusion gain. The plasma performance was assumed to be moderate ones; {β\\text{N}}~∼ ~3{--}4 in the aspect ratio A~=~2{--}3 and {{H}98y2}~=~1 . The circulating power is an important factor affecting the cost. Though decreasing the aspect ratio is useful to raise the plasma beta and decrease the toroidal field, the maximum field in the coil starts to rise in the very low aspect ratio range and then the circulating power increases with decrease in the plasma aspect ratio A below A~∼ ~2 , while the construction cost increases with A . As a result, the cost per neutron has its minimum around A~∼ ~2.2 , namely, between ST and the conventional tokamak. The average circulating power fraction is expected to be ~51%.

  11. Toroidal flow measurement in CT injected STOR-M tokamak

    Science.gov (United States)

    Asai, Tomohiko; Morelli, Jordan; Singh, Ajay; Xiao, Chijin; Hirose, Akira; Nagata, Masayoshi; Uyama, Tadao

    2002-11-01

    Compact Torus (CT) injection is a technology being developed for fueling of large tokamak reactors. It has been demonstrated in the STOR-M tokamak that tangential CT injection is capable of inducing an improved confinement mode (H-mode). It has been conjectured that tangential CT injection may enhance the toroidal rotation of the bulk tokamak plasma which is responsible for the H-mode by preventing or reducing microinstabilities[1]. In order to investigate the mechanisms of the L-H transition induced by enhanced toroidal flow (particularly that caused by CT injection), an Ion Doppler Spectroscope (IDS) has been developed. The IDS employs a 0.75 m focal length Czerny-Turner spectrometer with a resolution of 0.1 Åand a 16-channel PMT array. Data of plasma flow measurements will be presented with and without CT injection. Also, the results will be compared with toroidal flow measurement obtained using a 4-sided Mach probe in the plasma edge region. [1] S. Sen et al., Phys. Rev. Lett. 88, 185001 (2002).

  12. Tokamak Plasmas: Mirnov coil data analysis for tokamak ADITYA

    Indian Academy of Sciences (India)

    The spatial and temporal structures of magnetic signal in the tokamak ADITYA is analysed using recently developed singular value decomposition (SVD) technique. The analysis technique is first tested with simulated data and then applied to the ADITYA Mirnov coil data to determine the structure of current peturbation as ...

  13. Tokamak Plasmas: Internal magnetic field measurement in tokamak ...

    Indian Academy of Sciences (India)

    The theory of the measurement and a detailed design of the Zeeman polarimeter constructed to measure the poloidal field profile in the ADITYA tokamak are presented. The Fabry-Perot which we have employed in our design, with photodiode arrays followed by lock-in detection of the polarization signal, allows the ...

  14. Superconducting gravimeter

    Science.gov (United States)

    Goodkind, J. M.

    1982-01-01

    The superconducting gravimeter was developed and applied to field measurements. The stability of the instrument yielded the highest precision measurements of the Earth tides ever attained. It revealed unprecedented details about the effect of the atmosphere on gravity. Secular variations in gravity and the stability of the instruments were measured by comparing records from co-located instruments. These efforts have resulted in substantial reductions in the noise level at very low frequencies so that the peak differences between two instruments at the same location can be reduced to 0.1 micron gal.

  15. Degraded Confinement in Tokamak Experiments

    NARCIS (Netherlands)

    Schüller, F. C.

    1994-01-01

    After a review on the state of tokamak transport theory, the methodology to derive experimental results will be described. Examples of confinement in ohmic plasmas and the deterioration with additional heating will be given. Some examples of improved confinement modes will be discussed. Fluctuation

  16. An enhanced tokamak startup model

    Science.gov (United States)

    Goswami, Rajiv; Artaud, Jean-François

    2017-01-01

    The startup of tokamaks has been examined in the past in varying degree of detail. This phase typically involves the burnthrough of impurities and the subsequent rampup of plasma current. A zero-dimensional (0D) model is most widely used where the time evolution of volume averaged quantities determines the detailed balance between the input and loss of particle and power. But, being a 0D setup, these studies do not take into consideration the co-evolution of plasma size and shape, and instead assume an unchanging minor and major radius. However, it is known that the plasma position and its minor radius can change appreciably as the plasma evolves in time to fill in the entire available volume. In this paper, an enhanced model for the tokamak startup is introduced, which for the first time takes into account the evolution of plasma geometry during this brief but highly dynamic period by including realistic one-dimensional (1D) effects within the broad 0D framework. In addition the effect of runaway electrons (REs) has also been incorporated. The paper demonstrates that the inclusion of plasma cross section evolution in conjunction with REs plays an important role in the formation and development of tokamak startup. The model is benchmarked against experimental results from ADITYA tokamak.

  17. Comment on ‘On the fusion triple product and fusion power gain of tokamak pilot plants and reactors’, by A. Costley

    Science.gov (United States)

    Biel, W.; Lackner, K.; Sauter, O.; Wenninger, R.; Zohm, H.

    2017-03-01

    In this comment, we discuss the arguments raised in two recent papers (Costley 2016 Nucl. Fusion 56 066003, Costley et al 2015 Nucl. Fusion 55 033001) on the claimed size independence of fusion power, triple product and fusion gain in tokamak reactors, and we show that all these three quantities actually do depend on the size of the tokamak, when distinguishing between independent input parameters (design parameters) and output quantities, and when taking into account technological limitations.

  18. Radiation Shielding for Fusion Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, R.T.

    1999-10-01

    Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor components from the first wall and primary shielding to the penetrations and containment shielding must be carried out in a sensible progression. Initial results from one-dimensional transport calculations are used for scoping studies and are followed by detailed two- and three-dimensional analyses to effectively characterize the overall radiation environment. These detail model calculations are essential for accounting for the radiation leakage through ports and other penetrations in the bulk shield. Careful analysis of component activation and radiation damage is cardinal for defining remote handling requirements, in-situ replacement of components, and personnel access at specific locations inside the reactor containment vessel. Radiation shielding requirements for fusion reactors present different problems than those for fission reactors and accelerators. Fusion devices, particularly tokamak reactors, are complicated by geometry constraints that complicate disposition of fully effective shielding. This paper reviews some of these shielding issues and suggested solutions for optimizing the machine and biological shielding. Radiation transport calculations are essential for predicting and confirming the nuclear performance of the reactor and, as such, must be an essential part of the reactor design process. Development and optimization of reactor

  19. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  20. A charged fusion product diagnostic for a spherical tokamak

    Science.gov (United States)

    Perez, Ramona Leticia Valenzuela

    Designs for future nuclear fusion power reactors rely on the ability to create a stable plasma (hot ionized gas of hydrogen isotopes) as a medium with which to sustain nuclear fusion reactions. My dissertation work involves designing, constructing, testing, installing, operating, and validating a new diagnostic for spherical tokamaks, a type of reactor test facility. Through detecting charged particles emitted from the plasma, this instrument can be used to study fusion reaction rates within the plasma and how they are affected by plasma perturbations. Quantitatively assessing nuclear fusion reaction rates at specific locations inside the plasma and as a function of time can provide valuable data that can be used to evaluate theory-based simulations related to energy transport and plasma stability. The Proton Detector (PD), installed in the Mega Amp Spherical Tokamak (MAST) at the Culham Centre for Fusion Energy (CCFE) in Abingdon, England, was the first instrument to experimentally detect 3 MeV Protons and 1 MeV Tritons created from deuterium- deuterium (hydrogen isotopes) nuclear fusion reactions inside a spherical tokamak's plasma. The PD consists of an array of particle detectors with a protective housing and the necessary signal conditioning electronics and readout. After several years of designing (which included simulations for detector orientations), fabricating, and testing the PD, it was installed in MAST and data were collected over a period of two months in the summer of 2013. Proton and triton rates as high as 200 kHz were measured and an initial radial profile of these fusion reaction rates inside the plasma was extracted. These results will be compared to a complementary instrument at MAST as well as theory-based simulations and form the knowledge basis for developing a larger future instrument. The design and performance of all instrument components (electrical, computational, mechanical), and subsequent data analysis methods and results are

  1. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    Science.gov (United States)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  2. Tokamak active laser pyrometry for tungsten deposited layer characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Semerok, A., E-mail: alexandre.semerok@cea.fr [CEA Saclay, DEN/DENS/DPC/SCP/LILM, P.C. 56, 91191 Gif-sur-Yvette, Cedex (France); Jaubert, F.; Fomichev, S.V.; Thro, P.-Y. [CEA Saclay, DEN/DENS/DPC/SCP/LILM, P.C. 56, 91191 Gif-sur-Yvette, Cedex (France); Grisolia, C. [CEA Cadarache, IRFM, 13108, Saint Paul-lez-Durance, Cedex (France)

    2012-03-15

    In modern fusion reactors, the erosion of plasma facing surface results in layers deposition on tokamak 'cold' surfaces. To provide efficient operation of tokamaks, it is essential to characterise the deposited layer with high tritium content. In situ rapid surface characterisation without reactor components disassembly is required. Active laser pyrometry together with a repetition rate Nd-YAG laser (1 Hz-1 kHz repetition rate frequency) applied for surface heating can be used to characterise some thermo-physical properties (thermal capacity, thermal contact, and conductivity) of a micrometric layer. The pyrometer system was developed and applied to characterise some properties of a W-layer (140 {mu}m) on a CFC-substrate. The numerical code developed for 3-D simulation of LH of a surface with the deposited layer was applied to simulate the experimental heating temperatures. The experimental and simulation results were compared. W-layer characterisation was performed by fitting the experimental and theoretical heating temperatures.

  3. Radiolytic production of chemical fuels in fusion reactor systems

    Energy Technology Data Exchange (ETDEWEB)

    Fish, J D

    1977-06-01

    Miley's energy flow diagram for fusion reactor systems is extended to include radiolytic production of chemical fuel. Systematic study of the economics and the overall efficiencies of fusion reactor systems leads to a criterion for evaluating the potential of radiolytic production of chemical fuel as a means of enhancing the performance of a fusion reactor system. The ecumenicity of the schema is demonstrated by application to (1) tokamaks, (2) mirror machines, (3) theta-pinch reactors, (4) laser-heated solenoids, and (5) inertially confined, laser-pellet devices. Pure fusion reactors as well as fusion-fission hybrids are considered.

  4. Transport of dust particles in tokamak devices

    Energy Technology Data Exchange (ETDEWEB)

    Pigarov, A.Yu. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: apigarov@uscd.edu; Smirnov, R.D. [University of California at San Diego, La Jolla, CA (United States); Krasheninnikov, S.I. [University of California at San Diego, La Jolla, CA (United States); Rognlien, T.D. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Rosenberg, M. [University of California at San Diego, La Jolla, CA (United States); Soboleva, T.K. [UNAM, Mexico, DistritoFederal (Mexico)

    2007-06-15

    Recent advances in the dust transport modeling in tokamak devices are discussed. Topics include: (1) physical model for dust transport; (2) modeling results on dynamics of dust particles in plasma; (3) conditions necessary for particle growth in plasma; (4) dust spreading over the tokamak; (5) density profiles for dust particles and impurity atoms associated with dust ablation in tokamak plasma; and (6) roles of dust in material/tritium migration.

  5. MHD stability limits in the TCV Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)

    2001-07-01

    Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The

  6. Analysis of higher harmonics on bidirectional heat pulse propagation experiment in helical and tokamak plasmas

    Science.gov (United States)

    Kobayashi, T.; Ida, K.; Inagaki, S.; Tsuchiya, H.; Tamura, N.; Choe, G. H.; Yun, G. S.; Park, H. K.; Ko, W. H.; Evans, T. E.; Austin, M. E.; Shafer, M. W.; Ono, M.; López-bruna, D.; Ochando, M. A.; Estrada, T.; Hidalgo, C.; Moon, C.; Igami, H.; Yoshimura, Y.; Tsujimura, T. Ii.; Itoh, S.-I.; Itoh, K.

    2017-07-01

    In this contribution we analyze modulation electron cyclotron resonance heating (MECH) experiment and discuss higher harmonic frequency dependence of transport coefficients. We use the bidirectional heat pulse propagation method, in which both inward propagating heat pulse and outward propagating heat pulse are analyzed at a radial range, in order to distinguish frequency dependence of transport coefficients due to hysteresis from that due to other reasons, such as radially dependent transport coefficients, a finite damping term, or boundary effects. The method is applied to MECH experiments performed in various helical and tokamak devices, i.e. Large Helical Device (LHD), TJ-II, Korea Superconducting Tokamak Advanced Research (KSTAR), and Doublet III-D (DIII-D) with different plasma conditions. The frequency dependence of transport coefficients are clearly observed, showing a possibility of existence of transport hysteresis in flux-gradient relation.

  7. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  8. Diagnostics for the Rijnhuizen Tokamak Project

    NARCIS (Netherlands)

    Donne, A. J. H.

    1994-01-01

    The research program of the Rijnhuizen Tokamak Project is concentrated on the study of plasma transport processes. The RTP tokamak is therefore equipped with an extensive set of multichannel diagnostics, including a 19-channel FIR interferometer, a 20-channel heterodyne ECE system, an 80-channel

  9. The disruptive instability in Tokamak plasmas

    NARCIS (Netherlands)

    Salzedas, F.J.B.

    2000-01-01

    Studies performed in RTP (Rijnhuizen Tokamak Project) of the most violent and dangerous instability in tokamak plasmas, the major disruption, are presented. A particular class of disruptions is analyzed, namely the density limit disruption, which occur in high density plasmas. The radiative

  10. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  11. Natural current profiles in a tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, J.B.

    1990-08-01

    In this paper I show how one may arrive at a universal, or natural, family of Tokamak profiles using only accepted physical principles. These particular profiles are similar to ones proposed previously on the basis of ad hoc variational principles and the point of the present paper is to provide a justification for them. However in addition, the present work provides an interesting view of Tokamak fluctuations and leads to a new result -- a relationship between the inward particle pinch velocity, the diffusion coefficient and the current profile. The basic Tokamak model is described in this paper. Then an analogy is developed between Tokamak profiles and the equilibrium of a realisable dynamical system. Then the equations governing the natural Tokamak profiles are derived by applying standard statistical mechanics to this analog. The profiles themselves are calculated and some other results of the theory are described.

  12. 3D passive stabilization of n = 0 MHD modes in EAST tokamak.

    Science.gov (United States)

    Chen, S L; Villone, F; Xiao, B J; Barbato, L; Luo, Z P; Liu, L; Mastrostefano, S; Xing, Z

    2016-09-06

    Evidence is shown of the capability of non-axisymmetrical conducting structures in the Experimental Advanced Superconducting Tokamak (EAST) to guarantee the passive stabilization of the n = 0 MHD unstable mode. Suitable numerical modeling of the experiments allows a clear interpretation of the phenomenon. This demonstration and the availability of computational tools able to describe the effect of 3D conductors will have a huge impact on the design of future fusion devices, in which the conducting structures closest to plasma will be highly segmented.

  13. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  14. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  15. Cluster storage for COMPASS tokamak

    Czech Academy of Sciences Publication Activity Database

    Písačka, Jan; Hron, Martin; Janky, Filip; Pánek, Radomír

    2012-01-01

    Roč. 87, č. 12 (2012), s. 2238-2241 ISSN 0920-3796. [IAEA Technical Meeting on Control, Data Acquisition, and Remote Participation for Fusion Research/8./. San Francisco, 20.06.2011-24.06.2011] R&D Projects: GA ČR GAP205/11/2470; GA MŠk 7G10072; GA MŠk(CZ) LM2011021 Institutional research plan: CEZ:AV0Z20430508 Keywords : COMPASS * Tokamak * Codac * Cluster * GlusterFS * Storage Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.842, year: 2012 http://dx.doi.org/10.1016/j.fusengdes.2012.09.006

  16. Active cooling system for Tokamak in-vessel operation manipulator

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Jianjun, E-mail: yuanjj@sjtu.edu.cn; Chen, Tan; Li, Fashe; Zhang, Weijun; Du, Liang

    2015-10-15

    Highlights: • We summarized most of the challenges of fusion devices to robot systems. • Propose an active cooling system to protect all of the necessary components. • Trial design test and theoretical analysis were conducted. • Overall implementation of the active cooling system was demonstrated. - Abstract: In-vessel operation/inspection is an indispensable task for Tokamak experimental reactor, for a robot/manipulator is more capable in doing this than human being with more precise motion and less risk of damaging the ambient equipment. Considering the demanding conditions of Tokamak, the manipulator should be adaptable to rapid response in the extreme conditions such as high temperature, vacuum and so on. In this paper, we propose an active cooling system embedded into such manipulator. Cameras, motors, gearboxes, sensors, and other mechanical/electrical components could then be designed under ordinary conditions. The cooling system cannot only be a thermal shield since the components are also heat sources in dynamics. We carry out a trial test to verify our proposal, and analyze the active cooling system theoretically, which gives a direction on the optimization by varying design parameters, components and distribution. And based on thermal sensors monitoring and water flow adjusting a closed-loop feedback control of temperature is added to the system. With the preliminary results, we believe that the proposal gives a way to robust and inexpensive design in extreme environment. Further work will concentrate on overall implementation and evaluation of this cooling system with the whole inspection manipulator.

  17. Finite pressure effects on the tokamak sawtooth crash

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Yasutaro

    1998-07-01

    The sawtooth crash is a hazardous, disruptive phenomenon that is observed in tokamaks whenever the safety factor at the magnetic axis is below unity. Recently, Tokamak Test Fusion Reactor (TFTR) experimental data has revealed interesting features of the dynamical pressure evolution during the crash phase. Motivated by the experimental results, this dissertation focuses on theoretical modeling of the finite pressure effects on the nonlinear stage of the sawtooth crash. The crash phase has been studied numerically employed a toroidal magnetohydrodynamic (MHD) initial value code deduced from the FAR code. For the first time, by starting from a concentric equilibrium, it has been shown that the evolution through an m/n = 1/1 magnetic island induces secondary high-n ballooning instabilities. The magnetic island evolution gives rise to convection of the pressure inside the inversion radius and builds up a steep pressure gradient across the island separatrix, or current sheet, and thereby triggers ballooning instabilities below the threshold for the axisymmetric equilibrium. Due to the onset of secondary ballooning modes, concomitant fine scale vortices and magnetic stochasticity are generated. These effects produce strong flows across the current sheet, and thereby significant modify the m = 1 driven magnetic reconnection process. The resultant interaction of the high-n ballooning modes with the magnetic reconnection process is discussed.

  18. Development of imaging bolometers for magnetic fusion reactors (invited)

    OpenAIRE

    Byron J., PETERSON; Homaira, Parchamy; Naoko, ASHIKAWA; Hisato, KAWASHIMA; Shigeru, Konoshima; Artem Yu., Kostryukov; Igor V., MIROSHNIKOV; Dongcheol, SEO; T., Omori

    2008-01-01

    Imaging bolometers utilize an infrared (IR) video camera to measure the change in temperature of a thin foil exposed to the plasma radiation, thereby avoiding the risks of conventional resistive bolometers related to electric cabling and vacuum feedthroughs in a reactor environment. A prototype of the IR imaging video bolometer (IRVB) has been installed and operated on the JT-60U tokamak demonstrating its applicability to a reactor environment and its ability to provide two-dimensional measur...

  19. Current Challenges in the First Principle Quantitative Modelling of the Lower Hybrid Current Drive in Tokamaks

    Directory of Open Access Journals (Sweden)

    Peysson Y.

    2017-01-01

    Full Text Available The Lower Hybrid (LH wave is widely used in existing tokamaks for tailoring current density profile or extending pulse duration to steady-state regimes. Its high efficiency makes it particularly attractive for a fusion reactor, leading to consider it for this purpose in ITER tokamak. Nevertheless, if basics of the LH wave in tokamak plasma are well known, quantitative modeling of experimental observations based on first principles remains a highly challenging exercise, despite considerable numerical efforts achieved so far. In this context, a rigorous methodology must be carried out in the simulations to identify the minimum number of physical mechanisms that must be considered to reproduce experimental shot to shot observations and also scalings (density, power spectrum. Based on recent simulations carried out for EAST, Alcator C-Mod and Tore Supra tokamaks, the state of the art in LH modeling is reviewed. The capability of fast electron bremsstrahlung, internal inductance li and LH driven current at zero loop voltage to constrain all together LH simulations is discussed, as well as the needs of further improvements (diagnostics, codes, LH model, for robust interpretative and predictive simulations.

  20. Integrated modeling of temperature profiles in L-mode tokamak discharges

    Energy Technology Data Exchange (ETDEWEB)

    Rafiq, T.; Kritz, A. H.; Tangri, V. [Department of Physics, Lehigh University, Bethlehem, Pennsylvania 18015 (United States); Pankin, A. Y. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Voitsekhovitch, I. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Budny, R. V. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States)

    2014-12-15

    Simulations of doublet III-D, the joint European tokamak, and the tokamak fusion test reactor L-mode tokamak plasmas are carried out using the PTRANSP predictive integrated modeling code. The simulation and experimental temperature profiles are compared. The time evolved temperature profiles are computed utilizing the Multi-Mode anomalous transport model version 7.1 (MMM7.1) which includes transport associated with drift-resistive-inertial ballooning modes (the DRIBM model [T. Rafiq et al., Phys. Plasmas 17, 082511 (2010)]). The tokamak discharges considered involved a broad range of conditions including scans over gyroradius, ITER like current ramp-up, with and without neon impurity injection, collisionality, and low and high plasma current. The comparison of simulation and experimental temperature profiles for the discharges considered is shown for the radial range from the magnetic axis to the last closed flux surface. The regions where various modes in the Multi-Mode model contribute to transport are illustrated. In the simulations carried out using the MMM7.1 model it is found that: The drift-resistive-inertial ballooning modes contribute to the anomalous transport primarily near the edge of the plasma; transport associated with the ion temperature gradient and trapped electron modes contribute in the core region but decrease in the region of the plasma boundary; and neoclassical ion thermal transport contributes mainly near the center of the discharge.

  1. Core-SOL simulations of L-mode tokamak plasma discharges using BALDUR code

    Directory of Open Access Journals (Sweden)

    Yutthapong Pinanroj

    2014-04-01

    Full Text Available Core-SOL simulations were carried out of plasma in tokamak reactors operating in a low confinement mode (L-mode, for various conditions that match available experimental data. The simulation results were quantitatively compared against experimental data, showing that the average RMS errors for electron temperature, ion temperature, and electron density were lower than 16% or less for 14 L-mode discharges from two tokamaks named DIII-D and TFTR. In the simulations, the core plasma transport was described using a combination of neoclassical transport calculated by NCLASS module and anomalous transport by Multi-Mode-Model version 2001 (MMM2001. The scrape-off-layer (SOL is the small amount of residual plasma that interacts with the tokamak vessel, and was simulated by integrating the fluid equations, including sources, along open field lines. The SOL solution provided the boundary conditions of core plasma region on low confinement mode (L-mode. The experimental data were for 14 L-mode discharges and from two tokamaks, named DIII-D and TFTR.

  2. H Reactor

    Data.gov (United States)

    Federal Laboratory Consortium — The H Reactor was the first reactor to be built at Hanford after World War II.It became operational in October of 1949, and represented the fourth nuclear reactor on...

  3. A general comparison between tokamak and stellarator plasmas

    Directory of Open Access Journals (Sweden)

    Yuhong Xu

    2016-07-01

    Full Text Available This paper generally compares the essential features between tokamaks and stellarators, based on previous review work individually made by authors on several specific topics, such as theories, bulk plasma transport and edge divertor physics, along with some recent results. It aims at summarizing the main results and conclusions with regard to the advantages and disadvantages in these two types of magnetic fusion devices. The comparison includes basic magnetic configurations, magnetohydrodynamic (MHD instabilities, operational limits and disruptions, neoclassical and turbulent transport, confinement scaling and isotopic effects, plasma rotation, and edge and divertor physics. Finally, a concept of quasi-symmetric stellarators is briefly referred along with a comparison of future application for fusion reactors.

  4. First-wall/blanket materials selection for STARFIRE tokamak reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Mattas, R.F.; Clemmer, R.G.; Davis, J.W.

    1980-01-01

    The development of the reference STARFIRE first-wall/blanket design involved numerous trade-offs in the materials selection process for the breeding material, coolant structure, neutron multiplier, and reflector. The major parameters and properties that impact materials selection and design criteria are reviewed.

  5. Tokamak experimental power reactor conceptual design. Volume II

    Energy Technology Data Exchange (ETDEWEB)

    1976-08-01

    Volume II contains the following appendices: (1) summary of EPR design parameters, (2) impurity control, (3) plasma computational models, (4) structural support system, (5) materials considerations for the primary energy conversion system, (6) magnetics, (7) neutronics penetration analysis, (8) first wall stress analysis, (9) enrichment of isotopes of hydrogen by cryogenic distillation, and (10) noncircular plasma considerations. (MOW)

  6. Data acquisition and control system for the ECE imaging diagnostic on the EAST tokamak

    Science.gov (United States)

    Luo, C.; Lan, T.; Zhu, Y.; Xie, J.; Gao, B.; Liu, W.; Yu, C.; Milne, P. G.; Domier, C. W.; Luhmann, N. C.

    2017-06-01

    A 384-channel electron cyclotron emission imaging (ECEI) system is installed on the experimental advanced superconducting tokamak (EAST) and 7-gigabyte data is produced for each regular discharge of a 10-second pulse. The data acquisition and control (DAC) system for the EAST ECEI diagnostics covers the large data production and embeds the ability to report the data quality instantly after the discharge. The symmetric routing design of the timing signal distributions among the 384 channels provides a low-cost solution to the synchronization of a large number of channels. The application of the load-balance bond service largely reduces the configuration difficulty and the cost in the high-speed data transferring tasks. Benefiting from the various kinds of hardware units with dedicated functionalities, an automated and user interactive DAC work flow is achieved, including the pre-selections of the automation scheme and the observation region, 384-channel data acquisition and local caching, post-discharge imaging data quality evaluation, remote system status monitoring, and inter-discharge imaging system event handling. The system configuration in a specific physics experiment is further optimized through the associated operating software which is enhanced by the input of the tokamak operation status and the region of interest (ROI) from other diagnostics. The DAC system is based on a modularized design and scalable to the long-pulse discharges in the EAST tokamak.

  7. PXIe based data acquisition and control system for ECRH systems on SST-1 and Aditya tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Jatinkumar J., E-mail: jatin@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar (India); Shukla, B.K.; Rajanbabu, N.; Patel, H.; Dhorajiya, P.; Purohit, D. [Institute for Plasma Research, Bhat, Gandhinagar (India); Mankadiya, K. [Optimized Solutions Pvt. Ltd (India)

    2016-11-15

    Highlights: • Data Aquisition and control system (DAQ). • PXIe hardware–(PXI–PCI bus extension for Instrumention Express). • RHVPS–Regulated High Voltage Power supply. • SST1–Steady state superconducting tokamak. - Abstract: In Steady State Superconducting (SST-1) tokamak, various RF heating sub-systems are used for plasma heating experiments. In SST-1, Two Electron Cyclotron Resonance Heating (ECRH) systems have been installed for pre-ionization, heating and current drive experiments. The 42 GHz gyrotron based ECRH system is installed and in operation with SST-1 plasma experiments. The 82.6 GHz gyrotron delivers 200 kW CW power (1000 s) while the 42 GHz gyrotron delivers 500 kW power for 500 ms duration. Each gyrotron system consists of various auxiliary power supplies, the crowbar unit and the water cooling system. The PXIe (PCI bus extension for Instrumentation Express)bus based DAC (Data Acquisition and Control) system has been designed, developed and under implementation for safe and reliable operation of the gyrotron. The Control and Monitoring Software applications have been developed using NI LabView 2014 software with real time support on windows platform.

  8. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  9. The ETE spherical Tokamak project. IAEA report

    Energy Technology Data Exchange (ETDEWEB)

    Ludwig, Gerson Otto; Del Bosco, E.; Berni, L.A.; Ferreira, J.G.; Oliveira, R.M.; Andrade, M.C.R.; Shibata, C.S.; Barroso, J.J.; Castro, P.J.; Patire Junior, H. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: ludwig@plasma.inpe.br

    2002-07-01

    This paper describes the general characteristics of spherical tokamaks, or spherical tori, with a brief overview of work in this area already performed or in progress at several institutions worldwide. The paper presents also the historical development of the ETE (Spherical Tokamak Experiment) project, its research program, technical characteristics and operating conditions as of October, 2002 at the Associated Plasma Laboratory (LAP) of the National Space Research Institute (INPE) in Brazil. (author)

  10. Microcomputer Based System to control the Load of a Capacitor Array in the TJ-1 Tokamak; Sistema de Control de Carga de Condensadores del TJ-1

    Energy Technology Data Exchange (ETDEWEB)

    Alberdi, J.; Asenso, L.; Sanz, J. A.

    1990-07-01

    The power to create the magnetic fields in the TJ-1 Tokamak is provides by an array of 16 capacitor sets. The total capacity of this array is 8. 1F. This work describes a computer system based on the Motorola M-6800 micro- processor which controls the load of the capacitor set and stablished the conditions for the reactor trigger. (Author)

  11. A comparison of radioactive waste from first generation fusion reactors and fast fission reactors with actinide recycling

    Energy Technology Data Exchange (ETDEWEB)

    Koch, M.; Kazimi, M.S.

    1991-04-01

    Limitations of the fission fuel resources will presumably mandate the replacement of thermal fission reactors by fast fission reactors that operate on a self-sufficient closed fuel cycle. This replacement might take place within the next one hundred years, so the direct competitors of fusion reactors will be fission reactors of the latter rather than the former type. Also, fast fission reactors, in contrast to thermal fission reactors, have the potential for transmuting long-lived actinides into short-lived fission products. The associated reduction of the long-term activation of radioactive waste due to actinides makes the comparison of radioactive waste from fast fission reactors to that from fusion reactors more rewarding than the comparison of radioactive waste from thermal fission reactors to that from fusion reactors. Radioactive waste from an experimental and a commercial fast fission reactor and an experimental and a commercial fusion reactor has been characterized. The fast fission reactors chosen for this study were the Experimental Breeder Reactor 2 and the Integral Fast Reactor. The fusion reactors chosen for this study were the International Thermonuclear Experimental Reactor and a Reduced Activation Ferrite Helium Tokamak. The comparison of radioactive waste parameters shows that radioactive waste from the experimental fast fission reactor may be less hazardous than that from the experimental fusion reactor. Inclusion of the actinides would reverse this conclusion only in the long-term. Radioactive waste from the commercial fusion reactor may always be less hazardous than that from the commercial fast fission reactor, irrespective of the inclusion or exclusion of the actinides. The fusion waste would even be far less hazardous, if advanced structural materials, like silicon carbide or vanadium alloy, were employed.

  12. Benchmarking Tokamak edge modelling codes

    Science.gov (United States)

    Contributors To The Efda-Jet Work Programme; Coster, D. P.; Bonnin, X.; Corrigan, G.; Kirnev, G. S.; Matthews, G.; Spence, J.; Contributors to the EFDA-JET work programme

    2005-03-01

    Tokamak edge modelling codes are in widespread use to interpret and understand existing experiments, and to make predictions for future machines. Little direct benchmarking has been done between the codes, and the users of the codes have tended to concentrate on different experimental machines. An important validation step is to compare the codes for identical scenarios. In this paper, two of the major edge codes, SOLPS (B2.5-Eirene) and EDGE2D-NIMBUS are benchmarked against each other. A set of boundary conditions, transport coefficients, etc. for a JET plasma were chosen, and the two codes were run on the same grid. Initially, large differences were seen in the resulting plasmas. These differences were traced to differing physics assumptions with respect to the parallel heat flux limits. Once these were switched off in SOLPS, or implemented and switched on in EDGE2D-NIMBUS, the remaining differences were small.

  13. Fundamentals of Superconducting Nanoelectronics

    CERN Document Server

    Sidorenko, Anatolie

    2011-01-01

    This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, P

  14. Observation of Energetic Particle Driven Modes Relevant to Advanced Tokamak Regimes

    Energy Technology Data Exchange (ETDEWEB)

    R. Nazikian; B. Alper; H.L. Berk; D. Borba; C. Boswell; R.V. Budny; K.H. Burrell; C.Z. Cheng; E.J. Doyle; E. Edlund; R.J. Fonck; A. Fukuyama; N.N. Gorelenkov; C.M. Greenfield; D.J. Gupta; M. Ishikawa; R.J. Jayakumar; G.J. Kramer; Y. Kusama; R.J. La Haye; G.R. McKee; W.A. Peebles; S.D. Pinches; M. Porkolab; J. Rapp; T.L. Rhodes; S.E. Sharapov; K. Shinohara; J.A. Snipes; W.M. Solomon; E.J. Strait; M. Takechi; M.A. Van Zeeland; W.P. West; K.L. Wong; S. Wukitch; L. Zeng

    2004-10-21

    Measurements of high-frequency oscillations in JET [Joint European Torus], JT-60U, Alcator C-Mod, DIII-D, and TFTR [Tokamak Fusion Test Reactor] plasmas are contributing to a new understanding of fast ion-driven instabilities relevant to Advanced Tokamak (AT) regimes. A model based on the transition from a cylindrical-like frequency-chirping mode to the Toroidal Alfven Eigenmode (TAE) has successfully encompassed many of the characteristics seen in experiments. In a surprising development, the use of internal density fluctuation diagnostics has revealed many more modes than has been detected on edge magnetic probes. A corollary discovery is the observation of modes excited by fast particles traveling well below the Alfven velocity. These observations open up new opportunities for investigating a ''sea of Alfven Eigenmodes'' in present-scale experiments, and highlight the need for core fluctuation and fast ion measurements in a future burning-plasma experiment.

  15. Virtual reality applications in remote handling development for tokamaks in India

    Energy Technology Data Exchange (ETDEWEB)

    Dutta, Pramit, E-mail: pramitd@ipr.res.in; Rastogi, Naveen; Gotewal, Krishan Kumar

    2017-05-15

    Highlights: • Evaluation of Virtual Reality (VR) in design and operation phases of Remote Handling (RH) equipment for tokamak. • VR based centralized facility, to cater RH development and operation, is setup at Institute for Plasma Research, India. • The VR facility system architecture and components are discussed. • Introduction to various VR applications developed for design and development of tokamak RH equipment. - Abstract: A tokamak is a plasma confinement device that can be used to achieve magnetically confined nuclear fusion within a reactor. Owing to the harsh environment, Remote Handling (RH) systems are used for inspection and maintenance of the tokamak in-vessel components. As the number of in-vessel components requiring RH maintenance is large, physical prototyping of all strategies becomes a major challenge. The operation of RH systems poses further challenge as all equipment have to be controlled remotely within very strict accuracy limits with minimum reliance on the available camera feedback. In both design and operation phases of RH equipment, application of Virtual Reality (VR) becomes imperative. The scope of this paper is to introduce some applications of VR in the design and operation cycle of RH, which are not available commercially. The paper discusses the requirement of VR as a tool for RH equipment design and operation. The details of a comprehensive VR facility that has been established to support the RH development for Indian tokamaks are also presented. Further, various cases studies are provided to highlight the utilization of this VR facility within phases of RH development and operation.

  16. Superconducting cavities for LEP

    CERN Multimedia

    CERN PhotoLab

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  17. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  18. Superconducting RF cavities

    CERN Document Server

    Bernard, Philippe

    1999-01-01

    It was 20 years ago when the research and development programme for LEP superconducting cavities was initiated. It lasted about 10 years. Today, my aim is not to tell you in great detail about the many innovations made thanks to our research, but I would like to point out some milestones in the development of superconducting cavities where Emilio's influence was particularly important.

  19. Reactor Physics

    Energy Technology Data Exchange (ETDEWEB)

    Ait Abderrahim, A

    2001-04-01

    The Reactor Physics and MYRRHA Department of SCK-CEN offers expertise in various areas of reactor physics, in particular in neutronics calculations, reactor dosimetry, reactor operation, reactor safety and control and non-destructive analysis of reactor fuel. This expertise is applied in the Department's own research projects in the VENUS critical facility, in the BR1 reactor and in the MYRRHA project (this project aims at designing a prototype Accelerator Driven System). Available expertise is also used in programmes external to the Department such as the reactor pressure steel vessel programme, the BR2 reactor dosimetry, and the preparation and interpretation of irradiation experiments by means of neutron and gamma calculations. The activities of the Fuzzy Logic and Intelligent Technologies in Nuclear Science programme cover several domains outside the department. Progress and achievements in these topical areas in 2000 are summarised.

  20. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future......, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...

  1. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  2. Reactor operation

    CERN Document Server

    Shaw, J

    2013-01-01

    Reactor Operation covers the theoretical aspects and design information of nuclear reactors. This book is composed of nine chapters that also consider their control, calibration, and experimentation.The opening chapters present the general problems of reactor operation and the principles of reactor control and operation. The succeeding chapters deal with the instrumentation, start-up, pre-commissioning, and physical experiments of nuclear reactors. The remaining chapters are devoted to the control rod calibrations and temperature coefficient measurements in the reactor. These chapters also exp

  3. Single Null Negative Triangularity Tokamak for Power Handling

    Science.gov (United States)

    Kikuchi, Mitsuru; Medvedev, S.; Takizuka, T.; Sauter, O.; Merle, A.; Coda, S.; Chen, D.; Li, J. X.

    2017-10-01

    Power and particle control in fusion reactor is challenge and we proposed the negative triangularity tokamak (NTT) to eliminate ELM by operating L-mode edge with improved core confinement. The SN configuration has more flexibility in shaping by adopting rectangular-shaped TF coils. The limiting normalized beta is 3.56 with wall stabilization and 3.14 without wall. The vertical stability is assured under a reasonable control system. The wetted area on the divertor plates becomes wider in proportion to the larger major radius at the divertor strike points due to the NT configuration. In addition to the major-radius effect, the ``Flux Tune Expansion (FTE)'' is adopted to further reduce the heat load on the divertor plate by factor of 2.6 with a coil current 3 MA. L-mode edge also allows further increase in wetted area. The fusion power of 3 GW is deliverable only at normalized beta 2.1. Therefore this reactor may be operable stably against the serious MHD activities. The CD power for SS operation is 175 MW at Q = 17. AC operation is also possible option. A required HH factor is relatively modest H = 1.12.

  4. High Intensity Superconducting Cyclotron

    Science.gov (United States)

    2012-12-01

    final energy of 250 MeV. An early plan was to consider the use of rare earth magnetic materials, e.g. holmium or gadolinium , as the spiral pole tip...ATLAS and CMS detectors; proton beam radiotherapy ; Fermi Gamma-Ray Space Telescope, Alcator C-Mod fusion tokamak 2. Increasingly used by the security

  5. Up-down asymmetric tokamaks

    CERN Document Server

    Ball, Justin

    2016-01-01

    Bulk toroidal rotation has proven capable of stabilising both dangerous MHD modes and turbulence. In this thesis, we explore a method to drive rotation in large tokamaks: up-down asymmetry in the magnetic equilibrium. We seek to maximise this rotation by finding optimal up-down asymmetric flux surface shapes. First, we use the ideal MHD model to show that low order external shaping (e.g. elongation) is best for creating up-down asymmetric flux surfaces throughout the device. Then, we calculate realistic up-down asymmetric equilibria for input into nonlinear gyrokinetic turbulence analysis. Analytic gyrokinetics shows that, in the limit of fast shaping effects, a poloidal tilt of the flux surface shaping has little effect on turbulent transport. Since up-down symmetric surfaces do not transport momentum, this invariance to tilt implies that devices with mirror symmetry about any line in the poloidal plane will drive minimal rotation. Accordingly, further analytic investigation suggests that non-mirror symmetri...

  6. Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Frederick H. [Argonne National Laboratory; Jacobson, Norman H.

    1968-09-01

    This booklet discusses research reactors - reactors designed to provide a source of neutrons and/or gamma radiation for research, or to aid in the investigation of the effects of radiation on any type of material.

  7. Liquid Metal Walls, Lithium, And Low Recycling Boundary Conditions In Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    R. Majeski

    2010-01-15

    At present, the only solid material believed to be a viable option for plasma-facing components (PFCs) in a fusion reactor is tungsten. Operated at the lower temperatures typical of present-day fusion experiments, tungsten is known to suffer from surface degradation during long-term exposure to helium-containing plasmas, leading to reduced thermal conduction to the bulk, and enhanced erosion. Existing alloys are also quite brittle at temperatures under 700oC. However, at a sufficiently high operating temperature (700 - 1000 oC), tungsten is selfannealing and it is expected that surface damage will be reduced to the point where tungsten PFCs will have an acceptable lifetime in a reactor environment. The existence of only one potentially viable option for solid PFCs, though, constitutes one of the most significant restrictions on design space for DEMO and follow-on fusion reactors. In contrast, there are several candidates for liquid metal-based PFCs, including gallium, tin, lithium, and tin-lithium eutectics. We will discuss options for liquid metal walls in tokamaks, looking at both high and low recycling materials. We will then focus in particular on one of the candidate liquids, lithium. Lithium is known to have a high chemical affinity for hydrogen, and has been shown in test stands1 and fusion experiments2,3 to produce a low recycling surface, especially when liquid. Because it is also low-Z and is usable in a tokamak over a reasonable temperature range (200 - 400 oC), it has been now been used as a PFC in several confinement experiments (TFTR, T11- M, CDX-U, NSTX, FTU, and TJ-II), with favorable results. The consequences of substituting low recycling walls for the traditional high recycling variety on tokamak equilibria are very extensive. We will discuss some of the expected modifications, briefly reviewing experimental results, and comparing the results to expectations.

  8. Stability and properties of electron-driven fishbones in tokamaks

    Science.gov (United States)

    Merle, Antoine

    2013-01-01

    In tokamaks, the stability of magneto-hydrodynamic modes can be modified by populations of energetic particles. In ITER-type fusion reactors, such populations can be generated by fusion reactions or auxiliary heating. The electron-driven fishbone mode results from the resonant interaction of the internal kink mode with the slow toroidal precessional motion of energetic electrons and is frequently observed in present-day tokamaks with Electron Cyclotron Resonance Heating or Lower Hybrid Current Drive. In Tore Supra, electron-driven fishbones are observed during LHCD-powered discharges in which a high-energy tail of the electronic distribution function is created. Although the destabilization of those modes is related to the existence of a fast particle population, the modes are observed at a frequency that is lower than expected. The linear stability analysis of electron-driven fishbone modes is the main focus of this thesis. The fishbone dispersion relation is derived in a form that accounts for the contribution of the parallel motion of passing particles to the resonance condition. The MIKE code is developed to compute and solve the dispersion relation of electron-driven fishbones. The code is successfully benchmarked against theory using simple analytical distributions. Using the code MIKE with parametric distributions and equilibria, we show that both barely trapped and barely passing electrons resonate with the mode and can drive it unstable. More deeply trapped and passing electrons have a non-resonant effect on the mode that is, respectively, stabilizing and destabilizing. MIKE simulations using complete ECRH-like distribution functions show that energetic barely passing electrons can contribute to drive a mode unstable at a relatively low frequency. This observation could provide some insight to the understanding of Tore Supra experiments.

  9. Electron cyclotron resonance heating in the microwave tokamak experiment

    Energy Technology Data Exchange (ETDEWEB)

    Allen, S.L.; Casper, T.A.; Fenstermacher, M.E. [and others

    1992-09-01

    This paper presents the results from a series of Electron Cyclotron Resonance Heating (ECRH) experiments on the Microwave Tokamak Experiment (MTX). On-axis heating at B{sub T} = 5T (f{sub ce} = 140 GHz) has been performed at electron densities up to cutoff. We have used both a long-pulse gryotron ({approximately}200 kW, {approximately}0.1s) and a pulsed Free Electron Laser (FEL) as microwave sources. Gyrotron experiments with power densities corresponding to 4 MW m{sup {minus}3}. A far infrared (FIR) polarimeter measured peaking of plasma current profiles in some discharges during the ECRH pulse. During high-power single-pulse FEL experiments, single-pass microwave !transmission measurements show nonlinear effects; i.e., higher transmission than predicted by linear theory. A corrugated-wall duct was used in the tokamak port to increase the gradient of the parallel refractive index n{sub parallel} of the incident wave, and increased absorption was observed. Evidence of electron tail heating during FEL pulses was observed on soft x-ray and ECE diagnostics. These results are in agreement with predictions of nonlinear theory; extrapolation of this theory to reactor-like conditions indicates efficient absorption and heating. A Laser Assisted Particle Probe Spectroscopy (LAPPS) diagnostic provided estimates of the vacuum electric field of the FEL which were consistent with the measured power. Multiple pulse operation of the ETA-II accelerator for the FEL has also been demonstrated, indicating the feasibility of high-average power FEL operation.

  10. Physics Studies of a Proposed Small Aspect Ratio Torsatron-Tokamak Hybrid

    Science.gov (United States)

    Valanju, P. M.; Gentle, K. W.; McCool, S.; Miner, W. H., Jr.; Ross, D. W.; Wiley, J. C.; Wootton, A. J.

    1996-11-01

    Physics studies of a proposed small aspect ratio torsatron-tokamak hybrid (SMARTH) are presented. This small aspect ratio configuration attempts to remedy a major drawback of conventional stellarator reactors, viz. the large volume resulting from the large aspect ratio. Considering a small aspect ratio machine with 8 field periods (m=8) and with 8 or 16 modular coils, we investigate vacuum configurations and MHD equilibria to determine the optimum configuration which produces large rotational transform, large plasma volume, large beta, and small field ripple. Implications for particle confinement will also be discussed. Effects of radial electric fields on orbit losses and confinement will also be explored.

  11. Polarized fusion, its Implications and plans for Direct Measurements in a Tokamak

    OpenAIRE

    Sandorfi, A. M.; Deur, A.; Hanretty, C.; Jackson, G. L.; Lanctot, M.; Liu, J.; Lowry, M. M.; Miller, G. W.; Pace, D.; Smith, S. P.; Wei, K.; Wei, X.; Zheng, X.

    2017-01-01

    A long-term energy option that is just approaching the horizon after decades of struggle, is fusion. Recent developments allow us to apply techniques from spin physics to advance its viability. The cross section for the primary fusion fuel in a tokamak reactor, D+T=>alpha+n, would be increased by a factor of 1.5 if the fuels were polarized. Simulations predict further non-linear power gains in large-scale machines such as ITER, due to increased alpha heating. These are significant enhancement...

  12. Installation and pre-commissioning of the cryogenic system of JT-60SA tokamak

    Science.gov (United States)

    Hoa, C.; Michel, F.; Roussel, P.; Fejoz, P.; Girard, S.; Goncalves, R.; Lamaison, V.; Natsume, K.; Kizu, K.; Koide, Y.; Yoshida, K.; Cardella, A.; Portone, A.; Verrecchia, M.; Wanner, M.; Beauvisage, J.; Bertholat, F.; Gaillard, G.; Heloin, V.; Langevin, B.; Legrand, J.; Maire, S.; Perrier, J. M.; Pudys, V.

    2017-02-01

    The cryogenic system for the superconducting tokamak JT-60SA is currently being commissioned in Naka, Japan and shall be ready for operation in summer 2016. This contribution is part of the Broader Approach agreement between Japan and Europe. With an equivalent refrigeration capacity of about 9.5 kW at 4.5 K the cryogenic system will supply cryo-pump panels at 3.7 K, superconducting magnets and their structures at 4.4 K, high temperature superconducting current leads at 50 K and thermal shields between 80 K and 100 K. The system has been specifically designed to handle large pulse loads at 4.4 K during plasma operation. The mechanical and electrical assembly of the cryogenic system has been achieved within six months by October 2015. The main contractor Air Liquide Advanced Technology (AL-aT) have supplied eight parallel working screw compressors with a common oil removal and dryer system, a Refrigeration Cold Box and an Auxiliary Cold box with cold rotating machines. F4E has provided six GHe storage vessels and QST has provided the complete infrastructure and the facilities for the utilities. The paper gives an overview of the main design features, the infrastructure and the status of installation and pre-commissioning.

  13. Overview of spherical tokamak research in Japan

    Science.gov (United States)

    Takase, Y.; Ejiri, A.; Fujita, T.; Fukumoto, N.; Fukuyama, A.; Hanada, K.; Idei, H.; Nagata, M.; Ono, Y.; Tanaka, H.; Uchida, M.; Horiuchi, R.; Kamada, Y.; Kasahara, H.; Masuzaki, S.; Nagayama, Y.; Oishi, T.; Saito, K.; Takeiri, Y.; Tsuji-Iio, S.

    2017-10-01

    Nationally coordinated research on spherical tokamak is being conducted in Japan. Recent achievements include: (i) plasma current start-up and ramp-up without the use of the central solenoid by RF waves (in electron cyclotron and lower hybrid frequency ranges), (ii) plasma current start-up by AC Ohmic operation and by coaxial helicity injection, (iii) development of an advanced fuelling technique by compact toroid injection, (iv) ultra-long-pulse operation and particle control using a high temperature metal wall, (v) access to the ultra-high-β regime by high-power reconnection heating, and (vi) improvement of spherical tokamak plasma stability by externally applied helical field.

  14. A Fast Shutdown Technique for Large Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    E. Fredrickson; G.L. Schmidt; K. Hill; S.C. Jardin; et al

    1999-09-01

    A practical method is proposed for the fast shutdown of a large ignited tokamak. The method consists of injecting a rapid series of 30-50 deuterium pellets doped with a small ( 0.0005%) concentration of Krypton impurity, and simultaneously ramping the plasma current and shaping fields down over a period of several seconds using the poloidal field system. Detailed modeling with the Tokamak Simulation Code using a newly developed pellet mass deposition model shows that this method should terminate the discharge in a controlled and stable way without producing significant numbers of runaway electrons. A partial prototyping of this technique was accomplished in TFTR.

  15. CONVECTION REACTOR

    Science.gov (United States)

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  16. Effect of the magnetic topology of a tokamak divertor on the power exhaust properties

    Science.gov (United States)

    Pericoli Ridolfini, V.; Ambrosino, R.; Calabrò, G.; Crisanti, F.; Lombroni, R.; Mastrostefano, S.; Rubino, G.; Zagórski, R.

    2017-08-01

    The peculiarities of various advanced divertor magnetic configurations that could be adopted for a tokamak reactor are investigated with the 2D edge code TECXY applied to the different divertor options of the projected tokamak DTT (Divertor Test Tokamak). The analysis highlights very interesting features for those configurations that realize a wide region with significantly depressed poloidal field in between the main X point and the target. Here, the energy cross-field diffusion can become so fast to extend up to ≈10 times the width of the power flow channel, in terms of the poloidal flux coordinates. This can spread the power over a long length and then drop the peak heat load below the technologically safe value, even with no help from impurities. Furthermore, the strongly enlarged effective divertor volume can favour the dissipative processes and lead to plasma detachment from the associated target. The driving mechanism appears to rest on the strongly increased connection lengths. This reduces the parallel thermal gradient and then slows down the power streaming, hence forcing the flow channel to widen in order to convey the same amount of power. However, the other target can be significantly penalized by an unbalance in the power sharing between the two divertor plates. Similarly, modifying the topology of this region also could overcome this problem.

  17. Study on the key technologies of the Transfer Equipment Cask for Tokamak Equator Port Plug

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Buyun, E-mail: ayun@iim.ac.cn [Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027 (China); Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Gao, Lifu [Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027 (China); Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Cao, Huibin; Sun, Jian [Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China); Sun, Yuxiang; Song, Quanjun; Ma, Chengxue; Chang, Li; Shuang, Feng [Department of Automation, University of Science and Technology of China, Hefei, Anhui 230027 (China); Robot Sensors and Human-Machine Interaction Laboratory, Institute of Intelligent Machines, Chinese Academy of Sciences, Hefei, Anhui 230031 (China)

    2014-12-15

    Highlights: • Design on Intelligent Air Transfer System (IATS) for Transfer Equipment Cask (TECA). • A rhombic-like parallel robot for docking with minimum misalignment. • Design on electro-hydraulic servo system of the TECA for Tokamak Equator Port Plug (TEPP) manipulation. • A control architecture with several algorithms and information acquired from sensors could be used by the TECA for Remote Handling (RH). - Abstract: The Transfer Equipment Cask (TECA) is a key solution for Remote Handling (RH) in Tokamak Equator Port Plug (TEPP) operations. From the perspectives of both engineering and technical designs of effective experiments on the TEPP, key technologies on these topics covering the TECA are required. According to conditions in ITER (International Thermonuclear Experimental Reactor) and features of the TEPP, this paper introduces the design of an Intelligent Air Transfer System (IATS) with an adaptive attitude and high precision positioning that transports a cask system of more than 30 tons from the Tokamak Building (TB) to the Hot Cell Building (HCB). Additionally, different actuators are discussed, and the hydraulic power drive is eventually selected and designed. A rhombic-like parallel robot is capable of being used for docking with minimum misalignment. Practical mechanisms of the cask system are presented for hostile environments. A control architecture with several algorithms and information acquired from sensors could be used by the TECA. These designs yield realistic and extended applications for the RH of ITER.

  18. Tungsten coating by ATC plasma spraying on CFC for WEST tokamak

    Science.gov (United States)

    Firdaouss, M.; Desgranges, C.; Hernandez, C.; Mateus, C.; Maier, H.; Böswirth, B.; Greuner, H.; Samaille, F.; Bucalossi, J.; Missirlian, M.

    2017-12-01

    In the field of fusion experiments using a tokamak, the plasma facing components (PFC) are the closest object to the hot plasma. Due to the plasma-wall interaction, the material composing the PFC may enter the plasma and disturb the experiments. In the past, the main material for PFC was carbon (CFC, graphite), while the future reactors like ITER will be fully metallic, in particular tungsten. The Tore Supra tokamak has been transformed in an x-point divertor fusion device within the frame of the WEST (W (tungsten) Environment in Steady-state Tokamak) project in order to have plasma conditions close to those expected in ITER. The PFC other than the divertor has been coated with W to transform Tore Supra into a fully metallic environment. Different coating techniques have been selected for different kind of PFC. This paper gives an overview on the coating process used for the antennae protection limiter, the associated validation programme and concludes on the adequacy of the W coating with the WEST experimental programme requirements and gives perspectives on the development to be pursued.

  19. Upgrade of the TCV tokamak, first phase: Neutral beam heating system

    Energy Technology Data Exchange (ETDEWEB)

    Karpushov, Alexander N., E-mail: alexander.karpushov@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne (Switzerland); Alberti, Stefano; Chavan, René [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne (Switzerland); Davydenko, Vladimir I. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Duval, Basil P. [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne (Switzerland); Ivanov, Alexander A. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Fasel, Damien; Fasoli, Ambrogio [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne (Switzerland); Gorbovsky, Aleksander I. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Goodman, Timothy [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne (Switzerland); Kolmogorov, Vyacheslav V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Martin, Yves; Sauter, Olivier [Ecole Polytechnique Fédérale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, CH-1015 Lausanne (Switzerland); Sorokin, Aleksey V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); and others

    2015-10-15

    Highlights: • Widening the parameter range of reactor relevant regimes on the TCV tokamak. • Installation of 1 MW, 30 keV neutral beam, direct ion heating, access to T{sub i}/T{sub e} ≥ 1. • ASTRA simulation of plasma response to NB and EC heating in different regimes. • Specific low divergency neutral beam injector with tunable beam power and energy. - Abstract: Experiments on TCV are designed to complement the work at large integrated tokamak facilities (such as JET) to provide a stepwise approach to extrapolation to ITER and DEMO in areas where medium-size tokamaks can often exploit their experimental capabilities and flexibility. Improving the understanding and control requirements of burning plasmas is a major scientific challenge, requiring access to plasma regimes and configurations with high normalized plasma pressure and a wide range of ion to electron temperature ratios, including T{sub e}/T{sub i} ∼ 1. These conditions will be explored by adding a 1 MW neutral heating beam to TCV's auxiliary for direct ion heating (2015) and increasing the ECH power injected in X-mode at the third harmonic (2 MW in 2015–2016). The manufacturing of the neutral beam injector was launched in 2014.

  20. Superconductivity fundamentals and applications

    CERN Document Server

    Buckel, Werner

    2004-01-01

    This is the second English edition of what has become one of the definitive works on superconductivity in German -- currently in its sixth edition. Comprehensive and easy to understand, this introductory text is written especially with the non-specialist in mind. The authors, both long-term experts in this field, present the fundamental considerations without the need for extensive mathematics, describing the various phenomena connected with the superconducting state, with liberal insertion of experimental facts and examples for modern applications. While all fields of superconducting phenomena are dealt with in detail, this new edition pays particular attention to the groundbreaking discovery of magnesium diboride and the current developments in this field. In addition, a new chapter provides an overview of the elements, alloys and compounds where superconductivity has been observed in experiments, together with their major characteristics. The chapter on technical applications has been considerably expanded...

  1. Superconducting detectors in astronomy

    Science.gov (United States)

    Rahman, F.

    2006-08-01

    Radiation detectors based on superconducting phenomena are becoming increasingly important for observational astronomy. Recent developments in this important field, together with relevant background, are described here. After a general introduction to superconductivity and the field of superconductor-based radiation sensors, the main detector types are examined with regard to their physical form, operating principles and principal advantages. All major forms of superconducting detectors used in contemporary research such as tunnelling detectors, mixers, hot-electron bolometers and transition edge sensitive devices are discussed with an emphasis on how more recent developments are overcoming the shortcomings of the previous device generations. Also, discussed are new ideas in superconducting detector technology that may find applications in the coming years.

  2. Superconducting metamaterial transmission line

    Science.gov (United States)

    Rouxinol, Francisco; Wang, Haozhi; Plourde, B. L. T.

    2014-03-01

    Left-handed metamaterials are artificial composite structures with unusual properties. Such systems have a wide range of potential applications in photonics. We are developing transmission lines composed of superconducting metamaterials using thin-film lumped circuit elements. Such structures allow for the possibility of generating novel transmission spectra with a high density of modes in some frequency ranges and stop-bands in others. We discuss possible couplings of these lines to superconducting qubits in circuit QED architectures.

  3. Superconducting Wind Turbine Generators

    OpenAIRE

    Yunying Pan; Danhzen Gu

    2016-01-01

    Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends ...

  4. Superconducting transmission line particle detector

    Science.gov (United States)

    Gray, Kenneth E.

    1989-01-01

    A microvertex particle detector for use in a high energy physic collider including a plurality of parallel superconducting thin film strips separated from a superconducting ground plane by an insulating layer to form a plurality of superconducting waveguides. The microvertex particle detector indicates passage of a charged subatomic particle by measuring a voltage pulse measured across a superconducting waveguide caused by the transition of the superconducting thin film strip from a superconducting to a non-superconducting state in response to the passage of a charged particle. A plurality of superconducting thin film strips in two orthogonal planes plus the slow electromagnetic wave propogating in a superconducting transmission line are used to resolve N.sup.2 ambiguity of charged particle events.

  5. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  6. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  7. Structural properties of resonant electric and magnetic fields correlation with X-ray generation and MHD activity in tokamak

    Science.gov (United States)

    Salar Elahi, A.; Ghoranneviss, M.

    In this research we have investigated on a Runaway electron generation in IR-T1 tokamak. For this purpose we used the hard X-ray spectroscopy and magnetic diagnostic. Hard X-ray emission produces due to collision of the Runaway electrons with the plasma particles or tokamak limiters. Runaway electrons in tokamaks can cause serious damage to the first wall of the reactor and decrease its life time. Also, hard X-ray emission generated from high energy Runaway electrons lead to the plasma energy loss. Therefore, suggesting methods to minimize Runaway electrons in tokamaks are very important. Applying external resonant field is one of the methods for controlling the Magnetohydrodynamic (MHD) activity. Present study attempts to investigate the effects of limiter biasing and Resonant Helical magnetic Field (RHF) on the generation of Runaway electrons. For this purpose, plasma parameters such as plasma current, MHD oscillation, loop voltage, emitted hard X-ray intensity, Hα impurity, safety factor in the presence and absence of external fields, were measured. Frequency activity was investigated with FFT analysis. The results show that applying resonant fields can control the MHD activity, and then hard X-ray emitted from the Runaway electrons.

  8. UCLA Tokamak Program Close Out Report.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Robert John [UCLA/retired

    2014-02-04

    The results of UCLA experimental fusion program are summarized. Starting with smaller devices like Microtor, Macrotor, CCT and ending the research on the large (5 m) Electric Tokamak. CCT was the most diagnosed device for H-mode like physics and the effects of rotation induced radial fields. ICRF heating was also studied but plasma heating of University Type Tokamaks did not produce useful results due to plasma edge disturbances of the antennae. The Electric Tokamak produced better confinement in the seconds range. However, it presented very good particle confinement due to an "electric particle pinch". This effect prevented us from reaching a quasi steady state. This particle accumulation effect was numerically explained by Shaing's enhanced neoclassical theory. The PI believes that ITER will have a good energy confinement time but deleteriously large particle confinement time and it will disrupt on particle pinching at nominal average densities. The US fusion research program did not study particle transport effects due to its undue focus on the physics of energy confinement time. Energy confinement time is not an issue for energy producing tokamaks. Controlling the ash flow will be very expensive.

  9. Spontaneous generation of rotation in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Parra Diaz, Felix [Oxford University

    2013-12-24

    Three different aspects of intrinsic rotation have been treated. i) A new, first principles model for intrinsic rotation [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has been implemented in the gyrokinetic code GS2. The results obtained with the code are consistent with several experimental observations, namely the rotation peaking observed after an L-H transition, the rotation reversal observed in Ohmic plasmas, and the change in rotation that follows Lower Hybrid wave injection. ii) The model in [F.I. Parra, M. Barnes and P.J. Catto, Nucl. Fusion 51, 113001 (2011)] has several simplifying assumptions that seem to be satisfied in most tokamaks. To check the importance of these hypotheses, first principles equations that do not rely on these simplifying assumptions have been derived, and a version of these new equations has been implemented in GS2 as well. iii) A tokamak cross-section that drives large intrinsic rotation has been proposed for future large tokamaks. In large tokamaks, intrinsic rotation is expected to be very small unless some up-down asymmetry is introduced. The research conducted under this contract indicates that tilted ellipticity is the most efficient way to drive intrinsic rotation.

  10. Detachment evolution on the TCV tokamak

    NARCIS (Netherlands)

    Harrison, J. R.; Vijvers, W. A. J.; Theiler, C.; Duval, B. P.; Elmore, S.; Labit, B.; Lipschultz, B.; van Limpt, S. H. M.; Lisgo, S. W.; Tsui, C. K.; Reimerdes, H.; Sheikh, U.; Verhaegh, K. H. A.; Wischmeier, M.

    2017-01-01

    Divertor detachment in the TCV tokamak has been investigated through experiments and modelling. Density ramp experiments were carried out in ohmic heated L-mode pulses with the ion ∇B drift directed away from the primary X-point, similar to previous studies [1]. Before the roll-over in the ion

  11. Tokamak Plasmas: Electron temperature $(T_ {e}) $ measurements ...

    Indian Academy of Sciences (India)

    Thomson scattering technique based on high power laser has already proved its superoirity in measuring the electron temperature (e) and density (e) in fusion plasma devices like tokamaks. The method is a direct and unambiguous one, widely used for the localised and simultaneous measurements of the above ...

  12. Degraded confinement and turbulence in tokamak experiments

    NARCIS (Netherlands)

    Schüller, F. C.

    1996-01-01

    After a review on the state of tokamak transport theory, the methodology to derive experimental results will be described. Examples of confinement in ohmic plasmas and the deterioration with additional heating will be given. Some examples of improved confinement modes will be discussed. Fluctuation

  13. Degraded confinement and turbulence in tokamak experiments

    NARCIS (Netherlands)

    Hogeweij, G. M. D.

    2012-01-01

    After a review on the state of tokamak transport theory, the methodology to derive experimental results will be described. Examples of confinement in ohmic plasmas and the deterioration with additional healing will be given. Some examples of improved confinement; modes will be discussed.

  14. Tokamak Transport Studies Using Perturbation Analysis

    NARCIS (Netherlands)

    Cardozo, N. J. L.; Dehaas, J. C. M.; Hogeweij, G. M. D.; Orourke, J.; Sips, A.C.C.; Tubbing, B. J. D.

    1990-01-01

    Studies of the transport properties of tokamak plasmas using perturbation analysis are discussed. The focus is on experiments with not too large perturbations, such as sawtooth induced heat and density pulse propagation, power modulation and oscillatory gas-puff experiments. The approximations made

  15. On dust in tokamak edge plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, S.I. [Jacobs School of Engineering, Department of Mechanical and Aerospace Engineering, University of California at San Diego, Engineering Building II, room 474, 9500 Gilman Drive, La Jolla, CA 92093-0411 (United States)]. E-mail: skrash@mae.ucsd.edu; Soboleva, T.K. [UNAM, Mexico, DF (Mexico); Kurchatov Institute, Moscow (Russian Federation); Tomita, Y. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan); Smirnov, R.D. [Graduate University for Advanced Studies, Toki, Gifu 509-5292 (Japan); Janev, R.K. [National Institute for Fusion Science, Toki, Gifu 509-5292 (Japan)

    2005-03-01

    We study the dust particle dynamics in tokamak edge plasmas, with special emphasis on dust particle transport in the sheath and plasma recycling regions. The characteristics of this transport have been examined for both smooth and corrugated wall surfaces. The implications of dust particle transport in the divertor region on the core plasma contamination with impurities have also been examined.

  16. Tokamak startup with electron cyclotron heating

    Energy Technology Data Exchange (ETDEWEB)

    Holly, D J; Prager, S C; Shepard, D A; Sprott, J C

    1980-04-01

    Experiments are described in which the startup voltage in a tokamak is reduced by approx. 60% by the use of a modest amount of electron cyclotron resonance heating power for preionization. A 50% reduction in volt-second requirement and impurity reflux are also observed.

  17. Beam commissioning for a superconducting proton linac

    Science.gov (United States)

    Wang, Zhi-Jun; He, Yuan; Jia, Huan; Dou, Wei-ping; Chen, Wei-long; Zhang, X. L.; Liu, Shu-hui; Feng, Chi; Tao, Yue; Wang, Wang-sheng; Wu, Jian-qiang; Zhang, Sheng-hu; Zhao, Hong-Wei

    2016-12-01

    To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS) system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today's nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS) proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW) superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  18. Important problems of future thermonuclear reactors*

    Directory of Open Access Journals (Sweden)

    Sadowski Marek J.

    2015-06-01

    Full Text Available This paper concerns important and difficult problems connected with a design and construction of thermonuclear reactors, which have to use nuclear fusion reactions of heavy isotopes of hydrogen, i.e., deuterium (D and tritium (T. There are described conditions in which such reactions can occur, and different methods of a high-temperature plasma generation, i.e., high-current electrical discharges, intense microwave pulses, and injection of energetic neutral atoms (NBI. There are also presented experimental facilities which can contain hot plasma for an appropriate period, and particularly so-called tokamaks. The second part presents the technical problems which must be solved in order to build a thermonuclear reactor, that might be used for energetic purposes. There are considered problems connected with a choice of constructional materials for a vacuum chamber, its internal parts, external windings generating a magnetic field, and necessary shields. The next part considers the handling of radioactive tritium; the using of alpha particles (4He for additional heating of plasma; recuperation of hydrogen isotopes absorbed in the tokamak internal parts, and a removal of a helium excess. There is presented a scheme of a future thermonuclear power plant and critical comments on a road map which should enable the construction of an industrial thermonuclear reactor (DEMO.

  19. Effect of Resonant Helical Field (RHF) on Runaway Electrons in Tokamaks

    Science.gov (United States)

    Ghanbari, M. R.; Ghoranneviss, M.; Ghanbari, K.; Elahi, A. Salar; Salem, M. K.; Mohammadi, S.; Arvin, R.

    2013-10-01

    The high energy current of runaway electrons during a major disruption in tokamak reactors can cause serious damage to the first wall of the reactor and reduce its life time. Therefore, finding a method to minimize runaway electron is much needed. Resonant helical field (RHF) is one of the methods for controlling the magnetohydrodynamic (MHD) activity. This paper attempts to examine the effect of RHF on the generation of runaway electrons. Main parameters such as plasma current, loop voltage, emitted hard X-ray intensity, MHD oscillation, Hα radiation and MHD activity modes, in the presence and absence of RHF (L = 2 and L = 3), were measured. The results show that applying this system can change runaway electrons generation.

  20. REACTOR COOLING

    Science.gov (United States)

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  1. Two-dimensional vacuum ultraviolet images in different MHD events on the EAST tokamak

    Science.gov (United States)

    Zhijun, WANG; Xiang, GAO; Tingfeng, MING; Yumin, WANG; Fan, ZHOU; Feifei, LONG; Qing, ZHUANG; EAST Team

    2018-02-01

    A high-speed vacuum ultraviolet (VUV) imaging telescope system has been developed to measure the edge plasma emission (including the pedestal region) in the Experimental Advanced Superconducting Tokamak (EAST). The key optics of the high-speed VUV imaging system consists of three parts: an inverse Schwarzschild-type telescope, a micro-channel plate (MCP) and a visible imaging high-speed camera. The VUV imaging system has been operated routinely in the 2016 EAST experiment campaign. The dynamics of the two-dimensional (2D) images of magnetohydrodynamic (MHD) instabilities, such as edge localized modes (ELMs), tearing-like modes and disruptions, have been observed using this system. The related VUV images are presented in this paper, and it indicates the VUV imaging system is a potential tool which can be applied successfully in various plasma conditions.

  2. Data acquisition and processing system of the electron cyclotron emission imaging system of the KSTAR tokamak.

    Science.gov (United States)

    Kim, J B; Lee, W; Yun, G S; Park, H K; Domier, C W; Luhmann, N C

    2010-10-01

    A new innovative electron cyclotron emission imaging (ECEI) diagnostic system for the Korean Superconducting Tokamak Advanced Research (KSTAR) produces a large amount of data. The design of the data acquisition and processing system of the ECEI diagnostic system should consider covering the large data production and flow. The system design is based on the layered structure scalable to the future extension to accommodate increasing data demands. Software architecture that allows a web-based monitoring of the operation status, remote experiment, and data analysis is discussed. The operating software will help machine operators and users validate the acquired data promptly, prepare next discharge, and enhance the experiment performance and data analysis in a distributed environment.

  3. Fullerides - Superconductivity at the limit

    NARCIS (Netherlands)

    Palstra, Thomas T. M.

    The successful synthesis of highly crystalline Cs3C60, exhibiting superconductivity up to a record temperature for fullerides of 38 K, demonstrates a powerful synthetic route for investigating the origin of superconductivity in this class of materials.

  4. Physics of the Tokamak Pedestal, and Implications for Magnetic Fusion Energy

    Science.gov (United States)

    Snyder, Philip

    2017-10-01

    High performance in tokamaks is achieved via the spontaneous formation of a transport barrier in the outer few percent of the confined plasma. This narrow insulating layer, referred to as a ``pedestal,'' typically results in a >30x increase in pressure across a 0.4-5cm layer. Predicted fusion power scales with the square of the pedestal top pressure (or ``pedestal height''), hence a fusion reactor strongly benefits from a high pedestal, provided this can be attained without large Edge Localized Modes (ELMs), which may erode plasma facing materials. The overlap of drift orbit, turbulence, and equilibrium scales across this narrow layer leads to rich and complex physics, and challenges traditional analytic and computational approaches. We review studies employing gyrokinetic, neoclassical, MHD, and other methods, which have explored how a range of instabilities, influenced by complex geometry, and strong ExB flows and bootstrap current, drive transport across the pedestal and guide its structure and dynamics. Development of high resolution diagnostics, and coordinated experiments on several tokamaks, have validated understanding of important aspects of the physics, while highlighting open issues. A predictive model (EPED) has proven capable of predicting the pedestal height and width to 20-25% accuracy in large statistical studies. This model was used to predict a new, high pedestal ``Super H-Mode'' regime, which was subsequently discovered on DIII-D, and motivated experiments on Alcator C-Mod which achieved world record, reactor relevant pedestal pressure. We review open issues including improved formalism, particle and momentum transport, the role of neutrals and impurities, ELM control, and pedestal formation. Finally we discuss coupling pedestal and core predictive models to enable more comprehensive optimization of the tokamak fusion concept. Supported by the US DOE under DE-FG02-95ER54309, FC02-06ER54873, DE-FC02-04ER54698, DE-FC02-99ER54512.

  5. Superconductivity in Dirac semimetals

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Tatsuki; Kobayashi, Shingo [Nagoya University, Nagoya (Japan); Sato, Masatoshi [Kyoto University, Kyoto (Japan)

    2016-07-01

    In this presentation, we would like to discuss the superconductivity in Dirac semimetals. Dirac semimetal is a material that hosts topologically protected bulk Dirac cones and surface Fermi loop. It has been revealed that the unique spin-orbit interaction in the Dirac semimetals stabilize the unconventional superconductivity. Experimentally, the zero-bias conductance peak that suggests the realization of topological superconductivity has been observed in Cd{sub 3}As{sub 2}. We use a k . p Hamiltonian around Γ point with spin and orbital degrees of freedom to describe the Dirac semimetal. For the model, we propose six types of k-independent pair potentials, where two of them are trivial pairings and others are topological ones. By introducing a single band description of the pair potentials, it is found that the superconducting gap and d-vector have the characteristic structure in each pair potential. To see these, we calculate the electronic specific heat and spin susceptibility and confirm that we can distinguish these superconducting states experimentally. In addition to the bulk physical properties, we also calculate the surface state by using the recursive Green's function method. It is find that either arc or flat shape Andreev bound states appear on the surface depending on the parity of mirror reflection symmetry.

  6. On the generation of Alfven wave current drive in low aspect ratio Tokamaks with neoclassical conductivity

    Energy Technology Data Exchange (ETDEWEB)

    Bruma, C.; Cuperman, S.; Komoshvili, K. [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel)

    1998-08-01

    Several low aspect ratio (spherical) Tokamaks (ST's) are now in operation or under construction. These devices would permit cost-effective and attractive embodiment of future fusion reactors: they would provide high {beta}, good confinement and steady state operation at modest field values. Now, a steady state reactor has to be sustained by non-inductively driven currents. Recently, the generation of non-inductive current drive by Alfven waves (AWCD) has been investigated theoretically within the framework of ideal (E{sub p}arallel=0) MHD and non-ideal, resistive (E{sub p}arallel{ne}0) MHD; however, in all these cases, the tokamak device consisted of a cylindrical plasma with simulated toroidal effects. Rather encouraging results have been obtained. In this work we further investigate AWCD in ST's as follows: (i) we use consistent equilibrium profiles with neoclassical conductivity corresponding to an ohmic START discharge; (ii) incorporate effects due to neoclassical conductivity in the elements of the resistive MHD dielectric tensor, in the solution of the full (E{sub p}arallel{ne}0) wave equation as well as in the calculation of AWCD; and (iii) carry out a systematic search for antenna parameters optimizing the AWCD. (author)

  7. Overview of Progress on the EU DEMO Reactor Magnet System Design

    NARCIS (Netherlands)

    Zani, L.; Bayer, C.; biancolini, M.E.; Bonifetto, R.; Nijhuis, Arend; Yagotintsev, K.

    2016-01-01

    The DEMO reactor is expected to be the first application of fusion for electricity generation in the near future. To this aim, conceptual design activities are progressing in Europe (EU) under the lead of the EUROfusion Consortium in order to drive on the development of the major tokamak systems. In

  8. ICRF fast wave current drive and mode conversion current drive in EAST tokamak

    Science.gov (United States)

    Yin, L.; Yang, C.; Gong, X. Y.; Lu, X. Q.; Du, D.; Chen, Y.

    2017-10-01

    Fast wave in the ion-cyclotron resonance frequency (ICRF) range is a promising candidate for non-inductive current drive (CD), which is essential for long pulse and high performance operation of tokamaks. A numerical study on the ICRF fast wave current drive (FWCD) and mode-conversion current drive (MCCD) in the Experimental Advanced Superconducting Tokamak (EAST) is carried out by means of the coupled full wave and Ehst-Karney parameterization methods. The results show that FWCD efficiency is notable in two frequency regimes, i.e., f ≥ 85 MHz and f = 50-65 MHz, where ion cyclotron absorption is effectively avoided, and the maximum on-axis driven current per unit power can reach 120 kA/MW. The sensitivity of the CD efficiency to the minority ion concentration is confirmed, owing to fast wave mode conversion, and the peak MCCD efficiency is reached for 22% minority-ion concentration. The effects of the wave-launch position and the toroidal wavenumber on the efficiency of current drive are also investigated.

  9. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  10. Applied Superconductivity Conference 2014

    CERN Document Server

    2015-01-01

    Energy Efficiency is a worldwide imperative driven by an increasing awareness of the need to conserve valuable natural resources. Superconductivity, the technology which revolutionized non-invasive medical imaging through MRI starting in the 1980’s, is one of the most promising enablers of energy efficiency in the 21st century. From energy efficient supercomputers to power generation, transmission, and storage, the spectrum of applications of superconductivity is broad in its reach and potential. As ASC comes to Charlotte, site of the hall of fame of NASCAR, our theme, “Race to Energy Efficiency,” is intended to inspire the world experts in superconductivity who will converge to Charlotte to present their latest results, exchange information, network, and plan and project the future breakthroughs.

  11. Tritium Removal by Laser Heating and Its Application to Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    C.H. Skinner; C.A. Gentile; G. Guttadora; A. Carpe; S. Langish; K.M. Young; M. Nishi; W. Shu

    2001-11-16

    A novel laser heating technique has recently been applied to removing tritium from carbon tiles that had been exposed to deuterium-tritium (DT) plasmas in the Tokamak Test Fusion Reactor (TFTR). A continuous wave neodymium laser, of power up to 300 watts, was used to heat the surface of the tiles. The beam was focused to an intensity, typically 8 kW/cm{sup 2}, and rapidly scanned over the tile surface by galvanometer-driven scanning mirrors. Under the laser irradiation, the surface temperature increased dramatically, and temperatures up to 2,300 degrees C were recorded by an optical pyrometer. Tritium was released and circulated in a closed-loop system to an ionization chamber that measured the tritium concentration. Most of the tritium (up to 84%) could be released by the laser scan. This technique appears promising for tritium removal in a next-step DT device as it avoids oxidation, the associated deconditioning of the plasma facing surfaces, and the expense of processing large quantities of tritium oxide. Some engineering aspects of the implementation of this method in a next-step fusion device will be discussed.

  12. Automated Identification of MHD Mode Bifurcation and Locking in Tokamaks

    Science.gov (United States)

    Riquezes, J. D.; Sabbagh, S. A.; Park, Y. S.; Bell, R. E.; Morton, L. A.

    2017-10-01

    Disruption avoidance is critical in reactor-scale tokamaks such as ITER to maintain steady plasma operation and avoid damage to device components. A key physical event chain that leads to disruptions is the appearance of rotating MHD modes, their slowing by resonant field drag mechanisms, and their locking. An algorithm has been developed that automatically detects bifurcation of the mode toroidal rotation frequency due to loss of torque balance under resonant braking, and mode locking for a set of shots using spectral decomposition. The present research examines data from NSTX, NSTX-U and KSTAR plasmas which differ significantly in aspect ratio (ranging from A = 1.3 - 3.5). The research aims to examine and compare the effectiveness of different algorithms for toroidal mode number discrimination, such as phase matching and singular value decomposition approaches, and to examine potential differences related to machine aspect ratio (e.g. mode eigenfunction shape variation). Simple theoretical models will be compared to the dynamics found. Main goals are to detect or potentially forecast the event chain early during a discharge. This would serve as a cue to engage active mode control or a controlled plasma shutdown. Supported by US DOE Contracts DE-SC0016614 and DE-AC02-09CH11466.

  13. Physics objectives of PI3 spherical tokamak program

    Science.gov (United States)

    Howard, Stephen; Laberge, Michel; Reynolds, Meritt; O'Shea, Peter; Ivanov, Russ; Young, William; Carle, Patrick; Froese, Aaron; Epp, Kelly

    2017-10-01

    Achieving net energy gain with a Magnetized Target Fusion (MTF) system requires the initial plasma state to satisfy a set of performance goals, such as particle inventory (1021 ions), sufficient magnetic flux (0.3 Wb) to confine the plasma without MHD instability, and initial energy confinement time several times longer than the compression time. General Fusion (GF) is now constructing Plasma Injector 3 (PI3) to explore the physics of reactor-scale plasmas. Energy considerations lead us to design around an initial state of Rvessel = 1 m. PI3 will use fast coaxial helicity injection via a Marshall gun to create a spherical tokamak plasma, with no additional heating. MTF requires solenoid-free startup with no vertical field coils, and will rely on flux conservation by a metal wall. PI3 is 5x larger than SPECTOR so is expected to yield magnetic lifetime increase of 25x, while peak temperature of PI3 is expected to be similar (400-500 eV) Physics investigations will study MHD activity and the resistive and convective evolution of current, temperature and density profiles. We seek to understand the confinement physics, radiative loss, thermal and particle transport, recycling and edge physics of PI3.

  14. Development of NTD Ge Sensors for Superconducting Bolometer

    Science.gov (United States)

    Garai, A.; Mathimalar, S.; Singh, V.; Dokania, N.; Nanal, V.; Pillay, R. G.; Ramakrishnan, S.; Shrivastava, A.; Jagadeesan, K. C.; Thakare, S. V.

    2016-08-01

    Neutron transmutation-doped (NTD) Ge sensors have been prepared by irradiating device-grade Ge with thermal neutrons at Dhruva reactor, BARC, Mumbai. These sensors are intended to be used for the study of neutrinoless double beta decay in ^{124}Sn with a superconducting Tin bolometer. Resistance measurements are performed on NTD Ge sensors in the temperature range 100-350 mK. The observed temperature dependence is found to be consistent with the variable-range hopping mechanism.

  15. Multifunctional reactors

    NARCIS (Netherlands)

    Westerterp, K.R.

    1992-01-01

    Multifunctional reactors are single pieces of equipment in which, besides the reaction, other functions are carried out simultaneously. The other functions can be a heat, mass or momentum transfer operation and even another reaction. Multifunctional reactors are not new, but they have received much

  16. Energetic electrons, hard x-ray emission and MHD activity studies in the IR-T1 tokamak.

    Science.gov (United States)

    Agah, K Mikaili; Ghoranneviss, M; Elahi, A Salar

    2015-01-01

    Determinations of plasma parameters as well as the Magnetohydrodynamics (MHD) activity, energetic electrons energy and energy confinement time are essential for future fusion reactors experiments and optimized operation. Also some of the plasma information can be deduced from these parameters, such as plasma equilibrium, stability, and MHD instabilities. In this contribution we investigated the relation between energetic electrons, hard x-ray emission and MHD activity in the IR-T1 Tokamak. For this purpose we used the magnetic diagnostics and a hard x-ray spectroscopy in IR-T1 tokamak. A hard x-ray emission is produced by collision of the runaway electrons with the plasma particles or limiters. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons.

  17. Advanced Tokamak Scenarios for the FIRE Burning Plasma Experiment

    Energy Technology Data Exchange (ETDEWEB)

    C.E. Kessel; D. Ignat; T.K. Mau

    2001-10-12

    The advanced tokamak (AT) capability of the Fusion Ignition Research Experiment (FIRE) burning plasma experiment is examined with 0-D systems analysis, equilibrium and ideal-MHD stability, radio-frequency current-drive analysis, and full discharge dynamic simulations. These analyses have identified the required parameters for attractive burning advanced tokamak plasmas, and indicate that these are feasible with the present progress on existing experimental tokamaks.

  18. Characterization of the Tokamak Novillo in cleaning regime; Caracterizacion del Tokamak Novillo en regimen de limpieza

    Energy Technology Data Exchange (ETDEWEB)

    Lopez C, R.; Melendez L, L.; Valencia A, R.; Chavez A, E.; Colunga S, S.; Gaytan G, E

    1992-02-15

    In this work the obtained results of the investigation about the experimental characterization of those low energy pulsed discharges of the Tokamak Novillo are reported. With this it is possible to fix the one operation point but appropriate of the Tokamak to condition the chamber in the smallest possible time for the cleaning discharges regime before beginning the main discharge. The characterization of the cleaning discharges in those Tokamaks is an unique process and characteristic of each device, since the good points of operation are consequence of those particularities of the design of the machine. In the case of the Tokamak Novillo, besides characterizing it a contribution is made to the cleaning discharges regime which consists on the one product of the current peak to peak of plasma by the duration of the discharge Ip{sub t} like reference parameter for the optimization of the operation of the device in the cleaning discharge regime. The maximum value of the parameter I{sub (p)}t, under different work conditions, allowed to find the good operation point to condition the discharges chamber of the Tokamak Novillo in short time and to arrive to a regime in which is not necessary the preionization for the obtaining of the cleaning discharges. (Author)

  19. High pressure induced superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K.; Shimizu, K

    2003-10-15

    We have developed complex extreme condition of very low temperature down to 30 mK and ultra high pressure exceeding 200 GPa by assembling compact diamond anvil cell (DAC) on a powerful {sup 3}He/{sup 4}He dilution refrigerator. We have also developed measuring techniques of electrical resistance, magnetization and optical measurement for the sample confined in the sample space of the DAC. Using the newly developed apparatus and techniques, we have searched for superconductivity in various materials under pressure. In this paper, we will shortly review our newly developed experimental apparatus and techniques and discuss a few examples of pressure induced superconductivity which were observed recently.

  20. Superconducting metamaterials and qubits

    Science.gov (United States)

    Plourde, B. L. T.; Wang, Haozhi; Rouxinol, Francisco; LaHaye, M. D.

    2015-05-01

    Superconducting thin-film metamaterial resonators can provide a dense microwave mode spectrum with potential applications in quantum information science. We report on the fabrication and low-temperature measurement of metamaterial transmission-line resonators patterned from Al thin films. We also describe multiple approaches for numerical simulations of the microwave properties of these structures, along with comparisons with the measured transmission spectra. The ability to predict the mode spectrum based on the chip layout provides a path towards future designs integrating metamaterial resonators with superconducting qubits.

  1. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  2. Gambling with Superconducting Fluctuations

    Science.gov (United States)

    Foltyn, Marek; Zgirski, Maciej

    2015-08-01

    Josephson junctions and superconducting nanowires, when biased close to superconducting critical current, can switch to a nonzero voltage state by thermal or quantum fluctuations. The process is understood as an escape of a Brownian particle from a metastable state. Since this effect is fully stochastic, we propose to use it for generating random numbers. We present protocol for obtaining random numbers and test the experimentally harvested data for their fidelity. Our work is prerequisite for using the Josephson junction as a tool for stochastic (probabilistic) determination of physical parameters such as magnetic flux, temperature, and current.

  3. Commercial Superconducting Electron Linac for Radioisotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Grimm, Terry Lee [Niowave, Inc., Lansing, MI (United States); Boulware, Charles H. [Niowave, Inc., Lansing, MI (United States); Hollister, Jerry L. [Niowave, Inc., Lansing, MI (United States); Jecks, Randall W. [Niowave, Inc., Lansing, MI (United States); Mamtimin, Mayir [Niowave, Inc., Lansing, MI (United States); Starovoitova, Valeriia [Niowave, Inc., Lansing, MI (United States)

    2015-08-13

    The majority of radioisotopes used in the United States today come from foreign suppliers or are generated parasitically in large government accelerators and nuclear reactors. Both of these restrictions limit the availability of radioisotopes and discourage the development and evaluation of new isotopes and for nuclear medicine, science, and industry. Numerous studies have been recommending development of dedicated accelerators for production of radioisotopes for over 20 years (Institute of Medicine, 1995; Reba, et al, 2000; National Research Council, 2007; NSAC 2009). The 2015 NSAC Long Range Plan for Isotopes again identified electron accelerators as an area for continued research and development. Recommendation 1(c) from the 2015 NSAC Isotope report specifically identifies electron accelerators for continued funding for the purpose of producing medical and industrial radioisotopes. Recognizing the pressing need for new production methods of radioisotopes, the United States Congress passed the American Medical Isotope Production Act of 2012 to develop a domestic production of 99Mo and to eliminate the use of highly enriched uranium (HEU) in the production of 99Mo. One of the advantages of high power electron linear accelerators (linacs) is they can create both proton- and neutron-rich isotopes by generating high energy x-rays that knock out protons or neutrons from stable atoms or by fission of uranium. This allows for production of isotopes not possible in nuclear reactors. Recent advances in superconducting electron linacs have decreased the size and complexity of these systems such that they are economically competitive with nuclear reactors and large, high energy accelerators. Niowave, Inc. has been developing a radioisotope production facility based on a superconducting electron linac with liquid metal converters.

  4. Thermal hydraulic analysis of China fusion engineering test reactor during thermal quenching by comparative approach of Relap5 and THEATRe codes

    Science.gov (United States)

    Khan, Salah Ud-Din; Song, Yuntao; Khan, Shahab Ud-Din

    2016-10-01

    Thermal quenching in Tokamak reactor is the most obvious phenomenon happens during plasma disruption conditions. The current research is focused on the thermal behavior of different parameters of China fusion engineering test reactor (CFETR) including reactor power, pressure and mass flow rate conditions. The analysis was performed by two thermal hydraulic codes, i.e. THEATRe and Relap5. During the first phase of research, thermal quenching behavior and trends that can be possible during the reactor operation was performed. In the next phase, nodalization diagram of THEATRe and Relap5 codes were developed. The listed parameters were calculated and analyzed for the safety aspects of the reactor. The main objective of the research was to analyze the blanket system of CFETR (Tokamak) for safety concerns during disruption condition. The research will be extended to other components for safe operation of reactor as well.

  5. Module description of TOKAMAK equilibrium code MEUDAS

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Masaei; Hayashi, Nobuhiko; Matsumoto, Taro; Ozeki, Takahisa [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2002-01-01

    The analysis of an axisymmetric MHD equilibrium serves as a foundation of TOKAMAK researches, such as a design of devices and theoretical research, the analysis of experiment result. For this reason, also in JAERI, an efficient MHD analysis code has been developed from start of TOKAMAK research. The free boundary equilibrium code ''MEUDAS'' which uses both the DCR method (Double-Cyclic-Reduction Method) and a Green's function can specify the pressure and the current distribution arbitrarily, and has been applied to the analysis of a broad physical subject as a code having rapidity and high precision. Also the MHD convergence calculation technique in ''MEUDAS'' has been built into various newly developed codes. This report explains in detail each module in ''MEUDAS'' for performing convergence calculation in solving the MHD equilibrium. (author)

  6. Rapidly Moving Divertor Plates In A Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    S. Zweben

    2011-05-16

    It may be possible to replace conventional actively cooled tokamak divertor plates with a set of rapidly moving, passively cooled divertor plates on rails. These plates would absorb the plasma heat flux with their thermal inertia for ~10-30 sec, and would then be removed from the vessel for processing. When outside the tokamak, these plates could be cooled, cleaned, recoated, inspected, and then returned to the vessel in an automated loop. This scheme could provide nearoptimal divertor surfaces at all times, and avoid the need to stop machine operation for repair of damaged or eroded plates. We describe various possible divertor plate designs and access geometries, and discuss an initial design for a movable and removable divertor module for NSTX-U.

  7. MHD stable regime of the tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, C.Z.; Furth, H.P.; Boozer, A.H.

    1986-10-01

    A broad family of tokamak current profiles is found to be stable against ideal and resistive MHD kink modes for 1 less than or equal to q(0), with q(a) as low 2. For 0.5 less than or equal to q(0) < and q(a) > 1, current profiles can be found that are unstable only to the m = 1, n = 1 mode. A specific ''optimal'' tokamak profile can be selected from the range of stable solutions, by imposing a common upper limit on dj/dr - corresponding in ohmic equilibrium to a limitation of dT/sub e//dr by anomalous transport.

  8. Boundary Plasma Turbulence Simulations for Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Xu, X; Umansky, M; Dudson, B; Snyder, P

    2008-05-15

    The boundary plasma turbulence code BOUT models tokamak boundary-plasma turbulence in a realistic divertor geometry using modified Braginskii equations for plasma vorticity, density (ni), electron and ion temperature (T{sub e}; T{sub i}) and parallel momenta. The BOUT code solves for the plasma fluid equations in a three dimensional (3D) toroidal segment (or a toroidal wedge), including the region somewhat inside the separatrix and extending into the scrape-off layer; the private flux region is also included. In this paper, a description is given of the sophisticated physical models, innovative numerical algorithms, and modern software design used to simulate edge-plasmas in magnetic fusion energy devices. The BOUT code's unique capabilities and functionality are exemplified via simulations of the impact of plasma density on tokamak edge turbulence and blob dynamics.

  9. Magnetic sensor for steady state tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Neyatani, Yuzuru; Mori, Katsuharu; Oguri, Shigeru; Kikuchi, Mitsuru [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1996-06-01

    A new type of magnetic sensor has been developed for the measurement of steady state magnetic fields without DC-drift such as integration circuit. The electromagnetic force induced to the current which leads to the sensor was used for the measurement. For the high frequency component which exceeds higher than the vibration frequency of sensor, pick-up coil was used through the high pass filter. From the results using tokamak discharges, this sensor can measure the magnetic field in the tokamak discharge. During {approx}2 hours measurement, no DC drift was observed. The sensor can respond {approx}10ms of fast change of magnetic field during disruptions. We confirm the extension of measured range to control the current which leads to the sensor. (author).

  10. Tokamak turbulence with stochastic field lines

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, P.; Garbet, X.; Ghendrih, Ph

    1998-03-01

    Three-dimensional numerical simulations of ballooning turbulence in a tokamak plasma with stochastic magnetic field lines are presented. Three main features are observed. First, the level of pressure fluctuations decreases in the ergodic layer. Secondly, this is essentially due to a suppression of large scale structures. Finally, the turbulent heat diffusivity does not decrease in the stochastic are due to an increase of electric fluctuations. These observations are in agreement with turbulence measurements on Tore Supra. (author) 27 refs.

  11. Microinstabilities in weak density gradient tokamak systems

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W.M.; Rewoldt, G.; Chen, L.

    1986-04-01

    A prominent characteristic of auxiliary-heated tokamak discharges which exhibit improved (''H-mode type'') confinement properties is that their density profiles tend to be much flatter over most of the plasma radius. Depsite this favorable trend, it is emphasized here that, even in the limit of zero density gradient, low-frequency microinstabilities can persist due to the nonzero temperature gradient.

  12. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L

    2012-01-01

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  13. Initial DEMO tokamak design configuration studies

    Energy Technology Data Exchange (ETDEWEB)

    Bachmann, Christian, E-mail: christian.bachmann@efda.org [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Aiello, G. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Albanese, R.; Ambrosino, R. [ENEA/CREATE, Universita di Napoli Federico II, Naples (Italy); Arbeiter, F. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Aubert, J. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Boccaccini, L.; Carloni, D. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Federici, G. [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Fischer, U. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Kovari, M. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Li Puma, A. [CEA-Saclay, DEN, DM2S, SEMT, F-91191 Gif-Sur-Yvette (France); Loving, A. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Maione, I. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Mattei, M. [ENEA/CREATE, Universita di Napoli Federico II, Naples (Italy); Mazzone, G. [ENEA C.R. Frascati, via E. Fermi 45, 00044 Frascati, Roma (Italy); Meszaros, B. [EFDA, Boltzmannstraße 2, 85748 Garching (Germany); Palermo, I. [Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid (Spain); Pereslavtsev, P. [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany); Riccardo, V. [CCFE, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); and others

    2015-10-15

    Highlights: • A definition of main DEMO requirements. • A description of the DEMO tokamak design configuration. • A description of issues yet to be solved. - Abstract: To prepare the DEMO conceptual design phase a number of physics and engineering assessments were carried out in recent years in the frame of EFDA concluding in an initial design configuration of a DEMO tokamak. This paper gives an insight into the identified engineering requirements and constraints and describes their impact on the selection of the technologies and design principles of the main tokamak components. The EU DEMO program aims at making best use of the technologies developed for ITER (e.g., magnets, vessel, cryostat, and to some degree also the divertor). However, other systems in particular the breeding blanket require design solutions and advanced technologies that will only partially be tested in ITER. The main differences from ITER include the requirement to breed, to extract, to process and to recycle the tritium needed for plasma operation, the two orders of magnitude larger lifetime neutron fluence, the consequent radiation dose levels, which limit remote maintenance options, and the requirement to use low-activation steel for in-vessel components that also must operate at high temperature for efficient energy conversion.

  14. Superconductors for superconducting magnets

    Science.gov (United States)

    Larbalestier, David

    2011-03-01

    Even in 1913 Kamerlingh Onnes envisioned the use of superconductors to create powerful magnetic fields well beyond the capability provided by cooling normal metals with liquid helium. Only some ``bad places'' in his Hg and Pb wires seemed to impede his first attempts at this dream, one that he imagined would be resolved in a few weeks of effort. In fact, of course, resolution required another 50 years and development of both a true understanding of the difference between type I and type II superconductors and the discovery of compounds such as Nb 3 Sn that could remain superconducting to fields as high as 30 T. And then indeed, starting in the 1960s, Onnes's dreams were comfortably surpassed. In the last 45 years virtually all superconducting magnets have been made from just two Nb-base materials, Nb-Ti and Nb 3 Sn. Now it seems that a new generation of magnets based on cuprate high temperature superconductors with fields well above 30 T are possible using Bi-Sr-Ca-Cu-O and the RE-Ba-Cu-O compounds. We hope that a first demonstration of this possibility will be an all-superconducting 32 T magnet with RE-Ba-Cu-O insert that we are building for NHMFL users. The magnet application potential of this new generation of superconducting conductors will be discussed.

  15. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  16. High temperature superconducting materials

    Energy Technology Data Exchange (ETDEWEB)

    Alario-Franco, M.A. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Quimicas

    1995-02-01

    The perovskite structure is the basis of all known high-temperature superconducting materials. Many of the most successful (highest T{sub c}) materials are based on mercury and thallium phases but, due to the high toxicity of the component compounds effort has been invested in the substitution of these elements with silver. Progress is reviewed. (orig.)

  17. Superconductivity committee planning report

    Energy Technology Data Exchange (ETDEWEB)

    1988-11-01

    The recent discovery of superconductors that operate at relatively high temperatures has generated a large amount of research which promises to have applications in almost all branches of high technology, notably those in which high electric current densities are used. After a background description of the properties of superconductors, the market for superconductor technology is described from the Canadian perspective. Worldwide markets are growing rapidly and are estimated to total $920 million by 1990, considering only conventional low-temperature superconductors. Applications for superconductivity include the use of thin films and microelectronics, low loss signal transmission, tunnel injections, and sensitive magnetic detectors. Superconducting magnets find application in magnetic separation, magnetic levitation and propulsion, and for energy storage and transmission by power utilities. Research in superconductivity in British Columbia, reviewed in this report, has been under way at 3 universities and 4 or 5 compaines, where a small group of qualified researchers and some high-technology laboratories are focusing on thin-film and electonic applications. The potential market for superconductivity is felt to warrant more effort in British Columbia, and a number of recommendations are made for coordinating and promoting research, funding joint university-industry projects for innovative applications, and facilitating technology transfer.

  18. Checking BEBC superconducting magnet

    CERN Multimedia

    CERN PhotoLab

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  19. Superconducting Quantum Circuits

    NARCIS (Netherlands)

    Majer, J.B.

    2002-01-01

    This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough

  20. AC/RF Superconductivity

    CERN Document Server

    Ciovati, G.

    2014-07-17

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  1. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  2. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  3. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: sasaki@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: mizushima@mp.es.osaka-u.ac.jp [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2015-07-15

    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  4. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  5. High temperature superconductivity: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Bedell, K.S.; Coffey, D. (Los Alamos National Lab., NM (USA)); Meltzer, D.E. (Florida Univ., Gainesville, FL (USA)); Pines, D. (Illinois Univ., Urbana, IL (USA)); Schrieffer, J.R. (California Univ., Santa Barbara, CA (USA)) (eds.)

    1990-01-01

    This book is the result of a symposium at Los Alamos in 1989 on High Temperature Superconductivity. The topics covered include: phenomenology, quantum spin liquids, spin space fluctuations in the insulating and metallic phases, normal state properties, and numerical studies and simulations. (JF)

  6. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  7. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  8. Electrical Conduction and Superconductivity

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 9. Electrical Conduction and Superconductivity. Suresh V Vettoor. General Article Volume 8 Issue 9 September 2003 pp 41-48. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/008/09/0041-0048 ...

  9. Proposal for the use of new materials in the TOKAMAK building cover; Contrato de ingenieria/arquitectura para el proyecto ITER

    Energy Technology Data Exchange (ETDEWEB)

    Chiva, L.

    2011-07-01

    It was considered relevant and innovative to apply new structural materials to the construction of the roof of the building that lodged the TOKAMAK reactor, with the aim of achieving a severe reduction of the weight of the roof structure that result in greater ease of mounting, minor charges on the walls and foundations of the building and a reduced impact on the distribution of masses of the building scheme.

  10. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  11. NUCLEAR REACTOR

    Science.gov (United States)

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  12. Fusion reactor blanket/shield design study

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D.L.; Clemmer, R.G.; Harkness, S.D.

    1979-07-01

    A joint study of tokamak reactor first-wall/blanket/shield technology was conducted by Argonne National Laboratory (ANL) and McDonnell Douglas Astronautics Company (MDAC). The objectives of this program were the identification of key technological limitations for various tritium-breeding-blanket design concepts, establishment of a basis for assessment and comparison of the design features of each concept, and development of optimized blanket designs. The approach used involved a review of previously proposed blanket designs, analysis of critical technological problems and design features associated with each of the blanket concepts, and a detailed evaluation of the most tractable design concepts. Tritium-breeding-blanket concepts were evaluated according to the proposed coolant. The ANL effort concentrated on evaluation of lithium- and water-cooled blanket designs while the MDAC effort focused on helium- and molten salt-cooled designs. A joint effort was undertaken to provide a consistent set of materials property data used for analysis of all blanket concepts. Generalized nuclear analysis of the tritium breeding performance, an analysis of tritium breeding requirements, and a first-wall stress analysis were conducted as part of the study. The impact of coolant selection on the mechanical design of a tokamak reactor was evaluated. Reference blanket designs utilizing the four candidate coolants are presented.

  13. The electron cyclotron absorption diagnostic at the Rijnhuizen tokamak project

    NARCIS (Netherlands)

    van Gelder, J. F. M.; Miedema, H. S.; Donne, A. J. H.; Oomens, A. A. M.; Schüller, F. C.

    1997-01-01

    A new 20-channel electron cyclotron absorption diagnostic has been developed at the Rijnhuizen tokamak project. It is the first time the electron pressure profile in a tokamak plasma can be measured directly with a time resolution of 1 ms. The diagnostic measures simultaneously the emission and

  14. Magnetohydrodynamic Waves and Instabilities in Rotating Tokamak Plasmas

    NARCIS (Netherlands)

    J.W. Haverkort (Willem)

    2013-01-01

    htmlabstractOne of the most promising ways to achieve controlled nuclear fusion for the commercial production of energy is the tokamak design. In such a device, a hot plasma is confined in a toroidal geometry using magnetic fields. The present generation of tokamaks shows significant plasma

  15. Soft-X-Ray Tomography Diagnostic at the Rtp Tokamak

    NARCIS (Netherlands)

    Da Cruz, D. F.; Donne, A. J. H.

    1994-01-01

    An 80-channel soft x-ray tomography system has been constructed for diagnosing the RTP (Rijnhuizen Tokamak Project) tokamak plasma. Five pinhole cameras, each with arrays of 16 detectors are distributed more or less homogeneously around a poloidal plasma cross section. The cameras are positioned

  16. Tokamak plasma self-organization-synergetics of magnetic trap plasmas

    NARCIS (Netherlands)

    Razumova, K. A.; Andreev, V. F.; Eliseev, L. G.; Kislov, A. Y.; La Haye, R. J.; Lysenko, S. E.; Melnikov, A. V.; Notkin, G. E.; Pavlov, Y. D.; Kantor, M. Y.

    2011-01-01

    Analysis of a wide range of experimental results in plasma magnetic confinement investigations shows that in most cases, plasmas are self-organized. In the tokamak case, it is realized in the self-consistent pressure profile, which permits the tokamak plasma to be macroscopically MHD stable.

  17. Stability-transport modeling of the SINP tokamak discharges

    Indian Academy of Sciences (India)

    2015-11-27

    Nov 27, 2015 ... The code has been applied to follow the evolution of tokamak plasma discharges obtained in the Saha Institute of Nuclear Physics (SINP) tokamak. From these simulations, we have been able to identify the possible models of thermal conductivity, diffusion and impurity contents in these discharges. Effects ...

  18. Equilibrium and stability of tokamak plasmas and accretion disks

    NARCIS (Netherlands)

    Blokland, J.W.S.

    2007-01-01

    In both fusion research as well in astrophysics, plasmas are widely studied. These plasmas can be found in different geometric configurations, such as in a tokamak, stellarator or in astrophysical jets, accretion disks, etc. In this thesis we focus on plasmas found in tokamaks or accretion disks. In

  19. 2017 Gordon Conference on Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey [Univ. of Minnesota, Twin Cities, MN (United States)

    2017-11-14

    The DOE award was for a 2017 Gordon Research conference on Superconductivity (GRC). The objective of GRC is to interchange the information about the latest theoretical and experimental developments in the area of superconductivity and to select most perspective directions for future research in this area.The goal of the Gordon Conference on Superconductivity is to present and discuss the latest results in the field of modern superconductivity, discuss new ideas and new directions of research in the area. It is a long-standing tradition of the Gordon conference on Superconductivity that the vast majority of participants are junior scientists. Funding for the conference would primarily be used to support junior researchers, particularly from under-represented groups. We had more 10 female speakers, some of them junior researchers, and some funding was used to support these speakers. The conference was held together with Gordon Research Seminar on Superconductivity, where almost all speakers and participants were junior scientists.

  20. Statistical mechanics of superconductivity

    CERN Document Server

    Kita, Takafumi

    2015-01-01

    This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...

  1. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  2. Hard superconducting nitrides

    Science.gov (United States)

    Chen, Xiao-Jia; Struzhkin, Viktor V.; Wu, Zhigang; Somayazulu, Maddury; Qian, Jiang; Kung, Simon; Christensen, Axel Nørlund; Zhao, Yusheng; Cohen, Ronald E.; Mao, Ho-kwang; Hemley, Russell J.

    2005-01-01

    Detailed study of the equation of state, elasticity, and hardness of selected superconducting transition-metal nitrides reveals interesting correlations among their physical properties. Both the bulk modulus and Vickers hardness are found to decrease with increasing zero-pressure volume in NbN, HfN, and ZrN. The computed elastic constants from first principles satisfy c11 > c12 > c44 for NbN, but c11 > c44 > c12 for HfN and ZrN, which are in good agreement with the neutron scattering data. The cubic δ-NbN superconducting phase possesses a bulk modulus of 348 GPa, comparable to that of cubic boron nitride, and a Vickers hardness of 20 GPa, which is close to sapphire. Theoretical calculations for NbN show that all elastic moduli increase monotonically with increasing pressure. These results suggest technological applications of such materials in extreme environments. PMID:15728352

  3. Superconductivity an introduction

    CERN Document Server

    Kleiner, Reinhold

    2016-01-01

    The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An e...

  4. ADX: a high field, high power density, advanced divertor and RF tokamak

    Science.gov (United States)

    LaBombard, B.; Marmar, E.; Irby, J.; Terry, J. L.; Vieira, R.; Wallace, G.; Whyte, D. G.; Wolfe, S.; Wukitch, S.; Baek, S.; Beck, W.; Bonoli, P.; Brunner, D.; Doody, J.; Ellis, R.; Ernst, D.; Fiore, C.; Freidberg, J. P.; Golfinopoulos, T.; Granetz, R.; Greenwald, M.; Hartwig, Z. S.; Hubbard, A.; Hughes, J. W.; Hutchinson, I. H.; Kessel, C.; Kotschenreuther, M.; Leccacorvi, R.; Lin, Y.; Lipschultz, B.; Mahajan, S.; Minervini, J.; Mumgaard, R.; Nygren, R.; Parker, R.; Poli, F.; Porkolab, M.; Reinke, M. L.; Rice, J.; Rognlien, T.; Rowan, W.; Shiraiwa, S.; Terry, D.; Theiler, C.; Titus, P.; Umansky, M.; Valanju, P.; Walk, J.; White, A.; Wilson, J. R.; Wright, G.; Zweben, S. J.

    2015-05-01

    The MIT Plasma Science and Fusion Center and collaborators are proposing a high-performance Advanced Divertor and RF tokamak eXperiment (ADX)—a tokamak specifically designed to address critical gaps in the world fusion research programme on the pathway to next-step devices: fusion nuclear science facility (FNSF), fusion pilot plant (FPP) and/or demonstration power plant (DEMO). This high-field (⩾6.5 T, 1.5 MA), high power density facility (P/S ˜ 1.5 MW m-2) will test innovative divertor ideas, including an ‘X-point target divertor’ concept, at the required performance parameters—reactor-level boundary plasma pressures, magnetic field strengths and parallel heat flux densities entering into the divertor region—while simultaneously producing high-performance core plasma conditions that are prototypical of a reactor: equilibrated and strongly coupled electrons and ions, regimes with low or no torque, and no fuelling from external heating and current drive systems. Equally important, the experimental platform will test innovative concepts for lower hybrid current drive and ion cyclotron range of frequency actuators with the unprecedented ability to deploy launch structures both on the low-magnetic-field side and the high-magnetic-field side—the latter being a location where energetic plasma-material interactions can be controlled and favourable RF wave physics leads to efficient current drive, current profile control, heating and flow drive. This triple combination—advanced divertors, advanced RF actuators, reactor-prototypical core plasma conditions—will enable ADX to explore enhanced core confinement physics, such as made possible by reversed central shear, using only the types of external drive systems that are considered viable for a fusion power plant. Such an integrated demonstration of high-performance core-divertor operation with steady-state sustainment would pave the way towards an attractive pilot plant, as envisioned in the ARC concept

  5. How to make graphene superconducting

    OpenAIRE

    Profeta, Gianni; Calandra, Matteo; Mauri, Francesco

    2011-01-01

    Graphene is the physical realization of many fundamental concepts and phenomena in solid state-physics, but in the long list of graphene remarkable properties, a fundamental block is missing: superconductivity. Making graphene superconducting is relevant as the easy manipulation of this material by nanolytographic techniques paves the way to nanosquids, one-electron superconductor-quantum dot devices, superconducting transistors at the nano-scale and cryogenic solid-state coolers. Here we exp...

  6. Superconducting metamaterials and qubits

    OpenAIRE

    Plourde, B. L. T.; Wang, Haozhi; Rouxinol, Francisco; LaHaye, M. D.

    2015-01-01

    Superconducting thin-film metamaterial resonators can provide a dense microwave mode spectrum with potential applications in quantum information science. We report on the fabrication and low-temperature measurement of metamaterial transmission-line resonators patterned from Al thin films. We also describe multiple approaches for numerical simulations of the microwave properties of these structures, along with comparisons with the measured transmission spectra. The ability to predict the mode ...

  7. Unconventional superconductivity near inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Poenicke, A.F.

    2008-01-25

    After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)

  8. Superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.; Schermer, R.I.

    1978-01-01

    Long-time varying-daily, weekly, and seasonal-power demands require the electric utility industry to have installed generating capacity in excess of the average load. Energy storage can reduce the requirement for less efficient excess generating capacity used to meet peak load demands. Short-time fluctuations in electric power can occur as negatively damped oscillations in complex power systems with generators connected by long transmission lines. Superconducting inductors with their associated converter systems are under development for both load leveling and transmission line stabilization in electric utility systems. Superconducting magnetic energy storage (SMES) is based upon the phenomenon of the nearly lossless behavior of superconductors. Application is, in principal, efficient since the electromagnetic energy can be transferred to and from the storage coils without any intermediate conversion to other energy forms. Results from a reference design for a 10-GWh SMES unit for load leveling are presented. The conceptual engineering design of a 30-MJ, 10-MW energy storage coil is discussed with regard to system stabilization, and tests of a small scale, 100-KJ SMES system are presented. Some results of experiments are provided from a related technology based program which uses superconducting inductive energy storage to drive fusion plasmas.

  9. Superconducting linacs: some recent developments

    Energy Technology Data Exchange (ETDEWEB)

    Bollinger, L.M.

    1985-01-01

    The paper is a review of superconducting linacs that are of interest for heavy-ion acceleration. Most of the paper is concerned with energy boosters for projectiles from tandem electrostatic accelerators, the only application for which superconducting linacs are now used for heavy-ion acceleration. There is also a brief discussion of the concept of a superconducting injector linac being developed as a replacement of the tandem in a multi-stage acceleration system. Throughout, the emphasis is on the technology of the superconducting linac, including some attention to the relationships between resonator design parameters and accelerator performance characteristics. 21 refs., 14 figs., 3 tabs.

  10. Topological Superconductivity in Dirac Semimetals.

    Science.gov (United States)

    Kobayashi, Shingo; Sato, Masatoshi

    2015-10-30

    Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We suggest the possible application of our theory to recently discovered superconducting states in Cd_{3}As_{2}.

  11. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  12. Beam commissioning for a superconducting proton linac

    Directory of Open Access Journals (Sweden)

    Zhi-Jun Wang

    2016-12-01

    Full Text Available To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today’s nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  13. Performance of Superconducting Current Feeder System for SST-1

    Science.gov (United States)

    Garg, A.; Nimavat, H.; Shah, P.; Patel, K.; Sonara, D.; Srikanth, G. L. N.; Bairagi, N.; Christian, D.; Patel, R.; Mahesuria, G.; Panchal, R.; Panchal, P.; Sharma, R.; Purwar, G.; Singh, G. K.; Tanna, V. L.; Pradhan, S.

    2017-02-01

    Superconducting (SC) Current Feeder System (CFS) for SST-1 (Steady state superconducting Tokamak was installed and commissioned in 2012. Since then, it has been operating successfully in successive plasma campaigns. The aim of this system is to transfer electric current from power supply at ambient temperature to SC magnets which are at 4.5 K. It consists of 10 kA vapour cooled current leads, Nb-Ti/Cu bus-bars, liquid nitrogen cooled radiation shield and liquid/vapour helium circuits. This system had been operated reliably in different scenario such as initial cool- down, electric current (ramp-up, ramp down and long-time steady state condition), cold with no current and in quench etc. In addition to this, it has fulfilled the long term operation with SST-1 with current flat top of 4.7 kA for more than 20,000 seconds. This paper highlights operational performance along with results in different aspects.

  14. ICPP: Results from the MAST Spherical Tokamak

    Science.gov (United States)

    Sykes, Alan

    2000-10-01

    The MAST (Mega-Amp Spherical Tokamak) experiment is now fully operational, producing 1MA plasmas with MW level auxiliary heating from Neutral Beam Injection and 60GHz Electron Cyclotron Resonance Heating. Central electron and ion temperatures are both of order 1keV (measured by 30-point Thomson Scattering, Neutral Particle Analyzer and Charge-Exchange spectroscopy respectively). Following boronisation, the Greenwald density limit has been exceeded in double-null divertor discharges by 50operation has been achieved in both Ohmic and NBI heated plasmas. In addition to conventional plasma induction, MAST can employ the `merging-compression' scheme (pioneered on START) producing initial spherical tokamak plasmas of up to 0.5MA without use of flux from the central solenoid. The central solenoid can then be applied to further increase the current at ramp rates of up to 13MA/s; plasma current of 1MA is reached at only one-half of the full solenoid swing. Studies of strike point power loading in both Ohmic and beam heated plasmas have confirmed the result from START that the fraction of power loading on the inboard strike point is lower than predicted from simple models. Comprehensive arrays of halo detectors indicate tolerable levels of halo currents with low asymmetries; an encouraging result for the ST concept, and providing key data to test models. Results from MAST will be used both to extend the conventional tokamak database, and to determine the potential of the ST as a route to fusion power in its own right. Acknowledgement: this work is funded jointly by the UK Department of Trade and Industry and EURATOM. The NBI equipment is on loan from ORNL, the NPA from PPPL.

  15. Digital controlled pulsed electric system of the ETE tokamak. First report; Sistema eletrico pulsado com controle digital do Tokamak ETE (experimento Tokamak esferico). Primeiro relatorio

    Energy Technology Data Exchange (ETDEWEB)

    Barbosa, Luis Felipe de F.P.W.; Del Bosco, Edson

    1997-12-31

    This reports presents a summary on the thermonuclear fusion and application for energy supply purposes. The tokamak device operation and the magnetic field production systems are described. The ETE tokamak is a small aspect ratio device designed for plasma physics and thermonuclear fusion studies, which presently is under construction at the Laboratorio Associado de Plasma (LAP), Instituto Nacional de Pesquisas Espaciais (INPE) - S.J. dos Campos - S. Paulo. (author) 55 refs., 40 figs.

  16. Energetic particles in spherical tokamak plasmas

    Science.gov (United States)

    McClements, K. G.; Fredrickson, E. D.

    2017-05-01

    Spherical tokamaks (STs) typically have lower magnetic fields than conventional tokamaks, but similar mass densities. Suprathermal ions with relatively modest energies, in particular beam-injected ions, consequently have speeds close to or exceeding the Alfvén velocity, and can therefore excite a range of Alfvénic instabilities which could be driven by (and affect the behaviour of) fusion α-particles in a burning plasma. STs heated with neutral beams, including the small tight aspect ratio tokamak (START), the mega amp spherical tokamak (MAST), the national spherical torus experiment (NSTX) and Globus-M, have thus provided an opportunity to study toroidal Alfvén eigenmodes (TAEs), together with higher frequency global Alfvén eigenmodes (GAEs) and compressional Alfvén eigenmodes (CAEs), which could affect beam current drive and channel fast ion energy into bulk ions in future devices. In NSTX GAEs were correlated with a degradation of core electron energy confinement. In MAST pulses with reduced magnetic field, CAEs were excited across a wide range of frequencies, extending to the ion cyclotron range, but were suppressed when hydrogen was introduced to the deuterium plasma, apparently due to mode conversion at ion-ion hybrid resonances. At lower frequencies fishbone instabilities caused fast particle redistribution in some MAST and NSTX pulses, but this could be avoided by moving the neutral beam line away from the magnetic axis or by operating the plasma at either high density or elevated safety factor. Fast ion redistribution has been observed during GAE avalanches on NSTX, while in both NSTX and MAST fast ions were transported by saturated kink modes, sawtooth crashes, resonant magnetic perturbations and TAEs. The energy dependence of fast ion redistribution due to both sawteeth and TAEs has been studied in Globus-M. High energy charged fusion products are unconfined in present-day STs, but have been shown in MAST to provide a useful diagnostic of beam ion

  17. Differential and Integral Models of TOKAMAK

    Directory of Open Access Journals (Sweden)

    Ivo Dolezel

    2004-01-01

    Full Text Available Modeling of 3D electromagnetic phenomena in TOKAMAK with typically distributed main and additional coils is not an easy business. Evaluated must be not only distribution of the magnetic field, but also forces acting in particular coils. Use of differential methods (such as FDM or FEM for this purpose may be complicated because of geometrical incommensurability of particular subregions in the investigated area or problems with the boundary conditions. That is why integral formulation of the problem may sometimes be an advantages. The theoretical analysis is illustrated on an example processed by both methods, whose results are compared and discussed.

  18. Reactor Neutrinos

    CERN Document Server

    Lasserre, T; Lasserre, Thierry; Sobel, Henry W.

    2005-01-01

    We review the status and the results of reactor neutrino experiments, that toe the cutting edge of neutrino research. Short baseline experiments have provided the measurement of the reactor neutrino spectrum, and are still searching for important phenomena such as the neutrino magnetic moment. They could open the door to the measurement of coherent neutrino scattering in a near future. Middle and long baseline oscillation experiments at Chooz and KamLAND have played a relevant role in neutrino oscillation physics in the last years. It is now widely accepted that a new middle baseline disappearance reactor neutrino experiment with multiple detectors could provide a clean measurement of the last undetermined neutrino mixing angle theta13. We conclude by opening on possible use of neutrinos for Society: NonProliferation of Nuclear materials and Geophysics.

  19. NEUTRONIC REACTORS

    Science.gov (United States)

    Wigner, E.P.; Young, G.J.

    1958-10-14

    A method is presented for loading and unloading rod type fuel elements of a neutronic reactor of the heterogeneous, solld moderator, liquid cooled type. In the embodiment illustrated, the fuel rods are disposed in vertical coolant channels in the reactor core. The fuel rods are loaded and unloaded through the upper openings of the channels which are immersed in the coolant liquid, such as water. Unloading is accomplished by means of a coffer dam assembly having an outer sleeve which is placed in sealing relation around the upper opening. A radiation shield sleeve is disposed in and reciprocable through the coffer dam sleeve. A fuel rod engaging member operates through the axial bore in the radiation shield sleeve to withdraw the fuel rod from its position in the reactor coolant channel into the shield, the shield snd rod then being removed. Loading is accomplished in the reverse procedure.

  20. Simulations of Enhanced Reversed Shear Plasmas in TFTR Using the Tokamak Simulation Code*

    Science.gov (United States)

    Kaita, R.; Bernabei, S.; Jardin, S.; Manickam, J.; Pomphrey, N.; Ignat, D.; Levinton, F.

    1996-11-01

    The Enhanced Reversed Shear (ERS) mode has already shown great potential for improving the performance of the Tokamak Fusion Test Reactor (TFTR) and other devices. The Tokamak Simulation Code (TSC)footnote S. C. Jardin et al., J. Comp. Phys. 66, 481 (1986) has been used to simulate these plasmas. The calculations provide predictions for the utility of varying the beam power and timing and the plasma current ramp rate in controlling the magnitude and radial location of the minimum in the safety factor (q) profile. Lower hybrid current drive is a future option for current profile modification in TFTR, and its effectiveness has been explored with the Lower Hybrid Simulation Code (LSC) modelfootnote D. Ignat et al., Nucl. Fusion 34, 837 (1994) in the TRANSP code.footnote R. Kaita et al., 1996 International Sherwood Theory Conference, 1C30 This work has continued with LSC in TSC, including the effects of a finite fast electron coefficient on the current drive efficiency. *Work supported by U.S.D.O.E. Contract DE-AC02-76-CH03073.

  1. Fuelling and plasma flow change by compact torus injection into the STOR-M Tokamak

    Science.gov (United States)

    Onchi, Takumi; Liu, Yelu; Dreval, Mykola; McColl, David; Xiao, Chijin; Hirose, Akira; Asai, Tomohiko; Wolfe, Sean

    2012-10-01

    The Saskatchewan TORus Modified (STOR-M) tokamak is equipped with a Compact Torus (CT) injector for tangential (toroidal) injection of a high density plasmoid at a velocity of 150 km/s. The objectives of CT injection (CTI) are to fuel the core region of tokamak and optimize the bootstrap current in future reactors by control of the plasma pressure gradient. After CTI, the line averaged density along central chord increases from ne˜x 10^12 to 1.5 x 10^13 [cm-3]. Measurement of soft X-ray bremsstrahlung emission profile indicates a steeper density gradient is generated after the asymmetric density profile is formed and the profile become symmetry again in STOR-M. Intrinsic impurity ion flows have been measured with ion Doppler spectroscopy. Significant radial velocity shear from center to edge region is observed even in Ohmic discharges. The toroidal flow direction is found to depend on the plasma current direction. CTI also modifies toroidal plasma flow. The edge plasma flow increases by 5 km/s 1millisecond after CTI. During these milliseconds of time, toroidal flow shear is also increased from 214.3 to 285.7 [10^3 x1/s]. A few milliseconds later than that time, plasma flow slows down, but plasma confinement is improved. Hα emission decreases by 50%.

  2. Density profile control using compact toroid injection in STOR-M Tokamak

    Science.gov (United States)

    Onchi, Takumi; Liu, Dazhi; Xiao, Chijin; Hirose, Akira; Asai, Tomohiko; Wolfe, Sean

    2011-10-01

    The Saskatchewan TORus Modified (STOR-M) tokamak has a Compact Torus (CT) injector which allows tangential injection of high density plasmoid. The objectives of CT injection (CTI) into the core of plasma are to fuel tokamaks and also optimize the bootstrap current in the future reactors by control of the plasma pressure gradient. Measurement of soft X-ray bremsstrahlung emission profile have verified that CT particles are deposited in the core region from outside and steeper density gradient is generated via a balancing process after the asymmetric density profile is formed in STOR-M. The major radius of the core plasma is shifted outward and stays in equilibrium until the end of discharge. H alpha line-emission considerably decreases in the core region and the high emitting area with low temperature plasma exists in the edge region. A few milliseconds seconds after these altered profiles of the density and the emission by CTI are generated, stronger edge radial electric field as well as H-mode appears and the average electron density peaks. This work has been sponsored by the CRC program and NSERC of Canada.

  3. Survivability of dust in tokamaks: dust transport in the divertor sheath

    CERN Document Server

    Delzanno, Gian Luca

    2014-01-01

    The survivability of dust being transported in the magnetized sheath near the divertor plate of a tokamak and its impact on the mandatory balance of erosion and redeposition for a steady-state reactor are investigated. Two different divertor scenarios are considered. The first is characterized by an energy flux perpendicular to the plate $q_0\\simeq 1$ MW/m$^2$ typical of current short-pulse tokamaks. The second has $q_0\\simeq 10$ MW/m$^2$ and is relevant to long-pulse machines like ITER or DEMO. It is shown that micrometer dust particles can survive rather easily near the plates of a divertor plasma with $q_0\\simeq 1$ MW/m$^2$ because thermal radiation provides adequate cooling for the dust particle. On the other hand, the survivability of micrometer dust particles near the divertor plates is drastically reduced when $q_0\\simeq 10$ MW/m$^2$. Micrometer dust particles redeposit their material non-locally, leading to a net poloidal mass migration across the divertor. Smaller particles (with radius $\\sim 0.1$ $\\...

  4. Optimization of superconducting tiling pattern for superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  5. Nonlinear burn condition control in tokamaks using isotopic fuel tailoring

    Science.gov (United States)

    Boyer, Mark D.; Schuster, Eugenio

    2015-08-01

    One of the fundamental problems in tokamak fusion reactors is how to control the plasma density and temperature in order to regulate the amount of fusion power produced by the device. Control of these parameters will be critical to the success of burning plasma experiments like ITER. The most previous burn condition control efforts use either non-model based control designs or techniques based on models linearized around particular operating points. Such strategies limit the potential operational space and must be carefully retuned or redesigned to accommodate changes in operating points or plasma parameters. In this work, a nonlinear dynamic model of the spatial averages of energy and ion species densities is used to synthesize a nonlinear feedback controller for stabilizing the burn condition. The nonlinear model-based control strategy guarantees a much larger operational space than previous linear controllers. Because it is not designed around a particular operating point, the controller can be used to move from one burn condition to another. The proposed scheme first attempts to use regulation of the auxiliary heating power to reject temperature perturbations, then, if necessary, uses isotopic fuel tailoring as a way to reduce fusion heating during positive temperature perturbations. A global model of hydrogen recycling is incorporated into the model used for design and simulation, and the proposed control scheme is tested for a range of recycling model parameters. As we find the possibility of changing the isotopic mix can be limited for certain unfavorable recycling conditions, we also consider impurity injection as a back-up method for controlling the system. A simple supervisory control strategy is proposed to switch between the primary and back-up control schemes based on stability and performance criteria. A zero-dimensional simulation study is used to study the performance of the control scheme for several scenarios and model parameters. Finally, a one

  6. Research of lithium capillary-pore systems for fusion reactor plasma facing components

    Energy Technology Data Exchange (ETDEWEB)

    Evtikhin, V.A. E-mail: evtikhin@protein.bio.msu.ru; Vertkov, A.V.; Lyublinski, I.E.; Khripunov, B.I.; Petrov, V.B.; Mirnov, S.V

    2002-12-01

    To date there is no adequate solution for high heat load plasma facing components of the next step fusion reactor among solid material options. A lithium-filled capillary porous systems (CPS) was proposed as a plasma facing material and experimental work on this subject is now in progress. Steady-state experiments with CPS-based target and lithium supply systems have shown successful operation at heat fluxes of 1-10 MW/m{sup 2} during several hours. Experimental data is obtained on lithium CPS stability at heat flux up to 25-50 MW/m{sup 2}. The lithium CPS behaviour in contact with real tokamak plasma is considered for normal discharge condition at 10 MW/m{sup 2} and for plasma disruption at 15 MJ/m{sup 2}. Erosion mechanism of lithium under tokamak plasma impact was analysed. Stability of lithium CPS in tokamak conditions was shown.

  7. Development of atomic beam probe for tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Berta, M., E-mail: bertam@sze.hu [Széchenyi István University, EURATOM Association, Győr (Hungary); Institute of Plasma Physics AS CR, v.v.i., Prague (Czech Republic); Anda, G.; Aradi, M.; Bencze, A.; Buday, Cs.; Kiss, I.G.; Tulipán, Sz.; Veres, G.; Zoletnik, S. [Wigner – RCP, HAS, EURATOM Association, Budapest (Hungary); Havlícek, J.; Háček, P. [Institute of Plasma Physics AS CR, v.v.i., Prague (Czech Republic); Charles University in Prague, Faculty of Mathematics and Physics (Czech Republic)

    2013-11-15

    Highlights: • ABP is newly developed diagnostic. • Unique measurement method for the determination of plasma edge current variations caused by different transient events such as ELMs. • The design process has been fruitfully supported by the physically motivated computer simulations. • Li-BES system has been modified accordingly to the needs of the ABP. -- Abstract: The concept and development of a new detection method for light alkali ions stemming from diagnostic beams installed on medium size tokamak is described. The method allows us the simultaneous measurement of plasma density fluctuations and fast variations in poloidal magnetic field, therefore one can infer the fast changes in edge plasma current. The concept has been worked out and the whole design process has been done at Wigner RCP. The test detector with appropriate mechanics and electronics is already installed on COMPASS tokamak. General ion trajectory calculation code (ABPIons) has also been developed. Detailed calculations show the possibility of reconstruction of edge plasma current density profile changes with high temporal resolution, and the possibility of density profile reconstruction with better spatial resolution compared to standard Li-BES measurement, this is important for pedestal studies.

  8. MDSplus integration at TCABR tokamak: Current status

    Energy Technology Data Exchange (ETDEWEB)

    Sá, W.P. de, E-mail: pires@if.usp.br; Ronchi, G., E-mail: gronchi@if.usp.br

    2016-11-15

    Highlights: • The implementation of MDSplus in TCABR tokamak, current status. • Interfaces between the system already installed and the MDSplus. • Web MDSplus interface. - Abstract: Experimental data for the TCABR tokamak is currently stored in MDSplus (Model Driven System Plus) database. The access to the data recorded during the experiments is performed using tools and libraries available by MDSplus system. The MDSplus system is widely used in different physics experiments, especially in plasmas physics and nuclear fusion. This standardized environment enables easy interaction among scientists of different experiments in different countries without the need to understand the particular characteristics of control, data acquisition and analysis, and remote access (CODAS) customized in each laboratory. In the first phase of implementation, intermediate interfaces had been developed between the legacy proprietary system and the MDSplus. In a second phase, the new diagnostic systems had been directly included in the created MDSplus system in the laboratory. After three years of use, the system installed on TCABR proved extremely efficient and significantly increased productivity in data analysis by involved scientists, regardless of whether they are locally at the TCABR, or accessing the system remotely from their home laboratories. The third phase, and subject of this article, are the development and implementation of the following systems: (i) web tools for the visualization of data, integrated with the experiment logbook, (ii) integration of MDSplus with applications (LabVIEW + MDSplus) and newer data acquisition hardware.

  9. System studies of compact ignition tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Galambos, J.D.; Blackfield, D.T.; Peng, Y.K.M.; Reid, R.L.; Strickler, D.J.; Selcow, E.

    1987-08-01

    The new Tokamak Systems Code, used to investigate Compact Ignition Tokamaks (CITs), can simultaneously vary many parameters, satisfy many constraints, and minimize or maximize a figure of merit. It is useful in comparing different CIT design configurations over wide regions of parameter space and determining a desired design point for more detailed physics and engineering analysis, as well as for performing sensitivity studies for physics or engineering issues. Operational windows in major radius (R) and toroidal field (B) space for fixed ignition margin are calculated for the Ignifed and Inconel candidate CITs. The minimum R bounds are predominantly physics limited, and the maximum R portions of the windows are engineering limited. For a modified Kaye-Goldston plasma-energy-confinement scaling, the minimum size is 1.15 m for the Ignifed device and 1.25 m for the Inconel device. With the Ignition Technical Oversight Committee (ITOC) physics guidance of B/sup 2/a/q and I/sub p/ >10 MA, the Ignifed and Base-line Inconel devices have a minimum size of 1.2 and 1.25 m and a toroidal field of 11 and 10.4 T, respectively. Sensitivity studies show Ignifed to be more sensitive to coil temperature changes than the Inconel device, whereas the Inconel device is more sensitive to stress perturbations.

  10. The Spherical Tokamak MEDUSA for Costa Rica

    Science.gov (United States)

    Ribeiro, Celso; Vargas, Ivan; Guadamuz, Saul; Mora, Jaime; Ansejo, Jose; Zamora, Esteban; Herrera, Julio; Chaves, Esteban; Romero, Carlos

    2012-10-01

    The former spherical tokamak (ST) MEDUSA (Madison EDUcation Small Aspect.ratio tokamak, Rphysics /technical related issues which will help all tasks of the very low aspect ratio stellarator SCR-1(A≡R/>=3.6, under design[2]) and also the ongoing activities in low temperature plasmas. Courses in plasma physics at undergraduate and post-graduate joint programme levels are regularly conducted. The scientific programme is intend to clarify several issues in relevant physics for conventional and mainly STs, including transport, heating and current drive via Alfv'en wave, and natural divertor STs with ergodic magnetic limiter[3,4]. [1] G.D.Garstka, PhD thesis, University of Wisconsin at Madison, 1997 [2] L.Barillas et al., Proc. 19^th Int. Conf. Nucl. Eng., Japan, 2011 [3] C.Ribeiro et al., IEEJ Trans. Electrical and Electronic Eng., 2012(accepted) [4] C.Ribeiro et al., Proc. 39^th EPS Conf. Contr. Fusion and Plasma Phys., Sweden, 2012

  11. Neutronic reactor

    Science.gov (United States)

    Wende, Charles W. J.; Babcock, Dale F.; Menegus, Robert L.

    1983-01-01

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  12. Neutronic reactor

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, D.F.; Menegus, R.L.; Wende, C.W.

    1983-01-04

    A nuclear reactor includes an active portion with fissionable fuel and neutron moderating material surrounded by neutron reflecting material. A control element in the active portion includes a group of movable rods constructed of neutron-absorbing material. Each rod is movable with respect to the other rods to vary the absorption of neutrons and effect control over neutron flux.

  13. Comparative analysis of the possibility of applying low-melting metals with the capillary-porous system in tokamak conditions

    Science.gov (United States)

    Lyublinski, I. E.; Vertkov, A. V.; Semenov, V. V.

    2016-12-01

    The use of capillary-porous systems (CPSs) with liquid Li, Ga, and Sn is considered as an alternative for solving the problem of creating plasma-facing elements (PFEs) of the fusion neutron source (FNS) and the DEMO-type reactor. The main advantages of CPSs with liquid metal compared with hard materials are their stability with respect to the degradation of properties in tokamak conditions and capability of surface self-restoration. The evaluation of applicability of liquid metals is performed on the basis of the analysis of their physical and chemical properties, the interaction with the tokamak plasma, and constructive and process features of in-vessel elements with CPSs implementing the application of these metals in a tokamak. It is shown that the upper limit of the PFE working temperature for all low-melting metals under consideration lies in the range of 550-600°C. The decisive factor for PFEs with Li is the limitation on the admissible atomic flux into plasma, while for those with Ga and Sn it is the corrosion resistance of construction materials. The upper limit of thermal loads in the steady-state operating mode for the considered promising PFE design with the use of Li, Ga, and Sn is close to 18-20 MW/m2. It is seen from the analysis that the use of metals with a low equilibrium vapor pressure of (Ga, Sn) gives no gain in extension of the region of admissible working temperatures of PFEs. However, with respect to the totality of properties, the possibility of implementing the self-restoration and stabilization effect of the liquid surface, the influence on the plasma discharge parameters, and the ability to protect the PFE surface in conditions of plasma perturbations and disruption, lithium is the most attractive liquid metal to create CPS-based PFEs for the tokamak.

  14. Comparative analysis of the possibility of applying low-melting metals with the capillary-porous system in tokamak conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lyublinski, I. E., E-mail: lyublinski@yandex.ru; Vertkov, A. V., E-mail: avertkov@yandex.ru; Semenov, V. V., E-mail: darkfenix2006@mail.ru [OAO Krasnaya Zvezda (Russian Federation)

    2016-12-15

    The use of capillary-porous systems (CPSs) with liquid Li, Ga, and Sn is considered as an alternative for solving the problem of creating plasma-facing elements (PFEs) of the fusion neutron source (FNS) and the DEMO-type reactor. The main advantages of CPSs with liquid metal compared with hard materials are their stability with respect to the degradation of properties in tokamak conditions and capability of surface self-restoration. The evaluation of applicability of liquid metals is performed on the basis of the analysis of their physical and chemical properties, the interaction with the tokamak plasma, and constructive and process features of in-vessel elements with CPSs implementing the application of these metals in a tokamak. It is shown that the upper limit of the PFE working temperature for all low-melting metals under consideration lies in the range of 550–600°Ð¡. The decisive factor for PFEs with Li is the limitation on the admissible atomic flux into plasma, while for those with Ga and Sn it is the corrosion resistance of construction materials. The upper limit of thermal loads in the steady-state operating mode for the considered promising PFE design with the use of Li, Ga, and Sn is close to 18–20 MW/m{sup 2}. It is seen from the analysis that the use of metals with a low equilibrium vapor pressure of (Ga, Sn) gives no gain in extension of the region of admissible working temperatures of PFEs. However, with respect to the totality of properties, the possibility of implementing the self-restoration and stabilization effect of the liquid surface, the influence on the plasma discharge parameters, and the ability to protect the PFE surface in conditions of plasma perturbations and disruption, lithium is the most attractive liquid metal to create CPS-based PFEs for the tokamak.

  15. Radiative instabilities in the tokamak scrape-off layer during edge-localized mode activity

    Energy Technology Data Exchange (ETDEWEB)

    Helander, P.; Krasheninnikov, S.I. [Massachusetts Institute of Technology, Plasma Fusion Center, Cambridge, Massachusetts 02139 (United States); Morozov, D.K.; Soboleva, T.K. [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico)

    1995-10-01

    In order to reduce the heat flux entering the divertor, it is desirable to have strong impurity radiation in the scrape-off layer (SOL) of reactor-size tokamaks like the International Thermonuclear Experimental Reactor [{ital International} {ital Thermonuclear} {ital Experimental} {ital Reactor} ({ital ITER}) {ital Conceptual} {ital Design} {ital Activity} {ital Final} {ital Report}, ITER Documentation Series No. 16 (International Atomic Energy Agency, Vienna, 1991)]. Under such circumstances, however, the SOL plasma is likely to be unstable to the radiative condensation instability. In the present paper, an investigation is undertaken to study the effects of edge-localized mode (ELM) activity on this instability. In the linear regime, it is demonstrated that high-frequency (``grassy``) ELM`s may parametrically excite acoustic waves. The possibility of nonlinear radiative collapse with concomitant stratification of the plasma is discussed, and solutions describing nonlinear traveling waves are derived in which the plasma goes over from equilibrium state to another. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  16. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  17. The Danish Superconducting Cable Project

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1997-01-01

    The design and construction of a superconducting cable is described. The cable has a room temperature dielectric design with the cryostat placed inside the electrical insulation.BSCCO 2223 superconducting tapes wound in helix form around a former are used as the cable conductor. Results from...

  18. Calculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor

    CERN Document Server

    Post, D; Clark, R E H; Putvinskaya, N

    1995-01-01

    Reduction of the peak heat loads on the plasma facing components is essential for the success of the next generation of high fusion power tokamaks such as the International Thermonuclear Experimental Reactor (ITER) 1 . Many present concepts for accomplishing this involve the use of atomic processes to transfer the heat from the plasma to the main chamber and divertor chamber walls and much of the experimental and theoretical physics research in the fusion program is directed toward this issue. The results of these experiments and calculations are the result of a complex interplay of many processes. In order to identify the key features of these experiments and calculations and the relative role of the primary atomic processes, simple quasi-analytic models and the latest atomic physics rate coefficients and cross sections have been used to assess the relative roles of central radiation losses through bremsstrahlung, impurity radiation losses from the plasma edge, charge exchange and hydrogen radiation losses f...

  19. Analytical model of fast ion behavior in current hole tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Schoepf, K.; Yavorskij, V.; Goloborod' ko, V.; Neururer, P. [Innsbruck Univ., Institute for Theoretical Physics, Association EURATOM-OEAW (Austria); Goloborod' ko, V. [Ukrainian Academy of Sciences, Kiev Institute for Nuclear Research, Kiev (Ukraine)

    2004-07-01

    Though a current hole (CH) regime is recognized to provide better detention of the bulk plasma, it may negatively act on the confinement of fast ions such as fusion products and neutral beam injected ions. Since, however, the transport properties of these energetic particles determine the heating profiles and the power loading upon the first wall, and therefore are of crucial importance in a fusion reactor, we examine here analytically the CH effects on the fast ion behavior in a tokamak. For that we employ a simplified model based on an analytical approximation of the poloidal flux function allowing for a complete characterization of possible orbit topologies. In the constants-of-motion space we determine the confinement domains for the different types of ion orbits, calculate the CH induced alterations of the fast ion transport and derive the distribution of neutral beam injected ions for a specific JET current hole plasma scenario.

  20. Hydrodynamic effects of eroded materials on response of plasma-facing component during a tokamak disruption

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, A.; Konkashbaev, I.

    1999-10-25

    Loss of plasma confinement causes surface and structural damage to plasma-facing materials (PFMs) and remains a major obstacle for tokamak reactors. The deposited plasma energy results in surface erosion and structural failure. The surface erosion consists of vaporization, spallation, and liquid splatter of metallic materials, while the structural damage includes large temperature increases in structural materials and at the interfaces between surface coatings and structural members. Comprehensive models (contained in the HEIGHTS computer simulation package) are being used self-consistently to evaluate material damage. Splashing mechanisms occur as a result of volume bubble boiling and liquid hydrodynamic instabilities and brittle destruction mechanisms of nonmelting materials. The effect of macroscopic erosion on total mass losses and lifetime is evaluated. The macroscopic erosion products may further protect PFMs from severe erosion (via the droplet-shielding effect) in a manner similar to that of the vapor shielding concept.

  1. Superconductivity in a chiral nanotube

    Science.gov (United States)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  2. Superconducting notch filter

    Energy Technology Data Exchange (ETDEWEB)

    Pang, C S; Falco, C M; Kampwirth, R T; Schuller, I K; Hudak, J J; Anastasio, T A

    1979-01-01

    Results of a preliminary investigation of a superconducting notch filter for possible application in the 2 to 30 MHz high frequency (HF) communication band are presented. The circuit was successfully implemented using planar geometry so that closed cycle refrigeration could be used to cool circuits fabricated from high T/sub c/ Nb/sub 3/Sn or Nb/sub 3/Ge thin films. In the present design, circuit Q's of about 2 x 10/sup 3/ were obtained with 50-ohm source and output impedance. (TFD)

  3. Superconductivity in nanowires

    CERN Document Server

    Bezryadin, Alexey

    2012-01-01

    The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine.One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so i

  4. 100 years of superconductivity

    CERN Multimedia

    Globe Info

    2011-01-01

    Public lecture by Philippe Lebrun, who works at CERN on applications of superconductivity and cryogenics for particle accelerators. He was head of CERN’s Accelerator Technology Department during the LHC construction period. Centre culturel Jean Monnet, route de Gex Tuesday 11 October from 8.30 p.m. to 10.00 p.m. » Suitable for all – Admission free - Lecture in French » Number of places limited For further information: +33 (0)4 50 42 29 37

  5. Superconducting gravimeter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goodkind, J.M.

    1982-01-01

    The superconducting gravimeter was developed and applied to field measurements. The stability of the instrument yielded the highest precision measurements of the Earth tides ever attained. It revealed unprecedented details about the effect of the atmosphere on gravity. Secular variations in gravity and the stability of the instruments were measured by comparing records from co-located instruments. These efforts have resulted in substantial reductions in the noise level at very low frequencies so that the peak differences between two instruments at the same location can be reduced to 0.1 micron gal.

  6. Superconductivity under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K.; Shimizu, K.; Takeda, K.; Tateiwa, N.; Muramatsu, T.; Ishizuka, M.; Kobayashi, T.C

    2003-05-01

    In part 1, we review techniques developed in our laboratory for producing the complex extreme condition of very low temperature and ultra-high pressure and those for measuring electrical resistance and magnetization of the sample confined in the extremely small space of the used pressure cell. In part 2, we review our experimental results in search for pressure-induced superconductivity, which have been obtained by the use of developed techniques. Typical examples are shown in the case of simple inorganic and organic molecular crystals, ionic crystals, and magnetic metals.

  7. Introduction to superconductivity

    CERN Document Server

    Rose-Innes, A C

    1978-01-01

    Introduction to Superconductivity differs from the first edition chiefly in Chapter 11, which has been almost completely rewritten to give a more physically-based picture of the effects arising from the long-range coherence of the electron-waves in superconductors and the operation of quantum interference devices. In this revised second edition, some further modifications have been made to the text and an extra chapter dealing with """"high-temperature"""" superconductors has been added. A vast amount of research has been carried out on these since their discovery in 1986 but the results, both

  8. Characteristics of edge-localized modes in the experimental advanced superconducting tokamak (EAST)

    DEFF Research Database (Denmark)

    Jiang, M.; Xu, G.S.; Xiao, C.

    2012-01-01

    confinement modes (H-modes) were obtained with 1 MW lower hybrid wave power in conjunction with wall conditioning by lithium (Li) evaporation and real-time Li powder injection. The ELMs in EAST at this heating power are mostly type-III ELMs. They were observed close to the H-mode threshold power and produced...

  9. Equilibrium reconstruction in the TCA/Br tokamak; Reconstrucao do equilibrio no tokamak TCA/BR

    Energy Technology Data Exchange (ETDEWEB)

    Sa, Wanderley Pires de

    1996-12-31

    The accurate and rapid determination of the Magnetohydrodynamic (MHD) equilibrium configuration in tokamaks is a subject for the magnetic confinement of the plasma. With the knowledge of characteristic plasma MHD equilibrium parameters it is possible to control the plasma position during its formation using feed-back techniques. It is also necessary an on-line analysis between successive discharges to program external parameters for the subsequent discharges. In this work it is investigated the MHD equilibrium configuration reconstruction of the TCA/BR tokamak from external magnetic measurements, using a method that is able to fast determine the main parameters of discharge. The thesis has two parts. Firstly it is presented the development of an equilibrium code that solves de Grad-Shafranov equation for the TCA/BR tokamak geometry. Secondly it is presented the MHD equilibrium reconstruction process from external magnetic field and flux measurements using the Function Parametrization FP method. this method. This method is based on the statistical analysis of a database of simulated equilibrium configurations, with the goal of obtaining a simple relationship between the parameters that characterize the equilibrium and the measurements. The results from FP are compared with conventional methods. (author) 68 refs., 31 figs., 16 tabs.

  10. Development of laser-based technology for the routine first wall diagnostic on the tokamak EAST: LIBS and LIAS

    Science.gov (United States)

    Hu, Z.; Gierse, N.; Li, C.; Liu, P.; Zhao, D.; Sun, L.; Oelmann, J.; Nicolai, D.; Wu, D.; Wu, J.; Mao, H.; Ding, F.; Brezinsek, S.; Liang, Y.; Ding, H.; Luo, G.; Linsmeier, C.; EAST team

    2017-12-01

    A laser based method combined with spectroscopy, such as laser-induced breakdown spectroscopy (LIBS) and laser-induced ablation spectroscopy (LIAS), is a promising technology for plasma-wall interaction studies. In this work, we report the development of in situ laser-based diagnostics (LIBS and LIAS) for the assessment of static and dynamic fuel retention on the first wall without removing the tiles between and during plasma discharges in the Experimental Advanced Superconducting Tokamak (EAST). The fuel retention on the first wall was measured after different wall conditioning methods and daily plasma discharges by in situ LIBS. The result indicates that the LIBS can be a useful tool to predict the wall condition in EAST. With the successful commissioning of a refined timing system for LIAS, an in situ approach to investigate fuel retention is proposed.

  11. Time resolved neutron flux diagnostics for quasi-steady-state operation study of the HT-7 tokamak

    Science.gov (United States)

    Zhu, Yubao; Chen, Juequan; Li, Guiming

    2004-10-01

    Time resolved neutron flux diagnostic systems based on BF3 proportional counter and ZnS(Ag) scintillator have been developed and implemented on the HT-7 superconducting tokamak. A ten-channel flexible data acquisition system designed with a PCI-8554 general digital counter and industry PC is equipped. Calibrations are made with several neutron sources. The consistencies of experimental data from two techniques have been proven; the BF3 based system is more reliable with better detection efficiency. The measured neutron yield shows good agreement with the simple numerical calculation. The observed photo-neutron production indicates that photon-nuclear reactions are dominant in several special cases such as low density and disruption conditions. Good agreement on ion temperature deduced from neutron diagnosis and neutral particle analyzer under high parameter plasma conditions implies that neutron flux diagnostics can be used as an effective higher temporal resolution ion temperature monitor.

  12. Chiral magnetic superconductivity

    Directory of Open Access Journals (Sweden)

    Kharzeev Dmitri E.

    2017-01-01

    Full Text Available Materials with charged chiral quasiparticles in external parallel electric and magnetic fields can support an electric current that grows linearly in time, corresponding to diverging DC conductivity. From experimental viewpoint, this “Chiral Magnetic Superconductivity” (CMS is thus analogous to conventional superconductivity. However the underlying physics is entirely different – the CMS does not require a condensate of Cooper pairs breaking the gauge degeneracy, and is thus not accompanied by Meissner effect. Instead, it owes its existence to the (temperature-independent quantum chiral anomaly and the conservation of chirality. As a result, this phenomenon can be expected to survive to much higher temperatures. Even though the chirality of quasiparticles is not strictly conserved in real materials, the chiral magnetic superconductivity should still exhibit itself in AC measurements at frequencies larger than the chirality-flipping rate, and in microstructures of Dirac and Weyl semimetals with thickness below the mean chirality-flipping length that is about 1 – 100 μm. In nuclear physics, the CMS should contribute to the charge-dependent elliptic flow in heavy ion collisions.

  13. Overview on superconducting photoinjectors

    CERN Document Server

    Arnold, A

    2011-01-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...

  14. Overview on superconducting photoinjectors

    Science.gov (United States)

    Arnold, A.; Teichert, J.

    2011-02-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR-free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng.PSISDG0277-786X 5534, 22 (2004)10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1μmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang , in Proceedings of the 31st International Free Electron Laser Conference (FEL 09), Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009), p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  15. Superconducting Bolometer Array Architectures

    Science.gov (United States)

    Benford, Dominic J.; Chervenak, James A.; Irwin, Kent D.; Moseley, S. H., Jr.; Shafer, Richard A.; Staguhn, Johannes G.; Wollack, Ed

    2003-02-01

    The next generation of far-infrared and submillimeter instruments require large arrays of detectors containing thousands of elements. These arrays will necessarily be multiplexed, and superconducting bolometer arrays are the most promising present prospect for these detectors. We discuss our current research into superconducting bolometer array technologies, which has recently resulted in the first multiplexed detections of submillimeter light and the first multiplexed astronomical observations. Prototype arrays containing 512 pixels are in production using the Pop-Up Detector (PUD) architecture, which can be extended easily to 1000 pixel arrays. Planar arrays of close-packed bolometers are being developed for the GBT and for future space missions. For certain applications, such as a slewed far-infrared sky survey, feedhorn-coupling of a large sparsely-filled array of bolometers is desirable, and is being developed using photolithographic feedhorn arrays. Individual detectors have achieved a Noise Equivalent Power (NEP) of ~10-17 W/√Hz at 300mK, but several orders of magnitude improvement are required and can be reached with existing technology. The testing of such ultralow-background detectors will prove difficult, as this requires optical loading of below 1fW. Antenna-coupled bolometer designs have advantages for large format array designs at low powers due to their mode selectivity. We also present a design and preliminary results for an enhanced-dynamic-range transition edge sensor suitable for broadband ultralow-background detectors.

  16. Additive Manufactured Superconducting Cavities

    Science.gov (United States)

    Holland, Eric; Rosen, Yaniv; Woolleet, Nathan; Materise, Nicholas; Voisin, Thomas; Wang, Morris; Mireles, Jorge; Carosi, Gianpaolo; Dubois, Jonathan

    Superconducting radio frequency cavities provide an ultra-low dissipative environment, which has enabled fundamental investigations in quantum mechanics, materials properties, and the search for new particles in and beyond the standard model. However, resonator designs are constrained by limitations in conventional machining techniques. For example, current through a seam is a limiting factor in performance for many waveguide cavities. Development of highly reproducible methods for metallic parts through additive manufacturing, referred to colloquially as 3D printing\\x9D, opens the possibility for novel cavity designs which cannot be implemented through conventional methods. We present preliminary investigations of superconducting cavities made through a selective laser melting process, which compacts a granular powder via a high-power laser according to a digitally defined geometry. Initial work suggests that assuming a loss model and numerically optimizing a geometry to minimize dissipation results in modest improvements in device performance. Furthermore, a subset of titanium alloys, particularly, a titanium, aluminum, vanadium alloy (Ti - 6Al - 4V) exhibits properties indicative of a high kinetic inductance material. This work is supported by LDRD 16-SI-004.

  17. Neutral beam injector performance on the PLT and PDX tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Schilling, G.; Ashcroft, D.L.; Eubank, H.P.; Grisham, L.R.; Kozub, T.A.; Kugel, H.W.; Rossmassler, J.; Williams, M.D.

    1981-02-01

    An overall injector system description is presented first, and this will be followed by a detailed discussion of those problems unique to multiple injector operation on the tokamaks, i.e., power transmission, conditioning, reliability, and failures.

  18. Three-Dimensional Analysis of Tokamaks and Stellarators

    National Research Council Canada - National Science Library

    Paul R. Garabedian

    2008-01-01

    The NSTAB equilibrium and stability code and the TRAN Monte Carlo transport code furnish a simple but effective numerical simulation of essential features of present tokamak and stellarator experiments...

  19. 20 years of research on the Alcator C-Mod tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Greenwald, M.; Baek, S.; Barnard, H.; Beck, W.; Bonoli, P.; Brunner, D.; Burke, W.; Ennever, P.; Ernst, D.; Faust, I.; Fiore, C.; Fredian, T.; Gao, C.; Golfinopoulos, T.; Granetz, R.; Hartwig, Z.; Hubbard, A.; Hughes, J.; Hutchinson, I.; Irby, J. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); and others

    2014-11-15

    The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental

  20. Development of the composite superconducting magnetic bearing for superconducting flywheel

    Energy Technology Data Exchange (ETDEWEB)

    Nagaya, S.; Komura, K.; Kashima, N.; Kawashima, H.; Unisuga, S.; Kakiuchi, Y

    2003-10-15

    Superconducting magnetic bearing for flywheel requires the characteristics such as higher stiffness, lower loss and higher stability. There are two types of superconducting magnetic bearings, one is axial gap type and another is radial gap type and the characteristics of these types are quite different. We think that the supporting system of superconducting flywheel should support the rotor at one position near the center of gravity to minimize the cooling energy loss. We propose that the bearing composed of axial gap type and radial gap type is necessary from the result of this investigation, because the characteristics about both types of bearings should be compensated each other.

  1. A current drive by using the fast wave in frequency range higher than two timeslower hybrid resonance frequency on tokamaks

    Directory of Open Access Journals (Sweden)

    Kim Sun Ho

    2017-01-01

    Full Text Available An efficient current drive scheme in central or off-axis region is required for the steady state operation of tokamak fusion reactors. The current drive by using the fast wave in frequency range higher than two times lower hybrid resonance (w>2wlh could be such a scheme in high density, high temperature reactor-grade tokamak plasmas. First, it has relatively higher parallel electric field to the magnetic field favorable to the current generation, compared to fast waves in other frequency range. Second, it can deeply penetrate into high density plasmas compared to the slow wave in the same frequency range. Third, parasitic coupling to the slow wave can contribute also to the current drive avoiding parametric instability, thermal mode conversion and ion heating occured in the frequency range w<2wlh. In this study, the propagation boundary, accessibility, and the energy flow of the fast wave are given via cold dispersion relation and group velocity. The power absorption and current drive efficiency are discussed qualitatively through the hot dispersion relation and the polarization. Finally, those characteristics are confirmed with ray tracing code GENRAY for the KSTAR plasmas.

  2. Plasma Current Start-up in a Spherical Tokamak

    Science.gov (United States)

    Mitarai, Osamu; Kessel, Charles; Hirose, Akira

    The various plasma current start-up techniques and related topics in a spherical tokamak (ST) device are described. The Ohmic heating coil current clamp experiments in NSTX are described and discussed, and the plasma current start-up experiments in the STOR-M tokamak with iron core and the outer vertical field coil is presented as one of technique for a plasma current start-up in a ST.

  3. Meissner effect in superconducting microtraps

    Energy Technology Data Exchange (ETDEWEB)

    Cano, Daniel

    2009-04-30

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  4. Cooldown of the Compact Ignition Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Keeton, D.C.

    1987-08-01

    Cooldown of the Compact Ignition Tokamak (CIT) with the baseline liquid nitrogen cooling system was analyzed. On the basis of this analysis and present knowledge of the two-phase heat transfer, the current baseline CIT can be cooled down in about 1.5 h. An extensive heat transfer test program is recommended to reduce uncertainty in the heat transfer performance and to explore methods for minimizing the cooldown time. An alternate CIT cooldown system is described which uses a pressurized gaseous helium coolant in a closed-loop system. It is shown analytically that this system will cool down the CIT well within 1 h. Confidence in this analysis is sufficiently high that a heat transfer test program would not be necessary. The added cost of this alternate system is estimated to be about $5.3 million. This helium cooling system represents a reasonable backup approach to liquid nitrogen cooling of the CIT. 3 refs., 12 figs., 3 tabs.

  5. Safety factor profile control in a tokamak

    CERN Document Server

    Bribiesca Argomedo, Federico; Prieur, Christophe

    2014-01-01

    Control of the Safety Factor Profile in a Tokamak uses Lyapunov techniques to address a challenging problem for which even the simplest physically relevant models are represented by nonlinear, time-dependent, partial differential equations (PDEs). This is because of the  spatiotemporal dynamics of transport phenomena (magnetic flux, heat, densities, etc.) in the anisotropic plasma medium. Robustness considerations are ubiquitous in the analysis and control design since direct measurements on the magnetic flux are impossible (its estimation relies on virtual sensors) and large uncertainties remain in the coupling between the plasma particles and the radio-frequency waves (distributed inputs). The Brief begins with a presentation of the reference dynamical model and continues by developing a Lyapunov function for the discretized system (in a polytopic linear-parameter-varying formulation). The limitations of this finite-dimensional approach motivate new developments in the infinite-dimensional framework. The t...

  6. Sliding Mode Control of a Tokamak Transformer

    Energy Technology Data Exchange (ETDEWEB)

    Romero, J. A.; Coda, S.; Felici, F.; Moret, J. M.; Paley, J.; Sevillano, G.; Garrido, I.; Le, H. B.

    2012-06-08

    A novel inductive control system for a tokamak transformer is described. The system uses the flux change provided by the transformer primary coil to control the electric current and the internal inductance of the secondary plasma circuit load. The internal inductance control is used to regulate the slow flux penetration in the highly conductive plasma due to the skin effect, providing first-order control over the shape of the plasma current density profile. Inferred loop voltages at specific locations inside the plasma are included in a state feedback structure to improve controller performance. Experimental tests have shown that the plasma internal inductance can be controlled inductively for a whole pulse starting just 30ms after plasma breakdown. The details of the control system design are presented, including the transformer model, observer algorithms and controller design. (Author) 67 refs.

  7. Operational Merits of Maritime Superconductivity

    Science.gov (United States)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  8. Self-organized stationary states of tokamaks

    Science.gov (United States)

    Jardin, Stephen

    2015-11-01

    We report here on a nonlinear mechanism that forms and maintains a self-organized stationary (sawtooth free) state in tokamaks. This process was discovered by way of extensive long-time simulations using the M3D-C1 3D extended MHD code in which new physics diagnostics have been added. It is well known that most high-performance modes of tokamak operation undergo ``sawtooth'' cycles, in which the peaking of the toroidal current density triggers a periodic core instability which redistributes the current density. However, certain modes of operation are known, such as the ``hybrid'' mode in DIII-D, ASDEX-U, JT-60U and JET, and the long-lived modes in NSTX and MAST, which do not experience this cycle of instability. Empirically, it is observed that these modes maintain a non-axisymmetric equilibrium which somehow limits the peaking of the toroidal current density. The physical mechanism responsible for this has not previously been understood, but is often referred to as ``flux-pumping,'' in which poloidal flux is redistributed in order to maintain q0 >1. In this talk, we show that in long-time simulations of inductively driven plasmas, a steady-state magnetic equilibrium may be obtained in which the condition q0 >1 is maintained by a dynamo driven by a stationary marginal core interchange mode. This interchange mode, unstable because of the pressure gradient in the ultra-low shear region in the center region, causes a (1,1) perturbation in both the electrostatic potential and the magnetic field, which nonlinearly cause a (0,0) component in the loop voltage that acts to sustain the configuration. This hybrid mode may be a preferred mode of operation for ITER. We present parameter scans that indicate when this sawtooth-free operation can be expected.

  9. Nuclear proliferation and civilian nuclear power: report of the Nonproliferation Alternative Systems Assessment Program. Volume IX. Reactor and fuel cycle descriptions

    Energy Technology Data Exchange (ETDEWEB)

    1979-12-01

    The Nonproliferation Alternative Systems Assessment Program (NASAP) has characterized and assessed various reactor/fuel-cycle systems. Volume IX provides, in summary form, the technical descriptions of the reactor/fuel-cycle systems studied. This includes the status of the system technology, as well as a discussion of the safety, environmental, and licensing needs from a technical perspective. This information was then used in developing the research, development, and demonstration (RD and D) program, including its cost and time frame, to advance the existing technology to the level needed for commercial use. Wherever possible, the cost data are given as ranges to reflect the uncertainties in the estimates. Volume IX is divided into three sections: Chapter 1, Reactor Systems; Chapter 2, Fuel-Cycle Systems; and the Appendixes. Chapter 1 contains the characterizations of the following 12 reactor types: light-water reactor; heavy-water reactor; water-cooled breeder reactor; high-temperature gas-cooled reactor; gas-cooled fast reactor; liquid-metal fast breeder reactor; spectral-shift-controlled reactor; accelerator-driven reactor; molten-salt reactor; gaseous-core reactor; tokamak fusion-fisson hybrid reactor; and fast mixed-spectrum reactor. Chapter 2 contains similar information developed for fuel-cycle facilities in the following categories: mining and milling; conversion and enrichment; fuel fabrication; spent fuel reprocessing; waste handling and disposal; and transportation of nuclear materials.

  10. Signatures of topological superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yang

    2017-07-19

    The prediction and experimental discovery of topological insulators brought the importance of topology in condensed matter physics into the limelight. Topology hence acts as a new dimension along which more and more new states of matter start to emerge. One of these topological states of matter, namely topological superconductors, comes into the focus because of their gapless excitations. These gapless excitations, especially in one dimensional topological superconductors, are Majorana zero modes localized at the ends of the superconductor and exhibit exotic nonabelian statistics, which can be potentially applied to fault-tolerant quantum computation. Given their highly interesting physical properties and potential applications to quantum computation, both theorists and experimentalists spend great efforts to realize topological supercondoctors and to detect Majoranas. In two projects within this thesis, we investigate the properties of Majorana zero modes in realistic materials which are absent in simple theoretical models. We find that the superconducting proximity effect, an essential ingredient in all existing platforms for topological superconductors, plays a significant role in determining the localization property of the Majoranas. Strong proximity coupling between the normal system and the superconducting substrate can lead to strongly localized Majoranas, which can explain the observation in a recent experiment. Motivated by experiments in Molenkamp's group, we also look at realistic quantum spin Hall Josephson junctions, in which charge puddles acting as magnetic impurities are coupled to the helical edge states. We find that with this setup, the junction generically realizes an exotic 8π periodic Josephson effect, which is absent in a pristine Josephson junction. In another two projects, we propose more pronounced signatures of Majoranas that are accessible with current experimental techniques. The first one is a transport measurement, which uses

  11. Superconductivity papers database

    CERN Document Server

    International Superconductivity Technology Center. Tokyo

    This database covers mostly the articles on superconductivity appeared after the advent (1987) of the high Tc in 20 - 50 scientific journals including review papers. In the field of organic conductors, literatures are traced back to the era of TTF-TC 1970s). It contains 1)High Tc, 2) C60 related, 3) Organic Conductors, 4) Non-Oxide Superconductors including the conventional superconductors, 5) Oxide Conductors, and 6) Theory (new field since September 1997). Total number of articles at present amounts to 39,000 (December, 1998). Although the proceedings are out of the list in principle, necessary and important papers by the organizer's view are collected even from the proceedings, since some important proceedings.

  12. The LHC superconducting cavities

    CERN Document Server

    Boussard, Daniel; Häbel, E; Kindermann, H P; Losito, R; Marque, S; Rödel, V; Stirbet, M

    1999-01-01

    The LHC RF system, which must handle high intensity (0.5 A d.c.) beams, makes use of superconducting single-cell cavities, best suited to minimizing the effects of periodic transient beam loading. There will be eight cavities per beam, each capable of delivering 2 MV (5 MV/m accelerating field) at 400 MHz. The cavities themselves are now being manufactured by industry, using niobium-on-copper technology which gives full satisfaction at LEP. A cavity unit includes a helium tank (4.5 K operating temperature) built around a cavity cell, RF and HOM couplers and a mechanical tuner, all housed in a modular cryostat. Four-unit modules are ultimately foreseen for the LHC (two per beam), while at present a prototype version with two complete units is being extensively tested. In addition to a detailed description of the cavity and its ancillary equipment, the first test results of the prototype will be reported.

  13. Superconducting pulsed magnets

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  14. Superconducting Hadron Linacs

    CERN Document Server

    Ostroumov, Peter

    2013-01-01

    This article discusses the main building blocks of a superconducting (SC) linac, the choice of SC resonators, their frequencies, accelerating gradients and apertures, focusing structures, practical aspects of cryomodule design, and concepts to minimize the heat load into the cryogenic system. It starts with an overview of design concepts for all types of hadron linacs differentiated by duty cycle (pulsed or continuous wave) or by the type of ion species (protons, H-, and ions) being accelerated. Design concepts are detailed for SC linacs in application to both light ion (proton, deuteron) and heavy ion linacs. The physics design of SC linacs, including transverse and longitudinal lattice designs, matching between different accelerating–focusing lattices, and transition from NC to SC sections, is detailed. Design of high-intensity SC linacs for light ions, methods for the reduction of beam losses, preventing beam halo formation, and the effect of HOMs and errors on beam quality are discussed. Examples are ta...

  15. Superconducting energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  16. Nuclear Reactors. Revised.

    Science.gov (United States)

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  17. Overview on superconducting photoinjectors

    Directory of Open Access Journals (Sweden)

    A. Arnold

    2011-02-01

    Full Text Available The success of most of the proposed energy recovery linac (ERL based electron accelerator projects for future storage ring replacements (SRR and high power IR–free-electron lasers (FELs largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004PSISDG0277-786X10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1  μmrad, and high average current (hundreds of mA are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun. SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University. Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang et al., in Proceedings of the 31st International Free Electron Laser Conference (FEL 09, Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009, p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  18. Superconducting Aero Propulsion Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting electric propulsion systems will yield improvements in total ownership costs due to the simplicity of electric drive when compared with gas turbine...

  19. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  20. Mixed-mu superconducting bearings

    Science.gov (United States)

    Hull, John R.; Mulcahy, Thomas M.

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  1. The central question in superconductivity

    Science.gov (United States)

    Hirsch, J. E.

    I will argue that the most basic and fundamental question in superconductivity is: when a superconductor in a magnetic field goes normal, how does the supercurrent stop? The supercurrent has to stop before the material becomes resistive because the transition is reversible in an ideal situation, with no Joule heat dissipated. I will argue that the conventional BCS-London theory of superconductivity cannot answer this question. I will propose an answer to this question that requires that there is flow and counterflow of charge across the normal-superconductor phase boundary, and requires that the normal state current carriers have hole-like character. The conventional BCS-London theory of superconductivity does not have these physical elements, the theory of hole superconductivity does.

  2. Superconductivity in all its states

    CERN Multimedia

    Globe Info

    2011-01-01

    Temporary exhibition at the Saint-Genis-Pouilly Tourist Office. For the 100th anniversary of its discovery, take a plunge into the amazing world of superconductivity. Some materials, when cooled down to extreme temperatures, acquire a remarkable property -  they become superconducting. Superconductivity is a rare example of a quantum effect that can be witnessed on the macroscopic scale and is today at the heart of much research. In laboratories, researchers try to gain a better understanding of its origins, study new superconducting materials, explore the phenomenon at the nanometric scale and pursue their indefatigable search for new applications. Monday to Friday: 09:00 a.m. to 12:00 and 2:30 p.m. to 6:30 p.m. Saturday: 10:00 a.m. to 12:00 noon » Open to all – Admission free For further information: +33 (0)4 50 42 29 37

  3. Positron annihilation in superconductive metals

    Energy Technology Data Exchange (ETDEWEB)

    Dekhtjar, I.J.

    1969-03-10

    A correlation is shown between the parameters of superconductive metals and those of positron annihilation. Particular attention is paid to the density states obtained from the electron specific heat.

  4. Ballistic superconductivity in semiconductor nanowires

    NARCIS (Netherlands)

    Zhang, H.; Gül, Ö.; Conesa-Boj, S.; Nowak, M.P.; Wimmer, M.; Zuo, K.; Mourik, V.; Vries, F.K. de; Veen, J. van; Moor, M.W.A. de; Bommer, J.D.S.; Woerkom, D.J. van; Car, D.; Plissard, S.R.; Bakkers, E.P.A.M.; Quintero Pérez, M.; Cassidy, M.C.; Koelling, S.; Goswami, S.; Watanabe, K.; Taniguchi, T.; Kouwenhoven, L.P.

    2017-01-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of

  5. International Conference on Organic Superconductivity

    CERN Document Server

    Little, William A; Organic superconductivity

    1990-01-01

    This book contains papers presented at the International Conference on Organic Superconductivity which was held May 20-24, 1990, at the Stanford Sierra Conference Center, South Lake Tahoe, California. In the twenty years since the First Conference on Organic Superconductivity was held (Hawaii, 1969), there has been remarkable progress in the field. At present, development is accelerating with contributions from many groups in many countries worldwide. The discovery of high Tc superconductivity by G. Bednorz and K. Muller in 1986 and subsequent developments in the ceramic superconductors have had an enormous impact on the field of superconductivity as a whole. This discovery occurred in an area entirely different from that of conventional superconduc­ tivity, underscoring the importance of the search for and study of novel materials of all kinds. We believe that the organics, with their wide range of structural, chemical, and physical properties, belong in this category of novel materials. This book r...

  6. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  7. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  8. Photocatalytic reactor

    Science.gov (United States)

    Bischoff, Brian L.; Fain, Douglas E.; Stockdale, John A. D.

    1999-01-01

    A photocatalytic reactor for processing selected reactants from a fluid medium comprising at least one permeable photocatalytic membrane having a photocatalytic material. The material forms an area of chemically active sites when illuminated by light at selected wavelengths. When the fluid medium is passed through the illuminated membrane, the reactants are processed at these sites separating the processed fluid from the unprocessed fluid. A light source is provided and a light transmitting means, including an optical fiber, for transmitting light from the light source to the membrane.

  9. Superconducting Vortex with Antiferromagnetic Core

    Energy Technology Data Exchange (ETDEWEB)

    Arovas, D.P. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States); Berlinsky, A.J.; Kallin, C.; Zhang, S. [Department of Physics, Stanford University, Stanford, California 94305 (United States)

    1997-10-01

    We show that a superconducting vortex in underdoped high T{sub c} superconductors could have an antiferromagnetic core. This type of vortex configuration arises as a topological solution in the recently constructed SO(5) nonlinear {sigma} model and in Landau-Ginzburg theory with competing antiferromagnetic and superconducting order parameters. Experimental detection of this type of vortex by muon spin resonance and neutron scattering is proposed. {copyright} {ital 1997} {ital The American Physical Society}

  10. Superconductivity in domains with corners

    DEFF Research Database (Denmark)

    Bonnaillie-Noel, Virginie; Fournais, Søren

    2007-01-01

    We study the two-dimensional Ginzburg-Landau functional in a domain with corners for exterior magnetic field strengths near the critical field where the transition from the superconducting to the normal state occurs. We discuss and clarify the definition of this field and obtain a complete...... asymptotic expansion for it in the large $\\kappa$ regime. Furthermore, we discuss nucleation of superconductivity at the boundary....

  11. Hybrid adsorptive membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, Theodore T [Huntington Beach, CA; Sahimi, Muhammad [Altadena, CA; Fayyaz-Najafi, Babak [Richmond, CA; Harale, Aadesh [Los Angeles, CA; Park, Byoung-Gi [Yeosu, KR; Liu, Paul K. T. [Lafayette Hill, PA

    2011-03-01

    A hybrid adsorbent-membrane reactor in which the chemical reaction, membrane separation, and product adsorption are coupled. Also disclosed are a dual-reactor apparatus and a process using the reactor or the apparatus.

  12. D and DR Reactors

    Data.gov (United States)

    Federal Laboratory Consortium — The world's second full-scale nuclear reactor was the D Reactor at Hanford which was built in the early 1940's and went operational in December of 1944.D Reactor ran...

  13. Reactor transient

    Energy Technology Data Exchange (ETDEWEB)

    Menegus, R.L.

    1956-05-31

    The authors are planning a calculation to be done on the Univac at the Louviers Building to estimate the effect of xenon transients, a high reactor power. This memorandum outlines the reasons why they prefer to do the work at Louviers rather than at another location, such as N.Y.U. They are to calculate the response of the reactor to a sudden change in position of the half rods. Qualitatively, the response will be a change in the rooftop ratio of the neutron flux. The rooftop ratio may oscillate with high damping, or, instead, it may oscillate for many cycles. It has not been possible for them to determine this response by hand calculation because of the complexity of the problem, and yet it is important for them to be certain that high power operation will not lead us to inherently unstable operation. Therefore they have resorted to machine computation. The system of differential equations that describes the response has seven dependent variables; therefore there are seven equations, each coupled with one or more of the others. The authors have discussed the problem with R.R. Haefner at the plant, and it is his opinion that the IBM 650 cannot adequately handle the system of seven equations because the characteristic time constants vary over a range of about 10{sup 8}. The Univac located at the Louviers Building is said to be satisfactory for this computation.

  14. First measurement of the edge charge exchange recombination spectroscopy on EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y. Y., E-mail: liyy@ipp.ac.cn; Fu, J.; Jiang, D.; Lyu, B.; Hu, C. D.; Wan, B. N. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); Yin, X. H.; Feng, S. Y. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei (China); School of Nuclear Science and Technology, University of Science and Technology of China, Hefei (China); Shi, Y. J. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei (China); Department of Nuclear Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Yi, Y.; Ye, M. Y. [School of Nuclear Science and Technology, University of Science and Technology of China, Hefei (China); Zhou, X. J. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-11-15

    An edge toroidal charge exchange recombination spectroscopy (eCXRS) diagnostic, based on a heating neutral beam injection (NBI), has been deployed recently on the Experimental Advanced Superconducting Tokamak (EAST). The eCXRS, which aims to measure the plasma ion temperature and toroidal rotation velocity in the edge region simultaneously, is a complement to the exiting core CXRS (cCXRS). Two rows with 32 fiber channels each cover a radial range from ∼2.15 m to ∼2.32 m with a high spatial resolution of ∼5-7 mm. Charge exchange emission of Carbon VI CVI at 529.059 nm induced by the NBI is routinely observed, but can be tuned to any interested wavelength in the spectral range from 400 to 700 nm. Double-slit fiber bundles increase the number of channels, the fibers viewing the same radial position are binned on the CCD detector to improve the signal-to-noise ratio, enabling shorter exposure time down to 5 ms. One channel is connected to a neon lamp, which provides the real-time wavelength calibration on a shot-to-shot basis. In this paper, an overview of the eCXRS diagnostic on EAST is presented and the first results from the 2015 experimental campaign will be shown. Good agreements in ion temperature and toroidal rotation are obtained between the eCXRS and cCXRS systems.

  15. Basic Physics of Tokamak Transport Final Technical Report.

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Amiya K.

    2014-05-12

    The goal of this grant has been to study the basic physics of various sources of anomalous transport in tokamaks. Anomalous transport in tokamaks continues to be one of the major problems in magnetic fusion research. As a tokamak is not a physics device by design, direct experimental observation and identification of the instabilities responsible for transport, as well as physics studies of the transport in tokamaks, have been difficult and of limited value. It is noted that direct experimental observation, identification and physics study of microinstabilities including ITG, ETG, and trapped electron/ion modes in tokamaks has been very difficult and nearly impossible. The primary reasons are co-existence of many instabilities, their broadband fluctuation spectra, lack of flexibility for parameter scans and absence of good local diagnostics. This has motivated us to study the suspected tokamak instabilities and their transport consequences in a simpler, steady state Columbia Linear Machine (CLM) with collisionless plasma and the flexibility of wide parameter variations. Earlier work as part of this grant was focused on both ITG turbulence, widely believed to be a primary source of ion thermal transport in tokamaks, and the effects of isotope scaling on transport levels. Prior work from our research team has produced and definitively identified both the slab and toroidal branches of this instability and determined the physics criteria for their existence. All the experimentally observed linear physics corroborate well with theoretical predictions. However, one of the large areas of research dealt with turbulent transport results that indicate some significant differences between our experimental results and most theoretical predictions. Latter years of this proposal were focused on anomalous electron transport with a special focus on ETG. There are several advanced tokamak scenarios with internal transport barriers (ITB), when the ion transport is reduced to

  16. Nuclear reactor neutron shielding

    Science.gov (United States)

    Speaker, Daniel P; Neeley, Gary W; Inman, James B

    2017-09-12

    A nuclear reactor includes a reactor pressure vessel and a nuclear reactor core comprising fissile material disposed in a lower portion of the reactor pressure vessel. The lower portion of the reactor pressure vessel is disposed in a reactor cavity. An annular neutron stop is located at an elevation above the uppermost elevation of the nuclear reactor core. The annular neutron stop comprises neutron absorbing material filling an annular gap between the reactor pressure vessel and the wall of the reactor cavity. The annular neutron stop may comprise an outer neutron stop ring attached to the wall of the reactor cavity, and an inner neutron stop ring attached to the reactor pressure vessel. An excore instrument guide tube penetrates through the annular neutron stop, and a neutron plug comprising neutron absorbing material is disposed in the tube at the penetration through the neutron stop.

  17. Tokamak blanket design study, final report

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    A cylindrical module concept was developed, analyzed, and incorporated in a tokamak blanket system that includes piping systems, vacuum boundary sealing, and support structures. The design is based on the use of state-of-the-art structural materials (20% cold-worked type 316 stainless steel), lithium as the breeding material, and pressurized helium as the coolant. The module design consists of nested concentric cylinders (with an outer diameter of 10 cm) and features direct wall cooling by helium flowing between the outer (first-wall) cylinder and the inner (lithium-containing) cylinder. Each cylinder can withstand full coolant pressure, thus enhancing reliability. Results show that stainless steel is a viable material for a first wall subjected to a neutron wall loading of 4 MW/m/sup 2/ and a particle heat flux of 1 MW/m/sup 2/. Lifetime analysis shows that the first-wall design meets the goal of operating at 20-min cycles with 95% duty for 100,000 cycles. To reduce system complexity, a larger 20-cm-diam module also was analyzed for incorporation in the blanket assembly. Reliability assessment indicates that it may be possible to double the module in size from 10 to 20 cm in diameter. With a modest increase in coolant pumping power, a blanket assembly comprising 20-cm-diam modules can still achieve 100,000 operating cycles - equivalent to a 3.6-year design lifetime - with only one or two helium coolant leaks into the plasma.

  18. Lower hybrid current drive in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ushigusa, Kenkichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1999-03-01

    Past ten years progress on Lower Hybrid Current Drive (LHCD) experiments have demonstrated the largest non-inductive current (3.6 MA, JT-60U), the longest current sustainment (2 hours, TRIAM-1M), non-inductive current drive at the highest density (n-bar{sub e} - 10{sup 20}m{sup -3}, ALCATOR-C) and the highest current drive efficiency ({eta}{sub CD} = 3.5x10{sup 19} m{sup -2}A/W, JT-60). These results indicate that LHCD is one of the most promising methods to drive non-inductive current in the present tokamak plasmas. This paper presents recent experimental results on LHCD experiments. Basic theories of LH waves, the wave propagation and the current drive are briefly summarized. The main part of this paper describes several important results and their physical pictures on recent LHCD experiments; 1) the experimental set-up, 2) the current drive efficiency, 3) the control of current profile and MHD activities, 4) the global energy confinement, 5) the global power flow, 6) fast electron behavior, 7) interaction between LH waves and thermal/fast ions, 8) combination with other CD method. (author)

  19. Fast scanning probe for tokamak plasmas

    Science.gov (United States)

    Boedo, J.; Gray, D.; Chousal, L.; Conn, R.; Hiller, B.; Finken, K. H.

    1998-07-01

    We describe a fast reciprocating probe drive, which has three main new features: (1) a detachable and modular probe head for easy maintenance, (2) a combination of high heat flux capability, high bandwidth, and low-Z materials construction, and (3) low weight, compact, inexpensive construction. The probe is mounted in a fast pneumatic drive in order to reach plasma regions of interest and remain inserted long enough to obtain good statistics while minimizing the heat flux to the tips and head. The drive is pneumatic and has been designed to be compact and reliable to comply with space and maintenance requirements of tokamaks. The probe described here has five tips which obtain a full spectrum of plasma parameters: electron temperature profile Te(r), electron density profile ne(r), floating potential profile Vf(r), poloidal electric field profile Eθ(r), saturation current profile Isat(r), and their fluctuations up to 3 MHz. We describe the probe show radial profiles of various parameters. We compare the density and temperature data to that obtained with a helium beam. We also discuss the techniques to process the data optimally, particularly double probe data and profile fits.

  20. Exploration of turbulent optimization in stellarators & tokamaks

    Science.gov (United States)

    Mynick, H.; Pomphrey, N.; Xanthopoulos, P.; Lucia, M.

    2012-03-01

    A methodfootnotetextH.E. Mynick, N. Pomphrey, P. Xanthopoulos, Phys. Rev. Letters, 105, 095004 (2010).^,footnotetextH.E. Mynick, N. Pomphrey, P. Xanthopoulos, Phys. Plasmas, 18, 056101 (2011). recently developed for evolving toroidal configurations to ones with reduced turbulent transport, using the STELLOPT optimization codes and the GENE gyrokinetic code, is being applied and extended. The growing body of results has found that the effectiveness of the current proxy measure Qprox used by STELLOPT to estimate transport levels depends on the class of toroidal device considered. The present proxy works well for quasi-axisymmetric stellarators and tokamaks, modestly for quasi-helically symmetric designs, but not for the W7X quasi-omnigenous/quasi-isodynamic design. We are exploring the origin of this variation, and improving the dependence of the proxy on key geometric factors, extending the proxy to apply to transport channels other than the ITG turbulence it was originally developed for, and are also examining the relative effectiveness of different search algorithms. To help in these efforts, we have adapted STELLOPT to provide a new capability for mapping the topography of the cost function in the search space.

  1. Detachment evolution on the TCV tokamak

    Directory of Open Access Journals (Sweden)

    J.R. Harrison

    2017-08-01

    Full Text Available Divertor detachment in the TCV tokamak has been investigated through experiments and modelling. Density ramp experiments were carried out in ohmic heated L-mode pulses with the ion ∇B drift directed away from the primary X-point, similar to previous studies [1]. Before the roll-over in the ion current to the outer strike point, C III and Dα emission from the outer leg recede slowly from the strike point toward the X-point, at a rate of ∼2.0 × 10−19m/m−3 along the magnetic field as the electron temperature along the leg reduces with increasing density. Around the onset of detachment, the upstream density profile and outer target Dα profiles broaden, possibly leading to an increase in radiation in the SOL by increased interaction between the SOL and the carbon tiles lining the outer wall. The plasma conditions upstream and at various locations along the detached outer divertor leg have been characterised, and the consistency of this data has been checked with the interpretive OSM-EIRENE-DIVIMP suite of codes [2] and are broadly found to be consistent with measured Dγ/Dα emissivity profiles along the detached outer divertor leg.

  2. Modelling and control of a tokamak plasma; Modelisation et commande d`un plasma de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bremond, S.

    1995-10-18

    Vertically elongated tokamak plasmas, while attractive as regards Lawson criteria, are intrinsically instable. It is found that the open-loop instability dynamics is characterised by the relative value of two dimensionless parameters: the coefficient of inductive coupling between the vessel and the coils, and the coil damping efficiency on the plasma displacement relative to that of the vessel. Applications to Tore Supra -where the instability is due to the iron core attraction- and DIII-D are given. A counter-effect of the vessel, which temporarily reverses the effect of coil control on the plasma displacement, is seen when the inductive coupling is higher than the damping ratio. Precise control of the plasma boundary is necessary if plasma-wall interaction and/or coupling to heating antennas are to be monitored. A positional drift, of a few mm/s, which had been observed in the Tore Supra tokamak, is explained and corrected. A linear plasma shape response model is then derived from magnetohydrodynamic equilibrium calculation, and proved to be in good agreement with experimental data. An optimal control law is derived, which minimizes an integral quadratic criteria on tracking errors and energy expenditure. This scheme avoids compensating coil currents, and could render local plasma shaping more precise. (authors). 123 refs., 77 figs., 6 tabs., 4 annexes.

  3. Superconducting permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Wipf, S.L.; Laquer, H.L.

    1989-03-01

    The concept of superconducting permanent magnets with fields trapped in shells or cylinders of Type II superconductors is an old one. Unfortunately, the low values of 0.5 to 1T for the first flux jump field, which is independent of the actual current density, have frustrated its implementation with classical Type II superconductors. The fact that the flux jump fields for high temperature superconductors should be an order of magnitude larger at liquid nitrogen temperatures allows us to reconsider these options. Analysis of the hysteresis patterns, based on the critical state model, shows that, if the dimensions are chosen so that the sample is penetrated at a field B/sub p/, which is equal to or just less than the first flux jump field, B/sub fj/, a temporarily applied field of 2B/sub fj/ will trap 0.5 B/sub fj/. Thus for a 90 K superconductor with a B/sub fj/ of 6T, a permanent field of 3 T should be trapped, with an energy product of 1.8 MJ/m/sup 3/ (225 MG . Oe). This is five times as large as for the best permanent magnet materials. The authors discuss means to verify the analysis and the limitations imposed by the low critical current densities in presently available high temperature superconductors.

  4. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  5. Tunability of Superconducting Metamaterials

    Science.gov (United States)

    Ricci, Michael C.; Xu, Hua; Prozorov, Ruslan; Zhuravel, Alexander P.; Ustinov, Alexey V.; Anlage, Steven M.

    2007-06-01

    Metamaterials are artificial structures with unique electromagnetic properties, such as relative dielectric permittivity and magnetic permeability with values less than 1, or even negative. Because these properties are so sensitive to loss, we have developed metamaterials comprised of superconducting waveguides, wires, and split-ring resonators. An important requirement for applications of these metamaterials is the ability to tune the frequency at which the unique electromagnetic response occurs. In this paper we present three methods (unique to superconductors) to accomplish this tuning: temperature, dc magnetic field, and rf magnetic field. Data are shown for dc and rf magnetic field tuning of a single Nb split-ring resonator (SRR). It was found that the dc field tuning was hysteritic in the resonant frequency data, while the quality factor, $Q$, was less hystertic. The rf power tuning showed no hysteresis, but did show supression of the $Q$ at high power. Magneto-optical images reveal inhomogeneous magnetic vortex entry in the dc field tuning, and laser scanning photoresponse images for a YBa$_2$Cu$_3$O$_{7-\\delta}$ SRR reveals the current distribution in the rings.

  6. Deposit of thin films for Tokamaks conditioning; Deposito de peliculas delgadas para acondicionar Tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Valencia A, R

    2006-07-01

    As a main objective of this work, we present some experimental results obtained from studying the process of extracting those impurities created by the interaction plasma with its vessel wall in the case of Novillo tokamak. Likewise, we describe the main cleaning and conditioning techniques applied to it, fundamentally that of glow discharge cleaning at a low electron temperature (<10 eV), both in noble and reactive gases, as well as the conditioning by thin film deposits of hydrogen rich amorphous carbon (carbonization) leading to a reduction in the plasma resistivity from 8.99 x 10{sup -6} to 4.5 x 10{sup -6} {omega}-m, thus taking the Z{sub ef} value from 3.46 to 2.07 which considerably improved the operational parameters of the machine. With a view to justifying the fact that controlled nuclear fusion is a feasible alternative for the energy demand that humanity will face in the future, we review in Chapter 1 some fundamentals of the energy production by nuclear fusion reactions while, in Chapter 2, we examine two relevant plasma wall interaction processes. Our experimental array used to produce both cleaning and intense plasma discharges is described in Chapter 3 along with the associated diagnostics equipment. Chapter 4 contains a description of the vessel conditioning techniques followed in the process. Finally, we report our results in Chapter 5 while, in Chapter 6, some conclusions and remarks are presented. It is widely known that tokamak impurities are generated mainly by the plasma-wall interaction, particularly in the presence of high potentials between the plasma sheath and the limiter or wall. Given that impurities affect most adversely the plasma behaviour, understanding and controlling the impurity extraction mechanisms is crucial for optimizing the cleaning and wall conditioning discharge processes. Our study of one impurity extraction mechanism for both low and high Z in Novillo tokamak was carried out though mass spectrometry, optical emission

  7. Transport studies in TJ-I tokamak from steady and perturbative methods

    Energy Technology Data Exchange (ETDEWEB)

    Pardo, C.; Rodriguez-Yunta, A.; Vega, J.; Branas, B.; Estrada, T.; Ochando, M.A.; Tabares, F.L.; Zurro, B. (Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT), Madrid (Spain))

    1992-01-01

    Transport understanding is an essential task for the development of a future tokamak fusion reactor. In a general formulation, the dependence of particle and electron energy fluxes on density and temperature gradients, may be written as: [Gamma]=-D[nabla]n - D[sub T]n [nabla]T/T - nV, q=Q-5/2[Gamma]T=-[chi][sub n]T[nabla]n-[chi]n[nabla]T-nTU where both fluxes are related to both gradients, and the particle and energy pinches V and U may depend on any other force as could be the parallel electric field. The transport coefficients must be expected to be functions of local plasma parameters such as B, q, n, T, [nabla]n, [nabla]T, ... etc. This means that the fluxes may be non-linear functions of the gradients. Transport analysis in the steady state gives values, from experimental data, for fluxes and gradients. This is not enough to determine the values of the six transport coefficients. A perturbative experiment, such as the simultaneous measurement of density and temperature pulses induced by a sawtooth collapse, give us the incremental transport coefficients or the derivatives of the fluxes with respect to the gradients. By making a coupled analysis of both pulses, we can obtain values for the four derivatives: [partial derivative][Gamma][partial derivative][nabla]n, [partial derivative][Gamma]/[partial derivative][nabla]T, [partial derivative]q/[partial derivative][nabla]n and [partial derivative]q/[partial derivative][nabla]T. The combination of both steady and perturbative studies in discharges with different plasma parameters could give us a better picture of transport processes in a tokamak. (author) 6 refs., 5 figs.

  8. Twenty Years of Research on the Alcator C-Mod Tokamak

    Science.gov (United States)

    Greenwald, Martin

    2013-10-01

    Alcator C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since its start in 1993, contributing data that extended tests of critical physical models into new parameter ranges and into new regimes. Using only RF for heating and current drive with innovative launching structures, C-Mod operates routinely at very high power densities. Research highlights include direct experimental observation of ICRF mode-conversion, ICRF flow drive, demonstration of Lower-Hybrid current drive at ITER-like densities and fields and, using a set of powerful new diagnostics, extensive validation of advanced RF codes. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components--an approach adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and EDA H-mode regimes which have high performance without large ELMs and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and found that self-generated flow shear can be strong enough to significantly modify transport. C-Mod made the first quantitative link between pedestal temperature and H-mode performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. Work supported by U.S. DoE

  9. Superconductivity from magnetic elements under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Katsuya [KYOKUGEN, Research Center for Materials Science at Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)]. E-mail: shimizu@rcem.osaka-u.ac.jp; Amaya, Kiichi [Toyota Physical and Chemical Research Institute, Aichi 480-1192 (Japan); Suzuki, Naoshi [Graduate School of Engineering Science, Osaka University, Osaka 560-8531 (Japan); Onuki, Yoshichika [Graduate School of Science, Osaka University, Osaka 560-0043 (Japan)

    2006-05-01

    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors.

  10. Coexistence of Superconductivity and Ferromagnetism in ...

    African Journals Online (AJOL)

    KBHEEMA

    Coexistence of Superconductivity and Ferromagnetism in Superconducting. Tsadik Kidanemariam. 1 and Gebregziabher Kahsay. 2*. 1. Department of Physics, Adigrat University, Adigrat, Ethiopia. 2. Department of Physics, College of Science, Bahir Dar University, Bahir Dar, Ethiopia. (*michige_90@yahoo.com).

  11. Inducing spin triplet superconductivity in a ferromagnet

    NARCIS (Netherlands)

    Voltan, S.

    2016-01-01

    Combining ferromagnetism and superconductivity can lead to the development of a completely new generation of technology, with unique and powerful characteristics, called superconducting spintronics. The task of developing this, however, is challenging because at the microscopic level the

  12. Last LEP superconducting module travels to surface

    CERN Multimedia

    Patrice Loïez

    2001-01-01

    The last superconducting module is raised from the Large Electron-Positron (LEP) collider tunnel, through the main shaft, to the surface. Superconducting modules were only used in the LEP-2 phase of the accelerator, from 1996 to 2000.

  13. Quantification of chemical erosion in the divertor of the DIII-D tokamak

    Science.gov (United States)

    McLean, Adam Gordon

    The International Thermonuclear Experimental Reactor (ITER) is currently designed to use graphite targets in the divertor for power handling and impurity control. Understanding and quantifying chemical sputtering is therefore key to the success of fusion as a clean energy source. The principal goal of this thesis is to design and carry out experiments, then analyze and interpret the results in order to elucidate the role of chemical sputtering in carbon sources in the DIII-D tokamak. A self-contained gas puff system has been designed, constructed, and employed for in-situ study of chemical erosion. The porous plug injector (PPI) releases methane through a porous graphite surface into the divertor plasma at a precisely calibrated rate, minimizing perturbation to local plasma while replicating the immediate environment of methane molecules released from a solid graphite surface more accurately than done previously. For the first time in a tokamak environment, the methane flow rate used in a puffing experiment was the same order of magnitude as that expected from laboratory experiments for intrinsic chemical sputtering. Effective photon efficiencies for CH4 injection are reported; results are found to have significant dependencies on surface conditions and the divertor operating regime. The contribution of sputtering processes to sources of C0 and C+ are assessed through measurement of background and incremental spectroscopic emissions of both physically and chemically-released sputtering products and by CI, 910 nm line profile fitting. Comparison of background and incremental emissions of chemically-released products demonstrate a dramatic drop in production of CH in cold and detached conditions. Finally, the chemical erosion yield is calculated in both attached and cold-divertor conditions and found to be much closer to that measured ex-situ in ion beam experiments than previously determined in DII-D. These observations represent a positive result for ITER which

  14. A control approach for plasma density in tokamak machines

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, Luca, E-mail: luca.boncagni@enea.it [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Pucci, Daniele; Piesco, F.; Zarfati, Emanuele [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy); Mazzitelli, G. [EURATOM – ENEA Fusion Association, Frascati Research Center, Division of Fusion Physics, Rome, Frascati (Italy); Monaco, S. [Dipartimento di Ingegneria Informatica, Automatica e Gestionale ' ' Antonio Ruberti' ' , Sapienza Università di Roma (Italy)

    2013-10-15

    Highlights: •We show a control approach for line plasma density in tokamak. •We show a control approach for pressure in a tokamak chamber. •We show experimental results using one valve. -- Abstract: In tokamak machines, chamber pre-fill is crucial to attain plasma breakdown, while plasma density control is instrumental for several tasks such as machine protection and achievement of desired plasma performances. This paper sets the principles of a new control strategy for attaining both chamber pre-fill and plasma density regulation. Assuming that the actuation mean is a piezoelectric valve driven by a varying voltage, the proposed control laws ensure convergence to reference values of chamber pressure during pre-fill, and of plasma density during plasma discharge. Experimental results at FTU are presented to discuss weaknesses and strengths of the proposed control strategy. The whole system has been implemented by using the MARTe framework [1].

  15. Texas Experimental Tokamak. Technical progress report, April 1990--April 1993

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, A.J.

    1993-04-01

    This progress report covers the period from November 1, 1990 to April 30, 1993. During that period, TEXT was operated as a circular tokamak with a material limiter. It was devoted to the study of basic plasma physics, in particular to study of fluctuations, turbulence, and transport. The purpose is to operate and maintain TEXT Upgrade as a complete facility for applied tokamak physics, specifically to conduct a research program under the following main headings: (1) to elucidate the mechanisms of working gas, impurity, and thermal transport in tokamaks, in particular to understand the role of turbulence; (2) to study physics of the edge plasma, in particular the turbulence; (3) to study the physics or resonant magnetic fields (ergodic magnetic divertors, intra island pumping); and (4) to study the physics of electron cyclotron heating (ECRH). Results of studies in each of these areas are reported.

  16. Characterisation, modelling and control of advanced scenarios in the european tokamak jet; Caracterisation, modelisation et controle des scenarios avances dans le tokamak europeen jet

    Energy Technology Data Exchange (ETDEWEB)

    Tresset, G

    2002-09-26

    The advanced scenarios, developed for less than ten years with the internal transport barriers and the control of current profile, give rise to a 'new deal' for the tokamak as a future thermonuclear controlled fusion reactor. The Joint European Torus (JET) in United Kingdom is presently the most powerful device in terms of fusion power and it has allowed to acquire a great experience in these improved confinement regimes. The reduction of turbulent transport, considered now as closely linked to the shape of current profile optimised for instance by lower hybrid current drive or the self-generated bootstrap current, can be characterised by a dimensionless criterion. Most of useful information related to the transport barriers are thus available. Large database analysis and real time plasma control are envisaged as attractive applications. The so-called 'S'-shaped transport models exhibit some interesting properties in fair agreement with the experiments, while the non-linear multivariate dependencies of thermal diffusivity can be approximated by a neural network, suggesting a new approach for transport investigation and modelling. Finally, the first experimental demonstrations of real time control of internal transport barriers and current profile have been performed on JET. Sophisticated feedback algorithms have been proposed and are being numerically tested to achieve steady-state and efficient plasmas. (author)

  17. Canadian contributions to high temperature superconductivity research

    Energy Technology Data Exchange (ETDEWEB)

    Berlinsky, A.J.

    This paper presents a review of contributions from Canadian researchers to the field of investigating superconductivity in the range of 35/sup 0/K and up. Research projects since January 1987 are described or mentioned, including investigation of superconducting materials, theories of superconducting behavior, measurements of local magnetic fields in superconductors, and the production and modification of new oxide superconductors.

  18. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  19. Superconducting heavy-ion accelerating structures

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, K.W.

    1996-08-01

    This paper briefly reviews the technical history of superconducting ion-accelerating structures. Various superconducting cavities currently used and being developed for use in ion linacs are discussed. Principal parameters and operational characteristics of superconducting structures in active use at various heavy-ion facilities are described.

  20. Measurement of electron density profile by microwave reflectometry on tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Simonet, F.

    1985-05-01

    A new method for measuring the electron density spatial profile has been successfully tested on the tokamak of Fontenay aux Roses (TFR). This method is based on the total reflection experienced by a wave of frequency F on the layer where F = F/sub p/e(r). The experimental results show that the maximum electron density in the discharge is also easily measured and that accurate determination of a density profile can be obtained with a time resolution of 5 ms. This diagnostic is well adapted to all fusion devices where access to the total plasma cross section is limited, particularly for large tokamaks.

  1. Geodesic acoustic modes in noncircular cross section tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Sorokina, E. A., E-mail: sorokina.ekaterina@gmail.com; Lakhin, V. P. [National Research Center “Kurchatov Institute,” (Russian Federation); Konovaltseva, L. V. [People’s Friendship University of Russia (Russian Federation); Ilgisonis, V. I. [National Research Center “Kurchatov Institute,” (Russian Federation)

    2017-03-15

    The influence of the shape of the plasma cross section on the continuous spectrum of geodesic acoustic modes (GAMs) in a tokamak is analyzed in the framework of the MHD model. An expression for the frequency of a local GAM for a model noncircular cross section plasma equilibrium is derived. Amendments to the oscillation frequency due to the plasma elongation and triangularity and finite tokamak aspect ratio are calculated. It is shown that the main factor affecting the GAM spectrum is the plasma elongation, resulting in a significant decrease in the mode frequency.

  2. Advanced tokamak physics scenarios in Alcator C-Mod

    Energy Technology Data Exchange (ETDEWEB)

    Porkolab, M.; Bonoli, P.T.; Golovato, S.; Ramos, J.; Sugiyama, L.; Takase, Y. [Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Kessel, C. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Nevins, W.M. [LLNL, Livermore, California 94550 (United States)

    1996-02-01

    Several advanced tokamak modes of operation have been identified in the Alcator C-Mod tokamak. Of particular interest are (i) Reversed shear mode with high bootstrap fraction using on-axis FW current drive and off-axis mode-conversion current drive and/or lower hybrid current drive; (ii) High performance plasmas ({ital Q}{approximately}0.1{endash}1) which may be accessed by the PEP (pellet enhanced performance) mode of operation with intense ICRF heating. {copyright} {ital 1996 American Institute of Physics.}

  3. Dynamical Safety Analysis of the SABR Fusion-Fission Hybrid Reactor

    Science.gov (United States)

    Sumner, Tyler; Stacey, Weston; Ghiaassian, Seyed

    2009-11-01

    A hybrid fusion-fission reactor for the transmutation of spent nuclear fuel is being developed at Georgia Tech. The Subcritical Advanced Burner Reactor (SABR) is a 3000 MWth sodium-cooled, metal TRU-Zr fueled fast reactor driven by a tokamak fusion neutron source based on ITER physics and technology. We are investigating the accident dynamics of SABR's coupled fission, fusion and heat removal systems to explore the safety characteristics of a hybrid reactor. Possible accident scenarios such as loss of coolant mass flow (LOFA), of power (LOPA) and of heat sink (LOHSA), as well as inadvertent reactivity insertions and fusion source excursion are being analyzed using the RELAP5-3D code, the ATHENA version of which includes liquid metal coolants.

  4. Nonequilibrium superconductivity for particle detectors

    Energy Technology Data Exchange (ETDEWEB)

    Gray, K.E.

    1987-10-01

    A considerable amount of attention has been devoted to nonequilibrium superconductivity over the last 10 to 15 years. A fairly complete and quantatitive understanding of the experimental and theoretical aspects of the subject has emerged. In this paper aspects of nonequilibrium superconductivity which are relevant to a majority of particle detector applications will be reviewed, and new calculations, more specific to actual detector applications, will be presented. The primary focus is on ionizing particles for which the characteristic energy is greater than typical superconducting energy gap values, ..delta.., of about 1 MeV. Thus microwave and far-infrared detection is excluded, although many of the results and consequences may also apply in those cases. 36 refs., 1 fig.

  5. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  6. Superconducting properties of nanostructured microhelices

    Science.gov (United States)

    Fomin, Vladimir M.; Rezaev, Roman O.; Levchenko, Evgenii A.; Grimm, Daniel; Schmidt, Oliver G.

    2017-10-01

    Superconducting micro- and nanohelices are proposed for the first time. A theoretical investigation of the superconducting state in the helical coils at the micro- and nanoscale is performed within the time-dependent Ginzburg-Landau approach. The pattern and number of vortices in a stationary distribution are determined by their confinement to the ultrathin helical coil and can therefore be efficiently controlled by the spiral stripe width and the spiral pitch distance for both dense and sparse coils. Quasi-degeneracy of vortex patterns is manifested in the helical coil when the number of vortices is incommensurable with the total number of half-turns. With increasing radius, superconducting helical coils provide a physical realization of a transition from the vortex pattern peculiar to an open tube to that of a planar stripe.

  7. Parameter and cost optimizations for a modular stellarator reactor

    Science.gov (United States)

    Hitchon, W. N. G.; Johnson, P. C.; Watson, C. J. H.

    1983-02-01

    The physical scaling and cost scaling of a modular stellarator reactor are described. It is shown that configurations based on l=2 are best able to support adequate beta, and physical relationships are derived which enable the geometry and parameters of an l=2 modular stellarator to be defined. A cost scaling for the components of the nuclear island is developed using Starfire (tokamak reactor study) engineering as a basis. It is shown that for minimum cost the stellarator should be of small aspect ratio. For a 4000 MWth plant, as Starfire, the optimum configuration is a 15 coil, 3 field period, l=2 device with a major radius of 16 m and a plasma minor radius of 2 m; and with a conservative wall loading of 2 MW/m2 and an average beta of 3.9%; the estimated cost per kilowatt (electrical) is marginally (7%) greater than Starfire.

  8. Superconducting TESLA cavities

    Science.gov (United States)

    Aune, B.; Bandelmann, R.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D. A.; Edwards, H. T.; Ferrario, M.; Fouaidy, M.; Gall, P.-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W.-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H.-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-09-01

    The conceptional design of the proposed linear electron-positron collider TESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with an accelerating gradient of Eacc>=25 MV/m at a quality factor Q0>=5×109. The design goal for the cavities of the TESLA Test Facility (TTF) linac was set to the more moderate value of Eacc>=15 MV/m. In a first series of 27 industrially produced TTF cavities the average gradient at Q0 = 5×109 was measured to be 20.1+/-6.2 MV/m, excluding a few cavities suffering from serious fabrication or material defects. In the second production of 24 TTF cavities, additional quality control measures were introduced, in particular, an eddy-current scan to eliminate niobium sheets with foreign material inclusions and stringent prescriptions for carrying out the electron-beam welds. The average gradient of these cavities at Q0 = 5×109 amounts to 25.0+/-3.2 MV/m with the exception of one cavity suffering from a weld defect. Hence only a moderate improvement in production and preparation techniques will be needed to meet the ambitious TESLA goal with an adequate safety margin. In this paper we present a detailed description of the design, fabrication, and preparation of the TESLA Test Facility cavities and their associated components and report on cavity performance in test cryostats and with electron beam in the TTF linac. The ongoing research and development towards higher gradients is briefly addressed.

  9. Searching for Superconductivity in Micrometeorites

    Science.gov (United States)

    Thiemens, M. H.; Guenon, S.; Ramirez, J. G.; Basaran, A. C.; Taylor, S.; Schuller, I.

    2014-12-01

    We have developed a very sensitive, highly selective, non-destructive technique for screening natural materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10-12 cm3of a superconductor embedded in a non-superconducting matrix. We applied our technique to search for superconductivity in micrometeorites, small extraterrestrial (ET) particles that add most of the ET mass to the present day Earth. We measured approximately 65 micrometeorites and compared their spectra with those of eight reference materials.Micrometeorites (MMs) are ideal samples with which to test our highly sensitive superconductivity probe, as individual MMs weigh 10-5 g and the large number of micrometeorites arriving on Earth, suggests some contain minerals formed under conditions that cannot be replicated in the laboratory. Minerals in meteorites formed during planetary processes associated with accretion/condensation, planetary differentiation, and segregation. Other components such as pre-solar grains, SiC, diamonds, graphite, Si3N4, and deuterium enriched organics formed under some of the most intense physical-chemical environments in the Universe, including supernovae and stellar outflows. It is during such severe processes that exotic superconducting species may have been created.The research presented here established the methodology and proved the ultrahigh sensitivity of the technique by detecting the presence of the Verwey-transition of the magnetite present in these micrometeorites. The investigated micrometeorites contained no superconducting phases. This work was supported by an AFOSR MURI grant no. F49550-09-1-0577.

  10. Parasitic momentum flux in the tokamak core

    Science.gov (United States)

    Stoltzfus-Dueck, T.

    2017-10-01

    Tokamak plasmas rotate spontaneously without applied torque. This intrinsic rotation is important for future low-torque devices such as ITER, since rotation stabilizes certain instabilities. In the mid-radius `gradient region,' which reaches from the sawtooth inversion radius out to the pedestal top, intrinsic rotation profiles may be either flat or hollow, and can transition suddenly between these two states, an unexplained phenomenon referred to as rotation reversal. Theoretical efforts to explain the mid-radius rotation shear have largely focused on quasilinear models, in which the phase relationships of some selected instability result in a nondiffusive momentum flux (``residual stress''). In contrast, the present work demonstrates the existence of a robust, fully nonlinear symmetry-breaking momentum flux that follows from the free-energy flow in phase space and does not depend on any assumed linear eigenmode structure. The physical origin is an often-neglected portion of the radial ExB drift, which is shown to drive a symmetry-breaking outward flux of co-current momentum whenever free energy is transferred from the electrostatic potential to ion parallel flows. The fully nonlinear derivation relies only on conservation properties and symmetry, thus retaining the important contribution of damped modes. The resulting rotation peaking is counter-current and scales as temperature over plasma current. As first demonstrated by Landau, this free-energy transfer (thus also the corresponding residual stress) becomes inactive when frequencies are much higher than the ion transit frequency, which allows sudden transitions between hollow and flat profiles. Simple estimates suggest that this mechanism may be consistent with experimental observations. This work was funded in part by the Max-Planck/Princeton Center for Plasma Physics and in part by the U.S. Dept. of Energy, Office of Science, Contract No. DE-AC02-09CH11466.

  11. Magnetic flux reconstruction methods for shaped tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    Tsui, Chi-Wa [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1993-12-01

    The use of a variational method permits the Grad-Shafranov (GS) equation to be solved by reducing the problem of solving the 2D non-linear partial differential equation to the problem of minimizing a function of several variables. This high speed algorithm approximately solves the GS equation given a parameterization of the plasma boundary and the current profile (p` and FF` functions). The author treats the current profile parameters as unknowns. The goal is to reconstruct the internal magnetic flux surfaces of a tokamak plasma and the toroidal current density profile from the external magnetic measurements. This is a classic problem of inverse equilibrium determination. The current profile parameters can be evaluated by several different matching procedures. Matching of magnetic flux and field at the probe locations using the Biot-Savart law and magnetic Green`s function provides a robust method of magnetic reconstruction. The matching of poloidal magnetic field on the plasma surface provides a unique method of identifying the plasma current profile. However, the power of this method is greatly compromised by the experimental errors of the magnetic signals. The Casing Principle provides a very fast way to evaluate the plasma contribution to the magnetic signals. It has the potential of being a fast matching method. The performance of this method is hindered by the accuracy of the poloidal magnetic field computed from the equilibrium solver. A flux reconstruction package has been implemented which integrates a vacuum field solver using a filament model for the plasma, a multi-layer perception neural network as an interface, and the volume integration of plasma current density using Green`s functions as a matching method for the current profile parameters. The flux reconstruction package is applied to compare with the ASEQ and EFIT data. The results are promising.

  12. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Bottura, Luca; Yamamoto, Akira; Zlobin, Alexander V

    2016-01-01

    In this paper we summarize the evolution and contributions of superconducting magnets to particle accelerators as chronicled over the last 50 years of Particle Accelerator Conferences (PAC, NA-PAC and IPAC). We begin with an historical overview based primarily on PAC Proceedings augmented with references to key milestones in the development of superconducting magnets for particle accelerators. We then provide some illustrative examples of applications that have occurred over the past 50 years, focusing on those that have either been realized in practice or provided technical development for other projects, with discussion of possible future applications.

  13. Superconductivity: Anatomy of a Discovery

    Science.gov (United States)

    Pesic, Peter

    2011-04-01

    The discovery of superconductivity in 1911 by Heike Kamerlingh Onnes and his collaborators, though unexpected, rested on thirty years of prior work perfecting and applying the techniques of low temperature physics. His achievements reflected both his experimental skill and his close study of theory. The comparison with his competitors (especially James Dewar) reveals the effects of personal style, awareness of human nature, and organizational skill. That the actual first detection of superconductivity was made by a young assistant, Gilles Holst, raise deep questions of authorship, priority, and recognition.

  14. The Impact Of Lithium Wall Coatings On NSTX Discharges And The Engineering Of The Lithium Tokamak eXperiment (LTX)

    Energy Technology Data Exchange (ETDEWEB)

    R. Majeski, H. Kugel and R. Kaita

    2010-03-18

    Recent experiments on the National Spherical Torus eXperiment (NSTX) have shown the benefits of solid lithium coatings on carbon PFC's to diverted plasma performance, in both Land H- mode confinement regimes. Better particle control, with decreased inductive flux consumption, and increased electron temperature, ion temperature, energy confinement time, and DD neutron rate were observed. Successive increases in lithium coverage resulted in the complete suppression of ELM activity in H-mode discharges. A liquid lithium divertor (LLD), which will employ the porous molybdenum surface developed for the LTX shell, is being installed on NSTX for the 2010 run period, and will provide comparisons between liquid walls in the Lithium Tokamak eXperiment (LTX) and liquid divertor targets in NSTX. LTX, which recently began operations at the Princeton Plasma Physics Laboratory, is the world's first confinement experiment with full liquid metal plasma-facing components (PFCs). All materials and construction techniques in LTX are compatible with liquid lithium. LTX employs an inner, heated, stainless steel-faced liner or shell, which will be lithium-coated. In order to ensure that lithium adheres to the shell, it is designed to operate at up to 500 - 600 oC to promote wetting of the stainless by the lithium, providing the first hot wall in a tokamak to operate at reactor-relevant temperatures. The engineering of LTX will be discussed.

  15. Data processing system for spectroscopy at Novillo Tokamak; Sistema de procesamiento de datos para espectroscopia en el Tokamak Novillo

    Energy Technology Data Exchange (ETDEWEB)

    Ortega C, G.; Gaytan G, E. [Instituto Tecnologico de Toluca, Instituto nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    1998-07-01

    Taking as basis some proposed methodologies by software engineering it was designed and developed a data processing system coming from the diagnostic equipment by spectroscopy, for the study of plasma impurities, during the cleaning discharges. the data acquisition is realized through an electronic interface which communicates the computer with the spectroscopy system of Novillo Tokamak. The data were obtained starting from files type text and processed for their subsequently graphic presentation. For development of this system named PRODATN (Processing of Data for Spectroscopy in Novillo Tokamak) was used the LabVIEW graphic programming language. (Author)

  16. A thermo-hydraulic analysis of the superconducting proposal for the TF magnet system of FAST

    Energy Technology Data Exchange (ETDEWEB)

    Polli, G.M., E-mail: gianmario.polli@enea.it [EURATOM-ENEA, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati, Rome (Italy); Corte, A. della; Di Zenobio, A.; Muzzi, L.; Reccia, L.; Turtu, S.; Brolatti, G.; Crisanti, F.; Cucchiaro, A.; Pizzuto, A.; Villari, R. [EURATOM-ENEA, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati, Rome (Italy)

    2011-10-15

    FAST (Fusion Advanced Studies Torus), the Italian proposal of a satellite facility to ITER, is a compact tokamak (R{sub 0} = 1.82 m, a = 0.64 m, triangularity {delta} = 0.4) able to investigate non linear dynamics effects of {alpha}-particle behavior in burning plasmas and to test technical solutions for the first wall/divertor directly relevant for ITER and DEMO. Currently, ENEA is investigating the feasibility of a superconducting solution for the magnet system. This paper focuses on the analysis of the TF magnets thermal behavior. In particular, utilizing only the room available in the resistive design and referring to one of the most severe scenario envisaged for FAST, the minimum temperature margin in the coil has been calculated for a thermal load distribution on winding and cable jacket due to nuclear heating only.

  17. Development and experimental evaluation of theoretical models for ion cyclotron resonance frequency heating of tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Mantsinen, M. [Helsinki Univ. of Technology, Espoo (Finland). Dept. of Technical Physics

    1999-06-01

    Heating with electromagnetic waves in the ion cyclotron range of frequencies (ICRF) is a well-established method for auxiliary heating of present-day tokamak plasmas and is envisaged as one of the main heating techniques for the International Thermonuclear Experimental Reactor (ITER) and future reactor plasmas. In order to predict the performance of ICRF heating in future machines, it is important to benchmark present theoretical modelling with experimental results on present tokamaks. This thesis reports on development and experimental evaluation of theoretical models for ICRF heating at the Joint European Torus (JET). Several ICRF physics effects and scenarios have been studied. Direct importance to the ITER is the theoretical analysis of ICRF heating experiments with deuterium-tritium (D-T) plasmas. These experiments clearly demonstrate the potential of ICRF heating for auxiliary heating of reactor plasmas. In particular, scenarios with potential for good bulk ion heating and enhanced D-T fusion reactivity have been identified. Good bulk ion heating is essential for reactor plasmas in order to obtain a high ion temperature and a high fusion reactivity. In JET good bulk ion heating with ICRF waves has been achieved in high-performance discharges by adding ICRF heating to neutral beam injection. In these experiments, as in other JET discharges where damping at higher harmonics of the ion cyclotron frequency takes place, so-called finite Larmor radius (FLR) effects play an important role. Due to FLR effects, the resonating ion velocity distribution function can have a strong influence on the power deposition. Evidence for this effect has been obtained from the third harmonic deuterium heating experiments. Because of FLR effects, the wave-particle interaction can also become weak at certain ion energies, which prevents resonating ions from reaching higher energies. When interacting with the wave, an ion receives not only a change in energy but also a change in

  18. The long way to steady state fusion plasmas - the superconducting stellarator device Wendelstein 7-X

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The stable generation of high temperature Hydrogen plasmas (ion and electron temperature in the range 10-20 keV) is the basis for the use of nuclear fusion to generate heat and thereby electric power. The most promising path is to use strong, toroidal, twisted magnetic fields to confine the electrically charged plasma particles in order to avoid heat losses to the cold, solid wall elements. Two magnetic confinement concepts have been proven to be most suitable: (a) the tokamak and (b) the stellarator. The stellarator creates the magnetic field by external coils only, the tokamak by combining the externally created field with the magnetic field generated by a strong current in the plasma. “Wendelstein 7-X” is the name of a large superconducting stellarator that went successfully into operation after 15 years of construction. With 30 m3 plasma volume, 3 T magnetic field on axis, and 10 MW micro wave heating power, Hydrogen plasmas are generated that allow one to establish a scientific basis for the extrapol...

  19. The first operation of the superconducting optimized stellarator fusion device Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Klinger, Thomas [Max-Planck-Institut fuer Plasmaphysik, Greifswald (Germany); Ernst-Moritz-Arndt Universitaet, Greifswald (Germany)

    2016-07-01

    The confinement of a high-temperature plasma by a suitable magnetic field is the most promising path to master nuclear fusion of Deuterium and Tritium on the scale of a reasonable power station. The two leading confinement concepts are the tokamak and the stellarator. Different from a tokamak, the stellarator does not require a strong current in the plasma but generates the magnetic field by external coils only. This has significant advantages, e.g. better stability properties and inherent steady-state capability. But stellarators need optimization, since ad hoc chosen magnetic field geometries lead to insufficient confinement properties, unfavourable plasma equilibria, and loss of fast particles. Wendelstein 7-X is a large (plasma volume 30 m{sup 3}) stellarator device with shaped superconducting coils that were determined via pure physics optimization criteria. After 19 years of construction, Wendelstein 7-X has now started operation. This talk introduces into the stellarator concept as a candidate for a future fusion power plant, summarizes the optimization principles, and presents the first experimental results with Helium and Hydrogen high temperature plasmas. An outlook on the physics program and the main goals of the project is given, too.

  20. Analysis of tokamak plasma confinement modes using the fast ...

    Indian Academy of Sciences (India)

    2016-10-20

    Oct 20, 2016 ... absence of the outer field, and then compared with each other. The number of plasma modes and the safety factor q were determined using the FFT method in the presence and absence of the outer field. The safety factor q plays a significant role in determin- ing the stability of tokamak plasma and seems to.

  1. Microtearing mode (MTM) turbulence in JIPPT-IIU tokamak plasmas

    Science.gov (United States)

    Hamada, Y.; Watari, T.; Nishizawa, A.; Yamagishi, O.; Narihara, K.; Ida, K.; Kawasumi, Y.; Ido, T.; Kojima, M.; Toi, K.; the JIPPT-IIU Group

    2015-04-01

    Magnetic, density and potential fluctuations up to 500 kHz at several spatial points have been observed in the core region of JIPPT-IIU tokamak plasmas using a heavy ion beam probe. The frequency spectra of the density and magnetic oscillations are found to be similar, whereas there are large differences in the phase, coherence and frequency dependences deduced from signals at adjacent sample volumes. These differences allow us to ascribe the detected magnetic fluctuations to the microtearing mode (MTM) by simple dispersion relations of the MTM in collisionless and intermediate regimes. The frequency-integrated level of magnetic fluctuations around 150 kHz (100-200 kHz) is \\tilde{{B}}r /Bt ≈ 1× 10-4 , a level high enough for the ergodization of the magnetic surface and enhanced electron heat loss as derived by Rechester and Rosenbluth (1978 Phys. Rev. Lett. 40 38). This level is consistent with the measurements performed using cross-polarization scattering of microwaves in the Tore Supra tokamak. Our results are the first direct experimental verification of the MTM in the core region of tokamak plasmas, which has been recently observed in gyrokinetic simulations using a very fine mesh in tokamak and ST plasmas.

  2. Electron cyclotron emission imaging diagnostic system for Rijnhuizen Tokamak Project

    NARCIS (Netherlands)

    Deng, B.H.; Hsia, R. P.; Domier, C.W.; Burns, S. R.; Hillyer, T. R.; N C Luhmann Jr.,; Oyevaar, T.; Donne, A. J. H.; R. T. P. Team,

    1999-01-01

    A 16-channel electron cyclotron emission (ECE) imaging diagnostic system has been developed and installed on the Rijnhuizen Tokamak Project for measuring plasma electron cyclotron emission with a temporal resolution of 2 mu s. The high spatial resolution of the system is achieved by utilizing a low

  3. Bulk Ion Heating with ICRF Waves in Tokamaks

    DEFF Research Database (Denmark)

    Mantsinen, M. J.; Bilato, R.; Bobkov, V. V.

    2015-01-01

    Heating with ICRF waves is a well-established method on present-day tokamaks and one of the heating systems foreseen for ITER. However, further work is still needed to test and optimize its performance in fusion devices with metallic high-Z plasma facing components (PFCs) in preparation of ITER a...

  4. Conceptual design of Remote Control System for EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Sun, X.Y., E-mail: xysun@ipp.ac.cn; Wang, F.; Wang, Y.; Li, S.

    2014-05-15

    Highlights: • A new design conception for remote control for EAST tokamak is proposed. • Rich Internet application (RIA) was selected to implement the user interface. • Some security mechanism was used to fulfill security requirement. - Abstract: The international collaboration becomes popular in tokamak research like in many other fields of science, because the experiment facilities become larger and more expensive. The traditional On-site collaboration Model that has to spend much money and time on international travel is not fit for the more frequent international collaboration. The Remote Control System (RCS), as an extension of the Central Control System for the EAST tokamak, is designed to provide an efficient and economical way to international collaboration. As a remote user interface, the RCS must integrate with the Central Control System for EAST tokamak to perform discharge control function. This paper presents a design concept delineating a few key technical issues and addressing all significant details in the system architecture design. With the aim of satisfying system requirements, the RCS will select rich Internet application (RIA) as a user interface, Java as a back-end service and Secure Socket Layer Virtual Private Network (SSL VPN) for securable Internet communication.

  5. Internal magnetic field measurement in tokamak plasmas using a ...

    Indian Academy of Sciences (India)

    There is a growing interest in developing a reliable method for the measurement of the in- ternal magnetic field in high ... This information is essential for understanding confinement, stability and energy balance of the tokamak plasma. .... The instrument measures the difference between the left-hand and right-hand circularly ...

  6. Evidence of Inward Toroidal Momentum Convection in the JET Tokamak

    DEFF Research Database (Denmark)

    Tala, T.; Zastrow, K.-D.; Ferreira, J.

    2009-01-01

    Experiments have been carried out on the Joint European Torus tokamak to determine the diffusive and convective momentum transport. Torque, injected by neutral beams, was modulated to create a periodic perturbation in the toroidal rotation velocity. Novel transport analysis shows the magnitude...

  7. Sensitivity of transient synchrotron radiation to tokamak plasma parameters

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N.J.; Kritz, A.H.

    1988-12-01

    Synchrotron radiation from a hot plasma can inform on certain plasma parameters. The dependence on plasma parameters is particularly sensitive for the transient radiation response to a brief, deliberate, perturbation of hot plasma electrons. We investigate how such a radiation response can be used to diagnose a variety of plasma parameters in a tokamak. 18 refs., 13 figs.

  8. Loop-voltage tomography in tokamaks using transient synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Fisch, N.J.; Kritz, A.H. (Princeton Univ., NJ (USA). Plasma Physics Lab.; Hunter Coll., New York, NY (USA). Dept. of Physics)

    1989-07-01

    The loop voltage in tokamaks is particularly difficult to measure anywhere but at the plasma periphery. A brief, deliberate, perturbation of hot plasma electrons, however, produces a transient radiation response that is sensitive to this voltage. We investigate how such a radiation response can be used to diagnose the loop voltage. 24 refs., 6 figs.

  9. Recording non-local temperature rise in the RTP tokamak

    NARCIS (Netherlands)

    Hogeweij, G. M. D.; Mantica, P.; Gorini, G.; de Kloe, J.; Cardozo, N. J. L.; R. T. P. Team,

    2000-01-01

    In the Rijnhuizen Tokamak Project (RTP) plasmas with electron cyclotron heating (ECH), a transient rise of the core T-e is observed when hydrogen pellets are injected tangentially to induce fast cooling of the peripheral region. The core T-e rise is a sharp function of the normalized power

  10. Stability of localized modes in rotating tokamak plasmas

    NARCIS (Netherlands)

    J.W. Haverkort (Willem); H.J. de Blank

    2011-01-01

    textabstractThe ideal magnetohydrodynamic stability is investigated of localized interchange modes in a large-aspect ratio tokamak plasma. The resulting stability criterion includes the effects of toroidal rotation and rotation shear and contains various well-known limiting cases. The analysis

  11. Fully non-inductive second harmonic electron cyclotron plasma ramp-up in the QUEST spherical tokamak

    Science.gov (United States)

    Idei, H.; Kariya, T.; Imai, T.; Mishra, K.; Onchi, T.; Watanabe, O.; Zushi, H.; Hanada, K.; Qian, J.; Ejiri, A.; Alam, M. M.; Nakamura, K.; Fujisawa, A.; Nagashima, Y.; Hasegawa, M.; Matsuoka, K.; Fukuyama, A.; Kubo, S.; Shimozuma, T.; Yoshikawa, M.; Sakamoto, M.; Kawasaki, S.; Nakashima, H.; Higashijima, A.; Ide, S.; Maekawa, T.; Takase, Y.; Toi, K.

    2017-12-01

    Fully non-inductive second (2nd) harmonic electron cyclotron (EC) plasma current ramp-up was demonstrated with a newlly developed 28 GHz system in the QUEST spherical tokamak. A high plasma current of 54 kA was non-inductively ramped up and sustained stably for 0.9 s with a 270 kW 28 GHz wave. A higher plasma current of 66 kA was also non-inductively achieved with a slow ramp-up of the vertical field. We have achieved a significantly higher plasma current than those achieved previously with the 2nd harmonic EC waves. This fully non-inductive 2nd harmonic EC plasma ramp-up method might be useful for future burning plasma devices and fusion reactors, in particular for operations at half magnetic field with the same EC heating equipment.

  12. Velocity-space sensitivities of neutron emission spectrometers at the tokamaks JET and ASDEX upgrade in deuterium plasmas

    DEFF Research Database (Denmark)

    Jacobsen, A.S.; Binda, F.; Cazzaniga, C.

    2017-01-01

    Future fusion reactors are foreseen to be heated by the energetic alpha particles produced in fusion reactions. For this to happen, it is important that the energetic ions are sufficiently confined. In present day fusion experiments, energetic ions are primarily produced using external heating...... systems such as neutral beam injection and ion cyclotron resonance heating. In order to diagnose these fast ions, several different fast-ion diagnostics have been developed and implemented in the various experiments around the world. The velocity-space sensitivities of fast-ion diagnostics are given by so......-called weight functions. Here instrument-specific weight functions are derived for neutron emission spectrometry detectors at the tokamaks JET and ASDEX Upgrade for the 2.45 MeV neutrons produced in deuterium-deuterium reactions in deuterium plasmas. Using these, it is possible to directly determine which part...

  13. Physics of collisionless scrape-off-layer plasma during normal and off-normal Tokamak operating conditions.

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, A.; Konkashbaev, I.

    1999-03-15

    The structure of a collisionless scrape-off-layer (SOL) plasma in tokamak reactors is being studied to define the electron distribution function and the corresponding sheath potential between the divertor plate and the edge plasma. The collisionless model is shown to be valid during the thermal phase of a plasma disruption, as well as during the newly desired low-recycling normal phase of operation with low-density, high-temperature, edge plasma conditions. An analytical solution is developed by solving the Fokker-Planck equation for electron distribution and balance in the SOL. The solution is in good agreement with numerical studies using Monte-Carlo methods. The analytical solutions provide an insight to the role of different physical and geometrical processes in a collisionless SOL during disruptions and during the enhanced phase of normal operation over a wide range of parameters.

  14. Discovering superconductivity an investigative approach

    CERN Document Server

    Ireson, Gren

    2012-01-01

    The highly-illustrated text will serve as excellent introduction for students, with and without a physics background, to superconductivity. With a strong practical, experimental emphasis, it will provide readers with an overview of the topic preparing them for more advanced texts used in more advanced undergraduate and post-graduate courses.

  15. Power applications for superconducting cables

    DEFF Research Database (Denmark)

    Tønnesen, Ole; Hansen, Steen; Jørgensen, Preben

    2000-01-01

    High temperature superconducting (HTS) cables for use in electric ac power systems are under development around the world today. There are two main constructions under development: the room temperature dielectric design and the cryogenic dielectric design. However, theoretical studies have shown...

  16. Nonlinear diffusion and superconducting hysteresis

    Energy Technology Data Exchange (ETDEWEB)

    Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States)

    1996-12-31

    Nonlinear diffusion of electromagnetic fields in superconductors with ideal and gradual resistive transitions is studied. Analytical results obtained for linear and nonlinear polarizations of electromagnetic fields are reported. These results lead to various extensions of the critical state model for superconducting hysteresis.

  17. Collaring of Po Superconducting Dipole

    CERN Multimedia

    1983-01-01

    The picture shows the placing of a stack of stainless steel collars around the superconducting coils.Pre-assembled collar stacks were placed under and on top of the coils,the collars interleaving as comb teeth. During the following collaring operation of compression under a press the collars were locked together by means of side wedges. See also photos 8211532X, 7903168

  18. Superconductivity in the Carbon Nanotubes

    Science.gov (United States)

    Ieong, Chao

    This is an experimental study of the superconductivity of the carbon nanotubes (CNTs)--more specifically the CNTs studied is 0.4 nm diameter single-wall CNTs existing inside the channels of the AFI zeolite crystal, abbreviated as CNT AFI--by probing the magnetization property of this CNT AFI system. These human engineered 4-Angstrom CNTs, which is a nanoscale and low-dimensional material, are approaching the limit set by nature, and superconductivity in the CNTs in general is theoretically (microscopic or first-principles) both interesting and challenging. Hence, empirical studies are important in providing useful guiding information. The magnetization and specific-heat studies could provide convincing evidences supporting or critiquing the electrical transport results of the CNT AFI system. But probing the superconductivity in this system, as the superconducting signal is very small in a large background, is another challenge. Therefore the high-resolution calorimetry and magnetometry techniques detailedin this thesis are invaluable. With improved method of fabrication to increase the CNTs content inside the channels of the AFI crystallites, the empirical results [Nanoscale 4, 21-41 (2012)]were markedly different from those published in 2001 [Science 292, 2462 (2001)]. The magnetization results of this thesis largely agree with the results from the electrical transport study [Phys. Rev. B 81, 174530 (2010)], but there is some result that raises doubt in the critical current interpretation there. Lastly, there is still some electrical transport result of this system that has not been explained convincingly and is of interest.

  19. Topological Properties of Superconducting Junctions

    NARCIS (Netherlands)

    Pikulin, D.I.; Nazarov, Y.V.

    Motivated by recent developments in the field of one-dimensional topological superconductors, we investigate the topological properties of s-matrix of generic superconducting junctions where dimension should not play any role. We argue that for a finite junction the s-matrix is always topologically

  20. Vacuum Technology for Superconducting Devices

    CERN Document Server

    Chiggiato, P

    2014-01-01

    The basic notions of vacuum technology for superconducting applications are presented, with an emphasis on mass and heat transport in free molecular regimes. The working principles and practical details of turbomolecular pumps and cryopumps are introduced. The specific case of the Large Hadron Collider’s cryogenic vacuum system is briefly reviewed.

  1. Superconductivity by kinetic energy saving?

    NARCIS (Netherlands)

    Van der Marel, D; Molegraaf, HJA; Presura, C; Santoso, [No Value; Hewson, AC; Zlatic,

    2003-01-01

    A brief introduction is given in the generic microscopic framework of superconductivity. The consequences for the temperature dependence of the kinetic energy, and the correlation energy are discussed for two cases: The BCS scenario and the non-Fermi liquid scenario. A quantitative comparison is

  2. Tutorial on Superconducting Accelerator Magnets

    Science.gov (United States)

    Ball, M. J. Penny; Goodzeit, Carl L.

    1997-05-01

    A multimedia CD-ROM tutorial on the physics and engineering concepts of superconducting magnets for particle accelerators is being developed under a U.S. Dept. of Energy SBIR grant. The tutorial, scheduled for distribution this summer, is targeted to undergraduate junior or senior level science students. However, its unified presentation of the broad range of issues involved in the design of superconducting magnets for accelerators and the extensive detail about the construction process (including animations and video clips) will also be of value to staff of research institutes and industrial concerns with an interest in applied superconductivity or magnet development. The source material, which is based on the world-wide R and D programs to develop superconducting accelerator magnets, is organized in five units with the following themes: Introduction to magnets and accelerators; (2) Superconductors for accelerator magnets; (3) Magnetic design methods for accelerator magnets; (4) Electrical, mechanical, and cryogenic considerations for the final magnet package; (5) Performance characteristics and measurement methods. A detailed outline and examples will be shown.

  3. Characterization of the onset of ion cyclotron parametric decay instability of lower hybrid waves in a diverted tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Baek, S. G., E-mail: sgbaek@mit.edu; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Porkolab, M.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B.; Lau, C. [MIT Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States); Takase, Y. [University of Tokyo, Kashiwa 277-8561 (Japan)

    2014-06-15

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize reactor-relevant steady-state plasmas by controlling current density profile. However, current drive efficiency precipitously decreases as the line averaged density (n{sup ¯}{sub e}) increases above ∼1 × 10{sup 20} m{sup −3}. Previous simulations show that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer plasmas [Wallace et al., Phys. Plasmas 19, 062505 (2012)]. A recent observation [Baek et al., Plasma Phys. Controlled Fusion 55, 052001 (2013)] shows that the configuration dependent ion cyclotron parametric decay instability (PDI) is excited in the density range where the discrepancy between the experiments and simulations remains. Comparing the observed spectra with the homogeneous growth rate spectra indicates that the observed ion cyclotron PDI can be excited not only at the low-field-side but also at the high-field-side (HFS) edge of the tokamak. The model analysis shows that a relevant PDI process to Alcator C-Mod LHCD experiments is decay into ion cyclotron quasi-mode driven by parallel coupling. The underlying cause of the observed onset of ion cyclotron PDI is likely due to the weaker radial penetration of the LH wave in high density plasmas, which can lead to enhanced convective growth. Configuration-dependent PDIs are found to be correlated with different edge density profiles in different magnetic configurations. While the HFS edge of the tokamak can be potentially susceptible to PDI, as evidenced by experimental observations and ray-tracing analyses, enhancing single-pass absorption is expected to help recover the LHCD efficiency at reactor-relevant densities because it could suppress several parasitic loss mechanisms that are exacerbated in multi-pass regimes.

  4. Characterization of the onset of ion cyclotron parametric decay instability of lower hybrid waves in a diverted tokamak

    Science.gov (United States)

    Baek, S. G.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Porkolab, M.; Takase, Y.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B.; Lau, C.

    2014-06-01

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize reactor-relevant steady-state plasmas by controlling current density profile. However, current drive efficiency precipitously decreases as the line averaged density (n¯e) increases above ˜1 × 1020 m-3. Previous simulations show that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer plasmas [Wallace et al., Phys. Plasmas 19, 062505 (2012)]. A recent observation [Baek et al., Plasma Phys. Controlled Fusion 55, 052001 (2013)] shows that the configuration dependent ion cyclotron parametric decay instability (PDI) is excited in the density range where the discrepancy between the experiments and simulations remains. Comparing the observed spectra with the homogeneous growth rate spectra indicates that the observed ion cyclotron PDI can be excited not only at the low-field-side but also at the high-field-side (HFS) edge of the tokamak. The model analysis shows that a relevant PDI process to Alcator C-Mod LHCD experiments is decay into ion cyclotron quasi-mode driven by parallel coupling. The underlying cause of the observed onset of ion cyclotron PDI is likely due to the weaker radial penetration of the LH wave in high density plasmas, which can lead to enhanced convective growth. Configuration-dependent PDIs are found to be correlated with different edge density profiles in different magnetic configurations. While the HFS edge of the tokamak can be potentially susceptible to PDI, as evidenced by experimental observations and ray-tracing analyses, enhancing single-pass absorption is expected to help recover the LHCD efficiency at reactor-relevant densities because it could suppress several parasitic loss mechanisms that are exacerbated in multi-pass regimes.

  5. Expressions for Fields in the ITER Tokamak

    Science.gov (United States)

    Sharma, Stephen

    2017-10-01

    The two most important problems to be solved in the development of working nuclear fusion power plants are: sustained partial ignition and turbulence. These two phenomenon are the subject of research and investigation through the development of analytic functions and computational models. Ansatz development through Gaussian wave-function approximations, dielectric quark models, field solutions using new elliptic functions, and better descriptions of the polynomials of the superconducting current loops are the critical theoretical developments that need to be improved. Euler-Lagrange equations of motion in addition to geodesic formulations generate the particle model which should correspond to the Dirac dispersive scattering coefficient calculations and the fluid plasma model. Feynman-Hellman formalism and Heaviside step functional forms are introduced to the fusion equations to produce simple expressions for the kinetic energy and loop currents. Conclusively, a polynomial description of the current loops, the Biot-Savart field, and the Lagrangian must be uncovered before there can be an adequate computational and iterative model of the thermonuclear plasma.

  6. Interaction between fast ions and ion cyclotron heating in a tokamak plasma; Interaction des ions rapides avec les ondes a la frequence cyclotronique ionique dans un plasma de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bergeaud, V

    2001-11-01

    In an ignited fusion reactor, the plasma temperature is sustained by the fusion reactions. However, before this regime is reached, it is necessary to bring an additional power to the plasma. One of the methods that enables the coupling of power is the use of an electromagnetic wave in the ion cyclotron range of frequencies (ICRF). This thesis deals with the interaction between ICRF heating and the fast ions. The thesis contains a theoretical study of the influence of ICRF heating on the ion distribution function. A particular emphasis is put on the importance of the toroidal spectrum of the modes of propagation of the wave in the tokamak. It is necessary to take into account all these modes in order to correctly assess the strength of the wave particle interaction, especially for high energy particles (of the order of hundreds of keV). The classical treatment of the wave particle interaction is based on the hypothesis that the cyclotron phase of the particle and the wave phase are de-correlated between successive resonant interactions. One is therefore led to consider ICRF heating as a diffusive process. This hypothesis is reconsidered in this thesis and it is shown that strong correlations exist in a large part of the velocity space. For this study, a numerical code that computes the full trajectory of particles interacting with a complete electromagnetic field has been developed. The thesis also deals with the problem of fast ion losses due to the breaking of the toroidal symmetry of the confinement magnetic field (called the ripple modulation). Between two toroidal coils, local magnetic wells exist, and particles can be trapped there. When trapped they undergo a vertical drift that makes them quit the plasma rapidly. The ripple modulation also causes an enhancement of the radial diffusion, thereby increasing the losses. A Monte Carlo model describing these mechanisms is presented. This model is validated thanks to a comparison with an experimental database from

  7. Interaction of fast ions with ion cyclotron electromagnetic waves in tokamak plasma; Interaction des ions rapides avec les ondes a la frequence cyclotronique ionique dans un plasma de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bergeaud, V

    2000-12-01

    In an ignited fusion reactor, the plasma temperature is sustained by the fusion reactions. However, before this regime is reached, it is necessary to bring an additional power to the plasma. One of the methods that enables the coupling of power is the use of an electromagnetic wave in the ion cyclotron range of frequencies (ICRF). This thesis deals with the interaction between ICRF heating and the fast ions. The thesis contains a theoretical study of the influence of ICRF heating on the ion distribution function. A particular emphasis is put on the importance of the toroidal spectrum of the modes of propagation of the wave in the tokamak. It is necessary to take into account all these modes in order to correctly assess the strength of the wave particle interaction, especially for high energy particles (of the order of hundreds of keV). The classical treatment of the wave particle interaction is based on the hypothesis that the cyclotron phase of the particle and the wave phase are de-correlated between successive resonant interactions. One is therefore led to consider ICRF heating as a diffusive process. This hypothesis is reconsidered in this thesis and it is shown that strong correlations exist in a large part of the velocity space. For this study, a numerical code that computes the full trajectory of particles interacting with a complete electromagnetic field has been developed. The thesis also deals with the problem of fast ion losses due to the breaking of the toroidal symmetry of the confinement magnetic field (called the ripple modulation). Between two toroidal coils, local magnetic wells exist, and particles can be trapped there. When trapped they undergo a vertical drift that makes them quit the plasma rapidly. The ripple modulation also causes an enhancement of the radial diffusion, thereby increasing the losses. A Monte Carlo model describing these mechanisms is presented. This model is validated thanks to a comparison with an experimental database from

  8. Infrared surface temperature measurements for long pulse operation, and real time feedback control in Tore-Supra, an actively cooled Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Guilhem, D.; Adjeroud, B.; Balorin, C.; Buravand, Y.; Bertrand, B.; Bondil, J.L.; Desgranges, C.; Gauthier, E.; Lipa, M.; Messina, P.; Missirlian, M.; Mitteau, R.; Moulin, D.; Pocheau, C.; Portafaix, C.; Reichle, R.; Roche, H.; Saille, A.; Vallet, S

    2004-07-01

    Tore-Supra has a steady-state magnetic field using super-conducting magnets and water-cooled plasma facing components for high performances long pulse plasma discharges. When not actively cooled, plasma-facing components can only accumulate a limited amount of energy since the temperature increase continuously (T proportional to {radical}(t)) during the discharge until radiation cooling is equal to the incoming heat flux (T > 1800 K). Such an environment is found in most today Tokamaks. In the present paper we report the recent results of Tore-Supra, especially the design of the new generation of infrared endoscopes to measure the surface temperature of the plasma facing components. The Tore-Supra infrared thermography system is composed of 7 infrared endoscopes, this system is described in details in the paper, the new JET infrared thermography system is presented and some insights of the ITER set of visible/infrared endoscope is given. (authors)

  9. Hybrid plasmachemical reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lelevkin, V. M., E-mail: lelevkin44@mail.ru; Smirnova, Yu. G.; Tokarev, A. V. [Kyrgyz-Russian Slavic University (Kyrgyzstan)

    2015-04-15

    A hybrid plasmachemical reactor on the basis of a dielectric barrier discharge in a transformer is developed. The characteristics of the reactor as functions of the dielectric barrier discharge parameters are determined.

  10. Attrition reactor system

    Science.gov (United States)

    Scott, Charles D.; Davison, Brian H.

    1993-01-01

    A reactor vessel for reacting a solid particulate with a liquid reactant has a centrifugal pump in circulatory flow communication with the reactor vessel for providing particulate attrition, resulting in additional fresh surface where the reaction can occur.

  11. Guidebook to nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nero, A.V. Jr.

    1976-05-01

    A general introduction to reactor physics and theory is followed by descriptions of commercial nuclear reactor types. Future directions for nuclear power are also discussed. The technical level of the material is suitable for laymen.

  12. Design of conduction cooling system for a high current HTS DC reactor

    Science.gov (United States)

    Dao, Van Quan; Kim, Taekue; Le Tat, Thang; Sung, Haejin; Choi, Jongho; Kim, Kwangmin; Hwang, Chul-Sang; Park, Minwon; Yu, In-Keun

    2017-07-01

    A DC reactor using a high temperature superconducting (HTS) magnet reduces the reactor’s size, weight, flux leakage, and electrical losses. An HTS magnet needs cryogenic cooling to achieve and maintain its superconducting state. There are two methods for doing this: one is pool boiling and the other is conduction cooling. The conduction cooling method is more effective than the pool boiling method in terms of smaller size and lighter weight. This paper discusses a design of conduction cooling system for a high current, high temperature superconducting DC reactor. Dimensions of the conduction cooling system parts including HTS magnets, bobbin structures, current leads, support bars, and thermal exchangers were calculated and drawn using a 3D CAD program. A finite element method model was built for determining the optimal design parameters and analyzing the thermo-mechanical characteristics. The operating current and inductance of the reactor magnet were 1,500 A, 400 mH, respectively. The thermal load of the HTS DC reactor was analyzed for determining the cooling capacity of the cryo-cooler. The study results can be effectively utilized for the design and fabrication of a commercial HTS DC reactor.

  13. NUCLEAR REACTOR CONTROL SYSTEM

    Science.gov (United States)

    Epler, E.P.; Hanauer, S.H.; Oakes, L.C.

    1959-11-01

    A control system is described for a nuclear reactor using enriched uranium fuel of the type of the swimming pool and other heterogeneous nuclear reactors. Circuits are included for automatically removing and inserting the control rods during the course of normal operation. Appropriate safety circuits close down the nuclear reactor in the event of emergency.

  14. Lifetime evaluation of plasma-facing materials during a tokamak disruption

    Energy Technology Data Exchange (ETDEWEB)

    Hassanein, A. [Argonne National Lab., Argonne, IL (United States); Konkashbaev, I. [Troitsk Inst. for Innovation, Troitsk (Russian Federation)

    1995-09-01

    Erosion losses of plasma-facing materials in a tokamak reactor during major disruptions, giant ELMS, and large power excursions are serious concerns that influence component survivability and overall lifetime. Two different mechanisms lead to material erosion during these events: surface vaporization and loss of the melt layer. Hydrodynamics and radiation transport in the rapidly developed vapor-cloud region above the exposed area are found to control and determine the net erosion thickness from surface vaporization. A comprehensive self-consistent kinetic model has been developed in which the time-dependent optical properties and the radiation field of the vapor cloud are calculated in order to correctly estimate the radiation flux at the divertor surface. The developed melt layer of metallic divertor materials will, however, be free to move and can be eroded away due to various forces. , Physical mechanisms that affect surface vaporization and cause melt layer erosion are integrated in a comprehensive model. It is found that for metallic components such as beryllium and tungsten, lifetime due to these abnormal events will be controlled and dominated by the evolution and hydrodynamics of the melt layer during the disruption. The dependence of divertor plate lifetime on various aspects of plasma/material interaction physics is discussed.

  15. Helium, Iron and Electron Particle Transport and Energy Transport Studies on the TFTR Tokamak

    Science.gov (United States)

    Synakowski, E. J.; Efthimion, P. C.; Rewoldt, G.; Stratton, B. C.; Tang, W. M.; Grek, B.; Hill, K. W.; Hulse, R. A.; Johnson, D .W.; Mansfield, D. K.; McCune, D.; Mikkelsen, D. R.; Park, H. K.; Ramsey, A. T.; Redi, M. H.; Scott, S. D.; Taylor, G.; Timberlake, J.; Zarnstorff, M. C. (Princeton Univ., NJ (United States). Plasma Physics Lab.); Kissick, M. W. (Wisconsin Univ., Madison, WI (United States))

    1993-03-01

    Results from helium, iron, and electron transport on TFTR in L-mode and Supershot deuterium plasmas with the same toroidal field, plasma current, and neutral beam heating power are presented. They are compared to results from thermal transport analysis based on power balance. Particle diffusivities and thermal conductivities are radially hollow and larger than neoclassical values, except possibly near the magnetic axis. The ion channel dominates over the electron channel in both particle and thermal diffusion. A peaked helium profile, supported by inward convection that is stronger than predicted by neoclassical theory, is measured in the Supershot The helium profile shape is consistent with predictions from quasilinear electrostatic drift-wave theory. While the perturbative particle diffusion coefficients of all three species are similar in the Supershot, differences are found in the L-Mode. Quasilinear theory calculations of the ratios of impurity diffusivities are in good accord with measurements. Theory estimates indicate that the ion heat flux should be larger than the electron heat flux, consistent with power balance analysis. However, theoretical values of the ratio of the ion to electron heat flux can be more than a factor of three larger than experimental values. A correlation between helium diffusion and ion thermal transport is observed and has favorable implications for sustained ignition of a tokamak fusion reactor.

  16. Vertical Position and Current Profile Measurements by Faraday-effect Polarimetry On EAST tokamak

    Science.gov (United States)

    Ding, Weixing; Liu, H. Q.; Jie, Y. X.; Brower, D. L.; Qian, J. P.; Zou, Z. Y.; Lian, H.; Wang, S. X.; Luo, Z. P.; Xiao, B. J.; Ucla Team; Asipp Team

    2017-10-01

    A primary goal for ITER and prospective fusion power reactors is to achieve controlled long-pulse/steady-state burning plasmas. For elongated divertor plasmas, both the vertical position and current profile have to be precisely controlled to optimize performance and prevent disruptions. An eleven-channel laser-based POlarimeter-INTerferometer (POINT) system has been developed for measuring the internal magnetic field in the EAST tokamak and can be used to obtain the plasma current profile and vertical position. Current profiles are determined from equilibrium reconstruction including internal magnetic field measurements as internal constraints. Horizontally-viewing chords at/near the mid-plane allow us to determine plasma vertical position non-inductively with subcentimeter spatial resolution and time response up to 1 s. The polarimeter-based position measurement, which does not require equilibrium reconstruction, is benchmarked against conventional flux loop measurements and can be exploited for feedback control. Work supported by US DOE through Grants No. DE-FG02-01ER54615 and No. DC-SC0010469.

  17. The science program of the TCV tokamak: exploring fusion reactor and power plant concepts

    Science.gov (United States)

    Coda, S.; TCV Team

    2015-10-01

    TCV is acquiring a new 1 MW neutral beam and 2 MW additional third-harmonic electron cyclotron resonance heating (ECRH) to expand its operational range. Its existing shaping and ECRH launching versatility was amply exploited in an eclectic 2013 campaign. A new sub-ms real-time equilibrium reconstruction code was used in ECRH control of NTMs and in a prototype shape controller. The detection of visible light from the plasma boundary was also successfully used in a position-control algorithm. A new bang-bang controller improved stability against vertical displacements. The RAPTOR real-time transport simulator was employed to control the current density profile using electron cyclotron current drive. Shot-by-shot internal inductance optimization was demonstrated by iterative learning control of the current reference trace. Systematic studies of suprathermal electrons and ions in the presence of ECRH were performed. The L-H threshold power was measured to be ˜50-75% higher in both H and He than D, to increase with the length of the outer separatrix, and to be independent of the current ramp rate. Core turbulence was found to decrease from positive to negative edge triangularity deep into the core. The geodesic acoustic mode was studied with multiple diagnostics, and its axisymmetry was confirmed by a full toroidal mapping of its magnetic component. A new theory predicting a toroidal rotation component at the plasma edge, driven by inhomogeneous transport and geodesic curvature, was tested successfully. A new high-confinement mode (IN-mode) was found with an edge barrier in density but not in temperature. The edge gradients were found to govern the scaling of confinement with current, power, density and triangularity. The dynamical interplay of confinement and magnetohydrodynamic modes leading to the density limit in TCV was documented. The heat flux profile decay lengths and heat load profile on the wall were documented in limited plasmas. In the snowflake (SF) divertor configuration the heat flux profiles were documented on all four strike points. SF simulations with the EMC3-EIRENE code, including the physics of the secondary separatrix, underestimate the flux to the secondary strike points, possibly resulting from steady-state E × B drifts. With neon injection, radiation in a SF was 15% higher than in a conventional divertor. The novel triple-null and X-divertor configurations were also achieved in TCV.

  18. Current drive in a tokamak reactor during the heating of fast. cap alpha. particles

    Energy Technology Data Exchange (ETDEWEB)

    Krasheninnikov, S.I.; Soboleva, T.K.

    1987-02-01

    Expressions are derived for the efficiency of the current drive in the approximation of a straight magnetic field through a solution of the kinetic equation for the distribution function of ..cap alpha.. particles as they are heated by rf waves. Three mechanisms for the absorption of the rf power in plasma are examined: cyclotron absorption at the fundamental frequency, Landau damping, and magnetic Landau damping. The efficiency of this method is shown to be at worst no lower than the efficiencies of methods involving electron heating.

  19. Concept definition of KT-2, a large-aspect-ratio diverter tokamak with FWCD

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung Kyoo; Chang, In Soon; Chung, Moon Kyoo; Hwang, Chul Kyoo; Lee, Kwang Won; In, Sang Ryul; Choi, Byung Ho; Hong, Bong Keun; Oh, Byung Hoon; Chung, Seung Ho; Yoon, Byung Joo; Yoon, Jae Sung; Song, Woo Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Chang, Choong Suk; Chang, Hong Yung; Choi, Duk In; Nam, Chang Heui [Korea Advanced Inst. of Science and Technology, Taejon (Korea, Republic of); Chung, Kyoo Sun [Hanyang Univ., Seoul (Korea, Republic of); Hong, Sang Heui [Seoul National Univ., Seoul (Korea, Republic of); Kang, Heui Dong [Kyungpook National Univ., Taegu (Korea, Republic of); Lee, Jae Koo [Pohang Inst. of Science and Technology, Kyungnam (Korea, Republic of)

    1994-11-01

    A concept definition of the KT-2 tokamak is made. The research goal of the machine is to study the `advanced tokamak` physics and engineering issues on the mid size large-aspect-ratio diverter tokamak with intense RF heating (>5 MW). Survey of the status of the research fields, the physics basis for the concept, operation scenarios, as well as machine design concept are presented. (Author) 86 refs., 17 figs., 22 tabs.

  20. Quantum acoustics with superconducting qubits

    Science.gov (United States)

    Chu, Yiwen; Kharel, Prashanta; Renninger, William H.; Burkhart, Luke D.; Frunzio, Luigi; Rakich, Peter T.; Schoelkopf, Robert J.

    2017-10-01

    Mechanical objects have important practical applications in the fields of quantum information and metrology as quantum memories or transducers for measuring and connecting different types of quantum systems. The field of electromechanics is in pursuit of a robust and highly coherent device that couples motion to nonlinear quantum objects such as superconducting qubits. Here, we experimentally demonstrate a high-frequency bulk acoustic wave resonator that is strongly coupled to a superconducting qubit using piezoelectric transduction with a cooperativity of 260. We measure qubit and mechanical coherence times on the order of 10 microseconds. Our device requires only simple fabrication methods and provides controllable access to a multitude of phonon modes. We demonstrate quantum control and measurement on gigahertz phonons at the single-quantum level.

  1. Technical tasks in superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Kenji [High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan)

    1997-11-01

    The feature of superconducting rf cavities is an extremely small surface resistance on the wall. It brings a large energy saving in the operation, even those are cooled with liquid helium. That also makes possible to operate themselves in a higher field gradient comparing to normal conducting cavities, and brings to make accelerators compact. These merits are very important for the future accelerator engineering which is planed at JAERI for the neutron material science and nuclear waste transmutation. This machine is a high intensity proton linac and uses sc cavities in the medium and high {beta} sections. In this paper, starting R and D of proton superconducting cavities, several important technical points which come from the small surface resistance of sc cavities, are present to succeed it and also differences between the medium and high - {beta} structures are discussed. (author)

  2. Mixed-parity superconductivity in centrosymmetric crystals

    OpenAIRE

    Sergienko, I. A.

    2003-01-01

    A weak-coupling formalism for superconducting states possessing both singlet (even parity) and triplet (odd parity) components of the order parameter in centrosymmetric crystals is developed. It is shown that the quasiparticle energy spectrum may be non-degenerate even if the triplet component is unitary. The superconducting gap of a mixed-parity state may have line nodes in the strong spin-orbit coupling limit. The pseudospin carried by the superconducting electrons is calculated, from which...

  3. Quantum fluctuations of the superconducting cosmic string

    Science.gov (United States)

    Zhang, Shoucheng

    1987-01-01

    Quantum fluctuations of the proposed superconducting string with Bose charge carriers are studied in terms of the vortices on the string world sheet. In the thermodynamical limit, it is found that they appear in the form of free vortices rather than as bound pairs. This fluctuation mode violates the topological conservation law on which superconductivity is based. However, this limit may not be reached. The critical size of the superconducting string is estimated as a function of the coupling constants involved.

  4. Superconducting states of pure and doped graphene.

    Science.gov (United States)

    Uchoa, Bruno; Castro Neto, A H

    2007-04-06

    We study the superconducting phases of the two-dimensional honeycomb lattice of graphene. We find two spin singlet pairing states; s wave and an exotic p+ip that is possible because of the special structure of the honeycomb lattice. At half filling, the p+ip phase is gapless and superconductivity is a hidden order. We discuss the possibility of a superconducting state in metal coated graphene.

  5. Superconducting states of pure and doped graphene

    OpenAIRE

    Uchoa, Bruno; Neto, A. H. Castro

    2006-01-01

    We study the superconducting phases of the two-dimensional honeycomb lattice of graphene. We find two spin singlet pairing states, s-wave and an exotic $p+ip$ that is possible because of the special structure of the honeycomb lattice. At half filling, the $p+ip$ phase is gapless and superconductivity is a hidden order. We discuss the possibility of a superconducting state in metal coated graphene.

  6. Superconductivity of Thin Film Intermetallic Compounds.

    Science.gov (United States)

    1985-09-15

    D-RISE 2?I SUPERCONDUCTIVITY OF THIN FILM INTERMETLLIC COMPOUNDS I/i. (U) MINNESOTR UNIV MINNERPOLIS SCHOOL OF PHYSICS AND RSTRONOMY R M GOLDMRN 15...parameters to either higher temperatures of higher critical fields. Materials under study are the superconducting Chevrel phase compounds, selected Heavy...superconducting field effect. Processing of the Chevrel Phase I compounds is carried out in a multi-source deposition system. The latter has been upgraded and

  7. Controlled interactions in superconducting quantum circuits

    Energy Technology Data Exchange (ETDEWEB)

    Wulschner, Karl Friedrich

    2016-09-14

    This thesis deals with controlled interactions between superconducting circuit elements for quantum computation and simulation applications. First, the electrical design and measurements of transmon type qubits, which are coupled to superconducting resonators, are presented. Secondly the controllable coupling of superconducting microwave resonators via an rf SQUID is experimentally investigated. Thirdly, a theoretical discussion about interaction and entanglement of a microwave resonator with a nanomechanical beam via an rf SQUID is discussed.

  8. Experimental setup to detect superconducting wire motion

    OpenAIRE

    K. Ruwali; A. Yamanaka; Y. Teramoto; K. Nakanishi; K. Hosoyama

    2009-01-01

    An experimental setup was designed and fabricated to study superconducting wire motion under the influence of electromagnetic force. Experiments were conducted at 4.2 K by varying the experimental conditions such as the tension to the superconducting wire and different insulating materials at the interface of the superconducting wire and head part. The insulating materials used in the experiments were polyimide film and a high strength polyethylene fiber cloth, Dyneema. Details of the experim...

  9. Nanoscale high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, P.; Wei, J.Y.T.; Ananth, V.; Morales, P.; Skocpol, W

    2004-08-01

    We discuss the exciting prospects of studying high-temperature superconductivity in the nanometer scale from the perspective of experiments, theory and simulation. In addition to enabling studies of novel quantum phases in an unexplored regime of system dimensions and parameters, nanoscale high-temperature superconducting structures will allow exploration of fundamental mechanisms with unprecedented insight. The prospects include, spin-charge separation, detection of electron fractionalization via novel excitations such as vison, stripe states and their dynamics, preformed cooper pairs or bose-condensation in the underdoped regime, and other quantum-ordered states. Towards this initiative, we present the successful development of a novel nanofabrication technique for the epitaxial growth of nanoscale cuprates. Combining the techniques of e-beam lithography and nanomachining, we have been able to fabricate the first generation of high-temperature superconducting nanoscale devices, including Y-junctions, four-probe wires and rings. Their initial transport characterization and scanning tunneling microscopy reveal the integrity of the crystal structure, grown on nanometer scale lateral dimensions. Here, we present atomic force micrographs and electrical characterization of a few nanoscale YBa{sub 2}Cu{sub 3}O{sub 7} (YBCO) samples.

  10. Attenuation in Superconducting Circular Waveguides

    Directory of Open Access Journals (Sweden)

    K. H. Yeap

    2016-09-01

    Full Text Available We present an analysis on wave propagation in superconducting circular waveguides. In order to account for the presence of quasiparticles in the intragap states of a superconductor, we employ the characteristic equation derived from the extended Mattis-Bardeen theory to compute the values of the complex conductivity. To calculate the attenuation in a circular waveguide, the tangential fields at the boundary of the wall are first matched with the electrical properties (which includes the complex conductivity of the wall material. The matching of fields with the electrical properties results in a set of transcendental equations which is able to accurately describe the propagation constant of the fields. Our results show that although the attenuation in the superconducting waveguide above cutoff (but below the gap frequency is finite, it is considerably lower than that in a normal waveguide. Above the gap frequency, however, the attenuation in the superconducting waveguide increases sharply. The attenuation eventually surpasses that in a normal waveguide. As frequency increases above the gap frequency, Cooper pairs break into quasiparticles. Hence, we attribute the sharp rise in attenuation to the increase in random collision of the quasiparticles with the lattice structure.

  11. Ballistic superconductivity in semiconductor nanowires.

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K; van Veen, Jasper; de Moor, Michiel W A; Bommer, Jouri D S; van Woerkom, David J; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P A M; Quintero-Pérez, Marina; Cassidy, Maja C; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P

    2017-07-06

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

  12. Nuclear reactor overflow line

    Science.gov (United States)

    Severson, Wayne J.

    1976-01-01

    The overflow line for the reactor vessel of a liquid-metal-cooled nuclear reactor includes means for establishing and maintaining a continuous bleed flow of coolant amounting to 5 to 10% of the total coolant flow through the overflow line to prevent thermal shock to the overflow line when the reactor is restarted following a trip. Preferably a tube is disposed concentrically just inside the overflow line extending from a point just inside the reactor vessel to an overflow tank and a suction line is provided opening into the body of liquid metal in the reactor vessel and into the annulus between the overflow line and the inner tube.

  13. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  14. Nuclear reactor physics

    CERN Document Server

    Stacey, Weston M

    2010-01-01

    Nuclear reactor physics is the core discipline of nuclear engineering. Nuclear reactors now account for a significant portion of the electrical power generated worldwide, and new power reactors with improved fuel cycles are being developed. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. The second edition of this successful comprehensive textbook and reference on basic and advanced nuclear reactor physics has been completely updated, revised and enlarged to include the latest developme

  15. Stability analysis of tokamak plasmas; Analyse de stabilite de plasmas de tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Bourdelle, C

    2000-10-01

    In a tokamak plasma, the energy transport is mainly turbulent. In order to increase the fusion reactions rate, it is needed to improve the energy confinement. The present work is dedicated to the identification of the key parameters leading to plasmas with a better confined energy in order to guide the future experiments. For this purpose, a numerical code has been developed. It calculates the growth rates characterizing the instabilities onset. The stability analysis is completed by the evaluation of the shearing rate of the rotation due to the radial electric field. When this shearing rate is greater than the growth rate the ion turbulence is fully stabilised. The shearing rate and the growth rate are determined from the density, temperature and security factor profiles of a given plasma. Three types of plasmas have been analysed. In the Radiative Improved modes of TEXTOR, high charge number ions seeding lowers the growth rates. In Tore Supra-high density plasmas, a strong magnetic shear and/or a more efficient ion heating linked to a bifurcation of the toroidal rotation direction (which is not understood) trigger the improvement of the confinement. In other Tore Supra plasmas, locally steep electron pressure gradients have been obtained following magnetic shear reversal. This locally negative magnetic shear has a stabilizing effect. In these three families of plasmas, the growth rates decrease, the confinement improves, the density and temperature profiles are steeper. This steepening induces an increase of the rotation shearing rate, which then maintains the confinement high quality. (author)

  16. Using fiberglass volumes for VPI of superconductive magnetic systems' insulation

    Science.gov (United States)

    Andreev, I. S.; Bezrukov, A. A.; Bursikov, A. S.; Klimchenko, Y. A.; Marushin, E. L.; Mednikov, A. A.; Pischugin, A. B.; Rodin, I. Y.; Stepanov, D. B.

    2014-01-01

    The paper describes the method of manufacturing fiberglass molds for vacuum pressure impregnation (VPI) of high-voltage insulation of superconductive magnetic systems (SMS) with epoxidian hot-setting compounds. The basic advantages of using such vacuum volumes are improved quality of insulation impregnation in complex-shaped areas, and considerable cost-saving of preparing VPI of large-sized components due to dispensing with the stage of fabricating a metal impregnating volume. Such fiberglass vacuum molds were used for VPI of high-voltage insulation samples of an ITER reactor's PF1 poloidal coil. Electric insulation of these samples has successfully undergone a wide range of high-voltage and mechanical tests at room and cryogenic temperatures. Some results of the tests are also given in this paper.

  17. High Power CW Superconducting Linacs for EURISOL and XADS

    CERN Document Server

    Biarrotte, J L

    2004-01-01

    A multi-MW superconducting proton linac is proposed as the baseline solution for the EURISOL and the XADS driver accelerators. In the EURISOL project, which studies the design of the next-generation European ISOL facility, it is used to produce both neutron-deficient and neutron-rich exotic nuclei far from the valley of stability. In the PDS-XADS project, which aims to the demonstration of the feasibility of an ADS system for nuclear waste transmutation, it is used to produce the neutron flux required by the associated sub-critical reactor. In this paper, we report the main results and conclusions reached within these preliminary design studies. A special emphasis is given on the on-going and future R&D to be done to accomplish the demonstration of the full technology.

  18. Mechanical Design of Superconducting Accelerator Magnets

    CERN Document Server

    Toral, Fernando

    2014-07-17

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  19. Search for superconductivity of magnetic metals

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, K [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Furomoto, S [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Kimura, T [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Shimizu, K [Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Onuki, Y [Graduate School of Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan)

    2002-11-11

    A search for superconductivity of magnetic elemental metals is performed. A successful discovery of the onset of superconductivity is reported in the case of iron under pressure. By electrical resistance measurement, a maximum value of the superconducting transition temperature T{sub c} of 2 K and the upper critical magnetic field H{sub c} of 0.2 T are observed under pressure of 20 GPa where iron is in the crystallographic hcp phase and non-magnetic. Further confirmation of the superconducting transition of hcp iron was obtained by the detection of the diamagnetic signal due to the Meissner effect in accordance with the results of the electrical resistance measurements.

  20. Search for superconductivity of magnetic metals

    CERN Document Server

    Amaya, K; Kimura, T; Shimizu, K; Onuki, Y

    2002-01-01

    A search for superconductivity of magnetic elemental metals is performed. A successful discovery of the onset of superconductivity is reported in the case of iron under pressure. By electrical resistance measurement, a maximum value of the superconducting transition temperature T sub c of 2 K and the upper critical magnetic field H sub c of 0.2 T are observed under pressure of 20 GPa where iron is in the crystallographic hcp phase and non-magnetic. Further confirmation of the superconducting transition of hcp iron was obtained by the detection of the diamagnetic signal due to the Meissner effect in accordance with the results of the electrical resistance measurements.