WorldWideScience

Sample records for superconducting technology offers

  1. Superconducting Technology Assessment

    Science.gov (United States)

    2005-08-01

    of Nb/Al- Nx /NbTiN junctions for SIS mixer applications,” IEEE Trans. Appl. Superconduct., vol. 11, pp. 76–79, Mar. 2001. [48] M. Gurvitch, W. A...Another connector developed by IBM for commercial applications using a dendritic interposer technology. A “beam-on-pad” approach developed by Siemens

  2. Superconducting Radio Frequency Technology: An Overview

    Energy Technology Data Exchange (ETDEWEB)

    Peter Kneisel

    2003-06-01

    Superconducting RF cavities are becoming more often the choice for larger scale particle accelerator projects such as linear colliders, energy recovery linacs, free electron lasers or storage rings. Among the many advantages compared to normal conducting copper structures, the superconducting devices dissipate less rf power, permit higher accelerating gradients in CW operation and provide better quality particle beams. In most cases these accelerating cavities are fabricated from high purity bulk niobium, which has superior superconducting properties such as critical temperature and critical magnetic field when compared to other superconducting materials. Research during the last decade has shown, that the metallurgical properties--purity, grain structure, mechanical properties and oxidation behavior--have significant influence on the performance of these accelerating devices. This contribution attempts to give a short overview of the superconducting RF technology with emphasis on the importance of the material properties of the high purity niobium.

  3. CLIQ. A new quench protection technology for superconducting magnets

    CERN Document Server

    Ravaioli, Emmanuele; ten Kate, H H J

    CLIQ, the Coupling-Loss Induced Quench system, is a new method for protecting superconducting magnets after a sudden transition to the normal state. It offers significant advantages over the conventional technology due to its effective mechanism for heating the superconductor relying on coupling loss and its robust electrical design, which makes it more reliable and less interfering with the coil winding process. The analysis of the electro-magnetic and thermal transients during and after a CLIQ discharge allows identifying the system parameters that affect the system performance and defining guidelines for implementing this technology on coils of various characteristics. Most existing superconducting magnets can be protected by CLIQ as convincingly shown by test results performed on magnets of different sizes, superconductor types, geometries, cables and strand parameters. Experimental results are successfully reproduced by means of a novel technique for modeling non-linear dynamic effects in superconducting...

  4. Future of IT, PT and superconductivity technology

    Science.gov (United States)

    Tanaka, Shoji

    2003-10-01

    Recently the Information Technology is developing very rapidly and the total traffic on the Internet is increasing dramatically. The numerous equipments connected to the Internet must be operated at very high-speed and the electricity consumed in the Internet is also increasing. Superconductivity devices of very high-speed and very low power consumption must be introduced. These superconducting devices will play very important roles in the future information society. Coated conductors will be used to generate extremely high magnetic fields of beyond 20 T at low temperatures. At the liquid nitrogen temperature they can find many applications in a wide range of Power Technology and other industries, since we have already large critical current and brilliant magnetic field dependences in some prototypes of coated conductors. It is becoming certain that the market for the superconductivity technology will be opened between the years of 2005 and 2010.

  5. Offers

    CERN Multimedia

    Staff Association

    2012-01-01

    proposes the following offer: 15% discount for the Staff Association members who enroll their children in summer FUTUREKIDS activities. Extracurricular Activities For Your Children The FUTUREKIDS Geneva Learning Center is open 6 days a week and offers a selection of after-school extracurricular activities for children and teenagers (ages 5 to 16). In addition to teaching in its Learning Centers, Futurekids collaborates with many private schools in Suisse Romande (Florimont, Moser, Champittet, Ecole Nouvelle, etc.) and with the Département de l'Instruction Publique (DIP) Genève. Courses and camps are usually in French but English groups can be set up on demand. FUTUREKIDS Computer Camps (during school holidays) FUTUREKIDS Computer Camps are a way of having a great time during vacations while learning something useful, possibly discovering a new hobby or even, why not, a future profession. Our computer camps are at the forefront of technology. Themes are diverse and suit all ...

  6. Accelerator Technology: Magnets, Normal and Superconducting

    CERN Document Server

    Bottura, L

    2013-01-01

    This document is part of Subvolume C 'Accelerators and Colliders' of Volume 21 'Elementary Particles' of Landolt-Börnstein - Group I 'Elementary Particles, Nuclei and Atoms'. It contains the the Section '8.1 Magnets, Normal and Superconducting' of the Chapter '8 Accelerator Technology' with the content: 8.1 Magnets, Normal and Superconducting 8.1.1 Introduction 8.1.2 Normal Conducting Magnets 8.1.2.1 Magnetic Design 8.1.2.2 Coils 8.1.2.3 Yoke 8.1.2.4 Costs 8.1.2.5 Undulators, Wigglers, Permanent Magnets 8.1.2.6 Solenoids 8.1.3 Superconducting Magnets 8.1.3.1 Superconducting Materials 8.1.3.2 Superconducting Cables 8.1.3.3 Stability and Margins, Quench and Protection 8.1.3.4 Magnetization, Coupling and AC Loss 8.1.3.5 Magnetic Design of Superconducting Accelerator Magnets 8.1.3.6 Current Leads 8.1.3.7 Mechanics, Insulation, Cooling and Manufacturing Aspects

  7. Theory and technology for superconducting cavities

    CERN Document Server

    Lengeler, Herbert

    1993-01-01

    The course will address Physicist and Engineers who are newcomers in the field of accelerators and accelerating cavities. The elements of RF-Superconductivity will be presented with special relevance to accelerating cavities. The present ststus of achievable accelerating fields and RF losses will be given and their link to the special technologies for cavity fabrication and surface treatments will be stressed. Cavity auxiliaries like main couplers, higher order mode couplers and frequency tuners will be described.

  8. Superconductivity

    Science.gov (United States)

    1989-07-01

    SUPERCONDUCTIVITY HIGH-POWER APPLICATIONS Electric power generation/transmission Energy storage Acoustic projectors Weapon launchers Catapult Ship propulsion • • • Stabilized...temperature superconductive shields could be substantially enhanced by use of high-Tc materials. 27 28 NRAC SUPERCONDUCTIVITY SHIP PROPULSION APPLICATIONS...motor shown in the photograph. As a next step in the evolution of electric-drive ship propulsion technology, DTRC has proposed to scale up the design

  9. Offers

    CERN Multimedia

    Staff Association

    2011-01-01

    Special offers for our members       Go Sport in Val Thoiry is offering 15% discount on all purchases made in the shop upon presentation of the Staff Association membership card (excluding promotions, sale items and bargain corner, and excluding purchases using Go Sport  and Kadéos gift cards. Only one discount can be applied to each purchase).  

  10. Offers

    CERN Multimedia

    Staff Association

    2012-01-01

    L'Occitane en Provence proposes the following offer: 10 % discount on all products in all L'Occitane shops in Metropolitan France upon presentation of your Staff Association membership card and a valid ID. This offer is valid only for one person, is non-transferable and cannot be combined with other promotions.

  11. Offers

    CERN Multimedia

    Staff Association

    2014-01-01

    New offers : Discover the theater Galpon in Geneva. The Staff Association is happy to offer to its members a discount of 8.00 CHF on a full-price ticket (tickets of 15.00 CHF instead of 22.00 CHF) so do not hesitate anymore (mandatory reservation by phone + 4122 321  21 76 as tickets are quickly sold out!). For further information, please see our website: http://staff-association.web.cern.ch/fr/content/th%C3%A9%C3%A2tre-du-galpon  

  12. Offer

    CERN Multimedia

    Staff Association

    2016-01-01

    CERN was selected and participated in the ranking "Best Employers" organized by the magazine Bilan. To thank CERN for its collaboration, the magazine offers a reduction to the subscription fee for all employed members of personnel. 25% off the annual subscription: CHF 149.25 instead of CHF 199 .— The subscription includes the magazine delivered to your home for a year, every other Wednesday, as well as special editions and access to the e-paper. To benefit from this offer, simply fill out the form provided for this purpose. To get the form, please contact the secretariat of the Staff Association (Staff.Association@cern.ch).

  13. Offers

    CERN Multimedia

    Staff Association

    2013-01-01

    SPECIAL OFFER FOR OUR MEMBERS Prices Spring and Summer 2013 Day ticket: same price weekends, public holidays and weekdays: Children from 5 to 15 years old: 30 CHF instead of 39 CHF Adults from 16 years old: 36 CHF instead of 49 CHF Bonus! Free for children under 5 Tickets available at the Staff Association Secretariat.

  14. Offers

    CERN Multimedia

    Association du personnel

    2013-01-01

    SPECIAL OFFER FOR OUR MEMBERS Prices Spring and Summer 2013 Day ticket: same price weekends, public holidays and weekdays: – Children from 5 to 15 years old: 30 CHF instead of 39 CHF – Adults from 16 years old: 36 CHF instead of 49 CHF – Bonus! Free for children under 5 Tickets available at the Staff Association Secretariat.

  15. Offers

    CERN Multimedia

    Staff Association

    2013-01-01

    The theater season will start again, so do not hesitate to benefit from our discount: Théâtre de Carouge : Discount for all shows and on various season tickets. La Comédie : reduction on various tickets, on annual subscriptions and on discounted card. For further information, see our website: http://staff-association.web.cern.ch/sociocultural/offers

  16. Offers

    CERN Multimedia

    Staff Association

    2015-01-01

    New offer for our members. The Staff Association CERN staff has recently concluded a framework agreement with AXA Insurance Ltd, General-Guisan-Strasse 40, 8401 Winterthur. This contract allows you to benefit from a preferential tariff and conditions for insurances: Motor vehicles for passenger cars and motorcycles of the product line STRADA: 10% discount Household insurance (personal liability and household contents) the product line BOX: 10% discount Travel insurance: 10% discount Buildings: 10% discount Legal protection: 10% discount AXA is number one on the Swiss insurance market. The product range encompasses all non-life insurance such as insurance of persons, property, civil liability, vehicles, credit and travel as well as innovative and comprehensive solutions in the field of occupational benefits insurance for individuals and businesses. Finally, the affiliate AXA-ARAG (legal expenses insurance) completes the offer. Armed with your staff association CERN card, you can always get the offe...

  17. Offer

    CERN Multimedia

    Staff Association

    2010-01-01

      Special offer for members of the Staff Association and their families 10% reduction on all products in the SEPHORA shop (sells perfume, beauty products etc.) in Val Thoiry ALL YEAR ROUND. Plus 20% reduction during their “vente privée”* three or four times a year. Simply present your Staff Association membership card when you make your purchase. * Next “vente privée” from 22th to 29th November 2010

  18. Offer

    CERN Multimedia

    Staff Association

    2011-01-01

      Special offer for members of the Staff Association and their families 10% reduction on all products in the SEPHORA shop (sells perfume, beauty products etc.) in Val Thoiry ALL YEAR ROUND. Plus 20% reduction during their “vente privée”* three or four times a year. Simply present your Staff Association membership card when you make your purchase. * Next “vente privée” from 25th to 27th March 2011  

  19. Offer

    CERN Multimedia

    CARLSON WAGONLIT TRAVEL

    2011-01-01

    Special offer   From 14th to 28th February 2011: no CWT service fee! For any new reservation of a holiday package (flight + hotel/apartment) from a catalog “summer 2011” For any additional information our staff is at your disposal from Monday – Friday, from 8h30 to 16h30. Phone number 72763 or 72797 Carlson Wagonlit Tavel, Agence du CERN  

  20. Offers

    CERN Multimedia

    Staff Association

    2012-01-01

    SPECIAL OFFER FOR OUR MEMBERS Prices Spring and Summer 2012 Half-day ticket: 5 hours, same price weekends, public holidays and weekdays. Children from 5 to 15 years old: 26 CHF instead of 35 CHF Adults from 16 years old: 32 CHF instead of 43 CHF Bonus! Free for children under 5. Aquaparc Les Caraïbes sur Léman 1807 Le Bouveret (VS)

  1. Offers

    CERN Document Server

    Staff Association

    2012-01-01

    SPECIAL OFFER FOR OUR MEMBERS Single tariff Adulte/Enfant Tickets “Zone terrestre” 20 euros instead of 25 euros. Access to Aqualibi: 5 euros instead of 8 euros on presentation of your ticket SA member. Free for children under 3, with limited access to the attractions. More information on our website : http://association.web.cern.ch/association/en/OtherActivities/Walibi.html

  2. Offers

    CERN Multimedia

    Staff Association

    2011-01-01

    Banque cantonale de Genève (BCGE) The BCGE Business partner programme devised for members of the CERN Staff Association offers personalized banking solutions with preferential conditions. The advantages are linked to salary accounts (free account keeping, internet banking, free Maestro and credit cards, etc.), mortgage lending, retirement planning, investment, credit, etc. The details of the programme and the preferential conditions are available on our website: http://association.web.cern.ch/association/en/OtherActivities/BCGE.html.  

  3. Offers

    CERN Multimedia

    Staff Association

    2013-01-01

    Special offer for members of the Staff Association and their families 10 % reduction on all products in the SEPHORA shop (sells perfume, beauty products etc.) in Val Thoiry ALL YEAR ROUND. Plus 20 % reduction during their “vente privée”* three or four times a year. Simply present your Staff Association membership card when you make your purchase. * Next “vente privée” from 11th to 23rd November 2013 Please contact the Staff Association Secretariat to get the discount voucher.  

  4. Offers

    CERN Multimedia

    Staff Association

    2012-01-01

    Special offer for members of the Staff Association and their families 10% reduction on all products in the SEPHORA shop (sells perfume, beauty products etc.) in Val Thoiry ALL YEAR ROUND. Plus 20% reduction during their “vente privée”* three or four times a year. Simply present your Staff Association membership card when you make your purchase. * Next “vente privée” from 21st to 26th May 2012 Please contact the Staff Association Secretariat to get the discount voucher  

  5. Offers

    CERN Multimedia

    Staff Association

    2012-01-01

    Special offer for members of the Staff Association and their families 10 % reduction on all products in the Sephora shop (sells perfume, beauty products etc.) in Val Thoiry all year round. Plus 20 % reduction during their “vente privée”* three or four times a year. Simply present your Staff Association membership card when you make your purchase. * next “vente privée” from 21st November to 1st December 2012 Please contact the Staff Association Secretariat to get the discount voucher.

  6. Offers

    CERN Multimedia

    Staff Association

    2014-01-01

    Passeport Gourmand   Are you dying for a nice meal? The “Passeport Gourmand” offers discounted prices to the members of the Staff Association (available until April 2015 and on sale in the Staff Association Secretariat): Passeport gourmand Ain / Savoie/ Haute Savoie: 56 CHF instead of 79 CHF. Passeport gourmand Geneva / neighbouring France:72 CHF instead of 95 CHF. To the members of the Staff Association: Benefit of reduced tickets: CHF 10 (instead of  18 CHF at the desk) on sale to the secretariat of the Staff Association, Building 510-R010 (in front of the Printshop).

  7. Offers

    CERN Multimedia

    Staff Association

    2014-01-01

    Special offer for members of the Staff Association and their families 10 % reduction on all products in the SEPHORA shop (sells perfume, beauty products etc.) in Val Thoiry ALL YEAR ROUND. Simply present your Staff Association membership card when you make your purchase. Plus 20 % reduction during their “vente privée”* three or four times a year. * Next “vente privée” from 24th September to 6th November 2014 Please contact the Staff Association Secretariat to get the discount voucher.  

  8. Offers

    CERN Multimedia

    Staff Association

    2013-01-01

    The « Théâtre de Carouge » offers a 5.- CHF discount for all shows (30.- CHF instead of 35.- CHF) and for the season tickets "Premières représentations" (132.- CHF instead of 162.- CHF) and "Classique" (150.- CHF instead of 180.- CHF). Please send your reservation by email to smills@tcag.ch via your professional email address. Please indicate the date of your reservation, your name and firstname and your telephone number A confirmation will be sent by email. Your membership card will be asked when you collect the tickets. More information on www.tcag.ch and www.tcag.ch/blog/

  9. Offers

    CERN Multimedia

    Staff Association

    2015-01-01

    New season 2015-2016 The new season was revealed in May, and was warmly welcomed by the press, which is especially enthusiastic about the exceptional arrival of Fanny Ardand in September in the framework of Cassandre show. Discover the programme 2015-2016. The theatre La Comédie proposes different offers to our members Benefit from a reduction of 20 % on a full price ticket during all the season: from 38 CHF to 23 CHF ticket instead of 50 CHF to 30 CHF depending on the show. Buy two seasonal tickets at the price of one (offers valid upon availability, and until 30 september 2015) 2 Cards Libertà for 240 CHF instead of 480 CHF. Cruise freely through the season with 8 perfomances of your choice per season. These cards are transferrable, and can be shared with one or more accompanying persons. 2 Abo Piccolo for 120 CHF instead of 240 CHF. Let yourself be surprised a theatre performance with our discovery seasonal tickets, which includes 4 flagship perfomances for the season. ...

  10. Offer

    CERN Multimedia

    Staff Association

    2015-01-01

    RRP Communication organizes cultural events such as concerts, shows, sporting events. The members of the Staff Association profits from a reduction of 10 CHF per ticket. How to proceed: The ticket reservation is made by mail info@rrp.ch. You need to give the following information: Name of the show, and which date chosen Number of tickets, and category Name and surname Address Telephone number Mention “offer CERN”, and attach a photocopy of your Staff Association member card. After your reservation, you will be sent a copy with a payslip to the address mentioned above. Once paid, the members have the possibility to: pick up their ticket(s) from the cash register the evening of the show (opens 1 hour before the show) by showing their member card; receive the ticket(s) to the address indicated above, by registered mail, subject to an extra cost of 10CHF. Next show : More information at http://www.rrp.ch/

  11. Offers

    CERN Document Server

    Staff Association

    2013-01-01

    FUTUREKIDS proposes 15% discount for the Staff Association members who enroll their children in FUTUREKIDS activities. New workshop for 12-15 year olds, on how to develop applications for Android phones. Easter activities calendar Extracurricular Activities For Your Children The FUTUREKIDS Geneva Learning Center is open 6 days a week and offers a selection of after-school extracurricular activities for children and teenagers (ages 5 to 16). In addition to teaching in its Learning Centers, Futurekids collaborates with many private schools in Suisse Romande (Florimont, Moser, Champittet, Ecole Nouvelle, etc.) and with the Département de l'Instruction Publique (DIP) Genève. Courses and camps are usually in French but English groups can be set up on demand. FUTUREKIDS Computer Camps (during school holidays) FUTUREKIDS Computer Camps are a way of having a great time during vacations while learning something useful, possibly discovering a new hobby or even, why not, a fut...

  12. Offers

    CERN Multimedia

    Association du personnel

    2010-01-01

    THEATRE FORUM DE MEYRIN 1, place des Cinq-Continents 1217 Meyrin    Special offer for members of the Staff Association: Reduced ticket prices for the play Love is my sin (in English) from 15 to 17 March at 8.30pm http://www.forum-meyrin.ch/main.php?page=119&s=12   First category: 37 CHF instead of 46 CHF Second category (seats towards the sides): 30 CHF instead of 38 CHF Please present your CERN card and your Staff Association membership card at the ticket office. Ticket reservation: tel. 022 989 34 34 (from Monday to Friday 2pm to 6pm) or e-mail : billetterie@forum-meyrin.ch  

  13. Offer

    CERN Multimedia

    Staff Association

    2011-01-01

    DETAILS OF THE AGREEMENT WITH BCGE The BCGE Business partner programme devised for members of the CERN Staff Association offers personalized banking solutions with preferential conditions. The advantages are linked to salary accounts (free account keeping, internet banking, free Maestro and credit cards, etc.), mortgage lending, retirement planning, investment, credit, etc. The details of the programme and the preferential conditions are available on the Staff Association web site and from the secretariat (http://cern.ch/association/en/OtherActivities/BCGE.html). To benefit from these advantages, you will need to fill in the form available on our site, which must then be stamped by the Staff Association as proof that you are a paid-up member.  

  14. Offers

    CERN Multimedia

    Staff Association

    2013-01-01

    Do not hesitate to benefit of our offers in our partners: Théâtre de Carouge Discount of 5 CHF for all shows (30 CHF instead of 35 CHF) and on season tickets « first performance » ( 132 CHF instead 162 CHF) and also on « classical » ( 150 CHF instead of 180 CHF) upon presentation of your Staff Association membership card before payment. Théâtre La Comédie de Genève  20% off on tickets (full price – also available for partner): from 24 to 32 CHF a ticket instead of 30 to 40 CHF depending on the shows. 40% off on annual subscriptions (access to the best seats, pick up tickets at the last minute): 200 CHF for 9 shows (about 22 CHF a ticket instead of 30 to 40 CHF. Discounted card: 60 CHF and single price ticket of 16 CHF.

  15. Offers

    CERN Document Server

    Staff Association

    2011-01-01

    At the UN Cultural kiosk (door C6) This offer is meant for international civil servants, members of diplomatic missions as well as official delegates under presentation of their accreditation card. Matthew Lee & 5 musiciens Du Blues, du Boogie, du Rock’n’Roll 28 octobre 2011 à 20h30 Théâtre du Léman Quai du Mont-Blanc 19 Hôtel Kempinski Genève Matthew Lee is an exciting pianist singer combining classic Rock’n’Roll with timeless ballads. He revisits the standards, being alternately Jerry Lee Lewis, Chuck Berry, Little Richards and many others... He is a showman with a soulful voice and displays virtuosity during his piano solos. Simply amazing! 20 % reduction Tickets from 32 to 68 CHF Kiosque Culturel ONU Palais des Nations Porte 6 Avenue de la Paix 8-14 1211 Genève 10 Tél. 022 917 11 11 info@kiosqueonu.ch

  16. Offer

    CERN Multimedia

    Staff Association

    2016-01-01

    The “La Comédie” theatre unveiled its programme for the season 2016–2017 in late May, and it was met with great enthusiasm by the press. Leading names of the European and Swiss theatre scenes, such as director Joël Pommerat who recently won four Molière awards, will make an appearance! We are delighted to share this brand new, rich and varied programme with you. The “La Comédie” theatre has various discounts for our members Buy 2 subscriptions for the price of 1 : 2 cards “Libertà” for CHF 240.- instead of CHF 480.- Cruise freely through the season with an 8-entry card valid for the shows of your choice. These cards are transferable and can be shared with one or more accompanying persons. 2 cards “Piccolo” for CHF 120 instead of CHF 240.- This card lets you discover 4 shows which are suitable for all audiences (offers valid while stock lasts and until October 31, 201...

  17. Offers

    CERN Multimedia

    Staff Association

    2011-01-01

    Special offer for members of the Staff Association and their families 10% reduction on all products in the SEPHORA shop (sells perfume, beauty products etc.) in Val Thoiry ALL YEAR ROUND. Plus 20% reduction during their “vente privée”* three or four times a year. Simply present your Staff Association membership card when you make your purchase. * Next “vente privée” from 21st to 26th November 2011 New BCGE Business partner benefits As you may remember thanks to our BCGE business partner agreement you benefit from various advantages such as free annual subscription on your Silver or Gold credit card both for yourself and your partner (joint account). Please be informed that as of October 1st  2011 the below mentioned features will be added to your annual credit card subscription : MasterCard/Visa Silver and Gold: travel cancellation as well as related services such as holiday interruption best guaranteed price Only for Ma...

  18. Industrialization of Superconducting RF Accelerator Technology

    Science.gov (United States)

    Peiniger, Michael; Pekeler, Michael; Vogel, Hanspeter

    2012-01-01

    Superconducting RF (SRF) accelerator technology has basically existed for 50 years. It took about 20 years to conduct basic R&D and prototyping at universities and international institutes before the first superconducting accelerators were built, with industry supplying complete accelerator cavities. In parallel, the design of large scale accelerators using SRF was done worldwide. In order to build those accelerators, industry has been involved for 30 years in building the required cavities and/or accelerator modules in time and budget. To enable industry to supply these high tech components, technology transfer was made from the laboratories in the following three regions: the Americas, Asia and Europe. As will be shown, the manufacture of the SRF cavities is normally accomplished in industry whereas the cavity testing and module assembly are not performed in industry in most cases, yet. The story of industrialization is so far a story of customized projects. Therefore a real SRF accelerator product is not yet available in this market. License agreements and technology transfer between leading SRF laboratories and industry is a powerful tool for enabling industry to manufacture SRF components or turnkey superconducting accelerator modules for other laboratories and users with few or no capabilities in SRF technology. Despite all this, the SRF accelerator market today is still a small market. The manufacture and preparation of the components require a range of specialized knowledge, as well as complex and expensive manufacturing installations like for high precision machining, electron beam welding, chemical surface preparation and class ISO4 clean room assembly. Today, the involved industry in the US and Europe comprises medium-sized companies. In Japan, some big enterprises are involved. So far, roughly 2500 SRF cavities have been built by or ordered from industry worldwide. Another substantial step might come from the International Linear Collider (ILC) project

  19. Experts call for increasing support to superconducting technology studies

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ The Chinese government should launch a major research project on superconducting technology, as it is of significant importance for ensuring national energy security, raising energy efficiency and reducing emissions, urged experts at a workshop held at the CAS Institute of Electronic Engineering on 6 and 7 March in Beijing.

  20. The Future of Superconducting Technology for Particle Accelerators

    CERN Document Server

    Yamamoto, Akira

    2015-01-01

    Introduction: - Colliders constructed and operated - Future High Energy Colliders under Study - Superconducting Phases and Applications - Possible Choices among SC Materials Superconducting Magnets and the Future - Advances in SC Magnets for Accelerators - Nb3Sn for realizing Higher Field - NbTi to Nb3Sn for realizing High Field (> 10 T) - HL-LHC as a critical milestone for the Future of Acc. Magnet Technology - Nb3Sn Superconducting Magnets (> 11 T)and MgB2 SC Links for HL-LHC - HL-LHC, 11T Dipole Magnet - Nb3Sn Quadrupole (MQXF) at IR - Future Circular Collider Study - Conductor development (1998-2008) - Nb3Sn conductor program - 16 T Dipole Options and R&D sharing - Design Study and Develoment for SppC in China - High-Field Superconductor and Magnets - HTS Block Coil R&D for 20 T - Canted Cosine Theta (CCT) Coil suitable with Brittle HTS Conductor - A topic at KEK: S-KEKB IRQs just integrated w/ BELLE-II ! Superconducting RF and the Future - Superconducting Phases and Applications - Poss...

  1. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  2. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  3. Superconducting Magnet Technology for the Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Todesco, E. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Ambrosio, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Ferracin, P. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Rifflet, J. M. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Sabbi, G. L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Segreti, M. [Alternative Energies and Atomic Energy Commission (CEA), Saclay (France); Nakamoto, T. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan); van Weelderen, R. [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TE Dept.; Xu, Q. [High Energy Accelerator Research Organization (KEK), Tsukuba (Japan)

    2015-10-01

    In this section we present the magnet technology for the High Luminosity LHC. After a short review of the project targets and constraints, we discuss the main guidelines used to determine the technology, the field/gradients, the operational margins, and the choice of the current density for each type of magnet. Then we discuss the peculiar aspects of each class of magnet, with special emphasis on the triplet.

  4. Changing Technologies Offer New Opportunities in the Plant Sciences

    Directory of Open Access Journals (Sweden)

    Theresa M. Culley

    2013-01-01

    Full Text Available The plant sciences are now facing an unprecedented time in our history in which technology is advancing at a rapid pace, creating a wide variety of novel opportunities for our field. Applications in Plant Sciences is a new source for sharing exciting and innovative applications of new technologies that have the potential to propel plant research forward into the future.

  5. Advanced fusion technologies developed for JT-60 superconducting tokamak

    Science.gov (United States)

    Sakasai, A.; Ishida, S.; Matsukawa, M.; Akino, N.; Ando, T.; Arai, T.; Ezato, K.; Hamada, K.; Ichige, H.; Isono, T.; Kaminaga, A.; Kato, T.; Kawano, K.; Kikuchi, M.; Kizu, K.; Koizumi, N.; Kudo, Y.; Kurita, G.; Masaki, K.; Matsui, K.; Miura, Y. M.; Miya, N.; Miyo, Y.; Morioka, A.; Nakajima, H.; Nunoya, Y.; Oikawa, A.; Okuno, K.; Sakurai, S.; Sasajima, T.; Satoh, K.; Shimizu, K.; Takeji, S.; Takenaga, K.; Tamai, H.; Taniguchi, M.; Tobita, K.; Tsuchiya, K.; Urata, K.; Yagyu, J.

    2004-02-01

    Modification of JT-60 as a full superconducting tokamak (JT-60SC) is planned. The objectives of the JT-60SC programme are to establish scientific and technological bases for steady-state operation of high performance plasmas and utilization of reduced-activation materials in an economically and environmentally attractive DEMO reactor. Advanced fusion technologies relevant to the DEMO reactor have been developed for the superconducting magnet technology and plasma facing components of the JT-60SC design. To achieve a high current density in a superconducting strand, Nb3Al strands with a high copper ratio of 4 have been newly developed for the toroidal field coils (TFCs) of JT-60SC. The R&D to demonstrate the applicability of the Nb3Al conductor to TFCs by a react-and-wind technique has been carried out using a full-size Nb3Al conductor. A full-size NbTi conductor with low ac loss using Ni-coated strands has been successfully developed. A forced cooling divertor component with high heat transfer using screw tubes has been developed for the first time. The heat removal performance of the carbon fibre composite target was successfully demonstrated on an electron beam irradiation stand.

  6. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  7. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  8. Superconductive technologies for the Large Hadron collider at CERN

    CERN Document Server

    Rossi, L

    2000-01-01

    The Large Hadron Collider (LHC) project is the largest plant based on superconductivity and cryogenics: 27 km of tunnel filled with superconducting magnets and other equipment that will be kept at 1.9 K. The dipole magnets have to generate a minimum magnetic field of 8.3 T to allow collisions of proton beams at an energy of 14 TeV in the centre of mass. The construction of LHC started in 1997 at CERN in Geneva and required 10 years of research and development on fine- filament NbTi superconducting wires and cables, on magnet technology and on He-II refrigerators. In particular the project needs the production of about 1000 tons of high-homogeneity NbTi with current densities of more than 2000 A mm/sup -2/ at 9 T and 1.9 K, with tight control also of all other cable properties such as magnetization, interstrand resistance and copper resistivity. The paper describes the main dipole magnets and reviews the most significant steps in the research and development, focusing on the issues related to the conductor, to...

  9. Skewed gas flow technology offers antidote to opacity derates

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, M. [ATCO Power AB (Canada). Battle River Generating Station

    2001-06-01

    Deratings due to opacity problems at the Battle River Generating Station in Alberta, Canada led ATCO Power to evaluate and install skewed gas flow technology (SGFT) in one-half of the Unit 5 twin-casing electrostatic precipitator during the August 2000 outage. Preliminary operating results show that the modified casing produces opacity readings at the outlet 40% lower than those seen at the outlet of the unmodified casing. The dust loading tests indicate a 27.5% improvement in collector efficiency. This article includes a technical review and evaluation of Battle River's SGFT installation, as well as the rationale used to provide the initial economic justification. 3 figs., 1 tab., 1 photo.

  10. ORNL Superconducting Technology Program for Electric Energy Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. (comp.)

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's (DOE's) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE's Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  11. Magnet Science and Technology for Basic Research at the High Field Laboratory for Superconducting Materials

    Institute of Scientific and Technical Information of China (English)

    渡辺和雄

    2007-01-01

    Since the first practical cryocooled superconducting magnet using a GM-cryocooler and high temperature superconducting current leads has been demonstrated successfully at the High Field Laboratory for Superconducting Materials (HFLSM), various kinds of cryocooled superconducting magnets in fields up to 15 T have been used to provide access for new research areas in fields of magneto-science. Recently, the HFLSM has succeeded in demonstrating a cryocooed 18 T high temperature superconducting magnet and a high field cryocooled 27.5 T hybrid magnet. Cryocooled magnet technology and basic research using high field magnets at the HFLSM are introduced.

  12. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  13. Superconducting RF Technology R&D for Future Accelerator Applications

    CERN Document Server

    Reece, Charles E

    2012-01-01

    Superconducting rf technology (SRF) is evolving rapidly as are its applications. While there is active exploitation of what one may term the current state-of-the-practice, there is also rapid progress expanding in several dimensions the accessible and useful parameter space. While state-of-the-art performance sometimes outpaces thorough understanding, the improving scientific understanding from active SRF research is clarifying routes to obtain optimum performance from present materials and opening avenues beyond the standard bulk niobium. The improving technical basis understanding is enabling process engineering to both improve performance confidence and reliability and also unit implementation costs. Increasing confidence in the technology enables the engineering of new creative application designs. We attempt to survey this landscape to highlight the potential for future accelerator applications.

  14. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  15. Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2012-08-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  16. Summer Course on the Science and Technology of Superconductivity

    CERN Document Server

    Gregory, W D; Mathews, W N; The science and technology of superconductivity

    1973-01-01

    Since the discovery of superconductivity in 1911 by H. Kamerlingh Onnes, of the order of half a billion dollars has been spent on research directed toward understanding and utiliz­ ing this phenomenon. This investment has gained us fundamental understanding in the form of a microscopic theory of superconduc­ tivity. Moreover, superconductivity has been transformed from a laboratory curiosity to the basis of some of the most sensitive and accurate measuring devices known, a whole host of other elec­ tronic devices, a soon-to-be new international standard for the volt, a prototype generation of superconducting motors and gener­ ators, and magnets producing the highest continuous magnetic fields yet produced by man. The promise of more efficient means of power transmission and mass transportation, a new generation of superconducting motors and generators, and computers and other electronic devices with superconducting circuit elements is all too clear. The realization of controlled thermonuclear fu...

  17. High performance superconducting radio frequency ingot niobium technology for continuous wave applications

    Energy Technology Data Exchange (ETDEWEB)

    Dhakal, Pashupati, E-mail: dhakal@jlab.org; Ciovati, Gianluigi, E-mail: gciovati@jlab.org; Myneni, Ganapati R., E-mail: rao@jlab.org [Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23606 (United States)

    2015-12-04

    Future continuous wave (CW) accelerators require the superconducting radio frequency cavities with high quality factor and medium accelerating gradients (≤20 MV/m). Ingot niobium cavities with medium purity fulfill the specifications of both accelerating gradient and high quality factor with simple processing techniques and potential reduction in cost. This contribution reviews the current superconducting radiofrequency research and development and outlines the potential benefits of using ingot niobium technology for CW applications.

  18. Superconductivity program for electric systems, Superconductivity Technology Center, Los Alamos National Laboratory, annual progress report for fiscal year 1997

    Energy Technology Data Exchange (ETDEWEB)

    Willis, J.O.; Newnam, B.E. [eds.; Peterson, D.E.

    1999-03-01

    Development of high-temperature superconductors (HTS) has undergone tremendous progress during the past year. Kilometer tape lengths and associated magnets based on BSCCO materials are now commercially available from several industrial partners. Superconducting properties in the exciting YBCO coated conductors continue to be improved over longer lengths. The Superconducting Partnership Initiative (SPI) projects to develop HTS fault current limiters and transmission cables have demonstrated that HTS prototype applications can be produced successfully with properties appropriate for commercial applications. Research and development activities at LANL related to the HTS program for Fiscal Year 1997 are collected in this report. LANL continues to support further development of Bi2223 and Bi2212 tapes in collaboration with American Superconductor Corporation (ASC) and Oxford Superconductivity Technology, Inc. (OSTI), respectively. The tape processing studies involving novel thermal treatments and microstructural characterization have assisted these companies in commercializing these materials. The research on second-generation YBCO-coated conductors produced by pulsed-laser deposition (PLD) over buffer template layers produced by ion beam-assisted deposition (IBAD) continues to lead the world. The applied physics studies of magnetic flux pinning by proton and heavy ion bombardment of BSCCO and YBCO tapes have provided many insights into improving the behavior of these materials in magnetic fields. Sections 4 to 7 of this report contain a list of 29 referred publications and 15 conference abstracts, a list of patent and license activities, and a comprehensive list of collaborative agreements in progress and completed.

  19. Workshop on technology issues of superconducting Maglev transportation systems

    Energy Technology Data Exchange (ETDEWEB)

    Wegrzyn, J.E. (Brookhaven National Lab., Upton, NY (United States)); Shaw, D.T. (New York State Inst. of Superconductivity, Buffalo, NY (United States))

    1991-09-27

    There exists a critical need in the United States to improve its ground transportation system. One suggested system that offers many advantages over the current transportation infrastructure is Maglev. Maglev represents the latest evolution in very high and speed ground transportation, where vehicles are magnetically levitated, guided, and propelled over elevated guideways at speeds of 300 miles per hour. Maglev is not a new concept but is, however, receiving renewed interest. The objective of this workshop was to further promote these interest by bringing together a small group of specialists in Maglev technology to discuss Maglev research needs and to identify key research issues to the development of a successful Maglev system. The workshop was organized into four sessions based on the following technical areas: Materials, Testing, and Shielding; Magnet Design and Cryogenic Systems; Propulsion and Levitation Systems; and, System Control and Integration.

  20. Technology and materials for the Superconducting Super Collider (SSC) project

    Energy Technology Data Exchange (ETDEWEB)

    Shintomi, Takakazu; Ishimaru, Hajime; Unno, Yoshinobu; Arai, Yasuo; Watase, Yoshiyuki; Amako, Katsuya; Kondo, Takahiko (National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan))

    1992-08-01

    The Superconducting Super Collider (SSC) is the accelerator for the research on elementary particle physics, of which the construction was already begun in Texas, USA. Two proton rings comprising about 10,000 superconducting magnets are installed in an underground tunnel with the circumferential length of 87 km, and the proton-proton collision of superhigh energy is realized. This accelerator becomes the largest machine that mankind makes. In this report, among the high-tech and materials used for the SSC, superconducting magnets, super-high vacuum beam pipes, silicon semiconductor detector, the use of VLSI and superhigh density mounting and high speed, large quantity data processing system are taken up, and the outline of those is described. The SSC was planned for the elucidation of Higg's theory. The incidence accelerator group is composed of a linear accelerator and three booster synchrotrons. The particles generated by proton-proton collision are measured, and the discovery of new particles and the study on high energy physical phenomena are carried out. The construction of the accelerator and experimental equipment is carried out by international cooperation. (K.I.).

  1. High Temperature Superconducting Magnetic Energy Storage and Its Power Control Technology

    Institute of Scientific and Technical Information of China (English)

    Xiao-Yuan Chen; Jian-Xun Jin; Kai-Meng Ma; Ju Wen; Ying Xin; Wei-Zhi Gong; An-Lin Ren; Jing-Yin Zhang

    2008-01-01

    High temperature superconducting (HTS) power inductor and its control technology have been studied and analyzed in the paper. Based on the results of simulations and practical experiments, a controlled release scheme has been proposed and verified for developing a practical HTS SMES prototype.

  2. Reprint of “Performance analysis of a model-sized superconducting DC transmission system based VSC-HVDC transmission technologies using RTDS”

    Science.gov (United States)

    Dinh, Minh-Chau; Ju, Chang-Hyeon; Kim, Sung-Kyu; Kim, Jin-Geun; Park, Minwon; Yu, In-Keun

    2013-01-01

    The combination of a high temperature superconducting DC power cable and a voltage source converter based HVDC (VSC-HVDC) creates a new option for transmitting power with multiple collection and distribution points for long distance and bulk power transmissions. It offers some greater advantages compared with HVAC or conventional HVDC transmission systems, and it is well suited for the grid integration of renewable energy sources in existing distribution or transmission systems. For this reason, a superconducting DC transmission system based HVDC transmission technologies is planned to be set up in the Jeju power system, Korea. Before applying this system to a real power system on Jeju Island, system analysis should be performed through a real time test. In this paper, a model-sized superconducting VSC-HVDC system, which consists of a small model-sized VSC-HVDC connected to a 2 m YBCO HTS DC model cable, is implemented. The authors have performed the real-time simulation method that incorporates the model-sized superconducting VSC-HVDC system into the simulated Jeju power system using Real Time Digital Simulator (RTDS). The performance analysis of the superconducting VSC-HVDC systems has been verified by the proposed test platform and the results were discussed in detail.

  3. Emerging boom in nano magnetic particle incorporated high-Tc superconducting materials and technologies - A South African perspective

    CSIR Research Space (South Africa)

    Srinivasu, VV

    2009-01-01

    Full Text Available With a strategy to establish and embrace the emerging nano particle incorporated superconductivity technology (based on the HTS materials and nano magnetic particles) in South Africa, the author has initiated the following research activity in South...

  4. Superconducting Technology Assessment (NSA, Office of Corporate Assessments)

    Data.gov (United States)

    Networking and Information Technology Research and Development, Executive Office of the President — The government, and particularly NSA, has a continuing need for ever-increasing computational power. The Agency is concerned about projected limitations of...

  5. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.; Murphy, A.W.

    1999-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1998 Annual Program Review held July 20-22, 1998. Aspects of ORNL's work that were presented at the Applied Superconductivity Conference (September 1998) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  6. Fiber Bragg Grating Sensor as Valuable Technological Platform for New Generation of Superconducting Magnets

    CERN Document Server

    Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Viret, P; Giordano, M; Breglio, G

    2014-01-01

    New generation of superconducting magnets for high energy applications designed, manufactured and tested at the European Organization for Nuclear Research (CERN) require the implementation of reliable sensors able to monitor the mechanical stresses affecting the winding from fabrication to operation in magnetic field of 13 T. This work deals with the embedding of Fiber Bragg Grating sensors in a short model Nb3Sn dipole magnet in order to monitor the strain developed in the coil during the cool down to 1.9 K, the powering up to 15.8 kA and the warm up, offering perspectives for the replacement of standard strain gauges.

  7. Superconducting Magnet Technology for Future High Energy Proton Colliders

    Science.gov (United States)

    Gourlay, Stephen

    2017-01-01

    Interest in high field dipoles has been given a boost by new proposals to build a high-energy proton-proton collider to follow the LHC and programs around the world are taking on the task to answer the need. Studies aiming toward future high-energy proton-proton colliders at the 100 TeV scale are now being organized. The LHC and current cost models are based on technology close to four decades old and point to a broad optimum of operation using dipoles with fields between 5 and 12T when site constraints, either geographical or political, are not a factor. Site geography constraints that limit the ring circumference can drive the required dipole field up to 20T, which is more than a factor of two beyond state-of-the-art. After a brief review of current progress, the talk will describe the challenges facing future development and present a roadmap for moving high field accelerator magnet technology forward. This work was supported by the Director, Office of Science, High Energy Physics, US Department of Energy, under contract No. DE-AC02-05CH11231.

  8. COMMERCIALIZATION DEMONSTRATION OF MID-SIZED SUPERCONDUCTING MAGNETIC ENERGY STORAGE TECHNOLOGY FOR ELECTRIC UTILITYAPPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    CHARLES M. WEBER

    2008-06-24

    As an outgrowth of the Technology Reinvestment Program of the 1990’s, an Agreement was formed between BWXT and the DOE to promote the commercialization of Superconducting Magnetic Energy Storage (SMES) technology. Business and marketing studies showed that the performance of electric transmission lines could be improved with this SMES technology by stabilizing the line thereby allowing the reserved stability margin to be used. One main benefit sought was to double the capacity and the amount of energy flow on an existing transmission line by enabling the use of the reserved stability margin, thereby doubling revenue. Also, electrical disturbances, power swings, oscillations, cascading disturbances and brown/black-outs could be mitigated and rendered innocuous; thereby improving power quality and reliability. Additionally, construction of new transmission lines needed for increased capacity could be delayed or perhaps avoided (with significant savings) by enabling the use of the reserved stability margin of the existing lines. Two crucial technical aspects were required; first, a large, powerful, dynamic, economic and reliable superconducting magnet, capable of oscillating power flow was needed; and second, an electrical power interface and control to a transmission line for testing, demonstrating and verifying the benefits and features of the SMES system was needed. A project was formed with the goals of commercializing the technology by demonstrating SMES technology for utility applications and to establish a domestic capability for manufacturing large superconducting magnets for both commercial and defense applications. The magnet had very low AC losses to support the dynamic and oscillating nature of the stabilizing power flow. Moreover, to economically interface to the transmission line, the magnet had the largest operating voltage ever made. The manufacturing of that design was achieved by establishing a factory with newly designed and acquired equipment

  9. Tools, courses, and learning pathways offered by the National Interagency Fuels, Fire, and Vegetation Technology Transfer

    Science.gov (United States)

    Eva K. Strand; Kathy H. Schon; Jeff Jones

    2010-01-01

    Technological advances in the area of fuel and wildland fire management have created a need for effective decision support tools and technology training. The National Interagency Fuels Committee and LANDFIRE have chartered a team to develop science-based learning tools for assessment of fire and fuels and to provide online training and technology transfer to help...

  10. Superconducting technology for overcurrent limiting in a 25 kA current injection system

    Science.gov (United States)

    Heydari, Hossein; Faghihi, Faramarz; Sharifi, Reza; Poursoltanmohammadi, Amir Hossein

    2008-09-01

    Current injection transformer (CIT) systems are within the major group of the standard type test of high current equipment in the electrical industry, so their performance becomes very important. When designing high current systems, there are many factors to be considered from which their overcurrent protection must be ensured. The output of a CIT is wholly dependent on the impedance of the equipment under test (EUT). Therefore current flow beyond the allowable limit can occur. The present state of the art provides an important guide to developing current limiters not only for the grid application but also in industrial equipment. This paper reports the state of the art in the technology available that could be developed into an application of superconductivity for high current equipment (CIT) protection with no test disruption. This will result in a greater market choice and lower costs for equipment protection solutions, reduced costs and improved system reliability. The paper will also push the state of the art by using two distinctive circuits, closed-core and open-core, for overcurrent protection of a 25 kA CIT system, based on a flux-lock-type superconducting fault current limiter (SFCL) and magnetic properties of high temperature superconducting (HTS) elements. An appropriate location of the HTS element will enhance the rate of limitation with the help of the magnetic field generated by the CIT output busbars. The calculation of the HTS parameters for overcurrent limiting is also performed to suit the required current levels of the CIT.

  11. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

    1997-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1996 Annual Program Review held July 31 and August 1, 1996. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  12. ORNL superconducting technology program for electric power systems. Annual report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. [comp.

    1994-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  13. ORNL Superconducting Technology Program for Electric Power Systems--Annual Report for FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, RA

    2002-02-18

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. A new part of the wire research effort was the Accelerated Coated Conductor Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 2001 Annual Program Review held August 1-3, 2001. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference/Cryogenic Engineering Conference (July 2001) are included in this report as well. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  14. ORNL Superconducting Technology Program for electric power systems. Annual report for FY 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. [comp.; Turner, J.W. [ed.

    1996-05-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1995 Annual Program Review held August 1-2, 1995. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  15. ORNL Superconducting Technology Program for Electric Energy Systems. Annual report for FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. [comp.

    1993-02-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s (DOE`s) Office of Conservation and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and systems development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1992 Peer Review of Projects, conducted by DOE`s Office of Program Analysis, Office of Energy Research. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making tremendous progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  16. ORNL superconducting technology program for electric power systems. Annual report for FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A. [comp.

    1994-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The two major elements of this program are conductor development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1993 Annual Program Review held July 28--29, 1993. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer to US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  17. ORNL Superconducting Technology Program for Electric Power Systems: Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.

    2000-06-13

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26-28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  18. ORNL Superconducting Technology Program for Electric Power Systems, Annual Report for FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.A.; Murphy, A.W

    2000-04-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by U.S. industry for development of electric power applications of high-temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1999 Annual Program Review held July 26--28, 1999. Aspects of ORNL's work that were presented at the International Cryogenic Materials Conference and the Cryogenic Engineering Conference (July 1999) are included in this report, as well. This ORNL program is highly leveraged by the staff and other resources of U.S. industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with U.S. industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire-using systems.

  19. ORNL Superconducting Technology Program for electric power systems: Annual report for FY 1997

    Energy Technology Data Exchange (ETDEWEB)

    Koncinski, W.S.; O`Hara, L.M. [eds.; Hawsey, R.A.; Murphy, A.W. [comps.

    1998-03-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the science and technology base needed by US industry for commercial development of electric power applications of high temperature superconductivity. The two major elements of this program are wire development and applications development. This document describes the major research and developments activities for this program together with related accomplishments. The technical progress reported was summarized from recent open literature publications, presentations, and information prepared for the FY 1997 Annual Program Review held July 21--23, 1997. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to cooperative projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high temperature superconductor wire and wire-using systems.

  20. GeoguideRome, urban geotourism offer powered by mobile application technology

    Science.gov (United States)

    Pica, Alessia; Grangier, Lucien; Reynard, Emmanuel; Kaiser, Christian; Del Monte, Maurizio

    2016-04-01

    Geoheritage studies have been highly intensified and diversified in recent years. This field of research has a strong applicability, especially in interdisciplinary and sustainable forms of tourism. For this purpose the most modern technologies are used for supporting the dissemination of research results, in particular for educational purposes (Kenteris et al., 2011 and references therein). This is the case of smartphone and tablet applications developed by the Institute of Geography and Sustainability of Lausanne University (IGD), devoted to geotourist itineraries. This work presents the application developed for the city of Rome, based on the itinerary proposed by the Earth Sciences Department of the Sapienza University (Del Monte et al., 2013; Pica et al., 2015). The Aeterna Urbs, with more than 3000 years of historical development, is a very good place to develop urban geotourism, especially because most of the cultural places are related to morphological features (Pica et al., 2015). As shown by the Geoguide Lausanne (Reynard et al., 2015) - a virtual itinerary showing the relationships between geology/geomorphology, climate/hydrology, and urban development in Lausanne (Switzerland) - and TOURinSTONES - a virtual guide on the rocks used for the construction of urban monuments and infrastructures in the city of Turin (Italy) - the urban context has the advantage of easily showing the links between natural features and human activities. From a technical point of view the application is an updated version of Geoguide Lausanne using jQuery Mobile as development framework, which allowed for increasing the usability and solved some gaps of the previous versions. The contents are organized the same way as for the Geoguide Lausanne, proposing three educational themes, an itinerary arranged in georeferenced stops shown by images and described in their characterizing aspects. The themes are Geology, History and Legends. By means of the relationships between them they

  1. Limits of Nature and Advances of Technology: What Does Biomimetics Have to Offer to Aquatic Robots?

    Directory of Open Access Journals (Sweden)

    F. E. Fish

    2006-01-01

    Full Text Available In recent years, the biomimetic approach has been utilized as a mechanism for technological advancement in the field of robotics. However, there has not been a full appreciation of the success and limitations of biomimetics. Similarities between natural and engineered systems are exhibited by convergences, which define environmental factors, which impinge upon design, and direct copying that produces innovation through integration of natural and artificial technologies. Limitations of this integration depend on the structural and mechanical differences of the two technologies and on the process by which each technology arises. The diversity of organisms that arose through evolutionary descent does not necessarily provide all possible solutions of optimal functions. However, in instances where organisms exhibit superior performance to engineered systems, features of the organism can be targeted for technology transfer. In this regard, cooperation between biologists and engineers is paramount.

  2. On-focal-plane superconducting signal processing for low- and intermediate-temperature operation

    Science.gov (United States)

    Smetana, Daryl L.; Carson, John C.

    1991-11-01

    The marriage of superconducting electronics with Z-plane FPA readout structures offer the potential for high speed, low power parallel digital processing on-focal plane. This paper reports on some early research into this marriage of two technologies conducted by Irvine Sensors Corporation (ISC) and TRW. Progress is reviewed for both low and high temperature superconducting technologies.

  3. Biased HiPIMS technology for superconducting rf accelerating cavities coating

    CERN Document Server

    G. Rosaz, G.; Sonato, D.; Calatroni, S.; Ehiasarian, A.; Junginger, T.; Taborelli, M.

    2016-01-01

    In the last few years the interest of the thin film science and technology community on High Impulse Power Magnetron Sputtering (HIPIMS) coatings has steadily increased. HIPIMS literature shows that better thin film morphology, denser and smoother films can be achieved when compared with standard dc Magnetron Sputtering (dcMS) coating technology. Furthermore the capability of HIPIMS to produce a high quantity of ionized species can allow conformal coatings also for complex geometries. CERN already studied the possibility to use such a coating method for SRF accelerating cavities. Results are promising but not better from a RF point of view than dcMS coatings. Thanks to these results the next step is to go towards a biased HiPIMS approach. However the geometry of the cavities leads to complex changes in the coating setup in order to apply a bias voltage. Coating system tweaking and first superconducting properties of biased samples are presented.

  4. 超导无线电能传输技术%Superconducting Wireless Power Transfer Technology

    Institute of Scientific and Technical Information of China (English)

    张国民; 余卉; 刘国乐; 林良真; 肖立业

    2015-01-01

    In recent years,wireless power tranfer technology has become a hot technology. Compared with traditional power tranfer mode,wireless power transfer is more convinient and safer,and it has been applied to many fields. Because the efficiency of wireless power transfer system is dominated by the resistive losses of the coils,and the smaller the resistances of the coils,the higher the trans-fer efficiencyis. With the characteristics of zero DC resistance and low AC loss,supercondcuting materials have significant efficiency advantage for use in wireless power transfer. In this paper,the research status on supercondcuting wireless power transfer technology is introduced,especially our complete and ongoing research works in the Key Lab of Applied Superconductivity on superconducting wireless power transfer,and the potential application prospects of superconducting wireless power transfer technology are also presen-ted.%近年来,无线电能传输技术已成为了热点技术。与传统电能传输方式相比,无线电能传输更为方便、安全,并已被应用于多个领域。由于无线电能传输效率取决于发射与接收线圈本身的电阻,线圈电阻越小,传输效率越高。超导体所具有的直流零电阻、交流低损耗的特性,使得超导材料用于无线电能传输具有显著的效率优势。介绍了超导无线电能传输技术的研究现状,中国科学院应用超导重点实验室关于超导无线电能传输方面已经开展和正在进行的研究工作,指出了超导无线电能传输技术潜在的应用前景。

  5. Downsized superconducting magnetic energy storage systems

    Science.gov (United States)

    Palmer, David N.

    Scaled-down superconductive magnetic energy storage systems (DSMES) and superconductive magnetic energy power sources (SMEPS) are proposed for residential, commercial/retail, industrial off-peak and critical services, telephone and other communication systems, computer operations, power back-up/energy storages, power sources for space stations, and in-field military logistics/communication systems. Recent advances in high-Tc superconducting materials technology are analyzed. DSMES/SMEPS concepts are presented, and design, materials, and systems requirements are discussed. Problems ar identified, and possible solutions are offered. Comparisons are made with mechanical and primary and secondary energy storage and conversion systems.

  6. New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Brim, Cornelia P.

    2013-04-01

    An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

  7. Application of FPGA technology for control of superconducting TESLA cavities in free electron laser

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2006-10-01

    Contemporary fundamental research in physics, biology, chemistry, pharmacology, material technology and other uses frequently methods basing on collision of high energy particles or penetration of matter with ultra-short electromagnetic waves. Kinetic energy of involved particles, considerably greater than GeV, is generated in accelerators of unique construction. The paper presents a digest of working principles of accelerators. There are characterized research methods which use accelerators. A method to stabilize the accelerating EM field in superconducting (SC) resonant cavity was presented. An example was given of usage of TESLA cavities in linear accelerator propelling the FLASH free electron laser (FEL) in DESY, Hamburg. Electronic and photonic control system was debated. The system bases on advanced FPGA circuits and cooperating fast DSP microprocessor chips. Examples of practical solutions were described. Test results of the debated systems in the real-time conditions were given.

  8. Hidden Correlations in Indivisible Qudits as a Resource for Quantum Technologies on Examples of Superconducting Circuits

    Science.gov (United States)

    Man'ko, M. A.; Man'ko, V. I.

    2016-03-01

    We show that the density-matrix states of noncomposite qudit systems satisfy entropic and information relations like the subadditivity condition, strong subadditivity condition, and Araki-Lieb inequality, which characterize hidden quantum correlations of observables associated with these indivisible systems. We derive these relations employing a specific map of the entropic inequalities known for density matrices of multiqudit systems to the inequalities for density matrices of single-qudit systems. We present the obtained relations in the form of mathematical inequalities for arbitrary Hermitian N × N-matrices. We consider examples of superconducting qubits and qudits. We discuss the hidden correlations in single- qudit states as a new resource for quantum technologies analogous to the known resource in correlations associated with the entanglement in multiqudit systems.

  9. A magnetic levitation rotating plate model based on high-Tc superconducting technology

    Science.gov (United States)

    Zheng, Jun; Li, Jipeng; Sun, Ruixue; Qian, Nan; Deng, Zigang

    2017-09-01

    With the wide requirements of the training aids and display models of science, technology and even industrial products for the public like schools, museums and pleasure grounds, a simple-structure and long-term stable-levitation technology is needed for these exhibitions. Opportunely, high temperature superconducting (HTS) technology using bulk superconductors indeed has prominent advantages on magnetic levitation and suspension for its self-stable characteristic in an applied magnetic field without any external power or control. This paper explores the feasibility of designing a rotatable magnetic levitation (maglev) plate model with HTS bulks placed beneath a permanent magnet (PM) plate. The model is featured with HTS bulks together with their essential cryogenic equipment above and PMs below, therefore it eliminates the unclear visual effects by spray due to the low temperature coolant such as liquid nitrogen (LN2) and additional levitation weight of the cryogenic equipment. Besides that, a matched LN2 automation filling system is adopted to help achieving a long-term working state of the rotatable maglev plate. The key low-temperature working condition for HTS bulks is maintained by repeatedly opening a solenoid valve and automatically filling LN2 under the monitoring of a temperature sensor inside the cryostat. With the support of the cryogenic devices, the HTS maglev system can meet all requirements of the levitating display model for exhibitions, and may enlighten the research work on HTS maglev applications.

  10. SSTAC/ARTS review of the draft Integrated Technology Plan (ITP). Volume 8: Aerothermodynamics Automation and Robotics (A/R) systems sensors, high-temperature superconductivity

    Science.gov (United States)

    1991-01-01

    Viewgraphs of briefings presented at the SSTAC/ARTS review of the draft Integrated Technology Plan (ITP) on aerothermodynamics, automation and robotics systems, sensors, and high-temperature superconductivity are included. Topics covered include: aerothermodynamics; aerobraking; aeroassist flight experiment; entry technology for probes and penetrators; automation and robotics; artificial intelligence; NASA telerobotics program; planetary rover program; science sensor technology; direct detector; submillimeter sensors; laser sensors; passive microwave sensing; active microwave sensing; sensor electronics; sensor optics; coolers and cryogenics; and high temperature superconductivity.

  11. 28 May 2010 - Japanese Ambassador H. Ueda visiting the LHC superconducting magnet test hall with CERN Technology Deputy Department Head L. Rossi.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    CERN-HI-1005088 02 Japanese Ambassador H. Ueda (right) visiting the LHC superconducting magnet test hall with Technology Deputy Department Head L. Rossi(left). H. Ueda is accompanied by KEK and ATLAS Collaboration T. Kondo (centre).

  12. Beating liquid helium: the technologies of cryogen-free superconducting magnets

    Science.gov (United States)

    Burgoyne, John

    2015-03-01

    Cryogen-free superconducting magnets have been available now for almost 15 years, but have only become standard commercial products in more recent years. In this review we will consider the pros and cons of ``dry'' design including superconducting wire development and selection, thermal budgeting, and the alternative methods for achieving magnet cooling.

  13. Somatic Embryogenesis in Coffee: The Evolution of Biotechnology and the Integration of Omics Technologies Offer Great Opportunities.

    Science.gov (United States)

    Campos, Nádia A; Panis, Bart; Carpentier, Sebastien C

    2017-01-01

    One of the most important crops cultivated around the world is coffee. There are two main cultivated species, Coffea arabica and C. canephora. Both species are difficult to improve through conventional breeding, taking at least 20 years to produce a new cultivar. Biotechnological tools such as genetic transformation, micropropagation and somatic embryogenesis (SE) have been extensively studied in order to provide practical results for coffee improvement. While genetic transformation got many attention in the past and is booming with the CRISPR technology, micropropagation and SE are still the major bottle neck and urgently need more attention. The methodologies to induce SE and the further development of the embryos are genotype-dependent, what leads to an almost empirical development of specific protocols for each cultivar or clone. This is a serious limitation and excludes a general comprehensive understanding of the process as a whole. The aim of this review is to provide an overview of which achievements and molecular insights have been gained in (coffee) somatic embryogenesis and encourage researchers to invest further in the in vitro technology and combine it with the latest omics techniques (genomics, transcriptomics, proteomics, metabolomics, and phenomics). We conclude that the evolution of biotechnology and the integration of omics technologies offer great opportunities to (i) optimize the production process of SE and the subsequent conversion into rooted plantlets and (ii) to screen for possible somaclonal variation. However, currently the usage of the latest biotechnology did not pass the stage beyond proof of potential and needs to further improve.

  14. Prospects for the medium- and long-term development of China`s electric power industry and analysis of the potential market for superconductivity technology

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Bob Lawrence and Associates, Inc., Alexandria, VA (United States)

    1998-05-01

    First of all, overall economic growth objectives in China are concisely and succinctly specified in this report. Secondly, this report presents a forecast of energy supply and demand for China`s economic growth for 2000--2050. In comparison with the capability of energy construction in China in the future, a gap between supply and demand is one of the important factors hindering the sustainable development of Chain`s economy. The electric power industry is one of China`s most important industries. To adopt energy efficiency through high technology and utilizing energy adequately is an important technological policy for the development of China`s electric power industry in the future. After briefly describing the achievements of China`s electric power industry, this report defines the target areas and policies for the development of hydroelectricity and nuclear electricity in the 2000s in China, presents the strategic position of China`s electric power industry as well as objectives and relevant plans of development for 2000--2050. This report finds that with the discovery of superconducting electricity, the discovery of new high-temperature superconducting (HTS) materials, and progress in materials techniques, the 21st century will be an era of superconductivity. Applications of superconductivity in the energy field, such as superconducting storage, superconducting transmission, superconducting transformers, superconducting motors, its application in Magneto-Hydro-Dynamics (MHD), as well as in nuclear fusion, has unique advantages. Its market prospects are quite promising. 12 figs.

  15. Oak Ridge National Laboratory (ORNL) Superconducting Technology Program for electric power systems. Annual report for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    Koncinski, W.S. [ed.; Hawsey, R.A. [comp.

    1994-12-01

    The Oak Ridge National Laboratory (ORNL) Superconducting Technology Program is conducted as part of a national effort by the US Department of Energy`s Office of Energy Efficiency and Renewable Energy to develop the technology base needed by US industry for commercial development of electric power applications of high-temperature superconductivity. The three major elements of this program are conductor development, applications development, and the Superconductivity Partnership Initiative. This document describes the major research and development activities for this program together with related accomplishments. The technical progress reported was summarized from information prepared for the FY 1994 Annual Program Review held July 19--20, 2994. This ORNL program is highly leveraged by the staff and other resources of US industry and universities. In fact, nearly three-fourths of the ORNL effort is devoted to industrial competitiveness projects with private companies. Interlaboratory teams are also in place on a number of industry-driven projects. Patent disclosures, working group meetings, staff exchanges, and joint publications and presentations ensure that there is technology transfer with US industry. Working together, the collaborative teams are making rapid progress in solving the scientific and technical issues necessary for the commercialization of long lengths of practical high-temperature superconductor wire and wire products.

  16. Special Offers

    CERN Multimedia

    Association du personnel

    2011-01-01

    Walibi Rhône-Alpes is open until 31 October. Reduced prices for children and adults at this French attraction park in Les Avenières. For more information about all these offers, please consult our web site: http://association.web.cern.ch/association/en/OtherActivities/Offers.html

  17. Special offers

    CERN Multimedia

    Staff Association

    2011-01-01

    Are you a member of the Staff Association? Did you know that as a member you can benefit from the following special offers: BCGE (Banque Cantonale de Genève): personalized banking solutions with preferential conditions. TPG: reduced rates on annual transport passes for active and retired staff. Aquaparc: reduced ticket prices for children and adults at this Swiss waterpark in Le Bouveret. FNAC: 5% reduction on FNAC vouchers. For more information about all these offers, please consult our web site: http://association.web.cern.ch/association/en/OtherActivities/Offers.html

  18. Special Offers

    CERN Multimedia

    Association du personnel

    2011-01-01

    Are you a member of the Staff Association? Did you know that as a member you can benefit from the following special offers: BCGE (Banque Cantonale de Genève): personalized banking solutions with preferential conditions. TPG: reduced rates on annual transport passes for active and retired staff. Aquaparc: reduced ticket prices for children and adults at this Swiss waterpark in Le Bouveret. Walibi: reduced prices for children and adults at this French attraction park in Les Avenières. FNAC: 5% reduction on FNAC vouchers. For more information about all these offers, please consult our web site: http://association.web.cern.ch/association/en/OtherActivities/Offers.html

  19. Offers INTERSOCCER

    CERN Document Server

    Staff Association

    2014-01-01

      Summer Football camps   New offer to the members of the Staff Association – INTERSOCCER: 12% discount on summer football camps and courses for children (bilingual) so do not hesitate anymore!    

  20. Special Offers

    CERN Multimedia

    Association du personnel

    2011-01-01

    Are you a member of the Staff Association? Did you know that as a member you can benefit from the following special offers: BCGE (Banque Cantonale de Genève): personalized banking solutions with preferential conditions.     TPG: reduced rates on annual transport passes for active and retired staff.     Aquaparc: reduced ticket prices for children and adults at this Swiss waterpark in Le Bouveret.     Walibi: reduced prices for children and adults at this French attraction park in Les Avenières.       FNAC: 5% reduction on FNAC vouchers.       For more information about all these offers, please consult our web site: http://association.web.cern.ch/association/en/OtherActivities/Offers.html

  1. Special Offers

    CERN Multimedia

    Staff Association

    2011-01-01

    Are you a member of the Staff Association? Did you know that as a member you can benefit from the following special offers: BCGE (Banque Cantonale de Genève): personalized banking solutions with preferential conditions.     TPG: reduced rates on annual transport passes for all active and retired staff.     Aquaparc: reduced ticket prices for children and adults at this Swiss waterpark in Le Bouveret.     Walibi: reduced prices for children and adults at this French attraction park in Les Avenières.       FNAC: 5% reduction on FNAC vouchers.       For more information about all these offers, please consult our web site: http://association.web.cern.ch/association/en/OtherActivities/Offers.html

  2. Fiber Optic Cryogenic Sensors for Superconducting Magnets and Superconducting Power Transmission lines at CERN

    CERN Document Server

    Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Giordano, M; Breglio, G; Palmieri, L

    2014-01-01

    The design, fabrication and tests of a new generation of superconducting magnets for the upgrade of the LHC require the support of an adequate, robust and reliable sensing technology. The use of Fiber Optic Sensors is becoming particularly challenging for applications in extreme harsh environments such as ultra-low temperatures, high electromagnetic fields and strong mechanical stresses offering perspectives for the development of technological innovations in several applied disciplines.

  3. Special offer

    CERN Multimedia

    Staff Association

    2010-01-01

    Special offer for members of the Staff Association and their families 10% reduction on all products in the SEPHORA shop (sells perfume, beauty products etc.) in Val Thoiry ALL YEAR ROUND. Plus 20% reduction during their “vente privée”* three or four times a year. Simply present your Staff Association membership card when you make your purchase. * next “vente privée” from 24th to 29th May 2010  

  4. Special offer

    CERN Multimedia

    Staff Association

    2011-01-01

    SPECIAL OFFER FOR OUR MEMBERS Tarif unique Adulte/Enfant Entrée Zone terrestre 19 euros instead of 23 euros Entrée “Zone terrestre + aquatique” 24 euros instead of 31 euros Free for children under 3, with limited access to the attractions. Walibi Rhône-Alpes is open daily from 22 June to 31 August, and every week end from 3 September until 31 October. Closing of the “zone aquatique” 11 September.

  5. Special offer

    CERN Multimedia

    Staff Association

    2011-01-01

    SPECIAL OFFER FOR OUR MEMBERS Tarif unique Adulte/Enfant Entrée Zone terrestre 19 euros instead of 23 euros Entrée “Zone terrestre + aquatique” 24 euros instead of 31 euros Free for children under 3, with limited access to the attractions. Walibi Rhône-Alpes is open daily from 22 June to 31 August, and every week end from 3 September until 31 October. Closing of the “zone aquatique” 11 September.

  6. The Large Hadron Collider and the Role of Superconductivity in One of the Largest Scientific Enterprises

    CERN Document Server

    Rossi, Lucio

    2007-01-01

    After ten years of R&D and industrialization and seven years of construction, the LHC is near completion. The manufacture of the 1750 main superconducting magnets and of the 8000 superconducting correctors for the accelerator, as well as their cold test at CERN, is approaching the end, while their commissioning in the 27 km-long tunnel has started. The very large superconducting magnets for the main detectors, ATLAS and CMS, are installed and their commissioning is under way. Superconductivity is the key technology for the largest scientific enterprise of this decade: it accounts for half of the total cost and has proved to be affordable and reliable. Thanks to superconductivity we can probe new states of matters and reproduce conditions of 1 ps after the big bang. The paper will give the link between the Physics requirements and the answers that applied superconductivity has offered in this project.

  7. Nanoscience and Engineering in Superconductivity

    CERN Document Server

    Moshchalkov, Victor; Lang, Wolfgang

    2010-01-01

    For emerging energy saving technologies, superconducting materials with superior performance are needed. Such materials can be developed by manipulating the 'elementary building blocks' through nanostructuring. For superconductivity the 'elementary blocks' are Cooper pair and fluxon (vortex). This book presents new ways how to modify superconductivity and vortex matter through nanostructuring and the use of nanoscale magnetic templates. The basic nano-effects, vortex and vortex-antivortex patterns, vortex dynamics, Josephson phenomena, critical currents, and interplay between superconductivity

  8. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  9. GIS tools, courses, and learning pathways offered by The National Interagency Fuels, Fire, and Vegetation Technology Transfer (NIFTT)

    Science.gov (United States)

    Heather Heward; Kathy H. Schon

    2009-01-01

    As technology continues to evolve in the area of fuel and wildland fire management so does the need to have effective tools and training on these technologies. The National Interagency Fuels Coordination Group has chartered a team of professionals to coordinate, develop, and transfer consistent, efficient, science-based fuel and fire ecology assessment GIS tools and...

  10. Paste proposed for oil sands : Golder's paste technology offers relief for industry's black eye

    Energy Technology Data Exchange (ETDEWEB)

    Tollinsky, N.

    2010-06-15

    This article described a new tailings treatment technology developed as an environmentally-friendly alternative to underwater tailings disposal. Golder Paste Technology Ltd. has tested the technology at a pilot plant with a shipment of 36 drums of oil sands tailings. The technology was designed for use in areas with limited water resources. Water is removed from the tailings in a paste plant and then recirculated for re-use. The end product has the consistency of toothpaste, takes up less space, and allows for faster reclamation of tailings disposal sites. Some environmental protection agencies are concerned about the effects of the tailings ponds on wildlife in the oil sands region. The higher price of the paste technology is expected to be offset by cost savings and reduced exposure to liability. 2 figs.

  11. A high-temperature superconducting delta-sigma modulator based on a multilayer technology with bicrystal Josephson junctions

    Energy Technology Data Exchange (ETDEWEB)

    Ruck, B.; Chong, Y.; Dittmann, R.; Engelhardt, A.; Sodtke, E.; Siegel, M. [Institut fur Schicht- und Ionentechnik (ISI), Forschungszentrum Julich GmbH, 52425 Juelich (Germany)

    1999-11-01

    We have designed, fabricated and successfully tested a first-order delta-sigma modulator using a high-temperature superconducting multilayer technology with bicrystal Josephson junctions. The circuit has been fabricated on a SrTiO{sub 3} bicrystal substrate. The YBa{sub 2}Cu{sub 3}O{sub 7}/SrTiO{sub 3}/YBa{sub 2}Cu{sub 3}O{sub 7} trilayer was fabricated by laser deposition. The bottom layer served as a superconducting ground plane. The Josephson junctions were formed at the bicrystal line in the upper layer. The integrator resistance has been made from a Pd/Au thin film. The circuit consists of a dc-SFQ converter, a Josephson transmission line, a comparator, an L/R integrator and an output stage. The correct operation of the modulatorhas been tested using dc measurements. The linearity of the modulator was studied by measuring the harmonic distortions of a 19.5 kHz sine wave input signal. From the recorded spectrum, a minimum resolution of at least 5 bits can be estimated. This accuracy was limited by the noise of the preamplifier. The correct operation of the current feedback loop was demonstrated by cutting the feedback inductance. (author)

  12. A high-temperature superconducting delta-sigma modulator based on a multilayer technology with bicrystal Josephson junctions

    Science.gov (United States)

    Ruck, B.; Chong, Y.; Dittmann, R.; Engelhardt, A.; Sodtke, E.; Siegel, M.

    1999-11-01

    We have designed, fabricated and successfully tested a first-order delta-sigma modulator using a high-temperature superconducting multilayer technology with bicrystal Josephson junctions. The circuit has been fabricated on a SrTiO3 bicrystal substrate. The YBa2Cu3O7/SrTiO3/YBa2Cu3O7 trilayer was fabricated by laser deposition. The bottom layer served as a superconducting groundplane. The Josephson junctions were formed at the bicrystal line in the upper layer. The integrator resistance has been made from a Pd/Au thin film. The circuit consists of a dc-SFQ converter, a Josephson transmission line, a comparator, an L/R integrator and an output stage. The correct operation of the modulator has been tested using dc measurements. The linearity of the modulator was studied by measuring the harmonic distortions of a 19.5 kHz sine wave input signal. From the recorded spectrum, a minimum resolution of at least 5 bits can be estimated. This accuracy was limited by the noise of the preamplifier. The correct operation of the current feedback loop was demonstrated by cutting the feedback inductance.

  13. Education Offered Via Telecommunications: Trends, Issues, and State-Level Problems in Instructional Technology for Colleges and Universities. Report 87-49.

    Science.gov (United States)

    California State Postsecondary Education Commission, Sacramento.

    Issues concerning telecommunications courses offered by California universities and colleges are reviewed with a focus on the progress made over the past 6 years regarding the lack of incentives for faculty to use instructional technology in their teaching, lack of coordination among interested institutions and agencies, and high initial costs for…

  14. Dynamics of reflection of corporal potential of teenagers under act of employments on the offered technology of fitness.

    Directory of Open Access Journals (Sweden)

    Kibal'nik Oksana Yakovlevna

    2011-09-01

    Full Text Available The main point of presented fitness-technologies conception is in natural combination of modern trends and means of health-improving fitness and theoretical knowledge of its use. The aim of the work is efficiency assessment of developed technologies. The effect of these technologies on the level of teenagers self-realisation of their own physical experience and peculiarities of their life prospects design was studied. It was proved that under the effect of experiment factor the quantity of teenagers, who more positively conceive No. 1, show confidence in goals achievement, are ready to overcome misfortune due to their possibilities and self-activity, is increased.

  15. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high temperature superconductors to 2nd generation (2G) YBCO based high temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current limiting matrix.

  16. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  17. Preliminary investigation of force-reduced superconducting magnet configurations for advanced technology applications

    Energy Technology Data Exchange (ETDEWEB)

    Bouillard, J.X.

    1992-12-01

    The feasibility of new high-field low specific weight superconducting magnet designs using force-free fields is being explored analytically and numerically. This report attempts to assess the technical viability of force-free field concepts to produce high-field, low specific weight and large bore volume magnets, which could promote the use of high temperature superconductors. Several force-free/force-reduced magnet configurations are first reviewed, then discussed and assessed. Force-free magnetic fields, fields for which the current flows parallel to the field, have well-known mathematical solutions extending upon infinite domains. These solutions, however, are no longer force-free everywhere for finite geometries. In this preliminary study, force-free solutions such as the Lundquist solutions truncated to a size where the internal field of the coil matches an externally cylindrical magnetic field (also called a Lundquist coil) are numerically modeled and explored. Significant force-reduction for such coils was calculated, which may have some importance for the design of lighter toroidal magnets used in thermonuclear fusion power generation, superconducting magnetic energy storage (SMES), and mobile MHD power generation and propulsion.

  18. Application of superconducting technologies as chemical/biological agent electronic eyes

    Science.gov (United States)

    Savoy, Steven M.; Eames, Sara J.; Jurbergs, David C.; Zhao, Jianai; McDevitt, John T.; Sobel, Annette L.

    1997-01-01

    High temperature superconductors provide enhanced sensitivity capabilities as chemical/biological agent detectors. State-of-the-art advances in ruggedizing superconducting platforms make them much more robust for field applications. In addition, microminiaturization and advances in refrigeration have enabled the systems engineering of portable, durable, survivable, low power requirement devices. This presentation describes a prototype system employing YBCO (yttrium barium copper oxide) superconducting quantum interference devices (SQUIDS) with specific biolayer detection dye coatings. These devices may be deployed as specific stand-off detectors, or potentially reconfigured as point sensors. A library of pattern recognition algorithms provides the reference template for the system. The human-system interface will provide a 'yes/no' agent confirmation for the environment being queried, and associated confidence value. This prototype detection system has great potential for deployment in support of hostage rescue/rapid response teams, DMAT, and urban search and rescue. The preparation and characterization of a new generation of optical sensors fabricated from high-temperature superconductor (HTSC) thin films is reported herein. These new hybrid devices are fashioned using HTSC thin films which are coated with organic dye overlayers. These systems are shown to respond selectively to those wavelengths which are absorbed strongly by the molecular dye. Methods for fabricating the superconductor element and depositing the dye layer are discussed. Moreover, resistivity versus temperature measurements before and after dye deposition are utilized to characterize these hybrid structures. The unique optical response properties of these hybrid sensors are also detailed.

  19. Contributions To The 9th Workshop On Rf Superconductivity, Accelerator Technology For The 21st Century (rf Superconductivity Activities At Lal Accelerating Field Measurement In 3 Ghz Pulsed Cavities Design And Test Of A 1.3 Ghz Travelling Wave Window

    CERN Document Server

    Le Duff, J; Thomas, C

    2000-01-01

    Contributions To The 9th Workshop On Rf Superconductivity, Accelerator Technology For The 21st Century (rf Superconductivity Activities At Lal Accelerating Field Measurement In 3 Ghz Pulsed Cavities Design And Test Of A 1.3 Ghz Travelling Wave Window

  20. BSCCO超导带材的工艺要点与应用%Technology Essentials and Application of BSCCO Superconducting Tape

    Institute of Scientific and Technical Information of China (English)

    王醒东

    2014-01-01

    高温超导材料的发现,推进了超导技术的实用化。作为典型的高温超导材料,铋系(BSCCO)超导带材目前已在超导电缆、超导限流器和超导储能等领域实现商用。粉末套管法是制备BSCCO超导带材最常用的方法,主要工艺步骤包括装粉、拉拔、轧制和热处理等。本文介绍了粉末套管法的工艺,重点介绍了各工艺步骤中的关键点,阐述了超导带材在超导限流器和超导储能系统中的应用,提出了BSCCO超导带材未来的发展方向。%The discovery of high temperature superconducting(HTS) materials promotes the practical application of superconducting technology. As typical HTS materials, Bi-superconducting tapes(BSCCO) have achieved the commercialization and been applied in superconducting cables, superconducting fault current limiter(SFCL) and superconducting magnetic energy storage(SMES). Powder in tube(PIT) is the most commonly method, which includes some important processing steps such as powder-filling, drawing, rolling and heat treatment. PIT is introduced in this paper, especially the key point in each process step. The application of superconducting tapes in SFCL and SMES is expounded. Finally, the future development direction of BSCCO superconductor tape is indicated.

  1. Technology Training for Older Job-Seeking Adults: The Efficacy of a Program Offered through a University-Community Collaboration

    Science.gov (United States)

    Taha, Jessica; Czaja, Sara J.; Sharit, Joseph

    2016-01-01

    Many older adults who lose their jobs face challenges in finding new employment due to fundamental limitations in their technology skills. While training could give them the skills they need, older workers often have less access to training programs than younger workers. This study examined the feasibility of using an e-learning training program…

  2. Superconducting Magnets for Particle Accelerators

    CERN Document Server

    Rossi, L

    2012-01-01

    Superconductivity has been the most influential technology in the field of accelerators in the last 30 years. Since the commissioning of the Tevatron, which demonstrated the use and operability of superconductivity on a large scale, superconducting magnets and rf cavities have been at the heart of all new large accelerators. Superconducting magnets have been the invariable choice for large colliders, as well as cyclotrons and large synchrotrons. In spite of the long history of success, superconductivity remains a difficult technology, requires adequate R&D and suitable preparation, and has a relatively high cost. Hence, it is not surprising that the development has also been marked by a few setbacks. This article is a review of the main superconducting accelerator magnet projects; it highlights the main characteristics and main achievements, and gives a perspective on the development of superconducting magnets for the future generation of very high energy colliders.

  3. Superconducting magnetic bearings for machine tools. Phase 1, SBIR program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Anastas, G.; Bennett, A.; Downer, J.; Hockney, R.

    1988-01-01

    The research was directed toward investigating the role of superconducting materials in a magnetic bearing system. Superconducting magnetic bearings are shown to offer the potential for vastly improved performance. These bearings are expected to be especially applicable to rotors which have extremely tight position tolerances. The development of superconducting magnetic bearing technology is also expected to allow a number of novel approaches in the development of machinery and systems. Researchers studied an alternative bearing design which employs a superconducting coil and eliminates all conventional magnetic structures. The study has resulted in a design definition and detailed analysis for a superconducting bearing system which is sized to roughly duplicate the air bearing system of an existing air-bearing spindle.

  4. Advances in Fiber Optic Sensors Technology Development for temperature and strain measurements in Superconducting magnets and devices

    CERN Document Server

    Chiuchiolo, A.; Bajko, M.; Bottura, L.; Consales, M.; Cusano, A.; Giordano, M.; Perez, J. C.

    2016-01-01

    The luminosity upgrade of the Large Hadron Collider (HL-LHC) requires the development of a new generation of superconducting magnets based on Nb3Sn technology. In order to monitor the magnet thermo-mechanical behaviour during its service life, from the coil fabrication to the magnet operation, reliable sensing systems need to be implemented. In the framework of the FP7 European project EUCARD, Nb3Sn racetrack coils are developed as test beds for the fabrication validation, the cable characterization and the instrumentation development. Fiber optic sensors (FOS) based on Fiber Bragg Grating (FBG) technology have been embedded in the coils of the Short Model Coil (SMC) magnet. The FBG sensitivity to both temperature and strain required the development of a solution able to separate the mechanical and temperature effects. This work presents the feasibility study of the implementation of embedded FBG sensors for the temperature and strain monitoring of the 11 T type conductor. We aim to monitor and register these...

  5. 9 July 2012 - Academy of Sciences Malaysia (ASM), Chairman, Mathematical and Physical Sciences Discipline Group M. Yahaya FASc and his delegation visiting the LHC superconducting magnet test hall with Technology Department G. De Rijk.

    CERN Document Server

    Maximilien Brice

    2012-01-01

    9 July 2012 - Academy of Sciences Malaysia (ASM), Chairman, Mathematical and Physical Sciences Discipline Group M. Yahaya FASc and his delegation visiting the LHC superconducting magnet test hall with Technology Department G. De Rijk.

  6. 10th December 2010 - German Delegation from the Novartis Foundation for Sustainable Development visiting the LHC superconducting magnet test hall with Technology Department S. Russenschuck and accompanied by Adviser for Life Sciences M. Dosanjh.

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    10th December 2010 - German Delegation from the Novartis Foundation for Sustainable Development visiting the LHC superconducting magnet test hall with Technology Department S. Russenschuck and accompanied by Adviser for Life Sciences M. Dosanjh.

  7. Superconducting transistor

    Science.gov (United States)

    Gray, Kenneth E.

    1979-01-01

    A superconducting transistor is formed by disposing three thin films of superconducting material in a planar parallel arrangement and insulating the films from each other by layers of insulating oxides to form two tunnel junctions. One junction is biased above twice the superconducting energy gap and the other is biased at less than twice the superconducting energy gap. Injection of quasiparticles into the center film by one junction provides a current gain in the second junction.

  8. Superconductivity and superconductive electronics

    Science.gov (United States)

    Beasley, M. R.

    1990-12-01

    The Stanford Center for Research on Superconductivity and Superconductive Electronics is currently focused on developing techniques for producing increasingly improved films and multilayers of the high-temperature superconductors, studying their physical properties and using these films and multilayers in device physics studies. In general the thin film synthesis work leads the way. Once a given film or multilayer structure can be made reasonably routinely, the emphasis shifts to studying the physical properties and device physics of these structures and on to the next level of film quality or multilayer complexity. The most advanced thin films synthesis work in the past year has involved developing techniques to deposit a-axis and c-axis YBCO/PBCO superlattices and related structures. The in-situ feature is desirable because no solid state reactions with accompanying changes in volume, morphology, etc., that degrade the quality of the film involved.

  9. Conditions of the potential for commercialization of the patent: the implementation of a technology public offering system technology at CNEN; Condicionantes do potencial de exploracao comercial da patente: a implantacao de um sistema de oferta publica de tecnologia na CNEN

    Energy Technology Data Exchange (ETDEWEB)

    Archila, Daniela Lima Cerqueira

    2015-07-01

    This dissertation identifies the main factors which represent the conditions for the potential commercialization of patents aiming at the implementation of a system for technology public offering at CNEN as a strategy for creating licensing opportunities to the industrial sector. The method applied refers to an exploratory case study of a patented technology selected from a sample of CNEN's patent portfolio in the biopharmaceutical sector. The case study comprehends a field research of interviews conducted with two specialists in technology and innovation management, one researcher from CNEN and a biopharmaceutical company. The results show that among the nineteen main factors - related to technology, market, business and Science and Technology Organization (STO) - the market dynamics, the potential applications of the technology and an abstract of its main benefits compared to existing technologies are the major relevant information for each technology to be included in the public offering system. Other results indicate that the evaluation of such factors may be conducted by competent professionals to bring less uncertainty and risk to the early-stage of the innovation process, as well as enhance the potential interest of a company in the technology. On the other hand, the latter requires innovation capabilities to move the technology forward – additional R&D, scale-up, manufacturing and marketing - whilst the STO needs a entrepreneurial culture that mitigates its obstacles, creates more positive solutions for its routines and processes and gives sustainability to its Technology Transfer Office (TTO) through valuing its personnel in the long term. Finally, emphasis on technological partnerships with companies can be a motivating feature for directing the STO's patent strategy to the creation of proprietary technological platforms that reflect problems experienced by the commercial environment, as well as the development of this strategic patent

  10. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...... MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train....

  11. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  12. Coupled superconducting flux qubits

    NARCIS (Netherlands)

    Plantenberg, J.H.

    2007-01-01

    This thesis presents results of theoretical and experimental work on superconducting persistent-current quantum bits. These qubits offer an attractive route towards scalable solid-state quantum computing. The focus of this work is on the gradiometer flux qubit which has a special geometric design, t

  13. Development of superconducting power devices in Europe

    Science.gov (United States)

    Tixador, Pascal

    2010-11-01

    Europe celebrated last year (2008) the 100-year anniversary of the first liquefaction of helium by H. Kammerling Onnes in Leiden. It led to the discovery of superconductivity in 1911. Europe is still active in the development of superconducting (SC) devices. The discovery of high critical temperature materials in 1986, again in Europe, has opened a lot of opportunities for SC devices by broking the 4 K cryogenic bottleneck. Electric networks experience deep changes due to the emergence of dispersed generation (renewable among other) and to the advances in ICT (Information Communication Technologies). The networks of the future will be “smart grids”. Superconductivity will offer “smart” devices for these grids like FCL (Fault Current Limiter) or VLI (Very Low Inductance) cable and would certainly play an important part. Superconductivity also will participate to the required sustainable development by lowering the losses and enhancing the mass specific powers. Different SC projects in Europe will be presented (Cable, FCL, SMES, Flywheel and Electrical Machine) but the description is not exhaustive. Nexans has commercialized the first two FCLs without public funds in the European grid (UK and Germany). The Amsterdam HTS cable is an exciting challenge in term of losses for long SC cables. European companies (Nexans, Air Liquide, Siemens, Converteam, …) are also very active for projects outside Europe (LIPA, DOE FCL, …).

  14. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-01-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  15. Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science.

    Science.gov (United States)

    Chen, Li; Schwarzer, Dirk; Verma, Varun B; Stevens, Martin J; Marsili, Francesco; Mirin, Richard P; Nam, Sae Woo; Wodtke, Alec M

    2017-06-20

    In contrast to UV photomultiplier tubes that are widely used in physical chemistry, mid-infrared detectors are notorious for poor sensitivity and slow time response. This helps explain why, despite the importance of infrared spectroscopy in molecular science, mid-infrared fluorescence is not more widely used. In recent years, several new technologies have been developed that open new experimental possibilities for research in the mid-infrared. In this Account, we present one of the more promising technologies, superconducting nanowire single photon detectors (SNSPDs) by sharing our experience with its use in a typical experiment carried out by physical chemists (laser-induced fluorescence) and comparing the SNSPD to a detector commonly used by physical chemists (InSb at LN Temperature). SNSPDs are fabricated from a thin film of superconducting metal, patterned into a meandering nanowire. The nanowire is cooled below its superconducting temperature, Tc, and held in a constant current circuit below the critical current necessary to destroy superconductivity, Ic. Upon absorption of a photon, the resulting heat is sufficient to destroy superconductivity across the entire width of the nanowire, an event that can be detected as a voltage pulse. In contrast to semiconductor-based detectors, which have a long wavelength cutoff determined by the band gap, the SNSPD exhibits single-photon sensitivity across the entire mid-IR spectrum. As these devices have not been used extensively outside the field of light detection technology research, one important goal of this Account is to provide practical details for the implementation of these devices in a physical chemistry laboratory. We provide extensive Supporting Information describing what is needed. This includes information on a liquid nitrogen cooled monochromator, the optical collection system including mid-infrared fibers, as well as a closed-cycle cryogenic cooler that reaches 0.3 K. We demonstrate the advantages of

  16. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  17. Superconductivity and the environment: a Roadmap

    Science.gov (United States)

    Nishijima, Shigehiro; Eckroad, Steven; Marian, Adela; Choi, Kyeongdal; Kim, Woo Seok; Terai, Motoaki; Deng, Zigang; Zheng, Jun; Wang, Jiasu; Umemoto, Katsuya; Du, Jia; Febvre, Pascal; Keenan, Shane; Mukhanov, Oleg; Cooley, Lance D.; Foley, Cathy P.; Hassenzahl, William V.; Izumi, Mitsuru

    2013-11-01

    There is universal agreement between the United Nations and governments from the richest to the poorest nations that humanity faces unprecedented global challenges relating to sustainable energy, clean water, low-emission transportation, coping with climate change and natural disasters, and reclaiming use of land. We have invited researchers from a range of eclectic research areas to provide a Roadmap of how superconducting technologies could address these major challenges confronting humanity. Superconductivity has, over the century since its discovery by Kamerlingh Onnes in 1911, promised to provide solutions to many challenges. So far, most superconducting technologies are esoteric systems that are used in laboratories and hospitals. Large science projects have long appreciated the ability of superconductivity to efficiently create high magnetic fields that are otherwise very costly to achieve with ordinary materials. The most successful applications outside of large science are high-field magnets for magnetic resonance imaging, laboratory magnetometers for mineral and materials characterization, filters for mobile communications, and magnetoencephalography for understanding the human brain. The stage is now set for superconductivity to make more general contributions. Humanity uses practically unthinkable amounts of energy to drive our modern way of life. Overall, global power usage has been predicted to almost double from 16.5 to 30 TW in the next four decades (2011 Equinox Summit: Energy 2030 http://wgsi.org/publications-resources). The economy with which electrons carry energy compels the continued quest for efficient superconducting power generation, energy storage, and power transmission. The growing global population requires new arable land and treatment of water, especially in remote areas, and superconductivity offers unique solutions to these problems. Exquisite detectors give warning of changes that are otherwise invisible. Prediction of climate and

  18. Stress management as an enabling technology for high-field superconducting dipole magnets

    Science.gov (United States)

    Holik, Eddie Frank, III

    This dissertation examines stress management and other construction techniques as means to meet future accelerator requirement demands by planning, fabricating, and analyzing a high-field, Nb3Sn dipole. In order to enable future fundamental research and discovery in high energy accelerator physics, bending magnets must access the highest fields possible. Stress management is a novel, propitious path to attain higher fields and preserve the maximum current capacity of advanced superconductors by managing the Lorentz stress so that strain induced current degradation is mitigated. Stress management is accomplished through several innovative design features. A block-coil geometry enables an Inconel pier and beam matrix to be incorporated in the windings for Lorentz Stress support and reduced AC loss. A laminar spring between windings and mica paper surrounding each winding inhibit any stress transferral through the support structure and has been simulated with ALGORRTM. Wood's metal filled, stainless steel bladders apply isostatic, surface-conforming preload to the pier and beam support structure. Sufficient preload along with mica paper sheer release reduces magnet training by inhibiting stick-slip motion. The effectiveness of stress management is tested with high-precision capacitive stress transducers and strain gauges. In addition to stress management, there are several technologies developed to assist in the successful construction of a high-field dipole. Quench protection has been designed and simulated along with full 3D magnetic simulation with OPERARTM. Rutherford cable was constructed, and cable thermal expansion data was analysed after heat treatment. Pre-impregnation analysis techniques were developed due to elemental tin leakage in varying quantities during heat treatment from each coil. Robust splicing techniques were developed with measured resistivites consistent with nO joints. Stress management has not been incorporated by any other high field dipole

  19. Superconducting electronics

    NARCIS (Netherlands)

    Rogalla, Horst

    1994-01-01

    During the last decades superconducting electronics has been the most prominent area of research for small scale applications of superconductivity. It has experienced quite a stormy development, from individual low frequency devices to devices with high integration density and pico second switching

  20. Accelerator Science and Technology in Canada -- From the Microtron to TRIUMF, Superconducting Cyclotrons and the Canadian Light Source

    Science.gov (United States)

    Craddock, M. K.; Laxdal, R. E.

    As elsewhere, accelerators in Canada have evolved from modest beginnings to major facilities such as TRIUMF (currently with the highest-power driver for rare isotope beam production) and the third generation Canadian Light Source. Highlights along the way include construction of the first microtron, the first racetrack microtron and the first superconducting cyclotron (to which list might have been added the first pulse stretcher ring, had it been funded sooner). This article will summarize the history of accelerators in Canada, documenting both the successes and the near-misses. Besides the research accelerators, a thriving commercial sector has developed, manufacturing small cyclotrons and linacs, beam line components and superconducting rf cavities.

  1. Accelerator Science and Technology in Canada — From the Microtron to TRIUMF, Superconducting Cyclotrons and the Canadian Light Source

    Science.gov (United States)

    Craddock, M. K.; Laxdal, R. E.

    As elsewhere, accelerators in Canada have evolved from modest beginnings to major facilities such as TRIUMF (currently with the highest-power driver for rare isotope beam production) and the third generation Canadian Light Source. Highlights along the way include construction of the first microtron, the first racetrack microtron and the first superconducting cyclotron (to which list might have been added the first pulse stretcher ring, had it been funded sooner). This article will summarize the history of accelerators in Canada, documenting both the successes and the near-misses. Besides the research accelerators, a thriving commercial sector has developed, manufacturing small cyclotrons and linacs, beam line components and superconducting rf cavities.

  2. Applied superconductivity and superfluidity for the exploration of the Moon and Mars

    Science.gov (United States)

    Chui, Talso C P.; Hahn, Inseob; Penanen, Konstantin; Zhong, Fang; Strayer, Donald

    2005-01-01

    We discuss how superconductivity and superfluidity can be applied to solve the challenges in the exploration of the Moon and Mars. High sensitivity instruments using phenomena of superconductivity and superfluidity can potentially make significant contributions to the fields of navigation, automation, habitation, and resource location. Using the quantum nature of superconductivity, lightweight and very sensitive diagnostic tools can be made to monitor the health of astronauts. Moreover, the Moon and Mars offer a unique environment for scientific exploration. We also discuss how powerful superconducting instruments may enable scientists to seek answers to several profound questions about nature. These answers will not only deepen our appreciation of the universe, they may also open the door to paradigm-shifting technologies. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.

  3. Current Sharing Technology in Transmission Conductors of Cold Dielectric High Temperature Superconducting Cables Using Second-generation HTS Wires

    Institute of Scientific and Technical Information of China (English)

    ZHU Jiahui; BAO Xuzheng; QIU Ming

    2012-01-01

    The cold dielectric high temperature superconducting (CD HTS) cable has multilayer conductors. The non-uniform AC current distribution in these multilayer conductors will increase the AC loss and decrease the current transmission efficiency. So it is important to understand the current sharing among layers in order to fully exploit the performance of the HTS cable.

  4. High-T sub c superconductivity seeks a digital home

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, W.I. (IBM, T.J. Watson Research Group, Yorktown Heights, NY (US))

    1990-11-01

    The author discusses two of the three predictable (because they are obvious) digital applications of high-T{sub c} superconductivity: the use of Josephson technology at 77 K and the use of high-T{sub c} lines for interconnects. (The third is the use of SQUID magnetic sensors in storage). All of these applications offer potentially significant advantages at the component level. But these advantages have yet to be demonstrated. It will be some time before the applications can be developed to the point of offering system-level improvements at competitive costs.

  5. 17th International Conference on RF Superconductivity

    CERN Document Server

    2015-01-01

    RF superconductivity is the key technology of accelerators for particle physics, nuclear physics and light sources. SRF 2015 covered the latest advances in the science, technology, and applications of superconducting RF. There was also an industrial exhibit during the conference with the key vendors in the community available to discuss their capabilities and products.

  6. 17th International Conference on RF Superconductivity

    CERN Document Server

    Laxdal, Robert E.; Schaa, Volker R.W.

    2015-01-01

    RF superconductivity is the key technology of accelerators for particle physics, nuclear physics and light sources. SRF 2015 covered the latest advances in the science, technology, and applications of superconducting RF. There was also an industrial exhibit during the conference with the key vendors in the community available to discuss their capabilities and products.

  7. Operational Merits of Maritime Superconductivity

    Science.gov (United States)

    Ross, R.; Bosklopper, J. J.; van der Meij, K. H.

    The perspective of superconductivity to transfer currents without loss is very appealing in high power applications. In the maritime sector many machines and systems exist in the roughly 1-100 MW range and the losses are well over 50%, which calls for dramatic efficiency improvements. This paper reports on three studies that aimed at the perspectives of superconductivity in the maritime sector. It is important to realize that the introduction of superconductivity comprises two technology transitions namely firstly electrification i.e. the transition from mechanical drives to electric drives and secondly the transition from normal to superconductive electrical machinery. It is concluded that superconductivity does reduce losses, but its impact on the total energy chain is of little significance compared to the investments and the risk of introducing a very promising but as yet not proven technology in the harsh maritime environment. The main reason of the little impact is that the largest losses are imposed on the system by the fossil fueled generators as prime movers that generate the electricity through mechanical torque. Unless electric power is supplied by an efficient and reliable technology that does not involve mechanical torque with the present losses both normal as well as superconductive electrification of the propulsion will hardly improve energy efficiency or may even reduce it. One exception may be the application of degaussing coils. Still appealing merits of superconductivity do exist, but they are rather related to the behavior of superconductive machines and strong magnetic fields and consequently reduction in volume and mass of machinery or (sometimes radically) better performance. The merits are rather convenience, design flexibility as well as novel applications and capabilities which together yield more adequate systems. These may yield lower operational costs in the long run, but at present the added value of superconductivity rather seems more

  8. Superconducting Tunnel Junction Arrays for UV Photon Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An innovative method is described for the fabrication of superconducting tunnel junction (STJ) detector arrays offering true "three dimensional" imaging throughout...

  9. Application of Phase Lock Loop in Superconducting RF Technology%锁相环在超导射频技术中的应用

    Institute of Scientific and Technical Information of China (English)

    常玮; 何源; 李春龙; 高郑; 朱正龙; 薛纵横; 宋玉; 张锐

    2014-01-01

    利用压控振荡器锁相环路(VCO-PLL)锁定超导射频谐振腔体的本征频率,使腔体稳定谐振。在原理验证阶段,利用NI-Labview对实验原理做了仿真。得到的仿真结果显示,环路增益选取的不同会直接影响整个系统的锁定状态。在实验测试阶段,根据原理和仿真结果搭建了相应的实验平台,从而得到环路锁定的测试结果。最后在低温超导态测试阶段,用经过验证的实验平台对IMP-HWR010超导腔体进行了频率锁定测试,并得到了腔体频率随氦压变化的实际测量结果,df/dp约为0.73 Hz/Pa。%The main issue of this paper is to introduce the application of phase lock loop (PLL) in supercon-ducting RF technology. The voltage-controlled oscillator phase lock loop (VCO-PLL) can be used for locking the eigen frequency of the superconducting cavity. It can keep superconducting cavity resonant stably. In this paper, the principle of the cavity locking by the VCO-PLL is verified by a simulation, which is done by using NI-Labview software. The simulation result shows that the different gain of the PLL system can impact the locking situation of the whole system. In the test stage, the locking test plant is set up and passed validation. Finally, at the low temperature test stage, the frequency of the IMP-HWR010 superconducting cavity is locked by the test plant. The frequency change with helium pressure of the cavity is about 0.73 Hz/Pa.

  10. Industrial and scientific technology research and development project in fiscal 1997 commissioned by the New Energy and Industrial Technology Development Organization. Research and development of superconducting materials and transistors (report on overall investigation of superconductive devices); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chodendo zairyo chodendo soshi no kenkyu kaihatsu (chodendo soshika gijutsu kaihatsu seika hokokusho)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    This paper describes development of superconducting new function transistors. Fiscal 1997 as the final year of the project advanced improvement in such transistor-using processes as formation and micro-processing of superconducting thin films to show enhancement in characteristics of high-temperature superconducting transistors and possibility of their application utilizing their high speed motions. Furthermore, fundamental technologies were studied with an aim on junction transistors to be applied as circuits. For field effect transistors, evaluation was performed on critical current distribution of step-type particle boundary junction to make it possible to evaluate characteristics of hundreds of transistors. At the same time, a magnetic flux quantum parametron gate with three-layer structure was fabricated to identify its operation. In superconducting-base transistors, strong reflection was recognized on temperature dependence of permittivity of an Nb-doped strontium titanate substrate used for collectors, by which barrier height was reduced. In the junction transistor and circuit technology, isotropic ramp-edge junctions were fabricated, and so was a frequency divider circuit with single magnetic flux quantum mode operation for evaluating high-speed response characteristics. High time resolution current was observed successfully by using a high-temperature superconducting sampler system. 148 refs., 127 figs., 4 tabs.

  11. Nonequilibrium superconducting detectors

    Science.gov (United States)

    Cristiano, R.; Ejrnaes, M.; Esposito, E.; Lisitskyi, M. P.; Nappi, C.; Pagano, S.; Perez de Lara, D.

    2006-03-01

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  12. Nonequilibrium superconducting detectors

    Energy Technology Data Exchange (ETDEWEB)

    Cristiano, R [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Ejrnaes, M [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); INFN Sezione di Napoli, 80126 Naples (Italy); Esposito, E [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Lisitskyi, M P [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Nappi, C [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Pagano, S [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy); Dipartimento di Fisica, Universita di Salerno, 84081 Baronissi (Saudi Arabia) (Italy); Perez de Lara, D [CNR-Istituto di Cibernetica E. Caianiello, 80078 Pozzuoli (Namibia) (Italy)

    2006-03-15

    Nonequilibrium superconducting detectors exploit the early stages of the energy down cascade which occur after the absorption of radiation. They operate on a short temporal scale ranging from few microseconds down to tens of picoseconds. In such a way they provide fast counting capability, high time discrimination and also, for some devices, energy sensitivity. Nonequilibrium superconducting detectors are developed for their use both in basic science and in practical applications for detection of single photons or single ionized macromolecules. In this paper we consider two devices: distributed readout imaging detectors (DROIDs) based on superconducting tunnel junctions (STJs), which are typically used for high-speed energy spectroscopy applications, and hot-electron superconductive detectors (HESDs), which are typically used as fast counters and time discriminators. Implementation of the DROID geometry to use a single superconductor is discussed. Progress in the fabrication technology of NbN nanostructured HESDs is presented. The two detectors share the high sensitivity that makes them able to efficiently detect even single photons down to infrared energy.

  13. Superconducting doped topological materials

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Satoshi, E-mail: sasaki@sanken.osaka-u.ac.jp [Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047 (Japan); Mizushima, Takeshi, E-mail: mizushima@mp.es.osaka-u.ac.jp [Department of Materials Engineering Science, Osaka University, Toyonaka, Osaka 560-8531 (Japan); Department of Physics, Okayama University, Okayama 700-8530 (Japan)

    2015-07-15

    Highlights: • Studies on both normal- and SC-state properties of doped topological materials. • Odd-parity pairing systems with the time-reversal-invariance. • Robust superconductivity in the presence of nonmagnetic impurity scattering. • We propose experiments to identify the existence of Majorana fermions in these SCs. - Abstract: Recently, the search for Majorana fermions (MFs) has become one of the most important and exciting issues in condensed matter physics since such an exotic quasiparticle is expected to potentially give rise to unprecedented quantum phenomena whose functional properties will be used to develop future quantum technology. Theoretically, the MFs may reside in various types of topological superconductor materials that is characterized by the topologically protected gapless surface state which are essentially an Andreev bound state. Superconducting doped topological insulators and topological crystalline insulators are promising candidates to harbor the MFs. In this review, we discuss recent progress and understanding on the research of MFs based on time-reversal-invariant superconducting topological materials to deepen our understanding and have a better outlook on both the search for and realization of MFs in these systems. We also discuss some advantages of these bulk systems to realize MFs including remarkable superconducting robustness against nonmagnetic impurities.

  14. Disbursement of $65 million to the State of Texas for construction of a Regional Medical Technology Center at the former Superconducting Super Collider Site, Waxahachie, Texas

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-05-01

    As part of a settlement agreement between the US DOE and the State of Texas, DOE proposes to transfer $65 million of federal funds to the Texas National Research Laboratory Commission (TNLRC) for construction of the Regional Medical Technology Center (RMTC) to be located in Ellis County, Texas. The RMTC would be a state-of-the-art medical facility for proton cancer therapy, operated by the State of Texas in conjunction with the University of Texas Southwestern Medical Center. The RMTC would use the linear accelerator assets of the recently terminated DOE Superconducting Super Collider Project to accelerate protons to high energies for the treatment of cancer patients. The current design provides for treatment areas, examination rooms, support laboratories, diagnostic imaging equipment, and office space as well as the accelerators (linac and synchrotron) and beam steering and shaping components. The potential environmental consequences of the proposed action are expected to be minor.

  15. Optimize Deployment of Renewable Energy Technologies for Government Agencies, Industrial Facilities, and Military Installations: NREL Offers Proven Tools and Resources to Reduce Energy Use and Improve Efficiency (Brochure)

    Energy Technology Data Exchange (ETDEWEB)

    2010-01-01

    The National Renewable Energy Lab provides expertise, facilities, and technical assistance to campuses, facilities, and government agencies to apply renewable energy and energy efficiency technologies.

  16. Superconducting Microelectronics.

    Science.gov (United States)

    Henry, Richard W.

    1984-01-01

    Discusses superconducting microelectronics based on the Josephson effect and its advantages over conventional integrated circuits in speed and sensitivity. Considers present uses in standards laboratories (voltage) and in measuring weak magnetic fields. Also considers future applications in superfast computer circuitry using Superconducting…

  17. Offer/Acceptance Ratio.

    Science.gov (United States)

    Collins, Mimi

    1997-01-01

    Explores how human resource professionals, with above average offer/acceptance ratios, streamline their recruitment efforts. Profiles company strategies with internships, internal promotion, cooperative education programs, and how to get candidates to accept offers. Also discusses how to use the offer/acceptance ratio as a measure of program…

  18. Development of superconductor application technology - Fabrication of superconducting plate using tape casting and development of directional growth

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Kwang Soo; Yoon, Dae Sung; Lee, Joon Sung; Jun, Byung Hyuk; Woo, Sung Soo; Hong, Seung Bum; Kim, Eun Ah; Song, Han Wook [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1996-05-01

    This study concerns the establishment of the fabrication techniques of the high temperature superconductor tape using tape coating, the heat treatment and directional growth techniques in order to fabricate high temperature superconductor bulks having high current density. This study is important in the development of bulk high temperature superconductors and in the applications in bulk forms. Development of Tape Casting Technique : Fabrication of the high temperature superconductor tape using different processing condition. Fabrication of Y- and Bi- High Temperature Superconductor Tapes : Based on the optimum processing condition, the superconductor tapes were fabricated. Development of Directional Growth Techniques : The tapes were heat-treated at proper condition and directionally growth using different directional growth condition. The superconducting properties were tested on the directionally grown samples. 21 figs. (author)

  19. 2 March 2012 - US Google Management Team Executive Chairman E. Schmidt visiting the LHC superconducting magnet test hall with Director for Accelerators and Technology S. Myers and Head of Technology Department F. Bordry; signing the guest book with CERN Director-General R. Heuer.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    2 March 2012 - US Google Management Team Executive Chairman E. Schmidt visiting the LHC superconducting magnet test hall with Director for Accelerators and Technology S. Myers and Head of Technology Department F. Bordry; signing the guest book with CERN Director-General R. Heuer.

  20. 20th May 2010 - Malaysian Minister for Science, Technology and Innovation H. F: B. H. Yusof signing the guest book with Coordinator for External Relations F. Pauss and CMS Collaboration Deputy Spokesperson A. De Roeck; visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by CERN Advisers J. Ellis and E. Tsesmelis.

    CERN Document Server

    Maximilien brice

    2010-01-01

    20th May 2010 - Malaysian Minister for Science, Technology and Innovation H. F: B. H. Yusof signing the guest book with Coordinator for External Relations F. Pauss and CMS Collaboration Deputy Spokesperson A. De Roeck; visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by CERN Advisers J. Ellis and E. Tsesmelis.

  1. Time ripe for superconductivity?

    Directory of Open Access Journals (Sweden)

    George Marsh

    2002-04-01

    But there is a crucial deadline and failure to meet it could send superconductivity back to the commercial shadows (at least outside the medical and scientific niches where it is a key enabler in analytical instruments, magnetic resonance imaging, and particle accelerators for another 30 years. Later this decade, the vintage infrastructure of dense copper conductors that supports power distribution in developed countries, in particular in the US, will become due for renewal. (Recent power problems in California were largely those of distribution infrastructure. At the same time, boosting capacity to serve the needs of increasingly affluent populations will pose a challenge. Superconductivity could provide the answer — if the technology matures in time and cost targets are met.

  2. Color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Wilczek, F. [Institute for Advanced Study, Princeton, NJ (United States)

    1997-09-22

    The asymptotic freedom of QCD suggests that at high density - where one forms a Fermi surface at very high momenta - weak coupling methods apply. These methods suggest that chiral symmetry is restored and that an instability toward color triplet condensation (color superconductivity) sets in. Here I attempt, using variational methods, to estimate these effects more precisely. Highlights include demonstration of a negative pressure in the uniform density chiral broken phase for any non-zero condensation, which we take as evidence for the philosophy of the MIT bag model; and demonstration that the color gap is substantial - several tens of MeV - even at modest densities. Since the superconductivity is in a pseudoscalar channel, parity is spontaneously broken.

  3. SUPERCONDUCTING PHOTOCATHODES.

    Energy Technology Data Exchange (ETDEWEB)

    SMEDLEY, J.; RAO, T.; WARREN, J.; SEKUTOWICZ, LANGNER, J.; STRZYZEWSKI, P.; LEFFERS, R.; LIPSKI, A.

    2005-10-09

    We present the results of our investigation of lead and niobium as suitable photocathode materials for superconducting RF injectors. Quantum efficiencies (QE) have been measured for a range of incident photon energies and a variety of cathode preparation methods, including various lead plating techniques on a niobium substrate. The effects of operating at ambient and cryogenic temperatures and different vacuum levels on the cathode QE have also been studied.

  4. Euglycemic ketosis in patients with type 2 diabetes on SGLT2-inhibitor therapy-an emerging problem and solutions offered by diabetes technology

    DEFF Research Database (Denmark)

    Pfützner, A; Klonoff, D; Heinemann, Lars

    2017-01-01

    and without any indicative hyperglycemia. In consequence, patients on sodium-glucose cotransporter2 inhibitors are recommended to perform regular blood ketone tests since they are not alerted to incipient diabetic ketoacidosis by glucose testing alone. This option is offered by several blood glucose meters...... that can also measure ketones with a separate ketone strip or in one case by an automatic parallel ketone assessment from the same strip. The need for extra testing and the associated costs may be a barrier to patient acceptance of this risk mitigation procedure. However, patients who are at risk...

  5. Low Loss and Magnetic Field-tuned Superconducting THz Metamaterial

    CERN Document Server

    Jin, Biaobing; Engelbrecht, Sebastian; Pimenov, Andrei; Wu, Jingbo; Xu, Qinyin; Cao, Chunhai; Chen, Jian; Xu, Weiwei; Kang, Lin; Wu, Peiheng

    2010-01-01

    Superconducting terahertz (THz) metamaterial (MM) made from superconducting Nb film has been investigated using a continuous-wave THz spectroscopy with a superconducting split-coil magnet. The obtained quality factors of the resonant modes at 132 GHz and 450 GHz are about three times as large as those calculated for a metal THz MM operating at 1 K, which indicates that superconducting THz MM is a very nice candidate to achieve low loss performance. In addition, the magnetic field-tuning on superconducting THz MM is also demonstrated, which offer an alternative tuning method apart from the existed electric, optical and thermal tuning on THz MM.

  6. Report on the achievements in fiscal 1999. Research and development on a basic technology to apply superconductivity (Development on an ultra high speed signal processing technology with low electric power consumption); 1999 nendo chodendo oyo kiban gijutsu kenkyu kaihatsu seika hokokusho. Teishohi denryoku chokosoku shingo shori gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The development of a technology to design superconductive circuits has worked on (1) a circuit design technology and (2) fabrication of a small scale demonstration circuit. In Item (1), analog evaluation provided SN characteristics of 11 bits or more by using a primary Sigma-Delta ({sigma}-{delta}) modulator as the element circuit for an AD converter. In addition, a proposal was made on a decimation filter using a secondary {sigma}-{delta} module and a counter, which use a magnetic quantum multiplication element as feedback. In Item (2), fabricating conditions for an NBCO film were established with high Tc reproducibility. In addition to having established a design method for a superconductive filter, a technology was developed to deposit superconductive oxide conductors on both sides of an MgO substrate having a thickness of 0.5 mm. This development provided a prospect of realizing a filter for large electric power of 10 GHz and 10W class. In developing a technology for measuring superconductive circuit characteristics, discussions were given on a measurement and evaluation technology. To explain, with regard to the technology to demonstrate high speed actions, a high-speed action demonstration and measurement system was started up, which can be cooled down to 5K, and has small critical current variation due to magnetic flux trap. Output of SFQ signals up to 4 GHz was successfully detected. (NEDO)

  7. Initial Public Offering

    OpenAIRE

    Veselý, Marek

    2009-01-01

    Thesis describes initial public offering on the stock markets. There are mentioned basic phases of this process. In this thesis is named pros & cons of this source of financing. Recommends also other ways how to gain capital for own company business acitivities. Thesis is interested about main conditions for successfull "going public". Initial Public Offering of bonds is described too. Practical part of this thesis is concern IPO in the Czech Republic -- historical data, IPO in the past on Pr...

  8. The Application Trend of Smart Sensing Technology in Home of Building: An Example of a Green and Smart Building for the Seniors Citizens Offered by Farglory Land Development

    Directory of Open Access Journals (Sweden)

    Meng-Hsien Hsieh

    2011-09-01

    Full Text Available The living space of smart buildings requires three major applications: energy-saving and comfort, security and hazard prevention, and health care. These applications not only give rise to a market opportunity for advanced sensor fusion technologies including comfort sensing, infrared sensing, inertial sensing, and voice recognition, but also make proactive sensing, smart determination, and automatic control possible. The smart building project by Farglory Land Development, where senior citizens are able to live comfortably and be well taken care of, is presented here. The current trends visible from this project are also discussed.

  9. 建筑设计技术专业开设BIM课程的思考%Thinking of Building Design Technology Professionals Offering the BIM Program

    Institute of Scientific and Technical Information of China (English)

    罗平; 唐俊

    2015-01-01

    With the building information modeling (Building Information Modeling, BIM) technology is widely applied, vocational technical professional open BIM architectural design courses demand more and more urgent. Hunan Urban Con-struction College building design technology professional background, in-depth research and analysis on personnel training programs, proposed a"three-step"approach, a gradual transition from the current computer-aided design (CAD) program to converged BIM course format.%随着建筑信息模型(Building Information Modeling,BIM)技术应用越来越广泛,高职建筑设计技术专业开设BIM类课程的需求也越来越迫切。以湖南城建职业技术学院建筑设计技术专业为背景,在深入调研和剖析人才培养方案的基础上,提出采用“三步走”的方式,逐步从现在的计算机辅助设计(CAD)课程过渡到融合型BIM课程形式。

  10. Design and simulation of 3½-cell superconducting gun cavity and beam dynamics studies of the SASE-FEL System at the Institute of Accelerator Technologies at Ankara University

    Science.gov (United States)

    Yildiz, H. Duran; Cakir, R.; Porsuk, D.

    2015-06-01

    Design and simulation of a superconducting gun cavity with 3½ cells have been studied in order to give the first push to the electron beam for the linear accelerating system at The Institute of Accelerator Technologies at Ankara University. Electrons are accelerated through the gun cavity with the help of the Radiofrequency power suppliers from cryogenic systems. Accelerating gradient should be as high as possible to accelerate electron beam inside the cavity. In this study, electron beam reaches to 9.17 MeV energy at the end of the gun cavity with the accelerating gradient; Ec=19.21 MV/m. 1.3 GHz gun cavity consists of three TESLA-like shaped cells while the special designed gun-cell includes a cathode plug. Optimized important beam parameters inside the gun cavity, average beam current 3 mA, transverse emittance 2.5 mm mrad, repetition rate 30 MHz and other parameters are obtained for the SASE-FEL System. The Superfish/Poisson program is used to design each cell of the superconducting cavity. Superconducting gun cavity and Radiofrequency properties are studied by utilizing 2D Superfish/Poisson, 3D Computer Simulation Technology Microwave Studio, and 3D Computer Simulation Technology Particle Studio. Superfish/Poisson is also used to optimize the geometry of the cavity cells to get the highest accelerating gradient. The behavior of the particles along the beamline is included in this study. ASTRA Code is used to track the particles.

  11. 100 years of superconductivity

    CERN Multimedia

    Globe Info

    2011-01-01

    Public lecture by Philippe Lebrun, who works at CERN on applications of superconductivity and cryogenics for particle accelerators. He was head of CERN’s Accelerator Technology Department during the LHC construction period. Centre culturel Jean Monnet, route de Gex Tuesday 11 October from 8.30 p.m. to 10.00 p.m. » Suitable for all – Admission free - Lecture in French » Number of places limited For further information: +33 (0)4 50 42 29 37

  12. TOPICAL REVIEW: Superconducting bearings

    Science.gov (United States)

    Hull, John R.

    2000-02-01

    The physics and technology of superconducting bearings is reviewed. Particular attention is given to the use of high-temperature superconductors (HTSs) in rotating bearings. The basic phenomenology of levitational forces is presented, followed by a brief discussion of the theoretical models that can be used for conceptual understanding and calculations. The merits of various HTS bearing designs are presented, and the behaviour of HTS bearings in typical situations is discussed. The article concludes with a brief survey of various proposed applications for HTS bearings.

  13. Conventional and unconventional superconductivity

    Science.gov (United States)

    Fernandes, R. M.

    2012-02-01

    Superconductivity has been one of the most fruitful areas of research in condensed matter physics, bringing together researchers with distinct interests in a collaborative effort to understand from its microscopic basis to its potential for unprecedented technological applications. The concepts, techniques, and methods developed along its centennial history have gone beyond the realm of condensed matter physics and influenced the development of other fascinating areas, such as particle physics and atomic physics. These notes, based on a set of lectures given at the 2011 Advanced Summer School of Cinvestav, aim to motivate the young undergraduate student in getting involved in the exciting world of conventional and unconventional superconductors.

  14. The cold wars a history of superconductivity

    CERN Document Server

    Matricon, Jean

    1994-01-01

    Among the most peculiar of matter¡¦s behaviors is superconductivity„oelectric current without resistance. Since the 1986 discovery that superconductivity is possible at temperatures well above absolute zero, research into practical applications has flourished. The Cold Wars tells the history of superconductivity, providing perspective on the development of the field and its relationship with the rest of physics. Superconductivity offers an excellent example of the evolution of physics in the twentieth century: the science itself, its foundations, and its social context. The authors also introduce the reader to the fascinating scientific personalities, including 2003 Nobel Prize winners Alexei Alexeievich Abrikosov and Vitali Ginzburg, and political struggles behind this research.

  15. High field superconducting magnet: Science, Technology and Applications%高场超导磁体科学技术与应用

    Institute of Scientific and Technical Information of China (English)

    王秋良

    2013-01-01

    科学技术的发展对于磁场强度质量的要求越来越高,极端强磁场条件是人类追求的永远的科学目标,它孕育着许多重大的科学发现和新技术的产生,对人类的科学和技术以及生活产生重大的影响.以磁体为核心与电力电子器件以及相关的软件等结合可以构成各种各样科学仪器和装置,广泛应用在科学研究和工业特种装备中.磁技术对于人类的科学与技术进步起到越来越重要的作用,尤其是极高磁场所带来的诸多优点,使得人类对于物质世界认识不断加深,对于生命的起源以及从事疾病的防治的研究有特别重要的意义.本文介绍磁体基本原理、磁场产生的方法与应用以及相关的发展.%Development of superconducting magnet science and technology requires a magnetic field with high strength and good quality.The pursuit of extremely high magnetic field is an eternal scientific goal forscientists and engineers.It is an exciting cutting-edge technology with full of challenges and has been essential for many significant discoveries in science and technology.Combined with power-electronic devices and related software,a whole magnet system can be built up as the key component of various types of scientific instruments and other equipment,and can be fund widespread applications in scientific research and industry.Magnet technology is currently playing a more and more important role in scientific and technological progress.Ultra-high magnetic fields help to give us much deeper understanding of the world of matter and have special significance for research into the origins of life and disease prevention.In this review article,basic magnet principles,methods of generating magnetic fields,magnetic field applications,and numerical methods for the design of magnet structures are briefly introduced and reviewed.

  16. An Investigation of Solutions to Empowering Iranian Rural People to Use Services Offered by Information and Communication Technology Service Offices: The Case of Isfahan Province

    Directory of Open Access Journals (Sweden)

    Tahmasb Maghsoudi

    2010-01-01

    Full Text Available Problem statement: Knowledge and information should be provided for people effectively as they can use it in their life. Empowering rural people to use formation and knowledge is necessary and important than its Transfer. In order to develop information and communication services in rural area, services offices have been established, but the villagers do not ability to use services. This research identified the empowerment solutions for rural people in order to use services offered by ICT Services offices. Currently have access to 67% Iranian rural populations assess ICT Service Offices, therefore, empowering people can promote efficiency and effectiveness of ICT Service offices and accelerate rural development. Approach: A descriptive methodology was applied in this study, through questionnaires. In this study, 210 local authorities in five counties (Fereydan, Fereydonshahr, Semirom, Natanz and Golpaygan of Isfahan province were selected through random sampling. The statistical analysis after data extraction was carried out by SPSS version13.0. Factor analysis was used for data analysis. Results: The findings revealed that four factors containing 33 variables explained 70.9% of variance. These factors were named: awareness (27.86% variance, Facilitation (16.39% variance, an institutional (13.55% variance and context building (12.18% variance to the representation. Conclusion: The findings regarding the strategies used in order to empower villagers desirable services shows that in short-term order should take action to capitalize on fundamental measures, facilitative and increase access to education and services and will encourage local orientation. Among the long-term should also focus on Facilitation-Increasing access to education and to encourage the local orientation, and using basic measures were. In order to empower the villagers regard to awareness factors-communication, facilitative-motivational, institutional-Migration and property

  17. House technology - compact modules for passive houses. A system solution offered by craftsmen; Haustechnik - Kompaktmodule fuer Passivhaeuser. Eine Systemloesung des Handwerks

    Energy Technology Data Exchange (ETDEWEB)

    Lackenbauer, A. [Lackenbauer PassivHaustechnik, Traunstein (Germany)

    2001-02-01

    The solutions that have been available on the market so far are basically a combination of individual components, which are combined to functioning units on the individual construction sites according to methods usually applied by the installation craftsmanship. There are different constructional units within the same craftsman business. The following distinctions are made: ventilation devices, which provide the essential functions for inlet and outlet ventilation with heat recovery in a single apparatus, gas wall heating boilers, which combine the functions of a complete heating control centre in the smallest space, and e.g. solar pumps and control groups, which combine the necessary accessories for collectors and solar storage in one constructional unit. However these individual constructional units have several disadvantages. Individual manufacturers have noticed this potential and offer a compact solution for the passive house-one-family house that combines all heating, ventilation and warm water provision functions. These systems took over the market lead in the field of one-family house-passive house. (orig.) [German] Die bisher am Markt erhaeltlichen Loesungen stellen im wesentlichen eine Kombination aus Einzelteilen dar, die den im Installations-Handwerk ueblichen Verfahrensweisen entsprechend auf den Baustellen individuell zu funktionierenden Einheiten verbunden werden. Innerhalb des jeweiligen Gewerkes gibt es verschiedene Baueinheiten. Man unterscheidet Lueftungsgeraete, die die wesentlichen Funktionen zur Be- und Entlueftung mit Waermerueckgewinnung in einem Geraet zur Verfuegung stellen, Gas-Wandheizkessel, die die Funktion einer ganzen Heizzentrale auf kleinstem Raum buendeln, und z.B. Solarpumpen und Regelgruppen, die das erforderliche Zubehoer fuer die Verbindung von Kollektoren und Solarspeicher in einer Baugruppe sammeln. Diese einzelnen Bausteine haben jedoch mehrere Nachteile. Einzelne Hersteller haben das Potential erkannt und bieten eine

  18. The road to superconducting spintronics

    Science.gov (United States)

    Eschrig, Matthias

    Energy efficient computing has become a major challenge, with the increasing importance of large data centres across the world, which already today have a power consumption comparable to that of Spain, with steeply increasing trend. Superconducting computing is progressively becoming an alternative for large-scale applications, with the costs for cooling being largely outweighed by the gain in energy efficiency. The combination of superconductivity and spintronics - ``superspintronics'' - has the potential and flexibility to develop into such a green technology. This young field is based on the observation that new phenomena emerge at interfaces between superconducting and other, competing, phases. The past 15 years have seen a series of pivotal predictions and experimental discoveries relating to the interplay between superconductivity and ferromagnetism. The building blocks of superspintronics are equal-spin Cooper pairs, which are generated at the interface between superconducting and a ferromagnetic materials in the presence of non-collinear magnetism. Such novel, spin-polarised Cooper pairs carry spin-supercurrents in ferromagnets and thus contribute to spin-transport and spin-control. Geometric Berry phases appear during the singlet-triplet conversion process in structures with non-coplanar magnetisation, enhancing functionality of devices, and non-locality introduced by superconducting order leads to long-range effects. With the successful generation and control of equal-spin Cooper pairs the hitherto notorious incompatibility of superconductivity and ferromagnetism has been not only overcome, but turned synergistic. I will discuss these developments and their extraordinary potential. I also will present open questions posed by recent experiments and point out implications for theory. This work is supported by the Engineering and Physical Science Research Council (EPSRC Grant No. EP/J010618/1).

  19. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  20. Itinerant Ferromagnetism and Superconductivity

    OpenAIRE

    Karchev, Naoum

    2004-01-01

    Superconductivity has again become a challenge following the discovery of unconventional superconductivity. Resistance-free currents have been observed in heavy-fermion materials, organic conductors and copper oxides. The discovery of superconductivity in a single crystal of $UGe_2$, $ZrZn_2$ and $URhGe$ revived the interest in the coexistence of superconductivity and ferromagnetism. The experiments indicate that: i)The superconductivity is confined to the ferromagnetic phase. ii)The ferromag...

  1. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  2. VIP Programs Offer More

    Institute of Scientific and Technical Information of China (English)

    ISABELDING

    2005-01-01

    When choosing a hotel, service standards are a high priority for customers, with the quality of service often reflecting a hotel's standing.While most hotels try to provide the beststandard possible to their guest, many also offer special VIP programs that provide vale-added service and reward customer loyalty.

  3. Offers for our members

    CERN Multimedia

    Staff Association

    2013-01-01

    The Courir shops propose the following offer: 15% discount on all articles (not on sales) in the Courir shops (Val Thoiry, Annemasse and Neydens) and 5% discount on sales upon presentation of your Staff Association membership card and an identity card before payment. Summer is here, enjoy our offers for the aquatic parcs! Walibi : Tickets "Zone terrestre": 21 € instead of 26 €. Access to Aqualibi: 5 € instead of 8 € on presentation of your SA member ticket. Free for children (3-11 years old) before 12 h 00. Free for children under 3, with limited access to the attractions. Car park free. * * * * * Aquaparc : Day ticket: – Children: 30 CHF instead of 39 CHF – Adults : 36 CHF instead of 49 CHF Bonus! Free for children under 5.

  4. Offers for our members

    CERN Multimedia

    Staff Association

    2017-01-01

    Summer is coming, enjoy our offers for the aquatic parcs! Walibi : Tickets "Zone terrestre": 24 € instead of 30 €. Access to Aqualibi: 5 € instead of 6 € on presentation of your SA member ticket. Free for children under 100 cm. Car park free. * * * * * Aquaparc : Day ticket: – Children: 33 CHF instead of 39 CHF – Adults : 33 CHF instead of 49 CHF Bonus! Free for children under 5.

  5. Offers for our members

    CERN Multimedia

    Staff Association

    2017-01-01

    Summer is here, enjoy our offers for the aquatic parcs! Walibi : Tickets "Zone terrestre": 24 € instead of 30 €. Access to Aqualibi: 5 € instead of 6 € on presentation of your SA member ticket. Free for children under 100 cm. Car park free. * * * * * Aquaparc : Day ticket: – Children: 33 CHF instead of 39 CHF – Adults : 33 CHF instead of 49 CHF Bonus! Free for children under 5.

  6. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  7. 6th July 2010 - United Kingdom Science and Technology Facilities Council W. Whitehorn signing the guest book with Head of International relations F. Pauss, visiting the Computing Centre with Information Technology Department Head Deputy D. Foster, the LHC superconducting magnet test hall with Technology Department P. Strubin,the Centre Control Centre with Operation Group Leader M. Lamont and the CLIC/CTF3 facility with Project Leader J.-P. Delahaye.

    CERN Multimedia

    Teams : M. Brice, JC Gadmer

    2010-01-01

    6th July 2010 - United Kingdom Science and Technology Facilities Council W. Whitehorn signing the guest book with Head of International relations F. Pauss, visiting the Computing Centre with Information Technology Department Head Deputy D. Foster, the LHC superconducting magnet test hall with Technology Department P. Strubin,the Centre Control Centre with Operation Group Leader M. Lamont and the CLIC/CTF3 facility with Project Leader J.-P. Delahaye.

  8. Basic concepts, status, opportunities, and challenges of electrical machines utilizing high-temperature superconducting (HTS) windings

    Energy Technology Data Exchange (ETDEWEB)

    Frauenhofer, J [Siemens AG, Automation and Drives, Large Drives (Germany); Grundmann, J; Klaus, G; Nick, W [Siemens AG, Corporate Technology, PO Box 3220, 91050 Erlangen (Germany)], E-mail: wolfgang.nick@siemens.com

    2008-02-15

    An overview of the different approaches towards achieving a marketable application of a superconducting electrical machine, either as synchronous motor or generator, will be given. This field ranges from relatively small industrial drives to utility generators with large power ratings, from the low speed and high torque of wind power generators and ship propulsion motors, to high speed generators attached to turbines. Essentially HTS machine technology offers several advantages such as compactness (weight and volume reduction), increased efficiency, and other operational benefits. The machine features have to be optimized with regard to the specific application, and different concepts were developed by internationally competing teams, with Siemens being one of them. The achieved status in these fields will be summarized, pointing to the specific technical challenges to overcome. For this purpose we have not only to consider the technology of manufacturing the HTS rotor winding itself, but also to check requirements and availability of supporting technologies. This ranges from new challenges posed to the non-superconducting ('conventional') components of such innovative HTS machines, manufacturing superconducting material in the coming transition from 1st to 2nd generation HTS tape, cryogenic technology including material behavior, to new and challenging tasks in simulating and predicting the performance of such machines by computational tools. The question of market opportunities for this technology obviously is a function of all these aspects; however, a strong tendency for the near future is seen in the area of high-torque ship propulsion.

  9. Basic concepts, status, opportunities, and challenges of electrical machines utilizing high-temperature superconducting (HTS) windings

    Science.gov (United States)

    Frauenhofer, J.; Grundmann, J.; Klaus, G.; Nick, W.

    2008-02-01

    An overview of the different approaches towards achieving a marketable application of a superconducting electrical machine, either as synchronous motor or generator, will be given. This field ranges from relatively small industrial drives to utility generators with large power ratings, from the low speed and high torque of wind power generators and ship propulsion motors, to high speed generators attached to turbines. Essentially HTS machine technology offers several advantages such as compactness (weight and volume reduction), increased efficiency, and other operational benefits. The machine features have to be optimized with regard to the specific application, and different concepts were developed by internationally competing teams, with Siemens being one of them. The achieved status in these fields will be summarized, pointing to the specific technical challenges to overcome. For this purpose we have not only to consider the technology of manufacturing the HTS rotor winding itself, but also to check requirements and availability of supporting technologies. This ranges from new challenges posed to the non-superconducting ("conventional") components of such innovative HTS machines, manufacturing superconducting material in the coming transition from 1st to 2nd generation HTS tape, cryogenic technology including material behavior, to new and challenging tasks in simulating and predicting the performance of such machines by computational tools. The question of market opportunities for this technology obviously is a function of all these aspects; however, a strong tendency for the near future is seen in the area of high-torque ship propulsion.

  10. Enhancement of superconductivity in NbN nanowires by negative electron-beam lithography with positive resist

    Science.gov (United States)

    Charaev, I.; Silbernagel, T.; Bachowsky, B.; Kuzmin, A.; Doerner, S.; Ilin, K.; Semenov, A.; Roditchev, D.; Vodolazov, D. Yu.; Siegel, M.

    2017-08-01

    We performed comparative experimental investigation of superconducting NbN nanowires which were prepared by means of positive- and negative electron-beam lithography with the same positive tone Poly-methyl-methacrylate (PMMA) resist. We show that nanowires with a thickness 4.9 nm and widths less than 100 nm demonstrate at 4.2 K higher critical temperature and higher density of critical and retrapping currents when they are prepared by negative lithography. Also the ratio of the experimental critical current to the depairing critical current is larger for nanowires prepared by negative lithography. We associate the observed enhancement of superconducting properties with the difference in the degree of damage that nanowire edges sustain in the lithographic process. A whole range of advantages which is offered by the negative lithography with positive PMMA resist ensures high potential of this technology for improving the performance metrics of superconducting nanowire singe-photon detectors.

  11. High-temperature superconductivity for avionic electronic warfare and radar systems

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, P.A. [Wright Lab., Wright-Patterson AFB, OH (United States). Avionics Directorate

    1994-12-31

    The electronic warfare (EW) and radar communities expect to be major beneficiaries of the performance advantages high-temperature superconductivity (HTS) has to offer over conventional technology. Near term upgrades to system hardware can be envisioned using extremely small, high Q, microwave filters and resonators; compact, wideband, low loss, microwave delay and transmission lines; as well as, wideband, low loss, monolithic microwave integrated circuit phase shifters. The most dramatic impact will be in the far term, using HTS to develop new, real time threat identification and response strategy receiver/processing systems designed to utilize the unique high frequency properties of microwave and ultimately digital HTS. To make superconductivity practical for operational systems, however, technological obstacles need to be overcome. Compact cryogenically cooled subsystems with exceptional performance able to withstand rugged operational environments for long periods of time need to be developed.

  12. Theory of superconductivity

    CERN Document Server

    Crisan, Mircea

    1989-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up t

  13. Offers for our members

    CERN Multimedia

    Staff Association

    2017-01-01

    Summer is here, enjoy our offers for the water parks! Walibi: Tickets "Zone terrestre": 24 € instead of 30 €. Access to Aqualibi: 5 € instead of 6 € on presentation of your ticket purchased at the Staff Association. Bonus! Free for children under 100 cm, with limited access to the attractions. Free car park. *  *  *  *  *  *  *  * Aquaparc: Day ticket: -  Children: 33 CHF instead of 39 CHF -  Adults : 33 CHF instead of 49 CHF Bonus! Free for children under 5 years old.

  14. Offers for our members

    CERN Multimedia

    Staff Association

    2016-01-01

    Summer is here, enjoy our offers for the aquatic parcs! Walibi : Tickets "Zone terrestre": 23 € instead of 29 €. Access to Aqualibi: 5 € instead of 6 € on presentation of your SA member ticket. Free for children (3-11 years old) before 12:00 p.m. Free for children under 3, with limited access to the attractions. Car park free. * * * * * Aquaparc : Day ticket: – Children: 33 CHF instead of 39 CHF – Adults : 33 CHF instead of 49 CHF Bonus! Free for children under 5.

  15. Offers for our members

    CERN Multimedia

    Staff Association

    2016-01-01

    Summer is here, enjoy our offers for the aquatic parcs! Walibi : Tickets "Zone terrestre": 23 € instead of 29 €. Access to Aqualibi: 5 € instead of 6 € on presentation of your SA member ticket. Free for children (3-11 years old) before 12:00 p.m. Free for children under 3, with limited access to the attractions. Car park free. * * * * * Aquaparc : Day ticket: – Children: 33 CHF instead of 39 CHF – Adults : 33 CHF instead of 49 CHF Bonus! Free for children under 5.

  16. Offers for our members

    CERN Multimedia

    Staff Association

    2015-01-01

    Summer is here, enjoy our offers for the aquatic parcs! Walibi : Tickets "Zone terrestre": 21,50 € instead of 27 €. Access to Aqualibi: 5 € instead of 6 € on presentation of your SA member ticket. Free for children (3-11 years old) before 12:00 p.m. Free for children under 3, with limited access to the attractions. Car park free. * * * * * Aquaparc : Day ticket: – Children: 33 CHF instead of 39 CHF – Adults : 33 CHF instead of 49 CHF Bonus! Free for children under 5.

  17. Offers for our members

    CERN Multimedia

    Staff Association

    2013-01-01

    Summer is here, enjoy our offers for the aquatic parcs! Walibi : Tickets "Zone terrestre": 21 € instead of 26 €. Access to Aqualibi: 5 € instead of 8 € on presentation of your SA member ticket. Free for children (3-11 years old) before 12 h 00. Free for children under 3, with limited access to the attractions. Car park free. * * * * * Aquaparc : Day ticket: – Children: 30 CHF instead of 39 CHF – Adults : 36 CHF instead of 49 CHF Bonus! Free for children under 5.

  18. Visualizing domain wall and reverse domain superconductivity.

    Science.gov (United States)

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  19. A superconducting magnetic gear

    Science.gov (United States)

    Campbell, A. M.

    2016-05-01

    A comparison is made between a magnetic gear using permanent magnets and superconductors. The objective is to see if there are any fundamental reasons why superconducting magnets should not provide higher power densities than permanent magnets. The gear is based on the variable permeability design of Attilah and Howe (2001 IEEE Trans. Magn. 37 2844-46) in which a ring of permanent magnets surrounding a ring of permeable pole pieces with a different spacing gives an internal field component at the beat frequency. Superconductors can provide much larger fields and forces but will saturate the pole pieces. However the gear mechanism still operates, but in a different way. The magnetisation of the pole pieces is now constant but rotates with angle at the beat frequency. The result is a cylindrical Halbach array which produces an internal field with the same symmetry as in the linear regime, but has an analytic solution. In this paper a typical gear system is analysed with finite elements using FlexPDE. It is shown that the gear can work well into the saturation regime and that the Halbach array gives a good approximation to the results. Replacing the permanent magnets with superconducting tapes can give large increases in torque density, and for something like a wind turbine a combined gear and generator is possible. However there are major practical problems. Perhaps the most fundamental is the large high frequency field which is inevitably present and which will cause AC losses. Also large magnetic fields are required, with all the practical problems of high field superconducting magnets in rotating machines. Nevertheless there are ways of mitigating these difficulties and it seems worthwhile to explore the possibilities of this technology further.

  20. ZGS roots of superconductivity: People and devices

    Energy Technology Data Exchange (ETDEWEB)

    Pewitt, E.G.

    1994-12-31

    The ZGS community made basic contributions to the applications of superconducting magnets to high energy physics as well as to other technological areas. ZGS personnel pioneered many significant applications until the time the ZGS was shutdown in 1979. After the shutdown, former ZGS personnel developed magnets for new applications in high energy physics, fusion, and industrial uses. The list of superconducting magnet accomplishments of ZGS personnel is impressive.

  1. Offers for our members

    CERN Multimedia

    Staff Association

    2013-01-01

    The warm weather arrives, it's time to take advantage of our offers Walibi and Aquapark! Walibi : Tickets "Zone terrestre": 21 € instead of 26 € Access to Aqualibi: 5 € instead of 8 € on presentation of your SA member ticket. Free for children (3-11 years old) before 12 h 00. Free for children under 3, with limited access to the attractions. Car park free. * * * * * Aquaparc : Half-day ticket (5 hours): – Children: 26 CHF instead of 35 CHF – Adults : 32 CHF instead of 43 CHF Day ticket: – Children: 30 CHF instead of 39 CHF – Adults : 36 CHF instead of 49 CHF Free for children under 5.

  2. Offers for our members

    CERN Multimedia

    Association du personnel

    2013-01-01

    La banque LCL propose aux membres de l’Association du personnel les avantages suivants : – Un barème Privilège sur le Prêt immobilier – Des avantages tarifaires sur l’épargne, notamment l’assurance-vie. – Un taux préférentiel de prêt à la consommation. En outre, jusqu’au 30 septembre 2013, elle offre 50€ à tous les nouveaux clients, membres de l'Association du personnel. Summer is here, enjoy our offers for the aquatic parcs! Tickets "Zone terrestre" : 21 € instead of de 26 €. Access to Aqualibi : 5 euros instead of 8 euros on presentation of your SA member ticket. Free for children (3-11 years old) before 12 h 00. Free for children under 3, with limited access to the attractions. Free car park. * * * * * * * Full day ticket: – Children : 30 CHF instead of 39 CHF &...

  3. Overview on superconducting photoinjectors

    CERN Document Server

    Arnold, A

    2011-01-01

    The success of most of the proposed energy recovery linac (ERL) based electron accelerator projects for future storage ring replacements (SRR) and high power IR–free-electron lasers (FELs) largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J.W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004)] electron beams with an unprecedented combination of high brightness, low emittance (0.1 µmrad), and high average current (hundreds of mA) are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun). SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University). Substantial progress was achieved in recent years and the first long term ...

  4. Overview of Superconducting Photoinjectors

    CERN Document Server

    Arnold, A

    2009-01-01

    The success of most of the proposed ERL based electron accelerator projects for future storage ring replacements (SRR) and high power IR-FELs is contingent upon the development of an appropriate source. Electron beams with an unprecedented combination of high brightness, low emittance (0.1 µm rad) and high average current (hundreds of mA) are required to meet the FEL specification [1]. An elegant way to create such an unique beam is to combine the high beam quality of a normal conducting RF photo injector with the superconducting technology to get a superconducting RF photo injector (SRF gun). SRF gun R&D programs based on different approaches are under investigation at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, JLab, Niowave, NPS, Wisconsin University). Lot of progress could be achieved during the last years and first long term operation was demonstrated at the FZD [2]. In the near future, this effort will lead to SRF guns, which are indispensab...

  5. New power-conditioning systems for superconducting magnetic energy storage

    Science.gov (United States)

    Han, Byung Moon

    1992-06-01

    This dissertation presents the development of new power-conditioning systems for superconducting magnetic energy storage (SMES), which can regulate fast and independently the active and reactive powers demanded in the ac network. Three new power-conditioning systems were developed through a systematic approach to match the requirements of the superconducting coil and the ac power network. Each of these new systems is composed of ten 100-MW modules connected in parallel to handle the large current through the superconducting coil. The first system, which was published in the IEEE Transactions on Energy Conversion, consists of line-commutated 24-pulse converter, a thyristor-switched tap-changing transformer, and a thyristor-switched capacitor bank. The second system, which was accepted for publication in the IEEE Transactions on Energy Conversion, consists of a 12-pulse GTO (gate turn-off thyristor) converter and a thyristor-switched tap-changing transformer. The third system, which was submitted to the International Journal of Energy System, consists of a dc chopper and a voltage-source PWM (pulse width modulation) converter. The operational concept of each new system is verified through mathematical analyses and computer simulations. The dynamic interaction of each new system with the ac network and the superconducting coil is analyzed using a simulation model with EMTP (electro-magnetic transients program). The analysis results prove that each new system is feasible and realizable. Each system can regulate the active and reactive powers of the utility network rapidly and independently, and each offer a significant reduction of the system rating by reducing the reactive power demand in the converter. Feasible design for each new system was introduced using a modular design approach based on the 1000 MW/5000 MWH plant, incorporating commercially available components and proven technologies.

  6. Simple Superconducting "Permanent" Electromagnet

    Science.gov (United States)

    Israelson, Ulf E.; Strayer, Donald M.

    1992-01-01

    Proposed short tube of high-temperature-superconducting material like YBa2Cu3O7 acts as strong electromagnet that flows as long as magnetic field remains below critical value and temperature of cylinder maintained sufficiently below superconducting-transition temperature. Design exploits maximally anisotropy of high-temperature-superconducting material.

  7. Basic principle of superconductivity

    OpenAIRE

    De Cao, Tian

    2007-01-01

    The basic principle of superconductivity is suggested in this paper. There have been two vital wrong suggestions on the basic principle, one is the relation between superconductivity and the Bose-Einstein condensation (BEC), and another is the relation between superconductivity and pseudogap.

  8. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  9. Superconducting microfabricated ion traps

    CERN Document Server

    Wang, Shannon X; Labaziewicz, Jaroslaw; Dauler, Eric; Berggren, Karl; Chuang, Isaac L

    2010-01-01

    We fabricate superconducting ion traps with niobium and niobium nitride and trap single 88Sr ions at cryogenic temperatures. The superconducting transition is verified and characterized by measuring the resistance and critical current using a 4-wire measurement on the trap structure, and observing change in the rf reflection. The lowest observed heating rate is 2.1(3) quanta/sec at 800 kHz at 6 K and shows no significant change across the superconducting transition, suggesting that anomalous heating is primarily caused by noise sources on the surface. This demonstration of superconducting ion traps opens up possibilities for integrating trapped ions and molecular ions with superconducting devices.

  10. Superconducting material development

    Science.gov (United States)

    1987-09-01

    A superconducting compound was developed that showed a transition to a zero-resistance state at 65 C, or 338 K. The superconducting material, which is an oxide based on strontium, barium, yttrium, and copper, continued in the zero-resistance state similar to superconductivity for 10 days at room temperature in the air. It was also noted that measurements of the material allowed it to observe a nonlinear characteristic curve between current and voltage at 65 C, which is another indication of superconductivity. The research results of the laboratory experiment with the superconducting material will be published in the August edition of the Japanese Journal of Applied Physics.

  11. Protective link for superconducting coil

    Science.gov (United States)

    Umans, Stephen D.

    2009-12-08

    A superconducting coil system includes a superconducting coil and a protective link of superconducting material coupled to the superconducting coil. A rotating machine includes first and second coils and a protective link of superconducting material. The second coil is operable to rotate with respect to the first coil. One of the first and second coils is a superconducting coil. The protective link is coupled to the superconducting coil.

  12. A Cryogenic Magnetostrictive Actuator Using a Persistent High Temperature Superconducting Magnet. Part 1; Concept and Design

    Science.gov (United States)

    Horner, Garnett; Bromberg, Leslie; Teter, J. P.

    2000-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSCCO 2212 with a magnetostrictive element will be discussed.

  13. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified.

  14. Technology of superconducting accelerator dipoles

    Energy Technology Data Exchange (ETDEWEB)

    Hassenzahl, W.V.; Meuser, R.B.; Taylor, C.

    1983-06-01

    We discuss accelerator dipoles and their characteristics. Other types of magnets, in particular bubble chamber magnets have been quite successful. Their performance is based on cryogenic stability which is addressed only briefly in this chapter. This type of stability is not available to the accelerator designer because of the large quantities of copper or other stabilizer that would reduce the current density in the windings to an unacceptably low value.

  15. Superconducting Radiofrequency (SRF) Acceleration Technology

    Data.gov (United States)

    Federal Laboratory Consortium — SRF cavities enable accelerators to increase particle beam energy levels while minimizing the use of electrical power by all but eliminating electrical resistance....

  16. A superconducting large-angle magnetic suspension

    Science.gov (United States)

    Downer, James R.; Anastas, George V., Jr.; Bushko, Dariusz A.; Flynn, Frederick J.; Goldie, James H.; Gondhalekar, Vijay; Hawkey, Timothy J.; Hockney, Richard L.; Torti, Richard P.

    1992-01-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  17. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

  18. Cooling Technology of Rotor of High Temperature Superconducting Electrical Machines%高温超导电机转子冷却技术的研究

    Institute of Scientific and Technical Information of China (English)

    陈彪; 顾国彪

    2011-01-01

    Cooling technology of rotor is a key technology for high temperature superconducting electrical machines.Based on the theory of rotating piping flow and pool boiling,the heat transfer principles of cooling methods are proposed,which are including integrated rotating thermosyphon,distributed rotating thermosyphon,immersion cooling,layered open evaporative cooling,and rotating piping evaporative cooling,respectively.The temperature distributions of cooling methods of rotor section are simulated by ANSYS steady state model.An experimentally integrated test platform adaptable to five cooling methods is designed and built up.Experiments on characteristics of heat transfer and flow are investigated.The performances of five cooling methods were contrasted,and the results are that immersion cooling makes the best performance and the others are different with it.Moreover,the experimental results are compared with the simulated ones.It is verified that the simulations could match the experiments well.%本文针对高温超导电机关键技术之一的转子冷却技术,从旋转管道流动和池沸腾的基本理论出发,对现有的集中式旋转热管、浸泡式冷却方式和三种新型的冷却方式即:分布式旋转热管、分层开放式蒸发冷却和旋转管道蒸发冷却,总结并建立了分别适用于这些转子冷却方式的沸腾换热模型;另外对于旋转管道蒸发冷却的流体动力学问题,参照静止两相流流动阻力的计算模型来分析这种冷却方式的流动阻力。在模型计算、载荷和漏热等边界条件基础上,采用ANSYS温度场静态计算模块对各种冷却方式进行了仿真,得到各种工况的温度分布。建立了一台能实现五种高温超导电机冷却方式的综合性实验平台,对五种冷却方式进行了详细的换热和流动的实验研究,从温升和分布均匀度而言,浸泡式冷却的效果最好,其他几种方式次之。同时对比实验数据与仿真结果,

  19. Electrostatic separation of superconducting particles from non-superconducting particles and improvement in fuel atomization by electrorheology

    Science.gov (United States)

    Chhabria, Deepika

    This thesis has two major topics: (1) Electrostatic Separation of Superconducting Particles from a Mixture of Non-Superconducting Particles. (2) Improvement in fuel atomization by Electrorheology. (1) Based on the basic science research, the interactions between electric field and superconductors, we have developed a new technology, which can separate superconducting granular particles from their mixture with non-superconducting particles. The electric-field induced formation of superconducting balls is important aspect of the interaction between superconducting particles and electric field. When the applied electric field exceeds a critical value, the induced positive surface energy on the superconducting particles forces them to aggregate into balls or cling to the electrodes. In fabrication of superconducting materials, especially HTSC materials, it is common to come across materials with multiple phases: some grains are in superconducting state while the others are not. Our technology is proven to be very useful in separating superconducting grains from the rest non-superconducting materials. To separate superconducting particles from normal conducting particles, we apply a suitable strong electric field. The superconducting particles cling to the electrodes, while normal conducting particles bounce between the electrodes. The superconducting particles could then be collected from the electrodes. To separate superconducting particles from insulating ones, we apply a moderate electric field to force insulating particles to the electrodes to form short chains while the superconducting particles are collected from the middle of capacitor. The importance of this technology is evidenced by the unsuccessful efforts to utilize the Meissner effect to separate superconducting particles from nonsuperconducting ones. Because the Meissner effect is proportional to the particle volume, it has been found that the Meissner effect is not useful when the superconducting

  20. Superconducting DC homopolar motors for ship propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Heiberger, M.; Reed, M.R.; Creedon, W.P.; O' Hea, B.J. [General Atomic (United States)

    2000-07-01

    Superconducting DC homopolar motors have undergone recent advances in technology, warranting serious consideration of their use for ship propulsion. Homopolar motor propulsion is now practical because of two key technology developments: cryogen-free superconducting refrigeration and high performance motor fiber brushes. These compact motors are ideal for podded applications, where reduced drag and fuel consumption are predicted. In addition, the simple DC motor controller is more efficient and reliable compared with AC motor controllers. Military ships also benefit from increased stealth implicit in homopolar DC excitation, which also allows the option for direct hull or pod mounting. (authors)

  1. Ballistic superconductivity in semiconductor nanowires

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R.; Bakkers, Erik P. A. M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-07-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices.

  2. Overview on superconducting photoinjectors

    Directory of Open Access Journals (Sweden)

    A. Arnold

    2011-02-01

    Full Text Available The success of most of the proposed energy recovery linac (ERL based electron accelerator projects for future storage ring replacements (SRR and high power IR–free-electron lasers (FELs largely depends on the development of an appropriate source. For example, to meet the FEL specifications [J. W. Lewellen, Proc. SPIE Int. Soc. Opt. Eng. 5534, 22 (2004PSISDG0277-786X10.1117/12.557378] electron beams with an unprecedented combination of high brightness, low emittance (0.1  μmrad, and high average current (hundreds of mA are required. An elegant way to create a beam of such quality is to combine the high beam quality of a normal conducting rf photoinjector with the superconducting technology, i.e., to build a superconducting rf photoinjector (SRF gun. SRF gun R&D programs based on different approaches have been launched at a growing number of institutes and companies (AES, Beijing University, BESSY, BNL, DESY, FZD, TJNAF, Niowave, NPS, Wisconsin University. Substantial progress was achieved in recent years and the first long term operation was demonstrated at FZD [R. Xiang et al., in Proceedings of the 31st International Free Electron Laser Conference (FEL 09, Liverpool, UK (STFC Daresbury Laboratory, Warrington, 2009, p. 488]. In the near future SRF guns are expected to play an important role for linac-driven FEL facilities. In this paper we will review the concepts, the design parameters, and the status of the major SRF gun projects.

  3. Superconducting circuits for quantum information: an outlook.

    Science.gov (United States)

    Devoret, M H; Schoelkopf, R J

    2013-03-08

    The performance of superconducting qubits has improved by several orders of magnitude in the past decade. These circuits benefit from the robustness of superconductivity and the Josephson effect, and at present they have not encountered any hard physical limits. However, building an error-corrected information processor with many such qubits will require solving specific architecture problems that constitute a new field of research. For the first time, physicists will have to master quantum error correction to design and operate complex active systems that are dissipative in nature, yet remain coherent indefinitely. We offer a view on some directions for the field and speculate on its future.

  4. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  5. Superconducting energy recovery linacs

    Science.gov (United States)

    Ben-Zvi, Ilan

    2016-10-01

    High-average-power and high-brightness electron beams from a combination of laser photocathode electron guns and a superconducting energy recovery linac (ERL) is an emerging accelerator science with applications in ERL light sources, high repetition rate free electron lasers , electron cooling, electron ion colliders and more. This paper reviews the accelerator physics issues of superconducting ERLs, discusses major subsystems and provides a few examples of superconducting ERLs.

  6. High-Temperature Superconductivity

    Science.gov (United States)

    Tanaka, Shoji

    2006-12-01

    A general review on high-temperature superconductivity was made. After prehistoric view and the process of discovery were stated, the special features of high-temperature superconductors were explained from the materials side and the physical properties side. The present status on applications of high-temperature superconductors were explained on superconducting tapes, electric power cables, magnets for maglev trains, electric motors, superconducting quantum interference device (SQUID) and single flux quantum (SFQ) devices and circuits.

  7. Basic Research Needs for Superconductivity. Report of the Basic Energy Sciences Workshop on Superconductivity, May 8-11, 2006

    Energy Technology Data Exchange (ETDEWEB)

    Sarrao, J.; Kwok, W-K; Bozovic, I.; Mazin, I.; Seamus, J. C.; Civale, L.; Christen, D.; Horwitz, J.; Kellogg, G.; Finnemore, D.; Crabtree, G.; Welp, U.; Ashton, C.; Herndon, B.; Shapard, L.; Nault, R. M.

    2006-05-11

    As an energy carrier, electricity has no rival with regard to its environmental cleanliness, flexibility in interfacing with multiple production sources and end uses, and efficiency of delivery. In fact, the electric power grid was named ?the greatest engineering achievement of the 20th century? by the National Academy of Engineering. This grid, a technological marvel ingeniously knitted together from local networks growing out from cities and rural centers, may be the biggest and most complex artificial system ever built. However, the growing demand for electricity will soon challenge the grid beyond its capability, compromising its reliability through voltage fluctuations that crash digital electronics, brownouts that disable industrial processes and harm electrical equipment, and power failures like the North American blackout in 2003 and subsequent blackouts in London, Scandinavia, and Italy in the same year. The North American blackout affected 50 million people and caused approximately $6 billion in economic damage over the four days of its duration. Superconductivity offers powerful new opportunities for restoring the reliability of the power grid and increasing its capacity and efficiency. Superconductors are capable of carrying current without loss, making the parts of the grid they replace dramatically more efficient. Superconducting wires carry up to five times the current carried by copper wires that have the same cross section, thereby providing ample capacity for future expansion while requiring no increase in the number of overhead access lines or underground conduits. Their use is especially attractive in urban areas, where replacing copper with superconductors in power-saturated underground conduits avoids expensive new underground construction. Superconducting transformers cut the volume, weight, and losses of conventional transformers by a factor of two and do not require the contaminating and flammable transformer oils that violate urban safety

  8. Fundamentals of Superconducting Nanoelectronics

    CERN Document Server

    Sidorenko, Anatolie

    2011-01-01

    This book demonstrates how the new phenomena in superconductivity on the nanometer scale (FFLO state, triplet superconductivity, Crossed Andreev Reflection, synchronized generation etc.) serve as the basis for the invention and development of novel nanoelectronic devices and systems. It demonstrates how rather complex ideas and theoretical models, like odd-pairing, non-uniform superconducting state, pi-shift etc., adequately describe the processes in real superconducting nanostructues and novel devices based on them. The book is useful for a broad audience of readers, researchers, engineers, P

  9. Superconductive imaging surface magnetometer

    Science.gov (United States)

    Overton, Jr., William C.; van Hulsteyn, David B.; Flynn, Edward R.

    1991-01-01

    An improved pick-up coil system for use with Superconducting Quantum Interference Device gradiometers and magnetometers involving the use of superconducting plates near conventional pick-up coil arrangements to provide imaging of nearby dipole sources and to deflect environmental magnetic noise away from the pick-up coils. This allows the practice of gradiometry and magnetometry in magnetically unshielded environments. One embodiment uses a hemispherically shaped superconducting plate with interior pick-up coils, allowing brain wave measurements to be made on human patients. another embodiment using flat superconducting plates could be used in non-destructive evaluation of materials.

  10. Superconducting optical modulator

    Science.gov (United States)

    Bunt, Patricia S.; Ference, Thomas G.; Puzey, Kenneth A.; Tanner, David B.; Tache, Nacira; Varhue, Walter J.

    2000-12-01

    An optical modulator based on the physical properties of high temperature superconductors has been fabricated and tested. The modulator was constructed form a film of Yttrium Barium Copper Oxide (YBCO) grown on undoped silicon with a buffer layer of Yttria Stabilized Zirconia. Standard lithographic procedures were used to pattern the superconducting film into a micro bridge. Optical modulation was achieved by passing IR light through the composite structure normal to the micro bridge and switching the superconducting film in the bridge region between the superconducting and non-superconducting states. In the superconducting state, IR light reflects from the superconducting film surface. When a critical current is passed through the micro bridge, it causes the film in this region to switch to the non-superconducting state allowing IR light to pass through it. Superconducting materials have the potential to switch between these two states at speeds up to 1 picosecond using electrical current. Presently, fiber optic transmission capacity is limited by the rate at which optical data can be modulated. The superconducting modulator, when combined with other components, may have the potential to increase the transmission capacity of fiber optic lines.

  11. Basic Study of Superconductive Actuator

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    2000-01-01

    There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...

  12. Offers

    CERN Multimedia

    Staff Association

    2014-01-01

    To our members 5% discount on Fnac vouchers Vouchers of 50.-, 100.- et 200. - CHF Valid in the 4 shops in Switzerland without restriction on purchases. On sale in the office of Secretariat of the staff Association.

  13. Offers

    CERN Multimedia

    Staff Association

    2014-01-01

    12 % discount on football camps and courses for children from 3 to 13 years old, with bilingual coaches.   Now also courses during the autumn holidays! In order to get the discount you need to register online, then send a mail to info@intersoccer.ch with a scan of your membership card to recieve a refund of the discount.

  14. Offers

    CERN Multimedia

    Staff Association

    2013-01-01

    Découvrez les plus belles tables de Suisse romande et de France voisine en bénéficiant des réductions suivantes sur chaque repas, pendant une année : 50 % pour 2 personnes / 40 % pour 3 personnes / 30 % pour 4 personnes / 20 % pour 5 à 6 personnes. Comment ça marche ? Faites votre choix parmi les 110 restaurants de votre région et réservez votre table pour 2, 3, 4, 5 ou 6 personnes. Présentez votre Passeport Gourmand dès votre arrivée. Savourez votre repas et profitez d’une réduction exceptionnelle sur votre addition (hors boissons, menu du jour et business lunch). Quels sont vos avantages ? Profitez du prix préférentiel pour les membres de l’association du CERN : – Passeport Gourmand Genève : CHF 75.- (au lieu de CHF 95.-) – Passeport Gourmand Ain/Savoie/Haute-Savoie : CHF 59.- (au lieu de...

  15. Offers

    CERN Multimedia

    Staff Association

    2013-01-01

    Découvrez les plus belles tables de Suisse romande et de France voisine en bénéficiant des réductions suivantes sur chaque repas, pendant une année : 50 % pour 2 personnes, 40 % pour 3 personnes, 30 % pour 4 personnes, 20 % pour 5 à 6 personnes. Comment ça marche ? Faites votre choix parmi les 110 restaurants de votre région et réservez votre table pour 2, 3, 4, 5 ou 6 personnes. Présentez votre Passeport Gourmand dès votre arrivée. Savourez votre repas et profitez d’une réduction exceptionnelle sur votre addition (hors boissons, menu du jour et business lunch). Quels sont vos avantages ? Profitez du prix préférentiel pour les membres de l’association du CERN : – Passeport Gourmand Genève : CHF 75.- (au lieu de CHF 95.-) – Passeport Gourmand Ain/Savoie/Haute-Savoie : CHF 59.- (au lieu de CH...

  16. Offers

    CERN Multimedia

    Staff Association

    2013-01-01

    Concert Scoop music tour sur le parc Walibi ! Vendredi 12 Juillet Vous trouverez la présentation de l’événement et les vidéos des artistes attendus avec leurs titres faisant vibrer les radios en ce moment sur le site internet http://www.walibi.com/rhone-alpes/fr-fr/evenements/scoop-music-tour. Le concert est gratuit et débute à la fermeture du parc avec une première partie surprise. Profitez donc d’une belle journée sur le parc et finissez en beauté avec le concert de l’été !

  17. Offers

    CERN Multimedia

    Association du personnel

    2010-01-01

    LA BÂTIE-FESTIVAL DE GENEVE Offre pour les membres de l'association du personnel du CERN   P r é s e n t a t i o n L a B â t i e-F e s t i v a l d e G e n è v e : Festival pluridisciplinaire et contemporain, souvent qualifié de «tête chercheuse», La Bâtie-Festival de Genève permet durant deux semaines de découvrir plus de 40 spectacles d’artistes emblématiques d’ici ou d’ailleurs, aussi bien pour les grands que les petits (mini-Bâtie). De la danse, du théâtre, de la musique, du 3 au 18 septembre 2010 nous recevrons près de 300 artistes dans une vingtaine de salles à Genève et en France voisine (Annemasse et Divonne). La Bâtie c’est aussi deux lieux de rencontre et d’échange, Le Tampopo, notre restaurant-l...

  18. Offers

    CERN Multimedia

    Staff association

    2014-01-01

        Envie de soirée au théâtre, n’hésitez pas à bénéficier de nos offres pour nos membres ! Théâtre de Carouge : Réduction de 5 CHF pour tous les spectacles (30 CHF au lieu de 35 CHF) Le théâtre de Carouge vous présente sa nouvelle pièce : La double insconstance Du vedredi 21 mars au dimanche 6 avril 2014 De Marivaux Mise en scène de Philippe Mentha Audio-description le mardi 1er avril et le samedi 5 avril 2014 Il règne un doux mélange de révoltes et de séductions, de ruses et de fatalité dans cette Double Inconstance de Marivaux que met en scène Philippe Mentha, membre fondateur du Théâtre de Carouge et directeur depuis plus de trente ans du Théâtre Kléber-Méleau. L’allure d...

  19. Offers

    CERN Multimedia

    Staff Association

    2014-01-01

      Bénéficiez du tarif spécial de 35 CHF/personne + 1 accompagnant au Théâtre de Carouge  en étant membre de l’Association du personnel.  Envoyez votre réservation par mail à smills@tcag.ch via votre adresse mail professionnelle. Indiquez la date de votre réservation, votre nom, prénom et numéro de téléphone. Une confirmation de réservation vous sera retournée par mail. La présentation de votre carte de membre sera demandée lors du retrait des billets.   De Molière – Mise en scène de Jean Liermier Argan, veuf, remarié avec Béline qui n’attend que la mort de son mari pour hériter, multiplie saignées, purges et autres ingestions de remèdes. Angélique, sa fille, vuet &a...

  20. Offers

    CERN Multimedia

    Staff Association

    2013-01-01

    Tickets "Zone terrestre": 21.50 € instead of 27 €. Access to Aqualibi: 5 € instead of 8 € on presentation of your SA member ticket. Free for children (3-11 years old) before 12 h 00. Free for children under 3, with limited access to the attractions. Car park free.

  1. Offer

    CERN Multimedia

    Staff Association

    2015-01-01

    Le parc ouvre ses portes le samedi 4 avril 2015!   La Chasse aux Oeufs du 4 au 26 avril En plus de ses 25 attractions et spectacles, le parc proposera aux enfants de 3 à 12 ans de relever le challenge d’une course aux oeufs dans un jardin de Pâques reconstitué ! Autant de petits oeufs à trouver dans un temps limite ; tout cela au milieu de lapins, poules, fleurs et autres oeufs géants pour repartir avec des gourmandises en chocolat de la marque Revillon Chocolatier.   Profitez de notre offre spéciale pour nos membres : Tarif unique Adulte/Enfant Entrée Zone terrestre 21,50 euros au lieu de 27 euros Accès à l’Aqualibi : 5 euros au lieu de 8 euros sur présentation du billet d’entrée au tarif membre AP. Entrée gratuite pour les enfants de moins de 3 ans, avec accès limité aux attractions. Les billet...

  2. Offers

    CERN Multimedia

    Staff Association

    2015-01-01

    Tickets "Zone terrestre": 21 € instead of 27 €. Access to Aqualibi: 5 € instead of 8 € on presentation of your SA member ticket. Free for children (3-11 years old) before 12 h 00. Free for children under 3, with limited access to the attractions. Car park free.

  3. OFFERS

    CERN Multimedia

    Staff Association

    2014-01-01

    Nouveau partenaire - Joy’s Club   Venez profiter des remises au Joy’s Club / Minigolf à Divonne-les-bains en tant que membre de l’Association ! Sur présentation de votre carte membre, vous bénéficierez d’une remise immédiate telle que : - Pour une partie adulte : 6 euros au lieu de 7 euros - Pour une partie enfant : 4 euros au lieu de 5 euros - Pour le mini Park : 6 euros au lieu de 7 euros Pour plus de renseignements, n’hésitez pas à demander au Secrétariat de l’Association ou à consulter notre site web: http://staff-association.web.cern.ch/fr/socioculturel/offres  

  4. Offers

    CERN Multimedia

    Staff Association

    2012-01-01

    Si cette offre vous intéresse, merci d’envoyer un mail à mh.boulanger@comedie.ch avec le détail de votre réservation via votre adresse mail professionnelle. Le retrait des places se fait à la billetterie sur présentation de votre carte de membre de l’Association du personnel. Pour toute commande d’abonnement ou de carte de réduction par courrier ou internet, cocher le tarif collectif en indiquant le nom de l’entreprise et en joignant un justificatif nominatif. Pour tout renseignement, n’hésitez pas à contacter Marie-Hélène Boulanger : –  Tel. : 022 809 60 86 –  email : mh.boulanger@comedie.ch

  5. High temperature superconducting compounds

    Science.gov (United States)

    Goldman, Allen M.

    1992-11-01

    The major accomplishment of this grant has been to develop techniques for the in situ preparation of high-Tc superconducting films involving the use of ozone-assisted molecular beam epitaxy. The techniques are generalizable to the growth of trilayer and multilayer structures. Films of both the DyBa2Cu3O(7-x) and YBa2Cu3O(7-x) compounds as well as the La(2-x)Sr(x)CuO4 compound have been grown on the usual substrates, SrTiO3, YSZ, MgO, and LaAlO3, as well as on Si substrates without any buffer layer. A bolometer has been fabricated on a thermally isolated SiN substrate coated with YSZ, an effort carried out in collaboration with Honeywell Inc. The deposition process facilitates the fabrication of very thin and transparent films creating new opportunities for the study of superconductor-insulator transitions and the investigation of photo-doping with carriers of high temperature superconductors. In addition to a thin film technology, a patterning technology has been developed. Trilayer structures have been developed for FET devices and tunneling junctions. Other work includes the measurement of the magnetic properties of bulk single crystal high temperature superconductors, and in collaboration with Argonne National Laboratory, measurement of electric transport properties of T1-based high-Tc films.

  6. Single-photon source characterization with infrared-sensitive superconducting single-photon detectors

    CERN Document Server

    Hadfield, R H; Nam, S W; Stevens, M J; Hadfield, Robert H.; Mirin, Richard P.; Nam, Sae Woo; Stevens, Martin J.

    2006-01-01

    Single-photon sources and detectors are key enabling technologies in quantum information processing. Nanowire-based superconducting single-photon detectors (SSPDs) offer single-photon detection from the visible well into the infrared with low dark counts, low jitter and short dead times. We report on the high fidelity characterization (via antibunching and spontaneous emission lifetime measurements) of a cavity-coupled single-photon source at 902 nm using a pair of SSPDs. The twin SSPD scheme reported here is well-suited to the characterization of single-photon sources at telecom wavelengths (1310 nm, 1550 nm).

  7. Fiscal 1997 R and D project on industrial science and technology under a consignment from NEDO. R and D of the superconducting material and device (technical development of the Josephson device hybrid system); 1997 nendo sangyo kagaku gijutsu kenkyu kaihatsu jigyo Shin energy Sangyo Gijutsu Sogo Kaihatsu Kiko itaku. Chodendo zairyo chodendo soshi no kenkyu kaihatsu (Josephson soshi hybrid system no gijutsu kaihatsu) seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    In order to establish basic technology for hybrid systems of superconducting and semiconducting devices, study was made on ultrahigh speed and low energy consumption properties of Josephson devices. As Josephson IC technology, a logical circuit, ring network, memory circuit, and oxide superconductor logical circuit were studied. As superconducting hybrid system technology, a Josephson device- semiconductor device interface, formation technology of signal transmission lines, and Josephson-MOS IC technology were developed. In fiscal 1997, as Josephson IC technology, switch motion of 4GHz in clock frequency was achieved by new high-density wiring process. Integration of some semiconducting processor elements, junction of surface- stabilized superconducting thin films, and motion of combination structure of some SQUIDs were also confirmed. On the hybrid system, voltage conversion operation of all interfaces was confirmed. Proper logical operation of the Josephson device hybrid circuit was also confirmed. 95 refs., 90 figs., 5 tabs.

  8. Overview of Superconductivity and Challenges in Applications

    Science.gov (United States)

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device that is presently under construction. This article starts with a brief historical introduction to superconductivity as a phenomenon, and some fundamental properties necessary for the understanding of the technical behavior of superconductors are described. The introduction of superconductivity in the industrial cycle faces many challenges, first for the properties of the base elements, e.g. the wires, tapes and thin films, then for the various applied devices, where a number of new difficulties had to be resolved. A variety of industrial applications in energy, medicine and communications are briefly presented, showing how superconductivity is now entering the market.

  9. Superconducting quantum circuits theory and application

    Science.gov (United States)

    Deng, Xiuhao

    states. The model and toolbox are engineered with a superconducting quantum circuit where two superconducting resonators are coupled via the UQDP circuit. Using fourth order perturbation theory one can realize a complete set of quantum operations between these two photon modes. This helps open a new field to treat photon modes as qubits. Additional, a three-wave mixing scheme using phase qubits permits one to engineer the coupling Hamiltonian using a phase qubit as a tunable coupler. Along with Feynman's idea using quantum to simulate quantum, superconducting quantum simulators have been studied intensively recently. Taking the advantage of mesoscopic size of superconducting circuit and local tunability, we came out the idea to simulate quantum phase transition due to disorder. Our first paper was to propose a superconducting quantum simulator of Bose-Hubbard model to do site-wise manipulation and observe Mott-insulator to superfluid phase transition. The side-band cooling of an array of superconducting resonators is solved after the paper was published. In light of the developed technology in manipulating quantum information with superconducting circuit, one can couple other quantum oscillator system to superconducting resonators in order manipulation of its quantum states or parametric amplification of weak quantum signal. A theory that works for different coupling schemes has been studied in chapter 5. This will be a platform for further research.

  10. Radiation Shielding Utilizing A High Temperature Superconducting Magnet Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project aims to leverage near-term high-temperature superconducting technologies to assess applicability of magnetic shielding for protecting against exposure...

  11. Graphene: Carbon's superconducting footprint

    Science.gov (United States)

    Vafek, Oskar

    2012-02-01

    Graphene exhibits many extraordinary properties, but superconductivity isn't one of them. Two theoretical studies suggest that by decorating the surface of graphene with the right species of dopant atoms, or by using ionic liquid gating, superconductivity could yet be induced.

  12. Superconducting cavities for LEP

    CERN Multimedia

    1983-01-01

    Above: a 350 MHz superconducting accelerating cavity in niobium of the type envisaged for accelerating electrons and positrons in later phases of LEP. Below: a small 1 GHz cavity used for investigating the surface problems of superconducting niobium. Albert Insomby stays on the right. See Annual Report 1983 p. 51.

  13. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  14. Oxide-based platform for reconfigurable superconducting nanoelectronics

    Science.gov (United States)

    Veazey, Joshua P.; Cheng, Guanglei; Irvin, Patrick; Cen, Cheng; Bogorin, Daniela F.; Bi, Feng; Huang, Mengchen; Bark, Chung-Wung; Ryu, Sangwoo; Cho, Kwang-Hwan; Eom, Chang-Beom; Levy, Jeremy

    2013-09-01

    We report quasi-1D superconductivity at the interface of LaAlO3 and SrTiO3. The material system and nanostructure fabrication method supply a new platform for superconducting nanoelectronics. Nanostructures having line widths w ˜ 10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3, placing them in the quasi-1D regime. Broad superconducting transitions versus temperature and finite resistances in the superconducting state well below Tc ≈ 200 mK are observed, suggesting the presence of fluctuation- and heating-induced resistance. The superconducting resistances and V-I characteristics are tunable through the use of a back gate. Four-terminal resistances in the superconducting state show an unusual dependence on the current path, varying by as much as an order of magnitude. This new technology, i.e., the ability to ‘write’ gate-tunable superconducting nanostructures on an insulating LaAlO3/SrTiO3 ‘canvas’, opens possibilities for the development of new families of reconfigurable superconducting nanoelectronics.

  15. 19 September 2011 - Japan Science and Technology Agency President K. Kitazawa visiting the LHC superconducting magnet test hall with engineer M. Bajko; the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni and Senior Scientist T. Kondo; signing the guest book with Adviser R.Voss and Head of International Relations F. Pauss.

    CERN Multimedia

    2011-01-01

    19 September 2011 - Japan Science and Technology Agency President K. Kitazawa visiting the LHC superconducting magnet test hall with engineer M. Bajko; the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni and Senior Scientist T. Kondo; signing the guest book with Adviser R.Voss and Head of International Relations F. Pauss.

  16. 8 April 2011 - Brazilian Minister of State for Science and Technology A. Mercadante Oliva signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss; in the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni; visiting LHC superconducting magnet test hall with J.M. Jimenez.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    8 April 2011 - Brazilian Minister of State for Science and Technology A. Mercadante Oliva signing the guest book with CERN Director-General R. Heuer and Head of International Relations F. Pauss; in the ATLAS visitor centre with Collaboration Former Spokesperson P. Jenni; visiting LHC superconducting magnet test hall with J.M. Jimenez.

  17. 26th August 2010 - World Meteorological Organization Secretary-General M. Jarraud signing the guest book with CERN Director-General R. Heuer and visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by M. Bona, CERN Relations with International Organisations

    CERN Multimedia

    Maximilien Brice

    2010-01-01

    26th August 2010 - World Meteorological Organization Secretary-General M. Jarraud signing the guest book with CERN Director-General R. Heuer and visiting the LHC superconducting magnet test hall with Technology Department Head F. Bordry; throughout accompanied by M. Bona, CERN Relations with International Organisations

  18. William Brinkman (centre), Director of the Department of Energy, U.S.A. at the superconducting magnet test hall SM18 with (from left to right) Coordinator for External Relations F. Pauss, Advisor for Non-Member States J. Ellis, J. Strait from Fermilab and Deputy Head of Technology Department L. Rossi on 13 November 2009.

    CERN Multimedia

    Maximilien Brice; SM18

    2009-01-01

    William Brinkman (centre), Director of the Department of Energy, U.S.A. at the superconducting magnet test hall SM18 with (from left to right) Coordinator for External Relations F. Pauss, Advisor for Non-Member States J. Ellis, J. Strait from Fermilab and Deputy Head of Technology Department L. Rossi on 13 November 2009.

  19. 18 January 2011 - The British Royal Academy of Engineering in the LHC tunnel with CMS Collaboration Spokesperson G. Tonelli and Beams Department Head P. Collier; in the CERN Control Centre with P. Collier and LHC superconducting magnet test hall with Technology Department Head F. Bordry.

    CERN Multimedia

    Jean-Claude Gadmer

    2011-01-01

    18 January 2011 - The British Royal Academy of Engineering in the LHC tunnel with CMS Collaboration Spokesperson G. Tonelli and Beams Department Head P. Collier; in the CERN Control Centre with P. Collier and LHC superconducting magnet test hall with Technology Department Head F. Bordry.

  20. Photoemission studies of high-temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Margaritondo, G. (Inst. de Physique Appliquee, Ecole Polytechnique Federale de Lausanne, CH-1015 Lausanne (CH))

    1990-11-01

    Photoemission spectroscopy has recently emerged as one of the leading techniques in the study of high-temperature superconductors. Relevant successes include the direct detection of the superconductivity gap, tests for departure from Fermi-liquid behavior, and many interface chemical studies with technological interest. The authors present a review of the fundamental and applied aspects of this technique.

  1. High speed superconducting flywheel system for energy storage

    Science.gov (United States)

    Bornemann, H. J.; Urban, C.; Boegler, P.; Ritter, T.; Zaitsev, O.; Weber, K.; Rietschel, H.

    1994-12-01

    A prototype of a flywheel system with auto stable high temperature superconducting bearings was built and tested. The bearings offered good vertical and lateral stability. A metallic flywheel disk, ø 190 mm x 30 mm, was safely rotated at speeds up to 15000 rpm. The disk was driven by a 3 phase synchronous homopolar motor/generator. Maximum energy capacity was 3.8 Wh, maximum power was 1.5 KW. The dynamic behavior of the prototype was tested, characterized and evaluated with respect to axial and lateral stiffness, decay torques (bearing drag), vibrational modes and critical speeds. The bearings supports a maximum weight of 65 N at zero gap, axial and lateral stiffness at 1 mm gap were 440 N/cm and 130 N/cm, respectively. Spin down experiments were performed to investigate the energy efficiency of the system. The decay rate was found to depend upon background pressure in the vacuum chamber and upon the gap width in the bearing. At a background pressure of 5x10 -4 Torr, the coefficient of friction (drag-to-lift ratio) was measured to be 0.000009 at low speeds for 6 mm gap width in the bearing. Our results indicate that further refinement of this technology will allow operation of higly efficient superconducting flywheels in the kWh range.

  2. Superconductivity in carbon nanomaterials

    Science.gov (United States)

    Dlugon, Katarzyna

    The purpose of this thesis is to explain the phenomenon of superconductivity in carbon nanomaterials such as graphene, fullerenes and carbon nanotubes. In the introductory chapter, there is a description of superconductivity and how it occurs at critical temperature (Tc) that is characteristic and different to every superconducting material. The discovery of superconductivity in mercury in 1911 by Dutch physicist Heike Kamerlingh Onnes is also mentioned. Different types of superconductors, type I and type II, low and high temperatures superconductors, as well as the BCS theory that was developed in 1957 by Bardeen, Cooper, and Schrieffer, are also described in detail. The BCS theory explains how Cooper's pairs are formed and how they are responsible for the superconducting properties of many materials. The following chapters explain superconductivity in doped fullerenes, graphene and carbon nanotubes, respectively. There is a thorough explanation followed by many examples of different types of carbon nanomaterials in which small changes in chemical structure cause significant changes in superconducting properties. The goal of this research was not only to take into consideration well known carbon based superconductors but also to search for the newest available materials such as the fullerene nanowhiskers discovered quite recently. There is also a presentation of fairly new ideas about inducing superconductivity in a monolayer of graphene which is more challenging than inducing superconductivity in graphite by simply intercalating metal atoms between its graphene sheets. An effort has been taken to look for any available information about carbon nanomaterials that have the potential to superconduct at room temperature, mainly because discovery of such materials would be a real revolution in the modern world, although no such materials have been discovered yet.

  3. Quantum Memristors with Superconducting Circuits

    Science.gov (United States)

    Salmilehto, J.; Deppe, F.; di Ventra, M.; Sanz, M.; Solano, E.

    2017-02-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system.

  4. Quantum Memristors with Superconducting Circuits

    Science.gov (United States)

    Salmilehto, J.; Deppe, F.; Di Ventra, M.; Sanz, M.; Solano, E.

    2017-01-01

    Memristors are resistive elements retaining information of their past dynamics. They have garnered substantial interest due to their potential for representing a paradigm change in electronics, information processing and unconventional computing. Given the advent of quantum technologies, a design for a quantum memristor with superconducting circuits may be envisaged. Along these lines, we introduce such a quantum device whose memristive behavior arises from quasiparticle-induced tunneling when supercurrents are cancelled. For realistic parameters, we find that the relevant hysteretic behavior may be observed using current state-of-the-art measurements of the phase-driven tunneling current. Finally, we develop suitable methods to quantify memory retention in the system. PMID:28195193

  5. Conceptual study of superconducting urban area power systems

    Science.gov (United States)

    Noe, Mathias; Bach, Robert; Prusseit, Werner; Willén, Dag; Gold-acker, Wilfried; Poelchau, Juri; Linke, Christian

    2010-06-01

    Efficient transmission, distribution and usage of electricity are fundamental requirements for providing citizens, societies and economies with essential energy resources. It will be a major future challenge to integrate more sustainable generation resources, to meet growing electricity demand and to renew electricity networks. Research and development on superconducting equipment and components have an important role to play in addressing these challenges. Up to now, most studies on superconducting applications in power systems have been concentrated on the application of specific devices like for example cables and current limiters. In contrast to this, the main focus of our study is to show the consequence of a large scale integration of superconducting power equipment in distribution level urban power systems. Specific objectives are to summarize the state-of-the-art of superconducting power equipment including cooling systems and to compare the superconducting power system with respect to energy and economic efficiency with conventional solutions. Several scenarios were considered starting from the replacement of an existing distribution level sub-grid up to a full superconducting urban area distribution level power system. One major result is that a full superconducting urban area distribution level power system could be cost competitive with existing solutions in the future. In addition to that, superconducting power systems offer higher energy efficiency as well as a number of technical advantages like lower voltage drops and improved stability.

  6. Superconductivity in aromatic hydrocarbons

    Energy Technology Data Exchange (ETDEWEB)

    Kubozono, Yoshihiro, E-mail: kubozono@cc.okayama-u.ac.jp [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Japan Science and Technology Agency, ACT-C, Kawaguchi 332-0012 (Japan); Goto, Hidenori; Jabuchi, Taihei [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Yokoya, Takayoshi [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Research Center of New Functional Materials for Energy Production, Storage and Transport, Okayama University, Okayama 700-8530 (Japan); Kambe, Takashi [Department of Physics, Okayama University, Okayama 700-8530 (Japan); Sakai, Yusuke; Izumi, Masanari; Zheng, Lu; Hamao, Shino; Nguyen, Huyen L.T. [Research Laboratory for Surface Science, Okayama University, Okayama 700-8530 (Japan); Sakata, Masafumi; Kagayama, Tomoko; Shimizu, Katsuya [Center of Science and Technology under Extreme Conditions, Osaka University, Osaka 560-8531 (Japan)

    2015-07-15

    Highlights: • Aromatic superconductor is one of core research subjects in superconductivity. Superconductivity is observed in certain metal-doped aromatic hydrocarbons. Some serious problems to be solved exist for future advancement of the research. This article shows the present status of aromatic superconductors. - Abstract: ‘Aromatic hydrocarbon’ implies an organic molecule that satisfies the (4n + 2) π-electron rule and consists of benzene rings. Doping solid aromatic hydrocarbons with metals provides the superconductivity. The first discovery of such superconductivity was made for K-doped picene (K{sub x}picene, five benzene rings). Its superconducting transition temperatures (T{sub c}’s) were 7 and 18 K. Recently, we found a new superconducting K{sub x}picene phase with a T{sub c} as high as 14 K, so we now know that K{sub x}picene possesses multiple superconducting phases. Besides K{sub x}picene, we discovered new superconductors such as Rb{sub x}picene and Ca{sub x}picene. A most serious problem is that the shielding fraction is ⩽15% for K{sub x}picene and Rb{sub x}picene, and it is often ∼1% for other superconductors. Such low shielding fractions have made it difficult to determine the crystal structures of superconducting phases. Nevertheless, many research groups have expended a great deal of effort to make high quality hydrocarbon superconductors in the five years since the discovery of hydrocarbon superconductivity. At the present stage, superconductivity is observed in certain metal-doped aromatic hydrocarbons (picene, phenanthrene and dibenzopentacene), but the shielding fraction remains stubbornly low. The highest priority research area is to prepare aromatic superconductors with a high superconducting volume-fraction. Despite these difficulties, aromatic superconductivity is still a core research target and presents interesting and potentially breakthrough challenges, such as the positive pressure dependence of T{sub c} that is clearly

  7. Quantum Magnetomechanics with Levitating Superconducting Microspheres

    CERN Document Server

    Romero-Isart, O; Navau, C; Sanchez, A; Cirac, J I

    2011-01-01

    We show that by magnetically trapping a superconducting microsphere close to a quantum circuit, it is experimentally feasible to perform ground state cooling and to prepare quantum superpositions of the center-of-mass motion of the microsphere. Due to the absence of clamping losses and time dependent electromagnetic fields, the mechanical motion of micrometer-sized metallic spheres in the Meissner state is predicted to be extremely well isolated from the environment. Hence, we propose to combine the technology of magnetic mictrotraps and superconducting qubits to bring relatively large objects to the quantum regime.

  8. Compact superconducting coplanar microwave beam splitters

    Energy Technology Data Exchange (ETDEWEB)

    Baust, Alexander; Haeberlein, Max; Goetz, Jan; Hoffmann, Elisabeth; Menzel, Edwin P.; Schwarz, Manuel J.; Wulschner, Friedrich; Zhong, Ling; Deppe, Frank; Marx, Achim; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Physik-Department, TUM, Garching (Germany); Kalb, Norbert; Losinger, Thomas [Physik-Department, TUM, Garching (Germany)

    2012-07-01

    The recent evolution of circuit quantum electrodynamics systems making use of standing-wave microwave modes towards setups for propagating quantum microwaves has triggered the need for low-loss superconducting microwave beam splitters. Such a device should have ports compatible with the coplanar geometry relevant for circuit QED and, at the same time, be compact allowing for scalability. This combination presents fundamental and technological challenges. In this work, we present the fabrication and characterization of various compact superconducting coplanar microwave beam splitters. In addition, we discuss efforts towards a tunable beam splitter.

  9. The superconducting spin valve and triplet superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Garifullin, I.A., E-mail: ilgiz_garifullin@yahoo.com [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Leksin, P.V.; Garif' yanov, N.N.; Kamashev, A.A. [Zavoisky Physical-Technical Institute, Kazan Scientific Center of Russian Academy of Sciences, 420029 Kazan (Russian Federation); Fominov, Ya.V. [L. D. Landau Institute for Theoretical Physics RAS, 119334 Moscow (Russian Federation); Moscow Institute of Physics and Technology, 141700 Dolgoprudny (Russian Federation); Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O.G. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Büchner, B. [Leibniz Institute for Solid State and Materials Research IFW Dresden, D-01171 Dresden (Germany); Institut für Festkörperphysik, Technische Universität Dresden, D-01062 Dresden (Germany)

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoO{sub x}/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers. - Highlights: • We studied a spin switch design F1/F2/S. • We prepared a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). • The full spin switch effect for the superconducting current was realized. • We observed its oscillating behavior as a function of the Fe2-layer thickness. • We obtained direct evidence for the long-range triplet superconductivity.

  10. Wind offering in energy and reserve markets

    DEFF Research Database (Denmark)

    Soares, Tiago; Pinson, Pierre; Morais, Hugo

    2016-01-01

    their revenue, since currently wind turbine/farm technologies allow them to provide ancillary services. Thus, wind power producers are to develop offering strategies for participation in both energy and reserve markets, accounting for market rules, while ensuring optimal revenue. We consider a proportional...... offering strategy to optimally decide upon participation in both markets by maximizing expected revenue from day-ahead decisions while accounting for estimated regulation costs for failing to provide the services. An evaluation of considering the same proportional splitting of energy and reserve in both...

  11. 21 March 2011 - South African Ministry of Science and Technology, Department of Science and Technology (DST) Director General P. Mjwara signing the guest with Head of International Relations F. Pauss and Adviser J. Ellis and ALICE Collaboration Spokesperson P. Giubellino and J. Cleymans; in the CERN control centre with R. Steerenberg; visiting ALICE surface exhibition with P. Giubellino and LHC superconducting magnet test hall with L. Bottura.

    CERN Multimedia

    Maximilien Brice

    2011-01-01

    21 March 2011 - South African Ministry of Science and Technology, Department of Science and Technology (DST) Director General P. Mjwara signing the guest with Head of International Relations F. Pauss and Adviser J. Ellis and ALICE Collaboration Spokesperson P. Giubellino and J. Cleymans; in the CERN control centre with R. Steerenberg; visiting ALICE surface exhibition with P. Giubellino and LHC superconducting magnet test hall with L. Bottura.

  12. Superconducting homopolar motor and conductor development

    Science.gov (United States)

    Gubser, Donald U.

    1996-10-01

    The U.S. Navy has been developing superconducting homopolar motors for ship applications since 1969; a successful at-sea demonstration of the first motor, using NbTi wire for the magnet, was achieved in the early 1980s. Recently, this same motor was used as a test bed to demonstrate progress in high-critical-temperature superconducting magnet technology using bismuth-strontium- calcium-copper-oxide (BSCCO) compounds. In the fall of 1995, this motor achieved a performance of 124 kW operating at a temperature of 4.2 K and 91 kW while operating at 28 K. Future tests are scheduled using new magnets with conductors of both the 2223 and the 2212 BSCCO phases. This article describes the advantages of superconducting propulsion and recent progress in the development of BSCCO conductors for use in Navy power systems.

  13. Applied superconductivity handbook on devices and applications

    CERN Document Server

    2015-01-01

    This wide-ranging presentation of applied superconductivity, from fundamentals and materials right up to the latest applications, is an essential reference for physicists and engineers in academic research as well as in the field. Readers looking for a systematic overview on superconducting materials will expand their knowledge and understanding of both low and high Tc superconductors, including organic and magnetic materials. Technology, preparation and characterization are covered for several geometries, but the main benefit of this work lies in its broad coverage of significant applications in power engineering or passive devices, such as filter and antenna or magnetic shields. The reader will also find information on superconducting magnets for diverse applications in mechanical engineering, particle physics, fusion research, medicine and biomagnetism, as well as materials processing. SQUIDS and their usage in medicine or geophysics are thoroughly covered as are applications in quantum metrology, and, las...

  14. NATO Advanced Study Institute on Superconducting Electronics

    CERN Document Server

    Nisenhoff, Martin; Superconducting Electronics

    1989-01-01

    The genesis of the NATO Advanced Study Institute (ASI) upon which this volume is based, occurred during the summer of 1986 when we came to the realization that there had been significant progress during the early 1980's in the field of superconducting electronics and in applications of this technology. Despite this progress, there was a perception among many engineers and scientists that, with the possible exception of a limited number of esoteric fundamental studies and applications (e.g., the Josephson voltage standard or the SQUID magnetometer), there was no significant future for electronic systems incorporating superconducting elements. One of the major reasons for this perception was the aversion to handling liquid helium or including a closed-cycle helium liquefier. In addition, many critics felt that IBM's cancellation of its superconducting computer project in 1983 was "proof" that superconductors could not possibly compete with semiconductors in high-speed signal processing. From our persp...

  15. Tunneling in superconducting structures

    Science.gov (United States)

    Shukrinov, Yu. M.

    2010-12-01

    Here we review our results on the breakpoint features in the coupled system of IJJ obtained in the framework of the capacitively coupled Josephson junction model with diffusion current. A correspondence between the features in the current voltage characteristics (CVC) and the character of the charge oscillations in superconducting layers is demonstrated. Investigation of the correlations of superconducting currents in neighboring Josephson junctions and the charge correlations in neighboring superconducting layers reproduces the features in the CVC and gives a powerful method for the analysis of the CVC of coupled Josephson junctions. A new method for determination of the dissipation parameter is suggested.

  16. Superconductivity in doped insulators

    Energy Technology Data Exchange (ETDEWEB)

    Emery, V.J. [Brookhaven National Lab., Upton, NY (United States); Kivelson, S.A. [California Univ., Los Angeles, CA (United States). Dept. of Physics

    1995-12-31

    It is shown that many synthetic metals, including high temperature superconductors are ``bad metals``, with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described.

  17. Magnetic and superconducting nanowires

    DEFF Research Database (Denmark)

    Piraux, L.; Encinas, A.; Vila, L.

    2005-01-01

    magnetic and superconducting nanowires. Using different approaches entailing measurements on both single wires and arrays, numerous interesting physical properties have been identified in relation to the nanoscopic dimensions of these materials. Finally, various novel applications of the nanowires are also...

  18. Superconductivity fundamentals and applications

    CERN Document Server

    Buckel, Werner

    2004-01-01

    This is the second English edition of what has become one of the definitive works on superconductivity in German -- currently in its sixth edition. Comprehensive and easy to understand, this introductory text is written especially with the non-specialist in mind. The authors, both long-term experts in this field, present the fundamental considerations without the need for extensive mathematics, describing the various phenomena connected with the superconducting state, with liberal insertion of experimental facts and examples for modern applications. While all fields of superconducting phenomena are dealt with in detail, this new edition pays particular attention to the groundbreaking discovery of magnesium diboride and the current developments in this field. In addition, a new chapter provides an overview of the elements, alloys and compounds where superconductivity has been observed in experiments, together with their major characteristics. The chapter on technical applications has been considerably expanded...

  19. Turnkey offering a claimed sector 'first'.

    Science.gov (United States)

    Law, Oliver

    2011-01-01

    Manufacturer and supplier of LED theatre lights, HD camera systems, video integration technologies, and ceiling support units, Trumpf Medical Systems UK, and "logistical services" company Canute International Medical Services (CIMS), one of whose specialities is providing mobile medical units for diagnostic imaging, have entered into a partnership that will see the two companies offer fully fitted out modular operating theatres and other medical/clinical buildings incorporating the latest technology and equipment, on a fully project-managed, "turnkey" basis. Oliver Law, Trumpf Medical Systems UK managing director, explains the background, and the new service's anticipated customer benefits.

  20. Superconductivity and symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Sarasua, L.G., E-mail: sarasua@fisica.edu.uy [Instituto de Fisica, Facultad de Ciencias, Universidad de la Republica, Montevideo (Uruguay)

    2012-02-15

    In the present work we consider the relation between superconductivity and spontaneous gauge symmetry breaking (SGBS). We show that ODLRO does not require in principle SBGS, even in the presence of particle number fluctuations, by examining exact solutions of a fermionic pairing model. The criteria become equivalent if a symmetry breaking field is allowed, which can be attributed to the interaction with the environment. However, superconducting states without SBGS are not forbidden.

  1. Photoemission, Correlation and Superconductivity:

    Science.gov (United States)

    Abrecht, M.; Ariosa, D.; Cloëtta, D.; Pavuna, D.; Perfetti, L.; Grioni, M.; Margaritondo, G.

    We review some of the problems still affecting photoemission as a probe of high-temperature superconductivity, as well as important recent results concerning their solution. We show, in particular, some of the first important results on thin epitaxial films grown by laser ablation, which break the monopoly of cleaved BCSCO in this type of experiments. Such results, obtained on thin LSCO, may have general implications on the theory of high-temperature superconductivity.

  2. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  3. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  4. High temperature interfacial superconductivity

    Science.gov (United States)

    Bozovic, Ivan [Mount Sinai, NY; Logvenov, Gennady [Port Jefferson Station, NY; Gozar, Adrian Mihai [Port Jefferson, NY

    2012-06-19

    High-temperature superconductivity confined to nanometer-scale interfaces has been a long standing goal because of potential applications in electronic devices. The spontaneous formation of a superconducting interface in bilayers consisting of an insulator (La.sub.2CuO.sub.4) and a metal (La.sub.1-xSr.sub.xCuO.sub.4), neither of which is superconducting per se, is described. Depending upon the layering sequence of the bilayers, T.sub.c may be either .about.15 K or .about.30 K. This highly robust phenomenon is confined to within 2-3 nm around the interface. After exposing the bilayer to ozone, T.sub.c exceeds 50 K and this enhanced superconductivity is also shown to originate from a 1 to 2 unit cell thick interfacial layer. The results demonstrate that engineering artificial heterostructures provides a novel, unconventional way to fabricate stable, quasi two-dimensional high T.sub.c phases and to significantly enhance superconducting properties in other superconductors. The superconducting interface may be implemented, for example, in SIS tunnel junctions or a SuFET.

  5. Analysis of the trade-offs between conventional and superconducting interconnections

    Energy Technology Data Exchange (ETDEWEB)

    Frye, R.

    1989-05-01

    Superconductivity can now be achieved at temperatures compatible with semiconductor device operation. This raises the interesting possibility of using the new, high-temperature superconducting ceramics for interconnections in electronic systems. This paper examines some of the consequences of a resistance-free interconnection medium. A problem with conventional conductors in electronic systems is that the resistance of wires increases quadratically as the wire dimensions are scaled down. Below some minimum cross-sectional area, determined by the metal resistivity and wire length, the resistance in these lines begins to severely limit their bandwidth. Superconductors, on the other hand, are not constrained by the same scaling rules. They provide a high bandwidth interconnection at all sizes and lengths. The limitations for superconductors are set by their critical current densities. If line dimensions become too small, a superconductor will no longer support an adequate flow of current. An analysis is presented examining the performance trade-offs for conventional and superconducting interconnections in applications ranging from printed wiring boards to chips. For most semiconductor device-based applications, the potential gains in wiring density offered by superconductors are probably more important than the bandwidth improvements. An important result of the analysis is that it determines the values of critical current density above which superconductors outperform conventional wires in systems of various physical sizes. This identifies particular interconnection technologies for which high-temperature superconductors show the most promise.

  6. The superconducting spin valve and triplet superconductivity

    Science.gov (United States)

    Garifullin, I. A.; Leksin, P. V.; Garif`yanov, N. N.; Kamashev, A. A.; Fominov, Ya. V.; Schumann, J.; Krupskaya, Y.; Kataev, V.; Schmidt, O. G.; Büchner, B.

    2015-01-01

    A review of our recent results on the spin valve effect is presented. We have used a theoretically proposed spin switch design F1/F2/S comprising a ferromagnetic bilayer (F1/F2) as a ferromagnetic component, and an ordinary superconductor (S) as the second interface component. Based on it we have prepared and studied in detail a set of multilayers CoOx/Fe1/Cu/Fe2/S (S=In or Pb). In these heterostructures we have realized for the first time a full spin switch effect for the superconducting current, have observed its sign-changing oscillating behavior as a function of the Fe2-layer thickness and finally have obtained direct evidence for the long-range triplet superconductivity arising due to noncollinearity of the magnetizations of the Fe1 and Fe2 layers.

  7. Inter-institutional decision making in the technology transfer process: Some preliminary issues in the evaluation of ORNL's High-Temperature Superconductivity Pilot Center

    Energy Technology Data Exchange (ETDEWEB)

    Feldman, D.L.

    1989-09-01

    This report illuminates the decision-making processes affecting technology transfer at ORNL as they potentially impact upon development of high-temperature superconductors. The methodology of this report consists of an analysis of Oak Ridge National Laboratory (ORNL) documents laws, and regulations; a review of relevant literature on licensing, patents, and user center decision making; and interviews with persons directly involved in technology development and transfer at the laboratory. The process of technology development at ORNL encompasses, among other things, activities aimed at research and development (R D), technology transfer, and technology utilization. Each of these activities has officially become part of an overall laboratory mission referred to as technology development. 28 refs., 1 fig., 3 tabs.

  8. Introduction to superconductivity and high-T sub c materials

    Energy Technology Data Exchange (ETDEWEB)

    Cyrot, M. (Grenoble (FR)); Pavuna, D. (Lausanne (CH))

    1991-01-01

    What sets this book apart from other introductions to superconductivity and high-T{sub c} materials is its pragmatic approach. In this book the authors describe all relevant superconducting phenomena and rely on the macroscopic Ginzburg-Landau theory to derive the most important results. Examples are chosen from selected conventional superconductors like NbTi and compared to those high-T{sub c} materials. The text should be of interest to non-specialists in superconductivity either as a textbook for those entering the field (one semester course) or as researchers in advanced technologies and even some managers of interdisciplinary research projects.

  9. Amorphous molybdenum silicon superconducting thin films

    Directory of Open Access Journals (Sweden)

    D. Bosworth

    2015-08-01

    Full Text Available Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using WxSi1−x, though other amorphous superconductors such as molybdenum silicide (MoxSi1−x offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc reaches a maximum of 7.6 K at a composition of Mo83Si17. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz, there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  10. Proceedings of the fourth international conference and exhibition: World Congress on superconductivity. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Krishen, K.; Burnham, C. [eds.] [National Aeronautics and Space Administration, Houston, TX (United States). Lyndon B. Johnson Space Center

    1994-12-31

    The goals of the World Congress on Superconductivity (WCS) have been to establish and foster the development and commercial application of superconductivity technology on a global scale by providing a non-adversarial, non-advocacy forum where scientists, engineers, businessmen and government personnel can freely exchange information and ideas on recent developments and directions for the future of superconductive research. Sessions were held on: accelerator technology, power and energy, persistent magnetic fields, performance characterization, physical properties, fabrication methodology, superconductive magnetic energy storage (SMES), thin films, high temperature materials, device applications, wire fabrication, and granular superconductors. Individual papers are indexed separately.

  11. Industrial Large Scale Applications of Superconductivity -- Current and Future Trends

    Science.gov (United States)

    Amm, Kathleen

    2011-03-01

    Since the initial development of NbTi and Nb3Sn superconducting wires in the early 1960's, superconductivity has developed a broad range of industrial applications in research, medicine and energy. Superconductivity has been used extensively in NMR low field and high field spectrometers and MRI systems, and has been demonstrated in many power applications, including power cables, transformers, fault current limiters, and motors and generators. To date, the most commercially successful application for superconductivity has been the high field magnets required for magnetic resonance imaging (MRI), with a global market well in excess of 4 billion excluding the service industry. The unique ability of superconductors to carry large currents with no losses enabled high field MRI and its unique clinical capabilities in imaging soft tissue. The rapid adoption of high field MRI with superconducting magnets was because superconductivity was a key enabler for high field magnets with their high field uniformity and image quality. With over 30 years of developing MRI systems and applications, MRI has become a robust clinical tool that is ever expanding into new and developing markets. Continued innovation in system design is continuing to address these market needs. One of the key questions that innovators in industrial superconducting magnet design must consider today is what application of superconductivity may lead to a market on the scale of MRI? What are the key considerations for where superconductivity can provide a unique solution as it did in the case of MRI? Many companies in the superconducting industry today are investigating possible technologies that may be the next large market like MRI.

  12. Postgraduates courses offered to nursing

    Directory of Open Access Journals (Sweden)

    Pedro Jorge Araujo

    2011-07-01

    Full Text Available Aim: To know the official masters that the Spanish Universities have offered during the academic course 2010/2011.Material and methods: Descriptive observational and transversal court study, in which it has analysed 170 university official masters and in which it has used a questionnaire with a total of 15 questions elaborated for this work.Results: 52 Spanish Universities of the 75 that there is have offered during the academic course 2010/2011 official masters that can realise for graduated in infirmary. By areas, the official masters more offered have been the ones of nutrition and alimentary security. 76,33% of the official masters have a length of 1 academic year. Almost the half of the official masters have an orientation researcher-professional and almost 40% researcher. 62,65% of the masters give of face-to-face way. In 52,1% of the official masters do not realise external practices and 86,2% has continuity with the doctorate.Conclusions: It has seen that it is necessary that expand the number of masters including other fields of study that contribute to a main specialisation of the professionals of the infirmary. An important percentage of official masters give in face-to-face modality, and there is very few offered on-line or to distance.

  13. DC superconducting fault current limiter

    Science.gov (United States)

    Tixador, P.; Villard, C.; Cointe, Y.

    2006-03-01

    There is a lack of satisfying solutions for fault currents using conventional technologies, especially in DC networks, where a superconducting fault current limiter could play a very important part. DC networks bring a lot of advantages when compared to traditional AC ones, in particular within the context of the liberalization of the electric market. Under normal operation in a DC network, the losses in the superconducting element are nearly zero and only a small, i.e. a low cost, refrigeration system is then required. The absence of zero crossing of a DC fault current favourably accelerates the normal zone propagation. The very high current slope at the time of the short circuit in a DC grid is another favourable parameter. The material used for the experiments is YBCO deposited on Al2O3 as well as YBCO coated conductors. The DC limitation experiments are compared to AC ones at different frequencies (50-2000 Hz). Careful attention is paid to the quench homogenization, which is one of the key issues for an SC FCL. The University of Geneva has proposed constrictions. We have investigated an operating temperature higher than 77 K. As for YBCO bulk, an operation closer to the critical temperature brings a highly improved homogeneity in the electric field development. The material can then absorb large energies without degradation. We present tests at various temperatures. These promising results are to be confirmed over long lengths.

  14. SCUBA-2 instrument: an application of large-format superconducting bolometer arrays for submillimetre astronomy

    Science.gov (United States)

    Hollister, Matthew Ian

    2009-01-01

    This thesis concerns technical aspects related to the design and operation of the submillimetre common-user bolometer array 2 (SCUBA-2) instrument, a new wide-field camera for submillimetre astronomy currently undergoing commissioning on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. Offering unprecedented sensitivity and mapping capabilities, SCUBA-2 is expected to make a major impact in surveys of the sky at submillimetre wavelengths, a largely unexplored part of the electromagnetic spectrum, and provide better understanding of the formation and evolution of galaxies, stars and planets by providing large, unbiased samples of such objects. SCUBA-2 uses large arrays of bolometers, with superconducting transition edge sensors (TESs) as the temperature-sensitive element. TES devices are a relatively new technology, utilising the sharp resistance change between the normal and superconducting states to make a sensitive thermistor. Kilopixel arrays of such devices are multiplexed using superconducting quantum interference devices (SQUIDs). This thesis derives the key detector performance parameters, and presents analysis of engineering data to confirm the detector performance on array scales. A key issue for bolometric instruments for far infrared and submillimetre astronomy is the need to operate at extremely low temperatures in the sub-kelvin and millikelvin ranges to achieve the necessary detector sensitivity. This work describes the design, testing and performance of the liquid cryogen-free millikelvin cryostat, the first such instrument to be deployed for astronomy. Subsequent chapters detail the design and testing of a magnetic shielding scheme for the instrument, an important aspect of the operation of superconducting devices. Based on experience with the construction and testing of this instrument, a number of potential improvements for future instruments are presented and discussed.

  15. Magnetic and Superconducting Materials at High Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Struzhkin, Viktor V. [Carnegie Inst. of Washington, Washington, DC (United States)

    2015-03-24

    transitions from magnetic to nonmagnetic phases in a broad pressure-temperature range; using X-ray methods including the newly developed RIXS high-pressure technique to explore pressure-tuned electronic excitations in strongly correlated 3d-materials; and advancing transport and magnetic techniques for measurements on small samples at very high pressures in a wide temperature range, with the application of focused ion beam technology and photolithography tailored to the design of microcircuits down to a nanoscale size, thus expanding the horizon in the search for novel physical phenomena at ultrahigh pressures. Apply new optical magnetic sensing techniques with NV- centers in diamond to detect superconductivity and magnetic transitions with unprecedented spatial resolution.

  16. Interface high-temperature superconductivity

    Science.gov (United States)

    Wang, Lili; Ma, Xucun; Xue, Qi-Kun

    2016-12-01

    Cuprate high-temperature superconductors consist of two quasi-two-dimensional (2D) substructures: CuO2 superconducting layers and charge reservoir layers. The superconductivity is realized by charge transfer from the charge reservoir layers into the superconducting layers without chemical dopants and defects being introduced into the latter, similar to modulation-doping in the semiconductor superlattices of AlGaAs/GaAs. Inspired by this scheme, we have been searching for high-temperature superconductivity in ultra-thin films of superconductors epitaxially grown on semiconductor/oxide substrates since 2008. We have observed interface-enhanced superconductivity in both conventional and unconventional superconducting films, including single atomic layer films of Pb and In on Si substrates and single unit cell (UC) films of FeSe on SrTiO3 (STO) substrates. The discovery of high-temperature superconductivity with a superconducting gap of ∼20 meV in 1UC-FeSe/STO has stimulated tremendous interest in the superconductivity community, for it opens a new avenue for both raising superconducting transition temperature and understanding the pairing mechanism of unconventional high-temperature superconductivity. Here, we review mainly the experimental progress on interface-enhanced superconductivity in the three systems mentioned above with emphasis on 1UC-FeSe/STO, studied by scanning tunneling microscopy/spectroscopy, angle-resolved photoemission spectroscopy and transport experiments. We discuss the roles of interfaces and a possible pairing mechanism inferred from these studies.

  17. Overview of Superconductivity and Challenges in Applications

    CERN Document Server

    Flükiger, Rene

    2012-01-01

    Considerable progress has been achieved during the last few decades in the various fields of applied superconductivity, while the related low temperature technology has reached a high level. Magnetic resonance imaging (MRI) and nuclear magnetic resonance (NMR) are so far the most successful applications, with tens of thousands of units worldwide, but high potential can also be recognized in the energy sector, with high energy cables, transformers, motors, generators for wind turbines, fault current limiters and devices for magnetic energy storage. A large number of magnet and cable prototypes have been constructed, showing in all cases high reliability. Large projects involving the construction of magnets, solenoids as well as dipoles and quadrupoles are described in the present book. A very large project, the LHC, is currently in operation, demonstrating that superconductivity is a reliable technology, even in a device of unprecedented high complexity. A project of similar complexity is ITER, a fusion device...

  18. Manufacturing and Testing of Accelerator Superconducting Magnets

    CERN Document Server

    Rossi, L

    2014-01-01

    Manufacturing of superconducting magnet for accelerators is a quite complex process that is not yet fully industrialized. In this paper, after a short history of the evolution of the magnet design and construction, we review the main characteristics of the accelerator magnets having an impact on the construction technology. We put in evidence how the design and component quality impact on construction and why the final product calls for a total-quality approach. LHC experience is widely discussed and main lessons are spelled out. Then the new Nb3Sn technology, under development for the next generation magnet construction, is outlined. Finally, we briefly review the testing procedure of accelerator superconducting magnets, underlining the close connection with the design validation and with the manufacturing process.

  19. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  20. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  1. Electron Source based on Superconducting RF

    Science.gov (United States)

    Xin, Tianmu

    High-bunch-charge photoemission electron-sources operating in a Continuous Wave (CW) mode can provide high peak current as well as the high average current which are required for many advanced applications of accelerators facilities, for example, electron coolers for hadron beams, electron-ion colliders, and Free-Electron Lasers (FELs). Superconducting Radio Frequency (SRF) has many advantages over other electron-injector technologies, especially when it is working in CW mode as it offers higher repetition rate. An 112 MHz SRF electron photo-injector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for electron cooling experiments. The gun utilizes a Quarter-Wave Resonator (QWR) geometry for a compact structure and improved electron beam dynamics. The detailed RF design of the cavity, fundamental coupler and cathode stalk are presented in this work. A GPU accelerated code was written to improve the speed of simulation of multipacting, an important hurdle the SRF structure has to overcome in various locations. The injector utilizes high Quantum Efficiency (QE) multi-alkali photocathodes (K2CsSb) for generating electrons. The cathode fabrication system and procedure are also included in the thesis. Beam dynamic simulation of the injector was done with the code ASTRA. To find the optimized parameters of the cavities and beam optics, the author wrote a genetic algorithm Python script to search for the best solution in this high-dimensional parameter space. The gun was successfully commissioned and produced world record bunch charge and average current in an SRF photo-injector.

  2. Failed theories of superconductivity

    CERN Document Server

    Schmalian, Joerg

    2010-01-01

    Almost half a century passed between the discovery of superconductivity by Kammerlingh Onnes and the theoretical explanation of the phenomenon by Bardeen, Cooper and Schrieffer. During the intervening years the brightest minds in theoretical physics tried and failed to develop a microscopic understanding of the effect. A summary of some of those unsuccessful attempts to understand superconductivity not only demonstrates the extraordinary achievement made by formulating the BCS theory, but also illustrates that mistakes are a natural and healthy part of the scientific discourse, and that inapplicable, even incorrect theories can turn out to be interesting and inspiring.

  3. Superconducting magnetic quadrupole

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  4. Fingerprints of Mott Superconductivity

    Institute of Scientific and Technical Information of China (English)

    王强华

    2003-01-01

    We improve a previous theory of doped Mott insulators with duality between pairing and magnetism by a further duality transform. As the result we obtained a quantum Ginzburg-Landau theory describing the Cooper pair condensate and the dual of spin condensate. We address the superconductivity by doping a Mott insulator,which we call the Mott superconductivity. Some fingerprints of such novelty in cuprates are the scaling between neutron resonance energy and superfluid density, and the induced quantized spin moment by vortices or Zn impurity (together with circulating charge super-current to be checked by experiments).

  5. Superconducting submillimeter and millimeter wave detectors

    Energy Technology Data Exchange (ETDEWEB)

    Nahum, M.

    1992-10-20

    The series of projects described in this dissertation was stimulated by the discovery of high temperature superconductivity. Our goal was to develop useful applications which would be competitive with the current state of technology. The high-[Tc] microbolometer was developed into the most sensitive direct detector of millimeter waves, when operated at liquid nitrogen temperatures. The thermal boundary resistance of thin YBa[sub 2]Cu[sub 3]0[sub 7-[delta

  6. Lattice parameters guide superconductivity in iron-arsenides

    Science.gov (United States)

    Konzen, Lance M. N.; Sefat, Athena S.

    2017-03-01

    The discovery of superconducting materials has led to their use in technological marvels such as magnetic-field sensors in MRI machines, powerful research magnets, short transmission cables, and high-speed trains. Despite such applications, the uses of superconductors are not widespread because they function much below room-temperature, hence the costly cooling. Since the discovery of Cu- and Fe-based high-temperature superconductors (HTS), much intense effort has tried to explain and understand the superconducting phenomenon. While no exact explanations are given, several trends are reported in relation to the materials basis in magnetism and spin excitations. In fact, most HTS have antiferromagnetic undoped ‘parent’ materials that undergo a superconducting transition upon small chemical substitutions in them. As it is currently unclear which ‘dopants’ can favor superconductivity, this manuscript investigates crystal structure changes upon chemical substitutions, to find clues in lattice parameters for the superconducting occurrence. We review the chemical substitution effects on the crystal lattice of iron-arsenide-based crystals (2008 to present). We note that (a) HTS compounds have nearly tetragonal structures with a-lattice parameter close to 4 Å, and (b) superconductivity can depend strongly on the c-lattice parameter changes with chemical substitution. For example, a decrease in c-lattice parameter is required to induce ‘in-plane’ superconductivity. The review of lattice parameter trends in iron-arsenides presented here should guide synthesis of new materials and provoke theoretical input, giving clues for HTS.

  7. Superconducting cables: Long distance energy transmission. (Latest citations from the NTIS bibliographic database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-06-01

    The bibliography contains citations concerning the design, development, and evaluation of superconducting cables and power transmission lines for long distance energy transmission. Topics include methods of cryogenic refrigeration and electrical insulation, fabrication and development of niobium alloy conductors, energy loss analysis, and dielectric design of superconducting power transmission systems. Government research reports on superconducting technology for electric power transmission and distribution are also reviewed.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  8. 2D superconductivity by ionic gating

    Science.gov (United States)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  9. Advanced Manufacturing of Superconducting Magnets

    Science.gov (United States)

    Senti, Mark W.

    1996-01-01

    The development of specialized materials, processes, and robotics technology allows for the rapid prototype and manufacture of superconducting and normal magnets which can be used for magnetic suspension applications. Presented are highlights of the Direct Conductor Placement System (DCPS) which enables automatic design and assembly of 3-dimensional coils and conductor patterns using LTS and HTS conductors. The system enables engineers to place conductors in complex patterns with greater efficiency and accuracy, and without the need for hard tooling. It may also allow researchers to create new types of coils and patterns which were never practical before the development of DCPS. The DCPS includes a custom designed eight-axis robot, patented end effector, CoilCAD(trademark) design software, RoboWire(trademark) control software, and automatic inspection.

  10. An experimental superconducting helical undulator

    Energy Technology Data Exchange (ETDEWEB)

    Caspi, S.; Taylor, C. [Lawrence Berkeley Lab., CA (United States)

    1995-12-31

    Improvements in the technology of superconducting magnets for high energy physics and recent advancements in SC materials with the artificial pinning centers (APC){sup 2}, have made a bifilar helical SC device an attractive candidate for a single-pass free electron laser (FEL){sup 3}. Initial studies have suggested that a 6.5 mm inner diameter helical device, with a 27 mm period, can generate a central field of 2-2.5 Tesla. Additional studies have also suggested that with a stored energy of 300 J/m, such a device can be made self-protecting in the event of a quench. However, since the most critical area associated with high current density SC magnets is connected with quenching and training, a short experimental device will have to be built and tested. In this paper we discuss technical issues relevant to the construction of such a device, including a conceptual design, fields, and forces.

  11. Robotics Offer Newfound Surgical Capabilities

    Science.gov (United States)

    2008-01-01

    Barrett Technology Inc., of Cambridge, Massachusetts, completed three Phase II Small Business Innovation Research (SBIR) contracts with Johnson Space Center, during which the company developed and commercialized three core technologies: a robotic arm, a hand that functions atop the arm, and a motor driver to operate the robotics. Among many industry uses, recently, an adaptation of the arm has been cleared by the U.S. Food and Drug Administration (FDA) for use in a minimally invasive knee surgery procedure, where its precision control makes it ideal for inserting a very small implant.

  12. A Cryogenic Magnetostrictive Actuator using a Persistent High Temperature Superconducting Magnet, Part 1: Concept and Design. Part 1; Concept and Design

    Science.gov (United States)

    Horner, Garnett C.; Bromberg, Leslie; Teter, J. P.

    2001-01-01

    Cryogenic magnetostrictive materials, such as rare earth zinc crystals, offer high strains and high forces with minimally applied magnetic fields, making the material ideally suited for deformable optics applications. For cryogenic temperature applications, such as Next Generation Space Telescope (NGST), the use of superconducting magnets offer the possibility of a persistent mode of operation, i.e., the magnetostrictive material will maintain a strain field without power. High temperature superconductors (HTS) are attractive options if the temperature of operation is higher than 10 degrees Kelvin (K) and below 77 K. However, HTS wires have constraints that limit the minimum radius of winding, and even if good wires can be produced, the technology for joining superconducting wires does not exist. In this paper, the design and capabilities of a rare earth zinc magnetostrictive actuator using bulk HTS is described. Bulk superconductors can be fabricated in the sizes required with excellent superconducting properties. Equivalent permanent magnets, made with this inexpensive material, are persistent, do not require a persistent switch as in HTS wires, and can be made very small. These devices are charged using a technique which is similar to the one used for charging permanent magnets, e.g., by driving them into saturation. A small normal conducting coil can be used for charging or discharging. Very fast charging and discharging of HTS tubes, as short as 100 microseconds, has been demonstrated. Because of the magnetic field capability of the superconductor material, a very small amount of superconducting magnet material is needed to actuate the rare earth zinc. In this paper, several designs of actuators using YBCO and BSCCO 2212 superconducting materials are presented. Designs that include magnetic shielding to prevent interaction between adjacent actuators will also be described. Preliminary experimental results and comparison with theory for BSSCO 2212 with a

  13. Spin-orbit-coupled superconductivity.

    Science.gov (United States)

    Lo, Shun-Tsung; Lin, Shih-Wei; Wang, Yi-Ting; Lin, Sheng-Di; Liang, C-T

    2014-06-25

    Superconductivity and spin-orbit (SO) interaction have been two separate emerging fields until very recently that the correlation between them seemed to be observed. However, previous experiments concerning SO coupling are performed far beyond the superconducting state and thus a direct demonstration of how SO coupling affects superconductivity remains elusive. Here we investigate the SO coupling in the critical region of superconducting transition on Al nanofilms, in which the strength of disorder and spin relaxation by SO coupling are changed by varying the film thickness. At temperatures T sufficiently above the superconducting critical temperature T(c), clear signature of SO coupling reveals itself in showing a magneto-resistivity peak. When T superconductivity. By studying such magneto-resistivity peaks under different strength of spin relaxation, we highlight the important effects of SO interaction on superconductivity.

  14. AC/RF Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Ciovati, Gianluigi [JLAB

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  15. Hybrid superconducting neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Merlo, V.; Lucci, M.; Ottaviani, I. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); Salvato, M.; Cirillo, M. [Dipartimento di Fisica, Università Tor Vergata, Via della Ricerca Scientifica, I-00133 Roma (Italy); CNR SPIN Salerno, Università di Salerno, Via Giovanni Paolo II, n.132, 84084 Fisciano (Italy); Scherillo, A. [Science and Technology Facility Council, ISIS Facility Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Celentano, G. [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Pietropaolo, A., E-mail: antonino.pietropaolo@enea.it [ENEA Frascati Research Centre, Via. E. Fermi 45, 00044 Frascati (Italy); Mediterranean Institute of Fundamental Physics, Via Appia Nuova 31, 00040 Marino, Roma (Italy)

    2015-03-16

    A neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction, {sup 10}B + n → α + {sup 7}Li, with α and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current I{sub c}, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the superconducting state, thus resetting the detector. Measurements on the counting rate of the device are presented and the basic physical features of the detector are discussed.

  16. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  17. LEP superconducting cavity

    CERN Multimedia

    1995-01-01

    Engineers work in a clean room on one of the superconducting cavities for the upgrade to the LEP accelerator, known as LEP-2. The use of superconductors allow higher electric fields to be produced so that higher beam energies can be reached.

  18. Niobium superconducting cavity

    CERN Multimedia

    CERN PhotoLab

    1980-01-01

    This 5-cell superconducting cavity, made from bulk-Nb, stems from the period of general studies, not all directed towards direct use at LEP. This one is dimensioned for 1.5 GHz, the frequency used at CEBAF and also studied at Saclay (LEP RF was 352.2 MHz). See also 7908227, 8007354, 8209255, 8210054, 8312339.

  19. LHC Superconducting Magnets

    CERN Document Server

    Jean Leyder

    2000-01-01

    The LHC is the next step in CERN's quest to unravel the mysteries of the Universe. It will accelerate protons to energies never before achieved in laboratories, and to hold them on course it will use powerful superconducting magnets on an unprecedented scale.

  20. Superconducting Quantum Circuits

    NARCIS (Netherlands)

    Majer, J.B.

    2002-01-01

    This thesis describes a number of experiments with superconducting cir- cuits containing small Josephson junctions. The circuits are made out of aluminum islands which are interconnected with a very thin insulating alu- minum oxide layer. The connections form a Josephson junction. The current trough

  1. Checking BEBC superconducting magnet

    CERN Multimedia

    1974-01-01

    The superconducting coils of the magnet for the 3.7 m Big European Bubble Chamber (BEBC) had to be checked, see Annual Report 1974, p. 60. The photo shows a dismantled pancake. By December 1974 the magnet reached again the field design value of 3.5 T.

  2. LHC superconducting strand

    CERN Multimedia

    Patrice Loiez

    1999-01-01

    This cross-section through a strand of superconducting matieral as used in the LHC shows the 8000 Niobium-Titanium filaments embedded like a honeycomb in copper. When cooled to 1.9 degrees above absolute zero in the LHC accelerator, these filaments will have zero resistance and so will carry a high electric current with no energy loss.

  3. Nonlinearities in Microwave Superconductivity

    OpenAIRE

    Ledenyov, Dimitri O.; Ledenyov, Viktor O.

    2012-01-01

    The research is focused on the modeling of nonlinear properties of High Temperature Superconducting (HTS) thin films, using Bardeen, Cooper, Schrieffer and Lumped Element Circuit theories, with purpose to enhance microwave power handling capabilities of microwave filters and optimize design of microwave circuits in micro- and nano- electronics.

  4. Applications of Superconductivity

    Science.gov (United States)

    Goodkind, John M.

    1971-01-01

    Presents a general review of current practical applications of the properties of superconducters. The devices are classified into groups according to the property that is of primary importance. The article is inteded as a first introduction for students and professionals. (Author/DS)

  5. Levitation Kits Demonstrate Superconductivity.

    Science.gov (United States)

    Worthy, Ward

    1987-01-01

    Describes the "Project 1-2-3" levitation kit used to demonstrate superconductivity. Summarizes the materials included in the kit. Discusses the effect demonstrated and gives details on how to obtain kits. Gives an overview of the documentation that is included. (CW)

  6. ISR Superconducting Quadrupoles

    CERN Multimedia

    1977-01-01

    Michel Bouvier is preparing for curing the 6-pole superconducting windings inbedded in the cylindrical wall separating liquid helium from vacuum in the quadrupole aperture. The heat for curing the epoxy glue was provided by a ramp of infrared lamps which can be seen above the slowly rotating cylinder. See also 7703512X, 7702690X.

  7. High temperature interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gozar, A., E-mail: adrian.gozar@yale.edu [Yale University, New Haven, CT 06511 (United States); Bozovic, I. [Yale University, New Haven, CT 06511 (United States); Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2016-02-15

    Highlight: • This review article covers the topic of high temperature interface superconductivity. • New materials and techniques used for achieving interface superconductivity are discussed. • We emphasize the role played by the differences in structure and electronic properties at the interface with respect to the bulk of the constituents. - Abstract: High-T{sub c} superconductivity at interfaces has a history of more than a couple of decades. In this review we focus our attention on copper-oxide based heterostructures and multi-layers. We first discuss the technique, atomic layer-by-layer molecular beam epitaxy (ALL-MBE) engineering, that enabled High-T{sub c} Interface Superconductivity (HT-IS), and the challenges associated with the realization of high quality interfaces. Then we turn our attention to the experiments which shed light on the structure and properties of interfacial layers, allowing comparison to those of single-phase films and bulk crystals. Both ‘passive’ hetero-structures as well as surface-induced effects by external gating are discussed. We conclude by comparing HT-IS in cuprates and in other classes of materials, especially Fe-based superconductors, and by examining the grand challenges currently laying ahead for the field.

  8. French scientists offered time to set up companies

    CERN Multimedia

    Butler, D

    1999-01-01

    The French minister of national education, research and technology announced that French researchers working for public research institutes and universities are to be offered up to six years sabbatical leave to set up their own companies (11 para)

  9. 13 kA Superconducting Busbars Manufacturing Process

    CERN Document Server

    Principe, R; Fornasiere, E

    2012-01-01

    In the LHC, the superconducting Main Bending magnets and Quadrupole magnets are series-connected electrically in different excitation circuits by means of superconducting busbars, carrying a maximum current of 13 kA. These superconducting busbars consist of a superconducting Rutherford cable thermally and electrically coupled to a copper section all along the length. The function of the copper section is essentially to provide an alternative path for the magnet current in case of resistive transition. The production of these components was originally outsourced. The decision to import the technology at CERN led to a global re-engineering of the standard process. Although based on the procedures adopted during the LHC construction, a few modifications and improvements have been implemented, profiting of the experience gained in the last few years. This document details the manufacturing process of the 13 kA busbars as it is actually performed at CERN, emphasizing the new solutions adopted during the first mon...

  10. Fabrication of Superconducting Detectors for Studying the Universe

    Science.gov (United States)

    Brown, Ari-David

    2012-01-01

    Superconducting detectors offer unparalleled means of making astronomical/cosmological observations. Fabrication of these detectors is somewhat unconventional; however, a lot of novel condensed matter physics/materials scientific discoveries and semiconductor fabrication processes can be generated in making these devices.

  11. Potential benefits of superconductivity to transportation in the United States

    Science.gov (United States)

    Rote, Donald M.; Johnson, Larry R.

    Research in U.S. transportation applications of superconductors is strongly motivated by a number of potential national benefits. These include the reduction of dependence on petroleum-based fuels, energy savings, substantially reduced air and noise pollution, increased customer convenience, and reduced maintenance costs. Current transportation technology offers little flexibility to switch to alternative fuels, and efforts to achieve the other benefits are confounded by growing congestion at airports and on urban roadways. A program has been undertaken to identify possible applications of the emerging superconducting applications to transportation and to evaluate potential national benefits. The current phase of the program will select the most promising applications for a more detailed subsequent study. Transportation modes being examined include highway and industrial vehicles, as well as rail, sea, air transport and pipelines. Three strategies are being considered: (1) replacing present components with those employing superconductors, (2) substituting new combinations of components or systems for present systems, and (3) developing completely new technologies. Distinctions are made between low-, medium-, and near-room-temperature superconductors. The most promising applications include magnetically levitated passenger and freight vehicles; replacement of drive systems in locomotives, self-propelled rail cars, and ships; and electric vehicles inductively coupled to electrified roadways.

  12. A superconducting large-angle magnetic suspension. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Downer, J.R.; Anastas, G.V. Jr.; Bushko, D.A.; Flynn, F.J.; Goldie, J.H.; Gondhalekar, V.; Hawkey, T.J.; Hockney, R.L.; Torti, R.P.

    1992-12-01

    SatCon Technology Corporation has completed a Small Business Innovation Research (SBIR) Phase 2 program to develop a Superconducting Large-Angle Magnetic Suspension (LAMS) for the NASA Langley Research Center. The Superconducting LAMS was a hardware demonstration of the control technology required to develop an advanced momentum exchange effector. The Phase 2 research was directed toward the demonstration for the key technology required for the advanced concept CMG, the controller. The Phase 2 hardware consists of a superconducting solenoid ('source coils') suspended within an array of nonsuperconducting coils ('control coils'), a five-degree-of-freedom positioning sensing system, switching power amplifiers, and a digital control system. The results demonstrated the feasibility of suspending the source coil. Gimballing (pointing the axis of the source coil) was demonstrated over a limited range. With further development of the rotation sensing system, enhanced angular freedom should be possible.

  13. Development of a superconducting claw-pole linear test-rig

    Science.gov (United States)

    Radyjowski, Patryk; Keysan, Ozan; Burchell, Joseph; Mueller, Markus

    2016-04-01

    Superconducting generators can help to reduce the cost of energy for large offshore wind turbines, where the size and mass of the generator have a direct effect on the installation cost. However, existing superconducting generators are not as reliable as the alternative technologies. In this paper, a linear test prototype for a novel superconducting claw-pole topology, which has a stationary superconducting coil that eliminates the cryocooler coupler will be presented. The issues related to mechanical, electromagnetic and thermal aspects of the prototype will be presented.

  14. Commercial Process of Bi-based 2212 Single Phase Superconducting Precursor Powder

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Laying emphasis on the preparation of Bi-based 2212 single phase superconducting powder, some technological parameters, which effect the single phase degree and uniformity of powder, such as prebaking, sintering and heat treatment were investigated and discussed. Ensuring the powder Tc at 83~85 K, the crucial impurity carbon was reduced to 0.03% and less. Adopting uncommon technique made the powder size to micrometer level, meanwhile the superconducting performance of the powder was unchanged. The fine superconducting powder was characterized. This process of Bi-based 2212 superconducting powder was successful.

  15. Aerospace applications of high temperature superconductivity

    Science.gov (United States)

    Heinen, V. O.; Connolly, D. J.

    1991-01-01

    Space application of high temperature superconducting (HTS) materials may occur before most terrestrial applications because of the passive cooling possibilities in space and because of the economic feasibility of introducing an expensive new technology which has a significant system benefit in space. NASA Lewis Research Center has an ongoing program to develop space technology capitalizing on the potential benefit of HTS materials. The applications being pursued include space communications, power and propulsion systems, and magnetic bearings. In addition, NASA Lewis is pursuing materials research to improve the performance of HTS materials for space applications.

  16. The NASA high temperature superconductivity program

    Science.gov (United States)

    Sokoloski, Martin M.; Romanofsky, Robert R.

    1990-01-01

    It has been recognized from the onset that high temperature superconductivity held great promise for major advances across a broad range of NASA interests. The current effort is organized around four key areas: communications and data, sensors and cryogenics, propulsion and power, and space materials technology. Recently, laser ablated YBa2Cu3O(7-x) films on LaAIO produced far superior RF characteristics when compared to metallic films on the same substrate. This achievement has enabled a number of unique microwave device applications, such as low insertion loss phase shifters and high Q filters. Melt texturing and melt quenched techniques are being used to produce bulk materials with optimized magnetic properties. These yttrium enriched materials possess enhanced flux pinning characteristics and will lead to prototype cryocooler bearings. Significant progress has also occurred in bolometer and current lead technology. Studies are being conducted to evaluate the effect of high temperature superconducting materials on the performance and life of high power magneto-plasma-dynamic thrusters. Extended studies were also performed to evaluate the benefit of superconducting magnetic energy storage for LEO space station, lunar and Mars mission applications. The project direction and level of effort of the program are also described.

  17. Brake caliper with offset pads: Innovative brake technology for commercial vehicles offers opportunities to reduce weight and cost; Bremssattel mit tangential versetzten Bremsbelaegen: Innovative Radbremsentechnologie fuer Nutzfahrzeuge bietet neue Moeglichkeiten zur Gewichts- und Kostenreduzierung

    Energy Technology Data Exchange (ETDEWEB)

    Antony, P.; Blatt, P. [WABCO Radbremsen GmbH, Mannheim (Germany)

    2005-07-01

    Continuous optimizations and technical improvements showed no further potential for cost and weight reductions on basis of the conventional technique of a sliding caliper and two supported pads in the carrier. Additionally, global and technical needs are growing. With its 4th generation of air disc brakes and a new caliper concept, WABCO accounts to these developments. Characteristically for the New Generation (NG) is the caliper concept with pad offset in circumferential direction. This presentation describes construction and basics of the system, shows the usage of FEM and elements of Bionic methods and proofs its effectiveness with test bench results. Additional potential for the design of a new interfaces between brake and axle are identified. A significant improved disc cracking behavior offers possibilities for additional cost and weight savings. (orig.)

  18. Superconducting nanowire single-photon imager

    CERN Document Server

    Zhao, Qing-Yuan; Calandri, Niccolò; Dane, Andrew E; McCaughan, Adam N; Bellei, Francesco; Wang, Hao-Zhu; Santavicca, Daniel F; Berggren, Karl K

    2016-01-01

    Detecting spatial and temporal information of individual photons is a crucial technology in today's quantum information science. Among the existing single-photon detectors, superconducting nanowire single-photon detectors (SNSPDs) have been demonstrated with a sub-50 ps timing jitter, near unity detection efficiency1, wide response spectrum from visible to infrared and ~10 ns reset time. However, to gain spatial sensitivity, multiple SNSPDs have to be integrated into an array, whose spatial and temporal resolutions are limited by the multiplexing circuit. Here, we add spatial sensitivity to a single nanowire while preserving the temporal resolution from an SNSPD, thereby turning an SNSPD into a superconducting nanowire single-photon imager (SNSPI). To achieve an SNSPI, we modify a nanowire's electrical behavior from a lumped inductor to a transmission line, where the signal velocity is slowed down to 0.02c (where c is the speed of light). Consequently, we are able to simultaneously read out the landing locati...

  19. PREFACE: Superconductivity in ultrathin films and nanoscale systems Superconductivity in ultrathin films and nanoscale systems

    Science.gov (United States)

    Bianconi, Antonio; Bose, Sangita; Garcia-Garcia, Antonio Miguel

    2012-12-01

    The recent technological developments in the synthesis and characterization of high-quality nanostructures and developments in the theoretical techniques needed to model these materials, have motivated this focus section of Superconductor Science and Technology. Another motivation is the compelling evidence that all new superconducting materials, such as iron pnictides and chalcogenides, diborides (doped MgB2) and fullerides (alkali-doped C60 compounds), are heterostrucures at the atomic limit, such as the cuprates made of stacks of nanoscale superconducting layers intercalated by different atomic layers with nanoscale periodicity. Recently a great amount of interest has been shown in the role of lattice nano-architecture in controlling the fine details of Fermi surface topology. The experimental and theoretical study of superconductivity in the nanoscale started in the early 1960s, shortly after the discovery of the BCS theory. Thereafter there has been rapid progress both in experiments and the theoretical understanding of nanoscale superconductors. Experimentally, thin films, granular films, nanowires, nanotubes and single nanoparticles have all been explored. New quantum effects appear in the nanoscale related to multi-component condensates. Advances in the understanding of shape resonances or Fano resonances close to 2.5 Lifshitz transitions near a band edge in nanowires, 2D films and superlattices [1, 2] of these nanosized modules, provide the possibility of manipulating new quantum electronic states. Parity effects and shell effects in single, isolated nanoparticles have been reported by several groups. Theoretically, newer techniques based on solving Richardson's equation (an exact theory incorporating finite size effects to the BCS theory) numerically by path integral methods or solving the entire Bogoliubov-de Gennes equation in these limits have been attempted, which has improved our understanding of the mechanism of superconductivity in these confined

  20. Superconductivity an introduction

    CERN Document Server

    Kleiner, Reinhold

    2016-01-01

    The third edition of this proven text has been developed further in both scope and scale to reflect the potential for superconductivity in power engineering to increase efficiency in electricity transmission or engines. The landmark reference remains a comprehensive introduction to the field, covering every aspect from fundamentals to applications, and presenting the latest developments in organic superconductors, superconducting interfaces, quantum coherence, and applications in medicine and industry. Due to its precise language and numerous explanatory illustrations, it is suitable as an introductory textbook, with the level rising smoothly from chapter to chapter, such that readers can build on their newly acquired knowledge. The authors cover basic properties of superconductors and discuss stability and different material groups with reference to the latest and most promising applications, devoting the last third of the book to applications in power engineering, medicine, and low temperature physics. An e...

  1. Superconducting Accelerator Magnets

    CERN Document Server

    Mess, K H; Wolff, S

    1996-01-01

    The main topic of the book are the superconducting dipole and quadrupole magnets needed in high-energy accelerators and storage rings for protons, antiprotons or heavy ions. The basic principles of low-temperature superconductivity are outlined with special emphasis on the effects which are relevant for accelerator magnets. Properties and fabrication methods of practical superconductors are described. Analytical methods for field calculation and multipole expansion are presented for coils without and with iron yoke. The effect of yoke saturation and geometric distortions on field quality is studied. Persistent magnetization currents in the superconductor and eddy currents the copper part of the cable are analyzed in detail and their influence on field quality and magnet performance is investigated. Superconductor stability, quench origins and propagation and magnet protection are addressed. Some important concepts of accelerator physics are introduced which are needed to appreciate the demanding requirements ...

  2. Statistical mechanics of superconductivity

    CERN Document Server

    Kita, Takafumi

    2015-01-01

    This book provides a theoretical, step-by-step comprehensive explanation of superconductivity for undergraduate and graduate students who have completed elementary courses on thermodynamics and quantum mechanics. To this end, it adopts the unique approach of starting with the statistical mechanics of quantum ideal gases and successively adding and clarifying elements and techniques indispensible for understanding it. They include the spin-statistics theorem, second quantization, density matrices, the Bloch–De Dominicis theorem, the variational principle in statistical mechanics, attractive interaction, and bound states. Ample examples of their usage are also provided in terms of topics from advanced statistical mechanics such as two-particle correlations of quantum ideal gases, derivation of the Hartree–Fock equations, and Landau’s Fermi-liquid theory, among others. With these preliminaries, the fundamental mean-field equations of superconductivity are derived with maximum mathematical clarity based on ...

  3. Superconducting switch pack

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, V.C.; Wollan, J.J.

    1990-07-24

    This patent describes a superconducting switch pack at least one switch element. The switch element including a length of superconductive wire having a switching portion and two lead portions, the switching portion being between the lead portions; means for supporting the switching portion in a plane in a common mold; hardened resin means encapsulating the switching portion in the plane in a solid body; wherein the solid body has an exterior surface which is planar and substantially parallel with and spaced apart from the plane in which the switching portion is positioned. The exterior surface being exposed to the exterior of the switch pack and the resin means filling the space between the exterior surface and the plane of the switching portion so as to provide uninterrupted thermal communication between the plane of the switching portion and the exterior of the switch pack; and a heater element in thermal contact with the switching portion.

  4. Tunable superconducting nanoinductors

    Energy Technology Data Exchange (ETDEWEB)

    Annunziata, Anthony J; Santavicca, Daniel F; Frunzio, Luigi; Rooks, Michael J; Prober, Daniel E [Department of Applied Physics, Yale University, New Haven, CT 06511 (United States); Catelani, Gianluigi [Department of Physics, Yale University, New Haven, CT 06511 (United States); Frydman, Aviad, E-mail: anthony.annunziata@yale.edu, E-mail: daniel.prober@yale.edu [Department of Physics, Bar-Ilan University, Ramat Gan 52900 (Israel)

    2010-11-05

    We characterize inductors fabricated from ultra-thin, approximately 100 nm wide strips of niobium (Nb) and niobium nitride (NbN). These nanowires have a large kinetic inductance in the superconducting state. The kinetic inductance scales linearly with the nanowire length, with a typical value of 1 nH {mu}m{sup -1} for NbN and 44 pH {mu}m{sup -1} for Nb at a temperature of 2.5 K. We measure the temperature and current dependence of the kinetic inductance and compare our results to theoretical predictions. We also simulate the self-resonant frequencies of these nanowires in a compact meander geometry. These nanowire inductive elements have applications in a variety of microwave frequency superconducting circuits.

  5. Relativistic Model for two-band Superconductivity

    OpenAIRE

    Ohsaku, Tadafumi

    2003-01-01

    To understand the superconductivity in MgB2, several two-band models of superconductivity were proposed. In this paper, by using the relativistic fermion model, we clearize the effect of the lower band in the superconductivity.

  6. Determination of the Planck constant using a watt balance with a superconducting magnet system at the National Institute of Standards and Technology

    CERN Document Server

    Schlamminger, Stephan; Seifert, Frank; Chao, Leon S; Newell, David B; Liu, Ruimin; Steiner, Richard L; Pratt, Jon R

    2014-01-01

    For the past two years, measurements have been performed with a watt balance at the National Institute of Standards and Technology (NIST) to determine the Planck constant. A detailed analysis of these measurements and their uncertainties has led to the value $h=6.626\\,069\\,79(30)\\times 10^{-34}\\,$J$\\,$s. The relative standard uncertainty is $ 45\\times 10^{-9}$. This result is $141\\times 10^{-9}$ fractionally higher than $h_{90}$. Here $h_{90}$ is the conventional value of the Planck constant given by $h_{90}\\equiv 4 /( K_{\\mathrm{J-90}}^2R_{\\mathrm{K-90}})$, where $K_{\\mathrm{J-90}}$ and $R_{\\mathrm{K-90}}$ denote the conventional values of the Josephson and von Klitzing constants, respectively.

  7. Topological confinement and superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Al-hassanieh, Dhaled A [Los Alamos National Laboratory; Batista, Cristian D [Los Alamos National Laboratory

    2008-01-01

    We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.

  8. Unconventional superconductivity near inhomogeneities

    Energy Technology Data Exchange (ETDEWEB)

    Poenicke, A.F.

    2008-01-25

    After the presentation of a quasi-classical theory the specific heat of Sr{sub 2}RuO{sub 4} is considered. Then tunneling spectroscopy on cuprate superconductors is discussed. Thereafter the subharmonic gap structure in d-wave superconductors is considered. Finally the application of the S-matrix in superconductivity is discussed with spin mixing, CrO{sub 2} as example, and an interface model. (HSI)

  9. Helical superconducting black holes.

    Science.gov (United States)

    Donos, Aristomenis; Gauntlett, Jerome P

    2012-05-25

    We construct novel static, asymptotically five-dimensional anti-de Sitter black hole solutions with Bianchi type-VII(0) symmetry that are holographically dual to superconducting phases in four spacetime dimensions with a helical p-wave order. We calculate the precise temperature dependence of the pitch of the helical order. At zero temperature the black holes have a vanishing entropy and approach domain wall solutions that reveal homogenous, nonisotropic dual ground states with an emergent scaling symmetry.

  10. Silicon superconducting quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Duvauchelle, J. E.; Francheteau, A.; Marcenat, C.; Lefloch, F., E-mail: francois.lefloch@cea.fr [Université Grenoble Alpes, CEA - INAC - SPSMS, F-38000 Grenoble (France); Chiodi, F.; Débarre, D. [Université Paris-sud, CNRS - IEF, F-91405 Orsay - France (France); Hasselbach, K. [Université Grenoble Alpes, CNRS - Inst. Néel, F-38000 Grenoble (France); Kirtley, J. R. [Center for probing at nanoscale, Stanford University, Palo Alto, California 94305-4045 (United States)

    2015-08-17

    We have studied a Superconducting Quantum Interference Device (SQUID) made from a single layer thin film of superconducting silicon. The superconducting layer is obtained by heavily doping a silicon wafer with boron atoms using the gas immersion laser doping technique. The SQUID is composed of two nano-bridges (Dayem bridges) in a loop and shows magnetic flux modulation at low temperature and low magnetic field. The overall behavior shows very good agreement with numerical simulations based on the Ginzburg-Landau equations.

  11. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    SECURITY CLASSIFICATION OF: The SQOT (Superconducting Qubit Optical Transducer ) project proposes to build a novel electro-optic system which can...Apr-2015 Approved for Public Release; Distribution Unlimited Final Report: "Superconducting Qubit Optical Transducer " (SQOT) The views, opinions and...journals: Number of Papers published in non peer-reviewed journals: Final Report: "Superconducting Qubit Optical Transducer " (SQOT) Report Title The

  12. Cerveza platforms offer economic options

    Energy Technology Data Exchange (ETDEWEB)

    Leblanc, L.A.

    1982-08-01

    Two single-piece platforms, Cerveze and Cerveza Ligera, were installed by Union Oil Co. in 925-935 ft of water. The technology and equipment used for the two platforms can be used for units to a depth of 1,400 ft in mild climates and to 1,000 ft in more critical weather areas such as the North Sea. The significant improvements in design and procedures in the construction and installation of the Cerveza Ligera platform are: (1) four leg structure, as opposed to eight, requiring less steel; (2) simplified fabrication; and (3) quicker installation. The most significant area of improvement in the Ligera project compared with Cerveza was in communications. Communications between naval architects and onshore launch foremen during loadout, and between surveyors and tug captains during positioning, are cited as examples.

  13. Hybrid Superconducting Neutron Detectors

    CERN Document Server

    Merlo, V; Cirillo, M; Lucci, M; Ottaviani, I; Scherillo, A; Celentano, G; Pietropaolo, A

    2014-01-01

    A new neutron detection concept is presented that is based on superconductive niobium (Nb) strips coated by a boron (B) layer. The working principle of the detector relies on the nuclear reaction 10B+n $\\rightarrow$ $\\alpha$+ 7Li , with $\\alpha$ and Li ions generating a hot spot on the current-biased Nb strip which in turn induces a superconducting-normal state transition. The latter is recognized as a voltage signal which is the evidence of the incident neutron. The above described detection principle has been experimentally assessed and verified by irradiating the samples with a pulsed neutron beam at the ISIS spallation neutron source (UK). It is found that the boron coated superconducting strips, kept at a temperature T = 8 K and current-biased below the critical current Ic, are driven into the normal state upon thermal neutron irradiation. As a result of the transition, voltage pulses in excess of 40 mV are measured while the bias current can be properly modulated to bring the strip back to the supercond...

  14. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-04-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  15. US Navy superconductivity program

    Science.gov (United States)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  16. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  17. Superconductivity in CVD diamond films.

    Science.gov (United States)

    Takano, Yoshihiko

    2009-06-24

    A beautiful jewel of diamond is insulator. However, boron doping can induce semiconductive, metallic and superconducting properties in diamond. When the boron concentration is tuned over 3 × 10(20) cm(-3), diamonds enter the metallic region and show superconductivity at low temperatures. The metal-insulator transition and superconductivity are analyzed using ARPES, XAS, NMR, IXS, transport and magnetic measurements and so on. This review elucidates the physical properties and mechanism of diamond superconductor as a special superconductivity that occurs in semiconductors.

  18. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  19. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  20. Massive Open Online Courses in Dental Education: Two Viewpoints: Viewpoint 1: Massive Open Online Courses Offer Transformative Technology for Dental Education and Viewpoint 2: Massive Open Online Courses Are Not Ready for Primetime.

    Science.gov (United States)

    Kearney, Rachel C; Premaraj, Sundaralingam; Smith, Becky M; Olson, Gregory W; Williamson, Anne E; Romanos, Georgios

    2016-02-01

    This point/counterpoint article discusses the strengths and weaknesses of incorporating Massive Open Online Courses (MOOCs) into dental education, focusing on whether this relatively new educational modality could impact traditional dental curricula. Viewpoint 1 asserts that MOOCs can be useful in dental education because they offer an opportunity for students to learn through content and assessment that is delivered online. While specific research on MOOCs is limited, some evidence shows that online courses may produce similar learning outcomes to those in face-to-face courses. Given that MOOCs are intended to be open source, there could be opportunities for dental schools with faculty shortages and financial constraints to incorporate these courses into their curricula. In addition to saving money, dental schools could use MOOCs as revenue sources in areas such as continuing education. Viewpoint 2 argues that the hype over MOOCs is subsiding due in part to weaker than expected evidence about their value. Because direct contact between students, instructors, and patients is essential to the dental curriculum, MOOCs have yet to demonstrate their usefulness in replacing more than a subset of didactic courses. Additionally, learning professionalism, a key component of health professions education, is best supported by mentorship that provides significant interpersonal interaction. In spite of the potential of early MOOC ideology, MOOCs in their current form require either further development or altered expectations to significantly impact dental education.

  1. RSON: Offering QoS-Sensitive Service for Real-Time Applications on Internet by Overlay Technology%在Internet上利用重叠网技术为实时业务提供QoS

    Institute of Scientific and Technical Information of China (English)

    杨景; 孟晓烜

    2005-01-01

    提出并描述了一个实时业务重叠网系统(RSON).它由一组业务结点构成,这些结点分布在Internet上,并由业务链路连接起来,从而在现有的IP网络上形成一个虚拟的传输重叠网.RSON的最大特点在于,它不需要对现有的网络层协议做任何修改.为了能够为每条业务流提供所需的服务质量保证,RSON中每个业务结点都参与一个分布式重叠网业务路由协议(OSRP)以协同工作,它包括业务链路状态的测量、链路状态信息的分发、业务路径的选择和建立,以及相应的数据包交换模块.作为覆盖在现有底层网络上的虚拟传输网,RSON使得业务提供第三方能够在Internet公网上提供自己的增值业务,因此以IP语音通信为例说明如何利用RSON在Internet上提供增强的网络服务,并指出它的优点所在.%A real-time service overlay network (RSON) is presented in this paper. It can offer QoS(quality-of-service)-sensitive transport service on Internet to facilitate the newly emerged real-time multimedia applications. The RSON system consists of a collection of service nodes, deployed at various locations on Internet.These services nodes are connected together by service links, which corresponding to underlying IP paths, form an virtual transport network on top of existing network infrastructure. The most important feature of RSON is that, it requires no changes at the network layer and its business practice. To ensure the desired performance of every overlay service flows, the distributed service nodes in RSON all participate in an overlay service routing protocol (OSRP). The OSRP includes measurement of service links; link-states dissemination; path selection and setup; and an associated data forwarding module. As a virtual transport network over the underlying data networks, the RSON empowers the third party providers to offer value-added service on Internet to its customers. Using VoIP application as an example, we

  2. Virtual Reality System Offers a Wide Perspective

    Science.gov (United States)

    2008-01-01

    Robot Systems Technology Branch engineers at Johnson Space Center created the remotely controlled Robonaut for use as an additional "set of hands" in extravehicular activities (EVAs) and to allow exploration of environments that would be too dangerous or difficult for humans. One of the problems Robonaut developers encountered was that the robot s interface offered an extremely limited field of vision. Johnson robotics engineer, Darby Magruder, explained that the 40-degree field-of-view (FOV) in initial robotic prototypes provided very narrow tunnel vision, which posed difficulties for Robonaut operators trying to see the robot s surroundings. Because of the narrow FOV, NASA decided to reach out to the private sector for assistance. In addition to a wider FOV, NASA also desired higher resolution in a head-mounted display (HMD) with the added ability to capture and display video.

  3. Wind offering in energy and reserve markets

    Science.gov (United States)

    Soares, T.; Pinson, P.; Morais, H.

    2016-09-01

    The increasing penetration of wind generation in power systems to fulfil the ambitious European targets will make wind power producers to play an even more important role in the future power system. Wind power producers are being incentivized to participate in reserve markets to increase their revenue, since currently wind turbine/farm technologies allow them to provide ancillary services. Thus, wind power producers are to develop offering strategies for participation in both energy and reserve markets, accounting for market rules, while ensuring optimal revenue. We consider a proportional offering strategy to optimally decide upon participation in both markets by maximizing expected revenue from day-ahead decisions while accounting for estimated regulation costs for failing to provide the services. An evaluation of considering the same proportional splitting of energy and reserve in both day- ahead and balancing market is performed. A set of numerical examples illustrate the behavior of such strategy. An important conclusion is that the optimal split of the available wind power between energy and reserve strongly depends upon prices and penalties on both market trading floors.

  4. Optimization of superconducting tiling pattern for superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL)

    1996-01-01

    An apparatus and method for reducing magnetic field inhomogeneities which produce rotational loss mechanisms in high temperature superconducting magnetic bearings. Magnetic field inhomogeneities are reduced by dividing high temperature superconducting structures into smaller structures, and arranging the smaller structures into tiers which stagger the magnetic field maximum locations of the smaller structures.

  5. A superconducting shield to protect astronauts

    CERN Multimedia

    Antonella Del Rosso

    2015-01-01

    The CERN Superconductors team in the Technology department is involved in the European Space Radiation Superconducting Shield (SR2S) project, which aims to demonstrate the feasibility of using superconducting magnetic shielding technology to protect astronauts from cosmic radiation in the space environment. The material that will be used in the superconductor coils on which the project is working is magnesium diboride (MgB2), the same type of conductor developed in the form of wire for CERN for the LHC High Luminosity Cold Powering project.   Image: K. Anthony/CERN. Back in April 2014, the CERN Superconductors team announced a world-record current in an electrical transmission line using cables made of the MgB2 superconductor. This result proved that the technology could be used in the form of wire and could be a viable solution for both electrical transmission for accelerator technology and long-distance power transportation. Now, the MgB2 superconductor has found another application: it wi...

  6. Novel superconducting phenomena in quasi-one-dimensional Bechgaard salts

    Science.gov (United States)

    Jerome, Denis; Yonezawa, Shingo

    2016-03-01

    It is the saturation of the transition temperature Tc in the range of 24 K for known materials in the late sixties that triggered the search for additional materials offering new coupling mechanisms leading in turn to higher Tc's. As a result of this stimulation, superconductivity in organic matter was discovered in tetramethyl-tetraselenafulvalene-hexafluorophosphate, (TMTSF)2PF6, in 1979, in the laboratory founded at Orsay by Professor Friedel and his colleagues in 1962. Although this conductor is a prototype example for low-dimensional physics, we mostly focus in this article on the superconducting phase of the ambient-pressure superconductor (TMTSF)2ClO4, which has been studied most intensively among the TMTSF salts. We shall present a series of experimental results supporting nodal d-wave symmetry for the superconducting gap in these prototypical quasi-one-dimensional conductors. xml:lang="fr"

  7. SBIR Technology Applications to Space Communications and Navigation (SCaN)

    Science.gov (United States)

    Liebrecht, Phil; Eblen, Pat; Rush, John; Tzinis, Irene

    2010-01-01

    This slide presentation reviews the mission of the Space Communications and Navigation (SCaN) Office with particular emphasis on opportunities for technology development with SBIR companies. The SCaN office manages NASA's space communications and navigation networks: the Near Earth Network (NEN), the Space Network (SN), and the Deep Space Network (DSN). The SCaN networks nodes are shown on a world wide map and the networks are described. Two types of technologies are described: Pull technology, and Push technologies. A listing of technology themes is presented, with a discussion on Software defined Radios, Optical Communications Technology, and Lunar Lasercom Space Terminal (LLST). Other technologies that are being investigated are some Game Changing Technologies (GCT) i.e., technologies that offer the potential for improving comm. or nav. performance to the point that radical new mission objectives are possible, such as Superconducting Quantum Interference Filters, Silicon Nanowire Optical Detectors, and Auto-Configuring Cognitive Communications

  8. Design of a high-bunch-charge 112-MHz superconducting RF photoemission electron source

    Science.gov (United States)

    Xin, T.; Brutus, J. C.; Belomestnykh, Sergey A.; Ben-Zvi, I.; Boulware, C. H.; Grimm, T. L.; Hayes, T.; Litvinenko, Vladimir N.; Mernick, K.; Narayan, G.; Orfin, P.; Pinayev, I.; Rao, T.; Severino, F.; Skaritka, J.; Smith, K.; Than, R.; Tuozzolo, J.; Wang, E.; Xiao, B.; Xie, H.; Zaltsman, A.

    2016-09-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers. Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory to produce high-brightness and high-bunch-charge bunches for the coherent electron cooling proof-of-principle experiment. The gun utilizes a quarter-wave resonator geometry for assuring beam dynamics and uses high quantum efficiency multi-alkali photocathodes for generating electrons.

  9. Design of a High-bunch-charge 112-MHz Superconducting RF Photoemission Electron Source

    CERN Document Server

    Xin, T; Belomestnykh, Sergey A; Ben-Zvi, I; Boulware, C H; Grimm, T L; Hayes, T; Litvinenko, Vladimir N; Mernick, K; Narayan, G; Orfin, P; Pinayev, I; Rao, T; Severino, F; Skaritka, J; Smith, K; Than, R; Tuozzolo, J; Wang, E; Xiao, B; Xie, H; Zaltsman, A

    2016-01-01

    High-bunch-charge photoemission electron-sources operating in a continuous wave (CW) mode are required for many advanced applications of particle accelerators, such as electron coolers for hadron beams, electron-ion colliders, and free-electron lasers (FELs). Superconducting RF (SRF) has several advantages over other electron-gun technologies in CW mode as it offers higher acceleration rate and potentially can generate higher bunch charges and average beam currents. A 112 MHz SRF electron photoinjector (gun) was developed at Brookhaven National Laboratory (BNL) to produce high-brightness and high-bunch-charge bunches for the Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment. The gun utilizes a quarter-wave resonator (QWR) geometry for assuring beam dynamics, and uses high quantum efficiency (QE) multi-alkali photocathodes for generating electrons.

  10. Beam commissioning for a superconducting proton linac

    Science.gov (United States)

    Wang, Zhi-Jun; He, Yuan; Jia, Huan; Dou, Wei-ping; Chen, Wei-long; Zhang, X. L.; Liu, Shu-hui; Feng, Chi; Tao, Yue; Wang, Wang-sheng; Wu, Jian-qiang; Zhang, Sheng-hu; Zhao, Hong-Wei

    2016-12-01

    To develop the next generation of safe and cleaner nuclear energy, the accelerator-driven subcritical (ADS) system emerges as one of the most attractive technologies. It will be able to transmute the long-lived transuranic radionuclides produced in the reactors of today's nuclear power plants into shorter-lived ones, and also it will provide positive energy output at the same time. The prototype of the Chinese ADS (C-ADS) proton accelerator comprises two injectors and a 1.5 GeV, 10 mA continuous wave (CW) superconducting main linac. The injector scheme II at the C-ADS demo facility inside the Institute of Modern Physics is a 10 MeV CW superconducting linac with a designed beam current of 10 mA, which includes an ECR ion source, a low-energy beam transport line, a 162.5 MHz radio frequency quadrupole accelerator, a medium-energy beam transport line, and a superconducting half wave resonator accelerator section. This demo facility has been successfully operating with an 11 mA, 2.7 MeV CW beam and a 3.9 mA, 4.3 MeV CW beam at different times and conditions since June 2014. The beam power has reached 28 kW, which is the highest record for the same type of linear accelerators. In this paper, the parameters of the test injector II and the progress of the beam commissioning are reported.

  11. In-situ deposition of YBCO high-Tc superconducting thin films by MOCVD and PE-MOCVD

    Science.gov (United States)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P. E.; Kear, B.; Gallois, B.

    1991-01-01

    Metal-Organic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T(sub c) greater than 90 K and J(sub c) of approximately 10(exp 4) A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metal-organic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  12. In Situ deposition of YBCO high-T(sub c) superconducting thin films by MOCVD and PE-MOCVD

    Science.gov (United States)

    Zhao, J.; Noh, D. W.; Chern, C.; Li, Y. Q.; Norris, P.; Gallois, B.; Kear, B.

    1990-01-01

    Metalorganic Chemical Vapor Deposition (MOCVD) offers the advantages of a high degree of compositional control, adaptability for large scale production, and the potential for low temperature fabrication. The capability of operating at high oxygen partial pressure is particularly suitable for in situ formation of high temperature superconducting (HTSC) films. Yttrium barium copper oxide (YBCO) thin films having a sharp zero-resistance transition with T( sub c) greater than 90 K and Jc approx. 10 to the 4th power A on YSZ have been prepared, in situ, at a substrate temperature of about 800 C. Moreover, the ability to form oxide films at low temperature is very desirable for device applications of HTSC materials. Such a process would permit the deposition of high quality HTSC films with a smooth surface on a variety of substrates. Highly c-axis oriented, dense, scratch resistant, superconducting YBCO thin films with mirror-like surfaces have been prepared, in situ, at a reduced substrate temperature as low as 570 C by a remote microwave-plasma enhanced metalorganic chemical vapor deposition (PE-MOCVD) process. Nitrous oxide was used as a reactant gas to generate active oxidizing species. This process, for the first time, allows the formation of YBCO thin films with the orthorhombic superconducting phase in the as-deposited state. The as-deposited films grown by PE-MOCVD show attainment of zero resistance at 72 K with a transition width of about 5 K. MOCVD was carried out in a commercial production scale reactor with the capability of uniform deposition over 100 sq cm per growth run. Preliminary results indicate that PE-MOCVD is a very attractive thin film deposition process for superconducting device technology.

  13. Story of Superconductivity: A Serendipitous Discovery

    Indian Academy of Sciences (India)

    Amit Roy

    2017-05-01

    Electricity is carried through metallic wires, called conductors.In the process, electrons move through metallic conductorsthat offer resistance (the value depends on the particularmetal used), to the passage of electrons. This leads to the productionof heat and loss of energy. This heating process isutilised in many electrical devices. However, for transmissionof electrical energy from the power plants to the user and inmany other applications, it would be a great boon if no energywas lost to resistance. The discovery of superconductivity byHeike Kamerlingh Onnes in 1911 at Leiden, offered a glimmerof hope to make this dream possible. It was a discoverytotally unexpected at that time, and we owe this discovery tothe painstaking andmethodical investigations of Onnes – firstto produce very low temperatures, and then measure propertiesof materials at these freezing temperatures.

  14. The Danish Superconducting Cable Project

    DEFF Research Database (Denmark)

    Tønnesen, Ole

    1997-01-01

    The design and construction of a superconducting cable is described. The cable has a room temperature dielectric design with the cryostat placed inside the electrical insulation.BSCCO 2223 superconducting tapes wound in helix form around a former are used as the cable conductor. Results from...

  15. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  16. Superconductivity in a chiral nanotube

    Science.gov (United States)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  17. Balloon-Borne Superconducting Integrated Receiver for Atmospheric Research

    NARCIS (Netherlands)

    Kiselev, Oleg; Birk, Manfred; Ermakov, Andrey; Filippenko, Lyudmila; Golstein, Hans; Hoogeveen, Ruud; Kinev, Nickolay; van Kuik, Bart; de Lange, Arno; de Lange, Gert; Yagoubov, Pavel; Koshelets, Valery

    2011-01-01

    A Superconducting Integrated Receiver (SIR) was proposed more than 10 years ago and has since then been developed up to the point of practical applications. We have demonstrated for the first time the capabilities of the SIR technology for heterodyne spectroscopy both in the laboratory and at remote

  18. Superconducting dipole electromagnet

    Science.gov (United States)

    Purcell, John R.

    1977-07-26

    A dipole electromagnet of especial use for bending beams in particle accelerators is wound to have high uniformity of magnetic field across a cross section and to decrease evenly to zero as the ends of the electromagnet are approached by disposing the superconducting filaments of the coil in the crescent-shaped nonoverlapping portions of two intersecting circles. Uniform decrease at the ends is achieved by causing the circles to overlap increasingly in the direction of the ends of the coil until the overlap is complete and the coil is terminated.

  19. Superconductivity from correlated hopping

    CERN Document Server

    Batista, C D; Aligia, A A

    1995-01-01

    We consider a chain described by a next-nearest-neighbor hopping combined with a nearest-neighbor spin flip. In two dimensions this three-body term arises from a mapping of the three-band Hubbard model for CuO$_2$ planes to a generalized $t-J$ model and for large O-O hopping favors resonance-valence-bond superconductivity of predominantly $d$-wave symmetry. Solving the ground state and low-energy excitations by analytical and numerical methods we find that the chain is a Luther-Emery liquid with correlation exponent $K_{\\rho} = (2-n)^2/2$, where $n$ is the particle density.

  20. Superconductivity in nanowires

    CERN Document Server

    Bezryadin, Alexey

    2012-01-01

    The importance and actuality of nanotechnology is unabated and will be for years to come. A main challenge is to understand the various properties of certain nanostructures, and how to generate structures with specific properties for use in actual applications in Electrical Engineering and Medicine.One of the most important structures are nanowires, in particular superconducting ones. They are highly promising for future electronics, transporting current without resistance and at scales of a few nanometers. To fabricate wires to certain defined standards however, is a major challenge, and so i

  1. Introduction to superconductivity

    CERN Document Server

    Rose-Innes, AC

    1978-01-01

    Introduction to Superconductivity differs from the first edition chiefly in Chapter 11, which has been almost completely rewritten to give a more physically-based picture of the effects arising from the long-range coherence of the electron-waves in superconductors and the operation of quantum interference devices. In this revised second edition, some further modifications have been made to the text and an extra chapter dealing with """"high-temperature"""" superconductors has been added. A vast amount of research has been carried out on these since their discovery in 1986 but the results, both

  2. Superconducting Electronic Film Structures

    Science.gov (United States)

    1991-02-14

    cubic, yttria stabilized, zirconia (YSZ) single crystals with (100) orientation and ao = 0.512 to 0.516 nm. Films were magnetron-sputtered... Crown by Solid-State and Vapor-Phase Epitaxy," IEEE Trans. Uagn. 25(2), 2538 (1989). 6. J. H. Kang, R. T. Kampwirth, and K. E. Gray, "Superconductivity...summarized in Fig. 1, are too high for SrTiO3 or yttria- stabilized zirconia (YSZ) to be used in rf applications. MgO, LaAIO 3 , and LaGaO3 have a tan 6

  3. Heavy fermion superconductivity

    Science.gov (United States)

    Brison, Jean-Pascal; Glémot, Loı̈c; Suderow, Hermann; Huxley, Andrew; Kambe, Shinsaku; Flouquet, Jacques

    2000-05-01

    The quest for a precise identification of the symmetry of the order parameter in heavy fermion systems has really started with the discovery of the complex superconducting phase diagram in UPt 3. About 10 years latter, despite numerous experiments and theoretical efforts, this is still not achieved, and we will quickly review the present status of knowledge and the main open question. Actually, the more forsaken issue of the nature of the pairing mechanism has been recently tackled by different groups with macroscopic or microscopic measurement, and significant progress have been obtained. We will discuss the results emerging from these recent studies which all support non-phonon-mediated mechanisms.

  4. Investigation of Beam Dynamics in the Superconducting Synchrocyclotron for Proton Therapy

    Institute of Scientific and Technical Information of China (English)

    LI; Ming; ZHANG; Tian-jue

    2013-01-01

    With development of the superconducting technology,synchrocyclotron can be made very small through extreme high field,the structure of which is simple.So the synchrocyclotron is very suitable to be installed in the hospital for proton therapy.CIAE planned to build a 230 MeV superconducting synchrocyclotron,which is listed in the project of"Dragon 2020"and the key technology study is an

  5. Battery energy storage and superconducting magnetic energy storage for utility applications: A qualitative analysis

    Energy Technology Data Exchange (ETDEWEB)

    Akhil, A.A.; Butler, P.; Bickel, T.C.

    1993-11-01

    This report was prepared at the request of the US Department of Energy`s Office of Energy Management for an objective comparison of the merits of battery energy storage with superconducting magnetic energy storage technology for utility applications. Conclusions are drawn regarding the best match of each technology with these utility application requirements. Staff from the Utility Battery Storage Systems Program and the superconductivity Programs at Sandia National contributed to this effort.

  6. Relativistic Quantum Teleportation with superconducting circuits

    CERN Document Server

    Friis, Nicolai; Truong, Kevin; Sabín, Carlos; Solano, Enrique; Johansson, Göran; Fuentes, Ivette

    2012-01-01

    We study the effects of relativistic motion on quantum teleportation and propose a realizable experiment where our results can be tested. We compute bounds on the optimal fidelity of teleportation when one of the observers undergoes non-uniform motion for a finite time. The upper bound to the optimal fidelity is degraded due to the observer's motion however, we discuss how this degradation can be corrected. These effects are observable for experimental parameters that are within reach of cutting-edge superconducting technology.

  7. A New Superconducting Wire for Future Accelerators

    CERN Multimedia

    2006-01-01

    The CARE/NED project has developed a new superconducting wire that can achieve very high currents (1400 amps) at high magnetic fields (12 teslas). Cross-section of the CARE/NED wire produced by SMI. As we prepare to enter a new phase of particle physics with the LHC, technological development is a continuous process to ensure the demands of future research are met. The next generation of colliders and upgrades of the present ones will require significantly larger magnetic fields for bending and focusing the particle beams. NED (Next European Dipole) is one of the projects taking on this challenge to push technology beyond the present limit (see: More about NED). The magnets in the LHC rely on niobium titanium (NbTi) as the superconducting material, with a maximum magnetic field of 8 to 10T (tesla). In order to exceed this limitation, a different material together with the corresponding technology needs to be developed. NED is assessing the suitability of niobium tin (Nb3Sn), which has the potential to at le...

  8. Superconductivity in alkali-doped C{sub 60}

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Arthur P., E-mail: apr@ucsc.edu

    2015-07-15

    Highlight: • Superconductivity in alkali-doped C{sub 60} (A{sub 3}C{sub 60}) is well described by an s-wave state produced by phonon mediated pairing. • Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures up to 33 K in single-phase material. • The good understanding of pairing in A{sub 3}C{sub 60} offers a paradigm for the development of new superconducting materials. - Abstract: Superconductivity in alkali-doped C{sub 60} (A{sub 3}C{sub 60}, A = an alkali atom) is well described by an s-wave state produced by phonon mediated pairing. Moderate coupling of electrons to high-frequency shape-changing intra-molecular vibrational modes produces transition temperatures (T{sub c}) up to 33 K in single-phase material. The good understanding of pairing in A{sub 3}C{sub 60} offers a paradigm for the development of new superconducting materials.

  9. Controlling flux flow dissipation by changing flux pinning in superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Grimaldi, G.; Leo, A.; Nigro, A.; Pace, S. [CNR SPIN Salerno and Dipartimento di Fisica ' ' E. R. Caianiello' ' , Universita degli Studi di Salerno, via Ponte Don Melillo, 84084 Fisciano (Italy); Silhanek, A. V. [Department de Physique, Universite de Liege, B-4000 Sart Tilman (Belgium); INPAC-Institute for Nanoscale Physics and Chemistry, Nanoscale Superconductivity and Magnetism Group, K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Verellen, N.; Moshchalkov, V. V. [INPAC-Institute for Nanoscale Physics and Chemistry, Nanoscale Superconductivity and Magnetism Group, K. U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Milosevic, M. V. [Departement Fysica, Universiteit Antwerpen, Groenenborgerlaan 171, B-2020 Antwerpen (Belgium); Casaburi, A.; Cristiano, R. [Istituto di Cibernetica ' ' E. Caianiello' ' , CNR, 80078 Pozzuoli (Italy)

    2012-05-14

    We study the flux flow state in superconducting materials characterized by rather strong intrinsic pinning, such as Nb, NbN, and nanostructured Al thin films, in which we drag the superconducting dissipative state into the normal state by current biasing. We modify the vortex pinning strength either by ion irradiation, by tuning the measuring temperature or by including artificial pinning centers. We measure critical flux flow voltages for all materials and the same effect is observed: switching to low flux flow dissipations at low fields for an intermediate pinning regime. This mechanism offers a way to additionally promote the stability of the superconducting state.

  10. Superconducting magnets for MRI

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J.E.

    1984-08-01

    Three types of magnets are currently used to provide the background field required for magnet resonance imaging (MRI). (i) Permanent magnets produce fields of up to 0.3 T in volumes sufficient for imaging the head or up to 0.15 T for whole body imaging. Cost and simplicity of operation are advantages, but relatively low field, weight (up to 100 tonnes) and, to a small extent, instability are limitations. (ii) Water-cooled magnets provide fields of up to 0.25 T in volumes suitable for whole body imaging, but at the expense of power (up to 150 kW for 0.25 T) and water-cooling. Thermal stability of the field requires the maintenance of constant temperature through periods both of use and of quiescence. (iii) Because of the limitations imposed by permanent and resistive magnets, particularly on field strength, the superconducting magnet is now most widely used to provide background fields of up to 2 T for whole body MRI. It requires very low operating power and that only for refrigeration. Because of the constant low temperature, 4.2 K, at which its stressed structure operates, its field is stable. The following review deals principally with superconducting magnets for MRI. However, the sections on field analysis apply to all types of magnet and the description of the source terms of circular coils and of the principals of design of solenoids apply equally to resistive solenoidal magnets.

  11. Electric control of superconducting transition through a spin-orbit coupled interface

    Science.gov (United States)

    Ouassou, Jabir Ali; di Bernardo, Angelo; Robinson, Jason W. A.; Linder, Jacob

    2016-07-01

    We demonstrate theoretically all-electric control of the superconducting transition temperature using a device comprised of a conventional superconductor, a ferromagnetic insulator, and semiconducting layers with intrinsic spin-orbit coupling. By using analytical calculations and numerical simulations, we show that the transition temperature of such a device can be controlled by electric gating which alters the ratio of Rashba to Dresselhaus spin-orbit coupling. The results offer a new pathway to control superconductivity in spintronic devices.

  12. Electric control of superconducting transition through a spin-orbit coupled interface

    Science.gov (United States)

    Ouassou, Jabir Ali; Di Bernardo, Angelo; Robinson, Jason W. A.; Linder, Jacob

    2016-01-01

    We demonstrate theoretically all-electric control of the superconducting transition temperature using a device comprised of a conventional superconductor, a ferromagnetic insulator, and semiconducting layers with intrinsic spin-orbit coupling. By using analytical calculations and numerical simulations, we show that the transition temperature of such a device can be controlled by electric gating which alters the ratio of Rashba to Dresselhaus spin-orbit coupling. The results offer a new pathway to control superconductivity in spintronic devices. PMID:27426887

  13. Superconducting properties of MgB2 from first principles.

    Science.gov (United States)

    Floris, A; Profeta, G; Lathiotakis, N N; Lüders, M; Marques, M A L; Franchini, C; Gross, E K U; Continenza, A; Massidda, S

    2005-01-28

    Solid MgB(2) has rather interesting and technologically important properties, such as a very high superconducting transition temperature. Focusing on this compound, we report the first nontrivial application of a novel density-functional-type theory for superconductors, recently proposed by the authors. Without invoking any adjustable parameters, we obtain the transition temperature, the gaps, and the specific heat of MgB(2) in very good agreement with experiment. Moreover, our calculations show how the Coulomb interaction acts differently on sigma and pi states, thereby stabilizing the observed superconducting phase.

  14. Using Superconducting Qubit Circuits to Engineer Exotic Lattice Systems

    Science.gov (United States)

    Tsomokos, Dimitris; Ashhab, Sahel; Nori, Franco

    2011-03-01

    We propose an architecture based on superconducting qubits and resonators for the implementation of a variety of exotic lattice systems, such as spin and Hubbard models in higher or fractal dimensions and higher-genus topologies. Spin systems are realized naturally using qubits, while superconducting resonators can be used for the realization of Bose-Hubbard models. Fundamental requirements for these designs, such as controllable interactions between arbitrary qubit pairs, have recently been implemented in the laboratory, rendering our proposals feasible with current technology.

  15. The current status of high temperature superconducting wires

    Science.gov (United States)

    Mikhailov, B. P.; Burkhanov, G. S.

    1991-12-01

    The principal technological difficulties associated with the manufacture of high temperature superconducting (HTSC) wires based on yttrium and lanthanum ceramics are briefly reviewed. It is noted that the superconducting and mechanical properties of HTSC wires or ribbons are largely determined by their microstructure. Particular attention is given to the currently used method of producing HTSC wires whereby the ceramic powder is encased in a pipe shell and then deformed by different methods, such as rolling, drawing, or pressing. The requirements for the shell material are examined, and current densities are presented for HTSC wires produced in shells of copper, silver, aluminum, nickel, stainless steel, and zirconium.

  16. First prototype Copper-Niobium RF Superconducting Cavity

    CERN Multimedia

    1983-01-01

    This is the first RF superconducting cavity made of copper with a very thin layer of pure niobium deposited on the inner wall by sputtering. This new developpment lead to a considerable increase of performance and stability of superconducting cavities and to non-negligible economy. The work was carried out in the ISR workshop. This technique was adopted for the LEP II accelerating cavities. At the centre is Cristoforo Benvenuti, inventor of this important technology, with his assistants, Nadia Circelli and Max Hauer, carrying the sputtering electrode. See also 8209255, 8312339.

  17. High temperature superconductivity space experiment (HTSSE)

    Science.gov (United States)

    Ritter, J. C.; Nisenoff, M.; Price, G.; Wolf, S. A.

    1991-01-01

    An experiment dealing with high-temperature superconducting devices and components in space is discussed. A variety of devices (primarily passive microwave and millimeter-wave components) has been procured and will be integrated with a cryogenic refrigerating and data acquisition system to form the space package, which will be launched in late 1992. This space experiment is expected to demonstrate that this technology is sufficiently robust to survive the space environment and that the technology has the potential to improve the operation of space systems significantly. The devices for the initial launch have been evaluated electrically, thermally, and mechanically, and will be integrated into the final space package early in 1991. The performance of the devices is summarized, and some potential applications of this technology in space systems are outlined.

  18. Innovative quantum technologies for microgravity fundamental physics and biological research

    Science.gov (United States)

    Kierk, I. K.

    2002-01-01

    This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.

  19. Innovative quantum technologies for microgravity fundamental physics and biological research

    Science.gov (United States)

    Kierk, I. K.

    2002-01-01

    This paper presents a new technology program, within the fundamental physics, focusing on four quantum technology areas: quantum atomics, quantum optics, space superconductivity and quantum sensor technology, and quantum field based sensor and modeling technology.

  20. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  1. Meissner effect in superconducting microtraps

    Energy Technology Data Exchange (ETDEWEB)

    Cano, Daniel

    2009-04-30

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  2. DK SUPERCONDUCTING TAPE TECHNOLOGY 2002-2003

    DEFF Research Database (Denmark)

    Nielsen, Morten Storgaard; Andersen, Niels Hessel; Eriksen, Morten;

    Report on the work performed by AFM, Risø and IPL, DTU in collaboration with NST A/S and Haldor Topsøe A/S within the Danish Energy Research Program EFP, DK SUPERLEDERE I ELSEKTOREN 2002-2003......Report on the work performed by AFM, Risø and IPL, DTU in collaboration with NST A/S and Haldor Topsøe A/S within the Danish Energy Research Program EFP, DK SUPERLEDERE I ELSEKTOREN 2002-2003...

  3. Superconducting Materials and Conductors : Fabrication and Limiting Parameters

    CERN Document Server

    Bottura, Luca

    2012-01-01

    Superconductivity is the technology that enabled the construction of the most recent generation of high-energy particle accelerators, the largest scientific instruments ever built. In this review we trace the evolution of superconducting materials for particle accelerator magnets, from the first steps in the late 1960s, through the rise and glory of Nb–Ti in the 1970s, till the 2010s, and the promises of Nb3Sn for the 2020s. We conclude with a perspective on the opportunities for high-temperature superconductors (HTSs). Many such reviews have been written in the past, as witnessed by the long list of references provided. In this review we put particular emphasis on the practical aspects of wire and tape manufacturing, cabling, engineering performance, and potential for use in accelerator magnets, while leaving in the background matters such as the physics of superconductivity and fundamental material issues.

  4. Superconducting light generator for large offshore wind turbines

    Science.gov (United States)

    Sanz, S.; Arlaban, T.; Manzanas, R.; Tropeano, M.; Funke, R.; Kováč, P.; Yang, Y.; Neumann, H.; Mondesert, B.

    2014-05-01

    Offshore wind market demands higher power rate and reliable turbines in order to optimize capital and operational cost. These requests are difficult to overcome with conventional generator technologies due to a significant weight and cost increase with the scaling up. Thus superconducting materials appears as a prominent solution for wind generators, based on their capacity to held high current densities with very small losses, which permits to efficiently replace copper conductors mainly in the rotor field coils. However the state-of-the-art superconducting generator concepts still seem to be expensive and technically challenging for the marine environment. This paper describes a 10 MW class novel direct drive superconducting generator, based on MgB2 wires and a modular cryogen free cooling system, which has been specifically designed for the offshore wind industry needs.

  5. Quantum technologies with hybrid systems.

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-03-31

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field.

  6. Quantum technologies with hybrid systems

    Science.gov (United States)

    Kurizki, Gershon; Bertet, Patrice; Kubo, Yuimaru; Mølmer, Klaus; Petrosyan, David; Rabl, Peter; Schmiedmayer, Jörg

    2015-01-01

    An extensively pursued current direction of research in physics aims at the development of practical technologies that exploit the effects of quantum mechanics. As part of this ongoing effort, devices for quantum information processing, secure communication, and high-precision sensing are being implemented with diverse systems, ranging from photons, atoms, and spins to mesoscopic superconducting and nanomechanical structures. Their physical properties make some of these systems better suited than others for specific tasks; thus, photons are well suited for transmitting quantum information, weakly interacting spins can serve as long-lived quantum memories, and superconducting elements can rapidly process information encoded in their quantum states. A central goal of the envisaged quantum technologies is to develop devices that can simultaneously perform several of these tasks, namely, reliably store, process, and transmit quantum information. Hybrid quantum systems composed of different physical components with complementary functionalities may provide precisely such multitasking capabilities. This article reviews some of the driving theoretical ideas and first experimental realizations of hybrid quantum systems and the opportunities and challenges they present and offers a glance at the near- and long-term perspectives of this fascinating and rapidly expanding field. PMID:25737558

  7. Superconducting Super Collider: A step in the 21st century

    Science.gov (United States)

    McAshan, M.

    1991-08-01

    The development of superconducting materials and the development of helium temperature refrigeration technology have both been propelled by their wide application in large-scale scientific research. The development of materials and technology for the Tevatron proton storage ring at Fermi National Accelerator Laboratory, Batavia, IL USA, in the decade of the seventies provided the basis in the decade of the eighties, for example, for the use of superconducting helium-cooled whole-body magnets for magnetic resonance imaging in medical diagnosis. In the decade of the nineties a number of particle accelerators for high energy physics will be constructed in national and international laboratories around the world. These devices will employ superconductivity on an ambitious scale, and their operation will require more than double the amount of helium refrigeration capacity now installed worldwide. This large increase in the use of helium refrigeration will have a significant effect on the technology and on the industry that produces it. The largest of these accelerator projects is the Superconducting Super Collider (SSC) now under construction at a new laboratory near Dallas, TX USA. This report discusses the development of this cryogenic system for the SSC magnets.

  8. Spinon Superconductivity and Superconductivities Mediated by Spin-Waves and Phonons in Cuprates

    OpenAIRE

    Mourachkine, A.

    1998-01-01

    The disclosure of spinon superconductivity and superconductivity mediated by spin-waves in hole-doped Bi2212 cuprate raises the question about the origin of the superconductivity in other cuprates and specially in an electron-doped NCCO cuprate.

  9. Superconducting interfaces between insulating oxides.

    Science.gov (United States)

    Reyren, N; Thiel, S; Caviglia, A D; Kourkoutis, L Fitting; Hammerl, G; Richter, C; Schneider, C W; Kopp, T; Rüetschi, A-S; Jaccard, D; Gabay, M; Muller, D A; Triscone, J-M; Mannhart, J

    2007-08-31

    At interfaces between complex oxides, electronic systems with unusual electronic properties can be generated. We report on superconductivity in the electron gas formed at the interface between two insulating dielectric perovskite oxides, LaAlO3 and SrTiO3. The behavior of the electron gas is that of a two-dimensional superconductor, confined to a thin sheet at the interface. The superconducting transition temperature of congruent with 200 millikelvin provides a strict upper limit to the thickness of the superconducting layer of congruent with 10 nanometers.

  10. Antiferromagnetic hedgehogs with superconducting cores

    Energy Technology Data Exchange (ETDEWEB)

    Goldbart, P.M.; Sheehy, D.E. [Department of Physics and Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 (United States)

    1998-09-01

    Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but are predominantly superconducting inside a core region are discussed within the context of Zhang{close_quote}s SO(5)-symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in contrast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs become when the antiferromagnetic order parameter is permitted to {open_quotes}escape{close_quotes} into superconducting directions. The structure of such excitations is determined in a simple setting, and a number of their experimental implications are examined. {copyright} {ital 1998} {ital The American Physical Society}

  11. Superconducting cable connections and methods

    Energy Technology Data Exchange (ETDEWEB)

    van der Laan, Daniel Cornelis

    2017-09-05

    Superconducting cable connector structures include a terminal body (or other structure) onto which the tapes from the superconducting cable extend. The terminal body (or other structure) has a diameter that is sufficiently larger than the diameter of the former of the superconducting cable, so that the tapes spread out over the outer surface of the terminal body. As a result, gaps are formed between tapes on the terminal body (or other structure). Those gaps are filled with solder (or other suitable flowable conductive material), to provide a current path of relatively high conductivity in the radial direction. Other connector structures omit the terminal body.

  12. Domain wall description of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Brito, F.A. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Freire, M.L.F. [Departamento de Física, Universidade Estadual da Paraíba, 58109-753 Campina Grande, Paraíba (Brazil); Mota-Silva, J.C. [Departamento de Física, Universidade Federal de Campina Grande, Caixa Postal 10071, 58109-970 Campina Grande, Paraíba (Brazil); Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970 João Pessoa, Paraíba (Brazil)

    2014-01-20

    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted through the fact that the soliton following accelerating orbits is a Rindler observer experiencing a thermal bath.

  13. Position resolution of a double junction superconductive detector based on a single material

    Science.gov (United States)

    Samedov, V. V.

    2008-02-01

    The Naples group from Istituto Nazionale di Fisica Nucleare presented the results of theoretical investigations of a new class of superconductive radiation detectors - double junction superconductive detector based on a single material [1]. In such detectors, the absorption of energy occurs in a long superconductive strip while two superconductive tunnel junctions positioned at the ends of the strip provide the readout of the signals. The main peculiarity of this type of detectors is that they are based on a single superconducting material, i.e., without trapping layers at the ends of the strip. In this paper, general approach to the position resolution of this type of detectors has been attempted. The formula for the position resolution is derived. It is shown that the application of the aluminium for the absorber may be the best possible way not only due to the small gap energy, but also mainly for STJ fabrication technology based on the aluminium oxide tunnel barrier.

  14. Semiconductor-inspired design principles for superconducting quantum computing.

    Science.gov (United States)

    Shim, Yun-Pil; Tahan, Charles

    2016-03-17

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  15. Semiconductor-inspired design principles for superconducting quantum computing

    Science.gov (United States)

    Shim, Yun-Pil; Tahan, Charles

    2016-03-01

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  16. Discovery of Superconductivity in Hard Hexagonal ε-NbN.

    Science.gov (United States)

    Zou, Yongtao; Qi, Xintong; Zhang, Cheng; Ma, Shuailing; Zhang, Wei; Li, Ying; Chen, Ting; Wang, Xuebing; Chen, Zhiqiang; Welch, David; Zhu, Pinwen; Liu, Bingbing; Li, Qiang; Cui, Tian; Li, Baosheng

    2016-02-29

    Since the discovery of superconductivity in boron-doped diamond with a critical temperature (TC) near 4 K, great interest has been attracted in hard superconductors such as transition-metal nitrides and carbides. Here we report the new discovery of superconductivity in polycrystalline hexagonal ε-NbN synthesized at high pressure and high temperature. Direct magnetization and electrical resistivity measurements demonstrate that the superconductivity in bulk polycrystalline hexagonal ε-NbN is below ∼11.6 K, which is significantly higher than that for boron-doped diamond. The nature of superconductivity in hexagonal ε-NbN and the physical mechanism for the relatively lower TC have been addressed by the weaker bonding in the Nb-N network, the co-planarity of Nb-N layer as well as its relatively weaker electron-phonon coupling, as compared with the cubic δ-NbN counterpart. Moreover, the newly discovered ε-NbN superconductor remains stable at pressures up to ∼20 GPa and is significantly harder than cubic δ-NbN; it is as hard as sapphire, ultra-incompressible and has a high shear rigidity of 201 GPa to rival hard/superhard material γ-B (∼227 GPa). This exploration opens a new class of highly desirable materials combining the outstanding mechanical/elastic properties with superconductivity, which may be particularly attractive for its technological and engineering applications in extreme environments.

  17. THE ACCOUNTANT INFORMATION. DEMAND AND OFFER

    OpenAIRE

    Irina CHIRITA; Ioana ZAHEU

    2008-01-01

    The present paper is trying to correlate what Demand and Offer mean, from the economical point of view, which in the end tends towards the demand and offer of the accountant information. The objective of the demand and offer of accountant information is to promo te an efficient financial communication, objective that might be reached through the confrontation of the informational offer with the user’s demand. The information given by the enterprises are the basis of numerous economical and po...

  18. Aspects of Color Superconductivity

    CERN Document Server

    Hong, D K

    2001-01-01

    I discuss some aspects of recent developments in color superconductivity in high density quark matter. I calculate the Cooper pair gap and the critical points at high density, where magnetic gluons are not screened. The ground state of high density QCD with three light flavors is shown to be a color-flavor locking state, which can be mapped into the low-density hadronic phase. The meson mass at the CFL superconductor is also calculated. The CFL color superconductor is bosonized, where the Fermi sea is identified as a $Q$-matter and the gapped quarks as topological excitations, called superqualitons, of mesons. Finally, as an application of color supercoductivity, I discuss the neutrino interactions in the CFL color superconductor.

  19. Superconducting Hadron Linacs

    CERN Document Server

    Ostroumov, Peter

    2013-01-01

    This article discusses the main building blocks of a superconducting (SC) linac, the choice of SC resonators, their frequencies, accelerating gradients and apertures, focusing structures, practical aspects of cryomodule design, and concepts to minimize the heat load into the cryogenic system. It starts with an overview of design concepts for all types of hadron linacs differentiated by duty cycle (pulsed or continuous wave) or by the type of ion species (protons, H-, and ions) being accelerated. Design concepts are detailed for SC linacs in application to both light ion (proton, deuteron) and heavy ion linacs. The physics design of SC linacs, including transverse and longitudinal lattice designs, matching between different accelerating–focusing lattices, and transition from NC to SC sections, is detailed. Design of high-intensity SC linacs for light ions, methods for the reduction of beam losses, preventing beam halo formation, and the effect of HOMs and errors on beam quality are discussed. Examples are ta...

  20. Superconducting energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Giese, R.F.

    1993-10-01

    This report describes the status of energy storage involving superconductors and assesses what impact the recently discovered ceramic superconductors may have on the design of these devices. Our description is intended for R&D managers in government, electric utilities, firms, and national laboratories who wish an overview of what has been done and what remains to be done. It is assumed that the reader is acquainted with superconductivity, but not an expert on the topics discussed here. Indeed, it is the author`s aim to enable the reader to better understand the experts who may ask for the reader`s attention, support, or funding. This report may also inform scientists and engineers who, though expert in related areas, wish to have an introduction to our topic.

  1. Anyon Superconductivity of Sb

    Science.gov (United States)

    Maksoed, Wh-; Parengkuan, August

    2016-10-01

    In any permutatives to Pedro P. Kuczhynski from Peru, for anyon superconductivity sought EZ Kuchinskii et al.: ``Anion height dependence of Tc & d.o.s of Fe-based Superconductors'', 2010 as well as ``on the basis of electron microscopy & AFM measurements, these phenomena are quantified with focus on fractal dimension, particle perimeter & size of the side branch(tip width) in bert Stegemann et al.:Crystallization of Sb nanoparticles-Pattern Formation & Fractal Growth'', J.PhysChem B., 2004. For dendritic & dendrimer fractal characters shown further: ``antimony denrites were found to be composed of well-crystallized nanoflakes with size 20-4 nm''- Bou Zhau, et al., MaterialLetters, 59 (2005). The alkyl triisopropyl attached in TIPSb those includes in DNA, haemoglobin membrane/fixed-bed reactor for instance quotes in Dragony Fu, Nature Review Cancer, 12 (Feb 2012). Heartfelt Gratitudes to HE. Mr. Prof. Ir. Handojo.

  2. Superconductivity of columbium

    Energy Technology Data Exchange (ETDEWEB)

    Cook, D.B.; Zemansky, M.W.; Boorse, H.A.

    1950-11-15

    Isothermal critical magnetic field curves and zero field transitions for several annealed specimens of columbium have been measured by an a.c. mutual inductance method at temperatures from 5.1 deg K to the zero field transition temperature. The H-T curve was found to fit the usual parabolic relationship H = H{sub 0}(1-T(2)/T(2){sub 0}) with H{sub 0} = 8250 oersteds and T{sub 0} = 8.65 deg K. The initial slope of the curve was 1910 oersteds/deg. The electronic specific heat in the normal state calculated from the thermodynamic equations is 0.0375T and the approximate Debye characteristic temperature in the superconducting state, 67 deg K. Results on a different grade of columbium with a tantalum impurity of 0.4 percent, according to neutron scattering measurements, were in agreement, with the data obtained from columbium of 0.2 percent maximum tantalum impurity.

  3. Superconducting pulsed magnets

    CERN Document Server

    CERN. Geneva

    2006-01-01

    Lecture 1. Introduction to Superconducting Materials Type 1,2 and high temperature superconductors; their critical temperature, field & current density. Persistent screening currents and the critical state model. Lecture 2. Magnetization and AC Loss How screening currents cause irreversible magnetization and hysteresis loops. Field errors caused by screening currents. Flux jumping. The general formulation of ac loss in terms of magnetization. AC losses caused by screening currents. Lecture 3. Twisted Wires and Cables Filamentary composite wires and the losses caused by coupling currents between filaments, the need for twisting. Why we need cables and how the coupling currents in cables contribute more ac loss. Field errors caused by coupling currents. Lecture 4. AC Losses in Magnets, Cooling and Measurement Summary of all loss mechanisms and calculation of total losses in the magnet. The need for cooling to minimize temperature rise in a magnet. Measuring ac losses in wires and in magnets. Lecture 5. Stab...

  4. China Museum of Science and Technology Offers Better Access

    Institute of Scientific and Technical Information of China (English)

    SuSan

    2003-01-01

    Going to temple fairs used to be a major Spring Festival celebration for Beijing natives in the past. But this tradition has changed. Nowadays, it has become a fashion for locals to spend Chinese lunar new year holidays by visiting science museums. This new sort of Spring Festival pastime is called “temple fairs on science”.

  5. Determinants of High Schools' Advanced Course Offerings

    Science.gov (United States)

    Iatarola, Patrice; Conger, Dylan; Long, Mark C.

    2011-01-01

    This article examines the factors that determine a high school's probability of offering Advanced Placement (AP) and International Baccalaureate (IB) courses. The likelihood that a school offers advanced courses, and the number of sections that it offers, is largely driven by having a critical mass of students who enter high school with…

  6. The primary relevance of subconsciously offered attitudes

    DEFF Research Database (Denmark)

    Kristiansen, Tore

    2015-01-01

    ) and subconsciously (covertly) offered attitudes – because subconsciously offered attitudes appear to be a driving force in linguistic variation and change in a way that consciously offered attitudes are not. The argument is based on evidence from empirical investigations of attitudes and use in the ‘...

  7. CERN Developments for 704 MHz Superconducting Cavities

    CERN Document Server

    Capatina, O; Aviles Santillana, I; Arnau Izquierdo, G; Bonomi, R; Calatroni, S; Chambrillon, J; Gerigk, F; Garoby, R; Guinchard, M; Junginger, T; Malabaila, M; Marques Antunes Ferreira, L; Mikulas, S; Parma, V; Pillon, F; Renaglia, T; Schirm, K; Tardy, T; Therasse, M; Vacca, A; Valverde Alonso, N; Vande Craen, A

    2013-01-01

    The Superconducting Proton Linac (SPL) is an R&D effort coordinated by CERN in partnership with other international laboratories. It is aiming at developing key technologies for the construction of a multi-megawatt proton linac based on state-of-the-art RF superconducting technology, which would serve as a driver in new physics facilities for neutrinos and/or Radioactive Ion Beam (RIB). Amongst the main objectives of this R&D effort, is the development of 704 MHz bulk niobium beta=1 elliptical cavities, operating at 2 K with a maximum accelerating gradient of 25 MV/m, and the testing of a string of cavities integrated in a machine-type cryomodule. The cavity together with its helium tank had to be carefully designed in coherence with the innovative design of the cryomodule. New fabrication methods have also been explored. Five such niobium cavities and two copper cavities are in fabrication. The key design aspects are discussed, the results of the alternative fabrication methods presented and the stat...

  8. Superconducting Aero Propulsion Motor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Superconducting electric propulsion systems will yield improvements in total ownership costs due to the simplicity of electric drive when compared with gas turbine...

  9. Mixed-mu superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Hull, John R. (Hinsdale, IL); Mulcahy, Thomas M. (Western Springs, IL)

    1998-01-01

    A mixed-mu superconducting bearing including a ferrite structure disposed for rotation adjacent a stationary superconductor material structure and a stationary permanent magnet structure. The ferrite structure is levitated by said stationary permanent magnet structure.

  10. Superconductivity in all its states

    CERN Multimedia

    Globe Info

    2011-01-01

    Temporary exhibition at the Saint-Genis-Pouilly Tourist Office. For the 100th anniversary of its discovery, take a plunge into the amazing world of superconductivity. Some materials, when cooled down to extreme temperatures, acquire a remarkable property -  they become superconducting. Superconductivity is a rare example of a quantum effect that can be witnessed on the macroscopic scale and is today at the heart of much research. In laboratories, researchers try to gain a better understanding of its origins, study new superconducting materials, explore the phenomenon at the nanometric scale and pursue their indefatigable search for new applications. Monday to Friday: 09:00 a.m. to 12:00 and 2:30 p.m. to 6:30 p.m. Saturday: 10:00 a.m. to 12:00 noon » Open to all – Admission free For further information: +33 (0)4 50 42 29 37

  11. Search for superconductivity in micrometeorites.

    Science.gov (United States)

    Guénon, S; Ramírez, J G; Basaran, Ali C; Wampler, J; Thiemens, M; Taylor, S; Schuller, Ivan K

    2014-12-05

    We have developed a very sensitive, highly selective, non-destructive technique for screening inhomogeneous materials for the presence of superconductivity. This technique, based on phase sensitive detection of microwave absorption is capable of detecting 10(-12) cc of a superconductor embedded in a non-superconducting, non-magnetic matrix. For the first time, we apply this technique to the search for superconductivity in extraterrestrial samples. We tested approximately 65 micrometeorites collected from the water well at the Amundsen-Scott South pole station and compared their spectra with those of eight reference materials. None of these micrometeorites contained superconducting compounds, but we saw the Verwey transition of magnetite in our microwave system. This demonstrates that we are able to detect electro-magnetic phase transitions in extraterrestrial materials at cryogenic temperatures.

  12. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to 6...

  13. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  14. Advanced Superconducting Test Accelerator (ASTA)

    Data.gov (United States)

    Federal Laboratory Consortium — The Advanced Superconducting Test Accelerator (ASTA) facility will be based on upgrades to the existing NML pulsed SRF facility. ASTA is envisioned to contain 3 to...

  15. Cryogenic Systems and Superconductive Power

    Science.gov (United States)

    The report defines, investigates, and experimentally evaluates the key elements of a representative crogenic turborefrigerator subsystem suitable for providing reliable long-lived cryogenic refrigeration for a superconductive ship propulsion system.

  16. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  17. Superconductivity in Potassium-Doped Metallic Polymorphs of MoS2.

    Science.gov (United States)

    Zhang, Renyan; Tsai, I-Ling; Chapman, James; Khestanova, Ekaterina; Waters, John; Grigorieva, Irina V

    2016-01-13

    Superconducting layered transition metal dichalcogenides (TMDs) stand out among other superconductors due to the tunable nature of the superconducting transition, coexistence with other collective electronic excitations (charge density waves), and strong intrinsic spin-orbit coupling. Molybdenum disulfide (MoS2) is the most studied representative of this family of materials, especially since the recent demonstration of the possibility to tune its critical temperature, Tc, by electric-field doping. However, just one of its polymorphs, band-insulator 2H-MoS2, has so far been explored for its potential to host superconductivity. We have investigated the possibility to induce superconductivity in metallic polytypes, 1T- and 1T'-MoS2, by potassium (K) intercalation. We demonstrate that at doping levels significantly higher than that required to induce superconductivity in 2H-MoS2, both 1T and 1T' phases become superconducting with Tc = 2.8 and 4.6 K, respectively. Unusually, K intercalation in this case is responsible both for the structural and superconducting phase transitions. By adding new members to the family of superconducting TMDs, our findings open the way to further manipulate and enhance the electronic properties of these technologically important materials.

  18. The superconducting bending magnets 'CESAR'

    CERN Document Server

    Pérot, J

    1978-01-01

    In 1975, CERN decided to build two high precision superconducting dipoles for a beam line in the SPS north experimental area. The aim was to determine whether superconducting magnets of the required accuracy and reliability can be built and what their economies and performances in operation will be. Collaboration between CERN and CAE /SACLAY was established in order to make use of the knowledge and experience already acquired in the two laboratories. (0 refs).

  19. Y-Ba Superconducting Ceramics

    Science.gov (United States)

    Shunbao, Tian; Xiaofei, Li; Tinglian, Wen; Zuxiang, Lin; Shichun, Li; Huijun, Yu

    Polycrystalline Y-Ba-Cu-O superconducting materials have been studied. It was found that chemical composition and processing condition may play an important role in the final structure and superconducting properties. The density has been determined and compared with the calculated value according to the structure model reported by Bell Labs. The grain size and the morphology of the materials were observed by SEM.

  20. Composite conductor containing superconductive wires

    Energy Technology Data Exchange (ETDEWEB)

    Larson, W.L.; Wong, J.

    1974-03-26

    A superconductor cable substitute made by coworking multiple rods of superconductive niobium--titanium or niobium--zirconium alloy with a common copper matrix to extend the copper and rods to form a final elongated product which has superconductive wires distributed in a reduced cross-section copper conductor with a complete metallurgical bond between the normal-conductive copper and the superconductor wires contained therein is described. The superconductor cable can be in the form of a tube.

  1. Entanglement witnessing in superconducting beamsplitters

    Science.gov (United States)

    Soller, H.; Hofstetter, L.; Reeb, D.

    2013-06-01

    We analyse a large class of superconducting beamsplitters for which the Bell parameter (CHSH violation) is a simple function of the spin detector efficiency. For these superconducting beamsplitters all necessary information to compute the Bell parameter can be obtained in Y-junction setups for the beamsplitter. Using the Bell parameter as an entanglement witness, we propose an experiment which allows to verify the presence of entanglement in Cooper pair splitters.

  2. Superconductivity in domains with corners

    DEFF Research Database (Denmark)

    Bonnaillie-Noel, Virginie; Fournais, Søren

    2007-01-01

    We study the two-dimensional Ginzburg-Landau functional in a domain with corners for exterior magnetic field strengths near the critical field where the transition from the superconducting to the normal state occurs. We discuss and clarify the definition of this field and obtain a complete...... asymptotic expansion for it in the large $\\kappa$ regime. Furthermore, we discuss nucleation of superconductivity at the boundary....

  3. 27 Febuary 2012 - US DoE Associate Director of Science for High Energy Physics J. Siegrist visiting the LHC superconducting magnet test hall with adviser J.-P. Koutchouk and engineer M. Bajko; in CMS experimental cavern with Spokesperson J. Incadela;in ATLAS experimental cavern with Deputy Spokesperson A. Lankford; in ALICE experimental cavern with Spokesperson P. Giubellino; signing the guest book with Director for Accelerators and Technology S. Myers.

    CERN Multimedia

    Laurent Egli

    2012-01-01

    27 Febuary 2012 - US DoE Associate Director of Science for High Energy Physics J. Siegrist visiting the LHC superconducting magnet test hall with adviser J.-P. Koutchouk and engineer M. Bajko; in CMS experimental cavern with Spokesperson J. Incadela;in ATLAS experimental cavern with Deputy Spokesperson A. Lankford; in ALICE experimental cavern with Spokesperson P. Giubellino; signing the guest book with Director for Accelerators and Technology S. Myers.

  4. 24 February 2012 - Portuguese Minister for Education and Science N. Crato visiting the LHC superconducting magnet test hall with technology Department Head F. Bordry and signing the guest book with CERN Director-General R. Heuer. The Minister is accompanied by Secretary of State for Science L. Parreira and LIP Director J.M. Gago. A. Henriques(ATLAS), C. Lourenço (CMS) and Adviser R. Voss accompany the delegation throughout.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    On 24 February Nuno Crato, the Portuguese minister for education and science, left, toured the LHC superconducting-magnet test hall accompanied by Frédérick Bordry, CERN’s technology department head. He also took the opportunity to visit the underground experimental areas of ATLAS and CMS, and heard about the LHC Computing Grid Project before meeting Portuguese scientists working at CERN.

  5. Recent developments in superconducting materials including ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Tachikawa, Kyoji

    1987-06-01

    This report describes the history of superconduction starting in 1911, when the superconducting phenomenon was first observed in murcury, until the recent discovery of superconducting materials with high critical temperatures. After outlining the BCS theory, basic characteristics are discussed including the critical temperature, magnetic field and current density to be reached for realizing the superconducting state. Various techniques for practical superconducting materials are discussed, including methods for producing extra fine multiconductor wires from such superconducting alloys as Nb-Ti, intermetallic Nb/sub 3/Sn compound and V/sub 3/Ga, as well as methods for producing wires of Nb/sub 3/Al, Nb/sub 3/(Al, Ge) and Nb/sub 3/Ge such as continuous melt quenching, electron beam irradiation, laser beam irradiation and chemical evaporation. Characteristics of superconducting ceramics are described, along with their applications including superconducting magnets and superconducting elements. (15 figs, 1 tab, 19 refs)

  6. Nanoscale superconducting memory based on the kinetic inductance of asymmetric nanowire loops

    Science.gov (United States)

    Murphy, Andrew; Averin, Dmitri V.; Bezryadin, Alexey

    2017-06-01

    The demand for low-dissipation nanoscale memory devices is as strong as ever. As Moore’s law is staggering, and the demand for a low-power-consuming supercomputer is high, the goal of making information processing circuits out of superconductors is one of the central goals of modern technology and physics. So far, digital superconducting circuits could not demonstrate their immense potential. One important reason for this is that a dense superconducting memory technology is not yet available. Miniaturization of traditional superconducting quantum interference devices is difficult below a few micrometers because their operation relies on the geometric inductance of the superconducting loop. Magnetic memories do allow nanometer-scale miniaturization, but they are not purely superconducting (Baek et al 2014 Nat. Commun. 5 3888). Our approach is to make nanometer scale memory cells based on the kinetic inductance (and not geometric inductance) of superconducting nanowire loops, which have already shown many fascinating properties (Aprili 2006 Nat. Nanotechnol. 1 15; Hopkins et al 2005 Science 308 1762). This allows much smaller devices and naturally eliminates magnetic-field cross-talk. We demonstrate that the vorticity, i.e., the winding number of the order parameter, of a closed superconducting loop can be used for realizing a nanoscale nonvolatile memory device. We demonstrate how to alter the vorticity in a controlled fashion by applying calibrated current pulses. A reliable read-out of the memory is also demonstrated. We present arguments that such memory can be developed to operate without energy dissipation.

  7. Performance evaluation of high-temperature superconducting current leads for micro-SMES systems

    Science.gov (United States)

    Niemann, R. C.; Cha, Y. S.; Hull, J. R.; Buckles, W. E.; Weber, B. R.; Yang, S. T.

    As part of the US Department of Energy's Superconductivity Technology Program, Argonne National Laboratory and Superconductivity, Inc., are developing high-temperature superconductor (HTS) current leads for application to micro-superconducting magnetic energy storage systems. Two 1500-A HTS leads have been designed and constructed. The performance of the current lead assemblies is being evaluated in a zero-magnetic-field test program that includes assembly procedures, tooling, and quality assurance; thermal and electrical performance; and flow and mechanical characteristics. Results of evaluations performed to data are presented.

  8. Cs2Te normal conducting photocathodes in the superconducting rf gun

    CERN Document Server

    Xiang, R; Buettig, H; Janssen, D; Justus, M; Lehnert, U; Michel, P; Murcek, P; Schamlott, A; Schneider, Ch; Schurig, R; Staufenbiel, F; Teichert, J

    2010-01-01

    The superconducting radio frequency photoinjector (SRF gun) is one of the latest applications of superconducting rf technology in the accelerator field. Since superconducting photocathodes with high quantum efficiency are yet unavailable, normal conducting cathode material is the main choice for SRF photoinjectors. However, the compatibility between the photocathode and the cavity is one of the challenges for this concept. Recently, a SRF gun with Cs2Te cathode has been successfully operated in Forschungszentrum Dresden-Rossendorf. In this paper, we will present the physical properties of Cs2Te photocathodes in the SC cavity, such as the quantum efficiency, the lifetime, the rejuvenation, the charge saturation, and the dark current.

  9. Magnetoresistance peculiarities and magnetization of materials with two kinds of superconducting inclusions

    Directory of Open Access Journals (Sweden)

    Shevtsova O. N.

    2015-03-01

    Full Text Available Low-temperature properties of a crystal containing type I superconducting inclusions of two different materials have been studied. In the approximation assuming that the inclusions size is much smaller than the coherence length/penetration depth of the magnetic field, the theory of magnetoresistance of a crystal containing spherical superconducting inclusions of two different materials has been developed, and magnetization of crystals has been calculated. The obtained results can be used for correct explanation of the low temperature conductivity in binary and more complex semiconductors, in which precipitation of the superconducting phase is possible during the technological processing or under external impact.

  10. Conductivity and superconductivity in heavily vacant diamond

    Directory of Open Access Journals (Sweden)

    S A Jafari

    2009-08-01

    Full Text Available   Motivated by the idea of impurity band superconductivity in heavily Boron doped diamond, we investigate the doping of various elements into diamond to address the question, which impurity band can offer a better DOS at the Fermi level. Surprisingly, we find that the vacancy does the best job in producing the largest DOS at the Fermi surface. To investigate the effect of disorder in Anderson localization of the resulting impurity band, we use a simple tight-binding model. Our preliminary study based on the kernel polynomial method shows that the impurity band is already localized at the concentration of 10-3. Around the vacancy concentration of 0.006 the whole spectrum of diamond becomes localized and quantum percolation takes place. Therefore to achieve conducting bands at concentrations on the scale of 5-10 percent, one needs to introduce correlations such as hopping among the vacancies .

  11. Status Of The Work On The Base Directions Of The "rf Superconductivity For Accelerators" Program At The Federate Problem Lab At Ihep

    CERN Document Server

    Sevryukova, L

    2004-01-01

    In this report result of the study of electrophysical phenomena on the superconducting cavity surface, including plasma, bifurcation, hysteresis, emission and diffusion phenomena are considered. Science intensive recourse -saving technologies of superconducting cavities are being studied on the base of these phenomena. The superconducting cavities are made of Nb and Nb film, alloy film or HTC ceramics, which cover the working surface of the weldless copper shells using ion-plasma technologies (axial and planar magnetron sputtering). Quality monitoring (optical, emission, electrochemical and high frequency) of the working surface condition of superconducting cavities is developed under the realization of new technologies. The brief review of the experimental equipment is used as training base for individual students, post-graduate students and research staff in the field of technologies that use superconductivity phenomenon and ionic-plasma, electrochemical and high-vacuum technologies as well. For realizat...

  12. Experimental system design for the integration of trapped-ion and superconducting qubit systems

    Science.gov (United States)

    De Motte, D.; Grounds, A. R.; Rehák, M.; Rodriguez Blanco, A.; Lekitsch, B.; Giri, G. S.; Neilinger, P.; Oelsner, G.; Il'ichev, E.; Grajcar, M.; Hensinger, W. K.

    2016-12-01

    We present a design for the experimental integration of ion trapping and superconducting qubit systems as a step towards the realization of a quantum hybrid system. The scheme addresses two key difficulties in realizing such a system: a combined microfabricated ion trap and superconducting qubit architecture, and the experimental infrastructure to facilitate both technologies. Developing upon work by Kielpinski et al. (Phys Rev Lett 108(13):130504, 2012. doi: 10.1103/PhysRevLett.108.130504), we describe the design, simulation and fabrication process for a microfabricated ion trap capable of coupling an ion to a superconducting microwave LC circuit with a coupling strength in the tens of kHz. We also describe existing difficulties in combining the experimental infrastructure of an ion trapping set-up into a dilution refrigerator with superconducting qubits and present solutions that can be immediately implemented using current technology.

  13. Superconducting Antenna Concept for Gravitational Waves

    Science.gov (United States)

    Gulian, A.; Foreman, J.; Nikoghosyan, V.; Nussinov, S.; Sica, L.; Tollaksen, J.

    The most advanced contemporary efforts and concepts for registering gravitational waves are focused on measuring tiny deviations in large arm (kilometers in case of LIGO and thousands of kilometers in case of LISA) interferometers via photons. In this report we discuss a concept for the detection of gravitational waves using an antenna comprised of superconducting electrons (Cooper pairs) moving in an ionic lattice. The major challenge in this approach is that the tidal action of the gravitational waves is extremely weak compared with electromagnetic forces. Any motion caused by gravitational waves, which violates charge neutrality, will be impeded by Coulomb forces acting on the charge carriers (Coulomb blockade) in metals, as well as in superconductors. We discuss a design, which avoids the effects of Coulomb blockade. It exploits two different superconducting materials used in a form of thin wires -"spaghetti." The spaghetti will have a diameter comparable to the London penetration depth, and length of about 1-10 meters. To achieve competitive sensitivity, the antenna would require billions of spaghettis, which calls for a challenging manufacturing technology. If successfully materialized, the response of the antenna to the known highly periodic sources of gravitational radiation, such as the Pulsar in Crab Nebula will result in an output current, detectable by superconducting electronics. The antenna will require deep (0.3K) cryogenic cooling and magnetic shielding. This design may be a viable successor to LISA and LIGO concepts, having the prospect of higher sensitivity, much smaller size and directional selectivity. This concept of compact antenna may benefit also terrestrial gradiometry.

  14. Fusion development and technology

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, D.B.

    1992-01-01

    This report discusses the following: superconducting magnet technology; high field superconductors; advanced magnetic system and divertor development; poloidal field coils; gyrotron development; commercial reactor studies--aries; ITER physics: alpha physics and alcator R D for ITER; lower hybrid current drive and heating in the ITER device; ITER superconducting PF scenario and magnet analysis; ITER systems studies; and safety, environmental and economic factors in fusion development.

  15. Marketing strategy to differentiate the offer

    OpenAIRE

    Miceski, Trajko; Pasovska, Silvana

    2013-01-01

    The marketing strategy for differentiation of the offers is important and accepted strategy especially by the bigger legal entities. The differentiation of the offers leads to bigger profit and bigger profitability in operation, through targeting of the demand towards the product of the enterprise. The vertical differentiation of the offers is directed towards the quality of the product itself which is observed as a something superior despite the competitive product which is observed as somet...

  16. Tourists’ expectations towards the agritourism farms’ offer

    Directory of Open Access Journals (Sweden)

    Iwona Wilk

    2013-06-01

    Full Text Available Agritourism plays an important role in multifunctional agriculture. Its development depends on agritourists’ needs identification in relation to the desired agritourism offer components which contributes to their improvement within agritourism farms market activity. The aim of the study was to determine customers preferences towards the agritourism farms offer in the Lodz region. The study was carried out on a sample of 120 respondents in 2011 (July-August and revealed that agritourists expect an offer, consisting of the components of various options offered by agritourism farm, matching their individual needs.

  17. Superconductivity of lead

    Energy Technology Data Exchange (ETDEWEB)

    Boorse, H.A.; Cook, D.B.; Zemansky, W.M.

    1950-06-01

    Numerous determinations of the zero-field transition temperature of lead have been made. All of these observations except that of Daunt were made by the direct measurement of electrical resistance. Daunt`s method involved the shielding effect of persistent currents in a hollow cylinder. In the authors work on columbium to be described in a forthcoming paper an a.c. induction method was used for the measurement of superconducting transitions. The superconductor was mounted as a cylindrical core of a coil which functioned as the secondary of a mutual inductance. The primary coil was actuated by an oscillator which provided a maximum a.c. field within the secondary of 1.5 oersteds at a frequency of 1000 cycles per second. The secondary e.m.f. which was dependent for its magnitude on the permeability of the core was amplified, rectifie, and observed on a recording potentiometer. During the application of this method to the study of columbium it appeared that a further check on the zero-field transition temperature of lead would be worth while especially if agreement between results for very pure samples could be obtained using this method. Such result would help in establishing the lead transition temperature as a reasonably reproducible reference point in the region between 4 deg and 10 deg K.

  18. The Superconducting TESLA Cavities

    CERN Document Server

    Aune, B.; Bloess, D.; Bonin, B.; Bosotti, A.; Champion, M.; Crawford, C.; Deppe, G.; Dwersteg, B.; Edwards, D.A.; Edwards, H.T.; Ferrario, M.; Fouaidy, M.; Gall, P-D.; Gamp, A.; Gössel, A.; Graber, J.; Hubert, D.; Hüning, M.; Juillard, M.; Junquera, T.; Kaiser, H.; Kreps, G.; Kuchnir, M.; Lange, R.; Leenen, M.; Liepe, M.; Lilje, L.; Matheisen, A.; Möller, W-D.; Mosnier, A.; Padamsee, H.; Pagani, C.; Pekeler, M.; Peters, H-B.; Peters, O.; Proch, D.; Rehlich, K.; Reschke, D.; Safa, H.; Schilcher, T.; Schmüser, P.; Sekutowicz, J.; Simrock, S.; Singer, W.; Tigner, M.; Trines, D.; Twarowski, K.; Weichert, G.; Weisend, J.; Wojtkiewicz, J.; Wolff, S.; Zapfe, K.

    2000-01-01

    The conceptional design of the proposed linear electron-positron colliderTESLA is based on 9-cell 1.3 GHz superconducting niobium cavities with anaccelerating gradient of Eacc >= 25 MV/m at a quality factor Q0 > 5E+9. Thedesign goal for the cavities of the TESLA Test Facility (TTF) linac was set tothe more moderate value of Eacc >= 15 MV/m. In a first series of 27industrially produced TTF cavities the average gradient at Q0 = 5E+9 wasmeasured to be 20.1 +- 6.2 MV/m, excluding a few cavities suffering fromserious fabrication or material defects. In the second production of 24 TTFcavities additional quality control measures were introduced, in particular aneddy-current scan to eliminate niobium sheets with foreign material inclusionsand stringent prescriptions for carrying out the electron-beam welds. Theaverage gradient of these cavities at Q0 = 5E+9 amounts to 25.0 +- 3.2 MV/mwith the exception of one cavity suffering from a weld defect. Hence only amoderate improvement in production and preparation technique...

  19. Quench Property of Twisted-Pair MgB$_2$ Superconducting Cables in Helium Gas

    CERN Document Server

    Spurrell, J; Falorio, I; Pelegrin, J; Ballarino, A; Yang, Y

    2015-01-01

    CERN's twisted-pair superconducting cable is a novel design which offers filament transposition, low cable inductance and is particularly suited for tape conductors such as 2G YBCO coated conductors, Ag-sheathed Bi2223 tapes and Ni/Monel-sheathed MgB2 tapes. A typical design of such twistedpair cables consists of multiple superconducting tapes intercalated with thin copper tapes as additional stabilizers. The copper tapes are typically not soldered to the superconducting tapes so that sufficient flexibility is retained for the twisting of the tape assembly. The electrical and thermal contacts between the copper and superconducting tapes are an important parameter for current sharing, cryogenic stability and quench propagation. Using an MgB2 twisted-pair cable assembly manufactured at CERN, we have carried out minimum quench energy (MQE) and propagation velocity (vp) measurements with point-like heat deposition localized within a tape. Furthermore, different contacts between the copper and superconductor aroun...

  20. MEASUREMENT OF THE TRANSVERSE BEAM DYNAMICS IN A TESLA-TYPE SUPERCONDUCTING CAVITY

    Energy Technology Data Exchange (ETDEWEB)

    Halavanau, A. [NICADD, DeKalb; Eddy, N. [Fermilab; Edstrom, D. [Fermilab; Lunin, A. [Fermilab; Piot, P. [NICADD, DeKalb; Ruan, J. [Fermilab; Solyak, N. [Fermilab

    2016-09-26

    Superconducting linacs are capable of producing intense, ultra-stable, high-quality electron beams that have widespread applications in Science and Industry. Many project are based on the 1.3-GHz TESLA-type superconducting cavity. In this paper we provide an update on a recent experiment aimed at measuring the transfer matrix of a TESLA cavity at the Fermilab Accelerator Science and Technology (FAST) facility. The results are discussed and compared with analytical and numerical simulations.

  1. Advanced superconducting power cable for MV urban power supply

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Frank [Nexans Deutschland GmbH, Hannover (Germany); Merschel, Frank [RWE Deutschland AG, Essen (Germany); Noe, Mathias [Karlsruhe Institute of Technology, Karlsruhe (Germany)

    2015-07-01

    In recent years the technology of superconducting power cable systems has progressed such that the technical hurdles preparing for commercial applications have been mastered. Several field tests of large scale prototypes for the applications of superconducting cables as well as superconducting fault current limiters have been successfully accomplished and the technology of such systems is ready for commercialization. The presentation will give a detailed overview of the German AmpaCity project. An overview will be given on the development, manufacturing and installation of the 10 kV, 40 MVA HTS system consisting of a fault current limiter and of a 1 km cable in the city of Essen. Since it is the first time that a one kilometer HTS cable system is installed together with an HTS fault current limiter in a real grid application between two substations within a city center area, AmpaCity serves as a lighthouse project. In addition it is worldwide the longest installed HTS cable system so far. It is expected that relatively large technical advances will be made in the future of the comparatively new HTS technology, which in turn will bring associated cost reductions. For this reason, the AmpaCity pilot project in the downtown area of Essen in Germany will be an important step on the way to achieving more widespread application of HTS technology.

  2. Superconductivity basics and applications to magnets

    CERN Document Server

    Sharma, R G

    2015-01-01

    This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.

  3. 16 CFR 502.101 - Introductory offers.

    Science.gov (United States)

    2010-01-01

    ... FAIR PACKAGING AND LABELING ACT Retail Sale Price Representations § 502.101 Introductory offers. (a... retail sale at a price lower than the anticipated ordinary and customary retail sale price. (b) The... duration in excess of 6 months. (4) At the time of making the introductory offer promotion, the...

  4. 16 CFR 238.2 - Initial offer.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Initial offer. 238.2 Section 238.2 Commercial Practices FEDERAL TRADE COMMISSION GUIDES AND TRADE PRACTICE RULES GUIDES AGAINST BAIT ADVERTISING § 238.2 Initial offer. (a) No statement or illustration should be used in any advertisement...

  5. 7 CFR 3560.656 - Incentives offers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Incentives offers. 3560.656 Section 3560.656... AGRICULTURE DIRECT MULTI-FAMILY HOUSING LOANS AND GRANTS Housing Preservation § 3560.656 Incentives offers. (a....653(d), incentives to agree to the restrictive-use period in § 3560.662 if the following conditions...

  6. An offer you can’t refuse

    OpenAIRE

    Fletcher, Roland

    2001-01-01

    The general requirements of a valid contract must contain an offer, acceptance, consideration, intention, capacity and if necessary the correct formation, eg, does the contract have to be in writing. The focus of this article will be on offer, acceptance, consideration and an invitation to treat when dealing with contracts concluded during an auction.

  7. 17 CFR 230.252 - Offering statement.

    Science.gov (United States)

    2010-04-01

    ..., language and pagination. The requirements for offering statements are the same as those specified in § 230... Officer, a majority of the members of its board of directors or other governing body, and each selling... that contains the following language: This offering statement shall become qualified on the...

  8. Home-care companies' offerings take off.

    Science.gov (United States)

    Lutz, S

    1991-06-03

    Some home infusion therapy companies have been the beneficiaries of cash infusions thanks to the bullish reception of public offerings this year. The lucrative industry, reimbursed primarily by private payers and one of the fastest growing in healthcare, has long been a favorite on Wall Street. The companies plan to use proceeds from the successful offerings to pay off debt and finance expansion.

  9. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor

    Science.gov (United States)

    di Bernardo, A.; Millo, O.; Barbone, M.; Alpern, H.; Kalcheim, Y.; Sassi, U.; Ott, A. K.; de Fazio, D.; Yoon, D.; Amado, M.; Ferrari, A. C.; Linder, J.; Robinson, J. W. A.

    2017-01-01

    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.

  10. p-wave triggered superconductivity in single-layer graphene on an electron-doped oxide superconductor.

    Science.gov (United States)

    Di Bernardo, A; Millo, O; Barbone, M; Alpern, H; Kalcheim, Y; Sassi, U; Ott, A K; De Fazio, D; Yoon, D; Amado, M; Ferrari, A C; Linder, J; Robinson, J W A

    2017-01-19

    Electron pairing in the vast majority of superconductors follows the Bardeen-Cooper-Schrieffer theory of superconductivity, which describes the condensation of electrons into pairs with antiparallel spins in a singlet state with an s-wave symmetry. Unconventional superconductivity was predicted in single-layer graphene (SLG), with the electrons pairing with a p-wave or chiral d-wave symmetry, depending on the position of the Fermi energy with respect to the Dirac point. By placing SLG on an electron-doped (non-chiral) d-wave superconductor and performing local scanning tunnelling microscopy and spectroscopy, here we show evidence for a p-wave triggered superconducting density of states in SLG. The realization of unconventional superconductivity in SLG offers an exciting new route for the development of p-wave superconductivity using two-dimensional materials with transition temperatures above 4.2 K.

  11. Magnetic shielding for superconducting RF cavities

    Science.gov (United States)

    Masuzawa, M.; Terashima, A.; Tsuchiya, K.; Ueki, R.

    2017-03-01

    Magnetic shielding is a key technology for superconducting radio frequency (RF) cavities. There are basically two approaches for shielding: (1) surround the cavity of interest with high permeability material and divert magnetic flux around it (passive shielding); and (2) create a magnetic field using coils that cancels the ambient magnetic field in the area of interest (active shielding). The choice of approach depends on the magnitude of the ambient magnetic field, residual magnetic field tolerance, shape of the magnetic shield, usage, cost, etc. However, passive shielding is more commonly used for superconducting RF cavities. The issue with passive shielding is that as the volume to be shielded increases, the size of the shielding material increases, thereby leading to cost increase. A recent trend is to place a magnetic shield in a cryogenic environment inside a cryostat, very close to the cavities, reducing the size and volume of the magnetic shield. In this case, the shielding effectiveness at cryogenic temperatures becomes important. We measured the permeabilities of various shielding materials at both room temperature and cryogenic temperature (4 K) and studied shielding degradation at that cryogenic temperature.

  12. Midwest superconductivity consortium. 1993 Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    The Midwest Superconductivity Consortium, MISCON, in the fourth year of operations further strengthened its mission to advance the science and understanding of high T{sub c} superconductivity. The goals of the organization and the individual projects continue to reflect the current needs for new knowledge in the field and the unique capabilities of the institutions involved. Group efforts and cooperative laboratory interactions to achieve the greatest possible synergy under the Consortium continue to be emphasized. Industrial affiliations coupled with technology transfer initiatives were expanded. Activities of the participants during the past year achieved an interactive and high level of performance. The number of notable achievements in the field contributed by Consortium investigators increased. The programmatic research continues to focus upon key materials-related problems in two areas. The first area has a focus upon {open_quotes}Synthesis and Processing{close_quotes} while the second is centered around {open_quotes}Limiting Features in Transport Properties of High T{sub c} Materials{close_quotes}.

  13. Nuclear Electronics: Superconducting Detectors and Processing Techniques

    Science.gov (United States)

    Polushkin, Vladimir

    2004-06-01

    With the commercialisation of superconducting particles and radiation detectors set to occur in the very near future, nuclear analytical instrumentation is taking a big step forward. These new detectors have a high degree of accuracy, stability and speed and are suitable for high-density multiplex integration in nuclear research laboratories and astrophysics. Furthermore, superconducting detectors can also be successfully applied to food safety, airport security systems, medical examinations, doping tests & forensic investigations. This book is the first to address a new generation of analytical tools based on new superconductor detectors demonstrating outstanding performance unsurpassed by any other conventional devices. Presenting the latest research and development in nanometer technologies and biochemistry this book: * Discusses the development of nuclear sensing techniques. * Provides guidance on the design and use of the next generation of detectors. * Describes cryogenic detectors for nuclear measurements and spectrometry. * Covers primary detectors, front-end readout electronics and digital signal processing. * Presents applications in nanotechnology and modern biochemistry including DNA sequencing, proteinomics, microorganisms. * Features examples of two applications in X-ray electron probe nanoanalysis and time-of-flight mass spectrometry. This comprehensive treatment is the ideal reference for researchers, industrial engineers and graduate students involved in the development of high precision nuclear measurements, nuclear analytical instrumentation and advanced superconductor primary sensors. This book will also appeal to physicists, electrical and electronic engineers in the nuclear industry.

  14. Superconducting composites materials. Materiaux composites supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Kerjouan, P.; Boterel, F.; Lostec, J.; Bertot, J.P.; Haussonne, J.M. (Centre National d' Etudes des Telecommunications (CNET), 22 - Lannion (FR))

    1991-11-01

    The new superconductor materials with a high critical current own a large importance as well in the electronic components or in the electrotechnical devices fields. The deposit of such materials with the thick films technology is to be more and more developed in the years to come. Therefore, we tried to realize such thick films screen printed on alumina, and composed mainly of the YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We first realized a composite material glass/YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}, by analogy with the classical screen-printed inks where the glass ensures the bonding with the substrate. We thus realized different materials by using some different classes of glass. These materials owned a superconducting transition close to the one of the pure YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} material. We made a slurry with the most significant composite materials and binders, and screen-printed them on an alumina substrate preliminary or not coated with a diffusion barrier layer. After firing, we studied the thick films adhesion, the alumina/glass/composite material interfaces, and their superconducting properties. 8 refs.; 14 figs.; 9 tabs.

  15. Superconductive articles including cerium oxide layer

    Science.gov (United States)

    Wu, Xin D.; Muenchausen, Ross E.

    1993-01-01

    A ceramic superconductor comprising a metal oxide substrate, a ceramic high temperature superconductive material, and a intermediate layer of a material having a cubic crystal structure, said layer situated between the substrate and the superconductive material is provided, and a structure for supporting a ceramic superconducting material is provided, said structure comprising a metal oxide substrate, and a layer situated over the surface of the substrate to substantially inhibit interdiffusion between the substrate and a ceramic superconducting material deposited upon said structure.

  16. 4. MESOSCOPIC SUPERCONDUCTIVITY: Proximity Action theory of superconductive nanostructures

    Science.gov (United States)

    Skvortsov, M. A.; Larkin, A. I.; Feigel'man, M. V.

    2001-10-01

    We review a novel approach to the superconductive proximity effect in disordered normal-superconducting (N-S) structures. The method is based on the multicharge Keldysh action and is suitable for the treatment of interaction and fluctuation effects. As an application of the formalism, we study the subgap conductance and noise in two-dimensional N-S systems in the presence of the electron-electron interaction in the Cooper channel. It is shown that singular nature of the interaction correction at large scales leads to a nonmonotonuos temperature, voltage and magnetic field dependence of the Andreev conductance.

  17. Flightweight Carbon Nanotube Magnet Technology

    Science.gov (United States)

    Chapman, J. N.; Schmidt, H. J.; Ruoff, R. S.; Chandrasekhar, V.; Dikin, D. A.; Litchford, R. J.

    2003-01-01

    Virtually all plasma-based systems for advanced airborne/spaceborne propulsion and power depend upon the future availability of flightweight magnet technology. Unfortunately, current technology for resistive and superconducting magnets yields system weights that tend to counteract the performance advantages normally associated with advanced plasma-based concepts. The ongoing nanotechnology revolution and the continuing development of carbon nanotubes (CNT), however, may ultimately relieve this limitation in the near future. Projections based on recent research indicate that CNTs may achieve current densities at least three orders of magnitude larger than known superconductors and mechanical strength two orders of magnitude larger than steel. In fact, some published work suggests that CNTs are superconductors. Such attributes imply a dramatic increase in magnet performance-to-weight ratio and offer real hope for the construction of true flightweight magnets. This Technical Publication reviews the technology status of CNTs with respect to potential magnet applications and discusses potential techniques for using CNT wires and ropes as a winding material and as an integral component of the containment structure. The technology shortfalls are identified and a research and technology strategy is described that addresses the following major issues: (1) Investigation and verification of mechanical and electrical properties, (2) development of tools for manipulation and fabrication on the nanoscale, (3) continuum/molecular dynamics analysis of nanotube behavior when exposed to practical bending and twisting loads, and (4) exploration of innovative magnet fabrication techniques that exploit the natural attributes of CNTs.

  18. A Novel superconducting toroidal field magnet concept using advanced materials

    Science.gov (United States)

    Schwartz, J.

    1992-03-01

    The plasma physics database indicates that two distinct approaches to tokamak design may lead to commercial fusion reactors: low Aspect ratio, high plasma current, relatively low magnetic field devices, and high Aspect ratio, high field devices. The former requires significant enhancements in plasma performance, while the latter depends primarily upon technology development. The key technology for the commercialization of the high-field approach is large, high magnetic field superconducting magnets. In this paper, the physics motivation for the high field approach and key superconducting magnet (SCM) development issues are reviewed. Improved SCM performance may be obtained from improved materials and/or improved engineering. Superconducting materials ranging from NbTi to high- T c oxides are reviewed, demonstrating the broad range of potential superconducting materials. Structural material options are discussed, including cryogenic steel alloys and fiber-reinforced composite materials. Again, the breadth of options is highlighted. The potential for improved magnet engineering is quantified in terms of the Virial Theorem Limit, and two examples of approaches to highly optimized magnet configurations are discussed. The force-reduced concept, which is a finite application of the force-free solutions to Ampere's Law, appear promising for large SCMs but may be limited by the electromagnetics of a fusion plasma. The Solid Superconducting Cylinder (SSC) concept is proposed. This concept combines the unique properties of high- T c superconductors within a low- T c SCM to obtain (1) significant reductions in the structural material volume, (2) a decoupling of the tri-axial (compressive and tensile) stress state, and (3) a demountable TF magnet system. The advantages of this approach are quantified in terms of a 24 T commercial reactor TF magnet system. Significant reductions in the mechanical stress and the TF radial build are demonstrated.

  19. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  20. Gifts from the superconducting curiosity shop

    Institute of Scientific and Technical Information of China (English)

    David Mandrus

    2011-01-01

    Superconductivity has just celebrated its 100th birthday,and yet despite its advanced age it has never been more alive.Given that most subfields of materials physics have a half-life of about seven years,what accounts for the enduring popularity of superconductivity? What is it about superconductivity that continues to fascinate?

  1. European roadmap on superconductive electronics - status and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Anders, S. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Blamire, M.G. [University of Cambridge, Department of Materials Science, Pembroke St, Cambridge CB2 3QZ (United Kingdom); Buchholz, F.-Im. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Crete, D.-G. [Unite Mixte de Physique CNRS/THALES, 1 Avenue Augustin Fresnel, 91767 Palaiseau CEDEx (France); Cristiano, R. [Istituto di Cibernetica CNR, Via Campi Flegrei 34, 80078 Napoli (Italy); Febvre, P. [University of Savoie, IMEP-LAHC, CNRS UMR 5130, Campus scientifique, 73376 Le Bourget du Lac Cedex (France); Fritzsch, L. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Herr, A. [Chalmers University of Technology, Department of Microtechnology and Nanoscience - MC2, SE-412 96 Goeteborg (Sweden); Il' ichev, E. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Kohlmann, J. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Kunert, J., E-mail: juergen.kunert@ipht-jena.d [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Meyer, H.-G. [Institute of Photonic Technology (IPHT), Department of Quantum Detection, Albert-Einstein-Str. 9, 07745 Jena (Germany); Niemeyer, J. [Physikalisch-Technische Bundesanstalt (PTB), Bundesallee 100, 38116 Braunschweig (Germany); Ortlepp, T. [Technische Universitaet Ilmenau, Theoretische Elektrotechnik, PF 10 05 65 D-98684 Ilmenau (Germany); Rogalla, H. [University of Twente, Fac. Science and Technology, P.O. Box 217, 7500 AE Enschede (Netherlands); Schurig, T. [Physikalisch-Technische Bundesanstalt (PTB), Berlin, Abbestr. 2-12, 10587 Berlin (Germany)

    2010-12-15

    Executive Summary: For four decades semiconductor electronics has followed Moore's law: with each generation of integration the circuit features became smaller, more complex and faster. This development is now reaching a wall so that smaller is no longer any faster. The clock rate has saturated at about 3-5 GHz and the parallel processor approach will soon reach its limit. The prime reason for the limitation the semiconductor electronics experiences is not the switching speed of the individual transistor, but its power dissipation and thus heat. Digital superconductive electronics is a circuit- and device-technology that is inherently faster at much less power dissipation than semiconductor electronics. It makes use of superconductors and Josephson junctions as circuit elements, which can provide extremely fast digital devices in a frequency range - dependent on the material - of hundreds of GHz: for example a flip-flop has been demonstrated that operated at 750 GHz. This digital technique is scalable and follows similar design rules as semiconductor devices. Its very low power dissipation of only 0.1 {mu}W per gate at 100 GHz opens the possibility of three-dimensional integration. Circuits like microprocessors and analogue-to-digital converters for commercial and military applications have been demonstrated. In contrast to semiconductor circuits, the operation of superconducting circuits is based on naturally standardized digital pulses the area of which is exactly the flux quantum {Phi}{sub 0}. The flux quantum is also the natural quantization unit for digital-to-analogue and analogue-to-digital converters. The latter application is so precise, that it is being used as voltage standard and that the physical unit 'Volt' is defined by means of this standard. Apart from its outstanding features for digital electronics, superconductive electronics provides also the most sensitive sensor for magnetic fields: the Superconducting Quantum Interference

  2. Applications in the Advanced Transportation System and Impact on Superconductivity Industry of Htsm

    Science.gov (United States)

    Zhang, Y. P.; Zhao, Y.

    As the information technology grows up and its application penetrates into every area of this world, how to faster and more efficiently transport people and goods is becoming the new social demand, which indicates a new revolution on advanced transportation technology being brewed. High-temperature Superconductivity Maglev (HTSM) is one with the best development potential among most transportation technologies. It could be used in many advanced transportation fields, overcoming the key contradiction and shortcoming of the current transportation patterns such as train, automobile and airplane. On the other hand, HTSM will promote theoretical study and technology exploitation on superconductivity. HTSM's applications in a large scale will bring up profound effect on the forming and development of the superconductivity industry.

  3. Case study on the US superconducting power transmission program

    Energy Technology Data Exchange (ETDEWEB)

    Hammel, E.F.

    1996-02-01

    After the 1911 discovery of superconductivity (the abrupt loss of electrical resistance in certain materials at very low temperatures), attempts were made to make practical use of this phenomenon. Initially these attempts failed, but in the early 1960s (after 50 years of research) they succeeded. By then, the projected growth in the production and consumption of electrical energy required much higher capacity power transmission capabilities than were available or likely to become available from incremental improvements in existing transmission technology. Since superconductors were capable in principle of transmitting huge amounts of power, research programs to develop and demonstrate superconducting transmission lines were initiated in the US and abroad. The history of the US program, including the participants, their objectives, funding and progress made, is outlined. Since the R&D program was terminated before the technology was completely demonstrated, the reasons for and consequences of this action are discussed in a final section.

  4. Characterization of Superconducting Cavities for HIE-ISOLDE

    CERN Document Server

    Martinello, Martina

    2013-01-01

    In this report the radiofrequency measurements done for the superconducting cavities developed at CERN for the HIE-ISOLDE project are analyzed. The purpose of this project is improve the energy of the REX-ISOLDE facility by means of a superconducting LINAC. In this way it will be possible to reach higher accelerating gradients, and so higher particle energies (up to 10MeV/u). At this purpose the Niobium thin film technology was preferred to the Niobium bulk technology because of the technical advantages like the higher thermal conductivity of Copper and the higher stiffness of the cavities which are less sentitive to mechanical vibrations. The Niobium coating is being optimized on test prototypes which are qualified by RF measurements at cold.

  5. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  6. Superconductivity, antiferromagnetism, and neutron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, John M., E-mail: jtran@bnl.gov; Xu, Guangyong; Zaliznyak, Igor A.

    2014-01-15

    High-temperature superconductivity in both the copper-oxide and the iron–pnictide/chalcogenide systems occurs in close proximity to antiferromagnetically ordered states. Neutron scattering has been an essential technique for characterizing the spin correlations in the antiferromagnetic phases and for demonstrating how the spin fluctuations persist in the superconductors. While the nature of the spin correlations in the superconductors remains controversial, the neutron scattering measurements of magnetic excitations over broad ranges of energy and momentum transfers provide important constraints on the theoretical options. We present an overview of the neutron scattering work on high-temperature superconductors and discuss some of the outstanding issues. - Highlights: • High-temperature superconductivity is closely associated with antiferromagnetism. • Antiferromagnetic spin fluctuations coexist with the superconductivity. • Neutron scattering is essential for characterising the full spectrum of spin excitations.

  7. Sensing with Superconducting Point Contacts

    Directory of Open Access Journals (Sweden)

    Argo Nurbawono

    2012-05-01

    Full Text Available Superconducting point contacts have been used for measuring magnetic polarizations, identifying magnetic impurities, electronic structures, and even the vibrational modes of small molecules. Due to intrinsically small energy scale in the subgap structures of the supercurrent determined by the size of the superconducting energy gap, superconductors provide ultrahigh sensitivities for high resolution spectroscopies. The so-called Andreev reflection process between normal metal and superconductor carries complex and rich information which can be utilized as powerful sensor when fully exploited. In this review, we would discuss recent experimental and theoretical developments in the supercurrent transport through superconducting point contacts and their relevance to sensing applications, and we would highlight their current issues and potentials. A true utilization of the method based on Andreev reflection analysis opens up possibilities for a new class of ultrasensitive sensors.

  8. Domain wall description of superconductivity

    CERN Document Server

    Brito, F A; Silva, J C M

    2012-01-01

    In the present work we shall address the issue of electrical conductivity in superconductors in the perspective of superconducting domain wall solutions in the realm of field theory. We take our set up made out of a dynamical complex scalar field coupled to gauge field to be responsible for superconductivity and an extra scalar real field that plays the role of superconducting domain walls. The temperature of the system is interpreted as the parameter to move type I to type II domain walls. Alternatively, this means that the domain wall surface is suffering an acceleration as one goes from one type to another. On the other hand, changing from type I to type II state means a formation of a condensate what is in perfect sense of lowering the temperature around the superconductor. One can think of this scenario as an analog of holographic scenarios where this set up is replaced by a black hole near the domain wall.

  9. The origins of macroscopic quantum coherence in high temperature superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Turner, Philip, E-mail: ph.turner@napier.ac.uk [Edinburgh Napier University, 10 Colinton Road, Edinburgh EH10 5DT (United Kingdom); Nottale, Laurent, E-mail: laurent.nottale@obspm.fr [CNRS, LUTH, Observatoire de Paris-Meudon, 5 Place Janssen, 92190 Meudon (France)

    2015-08-15

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  10. Large-scale modulation in the superconducting properties of thin films due to domains in the SrTi O3 substrate

    Science.gov (United States)

    Wissberg, Shai; Kalisky, Beena

    2017-04-01

    Scanning superconducting quantum interference device measurements reveal large-scale modulations of the superfluid density and the critical temperature in superconducting Nb, NbN, and underdoped YB a2C u3O7 -δ films deposited on SrTi O3 (STO). We show that these modulations are a result of the STO domains and domain walls, forming below the 105 K structural phase transition of STO. We found that the flow of normal current, measured above the superconducting transition, is also modulated over the same domain structure, suggesting a modified carrier density. In clean STO, domain walls remain mobile down to low temperatures. Modulated superconductivity over mobile channels offers the opportunity to locally control superconducting properties and better understand the relations between superconductivity and the local structure.

  11. Stripes and superconductivity in cuprates

    Science.gov (United States)

    Tranquada, John M.

    2012-06-01

    Holes doped into the CuO2 planes of cuprate parent compounds frustrate the antiferromagnetic order. The development of spin and charge stripes provides a compromise between the competing magnetic and kinetic energies. Static stripe order has been observed only in certain particular compounds, but there are signatures which suggest that dynamic stripe correlations are common in the cuprates. Though stripe order is bad for superconducting phase coherence, stripes are compatible with strong pairing. Ironically, magnetic-field-induced stripe order appears to enhance the stability of superconducting order within the planes.

  12. Stripes and superconductivity in cuprates

    Energy Technology Data Exchange (ETDEWEB)

    Tranquada, John M., E-mail: jtran@bnl.gov [Condensed Matter Physics and Materials Science Dept., Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2012-06-01

    Holes doped into the CuO{sub 2} planes of cuprate parent compounds frustrate the antiferromagnetic order. The development of spin and charge stripes provides a compromise between the competing magnetic and kinetic energies. Static stripe order has been observed only in certain particular compounds, but there are signatures which suggest that dynamic stripe correlations are common in the cuprates. Though stripe order is bad for superconducting phase coherence, stripes are compatible with strong pairing. Ironically, magnetic-field-induced stripe order appears to enhance the stability of superconducting order within the planes.

  13. Large superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Magnusson, Niklas; Jensen, Bogi Bech

    2012-01-01

    and the rotation speed is lowered in order to limit the tip speed of the blades. The ability of superconducting materials to carry high current densities with very small losses might facilitate a new class of generators operating with an air gap flux density considerably higher than conventional generators...... and thereby having a smaller size and weight [1, 2]. A 5 MW superconducting wind turbine generator forms the basics for the feasibility considerations, particularly for the YBCO and MgB2 superconductors entering the commercial market. Initial results indicate that a 5 MW generator with an active weight of 34...

  14. A superconducting homopolar motor and generator—new approaches

    Science.gov (United States)

    Fuger, Rene; Matsekh, Arkadiy; Kells, John; Sercombe, D. B. T.; Guina, Ante

    2016-03-01

    Homopolar machines were the first continuously running electromechanical converters ever demonstrated but engineering challenges and the rapid development of AC technology prevented wider commercialisation. Recent developments in superconducting, cryogenic and sliding contact technology together with new areas of application have led to a renewed interest in homopolar machines. Some of the advantages of these machines are ripple free constant torque, pure DC operation, high power-to-weight ratio and that rotating magnets or coils are not required. In this paper we present our unique approach to high power and high torque homopolar electromagnetic turbines using specially designed high field superconducting magnets and liquid metal current collectors. The unique arrangement of the superconducting coils delivers a high static drive field as well as effective shielding for the field critical sliding contacts. The novel use of additional shielding coils reduces weight and stray field of the system. Liquid metal current collectors deliver a low resistance, stable and low maintenance sliding contact by using a thin liquid metal layer that fills a circular channel formed by the moving edge of a rotor and surrounded by a conforming stationary channel of the stator. Both technologies are critical to constructing high performance machines. Homopolar machines are pure DC devices that utilise only DC electric and magnetic fields and have no AC losses in the coils or the supporting structure. Guina Energy Technologies has developed, built and tested different motor and generator concepts over the last few years and has combined its experience to develop a new generation of homopolar electromagnetic turbines. This paper summarises the development process, general design parameters and first test results of our high temperature superconducting test motor.

  15. Scientific Presentations on Superconductivity from 2002-2005

    Science.gov (United States)

    2006-01-01

    homopolar and synchronous superconducting motors to drive the US Navy’s future all-electric ship. HTS wire technology can be used in many of the system...components for these military applications such as motors , power generators, transformers, power converters/inductors, primary power cabling, and high...capability for the YBCO conductor leads to commercialization in electric power applications such as transformers, transmission cables, motors , fault

  16. Unique Offerings of the ISS as an Earth Observing Platform

    Science.gov (United States)

    Cooley, Victor M.

    2013-01-01

    The International Space Station offers unique capabilities for earth remote sensing. An established Earth orbiting platform with abundant power, data and commanding infrastructure, the ISS has been in operation for twelve years as a crew occupied science laboratory and offers low cost and expedited concept-to-operation paths for new sensing technologies. Plug in modularity on external platforms equipped with structural, power and data interfaces standardizes and streamlines integration and minimizes risk and start up difficulties. Data dissemination is also standardized. Emerging sensor technologies and instruments tailored for sensing of regional dynamics may not be worthy of dedicated platforms and launch vehicles, but may well be worthy of ISS deployment, hitching a ride on one of a variety of government or commercial visiting vehicles. As global acceptance of the urgent need for understanding Climate Change continues to grow, the value of ISS, orbiting in Low Earth Orbit, in complementing airborne, sun synchronous polar, geosynchronous and other platform remote sensing will also grow.

  17. Two-dimensional lattice gauge theories with superconducting quantum circuits

    Energy Technology Data Exchange (ETDEWEB)

    Marcos, D., E-mail: david.marcos@me.com [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Widmer, P. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Rico, E. [IPCMS (UMR 7504) and ISIS (UMR 7006), University of Strasbourg and CNRS, 67000 Strasbourg (France); Hafezi, M. [Joint Quantum Institute, NIST/University of Maryland, College Park 20742 (United States); Department of Electrical Engineering and Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742 (United States); Rabl, P. [Institute of Atomic and Subatomic Physics, TU Wien, Stadionallee 2, 1020 Wien (Austria); Wiese, U.-J. [Albert Einstein Center, Institute for Theoretical Physics, Bern University, CH-3012, Bern (Switzerland); Zoller, P. [Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck (Austria)

    2014-12-15

    A quantum simulator of U(1) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.

  18. Development of superconducting transmission cable. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Hawsey, R.; Stovall, J.P. [Oak Ridge National Lab., TN (United States); Hughey, R.L.; Sinha, U.K. [Southwire Co., Carrollton, GA (United States)

    1997-10-01

    The purpose of this Cooperative Research and Development Agreement (CRADA) between Oak Ridge National Laboratory (ORNL) and Southwire Company is to develop the technology necessary to proceed to commercialization of high-temperature superconducting (HTS) transmission cables. Power transmission cables are a promising near-term electric utility application for high-temperature superconductivity. Present HTS wires match the needs for a three-phase transmission cable: (1) the wires must conduct high currents in self-field, (2) there are no high forces developed, and (3) the cables may operate at relatively low current density. The commercially-available HTS wires, in 100-m lengths, make construction of a full three-phase, alternating current (ac) transmission cable possible. If completed through the pre-commercialization phase, this project will result in a new capability for electric power companies. The superconducting cable will enable delivery with greater efficiency, higher power density, and lower costs than many alternatives now on the market. Job creation in the US is expected as US manufacturers supply transmission cables to the expanding markets in Asia and to the densely populated European cities where pipe-type cable is prevalent. Finally, superconducting cables may enable delivery of the new, diverse and distributed sources of electricity that will constitute the majority of new installed electrical generation in the world during the coming decades.

  19. Single photon source characterization with a superconducting single photon detector

    CERN Document Server

    Hadfield, R H; Miller, A J; Mirin, R P; Nam, S W; Schwall, R E; Stevens, M J; Gruber, Steven S.; Hadfield, Robert H.; Miller, Aaron J.; Mirin, Richard P.; Nam, Sae Woo; Schwall, Robert E.; Stevens, Martin J.

    2005-01-01

    Superconducting single photon detectors (SSPD) based on nanopatterned niobium nitride wires offer single photon counting at fast rates, low jitter, and low dark counts, from visible wavelengths well into the infrared. We demonstrate the first use of an SSPD, packaged in a commercial cryocooler, for single photon source characterization. The source is an optically pumped, microcavity-coupled InGaAs quantum dot, emitting single photons on demand at 902 nm. The SSPD replaces the second silicon Avalanche Photodiode (APD) in a Hanbury-Brown Twiss interferometer measurement of the source second-order correlation function, g (2) (tau). The detection efficiency of the superconducting detector system is >2 % (coupling losses included). The SSPD system electronics jitter is 170 ps, versus 550 ps for the APD unit, allowing the source spontaneous emission lifetime to be measured with improved resolution.

  20. Vacancy Duration, Wage Offers, and Job Requirements

    DEFF Research Database (Denmark)

    Eriksson, Tor Viking; Chen, Long-Hwa

    is concerned with how vacancy durations vary with firms' minimum wage offers and minimum job requirements (regarding education, skills, age, gender and earlier work experience). The empirical analysis is based on ten employer surveys carried out by the DGBAS on Taiwan during the period 1996-2006. We estimate......Besides wage offers, credentials like education, work experience and skill requirements are key screening tools for firms in their recruitment of new employees. This paper adds some new evidence to a relatively tiny literature on firms' recruitment behaviour. In particular, our analysis...... logistic discrete hazard models with a rich set of job and firm characteristics as explanatory variables. The results show that vacancies associated with higher wage offers take, ceteris paribus, longer to be filled. The impact of firms' wage offers and credential requirements does not vary over...