WorldWideScience

Sample records for superconducting super collidermagnets

  1. Siting the superconducting super collider

    International Nuclear Information System (INIS)

    Price, R.; Rooney, R.C.

    1988-01-01

    At the request of the Department of Energy, the National Academy of Sciences and the National Academy of Engineering established the Super Collider Site Evaluation Committee to evaluate the suitability of proposed sites for the Superconducting Super Collider. Thirty-six proposals were examined by the committee. Using the set of criteria announced by DOE in its Invitation for Site Proposals, the committee identified eight sites that merited inclusion on a ''best qualified list.'' The list represents the best collective judgment of 21 individuals, carefully chosen for their expertise and impartiality, after a detailed assessment of the proposals using 19 technical subcriteria and DOE's life cycle cost estimates. The sites, in alphabetical order, are: Arizona/Maricopa; Colorado; Illinois; Michigan/Stockbridge; New York/Rochester; North Carolina; Tennessee; and Texas/Dallas-Fort Worth. The evaluation of these sites and the Superconducting Super Collider are discussed in this book

  2. Superconducting super collider

    International Nuclear Information System (INIS)

    Limon, P.J.

    1987-01-01

    The Superconducting Super Collider is to be a 20 TeV per beam proton-proton accelerator and collider. Physically the SCC will be 52 miles in circumference and slightly oval in shape. The use of superconducting magnets instead of conventional cuts the circumference from 180 miles to the 52 miles. The operating cost of the SCC per year is estimated to be about $200-250 million. A detailed cost estimate of the project is roughly $3 billion in 1986 dollars. For the big collider ring, the technical cost are dominated by the magnet system. That is why one must focus on the cost and design of the magnets. Presently, the process of site selection is underway. The major R and D efforts concern superconducting dipoles. The magnets use niobium-titanium as a conductor stabilized in a copper matrix. 10 figures

  3. Optical data transmission at the superconducting super collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1989-02-01

    Digital and analog data transmissions via fiber optics for the Superconducting Super Collider have been investigated. The state of the art of optical transmitters, low loss fiber waveguides, receivers and associated electronics components are reviewed and summarized. Emphasis is placed on the effects of the radiation environment on the performance of an optical data transmission system components. Also, the performance of candidate components of the wide band digital and analog transmission systems intended for deployment of the Superconducting Super Collider Detector is discussed. 27 refs., 15 figs

  4. Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Perl, M.L.

    1986-04-01

    The scientific need for the Superconducting Super Collider (SSC) is outlined, along with the history of the development of the SSC concept. A brief technical description is given of each of the main points of the SSC conceptual design. The construction cost and construction schedule are discussed, followed by issues associated with the realization of the SSC. 8 refs., 3 figs., 3 tabs

  5. Superconductive MRI system, MRT-50A/SUPER

    International Nuclear Information System (INIS)

    Suzuki, Hirokazu; Goro, Takehiko

    1992-01-01

    The MRI (magnetic resonance imaging) market has been rapidly growing and more than 1,300 MRI systems are now operating in the Japanese domestic market. An upper-middle range MRI market, which is characterized by high-image quality, has newly appeared between the high-end and middle-range market niches since last year. To be competitive in this upper-middle range market, Toshiba has developed a superconductive MRI system, the MRT-50A/SUPER. The new system featured a high-performance actively shielded gradient coil called the TSGC (twin-shielded gradient coil), installed in a compact superconductive magnet. This paper introduces the MRT-50A/SUPER and describes recent developments in MRI technology. (author)

  6. Report on achievements in fiscal 1999. Research and development of electric power storage using high-temperature super-conductive flywheels (research and development on manufacture of super-conductive magnetic bearings); 1999 nendo koon chodendo flywheel denryoku chozo kenkyu kaihatsu. Chodendo jiki jikuuke no seisaku no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    Introduction of electric power storage equipment is sought, which will be discretely installed in power distribution substations. Therefore, elementary technologies were researched on 'manufacture of super-conductive magnetic bearings' intended for practical application of an electric power storage system of 10-MWh class using high-temperature super-conductive flywheels. Research and development has been performed on different kinds of super-conductive magnetic bearings which combine high-temperature super-conductive materials with permanent magnets. In order to measure the characteristics of the super-conductive magnetic bearings, measurements were executed on rotation loss, loading power and bearing constants. In the measurement of the rotation loss, a {phi} 180 axial type super-conductive magnetic bearing using an Sm-based superconductor ({phi} 180AxSMB2) was given various kinds of tests by using a rotation loss measuring and testing machine. The results were compared with those for the {phi} 180AxSMB1 using the YBCO-based superconductor and other SMBs. In the measurements for the other items, various items were measured on dynamic rotation properties of the {phi} 180AxSMB and {phi} 180RaSMB by using a static bearing constant testing machine. In discussing the loading power characteristics, the dynamic rotation properties of the {phi} 180RaSMB were measured, and the loading power characteristics were discussed on super-conductive magnetic bearings for medium size models and super-conductive magnetic bearings for large system FS. (NEDO)

  7. The Superconducting Super Collider: A status report

    International Nuclear Information System (INIS)

    Schwitters, R.F.

    1993-04-01

    The design of the Superconducting Super Collider (SSC) is briefly reviewed, including its key machine parameters. The scientific objectives are twofold: (1) investigation of high-mass, low-rate, rare phenomena beyond the standard model; and (2) investigation of processes within the domain of the standard model. Machine luminosity, a key parameter, is a function of beam brightness and current, and it must be preserved through the injector chain. Features of the various injectors are discussed. The superconducting magnet system is reviewed in terms of model magnet performance, including the highly successful Accelerator System String Test Various magnet design modifications are noted, reflecting minor changes in the collider arcs and improved installation procedures. The paper concludes with construction scenarios and priority issues for ensuring the earliest collider commissioning

  8. The modelling and measurement of super-conducting rock joints

    International Nuclear Information System (INIS)

    Barton, N.; Makurat, A.; Vik, G.; Loset, F.

    1985-01-01

    Rock joints exhibiting exceptionally high conductivity have been responsible for severe inflows (10-50 m 3 /min.) and flooding in recent Norwegian tunneling projects. These events may be explained by channeling of flow in partially outwashed mineral fillings, associated with deep weathering in ancient basement rocks. There is also evidence to suggest extensional strain with consistent relationships to regional faulting patterns (Selmer-Olsen 1981). Hydraulic fractures making connection with joint systems that are sheared as a result of increased fluid pressure, has been deduced as the mechanism explaining unusually large fluid losses in the geothermal project in Cornwall, England (Pine and Batchelor, 1984). Such mechanisms also introduce uncertainty into water flood and MHF stimulation treatment of fractured oil and gas reservoirs, particularly when principal stress and joint orientations are poorly understood due to coring and stress measurement problems in weak, overstressed reservoir rocks. The possibility of permanent disposal of nuclear waste in crystalline rock, has also focussed attention on highly conductive (''super-conducting'') joints in nuclear waste programmes in Canada, the USA and in Europe. The bi-modal distributions of joint spacing, continuity, apertures and conductivities resulting from the discovery of super-conducting joints has important implications for the location of planned repositories, due to their dramatic impact on potential transport times. In the laboratory a class of super-conducting joints can be created by shear displacement that causes dilation when shearing non-planar features. Recent biaxial shear testing of rock joints recovered in jointed core has identified a strong coupling of conductivity and shear displacement. The theoretical predictions of constitutive relationships for coupled flow in rock joints (Barton et al. 1985) have been broadly verified

  9. A SUPER-CONDUCTING LINAC DRIVER FOR THE HFBR.

    Energy Technology Data Exchange (ETDEWEB)

    Alessi, J.; Raparia, D.; Ruggiero, A.G.

    2000-08-21

    This paper reports on the feasibility study of a proton Super-Conducting Linac (SCL) as a driver for the High-Flux Breeder Reactor (HFBR) at Brookhaven National Laboratory (BNL). The Linac operates in Continuous Wave (CW) mode to produce an average 10 MW of beam power. The Linac beam energy is 1.0 GeV. The average proton beam intensity in exit is 10 mA.

  10. Superconducting super collider second generation dipole magnet cryostat design

    International Nuclear Information System (INIS)

    Niemann, R.C.; Bossert, R.C.; Carson, J.A.; Engler, N.H.; Gonczy, J.D.; Larson, E.T.; Nicol, T.H.; Ohmori, T.

    1988-12-01

    The Superconducting Super Collider, a planned colliding beam particle physics research facility, requires /approximately/10,000 superconducting devices for the control of high energy particle beams. The /approximately/7,500 collider ring superconducting dipole magnets require cryostats that are functional, cryogenically efficient, mass producible and cost effective. A second generation cryostat design has been developed utilizing the experiences gained during the construction, installation and operation of several full length first generation dipole magnet models. The nature of the cryostat improvements is presented. Considered are the connections between the magnet cold mass and its supports, cryogenic supports, cold mass axial anchor, thermal shields, insulation, vacuum vessel and interconnections. The details of the improvements are enumerated and the abstracted results of available component and system evaluations are presented. 8 refs., 11 figs

  11. Contracting practices for the underground construction of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1989-01-01

    This report was prepared by a specially appointed committee under the auspices of the National Academy of Sciences/National Research Council to address contracting and associated management issues essential to the successful execution of underground construction for the Superconducting Super Collider

  12. Cryogenic systems for the HEB accelerator of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Abramovich, S.; Yuecel, A.

    1994-07-01

    This report discusses the following topics related to the Superconducting Super Collider: Cryogenic system -- general requirements; cryogenic system components; heat load budgets and refrigeration plant capacities; flow and thermal characteristics; process descriptions; cryogenic control instrumentation and value engineering trade-offs

  13. A commercial tokamak reactor using super high field superconducting magnets

    International Nuclear Information System (INIS)

    Schwartz, J.; Bromberg, L.; Cohn, D.R.; Williams, J.E.C.

    1988-01-01

    This paper explores the range of possibilities for producing super high fields with advanced superconducting magnets. Obtaining magnetic fields greater than about 18 T at the coil in a large superconducting magnet system will require advances in many areas of magnet technology. These needs are discussed and potential solutions (advanced superconductors, structural materials and design methods) evaluated. A point design for a commercial reactor with magnetic field at the coil of 24 T and fusion power of 1800 MW is presented. Critical issues and parameters for magnet design are identified. 20 refs., 9 figs., 4 tabs

  14. High speed data transmission at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leskovar, B.

    1990-04-01

    High speed data transmission using fiber optics in the data acquisition system of the Superconducting Super Collider has been investigated. Emphasis is placed on the high speed data transmission system overview, the local data network and on subassemblies, such as optical transmitters and receivers. Also, the performance of candidate subassemblies having a low power dissipation for the data acquisition system is discussed. 14 refs., 5 figs

  15. Detectors for the superconducting super collider, design concepts, and simulation

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel, T.A.

    1989-06-01

    The physics of compensation calorimetry is reviewed in the light of the needs of the Superconducting Super Collider (SSC) detectors. The four major detector types: liquid argon, scintillator, room temperature liquids, and silicon, are analyzed with respect to some of their strengths and weaknesses. Finally, general comments are presented which reflect the reliability of simulation code systems.

  16. Detectors for the superconducting super collider, design concepts, and simulation

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1989-06-01

    The physics of compensation calorimetry is reviewed in the light of the needs of the Superconducting Super Collider (SSC) detectors. The four major detector types: liquid argon, scintillator, room temperature liquids, and silicon, are analyzed with respect to some of their strengths and weaknesses. Finally, general comments are presented which reflect the reliability of simulation code systems

  17. Detectors for the Superconducting Super Collider, design concepts, and simulation

    International Nuclear Information System (INIS)

    Gabriel, T.A.

    1989-01-01

    The physics of compensation calorimetry is reviewed in the light of the need of the Superconducting Super Collider (SSC) detectors. The four major detector types: liquid argon, scintillator, room temperature liquids, and silicon, are analyzed with respect to some of their strengths and weaknesses. Finally, general comments are presented which reflect the reliability of simulation code systems. 29 refs., 20 figs., 6 tabs

  18. SSC [Superconducting Super Collider] dipole coil production tooling

    International Nuclear Information System (INIS)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs

  19. Resonator controller for the super-conducting LINAC

    International Nuclear Information System (INIS)

    Joshi, Gopal; Sujo, C.I.; Karande, Jitendra

    2001-01-01

    A resonator controller has been developed at Electronics Division, BARC, to stabilize the amplitude and phase of RF fields in the super-conducting resonators of BARC-TIFR linac. Due to reduced losses these resonators have intrinsic bandwidth of the order of one hertz at 150MHz whereas the vibration induced center frequency changes are of the order of a few hertz. In the control strategy followed the resonator is made the frequency selective part of an oscillator. The phase lock is achieved by dynamically adding a phase shift in the oscillator. In this paper we present the control strategy, implementation details and performance obtained with this controller. (author)

  20. Design and analysis of the SSC [Superconducting Super Collider] dipole magnet suspension system

    International Nuclear Information System (INIS)

    Nicol, T.H.; Niemann, R.C.; Gonczy, J.D.

    1989-03-01

    The design of the suspension system for Superconducting Super Collider (SSC) dipole magnets has been driven by rigorous thermal and structural requirements. The current system, designed to meet those requirements, represents a significant departure from previous superconducting magnet suspension system designs. This paper will present a summary of the design and analysis of the vertical and lateral suspension as well as the axial anchor system employed in SSC dipole magnets. 5 refs., 9 figs., 4 tabs

  1. Conceptual design of a superconducting solenoid for a magnetic SSC [Superconducting Super Collider] detector

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Kephart, R.D.; Krebs, H.J.; Stone, M.E.; Theriot, D.; Wands, R.H.

    1988-07-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) has begun at Fermilab. The magnet will provide a magnetic field of 2 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictibility of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Although the magnet is considerably larger than existing solenoids of this type and although many issues of manufacturability, transportability and cost have not been completely addressed, our conceptual design has convinced us that this magnet is a reasonable extrapolation of present technology. 2 figs., 2 tabs

  2. Safety aspects of superconducting magnets for Super-FRS

    CERN Multimedia

    CERN. Geneva

    2016-01-01

    The Super Fragment Separator (Super FRS) is a two-stage in flight separator to be built next to the site of GSI, Darmstadt, Germany as part of FAIR (Facility for Anti-proton and Ion Research). Its purpose is to create and separate rare isotope beams and to enable the mass measurement also for very short lived nuclei. A superferric design with superconducting coils and standard iron yoke shaping the magnetic field was chosen for the magnets. The cooling will be by a liquid Helium bath. For the main dipoles only the coil is at cold for the multiplets (asemblies of quadrupoles and hgher order correctors) also the iron yoke will be in the bath. From a safety point of view the large He-volumes of more than 1000 l of the multiplets, the high design pressure of 20 bar, as well as the high inductances of the magnets up to 30 H are challenges to be considered in the design and definition of the testing procedures.

  3. Data acquisition and online processing requirements for experimentation at the superconducting super collider

    International Nuclear Information System (INIS)

    Lankford, A.J.; Barsotti, E.; Gaines, I.

    1990-01-01

    Differences in scale between data acquisition and online processing requirements for detectors at the Superconducting Super Collider and systems for existing large detectors will require new architectures and technological advances in these systems. Emerging technologies will be employed for data transfer, processing, and recording. (orig.)

  4. Model SSC [Superconducting Super Collider] dipole magnet cryostat assembly at Fermilab

    International Nuclear Information System (INIS)

    Niemann, R.C.

    1989-03-01

    The Superconducting Super Collider (SSC) magnet development program includes the design, fabrication and testing of full length model dipole magnets. A result of the program has been the development of a magnet cryostat design. The cryostat subsystems consist of cold mass connection-slide, suspension, thermal shields, insulation, vacuum vessel and interconnections. Design details are presented along with model magnet production experience. 6 refs., 13 figs

  5. Radio frequency quadrupole linac for the superconducting super collider

    International Nuclear Information System (INIS)

    Schrage, D.L.; Young, L.M.; Clark, W.L.; Billen, J.H.; DePaula, R.F.; Naranjo, A.C.; Neuschaefer, G.H.; Roybal, P.L.; Stovall, J.E.; Ray, K.; Richter, R.

    1993-01-01

    A 2.5 MeV, 428 MHz radio frequency quadrupole (RFQ) linac has been designed and fabricated by the Los Alamos National Laboratory and GAR Electroforming for the Superconducting Super Collider Laboratory. This device is a two segment accelerator fabricated from tellurium-copper (CDA14500) vane/cavity quadrants which are joined by electroforming. The structure incorporates an integral vacuum jacket and has no longitudinal rf or mechanical joints. The SSC RFQ linac is an extension of the design of the 1.0 MeV RFQ which was successfully flown on the BEAR Project. (orig.)

  6. Data acquisition and online processing requirements for experimentation at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Lankford, A.J.; Barsotti, E.; Gaines, I.

    1989-07-01

    Differences in scale between data acquisition and online processing requirements for detectors at the Superconducting Super Collider and systems for existing large detectors will require new architectures and technological advances in these systems. Emerging technologies will be employed for data transfer, processing, and recording. 9 refs., 3 figs

  7. Remote monitoring system for the cryogenic system of superconducting magnets in the SuperKEKB interaction region

    Science.gov (United States)

    Aoki, K.; Ohuchi, N.; Zong, Z.; Arimoto, Y.; Wang, X.; Yamaoka, H.; Kawai, M.; Kondou, Y.; Makida, Y.; Hirose, M.; Endou, T.; Iwasaki, M.; Nakamura, T.

    2017-12-01

    A remote monitoring system was developed based on the software infrastructure of the Experimental Physics and Industrial Control System (EPICS) for the cryogenic system of superconducting magnets in the interaction region of the SuperKEKB accelerator. The SuperKEKB has been constructed to conduct high-energy physics experiments at KEK. These superconducting magnets consist of three apparatuses, the Belle II detector solenoid, and QCSL and QCSR accelerator magnets. They are each contained in three cryostats cooled by dedicated helium cryogenic systems. The monitoring system was developed to read data of the EX-8000, which is an integrated instrumentation system to control all cryogenic components. The monitoring system uses the I/O control tools of EPICS software for TCP/IP, archiving techniques using a relational database, and easy human-computer interface. Using this monitoring system, it is possible to remotely monitor all real-time data of the superconducting magnets and cryogenic systems. It is also convenient to share data among multiple groups.

  8. The prototype message broadcast system for the superconducting super collider

    International Nuclear Information System (INIS)

    Low, K.; Skegg, R.

    1991-01-01

    This paper presents a prototype unified message broadcast system to handle the site-wide distribution of all control system messages for the Superconducting Super Collider. The messages are assembled in the control room area and encapsulated for transmission via a general fiber-optic link system to devices distributed throughout 70 miles of tunnels. An embedded timing signal is used by the distribution system to ensure that messages arrive at all devices simultaneously. Devices receive messages using a special receiver sub-system

  9. The Superconducting Super Collider (SSC) linac

    International Nuclear Information System (INIS)

    Watson, J.M.

    1990-09-01

    The preliminary design of the 600 MeV H - linac for the Superconducting Super Collider injector is described. The linac must provide a 25 mA beam during 7--35 μs macropulses at Hz within injection bursts. Normalized transverse emittances of less than 0.5 π mm-mrad (rms) are required for injection into the Low Energy Booster synchrotron. Cost, ease of commissioning, and operational reliability are important considerations. The linac will consists of an H - source with electrostatic LEBT, 2.5 MeV radiofrequency quadrupole accelerator, a 70 MeV drift-tube linac, and 530 MeV and the side-coupled linac operates at 1284 MHz. A modest total length of 150 m results from the tradeoff between cost optimization and reliability. The expected performance from beam dynamics simulations and the status of the project are described. 11 refs., 1 fig., 6 tabs

  10. Overview of real-time kernels at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Low, K.; Acharya, S.; Allen, M.; Faught, E.; Haenni, D.; Kalbfleisch, C.

    1991-01-01

    The Superconducting Super Collider Laboratory (SSCL) will have many subsystems that will require real-time microprocessor control. Examples of such Sub-systems requiring real-time controls are power supply ramp generators and quench protection monitors for the superconducting magnets. The authors plan on using a commercial multitasking real-time kernel in these systems. These kernels must perform in a consistent, reliable and efficient manner. Actual performance measurements have been conducted on four different kernels, all running on the same hardware platform. The measurements fall into two categories. Throughput measurements covering the 'non-real-time' aspects of the kernel include process creation/termination times, interprocess communication facilities involving messages, semaphores and shared memory and memory allocation/deallocation. Measurements concentrating on real-time response are context switch times, interrupt latencies and interrupt task response

  11. Overview of real-time kernels at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Low, K.; Acharya, S.; Allen, M.; Faught, E.; Haenni, D.; Kalbfleisch, C.

    1991-05-01

    The Superconducting Super Collider Laboratory (SSCL) will have many subsystems that will require real-time microprocessor control. Examples of such sub-systems requiring real-time controls are power supply ramp generators and quench protection monitors for the superconducting magnets. We plan on using a commercial multitasking real-time kernel in these systems. These kernels must perform in a consistent, reliable and efficient manner. Actual performance measurements have been conducted on four different kernels, all running on the same hardware platform. The measurements fall into two categories. Throughput measurements covering the ''non-real-time'' aspects of the kernel include process creation/termination times, interprocess communication facilities involving messages, semaphores and shared memory and memory allocation/deallocation. Measurements concentrating on real-time response are context switch times, interrupt latencies and interrupt task response. 6 refs., 2 tabs

  12. Vacuum technology issues for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Joestlein, H.

    1989-01-01

    The Superconducting Super Collider, to be built in Texas, will provide an energy of 40 TeV from colliding proton beams. This energy is twenty times higher than currently available from the only other cryogenic collider, the Fermilab Tevatron, and will allow experiments that can lead to a better understanding of the fundamental properties of matter. The energy scale and the size of the new machine pose intriguing challenges and opportunities for the its vacuum systems. The discussion will include the effects of synchrotron radiation on cryogenic beam tubes, cold adsorption pumps for hydrogen, methods of leak checking large cryogenic systems, the development of cold beam valves, and radiation damage to components, especially electronics. 9 figs., 1 tab

  13. The prototype message broadcast system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Low, K.; Skegg, R.

    1990-11-01

    A prototype unified message broadcast system to handle the site-wide distribution of all control system messages for the Superconducting Super Collider is presented. The messages are assembled in the control room area and encapsulated for transmission via a general fiber-optic link system to devices distributed throughout 70 miles of tunnels. An embedded timing signal is used by the distribution system to ensure that messages arrive at all devices simultaneously. Devices receive messages using a special receiver sub-system. A simple version of this system is to be used in the Accelerator Systems String Test (ASST) at the SSC site in 1991. 3 refs., 6 figs., 1 tab

  14. A bipolar monolithic preamplifier for high-capacitance SSC [Superconducting Super Collider] silicon calorimetry

    International Nuclear Information System (INIS)

    Britton, C.L. Jr.; Kennedy, E.J.; Bugg, W.M.

    1990-01-01

    This paper describes a preamplifier designed and fabricated specifically to address the requirements of silicon calorimetry for the Superconducting Super Collider (SSC). The topology and its features are discussed in addition to the design methodology employed. The simulated and measured results for noise, power consumption, and speed are presented. Simulated an measured data for radiation damage effects as well as data for post-damage annealing are also presented. 8 refs., 7 figs., 2 tabs

  15. Review of the abort dump shown in the SSC [superconducting super collider] conceptual design report

    International Nuclear Information System (INIS)

    Cossairt, J.D.

    1987-04-01

    This report details the design of the abort dump for the Superconducting Super-Collider (SSC). The dump is made from graphite and designed to absorb the maximum beam energy of 400 MJ. The report considers long time activation effects of the dump components. The report concludes that the basic design of the abort dump is well defined

  16. Proposal of 99.99%-aluminum/7N01-Aluminum clad beam tube for high energy booster of Superconducting Super Collider

    International Nuclear Information System (INIS)

    Ishimaru, Hajime

    1994-01-01

    Proposal of 99.99% pure aluminum/7N01 aluminum alloy clad beam tube for high energy booster in Superconducting Super Collider is described. This aluminum clad beam tube has many good performances, but a eddy current effect is large in superconducting magnet quench collapse. The quench test result for aluminum clad beam tube is basically no problem against magnet quench collapse. (author)

  17. Final Report - The Decline and Fall of the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    RIORDAN, MICHAEL

    2011-11-29

    In October 1993 the US Congress terminated the Superconducting Super Collider — at the time the largest pure-science project ever attempted, with a total cost estimated to exceed $10 billion. It was a stunning loss for the US highenergy physics community, which until that moment had perched for decades at the pinnacle of American science. Ever since 1993, this once-dominant scientific community has been in gradual decline. With the 2010 startup of research on the CERN Large Hadron Collider and the 2011 shutdown of the Fermilab Tevatron, world leadership in elementary-particle physics has crossed the Atlantic and returned to Europe.

  18. Object-oriented simulation for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Zhou, Jiasheng; Chung, Moon-Jung

    1992-10-01

    This paper describes the design and implementation of an object-oriented simulation environment called OZ for the Superconducting Super Collider (SSC). The design applies object-oriented technology to data visualization, behavior modelling, dynamic simulation and version control. A meta class structure is proposed to model different types of objects in large systems by their functionality. OZ provides a direct-manipulation user interface which allows the user to visualize the data as an object in the database and interactively model the component of the system. Modelling can be exercised at different levels of the class hierarchy and then can be dynamically bound into a system for simulation. Inheritance is used to derive new configurations of the system or subsystem from the existing one, and specify an object's behavior. Delegation is used to construct a system by instantiating existing objects and ''stealing'' their methods by delegators

  19. Computing and data handling requirements for SSC [Superconducting Super Collider] and LHC [Large Hadron Collider] experiments

    International Nuclear Information System (INIS)

    Lankford, A.J.

    1990-05-01

    A number of issues for computing and data handling in the online in environment at future high-luminosity, high-energy colliders, such as the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC), are outlined. Requirements for trigger processing, data acquisition, and online processing are discussed. Some aspects of possible solutions are sketched. 6 refs., 3 figs

  20. Dealing with abort kicker prefire in the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Drozhdin, A.I.; Baishev, I.S.; Mokhov, N.V.; Parker, B.; Richardson, R.D.; Zhou, J.

    1993-05-01

    The Superconducting Super Collider uses a single-turn extraction abort system to divert the circulating beam to a massive graphite absorber at normal termination of the operating cycle or in case of any of a number of predefined fault modes. The Collider rings must be designed to be tolerant to abort extraction kicker prefires and misfires because of the large circulating beam energy. We have studied the consequences of beam loss in the accelerator due to such prefires and misfires in terms of material heating and radiation generation using full scale machine simulations and Monte-Carlo energy deposition calculations. Some results from these calculations as well as possible protective measures for minimizing the damaging effects of kicker prefire and misfire are discussed in this paper

  1. Structural performance of the first SSC [Superconducting Super Collider] Design B dipole magnet

    International Nuclear Information System (INIS)

    Nicol, T.H.

    1989-09-01

    The first Design B Superconducting Super Collider (SSC) dipole magnet has been successfully tested. This magnet was heavily instrumented with temperature and strain gage sensors in order to evaluate its adherence to design constraints and design calculations. The instrumentation and associated data acquisition system allowed monitoring of the magnet during cooldown, warmup, and quench testing. This paper will focus on the results obtained from structural measurements on the suspension system during normal and rapid cooldowns and during quench studies at full magnet current. 4 refs., 9 figs

  2. Conceptual design report for a superconducting coil suitable for use in the large solenoid detector at the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Fast, R.W.; Grimson, J.H.; Krebs, H.J.; Kephart, R.D.; Theriot, D.; Wands, R.H.

    1989-01-01

    The conceptual design of a large superconducting solenoid suitable for a magnetic detector at the Superconducting Super Collider (SSC) was done at Fermilab. The magnet will provide a magnetic field of 1.7 T over a volume 8 m in diameter by 16 m long. The particle-physics calorimetry will be inside the field volume and so the coil will be bath cooled and cryostable; the vessels will be stainless steel. Predictability of performance and the ability to safely negotiate all probable failure modes, including a quench, are important items of the design philosophy. Our conceptual design of the magnet and calorimeter has convinced us that this magnet is a reasonable extrapolation of present technology and is therefore feasible. The principal difficulties anticipated are those associated with the very large physical dimensions and stored energy of the magnet. 5 figs

  3. Advanced composite materials and processes for the manufacture of SSC (Superconducting Super Collider) and RHIC (Relativistic Heavy Ion Collider) superconducting magnets used at cryogenic temperatures in a high radiation environment

    Energy Technology Data Exchange (ETDEWEB)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs.

  4. Advanced composite materials and processes for the manufacture of SSC [Superconducting Super Collider] and RHIC [Relativistic Heavy Ion Collider] superconducting magnets used at cryogenic temperatures in a high radiation environment

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1989-01-01

    Presently, BNL work on superconducting magnets centers mainly on the development of 17 meter length dipoles for the Superconducting Super Collider Project, approved for construction at Waxahatchie, Texas and 9.7 meter dipoles and quadrupoles for the Relativistic Heavy Ion Collider, a BNL project to start construction next year. This paper will discuss the role of composites in the manufacture of magnets, their operational requirements in cryogenic and radiation environments, and the benefits derived from their use. 13 figs

  5. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  6. DOENEWS: Address of John S. Herrington, Secretary of Energy, at the National symposium on the superconducting super collider in Denver, Colorado, December 3, 1987

    International Nuclear Information System (INIS)

    Herrington, J.S.

    1987-12-01

    In this address, the President's support for basic science is briefly discussed, and support for the Superconducting Super Collider in particular is emphasized. Perceived benefits of the Super Collider are discussed, including benefits to the world, training for scientists, maintaining American competitiveness. Federal support of science, including Congressional action, is discussed briefly

  7. Systems engineering at the Superconducting Super Collider (one year later)

    International Nuclear Information System (INIS)

    Nonte, J.

    1991-03-01

    After one year of systems engineering at the Superconducting Super Collider (SSC), the project baseline of costs, schedule milestones, and top-level (point design) physics parameters has been accepted by the Department of Energy (DOE). This paper describes the role of systems engineering in developing the baseline and in establishing requirements specifications, change control, and methods of tracking to a baseline. The differences between the Department of Defense and DOE--specifically at the SSC Laboratory (SSCL)--in application of systems engineering disciplines and tools are discussed. The aim of the paper is to inform participating industries of the anticipated requirements format and of the emphasis that will be placed on physics requirements as opposed to procedures. Industry subcontractors should have a better understanding of the systems engineering expected by the SSCL. 3 figs

  8. Development of the SSC [Superconducting Super Collider] trim coil beam tube assembly

    International Nuclear Information System (INIS)

    Skaritka, J.; Kelly, E.; Schneider, W.

    1987-01-01

    The Superconducting Super Collider uses ≅9600 dipole magnets. The magnets have been carefully designed to exhibit minimal magnetic field harmonics. However, because of superconductor magnetization effects, iron saturation and conductor/coil positioning errors, certain harmonic errors are possible and must be corrected by use of multipole correctors called trim coils. For the most efficient use of axial space in the magnet, and lowest possible current, a distributed internal correction coil design is planned. The trim coil assembly is secured to the beam tube, a uhv tube with special strength, size, conductivity and vacuum. The report details the SSC trim coil/beam tube assembly specifications, history, and ongoing development

  9. Fierce debate looms over funding of superconducting super collider

    International Nuclear Information System (INIS)

    Lepkowski, W.

    1988-01-01

    The coming session of Congress looks like a crucial one in the present era of Big Science. Legislators will have to decide on whether to go ahead and approve construction funding for the biggest atom smasher of all time, the Superconducting Super Collider (SSC). The Administration will be asking for about $230 million (out of a scheduled $350 million) to begin work. But uncertainties loom, and the debate ahead looks bloody. The SSC is a project the Department of Energy says will cost $4.4 billion in fiscal 1988 dollars, rated according to a targeted completion date in 1996. The General Accounting Office pegs the cost at $4.9 billion in 1985 dollars. In inflationary and project stretchout dollars, the figure could easily double. But money for science is again tight in the government, and battles that lie ahead involve the competition between science and social programs, and, indeed, between the sciences themselves. This article discusses these battles

  10. SSC [Superconducting Super Collider] site evaluations

    International Nuclear Information System (INIS)

    1988-11-01

    With this report, the SSC Site Task Force forwards to the Director, Office of Energy Research, US Department of Energy (DOE), its evaluation of the technical criteria and life-cycle costs for the proposed SSC sites judged to be the best qualified. The criteria against which each site was evaluated are those set forth in the Invitation for Site Proposals for the Superconducting Super Collider (DOE/ER-0315) (Invitation) which was prepared by the Task Force and issued in April 1987. The methodology followed by the Task Force in this report and in all other phases of the proposal evaluation has been consistent with the SSC site selection process approved by DOE's Energy System Acquisition Advisory Board (ESAAB). The goal of the site selection process is to identify a site that will permit the highest level of research productivity and overall effectiveness of the SSC at a reasonable cost of construction and operation and with minimial impact on the environment. The Task Force acknowledges that all seven sites are, indeed, highly qualified locations for the construction and operation of the SSC on the basis of technical and cost considerations. In performing its evaluation, which is presented in this paper, the Task Force took an in-depth look at each site on the basis of site visits and extensive technical analyses. A consensus rating for each technical evaluation criterion and subcriterion was developed for each site

  11. 3D calculations of the Superconducting Super Collider (SSC) 3 Tesla magnet

    International Nuclear Information System (INIS)

    Lari, R.J.

    1984-01-01

    A 20 TeV Superconducting Super Collider (SSC) proton accelerator is being proposed by the High Energy Physics Community. One proposal would consist of a ring of magnets 164 km in circumference with a field strength of 3 Tesla and would cost 2.7 billion dollars. The magnet consists of stacked steel laminations with superconducting coils. The desired field uniformity is obtained for all fields from 0.2 to 3 Tesla by using three (or more) different pole shapes. These three different laminations are stacked in the order 1-2-3-1-2-3-... creating a truly three dimensional geometry. A three laminated stack 1-2-3 with periodic boundary conditions at 1 and 3 was assigned about 5000 finite elements per lamination and solved using the computer program TOSCA. To check the TOSCA results, the field of each of the three different shaped laminations was calculated separately using periodic boundary conditions and compared to the two dimensional field calculations using TRIM. This was done for a constant permeability of 2000 and using the B-H table for fully annealed 1010 steel. The difference of the field calculations in the region of interest was always less than +-.2%

  12. RF system for the super conducting proton linac

    International Nuclear Information System (INIS)

    Touchi, Y.

    2001-01-01

    In this paper, we introduce the several types of RF sources used for proton liner accelerators. Also we discus the undesirable characteristics of super-conducting cavities, and the influence of the large beam loading for an accelerating field. We propose the RF system for the super-conducting proton linear accelerators using the Diacrode or IOT taking these effects into account. (author)

  13. Construction of cold mass assembly for full-length dipoles for the SSC [Superconducting Super Collider] accelerator

    International Nuclear Information System (INIS)

    Dahl, P.; Cottingham, J.; Garber, M.

    1986-10-01

    Four of the initial six 17m long demonstration dipole magnets for the proposed Superconducting Super Collider have been constructed, and the first one is now being tested. This paper describes the magnet design and construction of the cold mass assembly. The magnets are cold iron (and cold bore) 1-in-1 dipoles, wound with partially keystoned current density-graded high homogeneity NbTi cable in a two-layer cos θ coil of 40 mm inner diameter. The magnetic length is 16.6 m. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported by a cylindrical yoke (and helium) containment vessel of stainless steel. The magnet bore tube assembly incorporates superconducting sextupole trim coils produced by an industrial, automatic process akin to printed circuit fabrication

  14. Test results from recent 1.8-m SSC [Superconducting Super Collider] model dipoles

    International Nuclear Information System (INIS)

    Wanderer, P.; Cottingham, J.G.; Dahl, P.

    1988-01-01

    We report results from four 1.8 m-long dipoles built as part of the Superconducting Super Collider (SSC) RandD program. Except for length, these models have the features of the SSC design, which is based on a two-layer cosine theta coil with 4 cm aperture. As compared to the 17 m design length SSC dipoles, these 1.8 m magnets are a faster and more economical way of testing design changes in field shape, conductor support in the coil straight-section and ends, etc. The four magnets reported here all reach fields in excess of 7.5T with little training and have excellent field shape. 10 refs., 2 figs., 3 tabs

  15. Baking system for ports of experimental advanced super-conducting tokamak vacuum vessel and thermal stress analysis

    International Nuclear Information System (INIS)

    Cheng Yali; Bao Liman; Song Yuntao; Yao Damao

    2006-01-01

    The baking system of Experimental Advanced Super-Conducting Toakamk (EAST) vacuum vessel is necessary to obtain the baking temperature of 150 degree C. In order to define suitable alloy heaters and achieve their reasonable layouts, thermal analysis was carried out with ANSYS code. The analysis results indicate that the temperature distribution and thermal stress of most parts of EAST vacuum vessel ports are uniform, satisfied for the requirement, and are safe based on ASME criterion. Feasible idea on reducing the stress focus is also considered. (authors)

  16. An experimental study of the SSC [Superconducting Super Collider] magnet aperture criterion

    International Nuclear Information System (INIS)

    Merminga, N.; Edwards, D.; Finley, D.

    1988-01-01

    A beam dynamics experiment, performed in the Fermilab Tevatron, that was mainly motivated by planning for the Superconducting Super Collider (SSC) is described. Nonlinearities are introduced in the Tevatron by special sextupoles in order to stimulate the SSC environment. ''Smear'' is one of the parameters used to characterize the deviation from linear behavior. Smear is extracted from experimental data and compared with calculation over a wide range of conditions. The agreement is excellent. The closed orbit at injection trajectory reveal no deterioration even at the highest sextupole excitations. Measurements of the dynamic aperture are in general agreement with prediction. Particles captured on nonlinear resonance islands are directly observed and measurements are performed for the first time. The stability of the islands under tune modulation is investigated. 4 refs., 8 figs

  17. Tunnel visions the rise and fall of the Superconducting Super Collider

    CERN Document Server

    Riordan, Michael; Kolb, Adrienne W

    2015-01-01

    Starting in the 1950s, US physicists dominated the search for elementary particles; aided by the association of this research with national security, they held this position for decades. In an effort to maintain their hegemony and track down the elusive Higgs boson, they convinced President Reagan and Congress to support construction of the multibillion-dollar Superconducting Super Collider project in Texas-the largest basic-science project ever attempted. But after the Cold War ended and the estimated SSC cost surpassed ten billion dollars, Congress terminated the project in October 1993. Drawing on extensive archival research, contemporaneous press accounts, and over one hundred interviews with scientists, engineers, government officials, and others involved, Tunnel Visions tells the riveting story of the aborted SSC project. The authors examine the complex, interrelated causes for its demise, including problems of large-project management, continuing cost overruns, and lack of foreign contributions. In doi...

  18. Thermal performance measurements of a graphite tube compact cryogenic support for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Larson, E.T.; Nicol, T.H.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.

    1988-12-01

    The magnet cryostat development program for the Superconducting Super Collider (SSC) High Energy Physics Proton-Proton Collider has produced an innovative design for the structural support of the cold mass and thermal radiation shields. This work updates the continuing development of the support known as the Compact Cryogenic Support (CCS). As the structural and thermal requirements of the SSC became better defined, a CCS was developed that employs an innermost tube comprised of a graphite composite material. Presented is the thermal performance to 4.5K of the graphite CCS model. 8 refs., 6 figs., 2 tabs

  19. Superconducting Super Collider: Final environmental impact statement: Volume 1

    International Nuclear Information System (INIS)

    1988-12-01

    This Environmental Impact Statement (EIS) provides as much information as possible at this stage of the project development regarding the potential environmental impacts of the proposed construction and operation of a Superconducting Super Collider (SSC) at each of the site alternatives. However, the DOE recognizes that further review under the National Environmental Policy Act (NEPA) is required prior to construction and operation of the proposed SSC project at the selected site based on more detailed design and to identify specific mitigation measures which can be incorporated into final design. Accordingly, following selection of a site for the proposed SSC, the DOE will prepare a Supplemental EIS to address in more detail the impacts of constructing and operating the proposed SSC at the selected site and alternatives for mitigating those impacts. To measure the effects of constructing the SSC at any of the seven alternative sites, the DOE determined which aspects of the human environment would be significantly affected. The EIS describes the baseline conditions at each of the seven site alternatives, the trends underway resulting in changes, the potential environmental impacts expected if the SSC were sited, possible mitigations of adverse impacts, and resulting residual adverse impacts

  20. Manufacturing of superconductive silver/ceramic composites

    DEFF Research Database (Denmark)

    Seifi, Behrouz; Bech, Jakob Ilsted; Eriksen, Morten

    2000-01-01

    Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium, and cop......Manufacturing of superconducting metal/ceramic composites is a rather new discipline within materials forming processes. High Temperature SuperConductors, HTSC, are manufactured applying the Oxide-Powder-In-Tube process, OPIT. A ceramic powder containing lead, calcium, bismuth, strontium...

  1. An aerial radiological survey of the Superconducting Super Collider Laboratory and surrounding area, Waxahachie, Texas

    International Nuclear Information System (INIS)

    Fritzsche, A.E.

    1993-02-01

    An aerial radiological survey was conducted over the Superconducting Super Collider Laboratory (SSCL) site from July 22 through August 20,1991. Parallel lines were flown at intervals of 305 meters over a 1,036-square-kilometer (400-square-mile) area surrounding Waxahachie, Texas. The 70,000 terrestrial gamma energy spectra obtained were reduced to an exposure rate contour map overlaid on a United States Geological Survey (USGS) map of the area. The mean terrestrial exposure rate measured was 5.4 μR/h at 1 meter above ground level. Comparison to ground-based measurements shows good agreement. No anomalous or man-made isotopes were detected

  2. The modified high-energy transport code, HETC, and design calculations for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Alsmiller, R.G. Jr.; Alsmiller, F.S.; Gabriel, T.A.; Hermann, O.W.; Bishop, B.L.

    1988-01-01

    The proposed Superconducting Super Collider (SSC) will have two circulating proton beams, each with an energy of 20 TeV. In order to perform detector and shield design calculations at these higher energies that are as accurate as possible, it is necessary to incorporate in the calculations the best available information on differential particle production from hadron-nucleus collisions. In this paper, the manner in which this has been done in the High-Energy Transport Code HETC will be described and calculated results obtained with the modified code will be compared with experimental data. 10 refs., 1 fig

  3. A Concept for the Use and Integration of Super-Conducting Magnets in Structural Systems in General and Maglev Guideway Mega-Structures in Particular

    Science.gov (United States)

    Ussery, Wilfred T.; MacCalla, Eric; MacCalla, Johnetta; Elnimeiri, Mahjoub; Goldsmith, Myron; Polk, Sharon Madison; Jenkins, Mozella; Bragg, Robert H.

    1996-01-01

    Recent breakthroughs in several different fields now make it possible to incorporate the use of superconducting magnets in structures in ways which enhance the performance of structural members or components of structural systems in general and Maglev guideway mega-structures in particular. The building of structural systems which connect appropriately scaled superconducting magnets with the post-tensioned tensile components of beams, girders, or columns would, if coupled with 'state of the art' structure monitoring, feedback and control systems, and advanced computer software, constitute a distinct new generation of structures that would possess the unique characteristic of being heuristic and demand or live-load responsive. The holistic integration of powerful superconducting magnets in structures so that they do actual structural work, creates a class of 'technologically endowed' structures that, in part - literally substitute superconductive electric power and magnetism for concrete and steel. The research and development engineering, and architectural design issues associated with such 'technologically endowed' structural system can now be conceptualized, designed, computer simulates built and tested. The Maglev guideway mega-structure delineated herein incorporates these concepts, and is designed for operation in the median strip of U.S. Interstate Highway 5 from San Diego to Seattle an Vancouver, and possibly on to Fairbanks, Alaska. This system also fits in the median strip of U.S. Interstate Highway 55 and 95 North-South, and 80 and 10, East-West. As a Western Region 'Peace Dividend' project, it could become a National or Bi-National research, design and build, super turnkey project that would create thousands of jobs by applying superconducting, material science, electronic aerospace and other defense industry technologies to a multi-vehicle, multi-use Maglev guideway megastructure that integrates urban mass transit Lower Speed (0-100 mph), High Speed

  4. Thermal performance measurements of a 100 percent polyester MLI [multilayer insulation] system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-09-01

    The plastic materials used in the multilayer insulation (MLI) blankets of the superconducting magnets of the Superconducting Super Collider (SSC) are comprised entirely of polyesters. This paper reports on tests conducted in three separate experimental blanket arrangements. The tests explore the thermal performance of two candidate blanket joint configurations each employing a variation of a stepped-butted joint nested between sewn blanket seams. The results from the joint configurations are compared to measurements made describing the thermal performance of the basic blanket materials as tested in an ideal joint configuration. Twenty foil sensors were incorporated within each test blanket to measure interstitial layer and joint layer temperatures. Heat flux and thermal gradients are reported for high and degraded insulating vacuums, and during transient and steady state conditions. In complement with this paper is an associate paper bearing the same title head but with the title extension 'Part 1: Instrumentation and experimental preparation (300K-80K)'. 5 refs., 8 figs., 2 tabs

  5. The first tunnel section of the Superconducting Super Collider project

    International Nuclear Information System (INIS)

    Lundin, T.K.; Laughton, C.; Nelson, P.P.

    1990-11-01

    The Superconducting Super Collider (SSC) project will be constructed for the United States Department of Energy at a competitively-selected site in Ellis County, Texas, about 30 mile (50 km) south of the central business district of Dallas. The injector system and main collider ring will be housed in 70 mile (110 km) of tunnel, and the project will include additional shafts and underground enclosures with clear spans up to 30 ft (10 m) at depths of more than 250 ft (75 m). The first tunnel segment to be designed and constructed will include approximately 5.9 mile (9.4 km) of 12 ft (3.7 m) finished internal diameter tunnel, four shafts up to 55 ft (16.8 m) diameter, and various connecting tunnels and adits. Construction will be in weak rock lithologies, including mudstones, marls, and chalks with compressive strengths typically between 300 and 2500 psi (2.0 and 17.2 MPa). Design is underway, with an expected bid date before the end of 1990, and with start of construction following in the spring of 1991. 7 refs., 8 figs., 1 tab

  6. Conceptual & Engineering Design of Plug-in Cryostat Cylinder for Super-Conducting Central Solenoid of SST-1

    Science.gov (United States)

    Biswas, Prabal; Santra, Prosenjit; Vasava, Kirit; Jayswal, Snehal; Parekh, Tejas; Chauhan, Pradeep; Patel, Hitesh; Pradhan, Subrata

    2017-04-01

    SST-1, country’s first indigenously built steady state super-conducting tokamak is planned to be equipped with an Nb3Sn based superconducting central solenoid, which will replace the existing copper conductor TR1 coil for the purpose of Ohmic breakdown. This central solenoid (CS) of four layers with each layer having 144 turns with an OD of 573 mm, ID of 423 mm length of 2483 mm will be housed inside a high vacuum, CRYO compatible plug-in cryostat thin shell having formed from SS 304L plate duly rolled and welded to form cylinder along with necessary accessories like LN2 bubble panel, current lead chamber, coil and cylinder support structure etc. This paper will present the design drivers, material selection, advantages and constraints of the plug-in cryostat concept, sub-systems of plug-in cryostat, its conceptual and engineering design, CAD models, finite element analysis using ANSYS, safety issues and diagnostics, on-going works about fabrication, quality assurance/control and assembly/integration aspects with in the existing SST-1 machine bore.

  7. First Ideas Towards the Super-Conducting Magnet Design for the HESR at FAIR

    CERN Document Server

    Eichhorn, Ralf; Gussen, Achim; Martin, Siegfried

    2005-01-01

    The Forschungszentrum Juelich has taken the leadership of a consortium being responsible for the design of the HESR going to be part of the FAIR project at GSI. The HESR is a 50 Tm storage ring for antiprotons, based on a super-conducting magnet technology. On basis of the RHIC Dipole D0 (3.6 T), the magnet design for the HESR has started recently. One key issue will be a very compact layout because of the rather short magnets (been 1.82 m for the dipoles and 0.5 m for the other magnets). This paper will present first ideas of the magnetic and cryogenic layout, give a status report on the achievements so far and discuss the need and possible solutions for a bent magnet with a radius of curvature of 13.2 m.

  8. Development of a super high speed railway and ML 100

    Energy Technology Data Exchange (ETDEWEB)

    Usami, Y

    1973-07-01

    A history of the development progress is given, followed by a discussion of the propulsion system for a super high speed railway-structure. Induction linear motors and synchronous linear motors are discussed in some detail. The maintenance system is then described (basic test apparatus-rotary type superconductive magnetic force maintenance system, etc.). Experiments using a linear running superconductive magnetic test car are discussed. Developments of super high speed railways in America, France, England, West Germany, etc. are described.

  9. The adoption of mechanized excavation techniques for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Laughton, C.; Nelson, P.; Lundin, T.

    1991-01-01

    The Superconducting Super Collider (SSC) is the latest and largest in a line of high-energy physics accelerator projects. The five increasingly energetic accelerators which make up the physics laboratory complex are to be housed almost entirely in subsurface structures, which will include over 100 km of small-diameter tunnel. Among other reasons, the Texas SSC site was chosen from a set of state proposals because of the suitability of the host rock materials for the performance of rapid and efficient excavation work. This site bedrock units are relatively soft and homogeneous and should allow for a maximum use of mechanical excavation plant for the various underground openings. This paper will review the site conditions and describe the developed understanding of geologic material behavior. With completion of planned large-scale in-situ studies of the ground behavior to provide acquisition of early site-specific excavation data, final design and construction detail of critical structures can be undertaken with the necessary degree of confidence to satisfy the stringent performance requirements. 5 refs., 4 figs., 6 tabs

  10. Building the Superconducting Super Collider, 1989-1993: The Problem of Project Management

    Science.gov (United States)

    Riordan, Michael

    2011-04-01

    In attempting to construct the Superconducting Super Collider, US particle physicists faced a challenge unprecedented in the history of science. The SSC was the biggest and costliest pure scientific project ever, comparable in overall scale to the Manhattan Project or the Panama Canal - an order of magnitude larger than any previous particle accelerator or collider project. Managing such an enormous endeavor involved coordinating conventional-construction, magnet-manufacturing, and detector-building efforts costing over a billion dollars apiece. Because project-management experience at this scale did not exist within the physics community, the Universities Research Association and the US Department of Energy turned to companies and individuals from the military-industrial complex, with mixed results. The absence of a strong, qualified individual to serve as Project Manager throughout the duration of the project was a major problem. I contend that these problems in its project management contributed importantly to the SSC's 1993 demise. Research supported by NSF Award No. 823296.

  11. Superconducting Super Collider Laboratory coupled-cavity linac mechanical design

    International Nuclear Information System (INIS)

    Starling, W.J.; Cain, T.

    1992-01-01

    A collaboration between the Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) for the engineering and mechanical design of the SSCL Coupled-Cavity Linac (CCL) has yielded an innovative example of the well known side coupled-cavity type of linear accelerator. The SSCL CCL accelerates an H - beam from 70 MeV to 600 MeV with an rf cavity structure consisting of eight tanks in each of nine modules for a total length of about 112 meters. Magnetically-coupled bridge couplers transfer power from tank to tank within a module. A single rf power input is located at the center bridge coupler of each module. The bridge couplers permit placement along the beam line of combined function focusing/steering electromagnets and diagnostic pods for beam instrumentation. Each tank and bridge coupler is rf frequency stabilized, nominally to 1,283 MHz, by water pumped through integral water passages. Air isolation grooves surround the water passages at each braze joint so that water-to-vacuum interfaces are avoided. Each tank is supported by adjustable spherical bearing rod end struts to permit alignment and accommodate thermal expansion and contraction of the rf structure. Tank struts, electromagnet/diagnostic pod support frames, vacuum manifolds and utilities are all mounted to a girder-and-leg support stand running the full length of the CCL. (Author) tab., fig

  12. Performance of six 4.5 m SSC [Superconducting Super Collider] dipole model magnets

    International Nuclear Information System (INIS)

    Willen, E.; Dahl, P.; Cottingham, J.

    1986-01-01

    Six 4.5 m long dipole models for the proposed Superconducting Super Collider have been successfully tested. The magnets are cold-iron (and cold bore) 1-in-1 dipoles, wound with current density-graded high homogeneity NbTi cable in a two-layer cos θ coil of 40 mm inner diameter. The coil is prestressed by 15 mm wide stainless steel collars, and mounted in a circular, split iron yoke of 267 mm outer diameter, supported in a cylindrical yoke containment vessel. At 4.5 K the magnets reached a field of about 6.6 T with little training, or the short sample limit of the conductor, and in subcooled (2.6 - 2.4 K) liquid, 8 T was achieved. The allowed harmonics were close to the predicted values, and the unallowed harmonics small. The sextupole trim coil operated well above the required current with little training

  13. Design of the multilayer insulation system for the Superconducting Super Collider 50mm dipole cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Schoo, C.J.

    1991-03-01

    The development of the multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) 50 mm collider dipole cryostat is an ongoing extension of work conducted during the 40 mm cryostat program. While the basic design of the MLI system for the 50 mm cryostat resembles that of the 40 mm cryostat, results from measurements of MLI thermal performance below 80K have prompted a re-design of the MLI system for the 20K thermal radiation shield. Presented is the design of the MLI system for the 50 mm collider dipole cryostat, with discussion focusing on system performance, blanket geometry, cost-effective fabrication techniques, and built-in quality control measures that assure consistent thermal performance throughout the SSC accelerator. 16 refs., 8 figs., 2 tabs

  14. Cooldown of superconducting magnet strings

    International Nuclear Information System (INIS)

    Yuecel, A.; Carcagno, R.H.

    1995-01-01

    A numerical model for the cooldown of the superconducting magnet strings in the Accelerator System String Test (ASST) Facility at the Superconducting Super Collider (SSC) Laboratory is presented. Numerical results are compared with experimental data from the ASST test runs. Agreement between the numerical predictions and experiments is very good over the entire range from room temperature to liquid helium temperatures. The model can be readily adapted to predict the cooldown and warmup behavior of other superconducting magnets or cold masses

  15. Status of superconducting magnet development (SSC, RHIC, LHC)

    International Nuclear Information System (INIS)

    Wanderer, P.

    1993-01-01

    This paper summarizes recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hardon Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plans are also presented

  16. Status of superconducting magnet development (SSC, RHIC, LHC)

    International Nuclear Information System (INIS)

    Wanderer, P.

    1993-01-01

    This paper summarize recent superconducting accelerator magnet construction and test activities at the Superconducting Super Collider Laboratory (SSC), the Large Hadron Collider at CERN (LHC), and the Relativistic Heavy Ion Collider at Brookhaven (RHIC). Future plan are also presented

  17. Design and results of the radio frequency quadrupole RF system at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Grippe, J.; Marsden, E.; Marrufo, O.; Regan, A.; Rees, D.; Ziomek, C.

    1993-05-01

    The Superconducting Super Collider Laboratory (SSCL) and the Los Alamos National Laboratory (LANL) entered into a joint venture to design and develop a 600 kW amplifier and its low-level controls for use in the Radio-Frequency Quadrupole (RFQ) accelerating cavity of the SSC. The design and development work has been completed. After being tested separately, the high power amplifier and low level RF control system were integrated and tested on a test cavity. Results of that tests are given. Tests were then carried out on the actual RFQ with and without the presence of the accelerated beam. Results of these tests are also given, along with the phase and amplitude information

  18. Application of system safety engineering techniques for hazard prevention at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Hendrix, B.L.

    1991-01-01

    A primary goal of the Superconducting Super Collider Laboratory (SSCL) is to establish an exemplary safety program. Achieving this goal requires leadership, planning, coordination, and technical know-how. To ensure that safety is an inherent part of the design, the Environment, Safety and Health Office employs a systems engineering discipline and process known as System Safety. The goal of System Safety - hazard prevention - is accomplished by analyzing systems to identify hazards and to evaluate design and procedural options and countermeasures to prevent, eliminate, mitigate, or control hazards and risks. Establishment of safety and human factors design criteria at the outset of the project prevents unsafe designs and safety violations, reduces risks, and helps in avoiding costly design changes later. This process requires a considerable amount of coordination with a variety of technical disciplines and safety professionals to integrate methods of hazard prevention, mitigation, and risk reduction throughout the system life-cycle

  19. Color superconductivity, ZN flux tubes and monopole confinement in deformed N=2* super Yang-Mills theories

    International Nuclear Information System (INIS)

    Kneipp, Marco A.C.

    2003-11-01

    We study the ZN flux tubes and monopole confinement in deformed N=2* super Yang-Mills theories. In order to do that we consider an N=4 super Yang-Mills theory with an arbitrary gauge group G and add some N=2, N=1 and N=0 deformation terms. We analyze some possible vacuum solutions and phases of the theory, depending on the deformation terms which are added. In the Coulomb phase for the N=2* theory, G is broken to U(1)r and the theory has monopole solutions. Then, by adding some deformation terms, the theory passes to the Higgs or color superconducting phase, in which G is broken to its center CG. In this phase we construct the ZN flux tubes Ansatz and obtain the BPS string tension. We show that the monopole magnetic fluxes are linear integer combinations of the string fluxes and therefore the monopoles can become confined. Then, we obtain a bound for the threshold length of the string-breaking. We also show the possible formation of a confining system with 3 different monopoles for the SU(3) gauge group. Finally we show that the BPS string tensions of the theory satisfy the Casimir scaling law. (author)

  20. FPGA-based quench detection system for super-FRS super-ferric dipole prototype

    International Nuclear Information System (INIS)

    Yang Tongjun; Wu Wei; Yao Qinggao; Yuan Ping; He Yuan; Han Shaofei; Ma Lizhen

    2011-01-01

    The quench detection system for Super-FRS super-ferric dipole prototype magnet of FAIR has been designed and built. The balance bridge was used to detect quench signal. In order to avoid blind zone of quench detection, two independent bridges were used. NI PXI-7830R FPGA was used to implement filter to quench signal and algorithm of quench decision and to produce quench trigger signal. Pre-sample technique was used in quench data acquisition. The data before and after quench could be recorded for analysis later. The test result indicated that the quench of the dipole's superconducting coil could be reliably detected by the quench detection module. (authors)

  1. Superconducting superlattices. Les super reseaux de supraconducteurs

    Energy Technology Data Exchange (ETDEWEB)

    Triscone, J M; Fischer, O [Geneva Univ. (Switzerland)

    1993-03-01

    By piling up ultra-thin layers of discrete materials, physicists now have a choice method for the study of superconductivity at high temperature. These superlattices are prepared by successive layers of YBaCuO and PrBaCuO deposited by cathode sputtering to study the variation of superconductivity with layer thickness. The transition temperature decreases rapidly when the distance between two layers increases. Current vortices are created, without a magnetic field, widening the transition temperature. The variation of resistivity near critical temperature in a magnetic field shows that the energy required to displace vortices is increasing with the thickness of the YBaCuO layer, with thin layers anisotropy is high and energy dissipation is important. (G.R.). refs., figs.

  2. Accelerators and superconductivity: A marriage of convenience

    International Nuclear Information System (INIS)

    Wilson, M.

    1987-01-01

    This lecture deals with the relationship between accelerator technology in high-energy-physics laboratories and the development of superconductors. It concentrates on synchrotron magnets, showing how their special requirements have brought about significant advances in the technology, particularly the development of filamentary superconducting composites. Such developments have made large superconducting accelerators an actuality: the Tevatron in routine operation, the Hadron Electron Ring Accelerator (HERA) under construction, and the Superconducting Super Collider (SSC) and Large Hadron Collider (LHC) at the conceptual design stage. Other applications of superconductivity have also been facilitated - for example medical imaging and small accelerators for industrial and medical use. (orig.)

  3. 2008 LHC Open Days: Super(-conducting) events and activities

    CERN Multimedia

    2008-01-01

    Superconductivity will be one of the central themes of the programme of events and discovery activities of the forthcoming LHC Open Days on 5 and 6 April. Visitors will be invited to take part in a range of activities, experiments and exchanges all about this amazing aspect of the LHC project. Why superconductivity? Simply because it’s the principle on which the very operation of the LHC is based. At the heart of the LHC magnets lie 7000 kilometres of superconducting cables, each strand containing between 6000 and 9000 filaments of the superconducting alloy niobium-titanium in a copper coating. These cables, cooled to a temperature close to absolute zero, are able to conduct electricity without resistance. 12000 amp currents - an intensity some 30000 times greater than that of a 100 watt light bulb - pass through the cables of the LHC magnets.   Programme:   BLDG 163 (Saturday 5 and Sunday 6 April): See weird and wonderful experiments with your own eyes In the workshop where the 2...

  4. Manufacture of keystoned flat superconducting cables for use in SSC [Superconducting Super Collider] dipoles

    International Nuclear Information System (INIS)

    Royet, J.; Scanlan, R.M.

    1986-09-01

    The superconducting magnets used in the construction of particle accelerators are mostly built from flat, multistrand cables with rectangular or keystoned cross sections. In this paper we will emphasize the differences between the techniques for cabling conventional wires for cabling superconducting wires. Concepts for the tooling will be introduced. The effects of cabling parameters on critical current degradation are being evaluated in collaboration with NBS-Boulder

  5. Report of the Department of Energy (DOE) Office of Energy Research Review Committee on the site-specific conceptual design of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1990-09-01

    After it was established in early 1989, the Superconducting Super Collider Laboratory (SSCL) began to prepare a detailed site-specific SSC conceptual design, including cost and schedule estimates. As detailed in the SSC Site-Specific Conceptual Design Report (SCDR), this design builds upon the design in the March 1986 SSC Conceptual Design Report (CDR) and takes into account characteristics of the SSC site, results of continuing magnet R ampersand D, and advances in accelerator design

  6. Teledyne's historical contribution to developing superconductivity

    International Nuclear Information System (INIS)

    McDonald, W.K.

    1986-01-01

    Of the contributions made to superconductivity by Teledyne Wah Change Albany (TWCA), two have been outstanding. The first is the establishment of a stable and low cost NbTi alloy. Estimates of cost savings passed along to conductor manufacturers and, subsequently, to the applications of superconductivity range between $24,000,000 and $31,000,000 over the years from 1980 to present. Secondly, TWCA has understood the necessity of cooperating with the scientific community in order to understand critical relationships of metallurgy to superconductivity characteristics. The knowledge gained is integrated into alloy production on a commercial basis. The most notable example is the recent increase in current density prospects for the proposed Superconducting Super Collider

  7. Superconducting Super Collider silicon tracking subsystem research and development

    International Nuclear Information System (INIS)

    Miller, W.O.; Thompson, T.C.; Ziock, H.J.; Gamble, M.T.

    1990-12-01

    The Alamos National Laboratory Mechanical Engineering and Electronics Division has been investigating silicon-based elementary particle tracking device technology as part of the Superconducting Super Collider-sponsored silicon subsystem collaboration. Structural, materials, and thermal issues have been addressed. This paper explores detector structural integrity and stability, including detailed finite element models of the silicon wafer support and predictive methods used in designing with advanced composite materials. The current design comprises a magnesium metal matrix composite (MMC) truss space frame to provide a sparse support structure for the complex array of silicon detectors. This design satisfies the 25-μm structural stability requirement in a 10-Mrad radiation environment. This stability is achieved without exceeding the stringent particle interaction constraints set at 2.5% of a radiation length. Materials studies have considered thermal expansion, elastic modulus, resistance to radiation and chemicals, and manufacturability of numerous candidate materials. Based on optimization of these parameters, the MMC space frame will possess a coefficient of thermal expansion (CTE) near zero to avoid thermally induced distortions, whereas the cooling rings, which support the silicon detectors and heat pipe network, will probably be constructed of a graphite/epoxy composite whose CTE is engineered to match that of silicon. Results from radiation, chemical, and static loading tests are compared with analytical predictions and discussed. Electronic thermal loading and its efficient dissipation using heat pipe cooling technology are discussed. Calculations and preliminary designs for a sprayed-on graphite wick structure are presented. A hydrocarbon such as butane appears to be a superior choice of heat pipe working fluid based on cooling, handling, and safety criteria

  8. Superconductivity in the 1990's

    International Nuclear Information System (INIS)

    Stekly, Z.J.J.

    1990-01-01

    Superconducting magnets, coils or windings are the basis for a range of major applications in the energy area such as energy storage in superconducting coils, magnets for fusion research, and rotating machinery. Other major applications of superconductivity include high energy physics where 1000 superconducting magnets are operated continuously in the Tevatron at Fermilab in Illinois, over 12,000 superconducting magnets will be required for the superconducting Super Collider being build near Dallas. The largest commercial application of superconductors is in magnets for magnetic resonance imaging (MRI) - a new medical diagnostic imaging technique with about 2,000 systems installed worldwide. These form a sizable technology base on which to evaluate and push forward applications such as magneto hydrodynamic propulsion of seagoing vessels. The attractiveness of which depends ultimately on the characteristics of the superconducting magnet. The magnet itself is a combination of several technology areas - the conductors, magnetics, structures and cryogenics. This paper reviews state-of-the-art in each of the technology areas as they relate to superconductors

  9. A Bridge Too Far: The Demise of the Superconducting Super Collider, 1989-1993

    Science.gov (United States)

    Riordan, Michael

    2015-04-01

    In October 1993 the US Congress terminated the Superconducting Super Collider -- at over 10 billion the largest and costliest basic-science project ever attempted. It was a disastrous loss for the nation's once-dominant high-energy physics community, which has been slowly declining since then. With the 2012 discovery of the Higgs boson at CERN's Large Hadron Collider, Europe has assumed world leadership in this field. A combination of fiscal austerity, continuing SSC cost overruns, intense Congressional scrutiny, lack of major foreign contributions, waning Presidential support, and the widespread public perception of mismanagement led to the project's demise nearly five years after it had begun. Its termination occurred against the political backdrop of changing scientific needs as US science policy shifted to a post-Cold War footing during the early 1990s. And the growing cost of the SSC inevitably exerted undue pressure upon other worthy research, thus weakening its support in Congress and the broader scientific community. As underscored by the Higgs boson discovery, at a mass substantially below that of the top quark, the SSC did not need to collide protons at 40 TeV in order to attain its premier physics goal. The selection of this design energy was governed more by politics than by physics, given that Europeans could build the LHC by eventually installing superconducting magnets in the LEP tunnel under construction in the mid-1980s. In hindsight, there were good alternative projects the US high-energy physics community could have pursued that did not involve building a gargantuan, multibillion-dollar machine at a green-field site in Texas. Research supported by the National Science Foundation, Department of Energy, and the Richard Lounsbery Foundation.

  10. Technical assessment of environmental and cost implications of superconducting super collider decommissioning

    International Nuclear Information System (INIS)

    Chen, S.Y.; Opelka, J.H.; Chambers, W.C.; Stavrou, J.

    1988-07-01

    Potential environmental and cost implications of decommissioning the proposed Superconducting Super Collider (SSC) are examined. One decommissioning alternative is selected for general assessment. That alternative includes removal of the major sources of radioactivity induced during operation and temporary entombment of remaining underground facilities. On the suface, the campus complex would be left in place for future use, but most other aboveground features would be dismantled and removed. Because of the low level of radioactivity that would be induced in SSC components during system operation, potential radiological impacts to the environment from decommissioning would be benign, and the estimated total occupational radiation dose to workers would be less that 5 person-rem. Potential nonradiological impacts of decommissioning are not evaluated because of the lack of site-specific data. The total estimated cost of decommissioning operations is $38 million. Although few current regulations are explicitly applicable, the SSC decommissioning operation should not encounter any difficulty in complying with potentially applicable regulatory constraints. Upon completion of decommissioning, the SSC site surface could be returned to unrestricted use, but it is recommended that a degree of institutional control and environmental monitoring be carried out for a short period following decommissioning. 11 refs., 8 figs., 6 tabs

  11. Dynamic modeling and simulation of the superconducting super collider cryogenic helium system

    International Nuclear Information System (INIS)

    Hartzog, D.G.; Fox, V.G.; Mathias, P.M.; Nahmias, D.; McAshan, M.; Carcagno, R.

    1989-01-01

    To study the operation of the Superconducting Super Collider (SSC) cryogenic system during transient operating conditions, they have developed and programmed in FORTRAN, a time-dependent, nonlinear, homogeneous, lumped-parameter simulation model of the SSC cryogenic system. This dynamic simulator has a modular structure so that process flowsheet modifications can be easily accommodated with minimal recoding. It uses the LSODES integration package to advance the solution in time. For helium properties it uses Air Products implementation of the standard thermodynamic model developed by the NBS. Two additional simplified helium thermodynamic models developed by Air Products are available as options to reduce computation time. To facilitate the interpretation of output, they have linked the simulator to the speakeasy conversational language. The authors present a flowsheet of the process simulated, and the material and energy balances used in the engineering models. They then show simulation results for three transient operating scenarios: startup of the refrigeration system from standby to full load; the loss of 4K refrigeration caused by the tripping of one of two parallel compressors in a sector; and a full-field quench of a single magnet half-cell. They discuss the response of the fluid within the cryogenic circuits during these scenarios. 14 refs., 19 figs., 2 tabs

  12. Estimate of the longitudinal and transverse impedances for the superconducting super collider

    International Nuclear Information System (INIS)

    Ng, K.Y.

    1984-01-01

    We try to estimate the longitudinal impedance per harmonic Z/sub L//n as well as the transverse impedance Z/sub T/ for the 20 TeV Superconducting Super Collider (SSC). Effects due to space charge, wall resistivity, bellows, monitor plates, synchrotron radiation are considered. The resulting Z/sub L//n and Z/sub T/ are plotted. Such a knowledge of Z/sub L//n and Z/sub T/ is necessary in computing the limits of many types of instabilities for the bunched beam. To be more specific, in our estimation, we consider the special case of an injection energy of 1 TeV and assume a maximum field of 5 Tesla in the SSC dipoles. In some cases, we also assume a 60 0 FODO cell structure consisting of 4 dipoles and 2 quadrupoles each with 2 long straight sections. The beampipe radius and beam radius are chosen as b = 1.0 in. and a = 0.05 cm respectively. Totally, the storage ring consists of 364 cells and has a mean radius of R = 17.38 km. Our results show that when monitor plates matched at both ends (such as the ones used in the Tevatron) are used, their effects dominate both Z/sub L//n and Z/sub T. 7 references, 5 figures

  13. A frequency response study of dipole magnet cold mass for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Leung, K.K.; Nicol, T.

    1991-03-01

    This paper describes the technique for calculating the dynamic response of the Superconducting Super Collider (SSC) dipole magnet cold mass. Dynamic motion specification and beam location stability of the cold mass are not available at the present time. Dynamic response of the cold mass depends on measures excitation at the location of the magnet anchoring points on the other factors such as: (1) composite damping of the dipole magnet system, and (2) coupling effect of the cryogenic vessel, concrete slab, and soil to structure interactions. Nevertheless, the cold mass has the largest effect on the motion of the SSC machine. This dynamic analysis is based on response spectra analysis using the finite element method. An upper bond solution will result from this method of analysis, compared to the transient dynamic response method which involves step-by-step time integration from recorded accelerograms. Since no recorded ground motions are available for the SSC site, response spectra from another source shall be employed for the present analysis. 4 refs., 3 figs., 1 tab

  14. Collarless, close-in, shaped iron aperture designs for the SSC [Superconducting Super Collider] dipole

    International Nuclear Information System (INIS)

    Gupta, R.C.; Morgan, G.H.

    1989-01-01

    The nominal-design SSC (Superconducting Super Collider) dipole encloses the coil in an iron yoke having a circular aperture. The radial gap between the coil and the iron is about 15 mm to provide space for a strong annular collar around the coil, and also to reduce the effects of iron saturation on central field harmonics. The 15 mm gap also reduces the desirable dipole field contributed by the iron. The present paper gives a coil and aperture configuration in which the gap is reduced to 5 mm at the midplane, in which the aperture is shaped to reduce the unwanted effects of iron saturation. The transfer function is increased about 5% at 6.6 Tesla and the unwanted harmonics are within SSC tolerances at all field levels. These designs would require that the yoke and containment vessel absorb the stresses due to assembly and magnetic forces. A short magnet is being built with a close-in shaped iron aperture and existing coil geometry to assess the benefits of this concept. 7 refs., 3 figs., 6 tabs

  15. Review of scientific and technical options for the Superconducting Super Collider Program

    International Nuclear Information System (INIS)

    Dombeck, T.

    1993-11-01

    This document is a review of options for the Superconducting Super Collider (SSC) Program. It is the result of an informal study by an ad-hoc working group consisting of Laboratory physicists and engineers who investigated the physics and technical implications of a number of possible alternative SSC programs. Previous studies have shown, and early in this study it was confirmed, that a collider of approximately 20 TeV protons on 20 TeV protons with a luminosity of 10 33 cm -2 s -1 at each interaction region is needed to support a physics program that is guaranteed to answer existing particle physics questions and make new discoveries. Therefore, all options considered in this document were consistent with attainment of these original goals for the SSC. One promising option considered was a program of colliding anti-protons on protons as a possible means to reduce the cost of the SSC by eliminating one of the Collider rings. However, the luminosity requirements to obtain the SSC physics goals remains the same as for protons colliding with protons and this study confirms that even though progress has been made over the last ten years in obtaining the high intensity anti-proton beams necessary, a luminosity higher than 10 32 cannot be guaranteed. Other options were examined to see what advantages could be derived by departing from the SSC baseline program, either in schedule, in parameters, by staging, or by combinations of these options. Even though we considered re-examination of the cost of the baseline program to be beyond the scope of this document, differential cost savings were estimated. Finally, a brief survey of progress over the last ten years in various technical areas that might lead to more cost effective engineering designs was included in this study, such as higher magnetic field magnets resulting from lower operating temperatures or higher current-carrying superconducting materials

  16. Review of scientific and technical options for the Superconducting Super Collider Program

    Energy Technology Data Exchange (ETDEWEB)

    Dombeck, T.

    1993-11-01

    This document is a review of options for the Superconducting Super Collider (SSC) Program. It is the result of an informal study by an ad-hoc working group consisting of Laboratory physicists and engineers who investigated the physics and technical implications of a number of possible alternative SSC programs. Previous studies have shown, and early in this study it was confirmed, that a collider of approximately 20 TeV protons on 20 TeV protons with a luminosity of 10{sup 33} cm{sup {minus}2}s{sup {minus}1} at each interaction region is needed to support a physics program that is guaranteed to answer existing particle physics questions and make new discoveries. Therefore, all options considered in this document were consistent with attainment of these original goals for the SSC. One promising option considered was a program of colliding anti-protons on protons as a possible means to reduce the cost of the SSC by eliminating one of the Collider rings. However, the luminosity requirements to obtain the SSC physics goals remains the same as for protons colliding with protons and this study confirms that even though progress has been made over the last ten years in obtaining the high intensity anti-proton beams necessary, a luminosity higher than 10{sup 32} cannot be guaranteed. Other options were examined to see what advantages could be derived by departing from the SSC baseline program, either in schedule, in parameters, by staging, or by combinations of these options. Even though we considered re-examination of the cost of the baseline program to be beyond the scope of this document, differential cost savings were estimated. Finally, a brief survey of progress over the last ten years in various technical areas that might lead to more cost effective engineering designs was included in this study, such as higher magnetic field magnets resulting from lower operating temperatures or higher current-carrying superconducting materials.

  17. A conceptual design of high-temperature superconducting isochronous cyclotron magnet

    International Nuclear Information System (INIS)

    Jiao, F.; Tang, Y.; Li, J.; Ren, L.; Shi, J.

    2011-01-01

    A design of High-temperature superconducting (HTS) isochronous cyclotron magnet is proposed. The maximum magnetic field of cyclotron main magnet reaches 3 T. Laying the HTS coil aboard the magnetic pole will raise the availability of the magnetic Field. Super-iron structure can provide a high uniformity and high gradient magnetic field. Super-iron structure can raise the availability of the HTS materials. Along with the development of High-temperature superconducting (HTS) materials, the technology of HTS magnet is becoming increasingly important in the Cyclotron, which catches growing numbers of scholars' attentions. Based on the analysis of the problems met in the process of marrying superconducting materials with ferromagnetic materials, this article proposes a design of HTS isochronous cyclotron magnet. The process of optimization of magnet and the methods of realizing target parameters are introduced after taking finite element software as analyzing tools.

  18. Full-power test of a string of magnets comprising a half-cell of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Burgett, W.; Christianson, M.; Coombes, R.

    1992-10-01

    In this paper we describe the full-powered operation of a string of industrially-fabricated magnets comprising a half-cell of the Superconducting Super Collider (SSC). The completion of these tests marks the first successful operation of a major SSC subsystem. The five 15-m long dipole magnets in the string had an aperture of 50 mm and the single 5-m long quadrupole aperture was 40 mm. Power and cryogenic connections were made to the string through spool pieces that are prototypes for SSC operations. The string was cooled to cryogenic temperatures in early July, 1992, and power tests were performed at progressively higher currents up to the nominal SSC operating point above 6500 amperes achieved in mid-August. In this paper we report on the electrical and cryogenic performance of the string components and the quench protection system during these initial tests

  19. Numerical simulation and analysis for the baking out system of the HT-7U super-conducting tokamak device

    International Nuclear Information System (INIS)

    Song Yuntao

    2004-01-01

    It can provide an ultrahigh vacuum location for the plasma operation. In order to improve its vacuum degree and attain a high quality operation environment for plasma, it is very important to proceed 250 degree C baking out to clear the wall before the plasma operation. The paper firstly gives two kinds of structures for the baking of the vacuum vessel, in which one is the baking by electricity and another is baking by the nitrogen gas. Secondly based on the numerical simulation and analysis, some results have been attained such as the baking power, temperature field distribution and thermal stress for the vacuum vessel, which can provide some valuable theory basis for the engineering design and optimization of the baking system of the HT-7U vacuum vessel or other similar super-conducting tokamak devices

  20. Status of superconducting magnets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1993-09-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980's. In 1991-1992, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation

  1. Status of superconducting magnets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Schermer, R.I.

    1994-01-01

    The arc sections of the High Energy Booster and the two Collider Rings will need more than 10,000, very large, superconducting dipole and quadrupole magnets. Development work on these magnets was carried out at US/DOE laboratories in a program that began in the mid 1980's. In 1991--92, the technology was transferred to industry and twenty, full-length, Collider dipoles were successfully fabricated and tested. This program, along with HERA and Tevatron experience, has provided industry a data base to use in formulating detailed designs for the prototypes of the accelerator magnets, with an eye to reducing cost and enhancing producibility. Several model magnets from this latest phase of the industrial program have already been tested. The excessive ramp-rate sensitivity of the magnets is understood and solutions are under investigation

  2. Investigation of thermal transfers in super-fluid helium in porous media

    International Nuclear Information System (INIS)

    Allain, H.

    2009-10-01

    Particle accelerators are requiring increased magnetic fields for which niobium tin superconducting magnets are considered. This entails electric insulation and cooling problems. Porous ceramic insulations are potential candidates for cable insulation. As they are permeable to helium, they could allow a direct cooling by super-fluid helium. Therefore, this research thesis deals with the investigation of thermal transfers in superfluid helium in porous media. After a description of an accelerator's superconducting magnet, of its thermodynamics and its various cooling modes, the author describes the physical properties of super-fluid helium, its peculiarities with respect to conventional fluids as well as its different phases (fluid and super-fluid), its dynamics under different regimes (the Landau regime which is similar to the laminar regime for a conventional fluid, and the Gorter-Mellink regime which is the super-fluid turbulent regime). He determines the macroscopic equations governing the He II dynamics in porous media by applying the volume averaging method developed by Whitaker. Theoretical results are validated by comparison with a numerical analysis performed with a numerical code. Then, the author presents the various experimental setups which have been developed for the measurement of the intrinsic permeability, one at room temperature and another at high temperature. Experimental results are discussed, notably with respect to pore size and porosity

  3. Transmission Level High Temperature Superconducting Fault Current Limiter

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Gary [SuperPower, Inc., Schenectady, NY (United States)

    2016-10-05

    The primary objective of this project was to demonstrate the feasibility and reliability of utilizing high-temperature superconducting (HTS) materials in a Transmission Level Superconducting Fault Current Limiter (SFCL) application. During the project, the type of high-temperature superconducting material used evolved from 1st generation (1G) BSCCO-2212 melt cast bulk high-temperature superconductors to 2nd generation (2G) YBCO-based high-temperature superconducting tape. The SFCL employed SuperPower's “Matrix” technology, that offers modular features to enable scale up to transmission voltage levels. The SFCL consists of individual modules that contain elements and parallel inductors that assist in carrying the current during the fault. A number of these modules are arranged in an m x n array to form the current-limiting matrix.

  4. Thermal conductivity of a superconducting spin-glass

    International Nuclear Information System (INIS)

    Crisan, M.

    1988-01-01

    The temperature dependence of the thermal conductivity for a superconducting spin-glass is calculated, taking a short-range spin-spin interaction in a super-conductor carrying a uniform flow. The presence of the short-range interaction between frozen spins gives rise to a strong depression in the thermal conductivity

  5. 1994 expected to be year of decision for European Super Collider.

    CERN Multimedia

    Sweet, William N

    1994-01-01

    Plans to build Europe's counterpart to the US' Superconducting Super Collider, the Large Hadron Collider, may push through when the CERN Council meets on Apr 15, 1994. The European scientific community is optimistic that the plan will be approved.

  6. Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: results of the 1986 test drilling program. Environmental geology notes

    International Nuclear Information System (INIS)

    Curry, B.B.; Graese, A.M.; Hasek, M.J.; Vaiden, R.C.; Bauer, R.A.

    1988-01-01

    From 1984 through 1986, geologists from the Illinois State Geological Survey (ISGS) conducted a thorough field investigation in northeastern Illinois to determine whether the surface and subsurface geology would be suitable for constructing the U.S. Department of Energy's 20-TeV (trillion electron volt) particle accelerator - the Superconducting Super Collider (SSC). The third and final stage of test drilling in 1986 concentrated on a specific corridor proposed for the racetrack-shaped SSC that would circle deep below the surface of Kane, Kendall, and Du Page Counties. The main objective was to verify that bedrock lying under the region satisified the site criteria for construction of a 10-foot-diameter tunnel to hold the particle accelerator and the superconducting magnets, large chambers to house the laboratories and computers for conducting and recording experiments, and shafts to provide access to the subterranean facilities. Thirteen test holes, ISGS S-18 through S-30, were drilled to depths ranging from 398.2 to 646.6 feet. The field team recovered 5675 feet of bedrock core and 212 samples of glacial drift (sand, clay, gravel) for laboratory analyses and recorded on-site data that establish the thickness, distribution, lithology (composition), and other properties of the rocks lying under the study area

  7. Report of the reference designs study group on the superconducting super collider

    International Nuclear Information System (INIS)

    1984-01-01

    In December, 1983, the directors of the US high energy accelerator laboratories chartered the National SSC Reference Designs Study to review in detail the technical and economic feasibility of various options for creating the Superconducting Super Collider (SSC) facility, a 20 TeV on 20 TeV proton-proton collider having a luminosity up to 10 33 cm -2 sec -1 . The primary objective of the study was to help the DOE, the high energy physics community, and the scientific community as a whole to decide how best to proceed with SSC R and D directed toward improving the cost effectiveness of applicable accelerator technology. We have concluded that the basic principles of design used successfully for existing accelerators can be conservatively extended to a proton collider having the SSC primary specifications of energy and luminosity. Furthermore, each of the three reference magnet styles studied could serve as the foundation for an SSC facility meeting these specifications. A vigorous R and D program of approximately three years duration will be required to refine the cost estimates for the magnets, to determine their actual performance, to determine their manufacturability and reliability, and to develop cost-effective methods for their assembly and quality assurance. It is anticipated that the magnet options can be narrowed to a single one during an early phase of the R and D program. An important R and D goal will be to produce, using mass-production methods, a significant number of magnets of the chosen style. These magnets would then be thoroughly tested under conditions simulating actual accelerator operations

  8. Site-specific design of the super collider in Texas

    International Nuclear Information System (INIS)

    Laughton, C.; Nelson, P.P.; Lundin, T.K.

    1990-01-01

    This paper outlines the scope of the Superconducting Super Collider (SSC) in Texas, underground works and present the current accelerator layout. After a brief overview of the site geotechnical characteristics, emphasis will be placed upon the possibilities for the incorporation of mechanical excavation technology into the construction of the various underground structures

  9. Site-specific design of the super collider in Texas

    International Nuclear Information System (INIS)

    Laughton, C.; Nelson, P.P.; Lundin, T.K.

    1990-06-01

    This paper will outline the scope of the Superconducting Super Collider (SSC), underground works and present the current accelerator layout. After a brief overview of the site geotechnical characteristics, emphasis will be placed upon the possibilities for the incorporation of mechanical excavation technology into the construction of the various underground structures. 5 figs

  10. Thermal performance measurements of a 100 percent polyester MLI [multilayer insulation] system for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Boroski, W.N.; Gonczy, J.D.; Niemann, R.C.

    1989-09-01

    Thermal performance measurements of a 100 percent polyester multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) were conducted in a Heat Leak Test Facility (HLTF) under three experimental test arrangements. Each experiment measured the thermal performance of a 32-layer MLI blanket instrumented with twenty foil sensors to measure interstitial layer temperatures. Heat leak values and sensor temperatures were monitored during transient and steady state conditions under both design and degraded insulating vacuums. Heat leak values were measured using a heatmeter. MLI interstitial layer temperatures were measured using Cryogenic Linear Temperature Sensors (CLTS). Platinum resistors monitored system temperatures. High vacuum was measured using ion gauges; degraded vacuum employed thermocouple gauges. A four-wire system monitored instrumentation sensors and calibration heaters. An on-line computerized data acquisition system recorded and processes data. This paper reports on the instrumentation and experimental preparation used in carrying out these measurements. In complement with this paper is an associate paper bearing the same title head, but with the title extension 'Part 2: Laboratory results (300K--80K). 13 refs., 7 figs

  11. Development of 70 MW class superconducting generator with quick-response excitation

    Science.gov (United States)

    Miyaike, Kiyoshi; Kitajima, Toshio; Ito, Tetsuo

    2002-03-01

    The development of a superconducting generator had been carried out for 12 years under the first stage of a Super GM project. The 70 MW class model machine with quick response excitation was manufactured and evaluated in the project. This type of superconducting generator improves power system stability against rapid load fluctuations at the power system faults. This model machine achieved all development targets including high stability during rapid excitation control. It was also connected to the actual 77 kV electrical power grid as a synchronous condenser and proved advantages and high-operation reliability of the superconducting generator.

  12. SSC [Superconducting Super Collider] magnet technology

    International Nuclear Information System (INIS)

    Taylor, C.

    1987-09-01

    To minimize cost of the SSC facility, small-bore high field dipole magnets have been developed;some of the new technology that has been developed at several U.S. national laboratories and in industry is summarized. Superconducting wire with high J/sub c/ and filaments as small as 5μm diameter is not produced iwht mechanical properties suitable for reliable cable production. A variety of collar designs of both aluminum and stainless steel have been used in model magnets. A low-heat leak post-type cryostat support system is used and a system for accurate alignment of coil-collar-yoke in the cryostat has been developed. Model magnets of 1-m, 1.8 m, 4.5 m, and 17 m lengths have been build during the past two years. 23 refs., 5 figs., 2 tabs

  13. The super collider revisited

    International Nuclear Information System (INIS)

    Hussein, M.S.; Pato, M.P.

    1992-01-01

    In this paper, the authors suggest a revised version of the Superconducting Super Collider (SSC) that employs the planned SSC first stage machine as an injector of 0.5 TeV protons into a power laser accelerator. The recently developed Non-linear Amplification of Inverse Bremsstrahlung Acceleration (NAIBA) concept dictates the scenario of the next stage of acceleration. Post Star Wars lasers, available at several laboratories, can be used for the purpose. The 40 TeV CM energy, a target of the SSC, can be obtained with a new machine which can be 20 times smaller than the planned SSC

  14. Superatom representation of high-TC superconductivity

    International Nuclear Information System (INIS)

    Panas, Itai

    2012-01-01

    A “super-atom” conceptual interface between chemistry and physics is proposed in order to assist in the search for higher T C superconductors. The plaquettes generating the checkerboard superstructure in the cuprates, the C 60 molecules in K 3 C 60 , and the Mo 6 S 8 2- clusters in Chevrel phase materials offer such candidate super-atoms. Thus, in the present study high-T C superconductivity HTSC is articulated as the entanglement of two disjoint electronic manifolds in the vicinity of a common Fermi energy. The resulting HTSC ground state couples near-degenerate protected local super-atom states to virtual magnons in an antiferromagnetic AFM embedding. The composite Cooper pairs emerge as the interaction particles for virtual magnons mediated “self-coherent entanglement” of super-atom states. A Hückel type resonating valence bond RVB formalism is employed in order to illustrate the real-space Cooper pairs as well as their delocalization and Bose Einstein condensation BEC on a ring of super-atoms. The chemical potential μ BEC for Cooper pairs joining the condensate is formulated in terms of the super-exchange interaction, and consequently the T C in terms of the Neél temperature. A rationale for the robustness of the HTSC ground state is proposed: achieving local maximum “electron correlation entropy” at the expense of non-local phase rigidity.

  15. Thermal and structural performance of a single tube support post for the Superconducting Super Collider dipole magnet cryostat

    International Nuclear Information System (INIS)

    Boroski, W.N.; Nicol, T.H.; Ruschman, M.K.; Schoo, C.J.

    1993-07-01

    The reentrant support post currently incorporated in the Superconducting Super Collider (SSC) dipole cryostat has been shown to meet the structural and thermal requirements of the cryostat, both in prototype magnet assemblies and through component testing. However, the reentrant post design has two major drawbacks: tight dimensional control on all components, and cost driven by these tolerance constraints and a complex assembly procedure. A single tube support post has been developed as an alternative to the reentrant post design. Several prototype assemblies have been fabricated and subjected to structural testing. Compressive, tensile, and bending forces were applied to each assembly with deflection measured at several locations. A prototype support post has also been thermally evaluated in a heat leak measurement facility. Heat load to 4.2 K was measured with the intermediate post intercept operating at various temperatures while thermometers positioned along the conductive path of the post mapped thermal gradients. Results from these measurements indicate the single tube support post meets the design criteria for the SSC dipole magnet cryostat support system

  16. Design of a synchrotron radiation detector for the test beam lines at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Hutton, R.D.

    1994-01-01

    As part of the particle- and momentum-tagging instrumentation required for the test beam lines of the Superconducting Super Collider (SSC), the synchrotron radiation detector (SRD) was designed to provide electron tagging at momentum above 75 GeV. In a parallel effort to the three test beam lines at the SSC, schedule demands required testing and calibration operations to be initiated at Fermilab. Synchrotron radiation detectors also were to be installed in the NM and MW beam lines at Femilab before the test beam lines at the SSC would become operational. The SRD is the last instrument in a series of three used in the SSC test beam fines. It follows a 20-m drift section of beam tube downstream of the last silicon strip detector. A bending dipole just in of the last silicon strip detector produces the synchrotron radiation that is detected in a 50-mm-square cross section NaI crystal. A secondary scintillator made of Bicron BC-400 plastic is used to discriminate whether it is synchrotron radiation or a stray particle that causes the triggering of the NaI crystal's photo multiplier tube (PMT)

  17. Theory, analysis and applications of the operation of the superconducting transformer supplying a direct current to a non-dissipative superconducting charge circuit

    International Nuclear Information System (INIS)

    Sole, J.

    1967-01-01

    The author derives the very simple equations governing the operation of a transformer with superconducting windings supplying direct current to a non-dissipative superconducting charge circuit. An analysis of the various possible modes of operation with direct or slowly varying current raises the problem of the magnetic core. The study. leads to a conclusion which a priori might be surprising: the elimination of the magnetic core and the use of a primary super-conductor. An example of a possible realization of such a transformer is given as an indication, and the present prospects for different applications are considered. (author) [fr

  18. Testing and Characterization of SuperCDMS Dark Matter Detectors

    Energy Technology Data Exchange (ETDEWEB)

    Shank, Benjamin [Stanford Univ., CA (United States)

    2014-05-01

    The Cryogenic Dark Matter Search (SuperCDMS) relies on collection of phonons and charge carriers in semiconductors held at tens of milliKelvin as handles for detection of Weakly Interacting Massive Particles (WIMPs). This thesis begins with a brief overview of the direct dark matter search (Chapter 1) and SuperCDMS detectors (Chapter 2). In Chapter 3, a 3He evaporative refrigerator facility is described. Results from experiments performed in-house at Stanford to measure carrier transport in high-purity germanium (HPGe) crystals operated at sub-Kelvin temperatures are presented in Chapter 4. Finally, in Chapter 5 a new numerical model and a time-domain optimal filtering technique are presented, both developed for use with superconducting Transition Edge Sensors (TESs), that provide excellent event reconstruction for single particle interactions in detectors read out with superconducting W-TESs coupled to energy-collecting films of Al. This thesis is not intended to be read straight through. For those new to CDMS or dark matter searches, the first two chapters are meant to be a gentle introduction for experimentalists. They are by no means exhaustive. The remaining chapters each stand alone, with different audiences.

  19. Successful NEPA compliance at the superconducting super collider laboratory: A case study

    International Nuclear Information System (INIS)

    Corning, B.C.; Wiebe, R.G.

    1992-01-01

    In January, 1970, the President signed the National Environmental Policy Act (NEPA) into law. NEPA has become the basic policy-setting federal law relating to protection of the environment and has provided the initiative for passage of other federal and state environmental statutes. Although many of these statutes have unique requirements, there is a need to coordinate NEPA compliance with review requirements of the other environmental statutes in order to avoid delays that can be caused by proceeding separately under each statute. Because of its multi-purpose scope, the NEPA process is an excellent means for accomplishing the required coordination. The Director of the Superconducting Super Collider Laboratory has committed the Laboratory to Total Environmental Compliance. Environmental Compliance involves a dynamic set of factors-requiring system maintenance with integrated planning and control-that by design will identify requirements, ensure implementation of mitigative actions, track follow-on efforts, and plan for future requirements. The Record of Decision to proceed with the building of the SSC required that several mitigation actions be addressed. Identifying these requirements, their sources, and whether they can be addressed within the context of existing policies and procedures is required to ensure appropriate and timely mitigative actions. Applicable requirements may include federal, state, and local regulations, applicable Department of Energy Orders, best management practices, Laboratory requirements, and the adequacy and effectiveness of DOE and contractor management programs. Mitigative action is a principal aspect of total environmental compliance, conducted at all levels of the Laboratory, not just as an environmental function. Identified requirements are prioritized. Goals and objectives are set for implementing and successfully completing each mitigative action. Feedback mechanisms required for tracking the progress of each action are developed

  20. Random errors in the magnetic field coefficients of superconducting quadrupole magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Hogue, R.; Prodell, A.; Thompson, P.; Wanderer, P.; Willen, E.

    1987-01-01

    The random multipole errors of superconducting quadrupoles are studied. For analyzing the multipoles which arise due to random variations in the size and locations of the current blocks, a model is outlined which gives the fractional field coefficients from the current distributions. With this approach, based on the symmetries of the quadrupole magnet, estimates are obtained of the random multipole errors for the arc quadrupoles envisioned for the Relativistic Heavy Ion Collider and for a single-layer quadrupole proposed for the Superconducting Super Collider

  1. RIA Superconducting Drift Tube Linac R and D

    International Nuclear Information System (INIS)

    Popielarski, J.; Bierwagen, J.; Bricker, S.; Compton, C.; DeLauter, J.; Glennon, P.; Grimm, T.; Hartung, W.; Harvell, D.; Hodek, M.; Johnson, M.; Marti, F.; Miller, P.; Moblo, A.; Norton, D.; Popielarski, L.; Wlodarczak, J.; York, R.C.; Zeller, A.

    2009-01-01

    Cavity and cryomodule development work for a superconducting ion linac has been underway for several years at the National Superconducting Cyclotron Laboratory. The original application of the work was the proposed Rare Isotope Accelerator. At present, the work is being continued for use with the Facility for Rare Isotope Beams (FRIB). The baseline linac for FRIB requires 4 types of superconducting cavities to cover the velocity range needed to accelerate an ion beam to (ge) 200 MeV/u: 2 types of quarter-wave resonator (QWR) and 2 types of half-wave resonator (HWR). Superconducting solenoids are used for focusing. Active and passive shielding is required to ensure that the solenoids field does not degrade the cavity performance. First prototypes of both QWR types and one HWR type have been fabricated and tested. A prototype solenoid has been procured and tested. A test cryomodule has been fabricated and tested. The test cryomodule contains one QWR, one HWR, one solenoid, and one super-ferric quadrupole. This report covers the design, fabrication, and testing of this cryomodule

  2. Optimization of a Superconducting Magnetic Energy Storage Device via a CPU-Efficient Semi-Analytical Simulation

    OpenAIRE

    Dimitrov, I K; Zhang, X; Solovyov, V F; Chubar, O; Li, Qiang

    2014-01-01

    Recent advances in second generation (YBCO) high temperature superconducting wire could potentially enable the design of super high performance energy storage devices that combine the high energy density of chemical storage with the high power of superconducting magnetic storage. However, the high aspect ratio and considerable filament size of these wires requires the concomitant development of dedicated optimization methods that account for both the critical current density and ac losses in ...

  3. Superconducting coherence in a vortex line liquid

    International Nuclear Information System (INIS)

    Chen, T.; Teitel, S.

    1995-01-01

    We carry out simulations of the anisotropic uniformly frustrated 3d XY model, as a model for vortex line fluctuations in high T c superconductors. We compute the phase diagram as a function of temperature and anisotropy, for a fixed applied magnetic field B. We find two distinct phase transitions. Upon heating, there is first a lower T c perpendicular where the vortex line lattice melts and super-conducting coherence perpendicular to the applied magnetic field vanishes. At a higher T cz , within the vortex line liquid, superconducting coherence parallel to the applied magnetic field vanishes. For finite anisotropy, both T c perpendicular and T cz lie well below the crossover from the vortex line liquid to the normal state

  4. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    International Nuclear Information System (INIS)

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources

  5. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  6. [Research programs on elementary particle and field theories and superconductivity

    International Nuclear Information System (INIS)

    Khuri, N.N.

    1992-01-01

    Research of staff members in theoretical physics is presented in the following areas: super string theory, a new approach to path integrals, new ideas on the renormalization group, nonperturbative chiral gauge theories, the standard model, K meson decays, and the CP problem. Work on high-T c superconductivity and protein folding is also related

  7. SSC [Superconducting Super Collider] magnet mechanical interconnections

    International Nuclear Information System (INIS)

    Bossert, R.C.; Niemann, R.C.; Carson, J.A.; Ramstein, W.L.; Reynolds, M.P.; Engler, N.H.

    1989-03-01

    Installation of superconducting accelerator dipole and quadrupole magnets and spool pieces in the SSC tunnel requires the interconnection of the cryostats. The connections are both of an electrical and mechanical nature. The details of the mechanical connections are presented. The connections include piping, thermal shields and insulation. There are seven piping systems to be connected. These systems must carry cryogenic fluids at various pressures or maintain vacuum and must be consistently leak tight. The interconnection region must be able to expand and contract as magnets change in length while cooling and warming. The heat leak characteristics of the interconnection region must be comparable to that of the body of the magnet. Rapid assembly and disassembly is required. The magnet cryostat development program is discussed. Results of quality control testing are reported. Results of making full scale interconnections under magnet test situations are reviewed. 11 figs., 4 tabs

  8. Magnetic field measurements of the superEBIS superconducting magnet

    International Nuclear Information System (INIS)

    Herschcovitch, A.; Kponou, A.; Clipperton, R.; Hensel, W.; Usack, F.

    1994-01-01

    SuperEBIS was designed to have a solenoidal magnetic field of a 5 Tesla strength with a 120 cm long bore. The field was specified to be straight within 1 part in 10000 within the bore, and uniform to within 1 part in 1000 within the central 90 cm. Magnetic field measurements were performed with a computerized magnetic field measuring setup that was borrowed from W. Sampson's group. A preliminary test was made of a scheme to determine if the magnetic and mechanical axes of the solenoid coincided, and, if not, by how much

  9. Random errors in the magnetic field coefficients of superconducting magnets

    International Nuclear Information System (INIS)

    Herrera, J.; Hogue, R.; Prodell, A.; Wanderer, P.; Willen, E.

    1985-01-01

    Random errors in the multipole magnetic coefficients of superconducting magnet have been of continuing interest in accelerator research. The Superconducting Super Collider (SSC) with its small magnetic aperture only emphasizes this aspect of magnet design, construction, and measurement. With this in mind, we present a magnet model which mirrors the structure of a typical superconducting magnet. By taking advantage of the basic symmetries of a dipole magnet, we use this model to fit the measured multipole rms widths. The fit parameters allow us then to predict the values of the rms multipole errors expected for the SSC dipole reference design D, SSC-C5. With the aid of first-order perturbation theory, we then give an estimate of the effect of these random errors on the emittance growth of a proton beam stored in an SSC. 10 refs., 6 figs., 2 tabs

  10. SQUID based cryogenic current comparator for measurements of the dark current of superconducting cavities

    Energy Technology Data Exchange (ETDEWEB)

    Vodel, W.; Nietzsche, S.; Neubert, R.; Nawrodt, R. [Friedrich Schiller Univ. Jena (Germany); Peters, A. [GSI Darmstadt (Germany); Knaack, K.; Wendt, M.; Wittenburg, K. [DESY Hamburg (Germany)

    2005-07-01

    The linear accelerator technology, based on super-conducting L-band (1.3 GHz) is currently under study at DESY (Hamburg, Germany). The two 10 km long main Linacs will be equipped with a total of nearly 20.000 cavities. The dark current due to the emission of electrons in these high gradient field super-conducting cavities is an unwanted particle source. A newly high performance SQUID based measurement system for detecting dark currents is proposed. It makes use of the Cryogenic Current Comparator principle and senses dark currents in the pA range with a measurement bandwidth of up to 70 kHz. The use of a cryogenic current comparator as dark current sensor has some important advantages: -) the measurement of the absolute value of the dark current, -) the non-dependence on the electron trajectories, -) the accurate absolute calibration with an additional wire loop, and -) extremely high resolution.

  11. Device for delivering cryogen to rotary super-conducting winding of cryogen-cooled electrical machine

    International Nuclear Information System (INIS)

    Filippov, I.F.; Gorbunov, G.S.; Khutoretsky, G.M.; Popov, J.S.; Skachkov, J.V.; Vinokurov, A.A.

    1980-01-01

    A device is disclosed for delivering cryogen to a superconducting winding of a cryogen-cooled electrical machine comprising a pipe articulated along the axis of the electrical machine and intended to deliver cryogen. One end of said pipe is located in a rotary chamber which communicates through channels with the space of the electrical machine, and said space accommodating its superconducting winding. The said chamber accommodates a needle installed along the chamber axis, and the length of said needle is of sufficient length such that in the advanced position of said cryogen delivering pipe said needle reaches the end of the pipe. The layout of the electrical machine increases the reliability and effectiveness of the device for delivering cryogen to the superconducting winding, simplifies the design of the device and raises the efficiency of the electrical machine

  12. Status report on an engineering design study of hermetic liquid argon calorimetry for the SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    Adams, T.; Davis, M.; DiGiacomo, N.J.

    1989-01-01

    There is general recognition that engineering issues are critical to the viability of liquid argon calorimetry (LAC) at the Superconducting Super Collider (SSC). We have undertaken to quantitatively address these issues and, if possible, perform a preliminary design of a ''proof of principle'' LAC for SSC. To establish LAC as viable at SSC, we must demonstrate that the physics performance of the device is acceptable, despite the presence of dead material due to vessels and support structure. Our approach involves the construction, by a team of physicists and engineers, of one three dimensional model of the LAC system, built as a hierarchy of components and structures, from which we directly perform interferences checks, mechanical, thermal and magnetic analyses, particle tracking, hermeticity evaluation, physics simulation and assembly. This study, begun in February 1989 as part of the SSC generic detector R and D program, was immediately preceded by a workshop at which engineering details of existing and planned LAC systems were thoroughly examined. We describe below the status of our work, beginning with short descriptions of the tools used, the study requirements and LAC configuration baseline. We then detail the LAC design as it presently stands, including assembly considerations, and conclude with a quantitative assessment of the LAC hermeticity. 19 refs., 12 figs

  13. Superatom representation of high-T{sub C} superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Panas, Itai, E-mail: itai@chalmers.se [Environmental Inorganic Chemistry, Division of Energy and Materials, Department of Chemistry and Biotechnology, Chalmers University of Technology, S-412 96 Gothenburg (Sweden)

    2012-10-15

    A 'super-atom' conceptual interface between chemistry and physics is proposed in order to assist in the search for higher T{sub C} superconductors. The plaquettes generating the checkerboard superstructure in the cuprates, the C{sub 60} molecules in K{sub 3}C{sub 60}, and the Mo{sub 6}S{sub 8}{sup 2-} clusters in Chevrel phase materials offer such candidate super-atoms. Thus, in the present study high-T{sub C} superconductivity HTSC is articulated as the entanglement of two disjoint electronic manifolds in the vicinity of a common Fermi energy. The resulting HTSC ground state couples near-degenerate protected local super-atom states to virtual magnons in an antiferromagnetic AFM embedding. The composite Cooper pairs emerge as the interaction particles for virtual magnons mediated 'self-coherent entanglement' of super-atom states. A Hueckel type resonating valence bond RVB formalism is employed in order to illustrate the real-space Cooper pairs as well as their delocalization and Bose Einstein condensation BEC on a ring of super-atoms. The chemical potential {mu}{sub BEC} for Cooper pairs joining the condensate is formulated in terms of the super-exchange interaction, and consequently the T{sub C} in terms of the Neel temperature. A rationale for the robustness of the HTSC ground state is proposed: achieving local maximum 'electron correlation entropy' at the expense of non-local phase rigidity.

  14. Beauty physics at the ultrahigh energies of the ELOISATRON [Euroasiatic Long Intersecting Superconducting Accelerator Synchrotron

    International Nuclear Information System (INIS)

    Cox, B.

    1988-02-01

    The potential for experimentally studying B physics at the proposed INFN 100 TeV ELOISATRON (Euroasiatic Long Intersecting Superconducting Accelerator Synchrotron) is compared with possibilities at 40 TeV at the Superconducting Super Collider. The effect of the increase in center of mass energy on the production and decay of B mesons has been investigated, particularly with respect to the accummulation of large samples of B hadron decays necessary for the detection of CP violating effects. 13 refs., 7 figs., 1 tab

  15. A blanket design, apparatus, and fabrication techniques for the mass production of multilayer insulation blankets for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.; Otavka, J.G.; Ruschman, M.K.; Schoo, C.J.

    1989-09-01

    The multilayer insulation (MLI) system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film fabricated in the form of blankets and installed as blankets to the 4.5K cold mass and the 20K and 80K thermal radiation shields. Approximately 40,000 MLI blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket is nearly 17 meters long and 1.8 meters wide. This paper reports the blanket design, an apparatus, and the fabrication method used to mass produce pre-fabricated MLI blankets. Incorporated in the blanket design are techniques which automate quality control during installation of the MLI blankets in the SSC cryostat. The apparatus and blanket fabrication method insure consistency in the mass produced blankets by providing positive control of the dimensional parameters which contribute to the thermal performance of the MLI blanket. By virtue of the fabrication process, the MLI blankets have inherent features of dimensional stability three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 11 refs., 6 figs., 1 tab

  16. Super differential forms on super Riemann surfaces

    International Nuclear Information System (INIS)

    Konisi, Gaku; Takahasi, Wataru; Saito, Takesi.

    1994-01-01

    Line integral on the super Riemann surface is discussed. A 'super differential operator' which possesses both properties of differential and of differential operator is proposed. With this 'super differential operator' a new theory of differential form on the super Riemann surface is constructed. We call 'the new differentials on the super Riemann surface' 'the super differentials'. As the applications of our theory, the existency theorems of singular 'super differentials' such as 'super abelian differentials of the 3rd kind' and of a super projective connection are examined. (author)

  17. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    International Nuclear Information System (INIS)

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources

  18. Review of project definition studies of possible on-site uses of superconducting super collider assets and facilities. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    This document reports on the results of a peer review and evaluation of studies made of potential uses of assets from the terminated Superconducting Super Collider (SSC) project. These project definition studies focused on nine areas of use of major assets and facilities at the SSC site near Waxahachie, Texas. The studies were undertaken as part of the effort to maximize the value of the investment made in the SSC and were supported by two sets of grants, one to the Texas National Research Laboratory Commission (TNRLC) and the second to various universities and other institutions for studies of ideas raised by a public call for expressions of interest. The Settlement Agreement, recently signed by the Department of Energy (DOE) and TNRLC, provides for a division of SSC property. As part of the goal of maximizing the value of the SSC investment, the findings contained in this report are thus addressed to officials in both the Department and TNRLC. In addition, this review had several other goals: to provide constructive feedback to those doing the studies; to judge the benefits and feasibility (including funding prospects) of the projects studied; and to help worthy projects become reality by matching projects with possible funding sources.

  19. A sourcebook of titanium alloy superconductivity

    CERN Document Server

    Collings, E W

    1983-01-01

    In less than two decades the concept of supercon­ In every field of science there are one or two ductivity has been transformed from a laboratory individuals whose dedication, combined with an innate curiosity to usable large-scale applications. In the understanding, permits them to be able to grasp, late 1960's the concept of filamentary stabilization condense, and explain to the rest of us what that released the usefulness of zero resistance into the field is all about. For the field of titanium alloy marketplace, and the economic forces that drive tech­ superconductivity, such an individual is Ted Collings. nology soon focused on niobium-titanium alloys. They His background as a metallurgist has perhaps given him are ductile and thus fabricable into practical super­ a distinct advantage in understanding superconduc­ conducting wires that have the critical currents and tivity in titanium alloys because the optimization of fields necessary for large-scale devices. More than superconducting parameters in ...

  20. Geological-geotechnical studies for siting the Superconducting Super Collider in Illinois: results of drilling large-diameter holes in 1986. Environmental geology notes

    International Nuclear Information System (INIS)

    Vaiden, R.C.; Hasek, M.J.; Gendron, C.R.; Curry, B.B.; Graese, A.M.

    1988-01-01

    The Illinois State Geological Survey (ISGS) has completed an extensive four-year exploration of the area near Fermi National Accelerator Laboratory (Fermilab) at Batavia, 30 miles west of Chicago. The comprehensive investigation was conducted to locate the most suitable site for construction and operation of the Superconducting Super Collider (SSC) - a 20-trillion electron volt (TeV) subatomic particle accelerator. Underlying the proposed site in northeastern Illinois, between 250 and 600 feet deep, are the Galena and Platteville dolomites - strong, stable, nearly impermeable bedrock. To confirm that these bedrock units are suitable for construction of the SSC, ISGS geologists designed a four-year study including test drilling, rock sampling and analysis, geophysical logging, hydrogeologic studies, and seismic exploration. Initially, the study covered parts of six counties. Subsequent research focused on successively smaller areas until the final stage of test drilling in spring 1986 concentrated on a proposed corridor for the SSC tunnel. From 1984 to 1986, thirty 3-inch-diameter test holes were drilled and more than 2 miles of bedrock core was recovered for stratigraphic description and geotechnical analysis

  1. Project in fiscal 1988 for research and development of basic technologies in next generation industries. Research and development of superconducting materials and superconducting elements (Achievement report on research and development of high-temperature superconducting elements); 1988 nendo koon chodendo soshi no kenkyu kaihatsu seika hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1989-03-01

    With an objective of engineering utilization of superconducting materials in the electronics field, research and development has been inaugurated on superconducting elements having new functions. This paper summarizes the achievements in fiscal 1988. In the research of a superconducting element technology, researches were inaugurated on the four themes of the electric field effect type and charge injection type elements in the proximity effect type tri-terminal element, and low energy electron type and high energy electron type elements in the superconduction base type tri-terminal element. In bonding superconductors with semiconductors, discussions were given on a method to form both conductors by controlling oxygen concentrations of oxides having the same composition, and a method to laminate the superconductors on the semiconductors under super-high vacuum atmosphere. In the research of a new functional element technology, researches were inaugurated on the two themes of a single electron tunneling type tri-terminal element and a local potential tunneling type tri-terminal element. In addition, works were performed on epitaxial growth of high-quality superconducting films as a common basic technology, and such an assignment has been made clear as the necessity of controlling the crystalline azimuth. (NEDO)

  2. Conceptual radiation shielding design of superconducting tokamak fusion device by PHITS

    International Nuclear Information System (INIS)

    Sukegawa, Atsuhiko M.; Kawasaki, Hiromitsu; Okuno, Koichi

    2010-01-01

    A complete 3D neutron and photon transport analysis by Monte Carlo transport code system PHITS (Particle and Heavy Ion Transport code System) have been performed for superconducting tokamak fusion device such as JT-60 Super Advanced (JT-60SA). It is possible to make use of PHITS in the port streaming analysis around the devices for the tokamak fusion device, the duct streaming analysis in the building where the device is installed, and the sky shine analysis for the site boundary. The neutron transport analysis by PHITS makes it clear that the shielding performance of the superconducting tokamak fusion device with the cryostat is improved by the graphical results. From the standpoint of the port streaming and the duct streaming, it is necessary to calculate by 3D Monte Carlo code such as PHITS for the neutronics analysis of superconducting tokamak fusion device. (author)

  3. Changing electronic density in sites of crystalline lattice under superconducting of phase transition

    International Nuclear Information System (INIS)

    Turaev, N.Yu.; Turaev, E.Yu.; Khuzhakulov, E.S.; Seregin, P.P.

    2006-01-01

    Results of electron density change calculations for sites of the one-dimensional Kronig-Penny lattice at the superconducting phase transition have been presented. The transition from normal state to super conducting one is accompanied by the rise of the electron density at the unit cell centre. It is agreement with Moessbauer spectroscopy data. (author)

  4. Contribution to the study of superconducting magnets using high transition temperature superconducting materials

    International Nuclear Information System (INIS)

    Lecrevisse, Thibault

    2012-01-01

    The new industrial superconductors using high critical temperature compounds offer new possibilities for superconducting magnetism. Indeed they allow higher magnetic field with the same classical cryogenics at 4.2 K on one hand, and on the other hand they also pave the way for superconducting magnets working between 10 K and 30 K. The high temperature superconductors are then needed in order to produce magnetic fields higher than 16 T (case of HTS dipole insert for Large Hadron Collider at CERN) or to increase the specific density stored in one SMES (Superconducting Magnetic Energy Storage, in the case of the SuperSMES ANR Project).Nevertheless the indisputable assets (critical temperature, critical magnetic field, mechanical stresses) brought by the use of High critical temperature superconductors like YBCO, used in superconducting magnets, require to solve some challenges. Their behavior is still badly understood, especially during the resistive transitions. To succeed in protecting these conductors we need a new reflection on protection schemes designed to avoid the thermal and mechanical damages. The answer to the question: 'Can we use those materials in the long run inside superconducting magnets?' is now inescapable.Some answers are given here. The use of the conductors is approached through various experimental studies to understand the material (electrical characterization and modeling of the critical surface) and to define the key stages of high critical temperature superconducting magnets manufacturing (work on the junctions between conductors and pancakes). This study led to the creation of two coils in order to identify the issues related to the use of YBCO tapes. A numerical thermo-electrical model of the high critical temperature superconductor has been developed and a numerical code based on the CEA software CASTEM (Finish Elements Model) allowed to study the resistive transition (or quench) behavior of those conductor and coil. The code has been

  5. Superconducting racetrack booster for the ion complex of MEIC

    Energy Technology Data Exchange (ETDEWEB)

    Filatov, Yu [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Moscow Inst. of Physics and Technology (MIPT), Moscow (Russian Federation); Kondratenko, A. M. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kondratenko, M. A. [Science and Technique Laboratory ' Zaryad' , 630090, Novosibirsk, Russia; Kovalenko, A. [Joint Inst. for Nuclear Research (JINR), Dubna (Russian Federation); Derbenev, Yaroslav S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Fanglei [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Morozov, Vasiliy S. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Zhang, Yuhong [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    The current design of the Medium-energy Electron-Ion Collider (MEIC) project at Jefferson lab features a single 8 GeV/c figure-8 booster based on super-ferric magnets. Reducing the circumference of the booster by switching to a racetrack design may improve its performance by limiting the space charge effect and lower its cost. We consider problems of preserving proton and deuteron polarizations in a superconducting racetrack booster. We show that using magnets based on hollow high-current NbTi composite superconducting cable similar to those designed at JINR for the Nuclotron guarantees preservation of the ion polarization in a racetrack booster up to 8 GeV/c. The booster operation cycle would be a few seconds that would improve the operating efficiency of the MEIC ion complex.

  6. Experimental setup for precise measurement of losses in high-temperature superconducting transformer

    Science.gov (United States)

    Janu, Z.; Wild, J.; Repa, P.; Jelinek, Z.; Zizek, F.; Peksa, L.; Soukup, F.; Tichy, R.

    2006-10-01

    A simple cryogenic system for testing of the superconducting power transformer was constructed. Thermal shielding is provided by additional liquid nitrogen bath instead of super-insulation. The system, together with use of a precise nitrogen liquid level meter, permitted calorimetric measurements of losses of the 8 kVA HTS transformer with a resolution of the order of 0.1 W.

  7. Superconductivity

    International Nuclear Information System (INIS)

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  8. Disbursement of $65 million to the State of Texas for construction of a Regional Medical Technology Center at the former Superconducting Super Collider Site, Waxahachie, Texas

    International Nuclear Information System (INIS)

    1995-05-01

    As part of a settlement agreement between the US DOE and the State of Texas, DOE proposes to transfer $65 million of federal funds to the Texas National Research Laboratory Commission (TNLRC) for construction of the Regional Medical Technology Center (RMTC) to be located in Ellis County, Texas. The RMTC would be a state-of-the-art medical facility for proton cancer therapy, operated by the State of Texas in conjunction with the University of Texas Southwestern Medical Center. The RMTC would use the linear accelerator assets of the recently terminated DOE Superconducting Super Collider Project to accelerate protons to high energies for the treatment of cancer patients. The current design provides for treatment areas, examination rooms, support laboratories, diagnostic imaging equipment, and office space as well as the accelerators (linac and synchrotron) and beam steering and shaping components. The potential environmental consequences of the proposed action are expected to be minor

  9. Technical design of a detector to be operated at the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    1992-04-01

    This report discusses the following topics on the Soleoidal Detector Collaboration: Summary and overview of the detector; physics and detector requirements; central tracking system; superconducting magnet; calorimetry; muon system; electronics; online computing; offline computing; safety; experimental facilities; installation; test and calibration beam plan; and cost and schedule summary.

  10. Technical design of a detector to be operated at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1992-01-01

    This report discusses the following topics on the Soleoidal Detector Collaboration: Summary and overview of the detector; physics and detector requirements; central tracking system; superconducting magnet; calorimetry; muon system; electronics; online computing; offline computing; safety; experimental facilities; installation; test and calibration beam plan; and cost and schedule summary

  11. Minimisation of higher order harmonics for large aperture super-ferric quadrupole magnet

    International Nuclear Information System (INIS)

    Dutta, Atanu; Sharma, P.R.; Dey, M.K.; Bhunia, U.; Nandy, C.; Roy, S.; Pal, G.; Mallik, C.

    2011-01-01

    We have analysed the magnetic field of finite length (effective length of 1200 mm), large bore (pole radius of 350 mm) superconducting quadrupole magnets for use in Low Energy Branch of Super FRS with the program TOSCA. In particularly we have tried to minimize the 12-pole and 20-pole components, which would contribute to geometric aberrations. At the same time we have tried to keep the gradient field uniformity at reference radius 300 mm within ±8.0E-04. (author)

  12. Semiconductor-inspired design principles for superconducting quantum computing.

    Science.gov (United States)

    Shim, Yun-Pil; Tahan, Charles

    2016-03-17

    Superconducting circuits offer tremendous design flexibility in the quantum regime culminating most recently in the demonstration of few qubit systems supposedly approaching the threshold for fault-tolerant quantum information processing. Competition in the solid-state comes from semiconductor qubits, where nature has bestowed some very useful properties which can be utilized for spin qubit-based quantum computing. Here we begin to explore how selective design principles deduced from spin-based systems could be used to advance superconducting qubit science. We take an initial step along this path proposing an encoded qubit approach realizable with state-of-the-art tunable Josephson junction qubits. Our results show that this design philosophy holds promise, enables microwave-free control, and offers a pathway to future qubit designs with new capabilities such as with higher fidelity or, perhaps, operation at higher temperature. The approach is also especially suited to qubits on the basis of variable super-semi junctions.

  13. Improvement of superconducting cylindrical linear induction motor; Chodendo entogata tan'ichiji rinia yudo mota no tokusei kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kikuma, T.; Ishiyama, A. [Waseda Univ., Tokyo (Japan)

    2000-05-29

    For the purpose of examining the characteristics (effect of stability and ac loss by the higher harmonic wave etc.) of an alternating current superconductivity winding under a real machine operating environment of the super-conductive AC machine vessel, authors produced a cylindrical shortness first linear guiding motor (SCLIM) which used the NbTi/CuNi super-conducting cable for the first excitation winding experimentally. In this study, the evaluation of the start up thrust and operation confirmation of the quenching detection protection circuit were carried out using the produced SCLIM. In the quenching detection protection control circuit, the first excitation winding was divided into an internal layer and an outer layer, and both layers were excited in the 2 layer division and a quenching detection protection circuit was installed on the 2 layers respectively. The circuit of a part of fact by this of the phase in which the quench was generated and observed was cut off, and the operation would be able to be continued in part of the remainder of the phase and other two phases. Here, it is to cut off the quenched phase from the circuit, when the phase current becomes zero, and the other effect on the phase is held as small as possible. (NEDO)

  14. Super-quantum curves from super-eigenvalue models

    Energy Technology Data Exchange (ETDEWEB)

    Ciosmak, Paweł [Faculty of Mathematics, Informatics and Mechanics, University of Warsaw,ul. Banacha 2, 02-097 Warsaw (Poland); Hadasz, Leszek [M. Smoluchowski Institute of Physics, Jagiellonian University,ul. Łojasiewicza 11, 30-348 Kraków (Poland); Manabe, Masahide [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Sułkowski, Piotr [Faculty of Physics, University of Warsaw,ul. Pasteura 5, 02-093 Warsaw (Poland); Walter Burke Institute for Theoretical Physics, California Institute of Technology,1200 E. California Blvd, Pasadena, CA 91125 (United States)

    2016-10-10

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  15. Super-quantum curves from super-eigenvalue models

    International Nuclear Information System (INIS)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-01-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  16. Super-quantum curves from super-eigenvalue models

    Science.gov (United States)

    Ciosmak, Paweł; Hadasz, Leszek; Manabe, Masahide; Sułkowski, Piotr

    2016-10-01

    In modern mathematical and theoretical physics various generalizations, in particular supersymmetric or quantum, of Riemann surfaces and complex algebraic curves play a prominent role. We show that such supersymmetric and quantum generalizations can be combined together, and construct supersymmetric quantum curves, or super-quantum curves for short. Our analysis is conducted in the formalism of super-eigenvalue models: we introduce β-deformed version of those models, and derive differential equations for associated α/ β-deformed super-matrix integrals. We show that for a given model there exists an infinite number of such differential equations, which we identify as super-quantum curves, and which are in one-to-one correspondence with, and have the structure of, super-Virasoro singular vectors. We discuss potential applications of super-quantum curves and prospects of other generalizations.

  17. COMPARATIVE ANALYSIS OF ENERGY ACCUMULATION SYSTEMS AND DETERMINATION OF OPTIMAL APPLICATION AREAS FOR MODERN SUPER FLYWHEELS

    Directory of Open Access Journals (Sweden)

    M. A. Sokolov

    2014-07-01

    Full Text Available The paper presents a review and comparative analysis of late years native and foreign literature on various energy storage devices: state of the art designs, application experience in various technical fields. Comparative characteristics of energy storage devices are formulated: efficiency, quality and stability. Typical characteristics are shown for such devices as electrochemical batteries, super capacitors, pumped hydroelectric storage, power systems based on compressed air and superconducting magnetic energy storage systems. The advantages and prospects of high-speed super flywheels as means of energy accumulation in the form of rotational kinetic energy are shown. High output power of a super flywheels energy storage system gives the possibility to use it as a buffer source of peak power. It is shown that super flywheels have great life cycle (over 20 years and are environmental. A distinctive feature of these energy storage devices is their good scalability. It is demonstrated that super flywheels are especially effective in hybrid power systems that operate in a charge/discharge mode, and are used particularly in electric vehicles. The most important factors for space applications of the super flywheels are their modularity, high efficiency, no mechanical friction and long operating time without maintenance. Quick response to network disturbances and high power output can be used to maintain the desired power quality and overall network stability along with fulfilling energy accumulation needs.

  18. High Tc superconducting energy storage systems

    Energy Technology Data Exchange (ETDEWEB)

    Werfel, Frank [Adelwitz Technologiezentrum GmbH (ATZ), Arzberg-Adelwitz (Germany)

    2012-07-01

    Electric energy is basic to heat and light our homes, to power our businesses and to transport people and goods. Powerful storage techniques like SMES, Flywheel, Super Capacitor, and Redox - Flow batteries are needed to increase the overall efficiency, stability and quality of electrical grids. High-Tc superconductors (HTS) possess superior physical and technical properties and can contribute in reducing the dissipation and losses in electric machines as motors and generators, in electric grids and transportation. The renewable energy sources as solar, wind energy and biomass will require energy storage systems even more as a key technology. We survey the physics and the technology status of superconducting flywheel energy storage (FESS) and magnetic energy storage systems (SMES) for their potential of large-scale commercialization. We report about a 10 kWh / 250 kW flywheel with magnetic stabilization of the rotor. The progress of HTS conductor science and technological engineering are basic for larger SMES developments. The performance of superconducting storage systems is reviewed and compared. We conclude that a broad range of intensive research and development in energy storage is urgently needed to produce technological options that can allow both climate stabilization and economic development.

  19. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  20. Super jackstraws and super waterwheels

    International Nuclear Information System (INIS)

    Cho, Jin-Ho

    2007-01-01

    We construct various new BPS states of D-branes preserving 8 supersymmetries. These include super Jackstraws (a bunch of scattered D- or (p, q)-strings preserving supersymmetries), and super waterwheels (a number of D2-branes intersecting at generic angles on parallel lines while preserving supersymmetries). Super D-Jackstraws are scattered in various dimensions but are dynamical with all their intersections following a common null direction. Meanwhile, super (p, q)-Jackstraws form a planar static configuration. We show that the SO(2) subgroup of SL(2, R), the group of classical S-duality transformations in IIB theory, can be used to generate this latter configuration of variously charged (p, q)-strings intersecting at various angles. The waterwheel configuration of D2-branes preserves 8 supersymmetries as long as the 'critical' Born-Infeld electric fields are along the common direction

  1. Nonlinear Super Integrable Couplings of Super Classical-Boussinesq Hierarchy

    Directory of Open Access Journals (Sweden)

    Xiuzhi Xing

    2014-01-01

    Full Text Available Nonlinear integrable couplings of super classical-Boussinesq hierarchy based upon an enlarged matrix Lie super algebra were constructed. Then, its super Hamiltonian structures were established by using super trace identity. As its reduction, nonlinear integrable couplings of the classical integrable hierarchy were obtained.

  2. Toward the drip lines and the superheavy island of stability with the Super Separator Spectrometer S{sup 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dechery, F.; Boutin, D.; Gall, B.; Le Blanc, F. [Universite de Strasbourg, IPHC, Strasbourg (France); CNRS, UMR7178, Strasbourg (France); Drouart, A.; Authier, M.; Delferriere, O.; Payet, J.; Uriot, D. [CEA-Saclay, Irfu, Gif-sur-Yvette (France); Savajols, H.; Stodel, M.H.; Traykov, E. [GANIL, Caen (France); Nolen, J. [Argonne National Laboratory, Argonne, IL (United States); Amthor, A.M. [Bucknell University, Lewisburg, PA (United States); Hue, A.; Laune, B. [Universite Paris-Sud 11, CNRS/IN2P3, IPNO, Orsay (France); Manikonda, S. [AML Superconductivity and Magnetics, Palm Bay, Florida (United States); Collaboration: S3 Collaboration

    2015-06-15

    The Super Separator Spectrometer S{sup 3} is a major experimental system developed for SPIRAL2. It has been designed for physics experiments with very low cross sections by taking full advantage of the very high intensity stable beams to be produced by LINAG, the superconducting linear accelerator at GANIL. These intensities will open new opportunities in several physics domains using fusion evaporation reactions, principally: super-heavy and very heavy element properties, spectroscopy at and beyond the dripline, and isomer and ground-state properties. The common feature of these experiments is the requirement to separate very rare events from intense backgrounds. S{sup 3} accomplishes this with a large acceptance, a high background rejection efficiency, and a physical mass separation. This article will present the technical specifications and optical constraints needed to achieve these physical goals. The optical layout of the spectrometer will be presented, focusing on technical elements of the target system, the superconducting multipole magnets used to correct high-order optical aberrations, the electric and magnetic dipoles, and the open multipole triplet used for primary beam rejection. The expected system performance will be presented for three experimental cases using 3 specific optical modes of the spectrometer. (orig.)

  3. A liquid nitrogen temperature SSC [Superconducting Super Collider

    International Nuclear Information System (INIS)

    McAshan, M.S.; VanderArend, P.

    1987-04-01

    Under the assumption that new developments in the science of superconductivity will lead to dipole magnets suitable for the SSC that have the same properties with regard to field, field quality, size and cost as those in the present conception of the collider, but operating at 77 K rather than 4.35 K; the initial cost of the collider facility is found to be less by $213 M out of the $2,000 M actual construction cost for the collider technical systems and the conventional facilities estimated in the Conceptual Design Report. EDI and contingency is not included in these figures. Operation at the higher temperature is not, however, an unequivocal advantage. The beam line vacuum system in the 77 K case presents problems that will require a larger magnet aperture for satisfactory solution. The costs of this together with the cost of the development and construction of the new vacuum system required is estimated to be $156 M. The net capital cost saving associated with the higher temperature operation is thus found to be $57 M or about 3% of the estimated cost. In addition it is estimated that the operating cost of the facility will under conditions be less by $27.5 M per year in the steady-state including an allowance for the greater availability of the simpler cryogenic system. 14 refs., 1 fig., 4 tabs

  4. Multilayer insulation (MLI) in the Superconducting Super Collider: A practical engineering approach to physical parameters governing MLI thermal performance

    International Nuclear Information System (INIS)

    Gonczy, J.D.; Boroski, W.N.; Niemann, R.C.

    1989-03-01

    Multilayer insulation (MLI) is employed in cryogenic devices to control the heat load of those devices. The physics defining the thermal performance of an MLI system is extremely complex due to the thermal dynamics of numerous interdependent parameters which in themselves contribute differently depending on whether boundary conditions are transient or steady-state. The Multilayer Insulation system for the Superconducting Super Collider (SSC) consists of full cryostat length assemblies of aluminized polyester film, fabricated in the form of blankets, and installed as blankets to the 4.5K cold mass, and the 20K and 80K thermal radiation shields. Approximately 40,000 blankets will be required in the 10,000 cryogenic devices comprising the SSC accelerator. Each blanket will be nearly 56 feet long by 6 feet wide and will consist of as many as 32 reflective and 31 spacer layers of material. Discussed are MLI material choices, and the physical parameters which contribute to the operational performance of MLI systems. Disclosed is a method for fabricating MLI blankets by employing a large diameter winding mandrel having a circumference sufficient for the required blanket length. The blanket fabrication method assures consistency in mass produced MLI blankets by providing positive control of the dimensional parameters which contribute to the MLI blanket thermal performance. The fabrication method can be used to mass produce prefabricated MLI blankets that by virtue of the product have inherent features of dimensional stability, three-dimensional uniformity, controlled layer density, layer-to-layer registration, interlayer cleanliness, and interlayer material to accommodate thermal contraction differences. 9 refs., 4 figs., 2 tabs

  5. Similarities between normal- and super-currents in topological insulator magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Soodchomshom, Bumned; Chantngarm, Peerasak

    2010-01-01

    This work compares the normal-current in a NM/Fi/NM junction with the super-current in a SC/Fi/SC junction, where both are topological insulator systems. NM and Fi are normal region and ferromagnetic region of thickness d with exchange energy m playing a role of the mass of the Dirac electrons and with the gate voltage V G , respectively. SC is superconducting region induced by a s-wave superconductor. We show that, interestingly, the critical super-current passing through a SC/Fi/SC junction behaves quite similar to the normal-current passing through a NM/Fi/NM junction. The normal-current and super-current exhibit N-peak oscillation, found when currents are plotted as a function of the magnetic barrier strength χ ∼ md/hv F . With the barrier strength Z ∼ V G d/hv F , the number of peaks N is determined through the relation Z ∼ Nπ + σπ (with 0 < σ≤1 for χ < Z). The normal- and the super-currents also exhibit oscillating with the same height for all of peaks, corresponding to the Dirac fermion tunneling behavior. These anomalous oscillating currents due to the interplay between gate voltage and magnetic field in the barrier were not found in graphene-based NM/Fi/NM and SC/Fi/SC junctions. This is due to the different magnetic effect between the Dirac fermions in topological insulator and graphene.

  6. Melt formed superconducting joint between superconducting tapes

    International Nuclear Information System (INIS)

    Benz, M.G.; Knudsen, B.A.; Rumaner, L.E.; Zaabala, R.J.

    1992-01-01

    This patent describes a superconducting joint between contiguous superconducting tapes having an inner laminate comprised of a parent-metal layer selected from the group niobium, tantalum, technetium, and vanadium, a superconductive intermetallic compound layer on the parent-metal layer, a reactive-metal layer that is capable of combining with the parent-metal and forming the superconductive intermetallic compound, the joint comprising: a continuous precipitate of the superconductive intermetallic compound fused to the tapes forming a continuous superconducting path between the tapes

  7. The super-classical-Boussinesq hierarchy and its super-Hamiltonian structure

    International Nuclear Information System (INIS)

    Si-Xing, Tao; Tie-Cheng, Xia

    2010-01-01

    Based on the constructed Lie superalgebra, the super-classical-Boussinesq hierarchy is obtained. Then, its super-Hamiltonian structure is obtained by making use of super-trace identity. Furthermore, the super-classical-Boussinesq hierarchy is also integrable in the sense of Liouville. (general)

  8. Electromechanical characterization of superconducting wires and tapes at 77 K

    CERN Document Server

    Bjoerstad, Roger

    The strain dependency of the critical current in state-of-the-art cuprate high-temperature superconductors (HTS) has been characterized. A universal test machine (UTM) combined with a critical current measurement system has been used to characterize the mechanical and the superconducting properties of conductors immersed in an open liquid nitrogen dewar. A set-up has been developed in order to perform simultaneous measurements of the superconductor lattice parameter changes, critical current, as well as the stress and strain at 77 K in self-field in a high energy synchrotron beamline. The HTS tapes and wires studied were based on YBCO, Bi-2223 and Bi-2212. The YBCO tapes were produced by SuperPower and American Superconductors (AMSC). Two types of Bi-2223 tapes, HT and G, were produced by Sumitomo Electric Industries (SEI). The Bi-2212 wires were produced by Oxford Superconducting Technology (OST) using Nexans granulate precursor, before undergoing a specialized over pressure (OP) processing and heat treatmen...

  9. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  10. Fusion-evaporation studies with the Super Separator spectrometer (S3 at Spiral2

    Directory of Open Access Journals (Sweden)

    Déchery F.

    2011-10-01

    Full Text Available The Super Separator Spectrometer S3 is a device designed for experiments with the very high intensity stable ion beam of the superconducting linear accelerator of the SPIRAL2 facility. Its Physics goals cover the study of radioactive ions produced by fusion-evaporation reactions, like superheavy elements or neutron deficient nuclei close to the proton drip line, but also neutron rich nuclei produced by multi-nucleon transfer reactions as well as ion-ion atomic interactions. It is composed of a two-step separator, with a momentum achromat followed by a mass spectrometer. Superconducting multipole triplets, combining quadruple, sextuple and octupole fields, allow a combination of high transmission and mass resolution. A specific open multipole has been designed to stop the high beam power at the first momentum dispersive plane. A decay spectroscopy detection set-up or a low energy branch can be coupled to S3 for a wide range of studies.

  11. A super soliton connection

    International Nuclear Information System (INIS)

    Gurses, M.; Oguz, O.

    1985-07-01

    Integrable super non-linear classical partial differential equations are considered. A super s1(2,R) algebra valued connection 1-form is constructed. It is shown that curvature 2-form of this super connection vanishes by virtue of the integrable super equations of motion. A super extension of the AKNS scheme is presented and a class of super extension of the Lax hierarchy and super non-linear Schroedinger equation are found. O(N) extension and the Baecklund transformations of the above super equations are also considered. (author)

  12. Superconductivity

    International Nuclear Information System (INIS)

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  13. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  14. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  15. The origins of macroscopic quantum coherence in high temperature superconductivity

    International Nuclear Information System (INIS)

    Turner, Philip; Nottale, Laurent

    2015-01-01

    Highlights: • We propose a new theoretical approach to superconductivity in p-type cuprates. • Electron pairing mechanisms in the superconducting and pseudogap phases are proposed. • A scale free network of dopants is key to macroscopic quantum coherence. - Abstract: A new, theoretical approach to macroscopic quantum coherence and superconductivity in the p-type (hole doped) cuprates is proposed. The theory includes mechanisms to account for e-pair coupling in the superconducting and pseudogap phases and their inter relations observed in these materials. Electron pair coupling in the superconducting phase is facilitated by local quantum potentials created by static dopants in a mechanism which explains experimentally observed optimal doping levels and the associated peak in critical temperature. By contrast, evidence suggests that electrons contributing to the pseudogap are predominantly coupled by fractal spin waves (fractons) induced by the fractal arrangement of dopants. On another level, the theory offers new insights into the emergence of a macroscopic quantum potential generated by a fractal distribution of dopants. This, in turn, leads to the emergence of coherent, macroscopic spin waves and a second associated macroscopic quantum potential, possibly supported by charge order. These quantum potentials play two key roles. The first involves the transition of an expected diffusive process (normally associated with Anderson localization) in fractal networks, into e-pair coherence. The second involves the facilitation of tunnelling between localized e-pairs. These combined effects lead to the merger of the super conducting and pseudo gap phases into a single coherent condensate at optimal doping. The underlying theory relating to the diffusion to quantum transition is supported by Coherent Random Lasing, which can be explained using an analogous approach. As a final step, an experimental program is outlined to validate the theory and suggests a new

  16. Theory of superconductivity

    International Nuclear Information System (INIS)

    Crisan, M.

    1988-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity

  17. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  18. Longitudinal propagation of the normal zone through indirectly cooled superconducting solenoids. V.2

    International Nuclear Information System (INIS)

    Devred, A.

    1988-03-01

    This work deals with the longitudinal propagation of the normal zone in large thin super-conducting solenoids like CELLO. From the theoretical point of view, we begin to explain, under the name of classical model, a synthesis of the models known in the literature. Then we study successively the influence of four phenomenons, which until then were neglected: 1) The current sharing zone; 2) The dependence on temperature of the specific heat and of the thermal conductivity; 3) The electromagnetic diffusion through a possible super-stabilizer, and 4) The thermal diffusion through a possible insulator. In each case, we re-formulate the equation of thermal and electromagnetic behaviour of the layer, we solve them analytically, and we derive a corrective factor, which is to apply to the classical formula of the propagation velocity. Finally, we investigate how to combine these corrections, and we converge on a general method of calculation of the velocity. In the experimental part, we have pointed out and measured in terms of current and field, propagation velocities along a super-stabilized conductor. Having established that the experimental conditions satisfied the hypotheses of our theoretical study, we verify that these measurements are in good agreement with the calculated velocities. Finally we concluded that our model of current redistribution through the super-stabilizer is valid [fr

  19. Longitudinal propagation of the normal zone through indirectly cooled superconducting solenoidss. V.1

    International Nuclear Information System (INIS)

    Devred, A.

    1988-03-01

    This work deals with the longitudinal propagation of the normal zone in large thin super-conducting solenoids like CELLO. From the theoretical point of view, we begin to explain, under the name of classical model, a synthesis of the models known in the literature. Then we study successively the influence of four phenomenons, which until then were neglected: 1) The current sharing zone; 2) The dependence on temperature of the specific heat and of the thermal conductivity; 3) The electromagnetic diffusion through a possible super-stabilizer, and 4) The thermal diffusion through a possible insulator. In each case, we re-formulate the equation of thermal and electromagnetic behaviour of the layer, we solve them analytically, and we derive a corrective factor, which is to apply to the classical formula of the propagation velocity. Finally, we investigate how to combine these corrections, and we converge on a general method of calculation of the velocity. In the experimental part, we have pointed out and measured in terms of current and field, propagation velocities along a super-stabilized conductor. Having established that the experimental conditions satisfied the hypotheses of our theoretical study, we verify that these measurements are in good agreement with the calculated velocities. Finally we concluded that our model of current redistribution through the super-stabilizer is valid [fr

  20. Super-Calogero-Moser-Sutherland systems and free super-oscillators: a mapping

    International Nuclear Information System (INIS)

    Ghosh, Pijush K.

    2001-01-01

    We show that the supersymmetric rational Calogero-Moser-Sutherland (CMS) model of A N+1 -type is equivalent to a set of free super-oscillators, through a similarity transformation. We prescribe methods to construct the complete eigenspectrum and the associated eigenfunctions, both in supersymmetry-preserving as well as supersymmetry-breaking phases, from the free super-oscillator basis. Further we show that a wide class of super-Hamiltonians realizing dynamical OSp(2 vertical bar 2) supersymmetry, which also includes all types of rational super-CMS as a small subset, are equivalent to free super-oscillators. We study BC N+1 -type super-CMS model in some detail to understand the subtleties involved in this method

  1. Super Riemann surfaces

    International Nuclear Information System (INIS)

    Rogers, Alice

    1990-01-01

    A super Riemann surface is a particular kind of (1,1)-dimensional complex analytic supermanifold. From the point of view of super-manifold theory, super Riemann surfaces are interesting because they furnish the simplest examples of what have become known as non-split supermanifolds, that is, supermanifolds where the odd and even parts are genuinely intertwined, as opposed to split supermanifolds which are essentially the exterior bundles of a vector bundle over a conventional manifold. However undoubtedly the main motivation for the study of super Riemann surfaces has been their relevance to the Polyakov quantisation of the spinning string. Some of the papers on super Riemann surfaces are reviewed. Although recent work has shown all super Riemann surfaces are algebraic, some areas of difficulty remain. (author)

  2. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eve J.; Chiang, Eugene, E-mail: evelee@berkeley.edu, E-mail: echiang@astro.berkeley.edu [Department of Astronomy, University of California Berkeley, Berkeley, CA 94720-3411 (United States)

    2016-02-01

    The riddle posed by super-Earths (1–4R{sub ⊕}, 2–20M{sub ⊕}) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R{sub ⊕}, 2–6M{sub ⊕}). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions.

  3. BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS

    International Nuclear Information System (INIS)

    Lee, Eve J.; Chiang, Eugene

    2016-01-01

    The riddle posed by super-Earths (1–4R ⊕ , 2–20M ⊕ ) is that they are not Jupiters: their core masses are large enough to trigger runaway gas accretion, yet somehow super-Earths accreted atmospheres that weigh only a few percent of their total mass. We show that this puzzle is solved if super-Earths formed late, as the last vestiges of their parent gas disks were about to clear. This scenario would seem to present fine-tuning problems, but we show that there are none. Ambient gas densities can span many (in one case up to 9) orders of magnitude, and super-Earths can still robustly emerge after ∼0.1–1 Myr with percent-by-weight atmospheres. Super-Earth cores are naturally bred in gas-poor environments where gas dynamical friction has weakened sufficiently to allow constituent protocores to gravitationally stir one another and merge. So little gas is present at the time of core assembly that cores hardly migrate by disk torques: formation of super-Earths can be in situ. The basic picture—that close-in super-Earths form in a gas-poor (but not gas-empty) inner disk, fed continuously by gas that bleeds inward from a more massive outer disk—recalls the largely evacuated but still accreting inner cavities of transitional protoplanetary disks. We also address the inverse problem presented by super-puffs: an uncommon class of short-period planets seemingly too voluminous for their small masses (4–10R ⊕ , 2–6M ⊕ ). Super-puffs most easily acquire their thick atmospheres as dust-free, rapidly cooling worlds outside ∼1 AU where nebular gas is colder, less dense, and therefore less opaque. Unlike super-Earths, which can form in situ, super-puffs probably migrated in to their current orbits; they are expected to form the outer links of mean-motion resonant chains, and to exhibit greater water content. We close by confronting observations and itemizing remaining questions

  4. The Super Patalan Numbers

    OpenAIRE

    Richardson, Thomas M.

    2014-01-01

    We introduce the super Patalan numbers, a generalization of the super Catalan numbers in the sense of Gessel, and prove a number of properties analagous to those of the super Catalan numbers. The super Patalan numbers generalize the super Catalan numbers similarly to how the Patalan numbers generalize the Catalan numbers.

  5. Grassmann, super-Kac-Moody and super-derivation algebras

    International Nuclear Information System (INIS)

    Frappat, L.; Ragoucy, E.; Sorba, P.

    1989-05-01

    We study the cyclic cocycles of degree one on the Grassmann algebra and on the super-circle with N supersymmetries (i.e. the tensor product of the algebra of functions on the circle times a Grassmann algebra with N generators). They are related to central extensions of graded loop algebras (i.e. super-Kac-Moody algebras). The corresponding algebras of super-derivations have to be compatible with the cocycle characterizing the extension; we give a general method for determining these algebras and examine in particular the cases N = 1,2,3. We also discuss their relations with the Ademollo et al. algebras, and examine the possibility of defining new kinds of super-conformal algebras, which, for N > 1, generalize the N = 1 Ramond-Neveu-Schwarz algebra

  6. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  7. Tight aspect ratio tokamak power reactor with superconducting TF coils

    International Nuclear Information System (INIS)

    Nishio, S.; Tobita, K.; Konishi, S.; Ando, T.; Hiroki, S.; Kuroda, T.; Yamauchi, M.; Azumi, M.; Nagata, M.

    2003-01-01

    Tight aspect ratio tokamak power reactor with super-conducting toroidal field (TF) coils has been proposed. A center solenoid coil system and an inboard blanket were discarded. The key point was how to find the engineering design solution of the TF coil system with the high field and high current density. The coil system with the center post radius of less than 1 m can generate the maximum field of ∼ 20 T. This coil system causes a compact reactor concept, where the plasma major and minor radii of 3.75 m and 1.9 m, respectively and the fusion power of 1.8 GW. (author)

  8. Report of the Task Force on detector Research and Development for the Superconducting Super Collider

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1986-06-01

    This report contains a: Report of the working group on tracking devices; report of the working group on calorimetry; report of the working group on muon, electron and hadron identification; report of the working group on electronics, triggering, data acquisition and computing; report of the working group on superconducting magnets; and report of the working group on Monte Carlo development.

  9. Imaging of a large collection of human embryo using a super-parallel MR microscope

    International Nuclear Information System (INIS)

    Matsuda, Yoshimasa; Ono, Shinya; Otake, Yosuke; Handa, Shinya; Kose, Katsumi; Haishi, Tomoyuki; Yamada, Shigeto; Uwabe, Chikako; Shiota, Kohei

    2007-01-01

    Using 4 and 8-channel super-parallel magnetic resonance (MR) microscopes with a horizontal bore 2.34T superconducting magnet developed for 3-dimensional MR microscopy of the large Kyoto Collection of Human Embryos, we acquired T 1 -weighted 3D images of 1204 embryos at a spatial resolution of (40 μm) 3 to (150 μm) 3 in about 2 years. Similarity of image contrast between the T 1 -weighted images and stained anatomical sections indicated that T 1 -weighted 3D images could be used for an anatomical 3D image database for human embryology. (author)

  10. Research and development of super light water reactors and super fast reactors in Japan

    International Nuclear Information System (INIS)

    Oka, Y.; Morooka, S.; Yamakawa, M.; Ishiwatari, Y.; Ikejiri, S.; Katsumura, Y.; Muroya, Y.; Terai, T.; Sasaki, K.; Mori, H.; Hamamoto, Y.; Okumura, K.; Kugo, T.; Nakatsuka, T.; Ezato, K.; Akasaka, N.; Hotta, A.

    2011-01-01

    Super Light Water Reactors (Super LWR) and Super Fast Reactors (Super FR) are the supercritical- pressure light water cooled reactors (SCWR) that are developed by the research group of University of Tokyo since 1989 and now jointly under development with the researchers of Waseda University, University of Tokyo and other organizations in Japan. The principle of the reactor concept development, the results of the past Super LWR and Super FR R&D as well as the R&D program of the Super FR second phase project are described. (author)

  11. History of science and technology in the 20th century and super-technologies at present. 20 seiki no kagaku gijutsushi to genzai no (cho) gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Futami, S. (Yasukawa Electric Mfg. Co. Ltd., Kitakyushu (Japan))

    1992-10-05

    Technologies whose names are prefixed with super are discussed from a viewpoint of history of science and technology. A chronology for super-prefixed sciences and technologies in the 20th century is presented. Since Bohr's quantum theory and Einstein's fundamental formula for atomic energy: E = mc[sup 2] that rank as two heads of super-science, were published in the begining of the 20th century, their theories have been playing roles as a foundation of the development of science and technology in this century. Namely, on the basis of quantum theory, semi-conductors were invented and super-conduction has been developed. The Einstein's fundamental formula has led to atomic bombs and commercial power reactors. Development to super-technologies in various fields of sciences and technologies is explained. When a nation's history of science and technology is assumed as a process from mimicry to self-sustenance that is composed of the following four steps: (1) import of products, (2)initiation of production and transfer of technology, (3)transit to technological self-sustain, (4) establishment of creative technology. Japan is in a process between(3) and(4). Further, super-technologies under research and development for the present in Japan are enumerated. 6 refs., 2 figs.

  12. The super W∞ symmetry of the Manin-Radul super KP hierarchy

    International Nuclear Information System (INIS)

    Das, A.; Sin, S.J.

    1991-11-01

    We show that the Manin-Radul super KP hierarchy is invariant under super W ∞ transformations. These transformations are characterized by time dependent flows which commute with the usual flows generated by the conserved quantities of the super KP hierarchy. (author). 16 refs

  13. Analysis of tritium production in the vicinity of Linac and LEB tunnels at the Superconducting Super Collider Laboratory

    International Nuclear Information System (INIS)

    Nabelssi, B.K.

    1994-01-01

    Monte Carlo calculations were performed to estimate the tritium production in groundwater around the Linear Accelerator (Linac) and the Low Energy Booster (LEB) tunnels at the Superconducting Super Collider Laboratory (SSCL). The calculations were performed using the new version of the Los Alamos High Energy Transport (LAHET) code system (SUPERHET). Most of the tritium activity was found to occur in a zone extending 2 m from the tunnel wall. The calculated tritium production rate was used to derive the. maximum allowable beam losses that would result in an average groundwater concentration in the activation zone of 20 pCi/cm 3 , the federal maximum contaminant level (MCL) for tritium in drinking water. The maximum allowable beam losses were found to be about 4% and 2% of the maximum operating be.-un for the Linac at 1 GeV and the LEB at 11 GeV, resnectively. These percentages are well in excess of typical operational losses at existing highenergy accelerators. The results are in good agreement with previously reported calculations. Tritium saturation activity in water pipes resultina, from the derived maximum allowable beam loss was found to be 355 pCi/cm 3 in the Linac operating at 600 MeV and 363 pCi/cm 3 in the LEB operating at 11 GeV. Accidental tritium releases from water pipes were found to cause an inhalation dose rate of less than 0.013 (Linac at 600 MeV) and 0.009 mrem/hr (LEB at 11 Gev) in the tunnels. These dose rates are well within the laboratory's design limit of 0.1 mrem/hr for controlled areas. Accidental beam losses were found to cause activation in excess of the MCL only after an irradiation time of more than 557 hours in the Linac at 600 MeV and 69 hours in the LEB at 11 GeV. A full-beam accident lasting more than one hour is considered unlikely

  14. A conceptual design of superconducting spherical tokamak reactor

    International Nuclear Information System (INIS)

    Nagayama, Yoshio; Shinya, Kichiro; Tanaka, Yasutoshi

    2012-01-01

    This paper presents a fusion reactor concept named 'JUST (Japanese Universities' Super Tokamak reactor)'. From the plasma confinement system to the power generation system is evaluated in this work. JUST design has features as follows: the superconducting magnet, the steady state operation with high bootstrap current fraction, the easy replacement of neutron damaged first wall, the high heat flux in the divertor, and the low cost (or high β). By winding the OH solenoid over the center stack of toroidal field coil, we have the low aspect ratio and the 80cm thick neutron shield to protect the superconducting center stack. JUST is designed by using the 0-D transport code under the assumption that the energy confinement time is 1.8 times of the IPB98(y,2) scaling. Main parameters are as follows: the major radius of 4.5m, the aspect ratio of 1.8, the elongation ratio of 2.5, the toroidal field of 2.36T, the plasma current of 18MA, the toroidal beta of 22%, the central electron and ion temperature of 15keV and the fusion thermal power of 2.4GW. By using the mercury heat exchanger and the steam turbine, the heat efficiency is 33% and the electric power is 0.74GW. (author)

  15. Interface superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gariglio, S., E-mail: stefano.gariglio@unige.ch [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland); Gabay, M. [Laboratoire de Physique des Solides, Bat 510, Université Paris-Sud 11, Centre d’Orsay, 91405 Orsay Cedex (France); Mannhart, J. [Max Planck Institute for Solid State Research, 70569 Stuttgart (Germany); Triscone, J.-M. [DQMP, Université de Genève, 24 Quai E.-Ansermet, CH-1211 Genève (Switzerland)

    2015-07-15

    Highlights: • We discuss interfacial superconductivity, a field boosted by the discovery of the superconducting interface between LaAlO. • This system allows the electric field control and the on/off switching of the superconducting state. • We compare superconductivity at the interface and in bulk doped SrTiO. • We discuss the role of the interfacially induced Rashba type spin–orbit. • We briefly discuss superconductivity in cuprates, in electrical double layer transistor field effect experiments. • Recent observations of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3} are presented. - Abstract: Low dimensional superconducting systems have been the subject of numerous studies for many years. In this article, we focus our attention on interfacial superconductivity, a field that has been boosted by the discovery of superconductivity at the interface between the two band insulators LaAlO{sub 3} and SrTiO{sub 3}. We explore the properties of this amazing system that allows the electric field control and on/off switching of superconductivity. We discuss the similarities and differences between bulk doped SrTiO{sub 3} and the interface system and the possible role of the interfacially induced Rashba type spin–orbit. We also, more briefly, discuss interface superconductivity in cuprates, in electrical double layer transistor field effect experiments, and the recent observation of a high T{sub c} in a monolayer of FeSe deposited on SrTiO{sub 3}.

  16. Superconducting coil and method of stress management in a superconducting coil

    Science.gov (United States)

    McIntyre, Peter M.; Shen, Weijun; Diaczenko, Nick; Gross, Dan A.

    1999-01-01

    A superconducting coil (12) having a plurality of superconducting layers (18) is provided. Each superconducting layer (18) may have at least one superconducting element (20) which produces an operational load. An outer support structure (24) may be disposed outwardly from the plurality of layers (18). A load transfer system (22) may be coupled between at least one of the superconducting elements (20) and the outer support structure (24). The load transfer system (22) may include a support matrix structure (30) operable to transfer the operational load from the superconducting element (20) directly to the outer support structure (24). A shear release layer (40) may be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a shear stress between the superconducting element (20) and the support matrix structure (30). A compliant layer (42) may also be disposed, in part, between the superconducting element (20) and the support matrix structure (30) for relieving a compressive stress on the superconducting element (20).

  17. Reduction of 4-dim self dual super Yang-Mills onto super Riemann surfaces

    International Nuclear Information System (INIS)

    Mendoza, A.; Restuccia, A.; Martin, I.

    1990-05-01

    Recently self dual super Yang-Mills over a super Riemann surface was obtained as the zero set of a moment map on the space of superconnections to the dual of the super Lie algebra of gauge transformations. We present a new formulation of 4-dim Euclidean self dual super Yang-Mills in terms of constraints on the supercurvature. By dimensional reduction we obtain the same set of superconformal field equations which define self dual connections on a super Riemann surface. (author). 10 refs

  18. An expression of interest in a Super Fixed Target Beauty Facility (SFT) at the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1990-01-01

    The concept of a Super Fixed Target Beauty Facility (SFT) which uses a relatively low intensity 20 TeV proton beam as a generator of very high momenta B's is an exciting prospect which is very competitive with other B factory ideas. The yields of B's in such a facility are quite high (3 x 10 10 → 10 11 B's per year). At this level of statistics, CP violation measurements will be possible in many modes. In addition, the fixed target configuration, because of the high momenta of the produced B's and the resulting long decay lengths, facilitates the detection and reconstruction of B's and offers unique opportunities for observation of the B decays. The limited solid angle coverage required for the fixed target spectrometer makes the cost of the facility much cheaper than other e + e - or hadron collider options under consideration. The relatively low intensity 20 TeV beam (1 → 2 x 10 8 protons/second) needed for the SFT makes it possible to consider an extraction system which operates concurrently and in a non-interfering manner with the other collider experiments. One possible method for generating such a beam, crystal channeling, is discussed

  19. Superconductivity

    International Nuclear Information System (INIS)

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  20. Report of the DOE Office of Energy Research review committee on the Solenoidal Detector Collaboration of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    1992-11-01

    At the request of Dr. James F. Decker, Deputy Director of DOE's Office of Energy Research, a technical review committee was assembled to perform a peer review of the Solenoidal Detector Collaboration (SDC) from October 26 to October 30, 1992, at the Superconducting Super Collider Laboratory (SSCL). The Energy Research Review Committee (ERC) evaluated the technical feasibility, the estimated cost, the proposed construction schedule, and the management arrangements for the SDC detector as documented in the SDC Technical Design Report, SDC Project Cost/Schedule Summary Book, SDC draft Project Management Plan, and other materials prepared for and presented to the Committee by the SDC management. The SDC detector is one of two major detector facilities anticipated at the SSC. The SDC project will be carried out by a worldwide collaboration of almost 1000 scientists, engineers, and managers from over 100 universities, national laboratories, and industries. The SDC will construct a state-of-the-art, general-purpose detector weighing over 26,000 tons and the size of an eight-story building, to perform a broad class of high energy physics experiments at the SSC beginning in the fall of 1999. The design of the SSC detector emphasizes tracking in a strong solenoidal magnetic field to measure charged-particle momenta and to assist in providing good electron and muon identification; identification of neutrinos and other penetrating particles using a hermetic calorimeter; studies of jets of hadrons using both calorimeter and tracking systems; and studies of short-lived particles, such as B mesons, and pattern recognition within complex events using a silicon-based vertex tracking system. These capabilities are the result of the intensive research, development, and design activities undertaken since 1989 by this very large and capable collaboration

  1. Calculus super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Calculus I Super Review includes a review of functions, limits, basic derivatives, the definite integral, combinations, and permutations. Take the Super Review quizzes to see how much you've learned - and where you need more study. Makes an excellent study aid and textbook companion. Great for self-study!DETAILS- From cover to cover, each in-depth topic review is easy-to-follow and easy-to-grasp - Perfect when preparing for

  2. Thermal microwave states acting on a superconducting qubit

    Energy Technology Data Exchange (ETDEWEB)

    Goetz, Jan; Mueting, Miriam; Haeberlein, Max; Wulschner, Friedrich; Fischer, Michael; Deppe, Frank; Fedorov, Kirill; Huebl, Hans [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Xie, Edwar; Eder, Peter; Deppe, Frank; Gross, Rudolf [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany); Physik-Department, TU Muenchen, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstrasse 4, 80799 Muenchen (Germany); Marx, Achim [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, 85748 Garching (Germany)

    2016-07-01

    We analyze the influence of broadband thermal states in the microwave regime on the coherence properties of a superconducting (transmon) qubit coupled to a transmission line resonator. We generate the thermal states inside the resonator by heating a 30 dB attenuator to emit blackbody radiation into a transmission line. In the absence of thermal fluctuations, the qubit coherence time is limited by relaxation. We find that the relaxation rate is almost unaffected by the presence of a thermal field inside the resonator. However, such states induce significant dephasing which increases quadratically with the number of thermal photons, whereas for a coherent population of the resonator, the increase shows a linear behavior. These results confirm the different photon statistics, being Poissonian for a coherent population and super-Poissonian for a thermal population of the resonator.

  3. Supermanifolds and super Riemann surfaces

    International Nuclear Information System (INIS)

    Rabin, J.M.

    1986-09-01

    The theory of super Riemann surfaces is rigorously developed using Rogers' theory of supermanifolds. The global structures of super Teichmueller space and super moduli space are determined. The super modular group is shown to be precisely the ordinary modular group. Super moduli space is shown to be the gauge-fixing slice for the fermionic string path integral

  4. Superconductivity

    International Nuclear Information System (INIS)

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries

  5. ac superconducting articles

    International Nuclear Information System (INIS)

    Meyerhoff, R.W.

    1977-01-01

    A noval ac superconducting cable is described. It consists of a composite structure having a superconducting surface along with a high thermally conductive material wherein the superconducting surface has the desired physical properties, geometrical shape and surface finish produced by the steps of depositing a superconducting layer upon a substrate having a predetermined surface finish and shape which conforms to that of the desired superconducting article, depositing a supporting layer of material on the superconducting layer and removing the substrate, the surface of the superconductor being a replica of the substrate surface

  6. High-temperature superconductivity

    International Nuclear Information System (INIS)

    Ginzburg, V.L.

    1987-07-01

    After a short account of the history of experimental studies on superconductivity, the microscopic theory of superconductivity, the calculation of the control temperature and its possible maximum value are presented. An explanation of the mechanism of superconductivity in recently discovered superconducting metal oxide ceramics and the perspectives for the realization of new high-temperature superconducting materials are discussed. 56 refs, 2 figs, 3 tabs

  7. Superconducting accelerator technology

    International Nuclear Information System (INIS)

    Grunder, H.A.; Hartline, B.K.

    1986-01-01

    Modern and future accelerators for high energy and nuclear physics rely increasingly on superconducting components to achieve the required magnetic fields and accelerating fields. This paper presents a practical overview of the phenomenon of superconductivity, and describes the design issues and solutions associated with superconducting magnets and superconducting rf acceleration structures. Further development and application of superconducting components promises increased accelerator performance at reduced electric power cost

  8. Design and construction of a high temperature superconducting power cable cryostat for use in railway system applications

    International Nuclear Information System (INIS)

    Tomita, M; Muralidhar, M; Suzuki, K; Fukumoto, Y; Ishihara, A; Akasaka, T; Kobayashi, Y

    2013-01-01

    The primary objective of the current effort was to design and test a cryostat using a prototype five-meter long high temperature Bi 2 Sr 2 Ca 2 Cu 3 O y (Bi-2223) superconducting dc power cable for railway systems. To satisfy the safety regulations of the Govt of Japan a mill sheet covered by super-insulation was used inside the walls of the cryostat. The thicknesses of various walls in the cryostat were obtained from a numerical analysis. A non-destructive inspection was utilized to find leaks under vacuum or pressure. The cryostat target temperature range was around 50 K, which is well below liquid nitrogen temperature, the operating temperature of the superconducting cable. The qualification testing was carried out from 77 down to 66 K. When using only the inner sheet wire, the maximum current at 77.3 K was 10 kA. The critical current (I c ) value increased with decreasing temperature and reached 11.79 kA at 73.7 K. This is the largest dc current reported in a Bi 2 Sr 2 Ca 2 Cu 3 O y or YBa 2 Cu 3 O y (Y-123) superconducting prototype cable so far. These results verify that the developed DC superconducting cable is reliable and fulfils all the requirements necessary for successful use in various power applications including railway systems. The key issues for the design of a reliable cryogenic system for superconducting power cables for railway systems are discussed. (paper)

  9. Superconducting technology

    International Nuclear Information System (INIS)

    2010-01-01

    Superconductivity has a long history of about 100 years. Over the past 50 years, progress in superconducting materials has been mainly in metallic superconductors, such as Nb, Nb-Ti and Nb 3 Sn, resulting in the creation of various application fields based on the superconducting technologies. High-T c superconductors, the first of which was discovered in 1986, have been changing the future vision of superconducting technology through the development of new application fields such as power cables. On basis of these trends, future prospects of superconductor technology up to 2040 are discussed. In this article from the viewpoints of material development and the applications of superconducting wires and electronic devices. (author)

  10. Integrated Surface Topography Characterization of Variously Polished Niobium for Superconducting Particle Accelerators

    International Nuclear Information System (INIS)

    Tian, Hui; Reece, Charles; Kelley, Michael; Ribeill, G.

    2009-01-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro-and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents flow. Interior surface chemical polishing (BCP/EP) to remove mechanical damage leaves surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely-used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is being used to distinguish the scale-dependent smoothing effects. The topographical evolution of the Nb surface as a function of different steps of EP is reported, resulting in a novel qualitative and quantitative description of Nb surface topography.

  11. Deterministic phase measurements exhibiting super-sensitivity and super-resolution

    DEFF Research Database (Denmark)

    Schäfermeier, Clemens; Ježek, Miroslav; Madsen, Lars S.

    2018-01-01

    Phase super-sensitivity is obtained when the sensitivity in a phase measurement goes beyond the quantum shot noise limit, whereas super-resolution is obtained when the interference fringes in an interferometer are narrower than half the input wavelength. Here we show experimentally that these two...

  12. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  13. Superconductivity revisited

    CERN Document Server

    Dougherty, Ralph

    2013-01-01

    While the macroscopic phenomenon of superconductivity is well known and in practical use worldwide in many industries, including MRIs in medical diagnostics, the current theoretical paradigm for superconductivity (BCS theory) suffers from a number of limitations, not the least of which is an adequate explanation of high temperature superconductivity. This book reviews the current theory and its limitations and suggests new ideas and approaches in addressing these issues. The central objective of the book is to develop a new, coherent, understandable theory of superconductivity directly based on molecular quantum mechanics.

  14. High field superconducting magnets

    Science.gov (United States)

    Hait, Thomas P. (Inventor); Shirron, Peter J. (Inventor)

    2011-01-01

    A superconducting magnet includes an insulating layer disposed about the surface of a mandrel; a superconducting wire wound in adjacent turns about the mandrel to form the superconducting magnet, wherein the superconducting wire is in thermal communication with the mandrel, and the superconducting magnet has a field-to-current ratio equal to or greater than 1.1 Tesla per Ampere; a thermally conductive potting material configured to fill interstices between the adjacent turns, wherein the thermally conductive potting material and the superconducting wire provide a path for dissipation of heat; and a voltage limiting device disposed across each end of the superconducting wire, wherein the voltage limiting device is configured to prevent a voltage excursion across the superconducting wire during quench of the superconducting magnet.

  15. Theory of super LIE groups

    International Nuclear Information System (INIS)

    Prakash, M.

    1985-01-01

    The theory of supergravity has attracted increasing attention in the recent years as a unified theory of elementary particle interactions. The superspace formulation of the theory is highly suggestive of an underlying geometrical structure of superspace. It also incorporates the beautifully geometrical general theory of relativity. It leads us to believe that a better understanding of its geometry would result in a better understanding of the theory itself, and furthermore, that the geometry of superspace would also have physical consequences. As a first step towards that goal, we develop here a theory of super Lie groups. These are groups that have the same relation to a super Lie algebra as Lie groups have to a Lie algebra. More precisely, a super Lie group is a super-manifold and a group such that the group operations are super-analytic. The super Lie algebra of a super Lie group is related to the local properties of the group near the identity. This work develops the algebraic and super-analytical tools necessary for our theory, including proofs of a set of existence and uniqueness theorems for a class of super-differential equations

  16. Algebra & trigonometry super review

    CERN Document Server

    2012-01-01

    Get all you need to know with Super Reviews! Each Super Review is packed with in-depth, student-friendly topic reviews that fully explain everything about the subject. The Algebra and Trigonometry Super Review includes sets and set operations, number systems and fundamental algebraic laws and operations, exponents and radicals, polynomials and rational expressions, equations, linear equations and systems of linear equations, inequalities, relations and functions, quadratic equations, equations of higher order, ratios, proportions, and variations. Take the Super Review quizzes to see how much y

  17. Superconductivity in Medicine

    Science.gov (United States)

    Alonso, Jose R.; Antaya, Timothy A.

    2012-01-01

    Superconductivity is playing an increasingly important role in advanced medical technologies. Compact superconducting cyclotrons are emerging as powerful tools for external beam therapy with protons and carbon ions, and offer advantages of cost and size reduction in isotope production as well. Superconducting magnets in isocentric gantries reduce their size and weight to practical proportions. In diagnostic imaging, superconducting magnets have been crucial for the successful clinical implementation of magnetic resonance imaging. This article introduces each of those areas and describes the role which superconductivity is playing in them.

  18. Melting in super-earths.

    Science.gov (United States)

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  19. Super high-speed magnetically levitated system approaches practical use

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Shoji; Nakao, Hiroyuki; Takemasa, Hisashi

    1988-10-01

    The JR-MAGLEV, a super high-speed magnetically levitated system, has been under development since the inauguration with the manufacturing of a succession of trial vehicles. In 1987, the trial vehicle recorded a speed of 400 km/hr as a 2-car formation with passengers. As a participant in the Maglev project, Toshiba has been contributing to the development of superconducting magnets, the main element of the system, as well as auxiliary power sources and the cycloconverter to be used in the substations. A prototype vehicle for commercial service, MLU 002, was manufactured in March 1988 and is now under testing with the aim of achieving a target speed of 420km/hr. The main parameters of superconducting magnet are as follows; magnetomotive force of 700 kA and number of coils of 3 poles/2 trains/ 2 cars, and the magnets are light weight which is almost the limits with the weight ratio to rolling stock of 0.25. As measures to protect vaporization loss of helium for coil-cooling, a relicfaction process of the helium vapor by use of Claude cycle refrigerator was adopted. A circulating current cycloconverter with 16 MVA was developed for the travel motion. The cycloconverter enabled to receive power directly from an electric power company, the output current becomes complete sine wave, and the problems on traveling control were solved. 6 references, 8 figures, 3 tables.

  20. On the design of fully-integrated charge preamplifiers for the Superconducting Super Collider

    International Nuclear Information System (INIS)

    VanPeteghem, P.M.; Ling, K.Y.; Lee, S.Y.; Liu, H.H.; DiBitonto, D.

    1990-01-01

    The specifications imposed on the charge preamplifiers, to be used in the Superconducting Supercollider are very demanding: the rise time should be less than 100 nsec and noise should be less than 1,000 electrons RMS for a total power consumption of less than 80 mWatt. Furthermore, several hundreds of thousands (or even millions) of channels have to be manufactured. Hence, integrated circuit (IC) implementations can be more economical than discrete implementations, due to the compact size and ease of manufacturing. BiFET IC technology is currently the most attractive technology, because it is a mature IC technology, and readily available from several industrial vendors. As a case study, a BiFET prototype preamplifier is presented, where circuit performance has been tested for total radiation doses up to 1.4 MegaRads

  1. SuperB Progress Report: Detector

    Energy Technology Data Exchange (ETDEWEB)

    Grauges, E.; /Barcelona U., ECM; Donvito, G.; Spinoso, V.; /INFN, Bari /Bari U.; Manghisoni, M.; Re, V.; Traversi, G.; /INFN, Pavia /Bergamo U., Ingengneria Dept.; Eigen, G.; Fehlker, D.; Helleve, L.; /Bergen U.; Carbone, A.; Di Sipio, R.; Gabrielli, A.; Galli, D.; Giorgi, F.; Marconi, U.; Perazzini, S.; Sbarra, C.; Vagnoni, V.; Valentinetti, S.; Villa, M.; Zoccoli, A.; /INFN, Bologna /Bologna U. /Caltech /Carleton U. /Cincinnati U. /INFN, CNAF /INFN, Ferrara /Ferrara U. /UC, Irvine /Taras Shevchenko U. /Orsay, LAL /LBL, Berkeley /UC, Berkeley /Frascati /INFN, Legnaro /Orsay, IPN /Maryland U. /McGill U. /INFN, Milan /Milan U. /INFN, Naples /Naples U. /Novosibirsk, IYF /INFN, Padua /Padua U. /INFN, Pavia /Pavia U. /INFN, Perugia /Perugia U. /INFN, Perugia /Caltech /INFN, Pisa /Pisa U. /Pisa, Scuola Normale Superiore /PNL, Richland /Queen Mary, U. of London /Rutherford /INFN, Rome /Rome U. /INFN, Rome2 /Rome U.,Tor Vergata /INFN, Rome3 /Rome III U. /SLAC /Tel Aviv U. /INFN, Turin /Turin U. /INFN, Padua /Trento U. /INFN, Trieste /Trieste U. /TRIUMF /British Columbia U. /Montreal U. /Victoria U.

    2012-02-14

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  2. SuperB Progress Report: Detector

    International Nuclear Information System (INIS)

    Grauges, E.; Donvito, G.; Spinoso, V.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Fehlker, D.; Helleve, L.; Cheng, C.; Chivukula, A.; Doll, D.; Echenard, B.; Hitlin, D.; Ongmongkolkul, P.; Porter, F.; Rakitin, A.; Thomas, M.; Zhu, R.; Tatishvili, G.; Andreassen, R.; Fabby, C.; Meadows, B.; Simpson, A.; Sokoloff, M.; Tomko, K.; Fella, A.; Andreotti, M.; Baldini, W.; Calabrese, R.; Carassiti, V.; Cibinetto, G.; Cotta Ramusino, A.; Gianoli, A.; Luppi, E.; Munerato, M.; Santoro, V.; Tomassetti, L.; Stoker, D.; Bezshyyko, O.; Dolinska, G.; Arnaud, N.; Beigbeder, C.; Bogard, F.; Breton, D.; Burmistrov, L.; Charlet, D.; Maalmi, J.; Perez Perez, L.; Puill, V.; Stocchi, A.; Tocut, V.; Wallon, S.; Wormser, G.; Brown, D.

    2012-01-01

    This report describes the present status of the detector design for SuperB. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  3. SuperB Progress Reports Accelerator

    CERN Document Server

    Biagini, Maria Enrica; Boscolo, M; Buonomo, B; Demma, T; Drago, A; Esposito, M; Guiducci, S; Mazzitelli, G; Pellegrino, L; Preger, M A; Raimondi, P; Ricci, R; Rotundo, U; Sanelli, C; Serio, M; Stella, A; Tomassini, S; Zobov, M; Bertsche, K; Brachman, A; Cai, Y; Chao, A; Chesnut, R; Donald, M.H; Field, C; Fisher, A; Kharakh, D; Krasnykh, A; Moffeit, K; Nosochkov, Y; Pivi, M; Seeman, J; Sullivan, M.K; Weathersby, S; Weidemann, A; Weisend, J; Wienands, U; Wittmer, W; Woods, M; Yocky, G; Bogomiagkov, A; Koop, I; Levichev, E; Nikitin, S; Okunev, I; Piminov, P; Sinyatkin, S; Shatilov, D; Vobly, P; Bosi, F; Liuzzo, S; Paoloni, E; Bonis, J; Chehab, R; Le Meur, G; Lepercq, P; Letellier-Cohen, F; Mercier, B; Poirier, F; Prevost, C; Rimbault, C; Touze, F; Variola, A; Bolzon, B; Brunetti, L; Jeremie, A; Baylac, M; Bourrion, O; De Conto, J M; Gomez, Y; Meot, F; Monseu, N; Tourres, D; Vescovi, C; Chanci, A; Napoly, O; Barber, D P; Bettoni, S; Quatraro, D

    2010-01-01

    This report details the present status of the Accelerator design for the SuperB Project. It is one of four separate progress reports that, taken collectively, describe progress made on the SuperB Project since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008.

  4. Superconductivity in technology

    International Nuclear Information System (INIS)

    Komarek, P.

    1976-01-01

    Physics, especially high energy physics and solid state physics was the first area in which superconducting magnets were used but in the long run, the most extensive application of superconductivity will probably be in energy technology. Superconducting power transmission cables, magnets for energy conversion in superconducting electrical machines, MHD-generators and fusion reactors and magnets for energy storage are being investigated. Magnets for fusion reactors will have particularly large physical dimensions, which means that much development effort is still needed, for there is no economic alternative. Superconducting surfaces in radio frequency cavities can give Q-values up to a factor of 10 6 higher than those of conventional resonators. Particle accelerators are the important application. And for telecommunication, simple coaxial superconducting radio frequency cables seem promising. The tunnel effect in superconducting junctions is now being developed commercially for sensitive magnetometers and may soon possibly feature in the memory cells of computer devices. Hence superconductivity can play an important role in the technological world, solving physical and technological problems and showing economic advantages as compared with possible conventional techniques, bearing also in mind the importance of reliability and safety. (author)

  5. Deformations of super Riemann surfaces

    International Nuclear Information System (INIS)

    Ninnemann, H.

    1992-01-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.)

  6. Deformations of super Riemann surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ninnemann, H [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    1992-11-01

    Two different approaches to (Konstant-Leites-) super Riemann surfaces are investigated. In the local approach, i.e. glueing open superdomains by superconformal transition functions, deformations of the superconformal structure are discussed. On the other hand, the representation of compact super Riemann surfaces of genus greater than one as a fundamental domain in the Poincare upper half-plane provides a simple description of super Laplace operators acting on automorphic p-forms. Considering purely odd deformations of super Riemann surfaces, the number of linear independent holomorphic sections of arbitrary holomorphic line bundles will be shown to be independent of the odd moduli, leading to a simple proof of the Riemann-Roch theorem for compact super Riemann surfaces. As a further consequence, the explicit connections between determinants of super Laplacians and Selberg's super zeta functions can be determined, allowing to calculate at least the 2-loop contribution to the fermionic string partition function. (orig.).

  7. What lies ahead?

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1991-10-01

    This report briefly discusses the possible physics that the superconducting super collider will be investigating. The detection system of the superconducting super collider will also be discussed. (LSP)

  8. Super periodic potential

    Science.gov (United States)

    Hasan, Mohammd; Mandal, Bhabani Prasad

    2018-04-01

    In this paper we introduce the concept of super periodic potential (SPP) of arbitrary order n, n ∈I+, in one dimension. General theory of wave propagation through SPP of order n is presented and the reflection and transmission coefficients are derived in their closed analytical form by transfer matrix formulation. We present scattering features of super periodic rectangular potential and super periodic delta potential as special cases of SPP. It is found that the symmetric self-similarity is the special case of super periodicity. Thus by identifying a symmetric fractal potential as special cases of SPP, one can obtain the tunnelling amplitude for a particle from such fractal potential. By using the formalism of SPP we obtain the close form expression of tunnelling amplitude of a particle for general Cantor and Smith-Volterra-Cantor potentials.

  9. Two-magnon Raman scattering in dielectric and superconducting YBa2Cu3O6+x crystals

    International Nuclear Information System (INIS)

    Zaitsev, S. V.; Maksimov, A. A.; Tartakovskii, I. I.

    2010-01-01

    Two-magnon Raman scattering in dielectric, as well as superconducting, YBa 2 Cu 3 O 6+x single crystals with mobile oxygen content x = 0.2-0.7 and superconducting transition temperature T c = 0-74 K is studied in detail. Doping with oxygen in the range of x = 0.2-0.5 leads to two-magnon scattering peak broadening and a shift in the spectral position of the peak towards lower energies. The most significant qualitative changes in two-magnon scattering in YBa 2 Cu 3 O 6+x crystals are observed in a narrow oxygen concentration range near x = 0.7. This is explained by a considerable decrease in the correlation length ξ AF of antiferromagnetic (AF) correlations upon an increase in the concentration of free carriers. For instance, doping is accompanied with a reduction of ξ AF to values of several lattice constants a for x ∼ 0.7, a transition to the regime of short-range AF order, and local scattering of light from a small AF cluster with a size of 3 x 4 lattice constants. An increase in the free charge carrier concentration destroys the short-range AF order in a narrow range of the stoichiometry index near x = 0.7. Experimental data also indicate heterogeneity of cuprate planes at microscopic level, which leads to coexistence of superconducting and AF regions in YBa 2 Cu 3 O 6+x super-conducting crystals.

  10. Frames in super Hilbert modules

    Directory of Open Access Journals (Sweden)

    Mehdi Rashidi-Kouchi

    2018-01-01

    Full Text Available In this paper, we define super Hilbert module and investigate frames in this space. Super Hilbert modules are  generalization of super Hilbert spaces in Hilbert C*-module setting. Also, we define frames in a super Hilbert module and characterize them by using of the concept of g-frames in a Hilbert C*-module. Finally, disjoint frames in Hilbert C*-modules are introduced and investigated.

  11. Operating modes of superconducting tunnel junction device

    Energy Technology Data Exchange (ETDEWEB)

    Maehata, Keisuke [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1998-07-01

    In the Electrotechnical Laboratory, an Nb type superconducting tunnel junction (STJ) device with 200 x 200 sq. micron in area and super high quality was manufactured. By using 55-fe source, response of this large area STJ to X-ray was measured. In this measurement, two action modes with different output wave height from front amplifier were observed. Then, in this study, current-voltage feature of the element in each action mode was analyzed to elucidate a mechanism to form such two action modes. The feature was analyzed by using first order approximate solution on cavity resonance mode of Sine-Gordon equation. From the analytical results, it could be supposed that direction and magnitude of effective magnetic field penetrating into jointed area changed by an induction current effect owing to impressing speed of the magnetic field, which brings two different current-voltage features to make possible to observe two action modes with different pulse wave height. (G.K.)

  12. Understanding and application of superconducting materials

    International Nuclear Information System (INIS)

    Moon, Byeong Mu; Lee, Chun Heung

    1997-02-01

    This book deals with superconducting materials, which contains from basic theory to application of superconducting materials. The contents of this book are mystery of superconducting materials, properties of superconducting materials, thermodynamics of superconducting materials, theoretical background of superconducting materials, tunnelling and quantum interference, classification and properties of superconducting materials, high temperature superconducting materials, production and analysis of superconducting materials and application of superconducting materials.

  13. Static Measurements on HTS Coils of Fully Superconducting AC Electric Machines for Aircraft Electric Propulsion System

    Science.gov (United States)

    Choi, Benjamin B.; Hunker, Keith R.; Hartwig, Jason; Brown, Gerald V.

    2017-01-01

    The NASA Glenn Research Center (GRC) has been developing the high efficiency and high-power density superconducting (SC) electric machines in full support of electrified aircraft propulsion (EAP) systems for a future electric aircraft. A SC coil test rig has been designed and built to perform static and AC measurements on BSCCO, (RE)BCO, and YBCO high temperature superconducting (HTS) wire and coils at liquid nitrogen (LN2) temperature. In this paper, DC measurements on five SC coil configurations of various geometry in zero external magnetic field are measured to develop good measurement technique and to determine the critical current (Ic) and the sharpness (n value) of the super-to-normal transition. Also, standard procedures for coil design, fabrication, coil mounting, micro-volt measurement, cryogenic testing, current control, and data acquisition technique were established. Experimentally measured critical currents are compared with theoretical predicted values based on an electric-field criterion (Ec). Data here are essential to quantify the SC electric machine operation limits where the SC begins to exhibit non-zero resistance. All test data will be utilized to assess the feasibility of using HTS coils for the fully superconducting AC electric machine development for an aircraft electric propulsion system.

  14. Cooling unit for a superconducting power cable. Two years successful operation

    Energy Technology Data Exchange (ETDEWEB)

    Herzog, Friedhelm [Messer Group GmbH, Krefeld (Germany); Kutz, Thomas [Messer Industriegase GmbH, Bad Soden (Germany); Stemmle, Mark [Nexans Deutschland GmbH, Hannover (Germany); Kugel, Torsten [Westnetz GmbH, Essen (Germany)

    2016-07-01

    High temperature super conductors (HTS) can efficiently be cooled with liquid nitrogen down to a temperature of 64 K (-209 C). Lower temperatures are not practical, because nitrogen becomes solid at 63 K (-210 C). To achieve this temperature level the coolant has to be vaporized below atmospheric pressure. Messer has developed a cooling unit with an adequate vacuum subcooler, a liquid nitrogen circulation system, and a storage vessel for cooling an HTS power cable. The cooling unit was delivered in 2013 for the German AmpaCity project of RWE Deutschland AG, Nexans and Karlsruhe Institute of Technology. Within this project RWE and Nexans installed the worldwide longest superconducting power cable in the city of Essen, Germany. The cable is in operation since March 10th, 2014.

  15. Submicron superconducting structures

    International Nuclear Information System (INIS)

    Golovashkin, A.I.; Lykov, A.N.

    1986-01-01

    An overview of works concerning superconducting structures of submicron dimensions and a system of such structures is given. It is noted that usage of the above structures in superconducting microelectronics permits, first, to increase the element packing density, to decrease the signal transmission time, capacity, power dissipated in high-frequency applications. Secondly, negligible coherence length in transition metals, their alloys and high-temperature compounds also restrict the dimensions of superconducting weak couplings when the 'classical' Josephson effect is displayed. The most effective methods for production of submicron superconducting structures are the following: lithography, double scribering. Recently the systems of superconducting submicron elements are extensively studied. It is shown that such systems can be phased by magnetic field

  16. The feasibility of low-mass conductors for toroidal superconducting magnets for SSC [Superconducting Super Collider] detectors

    International Nuclear Information System (INIS)

    Luton, J.N.

    1990-01-01

    An earlier study by Luton and Bonanos concluded that the design and fabrication of superconducting toroidal bending magnets would require a major effort but would be feasible. This study is an extension to examine the feasibility of low-mass conductors for such use. It included a literature search, consultations, with conductor manufacturers, and design calculations, but no experimental work. An unoptimized sample design that used a residual resistivity ratio for aluminum of 1360 and a current density of 3.5 kA/cm 2 over the uninsulated conductor for a 4.5-T toroid with 1 GJ of stored energy obtained a hot-spot temperature of 120 K with a maximum dump voltage of 3.6 kV and 24% of the initial current inductively transferred into the shorted aluminum structure. The stability margin was 200 mJ/cm 3 of cable space. Limiting the quench pressure to 360 atm to give conservative stresses in the sheath and assuming that the whole flow path quenched immediately resulted in helium taps that could be a kilometer apart if the flow friction factor were the same as that experienced in the Westinghouse (W) Large Coil Task (LCT) coil. This indicates that the 520-m conductor length of each of the 72 individual coil segments of a toroid would be a single flow path. If some practical uncertainties can be favorably resolved by producing and testing sample conductors, the use of a conductor with clad-aluminum stabilizer and extruded aluminum-alloy sheath should be feasible and economical. 9 refs., 3 figs

  17. Academic training: Applied superconductivity

    CERN Multimedia

    2007-01-01

    LECTURE SERIES 17, 18, 19 January from 11.00 to 12.00 hrs Council Room, Bldg 503 Applied Superconductivity : Theory, superconducting Materials and applications E. PALMIERI/INFN, Padova, Italy When hearing about persistent currents recirculating for several years in a superconducting loop without any appreciable decay, one realizes that we are dealing with a phenomenon which in nature is the closest known to the perpetual motion. Zero resistivity and perfect diamagnetism in Mercury at 4.2 K, the breakthrough during 75 years of several hundreds of superconducting materials, the revolution of the "liquid Nitrogen superconductivity"; the discovery of still a binary compound becoming superconducting at 40 K and the subsequent re-exploration of the already known superconducting materials: Nature discloses drop by drop its intimate secrets and nobody can exclude that the last final surprise must still come. After an overview of phenomenology and basic theory of superconductivity, the lectures for this a...

  18. The JAERI superconducting RF linac-based FELS and THEIR cryogenics

    International Nuclear Information System (INIS)

    Minehara, Eisuke J.

    2003-01-01

    In the 21st century, we need a powerful and efficient free-electron laser (FEL) for academic and industrial uses in almost all fields. In order to realize such a tunable, highly-efficient, high average power, high peak power and ultra-short pulse FEL, the JAERI FEL group and I have developed an industrial FEL driven by a compact, stand-alone and zero-boil off super-conducting rf linac with an energy-recovery geometry. Our discussions on the JAERI FEL and cryogenics will cover market-requirements for the industrial FELs, some answers from the JAERI compact, stand-alone and zero-boil off cryostat concept and operational experiences over these 9 years, our discovery of the new, highly-efficient, high-power, and ultra-short pulse lasing mode, and the energy-recovery geometry. (author)

  19. The state of superconductivity

    International Nuclear Information System (INIS)

    Clark, T.D.

    1981-01-01

    The present status of applications based on the phenomena of superconductivity are reviewed. Superconducting materials, large scale applications, the Josephson effect and its applications, and superconductivity in instrumentation, are considered. The influence that superconductivity has had on modern theories of elementary particles, such as gauge symmetry breaking, is discussed. (U.K.)

  20. Superconductivity - applications

    International Nuclear Information System (INIS)

    The paper deals with the following subjects: 1) Electronics and high-frequency technology, 2) Superconductors for energy technology, 3) Superconducting magnets and their applications, 4) Electric machinery, 5) Superconducting cables. (WBU) [de

  1. Basic Study of Superconductive Actuator

    OpenAIRE

    涌井, 和也; 荻原, 宏康

    2000-01-01

    There are two kinds of electromagnetic propulsion ships : a superconductive electromagnetic propulsion ship and a superconductive electricity propulsion ship. A superconductive electromagnetic propulsion ship uses the electromagnetic force (Lorenz force) by the interaction between a magnetic field and a electric current. On the other hand, a superconductive electricity propulsion ship uses screws driven by a superconductive motor. A superconductive propulsion ship technique has the merits of ...

  2. 100 years of superconductivity

    CERN Document Server

    Rogalla, Horst

    2011-01-01

    Even a hundred years after its discovery, superconductivity continues to bring us new surprises, from superconducting magnets used in MRI to quantum detectors in electronics. 100 Years of Superconductivity presents a comprehensive collection of topics on nearly all the subdisciplines of superconductivity. Tracing the historical developments in superconductivity, the book includes contributions from many pioneers who are responsible for important steps forward in the field.The text first discusses interesting stories of the discovery and gradual progress of theory and experimentation. Emphasizi

  3. (Super Variable Costing-Throughput Costing)

    OpenAIRE

    Çakıcı, Cemal

    2006-01-01

    (Super Variable Costing-Throughput Costing) The aim of this study is to explain the super-variable costing method which is a new subject in cost and management accounting and to show it’s working practicly.Shortly, super-variable costing can be defined as a costing method which is use only direct material costs in calculate of product costs and treats all costs except these (direct labor and overhead) as periad costs or operating costs.By using super-variable costing method, product costs ar...

  4. Superconducting current in a bisoliton superconductivity model

    International Nuclear Information System (INIS)

    Ermakov, V.N.; Kruchinin, S.P.; Ponezha, E.A.

    1991-01-01

    It is shown that the transition into a superconducting state with the current which is described by a bisoliton superconductivity model is accompanied by the deformation of the spectrum of one-particle states of the current carriers. The deformation value is proportional to the conducting current force. The residuaby resistance in such state is absent

  5. Coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compound

    International Nuclear Information System (INIS)

    Lu, T.P.; Wu, C.C.; Chou, W.H.; Lan, M.D.

    2010-01-01

    The magnetic and superconducting properties of the Sm-doped FeAs-based superconducting compound were investigated under wide ranges of temperature and magnetic field. After the systematical magnetic ion substitution, the superconducting transition temperature decreases with increasing magnetic moment. The hysteresis loop of the La 0.87-x Sm x Sr 0.13 FeAsO sample shows a superconducting hysteresis and a paramagnetic background signal. The paramagnetic signal is mainly attributed to the Sm moments. The experiment demonstrates that the coexistence of magnetism and superconductivity in the hole doped FeAs-based superconducting compounds is possible. Unlike the electron doped FeAs-based superconducting compounds SmFeAsOF, the hole doped superconductivity is degraded by the substitution of La by Sm. The hole-doped and electron-doped sides are not symmetric.

  6. Cryogenic magnetic coil and superconducting magnetic shield for neutron electric dipole moment searches

    Science.gov (United States)

    Slutsky, S.; Swank, C. M.; Biswas, A.; Carr, R.; Escribano, J.; Filippone, B. W.; Griffith, W. C.; Mendenhall, M.; Nouri, N.; Osthelder, C.; Pérez Galván, A.; Picker, R.; Plaster, B.

    2017-08-01

    A magnetic coil operated at cryogenic temperatures is used to produce spatial, relative field gradients below 6 ppm/cm, stable for several hours. The apparatus is a prototype of the magnetic components for a neutron electric dipole moment (nEDM) search, which will take place at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory using ultra-cold neutrons (UCN). That search requires a uniform magnetic field to mitigate systematic effects and obtain long polarization lifetimes for neutron spin precession measurements. This paper details upgrades to a previously described apparatus [1], particularly the introduction of super-conducting magnetic shielding and the associated cryogenic apparatus. The magnetic gradients observed are sufficiently low for the nEDM search at SNS.

  7. Electrically tuned super-capacitors

    OpenAIRE

    Chowdhury, Tazima S.; Grebel, Haim

    2015-01-01

    Fast charging and discharging of large amounts of electrical energy make super-capacitors ideal for short-term energy storage [1-5]. In its simplest form, the super-capacitor is an electrolytic capacitor made of an anode and a cathode immersed in an electrolyte. As for an ordinary capacitor, minimizing the charge separation distance and increasing the electrode area increase capacitance. In super-capacitors, charge separation is of nano-meter scale at each of the electrode interface (the Helm...

  8. Example-Based Super-Resolution Fluorescence Microscopy.

    Science.gov (United States)

    Jia, Shu; Han, Boran; Kutz, J Nathan

    2018-04-23

    Capturing biological dynamics with high spatiotemporal resolution demands the advancement in imaging technologies. Super-resolution fluorescence microscopy offers spatial resolution surpassing the diffraction limit to resolve near-molecular-level details. While various strategies have been reported to improve the temporal resolution of super-resolution imaging, all super-resolution techniques are still fundamentally limited by the trade-off associated with the longer image acquisition time that is needed to achieve higher spatial information. Here, we demonstrated an example-based, computational method that aims to obtain super-resolution images using conventional imaging without increasing the imaging time. With a low-resolution image input, the method provides an estimate of its super-resolution image based on an example database that contains super- and low-resolution image pairs of biological structures of interest. The computational imaging of cellular microtubules agrees approximately with the experimental super-resolution STORM results. This new approach may offer potential improvements in temporal resolution for experimental super-resolution fluorescence microscopy and provide a new path for large-data aided biomedical imaging.

  9. High-current applications of superconductivity

    International Nuclear Information System (INIS)

    Komarek, P.

    1995-01-01

    The following topics were dealt with: superconducting materials, design principles of superconducting magnets, magnets for research and engineering, superconductivity for power engineering, superconductivity in nuclear fusion technology, economical considerations

  10. Laser activated superconducting switch

    International Nuclear Information System (INIS)

    Wolf, A.A.

    1976-01-01

    A superconducting switch or bistable device is described consisting of a superconductor in a cryogen maintaining a temperature just below the transition temperature, having a window of the proper optical frequency band for passing a laser beam which may impinge on the superconductor when desired. The frequency of the laser is equal to or greater than the optical absorption frequency of the superconducting material and is consistent with the ratio of the gap energy of the switch material to Planck's constant, to cause depairing of electrons, and thereby normalize the superconductor. Some embodiments comprise first and second superconducting metals. Other embodiments feature the two superconducting metals separated by a thin film insulator through which the superconducting electrons tunnel during superconductivity

  11. Superconducting linac

    International Nuclear Information System (INIS)

    Bollinger, L.M.; Shepard, K.W.; Wangler, T.P.

    1978-01-01

    This project has two goals: to design, build, and test a small superconducting linac to serve as an energy booster for heavy ions from an FN tandem electrostatic accelerator, and to investigate various aspects of superconducting rf technology. The main design features of the booster are described, a status report on various components (resonators, rf control system, linac control system, cryostats, buncher) is given, and plans for the near future are outlined. Investigations of superconducting-linac technology concern studies on materials and fabrication techniques, resonator diagnostic techniques, rf-phase control, beam dynamics computer programs, asymmetry in accelerating field, and surface-treatment techniques. The overall layout of the to-be-proposed ATLAS, the Argonne Tandem-Linac Accelerator System, is shown; the ATLAS would use superconducting technology to produce beams of 5 to 25 MeV/A. 6 figures

  12. Handbook of Super 8 Production.

    Science.gov (United States)

    Telzer, Ronnie, Ed.

    This handbook is designed for anyone interested in producing super 8 films at any level of complexity and cost. Separate chapters present detailed discussions of the following topics: super 8 production systems and super 8 shooting and editing systems; budgeting; cinematography and sound recording; preparing to edit; editing; mixing sound tracks;…

  13. Superconductivity and electron microscopy

    International Nuclear Information System (INIS)

    Hawkes, P.W.; Valdre, U.

    1977-01-01

    In this review article, two aspects of the role of superconductivity in electron microscopy are examined: (i) the development of superconducting devices (mainly lenses) and their incorporation in electron microscopes; (ii) the development of electron microscope techniques for studying fundamental and technological problems associated with superconductivity. The first part opens with a brief account of the relevant properties of conventional lenses, after which the various types of superconducting lenses are described and their properties compared. The relative merits and inconveniences of superconducting and conventional lenses are examined, particular attention being paid to the spherical and chromatic aberration coefficients at accelerating voltages above a megavolt. This part closes with a survey of the various microscope designs that have been built or proposed, incorporating superconducting components. In the second part, some methods that have been or might be used in the study of superconductivity in the electron microscope are described. A brief account of the types of application for which they are suitable is given. (author)

  14. Superconductivity in transition metals.

    Science.gov (United States)

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  15. SHMUTZ & PROTON-DIAMANT H + Irradiated/Written-Hyper/Super-conductivity(HC/SC) Precognizance/Early Experiments Connections: Wet-Graphite Room-Tc & Actualized MgB2 High-Tc: Connection to Mechanical Bulk-Moduli/Hardness: Diamond Hydrocarbon-Filaments, Disorder, Nano-Powders:C,Bi,TiB2,TiC

    Science.gov (United States)

    Wunderman, Irwin; Siegel, Edward Carl-Ludwig; Lewis, Thomas; Young, Frederic; Smith, Adolph; Dresschhoff-Zeller, Gieselle

    2013-03-01

    SHMUTZ: ``wet-graphite''Scheike-....[Adv.Mtls.(7/16/12)]hyper/super-SCHMUTZ-conductor(S!!!) = ``wet''(?)-``graphite''(?) = ``graphene''(?) = water(?) = hydrogen(?) =ultra-heavy proton-bands(???) = ...(???) claimed room/high-Tc/high-Jc superconductOR ``p''-``wave''/ BAND(!!!) superconductIVITY and actualized/ instantiated MgB2 high-Tc superconductors and their BCS- superconductivity: Tc Siegel[ICMAO(77);JMMM 7,190(78)] connection to SiegelJ.Nonxline-Sol.40,453(80)] disorder/amorphous-superconductivity in nano-powders mechanical bulk/shear(?)-moduli/hardness: proton-irradiated diamond, powders TiB2, TiC,{Siegel[Semis. & Insuls.5:39,47, 62 (79)])-...``VS''/concommitance with Siegel[Phys.Stat.Sol.(a)11,45(72)]-Dempsey [Phil.Mag. 8,86,285(63)]-Overhauser-(Little!!!)-Seitz-Smith-Zeller-Dreschoff-Antonoff-Young-...proton-``irradiated''/ implanted/ thermalized-in-(optimal: BOTH heat-capacity/heat-sink & insulator/maximal dielectric-constant) diamond: ``VS'' ``hambergite-borate-mineral transformable to Overhauser optimal-high-Tc-LiBD2 in Overhauser-(NW-periodic-table)-Land: CO2/CH4-ETERNAL-sequestration by-product: WATER!!!: physics lessons from

  16. The super-resolution debate

    Science.gov (United States)

    Won, Rachel

    2018-05-01

    In the quest for nanoscopy with super-resolution, consensus from the imaging community is that super-resolution is not always needed and that scientists should choose an imaging technique based on their specific application.

  17. Recent R and D status for 70 MW class superconducting generators in the Super-GM project

    International Nuclear Information System (INIS)

    Ageta, T.

    2000-01-01

    Three types of 70 MW class superconducting generators called model machines have been developed to establish basic technologies for a pilot machine. The series of on-site verification tests was completed in June 1999. The world's highest generator output (79 MW), the world's longest continuous operation (1500 hours) and other excellent results were obtained. The model machine was connected to a commercial power grid and fundamental data were collected for future utilization. It is expected that fundamental technologies on design and manufacture required for a 200 MW class pilot machine are established. (author)

  18. Linear arrangement of metallic and superconducting defects in a thin superconducting sample

    International Nuclear Information System (INIS)

    Barba-Ortega, J.; Sardella, Edson; Albino Aguiar, J.

    2013-01-01

    Highlights: • We study the influence of superconducting and metallic defects on the vortex configurations in a thin mesoscopic disk. • We found that the vortex–defect interaction leads to interesting vortex configurations. • The first vortex entry is always (never) found sitting on the metallic (superconducting) defect position. -- Abstract: The vortex matter in a superconducting disk with a linear configuration of metallic and superconducting defects is studied. Effects associated to the pinning (anti-pinning) force of the metallic (superconducting) defect on the vortex configuration and on the thermodynamic critical fields are analyzed in the framework of the Ginzburg Landau theory. We calculate the loop of the magnetization, vorticity and free energy curves as a function of the magnetic field for a thin disk. Due to vortex–defect attraction for a metallic defect (repulsion for a superconducting defect), the vortices always (never) are found to be sitting on the defect position

  19. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  20. Enhanced superconductivity of fullerenes

    Energy Technology Data Exchange (ETDEWEB)

    Washington, II, Aaron L.; Teprovich, Joseph A.; Zidan, Ragaiy

    2017-06-20

    Methods for enhancing characteristics of superconductive fullerenes and devices incorporating the fullerenes are disclosed. Enhancements can include increase in the critical transition temperature at a constant magnetic field; the existence of a superconducting hysteresis over a changing magnetic field; a decrease in the stabilizing magnetic field required for the onset of superconductivity; and/or an increase in the stability of superconductivity over a large magnetic field. The enhancements can be brought about by transmitting electromagnetic radiation to the superconductive fullerene such that the electromagnetic radiation impinges on the fullerene with an energy that is greater than the band gap of the fullerene.

  1. SuperMAG: Present and Future Capabilities

    Science.gov (United States)

    Hsieh, S. W.; Gjerloev, J. W.; Barnes, R. J.

    2009-12-01

    SuperMAG is a global collaboration that provides ground magnetic field perturbations from a long list of stations in the same coordinate system, identical time resolution and with a common baseline removal approach. This unique high quality dataset provides a continuous and nearly global monitoring of the ground magnetic field perturbation. Currently, only archived data are available on the website and hence it targets basic research without any operational capabilities. The existing SuperMAG software can be easily adapted to ingest real-time or near real-time data and provide a now-casting capability. The SuperDARN program has a long history of providing near real-time maps of the northern hemisphere electrostatic potential and as both SuperMAG and SuperDARN share common software it is relatively easy to adapt these maps for global magnetic perturbations. Magnetometer measurements would be assimilated by the SuperMAG server using a variety of techniques, either by downloading data at regular intervals from remote servers or by real-time streaming connections. The existing SuperMAG analysis software would then process these measurements to provide the final calibrated data set using the SuperMAG coordinate system. The existing plotting software would then be used to produce regularly updated global plots. The talk will focus on current SuperMAG capabilities illustrating the potential for now-casting and eventually forecasting.

  2. Hole superconductivity

    International Nuclear Information System (INIS)

    Hirsch, J.E.; Marsiglio, F.

    1989-01-01

    The authors review recent work on a mechanism proposed to explain high T c superconductivity in oxides as well as superconductivity of conventional materials. It is based on pairing of hole carriers through their direct Coulomb interaction, and gives rise to superconductivity because of the momentum dependence of the repulsive interaction in the solid state environment. In the regime of parameters appropriate for high T c oxides this mechanism leads to characteristic signatures that should be experimentally verifiable. In the regime of conventional superconductors most of these signatures become unobservable, but the characteristic dependence of T c on band filling survives. New features discussed her include the demonstration that superconductivity can result from repulsive interactions even if the gap function does not change sign and the inclusion of a self-energy correction to the hole propagator that reduces the range of band filling where T c is not zero

  3. Emergent Higgsless Superconductivity

    Directory of Open Access Journals (Sweden)

    Cristina Diamantini M.

    2017-01-01

    Full Text Available We present a new Higgsless model of superconductivity, inspired from anyon superconductivity but P- and T-invariant and generalizable to any dimension. While the original anyon superconductivity mechanism was based on incompressible quantum Hall fluids as average field states, our mechanism involves topological insulators as average field states. In D space dimensions it involves a (D-1-form fictitious pseudovector gauge field which originates from the condensation of topological defects in compact lowenergy effective BF theories. There is no massive Higgs scalar as there is no local order parameter. When electromagnetism is switched on, the photon acquires mass by the topological BF mechanism. Although the charge of the gapless mode (2 and the topological order (4 are the same as those of the standard Higgs model, the two models of superconductivity are clearly different since the origins of the gap, reflected in the high-energy sectors are totally different. In 2D thi! s type of superconductivity is explicitly realized as global superconductivity in Josephson junction arrays. In 3D this model predicts a possible phase transition from topological insulators to Higgsless superconductors.

  4. Superconducting Fullerene Nanowhiskers

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2012-04-01

    Full Text Available We synthesized superconducting fullerene nanowhiskers (C60NWs by potassium (K intercalation. They showed large superconducting volume fractions, as high as 80%. The superconducting transition temperature at 17 K was independent of the K content (x in the range between 1.6 and 6.0 in K-doped C60 nanowhiskers (KxC60NWs, while the superconducting volume fractions changed with x. The highest shielding fraction of a full shielding volume was observed in the material of K3.3C60NW by heating at 200 °C. On the other hand, that of a K-doped fullerene (K-C60 crystal was less than 1%. We report the superconducting behaviors of our newly synthesized KxC60NWs in comparison to those of KxC60 crystals, which show superconductivity at 19 K in K3C60. The lattice structures are also discussed, based on the x-ray diffraction (XRD analyses.

  5. Super-quasi-conformal transformation and Schiffer variation on super-Riemann surface

    International Nuclear Information System (INIS)

    Takahasi, Wataru

    1990-01-01

    A set of equations which characterizes the super-Teichmueller deformations is proposed. It is a supersymmetric extension of the Beltrami equation. Relations between the set of equations and the Schiffer variations with the KN bases are discussed. This application of the KN bases shows the powerfulness of the KN theory in the study of super-Riemann surfaces. (author)

  6. Superconducting quantum electronics

    International Nuclear Information System (INIS)

    Kose, V.

    1989-01-01

    This book reviews recent accomplishments, presents new results and discusses possible future developments of superconducting quantum electronics and high T c superconductivity. The three main parts of the book deal with fundamentals, sensitive detectors, and precision metrology. New results reported include: correct equivalent circuits modelling superconducting electronic devices; exact solution of the Mattis-Bardeen equations describing various experiments for thin films; complete theoretical description and experimental results for a new broad band spectrum analyzer; a new Josephson junction potentiometer allowing tracing of unknown voltage ratios back to well-known frequency ratios; and fast superconducting SQUID shift registers enabling the production of calculable noise power spectra in the microwave region

  7. Superconductivity in graphite intercalation compounds

    International Nuclear Information System (INIS)

    Smith, Robert P.; Weller, Thomas E.; Howard, Christopher A.; Dean, Mark P.M.; Rahnejat, Kaveh C.; Saxena, Siddharth S.; Ellerby, Mark

    2015-01-01

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC 6 and YbC 6 in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition

  8. Superconductivity in graphite intercalation compounds

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert P. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Weller, Thomas E.; Howard, Christopher A. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Dean, Mark P.M. [Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973 (United States); Rahnejat, Kaveh C. [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom); Saxena, Siddharth S. [Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge CB3 0HE (United Kingdom); Ellerby, Mark, E-mail: mark.ellerby@ucl.ac.uk [Department of Physics & Astronomy, University College of London, Gower Street, London WCIE 6BT (United Kingdom)

    2015-07-15

    Highlights: • Historical background of graphite intercalates. • Superconductivity in graphite intercalates and its place in the field of superconductivity. • Recent developments. • Relevant modeling of superconductivity in graphite intercalates. • Interpretations that pertain and questions that remain. - Abstract: The field of superconductivity in the class of materials known as graphite intercalation compounds has a history dating back to the 1960s (Dresselhaus and Dresselhaus, 1981; Enoki et al., 2003). This paper recontextualizes the field in light of the discovery of superconductivity in CaC{sub 6} and YbC{sub 6} in 2005. In what follows, we outline the crystal structure and electronic structure of these and related compounds. We go on to experiments addressing the superconducting energy gap, lattice dynamics, pressure dependence, and how these relate to theoretical studies. The bulk of the evidence strongly supports a BCS superconducting state. However, important questions remain regarding which electronic states and phonon modes are most important for superconductivity, and whether current theoretical techniques can fully describe the dependence of the superconducting transition temperature on pressure and chemical composition.

  9. Super families

    International Nuclear Information System (INIS)

    Amato, N.; Maldonado, R.H.C.

    1989-01-01

    The study on phenomena in the super high energy region, Σ E j > 1000 TeV revealed events that present a big dark spot in central region with high concentration of energy and particles, called halo. Six super families with halo were analysed by Brazil-Japan Cooperation of Cosmic Rays. For each family the lateral distribution of energy density was constructed and R c Σ E (R c ) was estimated. For studying primary composition, the energy correlation with particles released separately in hadrons and gamma rays was analysed. (M.C.K.)

  10. Magnets becoming more super

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1986-09-15

    With the twenty year struggle to master superconducting magnets for accelerators behind them, magnet specialists are now very confident of their ability to use superconductivity in accelerator design. Superconductor performance has improved considerably in the past few years and we may well see the number of these magnets escalate from the present figure of about a thousand to over fifteen thousand within the next decade. This confidence emerged clearly from a recent Workshop at Brookhaven, organized by the Panel on Superconducting Magnets and Cryogenics set up by the International Committee on Future Accelerators (ICFA)

  11. The role of Ca substitution on the nature of the superconducting transition of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Jaeckel, S.T.; Lopes, L.F.; Nunes, S.E.; Mendonca, A.P.A.; Lopes, R.F.; Vieira, V.N. [Universidade Federal de Pelotas, RS (Brazil). Inst. de Fisica e Matematica; Pureur, P.; Pimentel Junior, J.L.; Rosa, F.M. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Inst. de Fisica; Ferreira, L.M. [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil). Centro de Ciencias Naturais e Humanas

    2012-07-01

    Full text: In this work we report the results of an experimental study about the superconducting transition of Ca- doped YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}samples. Temperature dependent in-plane resistivity measurements were carried out on Y{sub 1-x}Ca{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} single crystals with Ca content x = 0, 0.01, 0.05, 0.10. The samples were studied under hydrostatic pressure conditions (P {<=}15 kbar) and applied magnetic fields (H {<=} 2500 Oe) with H parallel to the c-axis. From the analysis of the contribution of superconducting fluctuations to the electrical conductivity we identified a fluctuation regime described by the small exponent {lambda}{sub cr} = 0.20 in a narrow temperature range immediately above the critical temperature. The origin of this fluctuation regime is still unclear. A possibility is that it may be a precursor to a weakly first-order pairing transition. The evolution of this super-critical regime with pressure and magnetic field for our Ca-doped samples is distinct from results reported in the literature for pure and other divalent substituted YBa{sub 2}Cu{sub 3}O{sub 7-{delta}}samples. Our results indicate that Ca doping favors the stabilization of the super-critical regime. (author)

  12. Modern high-temperature superconductivity

    International Nuclear Information System (INIS)

    Ching Wu Chu

    1988-01-01

    Ever since the discovery of superconductivity in 1911, its unusual scientific challenge and great technological potential have been recognized. For the past three-quarters of a century, superconductivity has done well on the science front. This is because sueprconductivity is interesting not only just in its own right but also in its ability to act as a probe to many exciting nonsuperconducting phenomena. For instance, it has continued to provide bases for vigorous activities in condensed matter science. Among the more recent examples are heavy-fermion systems and organic superconductors. During this same period of time, superconductivity has also performed admirably in the applied area. Many ideas have been conceived and tested, making use of the unique characteristics of superconductivity - zero resistivity, quantum interference phenomena, and the Meissner effect. In fact, it was not until late January 1987 that it became possible to achieve superconductivity with the mere use of liquid nitrogen - which is plentiful, cheap, efficient, and easy to handle - following the discovery of supercondictivity above 90 K in Y-Ba-Cu-O, the first genuine quaternary superconductor. Superconductivity above 90 K poses scientific and technological challenges not previously encountered: no existing theories can adequately describe superconductivity above 40 K and no known techniques can economically process the materials for full-scale applications. In this paper, therefore, the author recalls a few events leading to the discovery of the new class of quaternary compounds with a superconducting transition temperature T c in the 90 K range, describes the current experimental status of high-temperature superconductivity and, finally, discusses the prospect of very-high-temperature superconductivity, i.e., with a T c substantially higher than 100 K. 97 refs., 7 figs

  13. Inhomogeneous superconductivity in a ferromagnet

    International Nuclear Information System (INIS)

    Kontos, T.; Aprili, M.; Lesueur, J.; Genet, F.; Boursier, R.; Grison, X.

    2003-01-01

    We have studied a new superconducting state where the condensate wave function resulting from conventional pairing, is modified by an exchange field. Superconductivity is induced into a ferromagnetic thin film (F) by the proximity effect with a superconducting reservoir (S). We observed oscillations of the superconducting order parameter induced in F as a function of the distance from the S/F interface. They originate from the finite momentum transfer provided to Cooper pairs by the splitting of the spin up and down bands. We measured the superconducting density of states in F by tunneling spectroscopy and the Josephson critical current when F is coupled with a superconducting counter-electrode. Negative values of the superconducting order parameter are revealed by capsized tunneling spectra in F and a negative Josephson coupling (π-junction)

  14. Radiation shielding for the Super Collider West Utility region

    International Nuclear Information System (INIS)

    Meinke, R.; Mokhov, N.; Orth, D.; Parker, B.; Plant, D.

    1994-02-01

    Shielding considerations in the 20 x 20-TeV Superconducting Super Collider are strongly correlated with detailed machine specifics in the various accelerator sections. The West Utility, the most complex area of the Collider, concentrates all the major accelerator subsystems in a single area. The beam loss rate and associated radiation levels in this region are anticipated to be quite high, and massive radiation shielding is therefore required to protect personnel, Collider components, and the environment. The challenging task of simultaneously optimizing accelerator design and radiation shielding, both of which are strongly influenced by subsystem design details, requires the integration of several complex simulation codes. To this end we have performed exhaustive hadronic shower simulations with the MARS12 program; detailed accelerator lattice and optics optimization via the SYNCH, MAD, and MAGIC codes; and extensive 3-D configuration modeling of the accelerator tunnel and subsystems geometries. Our technique and the non-trivial results from such a combined approach are presented here. An integrated procedure is found invaluable in developing cost-effective radiation shielding solutions

  15. WORKSHOP: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1984-10-15

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators.

  16. WORKSHOP: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    The Second Workshop on Radiofrequency Superconductivity was held at CERN from 23-27 July, four years after the first, organized at Karlsruhe. 35 invited talks were presented to the about 80 participants from Australia, Brazil, Europe, Japan and the United States. For the first time, ten Laboratories operating or planning superconducting accelerators for heavy ions participated and shared their experience with the community proposing the use of superconducting accelerating sections for electron accelerators

  17. Process for producing clad superconductive materials

    International Nuclear Information System (INIS)

    Cass, R.B.; Ott, K.C.; Peterson, D.E.

    1992-01-01

    This patent describes a process for fabricating superconducting composite wire. It comprises placing a superconductive precursor admixture capable of undergoing self propagating combustion in stoichiometric amounts sufficient to form a superconductive product within an oxygen-porous metal tube; sealing one end of the tube; igniting the superconductive precursor admixture whereby the superconductive precursor admixture endburns along the length of the admixture; and cross-section reducing the tube at a rate substantially equal to the rate of burning of the superconductive precursor admixture and at a point substantially planar with the burnfront of the superconductive precursor mixture, whereby a clad superconductive product is formed in situ

  18. Organic superconductivity

    International Nuclear Information System (INIS)

    Jerome, D.

    1980-01-01

    We present the experimental evidences for the existence of a superconducting state in the Quasi One Dimensional organic conductor (TMTSF) 2 PF 6 . Superconductivity occuring at 1 K under 12 kbar is characterized by a zero resistance diamagnetic state. The anistropy of the upper critical field of this type II superconductor is consistent with the band structure anistropy. We present evidences for the existence of large superconducting precursor effects giving rise to a dominant paraconductive contribution below 40 K. We also discuss the anomalously large pressure dependence of T sb(s), which drops to 0.19 K under 24 kbar in terms of the current theories. (author)

  19. Superconducting nanostructured materials

    International Nuclear Information System (INIS)

    Metlushko, V.

    1998-01-01

    Within the last year it has been realized that the remarkable properties of superconducting thin films containing a periodic array of defects (such as sub-micron sized holes) offer a new route for developing a novel superconducting materials based on precise control of microstructure by modern photolithography. A superconductor is a material which, when cooled below a certain temperature, loses all resistance to electricity. This means that superconducting materials can carry large electrical currents without any energy loss--but there are limits to how much current can flow before superconductivity is destroyed. The current at which superconductivity breaks down is called the critical current. The value of the critical current is determined by the balance of Lorentz forces and pinning forces acting on the flux lines in the superconductor. Lorentz forces proportional to the current flow tend to drive the flux lines into motion, which dissipates energy and destroys zero resistance. Pinning forces created by isolated defects in the microstructure oppose flux line motion and increase the critical current. Many kinds of artificial pinning centers have been proposed and developed to increase critical current performance, ranging from dispersal of small non-superconducting second phases to creation of defects by proton, neutron or heavy ion irradiation. In all of these methods, the pinning centers are randomly distributed over the superconducting material, causing them to operate well below their maximum efficiency. We are overcome this drawback by creating pinning centers in aperiodic lattice (see Fig 1) so that each pin site interacts strongly with only one or a few flux lines

  20. SuperAGILE Services at ASDC

    International Nuclear Information System (INIS)

    Preger, B.; Verrecchia, F.; Pittori, C.; Antonelli, L. A.; Giommi, P.; Lazzarotto, F.; Evangelista, Y.

    2008-01-01

    The Italian Space Agency Science Data Center (ASDC) is a facility with several responsibilities including support to all the ASI scientific missions as for management and archival of the data, acting as the interface between ASI and the scientific community and providing on-line access to the data hosted. In this poster we describe the services that ASDC provides for SuperAGILE, in particular the ASDC public web pages devoted to the dissemination of SuperAGILE scientific results. SuperAGILE is the X-Ray imager onboard the AGILE mission, and provides the scientific community with orbit-by-orbit information on the observed sources. Crucial source information including position and flux in chosen energy bands will be reported in the SuperAGILE public web page at ASDC. Given their particular interest, another web page will be dedicated entirely to GRBs and other transients, where new event alerts will be notified and where users will find all the available informations on the GRBs detected by SuperAGILE

  1. The Super-Kamiokande detector

    International Nuclear Information System (INIS)

    Fukuda, S.; Fukuda, Y.; Hayakawa, T.; Ichihara, E.; Ishitsuka, M.; Itow, Y.; Kajita, T.; Kameda, J.; Kaneyuki, K.; Kasuga, S.; Kobayashi, K.; Kobayashi, Y.; Koshio, Y.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakayama, S.; Namba, T.; Obayashi, Y.; Okada, A.; Oketa, M.; Okumura, K.; Oyabu, T.; Sakurai, N.; Shiozawa, M.; Suzuki, Y.; Takeuchi, Y.; Toshito, T.; Totsuka, Y.; Yamada, S.; Desai, S.; Earl, M.; Hong, J.T.; Kearns, E.; Masuzawa, M.; Messier, M.D.; Stone, J.L.; Sulak, L.R.; Walter, C.W.; Wang, W.; Scholberg, K.; Barszczak, T.; Casper, D.; Liu, D.W.; Gajewski, W.; Halverson, P.G.; Hsu, J.; Kropp, W.R.; Mine, S.; Price, L.R.; Reines, F.; Smy, M.; Sobel, H.W.; Vagins, M.R.; Ganezer, K.S.; Keig, W.E.; Ellsworth, R.W.; Tasaka, S.; Flanagan, J.W.; Kibayashi, A.; Learned, J.G.; Matsuno, S.; Stenger, V.J.; Hayato, Y.; Ishii, T.; Ichikawa, A.; Kanzaki, J.; Kobayashi, T.; Maruyama, T.; Nakamura, K.; Oyama, Y.; Sakai, A.; Sakuda, M.; Sasaki, O.; Echigo, S.; Iwashita, T.; Kohama, M.; Suzuki, A.T.; Hasegawa, M.; Inagaki, T.; Kato, I.; Maesaka, H.; Nakaya, T.; Nishikawa, K.; Yamamoto, S.; Haines, T.J.; Kim, B.K.; Sanford, R.; Svoboda, R.; Blaufuss, E.; Chen, M.L.; Conner, Z.; Goodman, J.A.; Guillian, E.; Sullivan, G.W.; Turcan, D.; Habig, A.; Ackerman, M.; Goebel, F.; Hill, J.; Jung, C.K.; Kato, T.; Kerr, D.; Malek, M.; Martens, K.; Mauger, C.; McGrew, C.; Sharkey, E.; Viren, B.; Yanagisawa, C.; Doki, W.; Inaba, S.; Ito, K.; Kirisawa, M.; Kitaguchi, M.; Mitsuda, C.; Miyano, K.; Saji, C.; Takahata, M.; Takahashi, M.; Higuchi, K.; Kajiyama, Y.; Kusano, A.; Nagashima, Y.; Nitta, K.; Takita, M.; Yamaguchi, T.; Yoshida, M.; Kim, H.I.; Kim, S.B.; Yoo, J.; Okazawa, H.; Etoh, M.; Fujita, K.; Gando, Y.; Hasegawa, A.; Hasegawa, T.; Hatakeyama, S.; Inoue, K.; Ishihara, K.; Iwamoto, T.; Koga, M.; Nishiyama, I.; Ogawa, H.; Shirai, J.; Suzuki, A.; Takayama, T.; Tsushima, F.; Koshiba, M.; Ichikawa, Y.; Hashimoto, T.; Hatakeyama, Y.; Koike, M.; Horiuchi, T.; Nemoto, M.; Nishijima, K.; Takeda, H.; Fujiyasu, H.; Futagami, T.; Ishino, H.; Kanaya, Y.; Morii, M.; Nishihama, H.; Nishimura, H.; Suzuki, T.; Watanabe, Y.; Kielczewska, D.; Golebiewska, U.; Berns, H.G.; Boyd, S.B.; Doyle, R.A.; George, J.S.; Stachyra, A.L.; Wai, L.L.; Wilkes, R.J.; Young, K.K.; Kobayashi, H.

    2003-01-01

    Super-Kamiokande is the world's largest water Cherenkov detector, with net mass 50,000 tons. During the period April, 1996 to July, 2001, Super-Kamiokande I collected 1678 live-days of data, observing neutrinos from the Sun, Earth's atmosphere, and the K2K long-baseline neutrino beam with high efficiency. These data provided crucial information for our current understanding of neutrino oscillations, as well as setting stringent limits on nucleon decay. In this paper, we describe the detector in detail, including its site, configuration, data acquisition equipment, online and offline software, and calibration systems which were used during Super-Kamiokande I

  2. Generation of live offspring from vitrified embryos with synthetic polymers SuperCool X-1000 and SuperCool Z-1000.

    Science.gov (United States)

    Marco-Jimenez, F; Jimenez-Trigos, E; Lavara, R; Vicente, J S

    2014-01-01

    Ice growth and recrystallisation are considered important factors in determining vitrification outcomes. Synthetic polymers inhibit ice formation during cooling or warming of the vitrification process. The aim of this study was to assess the effect of adding commercially available synthetic polymers SuperCool X-1000 and SuperCool Z-1000 to vitrification media on in vivo development competence of rabbit embryos. Four hundred and thirty morphologically normal embryos recovered at 72 h of gestation were used. The vitrification media contained 20% dimethyl sulphoxide and 20% ethylene glycol, either alone or in combination with 1% of SuperCool X-1000 and 1% SuperCool. Our results show that embryos can be successfully vitrified using SuperCool X-1000 and SuperCool Z-1000 and when embryos are transferred, live offspring can be successfully produced. In conclusion, our results demonstrated that we succeeded for the first time in obtaining live offspring after vitrification of embryos using SuperCool X-1000 and SuperCool Z-1000 polymers.

  3. Further results on super graceful labeling of graphs

    Directory of Open Access Journals (Sweden)

    Gee-Choon Lau

    2016-08-01

    Full Text Available Let G=(V(G,E(G be a simple, finite and undirected graph of order p and size q. A bijection f:V(G∪E(G→{k,k+1,k+2,…,k+p+q−1} such that f(uv=|f(u−f(v| for every edge uv∈E(G is said to be a k-super graceful labeling of G. We say G is k-super graceful if it admits a k-super graceful labeling. For k=1, the function f is called a super graceful labeling and a graph is super graceful if it admits a super graceful labeling. In this paper, we study the super gracefulness of complete graph, the disjoint union of certain star graphs, the complete tripartite graphs K(1,1,n, and certain families of trees. We also present four methods of constructing new super graceful graphs. In particular, all trees of order at most 7 are super graceful. We conjecture that all trees are super graceful.

  4. Superconducting Wind Turbine Generators

    Directory of Open Access Journals (Sweden)

    Yunying Pan

    2016-08-01

    Full Text Available Wind energy is well known as a renewable energy because its clean and less polluted characteristic, which is the foundation of development modern wind electricity. To find more efficient wind turbine is the focus of scientists around the world. Compared from conventional wind turbines, superconducting wind turbine generators have advantages at zero resistance, smaller size and lighter weight. Superconducting wind turbine will inevitably become the main trends in this area. This paper intends to introduce the basic concept and principle of superconductivity, and compare form traditional wind turbine to obtain superiority, then to summary three proposed machine concept.While superconductivity have difficulty  in modern technology and we also have proposed some challenges in achieving superconducting wind turbine finally.

  5. Superconducting cermets

    International Nuclear Information System (INIS)

    Goyal, A.; Funkenbusch, P.D.; Chang, G.C.S.; Burns, S.J.

    1988-01-01

    Two distant classes of superconducting cermets can be distinguished, depending on whether or not a fully superconducting skeleton is established. Both types of cermets have been successfully fabricated using non-noble metals, with as high as 60wt% of the metal phase. The electrical, magnetic and mechanical behavior of these composites is discussed

  6. Rf superconducting devices

    International Nuclear Information System (INIS)

    Hartwig, W.H.; Passow, C.

    1975-01-01

    Topics discussed include (1) the theory of superconductors in high-frequency fields (London surface impedance, anomalous normal surface resistance, pippard nonlocal theory, quantum mechanical model, superconductor parameters, quantum mechanical calculation techniques for the surface, impedance, and experimental verification of surface impedance theories); (2) residual resistance (separation of losses, magnetic field effects, surface resistance of imperfect and impure conductors, residual loss due to acoustic coupling, losses from nonideal surfaces, high magnetic field losses, field emission, and nonlinear effects); (3) design and performance of superconducting devices (design considerations, materials and fabrication techniques, measurement of performance, and frequency stability); (4) devices for particle acceleration and deflection (advantages and problems of using superconductors, accelerators for fast particles, accelerators for particles with slow velocities, beam optical devices separators, and applications and projects under way); (5) applications of low-power superconducting resonators (superconducting filters and tuners, oscillators and detectors, mixers and amplifiers, antennas and output tanks, superconducting resonators for materials research, and radiation detection with loaded superconducting resonators); and (6) transmission and delay lines

  7. Superconducting Ferromagnetic Nanodiamond.

    Science.gov (United States)

    Zhang, Gufei; Samuely, Tomas; Xu, Zheng; Jochum, Johanna K; Volodin, Alexander; Zhou, Shengqiang; May, Paul W; Onufriienko, Oleksandr; Kačmarčík, Jozef; Steele, Julian A; Li, Jun; Vanacken, Johan; Vacík, Jiri; Szabó, Pavol; Yuan, Haifeng; Roeffaers, Maarten B J; Cerbu, Dorin; Samuely, Peter; Hofkens, Johan; Moshchalkov, Victor V

    2017-06-27

    Superconductivity and ferromagnetism are two mutually antagonistic states in condensed matter. Research on the interplay between these two competing orderings sheds light not only on the cause of various quantum phenomena in strongly correlated systems but also on the general mechanism of superconductivity. Here we report on the observation of the electronic entanglement between superconducting and ferromagnetic states in hydrogenated boron-doped nanodiamond films, which have a superconducting transition temperature T c ∼ 3 K and a Curie temperature T Curie > 400 K. In spite of the high T Curie , our nanodiamond films demonstrate a decrease in the temperature dependence of magnetization below 100 K, in correspondence to an increase in the temperature dependence of resistivity. These anomalous magnetic and electrical transport properties reveal the presence of an intriguing precursor phase, in which spin fluctuations intervene as a result of the interplay between the two antagonistic states. Furthermore, the observations of high-temperature ferromagnetism, giant positive magnetoresistance, and anomalous Hall effect bring attention to the potential applications of our superconducting ferromagnetic nanodiamond films in magnetoelectronics, spintronics, and magnetic field sensing.

  8. Super cool X-1000 and Super cool Z-1000, two ice blockers, and their effect on vitrification/warming of mouse embryos.

    Science.gov (United States)

    Badrzadeh, H; Najmabadi, S; Paymani, R; Macaso, T; Azadbadi, Z; Ahmady, A

    2010-07-01

    To evaluate the survival and blastocyst formation rates of mouse embryos after vitrification/thaw process with different ice blocker media. We used X-1000 and Z-1000 separately and mixed using V-Kim, a closed vitrification system. Mouse embryos were vitrified using ethylene glycol based medium supplemented with Super cool X-1000 and/or Super cool Z-1000. Survival rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 74%, 72%, 68%, and 85% respectively, with no significant difference among experimental and control groups; however, a significantly higher survival rate was noticed in the Super cool X-1000/Z-1000 group when compared with the Super cool Z-1000 group. Blastocyst formation rates for the control, Super cool X-1000, Super cool Z-1000, and Super cool X-1000/Z-1000 groups were 71%, 66%, 65%, and 72% respectively. There was no significant difference in this rate among control and experimental groups. In a closed vitrification system, addition of ice blocker Super cool X-1000 to the vitrification solution containing Super cool Z-1000 may improve the embryo survival rate. We recommend combined ice blocker usage to optimize the vitrification outcome. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  9. Superstring field theories on super-flag manifolds: superdiff S1/S1 and superdiff S1/super S1

    International Nuclear Information System (INIS)

    Zhao Zhiyong; Wu, Ke; Saito, Takesi

    1987-01-01

    We generalize the geometric approach of Bowick and Rajeev [BR] to superstring field theories. The anomaly is identified with nonvanishing of the Ricci curvature of the super-flag manifold. We explicitly calculate the curvatures of superdiff S 1 /S 1 and superdiff S 1 /superS 1 using super-Toeplitz operator techniques. No regularization is needed in this formalism. The critical dimension D=10 is rediscovered as a result of vanishing curvature of the product bundle over the super-flag manifold. (orig.)

  10. Superconductivity and its application

    International Nuclear Information System (INIS)

    Spadoni, M.

    1988-01-01

    This paper, after a short introduction to superconductivity and to multifilamentary superconducting composites is aiming to review the state of the art and the future perspective of some of the applications of the superconducting materials. The main interest is focussed to large scale applications like, for istance, magnets for accelerators or fusion reactors, superconducting system for NMR thomography, etc. A short paragraph is dedicated to applications for high sensitivity instrumentation. The paper is then concluded by some considerations about the potentialities of the newly discovered high critical temperature materials

  11. WORKSHOPS: Radiofrequency superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991

  12. WORKSHOPS: Radiofrequency superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1992-01-15

    In the continual push towards higher energy particle beams, superconducting radiofrequency techniques now play a vital role, highlighted in the fifth workshop on radiofrequency superconductivity, held at DESY from 19 - 24 August 1991.

  13. Method and apparatus for replenishing the helium bath in the rotor of a superconducting generator

    International Nuclear Information System (INIS)

    Hofmann, A.; Schnapper, C.

    1980-01-01

    In order to replenish a helium bath in the super-conducting rotor of an electrical machine, in which bath liquid helium boils at subatmospheric pressure, with liquid helium from a helium reservoir, the liquid helium in the reservoir being at ambient pressure and a part of the liquid helium changing to the vapor phase during flow from the reservoir to the bath, liquid helium is introduced into the bath at a distance from the rotor axis of rotation, the liquid and vapor phases of the helium flowing from the reservoir to the bath are separated from one another in a phase separator fixed to the rotor, and the separated vapor phase is extracted from the separator. (MM) [de

  14. SuperB Progress Report for Physics

    Energy Technology Data Exchange (ETDEWEB)

    O' Leary, B.; /Aachen, Tech. Hochsch.; Matias, J.; Ramon, M.; /Barcelona, IFAE; Pous, E.; /Barcelona U.; De Fazio, F.; Palano, A.; /INFN, Bari; Eigen, G.; /Bergen U.; Asgeirsson, D.; /British Columbia U.; Cheng, C.H.; Chivukula, A.; Echenard, B.; Hitlin, D.G.; Porter, F.; Rakitin, A.; /Caltech; Heinemeyer, S.; /Cantabria Inst. of Phys.; McElrath, B.; /CERN; Andreassen, R.; Meadows, B.; Sokoloff, M.; /Cincinnati U.; Blanke, M.; /Cornell U., Phys. Dept.; Lesiak, T.; /Cracow, INP /DESY /Zurich, ETH /INFN, Ferrara /Frascati /INFN, Genoa /Glasgow U. /Indiana U. /Mainz U., Inst. Phys. /Karlsruhe, Inst. Technol. /KEK, Tsukuba /LBL, Berkeley /UC, Berkeley /Lisbon, IST /Ljubljana U. /Madrid, Autonoma U. /Maryland U. /MIT /INFN, Milan /McGill U. /Munich, Tech. U. /Notre Dame U. /PNL, Richland /INFN, Padua /Paris U., VI-VII /Orsay, LAL /Orsay, LPT /INFN, Pavia /INFN, Perugia /INFN, Pisa /Queen Mary, U. of London /Regensburg U. /Republica U., Montevideo /Frascati /INFN, Rome /INFN, Rome /INFN, Rome /Rutherford /Sassari U. /Siegen U. /SLAC /Southern Methodist U. /Tel Aviv U. /Tohoku U. /INFN, Turin /INFN, Trieste /Uppsala U. /Valencia U., IFIC /Victoria U. /Wayne State U. /Wisconsin U., Madison

    2012-02-14

    SuperB is a high luminosity e{sup +}e{sup -} collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B{sub u,d,s}, D and {tau} decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin{sup 2} {theta}{sub W}. In addition to performing CP violation measurements at the {Upsilon}(4S) and {phi}(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over

  15. SuperB Progress Report for Physics

    International Nuclear Information System (INIS)

    O'Leary, B.; Matias, J.; Ramon, M.

    2012-01-01

    SuperB is a high luminosity e + e - collider that will be able to indirectly probe new physics at energy scales far beyond the reach of any man made accelerator planned or in existence. Just as detailed understanding of the Standard Model of particle physics was developed from stringent constraints imposed by flavour changing processes between quarks, the detailed structure of any new physics is severely constrained by flavour processes. In order to elucidate this structure it is necessary to perform a number of complementary studies of a set of golden channels. With these measurements in hand, the pattern of deviations from the Standard Model behavior can be used as a test of the structure of new physics. If new physics is found at the LHC, then the many golden measurements from SuperB will help decode the subtle nature of the new physics. However if no new particles are found at the LHC, SuperB will be able to search for new physics at energy scales up to 10-100 TeV. In either scenario, flavour physics measurements that can be made at SuperB play a pivotal role in understanding the nature of physics beyond the Standard Model. Examples for using the interplay between measurements to discriminate New Physics models are discussed in this document. SuperB is a Super Flavour Factory, in addition to studying large samples of B u,d,s , D and τ decays, SuperB has a broad physics programme that includes spectroscopy both in terms of the Standard Model and exotica, and precision measurements of sin 2 θ W . In addition to performing CP violation measurements at the Υ(4S) and φ(3770), SuperB will test CPT in these systems, and lepton universality in a number of different processes. The multitude of rare decay measurements possible at SuperB can be used to constrain scenarios of physics beyond the Standard Model. In terms of other precision tests of the Standard Model, this experiment will be able to perform precision over-constraints of the unitarity triangle through

  16. 'Speedy' superconducting circuits

    International Nuclear Information System (INIS)

    Holst, T.

    1994-01-01

    The most promising concept for realizing ultra-fast superconducting digital circuits is the Rapid Single Flux Quantum (RSFQ) logic. The basic physical principle behind RSFQ logic, which include the storage and transfer of individual magnetic flux quanta in Superconducting Quantum Interference Devices (SQUIDs), is explained. A Set-Reset flip-flop is used as an example of the implementation of an RSFQ based circuit. Finally, the outlook for high-temperature superconducting materials in connection with RSFQ circuits is discussed in some details. (au)

  17. Application of high temperature superconductivity to electric motor design

    International Nuclear Information System (INIS)

    Edmonds, J.S.; Sharma, D.K.; Jordan, H.E.; Edick, J.D.; Schiferl, R.F.

    1992-01-01

    This paper reports on progress made in a joint project conducted by the Electric Power Research Institute and Reliance Electric Company to study the possible application of High Temperature Super Conductors (HTSC), materials to electric motors. Specific applications are identified which can be beneficially served by motors constructed with HTSC materials. A summary is presented of the components and design issues related to HTSC motors designed for these applications. During the course of this development program, a three tier HTSC wire performance specification has evolved. The three specifications and the rationale behind these three levels of performance are explained. A description of a test motor that has been constructed to verify the electromagnetic analytical techniques of HTSC motor design is given. Finally, a DC motor with an HTSC field coil is described. Measured data with the motor running is presented showing that the motor is operating with the field winding in the superconducting state

  18. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  19. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Seino, H; Nagashima, K; Arai, Y [Railway Technical Research Institute, Hikari-cho 2-8-38, Kokubunji-shi, Tokyo (Japan)], E-mail: seino@rtri.or.jp

    2008-02-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated.

  20. Development of superconducting magnetic bearing using superconducting coil and bulk superconductor

    International Nuclear Information System (INIS)

    Seino, H; Nagashima, K; Arai, Y

    2008-01-01

    The authors conducted a study on superconducting magnetic bearing, which consists of superconducting rotor and stator to apply the flywheel energy-storage system for railways. In this study, high temperature bulk superconductor (HTS bulk) was combined with superconducting coils to increase the load capacity of the bearing. In the first step of the study, the thrust rolling bearing was selected for application by using liquid nitrogen cooled HTS bulk. 60mm-diameter HTS bulks and superconducting coil which generated a high gradient of magnetic field by cusp field were adopted as a rotor and a stator for superconducting magnetic bearing, respectively. The results of the static load test and the rotation test, creep of the electromagnetic forces caused by static flux penetration and AC loss due to eccentric rotation were decreased to the level without any problems in substantial use by using two HTS bulks. In the result of verification of static load capacity, levitation force (thrust load) of 8900N or more was supportable, and stable static load capacity was obtainable when weight of 460kg was levitated

  1. Superconductivity basics and applications to magnets

    CERN Document Server

    Sharma, R G

    2015-01-01

    This book presents the basics and applications of superconducting magnets. It explains the phenomenon of superconductivity, theories of superconductivity, type II superconductors and high-temperature cuprate superconductors. The main focus of the book is on the application to superconducting magnets to accelerators and fusion reactors and other applications of superconducting magnets. The thermal and electromagnetic stability criteria of the conductors and the present status of the fabrication techniques for future magnet applications are addressed. The book is based on the long experience of the author in studying superconducting materials, building magnets and numerous lectures delivered to scholars. A researcher and graduate student will enjoy reading the book to learn various aspects of magnet applications of superconductivity. The book provides the knowledge in the field of applied superconductivity in a comprehensive way.

  2. Architectural Engineering to Super-Light Structures

    DEFF Research Database (Denmark)

    Castberg, Niels Andreas

    The increasing global urbanisation creates a great demand for new buildings. In the aim to honour this, a new structural system, offering flexibility and variation at no extra cost appears beneficial. Super-Light Structures constitute such a system. This PhD thesis examines Super-Light Structures...... with architectural engineering as a starting point. The thesis is based on a two stringed hypothesis: Architectural engineering gives rise to better architecture and Super-Light Structures support and enables a static, challenging architecture. The aim of the thesis is to clarify architectural engineering's impact...... on the work process between architects and engineers in the design development. Using architectural engineering, Super-Light Structures are examined in an architectural context, and it is explained how digital tools can support architectural engineering and design of Super-Light Structures. The experiences...

  3. Structural stability, electronic, mechanical and superconducting properties of CrC and MoC

    Energy Technology Data Exchange (ETDEWEB)

    Kavitha, M.; Sudha Priyanga, G. [Department of Physics, N.M.S.S.V.N College, Madurai 625019, Tamilnadu (India); Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com [Department of Physics, N.M.S.S.V.N College, Madurai 625019, Tamilnadu (India); Iyakutti, K. [Department of Physics and Nanotechnology, SRM University, Chennai 603203, Tamilnadu (India)

    2016-02-01

    The structural, electronic, mechanical and superconducting properties of chromium carbide (CrC) and molybdenum carbide (MoC) are investigated using first principles calculations based on density functional theory (DFT). The computed ground state properties like equilibrium lattice constants and cell volume are in good agreement with available theoretical and experimental data. A pressure induced structural phase transition from tungsten carbide phase (WC) to zinc blende phase (ZB) and then zinc blende phase (ZB) to nickel arsenide phase (NiAs) are observed in both chromium and molybdenum carbides. Electronic structure reveals that these carbides are metallic at ambient condition. All the calculated elastic constants obey the Born–Huang stability criteria, suggesting that they are mechanically stable at normal and high pressure. The super conducting transition temperatures for CrC and MoC in WC phase are found to be 31.12 K and 17.14 K respectively at normal pressure. - Highlights: • Electronic and mechanical properties of CrC and MoC are investigated. • Pressure induced structural phase transition is predicted at high pressure. • Electronic structure reveals that these materials exhibit metallic behaviour. • Debye temperature values are computed for CrC and MoC. • Superconducting transition temperature values are computed.

  4. Superconductivity application technologies. Superconducting quadrupole magnet and cooling system for KEK B factory

    International Nuclear Information System (INIS)

    Tsuchiya, Kiyosumi; Yamaguchi, Kiyoshi; Sakurabata, Hiroaki; Seido, Masahiro; Matsumoto, Kozo.

    1997-01-01

    At present in National Laboratory for High Energy Physics (KEK), the construction of B factory is in progress. By colliding 8 GeV electrons and 3.5 GeV positrons, this facility generates large amounts of B mesons and anti-B mesons, and performs the elementary particle experiment of high accuracy. It is the collision type accelerator of asymmetric two-ring type comprising 8 GeV and 3.5 GeV rings. In the field of high energy physics, superconductivity technology has been put to practical use. As the objects of superconductivity technology, there are dipole magnet for bending beam, quadrupole magnet for adjusting beam, large solenoid magnet used for detector and so on. Superconducting magnets which are indispensable for high energy, superconducting wire material suitable to accelerators, and the liquid helium cooling system for maintaining superconducting magnets at 4.4 K are reported. The technologies of metallic conductors and making their coils have advanced rapidly, and also cooling technology has advanced, accordingly, superconductivity technology has reached the stage of practical use perfectly. (K.I.)

  5. Superconducting magnets and cryogenics for the steady state superconducting tokamak SST-1

    International Nuclear Information System (INIS)

    Saxena, Y.C.

    2000-01-01

    SST-1 is a steady state superconducting tokamak for studying the physics of the plasma processes in tokamak under steady state conditions and to learn technologies related to the steady state operation of the tokamak. SST-1 will have superconducting magnets made from NbTi based conductors operating at 4.5 K temperature. The design of the superconducting magnets and the cryogenic system of SST-1 tokamak are described. (author)

  6. Vector superconductivity in cosmic strings

    International Nuclear Information System (INIS)

    Dvali, G.R.; Mahajan, S.M.

    1992-03-01

    We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs

  7. Detecting Water on Super-Earths Using JAVST

    Science.gov (United States)

    Deming, D.

    2010-01-01

    Nearby lower train sequence stars host a class of planets known as Super-Earths, that have no analog in our own solar system. Super-Earths are rocky and/or icy planets with masses up to about 10 Earth masses, They are expected to host atmospheres generated by a number of processes including accretion of chondritic material. Water vapor should be a common constituent of super-Earth atmospheres, and may be detectable in transiting super-Earths using transmission spectroscopy during primar y eclipse, and emission spectroscopy at secondary eclipse. I will discuss the prospects for super-Earth atmospheric measurements using JWST.

  8. Supergrassmannians, super τ-functions and strings

    International Nuclear Information System (INIS)

    Dolgikh, S.N.; Schwarz, A.S.

    1989-03-01

    Recently, infinite-dimensional grassmannians and their supergeneralizations were used to study conformal two-dimensional fields and strings. In particular, the super Mumford form (holomorphic square root from the superstring measure on moduli space) was expressed through super analog of Sato τ-function. In this paper we present results of supergrassmannians and super τ-functions. 8 refs

  9. Toolbox for super-structured and super-structure free multi-disciplinary building spatial design optimisation

    NARCIS (Netherlands)

    Boonstra, S.; van der Blom, K.; Hofmeyer, H.; Emmerich, M.T.M.; van Schijndel, A.W.M.; de Wilde, P.

    2018-01-01

    Multi-disciplinary optimisation of building spatial designs is characterised by large solution spaces. Here two approaches are introduced, one being super-structured and the other super-structure free. Both are different in nature and perform differently for large solution spaces and each requires

  10. Foreword: Focus on Superconductivity in Semiconductors

    Directory of Open Access Journals (Sweden)

    Yoshihiko Takano

    2008-01-01

    Full Text Available Since the discovery of superconductivity in diamond, much attention has been given to the issue of superconductivity in semiconductors. Because diamond has a large band gap of 5.5 eV, it is called a wide-gap semiconductor. Upon heavy boron doping over 3×1020 cm−3, diamond becomes metallic and demonstrates superconductivity at temperatures below 11.4 K. This discovery implies that a semiconductor can become a superconductor upon carrier doping. Recently, superconductivity was also discovered in boron-doped silicon and SiC semiconductors. The number of superconducting semiconductors has increased. In 2008 an Fe-based superconductor was discovered in a research project on carrier doping in a LaCuSeO wide-gap semiconductor. This discovery enhanced research activities in the field of superconductivity, where many scientists place particular importance on superconductivity in semiconductors.This focus issue features a variety of topics on superconductivity in semiconductors selected from the 2nd International Workshop on Superconductivity in Diamond and Related Materials (IWSDRM2008, which was held at the National Institute for Materials Science (NIMS, Tsukuba, Japan in July 2008. The 1st workshop was held in 2005 and was published as a special issue in Science and Technology of Advanced Materials (STAM in 2006 (Takano 2006 Sci. Technol. Adv. Mater. 7 S1.The selection of papers describe many important experimental and theoretical studies on superconductivity in semiconductors. Topics on boron-doped diamond include isotope effects (Ekimov et al and the detailed structure of boron sites, and the relation between superconductivity and disorder induced by boron doping. Regarding other semiconductors, the superconducting properties of silicon and SiC (Kriener et al, Muranaka et al and Yanase et al are discussed, and In2O3 (Makise et al is presented as a new superconducting semiconductor. Iron-based superconductors are presented as a new series of high

  11. Status of RF superconductivity at Argonne

    International Nuclear Information System (INIS)

    Shepard, K.W.

    1990-01-01

    Development of a superconducting slow-wave structures began at Argonne National Laboratory (ANL) in 1971, and led to the first superconducting heavy-ion linac (ATLAS - the Argonne Tandem-Linac Accelerator System). The Physics Division at ANL has continued to develop superconducting RF technology for accelerating heavy-ions, with the result that the linac has been in an almost continuous process of upgrade and expansion. In 1987, the Engineering Physics Division at ANL began developing of superconducting RF components for the acceleration of high-brightness proton and deuterium beams. The two divisions collaborate in work on several applications of RF superconductivity, and also in work to develop the technology generally. The present report briefly describes major features of the superconducting heavy-ion linac (very-low-velocity superconducting linac, positive ion injector), proton accelerating structures (superconducting resonant cavities for acceleration of high-current proton and deuteron beams, RF properties of oxide superconductors), and future work. Both divisions expect to continue a variety of studies, frequently in collaboration, to advance the basic technology of RF superconductivity. (N.K.)

  12. Unconventional superconductivity in heavy-fermion compounds

    Energy Technology Data Exchange (ETDEWEB)

    White, B.D. [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States); Thompson, J.D. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Maple, M.B., E-mail: mbmaple@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093 (United States); Center for Advanced Nanoscience, University of California, San Diego, La Jolla, CA 92093 (United States)

    2015-07-15

    Highlights: • Quasiparticles in heavy-fermion compounds are much heavier than free electrons. • Superconductivity involves pairing of these massive quasiparticles. • Quasiparticle pairing mediated by magnetic or quadrupolar fluctuations. • We review the properties of superconductivity in heavy-fermion compounds. - Abstract: Over the past 35 years, research on unconventional superconductivity in heavy-fermion systems has evolved from the surprising observations of unprecedented superconducting properties in compounds that convention dictated should not superconduct at all to performing explorations of rich phase spaces in which the delicate interplay between competing ground states appears to support emergent superconducting states. In this article, we review the current understanding of superconductivity in heavy-fermion compounds and identify a set of characteristics that is common to their unconventional superconducting states. These core properties are compared with those of other classes of unconventional superconductors such as the cuprates and iron-based superconductors. We conclude by speculating on the prospects for future research in this field and how new advances might contribute towards resolving the long-standing mystery of how unconventional superconductivity works.

  13. Super Virasoro algebra and solvable supersymmetric quantum field theories

    International Nuclear Information System (INIS)

    Yamanaka, Itaru; Sasaki, Ryu.

    1987-09-01

    Interesting and deep relationships between super Virasoro algebras and super soliton systems (super KdV, super mKdV and super sine-Gordon equations) are investigated at both classical and quantum levels. An infinite set of conserved quantities responsible for solvability is characterized by super Virasoro algebras only. Several members of the infinite set of conserved quantities are derived explicitly. (author)

  14. Superconducting wires and methods of making thereof

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Xingchen; Sumption, Michael D.; Peng, Xuan

    2018-03-13

    Disclosed herein are superconducting wires. The superconducting wires can comprise a metallic matrix and at least one continuous subelement embedded in the matrix. Each subelement can comprise a non-superconducting core, a superconducting layer coaxially disposed around the non-superconducting core, and a barrier layer coaxially disposed around the superconducting layer. The superconducting layer can comprise a plurality of Nb.sub.3Sn grains stabilized by metal oxide particulates disposed therein. The Nb.sub.3Sn grains can have an average grain size of from 5 nm to 90 nm (for example, from 15 nm to 30 nm). The superconducting wire can have a high-field critical current density (J.sub.c) of at least 5,000 A/mm.sup.2 at a temperature of 4.2 K in a magnetic field of 12 T. Also described are superconducting wire precursors that can be heat treated to prepare superconducting wires, as well as methods of making superconducting wires.

  15. Superconducting magnet development in Japan

    International Nuclear Information System (INIS)

    Yasukochi, K.

    1983-01-01

    The present state of R and D works on the superconducting magnet and its applications in Japan are presented. On electrical rotating machines, 30 MVA superconducting synchronous rotary condenser (Mitsubishi and Fuji) and 50 MVA generator are under construction. Two ways of ship propulsion by superconducting magnets are developing. A superconducting magnetically levitated and linear motor propelled train ''MAGLEV'' was developed by the Japan National Railways (JNR). The superconducting magnet development for fusion is the most active field in Japan. The Cluster Test program has been demonstrated on a 10 T Nb 3 Sn coil and the first coil of Large Coil Task in IEA collaboration has been constructed and the domestic test was completed in JAERI. These works are for the development of toroidal coils of the next generation tokamak machine. R and D works on superconducting ohmic heating coil are in progress in JAERI and ETL. The latter group has constructed 3.8 MJ pulsed coil. A high ramp rate of changing field in pulsed magnet, 200 T/s, has been tested successfully. High Energy Physics Laboratory (KEK) are conducting active works. The superconducting μ meson channel and π meson channel have been constructed and are operating successfully. KEK has also a project of big accelerator named ''TRISTAN'', which is similar to ISABELLE project of BNL. Superconducting synchrotron magnets are developed for this project. The development of superconducting three thin wall solenoid has been started. One of them, CDF, is progressing under USA-Japan collaboration

  16. Superconducting joint of Bi-2223/Ag superconducting tapes by diffusion bonding

    International Nuclear Information System (INIS)

    Guo Wei; Zou Guisheng; Wu Aiping; Wang Yanjun; Bai Hailin; Ren Jialie

    2009-01-01

    61-Filaments Bi-2223/Ag superconducting tapes have been joined by diffusion bonding. The critical currents (I C s) of the joints are obtained by using standard four probe method under no magnetic field in the liquid nitrogen. The microstructures of the joints are evaluated by the electron microscope in electron backscatter diffraction mode and the phase compositions of the superconducting cores of the joint and the original tape are determined by X-ray diffraction (XRD). The results show diffusion bonding is effective bonding technique for HTS tapes, and the bonding time is reduced greatly from hundreds of hours to a few hours, and the bonding pressure also changes from 140-4000 MPa to 3 MPa. Furthermore, the diffusion bonding joints sustain superconducting properties, and the critical current ratios (CCR O ) of the joints are in the range of 35%-80%. Microstructures of the typical joint display a good bonding and some defects existed in traditional method are avoided. XRD results show that the phase compositions of the superconducting cores have no obvious changes before and after diffusion bonding, which offers physical and material bases for high superconducting property of the joints.

  17. Superconductivity in doped Dirac semimetals

    Science.gov (United States)

    Hashimoto, Tatsuki; Kobayashi, Shingo; Tanaka, Yukio; Sato, Masatoshi

    2016-07-01

    We theoretically study intrinsic superconductivity in doped Dirac semimetals. Dirac semimetals host bulk Dirac points, which are formed by doubly degenerate bands, so the Hamiltonian is described by a 4 ×4 matrix and six types of k -independent pair potentials are allowed by the Fermi-Dirac statistics. We show that the unique spin-orbit coupling leads to characteristic superconducting gap structures and d vectors on the Fermi surface and the electron-electron interaction between intra and interorbitals gives a novel phase diagram of superconductivity. It is found that when the interorbital attraction is dominant, an unconventional superconducting state with point nodes appears. To verify the experimental signature of possible superconducting states, we calculate the temperature dependence of bulk physical properties such as electronic specific heat and spin susceptibility and surface state. In the unconventional superconducting phase, either dispersive or flat Andreev bound states appear between point nodes, which leads to double peaks or a single peak in the surface density of states, respectively. As a result, possible superconducting states can be distinguished by combining bulk and surface measurements.

  18. Superconductivity: materials and applications

    International Nuclear Information System (INIS)

    Duchateau, J.L.; Kircher, F.; Leveque, J.; Tixador, P.

    2008-01-01

    This digest paper presents the different types of superconducting materials: 1 - the low-TC superconductors: the multi-filament composite as elementary constituent, the world production of NbTi, the superconducting cables of the LHC collider and of the ITER tokamak; 2 - the high-TC superconductors: BiSrCaCuO (PIT 1G) ribbons and wires, deposited coatings; 3 - application to particle physics: the the LHC collider of the CERN, the LHC detectors; 4 - applications to thermonuclear fusion: Tore Supra and ITER tokamaks; 5 - NMR imaging: properties of superconducting magnets; 6 - applications in electrotechnics: cables, motors and alternators, current limiters, transformers, superconducting energy storage systems (SMES). (J.S.)

  19. Superconductivity in power engineering

    International Nuclear Information System (INIS)

    1989-01-01

    This proceedings volume presents 24 conference papers and 15 posters dealing with the following aspects: 1) Principles and elementary aspects of high-temperature superconductivity (3 plenary lectures); 2) Preparation, properties and materials requirements of metallic or oxide superconductors (critical current behaviour, soldered joints, structural studies); 3) Magnet technology (large magnets for thermonuclear fusion devices; magnets for particle accelerators and medical devices); 4) Magnetic levitation and superconductivity; 5) Cryogenics; 6) Energy storage systems using superconducting coils (SMES); 7) Superconducting power transmission cables, switches, transformers, and generator systems for power plant; 8) Supporting activities, industrial aspects, patents. There are thirty-eight records in the ENERGY database relating to individual conference papers. (MM) [de

  20. High-Tc superconducting electric motors

    International Nuclear Information System (INIS)

    Schiferl, R.; Stein, J.

    1992-01-01

    In this paper, the advantages and limitations of using superconductors in motors are discussed. A synchronous motor with a high temperature superconducting field winding for pump and fan drive applications is described and some of its unique design features are identified. A 10,000 horsepower superconducting motor design is presented. The critical field and current density requirements for high temperature superconducting wire in motors is discussed. Finally, recent progress in superconducting wire performance is presented

  1. Superconducting magnets for a muon collider

    International Nuclear Information System (INIS)

    Green, M.A.

    1996-01-01

    The existence of a muon collider will be dependent on the use of superconducting magnets. Superconducting magnets for the μ - μ + collider will be found in the following locations: the π - π + capture system, the muon phase rotation system, the muon cooling system, the recirculating acceleration system, the collider ring, and the collider detector system. This report describes superconducting magnets for each of these sections except the detector. In addition to superconducting magnets, superconducting RF cavities will be found in the recirculating accelerator sections and the collider ring. The use of superconducting magnets is dictated by the need for high magnetic fields in order to reduce the length of various machine components. The performance of all of the superconducting magnets will be affected the energy deposited from muon decay products. (orig.)

  2. Superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Abrahamsen, Asger Bech; Mijatovic, Nenad; Seiler, Eugen

    2010-01-01

    , the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10......We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future...... offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However...

  3. Three-terminal superconducting devices

    International Nuclear Information System (INIS)

    Gallagher, W.J.

    1985-01-01

    The transistor has a number of properties that make it so useful. The authors discuss these and the additional properties a transistor would need to have for high performance applications at temperatures where superconductivity could contribute advantages to system-level performance. These properties then serve as criteria by which to evaluate three-terminal devices that have been proposed for applications at superconducting temperatures. FETs can retain their transistor properties at low temperatures, but their power consumption is too large for high-speed, high-density cryogenic applications. They discuss in detail why demonstrated superconducting devices with three terminals -Josephson effect based devices, injection controlled weak links, and stacked tunnel junction devices such as the superconducting transistor proposed by K. Gray and the quiteron -- each fail to have true transistor-like properties. They conclude that the potentially very rewarding search for a transistor compatible with superconductivity in high performance applications must be in new directions

  4. Korea's developmental program for superconductivity

    Science.gov (United States)

    Hong, Gye-Won; Won, Dong-Yeon; Kuk, Il-Hyun; Park, Jong-Chul

    1995-04-01

    Superconductivity research in Korea was firstly carried out in the late 70's by a research group in Seoul National University (SNU), who fabricated a small scale superconducting magnetic energy storage system under the financial support from Korea Electric Power Company (KEPCO). But a few researchers were involved in superconductivity research until the oxide high Tc superconductor was discovered by Bednorz and Mueller. After the discovery of YBaCuO superconductor operating above the boiling point of liquid nitrogen (77 K)(exp 2), Korean Ministry of Science and Technology (MOST) sponsored a special fund for the high Tc superconductivity research to universities and national research institutes by recognizing its importance. Scientists engaged in this project organized 'High Temperature Superconductivity Research Association (HITSRA)' for effective conducting of research. Its major functions are to coordinate research activities on high Tc superconductivity and organize the workshop for active exchange of information. During last seven years the major superconductivity research has been carried out through the coordination of HITSRA. The major parts of the Korea's superconductivity research program were related to high temperature superconductor and only a few groups were carrying out research on conventional superconductor technology, and Korea Atomic Energy Research Institute (KAERI) and Korea Electrotechnology Research Institute (KERI) have led this research. In this talk, the current status and future plans of superconductivity research in Korea will be reviewed based on the results presented in interim meeting of HITSRA, April 1-2, 1994. Taejeon, as well as the research activity of KAERI.

  5. Superconducting machines. Chapter 4

    International Nuclear Information System (INIS)

    Appleton, A.D.

    1977-01-01

    A brief account is given of the principles of superconductivity and superconductors. The properties of Nb-Ti superconductors and the method of flux stabilization are described. The basic features of superconducting d.c. machines are illustrated by the use of these machines for ship propulsion, steel-mill drives, industrial drives, aluminium production, and other d.c. power supplies. Superconducting a.c. generators and their design parameters are discussed. (U.K.)

  6. Superconductivity at the industrial scale

    International Nuclear Information System (INIS)

    Tixador, P.; Lebrun, Ph.

    2011-01-01

    The discovery of superconductivity is 100 years old but theoretical works are still necessary: the BCS theory does not apply to the new families of high temperature superconducting materials discovered after 1986. In 2001 it was discovered that MgB 2 is superconducting at 39 K, this critical temperature is not the highest but MgB 2 is easy to produce and cheap. Today's highest critical temperature under atmospheric pressure is that of the HgTlBaCaCuO compound: 138 K. The complexity and the cost of cryogenic systems restrain the applications of superconductivity. The author reviews the applications of superconducting in medical imaging, particle detectors, and in the safety systems of power networks. (A.C.)

  7. Process of producing superconducting bar magnets

    International Nuclear Information System (INIS)

    Wilson, M.A.

    1988-01-01

    A method of forming a magnet having an established magnetic field is described comprising; (1) establishing a magnetic field of the desired extent and shape; (2) providing a superconducting material of desired shape; (3) positioning the material of (2) in field (1) while at a temperature above the critical temperature of the superconducting material so as to apply a magnetic field on the superconducting material; (4) cooling the superconducting material while in magnetic field (1) to below the critical temperature of the superconducting material; (5) removing the superconducting material from the magnetic field while in the supercooled condition; and (6) maintaining the material at or below the critical temperature

  8. Thermonuclear device

    International Nuclear Information System (INIS)

    Inoue, Toyokazu; Murata, Toru.

    1983-01-01

    Purpose: To shield superconducting coils for use in the generation of magnetic field against neutron irradiation thereby preventing tritium contamination. Constitution: The thermonuclear device comprises, in its inside, a vacuum container for containing plasmas, superconducting coils disposed to the outside of the vacuum container and neutron absorbers disposed between the super-conducting coils and the vacuum container. since neutrons issued from the plasma are absorbed by neutron absorbers and not irradiated to the superconducting coils, generation of tritium due to the reaction between 3 He in the liquid helium as the coolants for the super-conducting coils and the neutrons is prevented. (Aizawa, K.)

  9. Superconductivity and its devices

    International Nuclear Information System (INIS)

    Forbes, D.S.

    1981-01-01

    Among the more important developments that are discussed are cryotrons, superconducting motors and generators, and high-field magnets. Cryotrons will create faster and more economical computer systems. Superconducting motors and generators will cost much less to build than conventional electric generators and cut fuel consumption. Moreover, high-field magnets are being used to confine plasma in connection with nuclear fusion. Superconductors have a vital role to play in all of these developments. Most importantly, though, are the magnetic properties of superconductivity. Superconducting magnets are an integral part of nuclear fusion. In addition, high-field magnets are necessary in the use of accelerators, which are needed to study the interactions between elementary particles

  10. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  11. Is Quantum Gravity a Super-Quantum Theory?

    OpenAIRE

    Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu

    2013-01-01

    We argue that quantum gravity should be a super-quantum theory, that is, a theory whose non-local correlations are stronger than those of canonical quantum theory. As a super-quantum theory, quantum gravity should display distinct experimentally observable super-correlations of entangled stringy states.

  12. Superconducting magnets, cryostats, and cryogenics for the interaction region of the SSC

    International Nuclear Information System (INIS)

    Jayakumar, R.J.; Abramovich, S.; Zhmad, A.

    1993-10-01

    The Superconducting Super Collider (SSC) has two counterrotating 20-TeV proton beams that will be made to collide at specific interaction points to carry out high energy physics experiments. The Collider ring has two sites, West and East, for such Interaction Regions (IRs), and the conceptual design of the East Interaction Region is underway. The East IR, in the present stage of design, has two interaction points, the requirements for which have been specified in terms of distance L* to the nearest magnet and the beam luminosity. Based on these requirements, the optics for transition from arc regions or utility regions to the IR and for focusing the beams have been obtained. The optical arrangement consists of a tuning section of quadrupoles, the strength of which is adjusted to obtain the required beta squeeze; a pair of bending dipoles to reduce the beam separation from the nominal 900 mm to 450 mm; an achromat section of quadrupoles, which consist of two cold masses in one cryostnother pair of dipoles to bring the beams together at the required crossing angle; and a set of final focus quads facing the interaction point. The optics is symmetric about the interaction point, and the two interaction points are separated by a hinge region consisting of superconducting dipoles and quadrupoles similar to the arc region. In the regions where the beams are vertically bent and straightened out by dipoles, the beam traverses warm regions provided for placing beam collimators. The superconducting magnets, including the final focus quadrupoles, operate with supercritical He at 4 atm and a nominal temperature of 4.15 K. In this paper, descriptions of the magnets, the cryostats, and cryo bypasses around the warm region and interaction points are provided. Also discussed are the cooling requirements and design for the final focus quadrupole, which receives significant heat load from beam radiation

  13. Superconducting elliptical cavities

    CERN Document Server

    Sekutowicz, J K

    2011-01-01

    We give a brief overview of the history, state of the art, and future for elliptical superconducting cavities. Principles of the cell shape optimization, criteria for multi-cell structures design, HOM damping schemes and other features are discussed along with examples of superconducting structures for various applications.

  14. Unconventional superconductivity in honeycomb lattice

    Directory of Open Access Journals (Sweden)

    P Sahebsara

    2013-03-01

    Full Text Available   ‎ The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons ‎ . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.

  15. Learning from errors in super-resolution.

    Science.gov (United States)

    Tang, Yi; Yuan, Yuan

    2014-11-01

    A novel framework of learning-based super-resolution is proposed by employing the process of learning from the estimation errors. The estimation errors generated by different learning-based super-resolution algorithms are statistically shown to be sparse and uncertain. The sparsity of the estimation errors means most of estimation errors are small enough. The uncertainty of the estimation errors means the location of the pixel with larger estimation error is random. Noticing the prior information about the estimation errors, a nonlinear boosting process of learning from these estimation errors is introduced into the general framework of the learning-based super-resolution. Within the novel framework of super-resolution, a low-rank decomposition technique is used to share the information of different super-resolution estimations and to remove the sparse estimation errors from different learning algorithms or training samples. The experimental results show the effectiveness and the efficiency of the proposed framework in enhancing the performance of different learning-based algorithms.

  16. Superparticle on the 'super' Poincare upper half plane

    Energy Technology Data Exchange (ETDEWEB)

    Uehara, S; Yasui, Yukinora

    1988-03-17

    A non-relativistic superparticle moving freely on the 'super' Poincare upper half plane is investigated. The lagrangian is invariant under the super Moebius transformations SPL (2, R), so that it can be projected into the lagrangian on the super Riemann surface. The quantum hamiltonian becomes the 'super' Laplace-Beltrami operator in the curved superspace.

  17. 2017 Gordon Conference on Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Chubukov, Andrey [Univ. of Minnesota, Twin Cities, MN (United States)

    2017-11-14

    The DOE award was for a 2017 Gordon Research conference on Superconductivity (GRC). The objective of GRC is to interchange the information about the latest theoretical and experimental developments in the area of superconductivity and to select most perspective directions for future research in this area.The goal of the Gordon Conference on Superconductivity is to present and discuss the latest results in the field of modern superconductivity, discuss new ideas and new directions of research in the area. It is a long-standing tradition of the Gordon conference on Superconductivity that the vast majority of participants are junior scientists. Funding for the conference would primarily be used to support junior researchers, particularly from under-represented groups. We had more 10 female speakers, some of them junior researchers, and some funding was used to support these speakers. The conference was held together with Gordon Research Seminar on Superconductivity, where almost all speakers and participants were junior scientists.

  18. Super boson-fermion correspondence

    International Nuclear Information System (INIS)

    Kac, V.G.; Leur van de, J.W.

    1987-01-01

    Since the pioneering work of Skyrme, the boson-fermion correspondence has been playing an increasingly important role in 2-dimensional quantum field theory. More recently, it has become an important ingredient in the work of the Kyoto school on the KP hierarchy of soliton equations. In the present paper we establish a super boson-fermion correspondence, having in mind its applications to super KP hierarchies

  19. Superconductivity and their applications

    OpenAIRE

    Roque, António; Sousa, Duarte M.; Fernão Pires, Vítor; Margato, Elmano

    2017-01-01

    Trabalho apresentado em International Conference on Renewable Energies and Power Quality (ICREPQ’17), 4 a 6 de Abril de 2017, Málaga, Espanha The research in the field of superconductivity has led to the synthesis of superconducting materials with features that allow you to expand the applicability of this kind of materials. Among the superconducting materials characteristics, the critical temperature of the superconductor is framing the range and type of industrial applications that can b...

  20. The Solution Construction of Heterotic Super-Liouville Model

    Science.gov (United States)

    Yang, Zhan-Ying; Zhen, Yi

    2001-12-01

    We investigate the heterotic super-Liouville model on the base of the basic Lie super-algebra Osp(1|2).Using the super extension of Leznov-Saveliev analysis and Drinfeld-Sokolov linear system, we construct the explicit solution of the heterotic super-Liouville system in component form. We also show that the solutions are local and periodic by calculating the exchange relation of the solution. Finally starting from the action of heterotic super-Liouville model, we obtain the conserved current and conserved charge which possessed the BRST properties.

  1. Superconducting wind turbine generators

    International Nuclear Information System (INIS)

    Abrahamsen, A B; Seiler, E; Zirngibl, T; Andersen, N H; Mijatovic, N; Traeholt, C; Pedersen, N F; Oestergaard, J; Noergaard, P B

    2010-01-01

    We have examined the potential of 10 MW superconducting direct drive generators to enter the European offshore wind power market and estimated that the production of about 1200 superconducting turbines until 2030 would correspond to 10% of the EU offshore market. The expected properties of future offshore turbines of 8 and 10 MW have been determined from an up-scaling of an existing 5 MW turbine and the necessary properties of the superconducting drive train are discussed. We have found that the absence of the gear box is the main benefit and the reduced weight and size is secondary. However, the main challenge of the superconducting direct drive technology is to prove that the reliability is superior to the alternative drive trains based on gearboxes or permanent magnets. A strategy of successive testing of superconducting direct drive trains in real wind turbines of 10 kW, 100 kW, 1 MW and 10 MW is suggested to secure the accumulation of reliability experience. Finally, the quantities of high temperature superconducting tape needed for a 10 kW and an extreme high field 10 MW generator are found to be 7.5 km and 1500 km, respectively. A more realistic estimate is 200-300 km of tape per 10 MW generator and it is concluded that the present production capacity of coated conductors must be increased by a factor of 36 by 2020, resulting in a ten times lower price of the tape in order to reach a realistic price level for the superconducting drive train.

  2. Super-radiance in Nuclear Physics

    International Nuclear Information System (INIS)

    Auerbach, N

    2015-01-01

    The theory of the super-radiant mechanism as applied to various phenomena in nuclear physics is presented. The connection between super-radiance and the notion of doorway is presented. The statistics of resonance widths in a many-body Fermi system with open channels is discussed. Depending on the strength of the coupling to the continuum such systems show deviations from the standard Porter-Thomas distribution. The deviations result from the process of increasing interaction of the intrinsic states via the common decay channels. In the limit of very strong coupling this leads to super-radiance. (paper)

  3. Superconductivity from magnetic elements under high pressure

    International Nuclear Information System (INIS)

    Shimizu, Katsuya; Amaya, Kiichi; Suzuki, Naoshi; Onuki, Yoshichika

    2006-01-01

    Can we expect the appearance of superconductivity from magnetic elements? In general, superconductivity occurs in nonmagnetic metal at low temperature and magnetic impurities destroy superconductivity; magnetism and superconductivity are as incompatible as oil and water. Here, we present our experimental example of superconducting elements, iron and oxygen. They are magnetic at ambient pressure, however, they become nonmagnetic under high pressure, then superconductor at low temperature. What is the driving force of the superconductivity? Our understanding in the early stages was a simple scenario that the superconductive state was obtained as a consequence of an emergence of the nonmagnetic states. In both cases, we may consider another scenario for the appearance of superconductivity; the magnetic fluctuation mechanism in the same way as unconventional superconductors

  4. Super-hydrophobic surfaces of SiO₂-coated SiC nanowires: fabrication, mechanism and ultraviolet-durable super-hydrophobicity.

    Science.gov (United States)

    Zhao, Jian; Li, Zhenjiang; Zhang, Meng; Meng, Alan

    2015-04-15

    The interest in highly water-repellent surfaces of SiO2-coated SiC nanowires has grown in recent years due to the desire for self-cleaning and anticorrosive surfaces. It is imperative that a simple chemical treatment with fluoroalkylsilane (FAS, CF3(CF2)7CH2CH2Si(OC2H5)3) in ethanol solution at room temperature resulted in super-hydrophobic surfaces of SiO2-coated SiC nanowires. The static water contact angle of SiO2-coated SiC nanowires surfaces was changed from 0° to 153° and the morphology, microstructure and crystal phase of the products were almost no transformation before and after super-hydrophobic treatment. Moreover, a mechanism was expounded reasonably, which could elucidate the reasons for their super-hydrophobic behavior. It is important that the super-hydrophobic surfaces of SiO2-coated SiC nanowires possessed ultraviolet-durable (UV-durable) super-hydrophobicity. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

    International Nuclear Information System (INIS)

    Kim, J. H.; Park, S. I.; Im, S. H.; Kim, H. M.

    2013-01-01

    Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

  6. Superconducted tour

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1988-09-15

    Superconductivity - the dramatic drop in electrical resistance in certain materials at very low temperatures - has grown rapidly in importance over the past two or three decades to become a key technology for high energy particle accelerators. It was in this setting that a hundred students and 15 lecturers met in Hamburg in June for a week's course on superconductivity in particle accelerators, organized by the CERN Accelerator School and the nearby DESY Laboratory.

  7. Superconductivity: Phenomenology

    International Nuclear Information System (INIS)

    Falicov, L.M.

    1988-08-01

    This document discusses first the following topics: (a) The superconducting transition temperature; (b) Zero resistivity; (c) The Meissner effect; (d) The isotope effect; (e) Microwave and optical properties; and (f) The superconducting energy gap. Part II of this document investigates the Ginzburg-Landau equations by discussing: (a) The coherence length; (b) The penetration depth; (c) Flux quantization; (d) Magnetic-field dependence of the energy gap; (e) Quantum interference phenomena; and (f) The Josephson effect

  8. Performing the Super Instrument

    DEFF Research Database (Denmark)

    Kallionpaa, Maria

    2016-01-01

    can empower performers by producing super instrument works that allow the concert instrument to become an ensemble controlled by a single player. The existing instrumental skills of the performer can be multiplied and the qualities of regular acoustic instruments extended or modified. Such a situation......The genre of contemporary classical music has seen significant innovation and research related to new super, hyper, and hybrid instruments, which opens up a vast palette of expressive potential. An increasing number of composers, performers, instrument designers, engineers, and computer programmers...... have become interested in different ways of “supersizing” acoustic instruments in order to open up previously-unheard instrumental sounds. Super instruments vary a great deal but each has a transformative effect on the identity and performance practice of the performing musician. Furthermore, composers...

  9. Introduction to superconductivity

    CERN Document Server

    Darriulat, Pierre

    1998-01-01

    The lecture series will address physicists, such as particle and nuclear physicists, familiar with non-relativistic quantum mechanics but not with solid state physics. The aim of this introduction to low temperature superconductivity is to give sufficient bases to the student for him/her to be able to access the scientific literature on this field. The five lectures will cover the following topics : 1. Normal metals, free electron gas, chambers equation. 2. Cooper pairs, the BCS ground state, quasi particle excitations. 3. DC superconductivity, Meissner state, dirty superconductors.4. Self consistent approach, Ginsburg Landau equations, Abrikosov fluxon lattice. 5. Josephson effects, high temperature superconductivity.

  10. Deriving Global Convection Maps From SuperDARN Measurements

    Science.gov (United States)

    Gjerloev, J. W.; Waters, C. L.; Barnes, R. J.

    2018-04-01

    A new statistical modeling technique for determining the global ionospheric convection is described. The principal component regression (PCR)-based technique is based on Super Dual Auroral Radar Network (SuperDARN) observations and is an advanced version of the PCR technique that Waters et al. (https//:doi.org.10.1002/2015JA021596) used for the SuperMAG data. While SuperMAG ground magnetic field perturbations are vector measurements, SuperDARN provides line-of-sight measurements of the ionospheric convection flow. Each line-of-sight flow has a known azimuth (or direction), which must be converted into the actual vector flow. However, the component perpendicular to the azimuth direction is unknown. Our method uses historical data from the SuperDARN database and PCR to determine a fill-in model convection distribution for any given universal time. The fill-in data process is driven by a list of state descriptors (magnetic indices and the solar zenith angle). The final solution is then derived from a spherical cap harmonic fit to the SuperDARN measurements and the fill-in model. When compared with the standard SuperDARN fill-in model, we find that our fill-in model provides improved solutions, and the final solutions are in better agreement with the SuperDARN measurements. Our solutions are far less dynamic than the standard SuperDARN solutions, which we interpret as being due to a lack of magnetosphere-ionosphere inertia and communication delays in the standard SuperDARN technique while it is inherently included in our approach. Rather, we argue that the magnetosphere-ionosphere system has inertia that prevents the global convection from changing abruptly in response to an interplanetary magnetic field change.

  11. First heavy ion beam tests with a superconducting multigap CH cavity

    Science.gov (United States)

    Barth, W.; Aulenbacher, K.; Basten, M.; Busch, M.; Dziuba, F.; Gettmann, V.; Heilmann, M.; Kürzeder, T.; Miski-Oglu, M.; Podlech, H.; Rubin, A.; Schnase, A.; Schwarz, M.; Yaramyshev, S.

    2018-02-01

    Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium energies for continuous wave (cw) heavy ion beams. To keep the GSI-super heavy element (SHE) program competitive on a high level and even beyond, a standalone sc cw linac (Helmholtz linear accelerator) in combination with the GSI high charge state injector (HLI), upgraded for cw operation, is envisaged. Recently the first linac section (financed by Helmholtz Institute Mainz (HIM) and GSI) as a demonstration of the capability of 217 MHz multigap crossbar H-mode structures (CH) has been commissioned and extensively tested with heavy ion beam from the HLI. The demonstrator setup reached acceleration of heavy ions up to the design beam energy. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This paper presents systematic beam measurements with varying rf amplitudes and phases of the CH cavity, as well as phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multigap CH cavity is a milestone of the R&D work of HIM and GSI in collaboration with IAP in preparation of the HELIAC project and other cw-ion beam applications.

  12. The development of superconducting equipment

    CERN Document Server

    Ueda, T; Hiue, H

    2003-01-01

    Fuji Electric has been developing various types of superconducting equipment for over a quarter of a century. This paper describes the development results achieved for superconducting equipment and especially focuses on large-capacity current leads and superconducting transmission systems, the development of which is being promoted for application to the field of nuclear fusion. High temperature superconductor (HTS) is becoming the mainstream in the field of superconductivity, and the HTS floating coil and conduction-cooled HTS transformed are also introduced as recent developments for devices that utilize this technology. (author)

  13. Low temperature London penetration depth and superfluid density in Fe-based superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyunsoo [Iowa State Univ., Ames, IA (United States)

    2013-01-01

    The superconducting gap symmetry of the Fe-based superconductors was studied by measurements and analysis of London penetration depth and super uid density. Tunnel diode resonator technique for these measurements was implemented in a dilution refrigerator allowing for the temperatures down to 50 mK. For the analysis of the super uid density, we used both experimental studies of Al-coated samples and original thermodynamic approach based on Rutgers relation. In three systems studied, we found that the superconducting gap at the optimal doping is best described in multi-gap full gap scenario. By performing experiments on samples with arti cially introduced disorder with heavy ion irradiation, we show that evolution of the superconducting transition temperature and of the super uid density are consistent with full-gap sign changing s superconducting state. The superconducting gap develops strong modulation both in the under-doped and the over-doped regimes. In the terminal hole-doped KFe{sub 2}As{sub 2}, both temperature dependence of the super uid density and its evolution with increase of the scattering rate are consistent with symmetry imposed vertical line nodes in the superconducting gap. By comparative studies of hole-doped (Ba,K)Fe{sub 2}As{sub 2} and electron-doped Ca10-3-8, we show that the superconducting gap modulation in the under-doped regime is intrinsic and is not induced by the coexisting static magnetic order.

  14. Materials and mechanisms of hole superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, J.E., E-mail: jhirsch@ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, CA 92093-0319 (United States)

    2012-01-15

    We study the applicability of the model of hole superconductivity to materials. Both conventional and unconventional materials are considered. Many different classes of materials are discussed. The theory is found suitable to describe all of them. No other theory of superconductivity can describe all these classes of materials. The theory of hole superconductivity proposes that there is a single mechanism of superconductivity that applies to all superconducting materials. This paper discusses several material families where superconductivity occurs and how they can be understood within this theory. Materials discussed include the elements, transition metal alloys, high T{sub c} cuprates both hole-doped and electron-doped, MgB{sub 2}, iron pnictides and iron chalcogenides, doped semiconductors, and elements under high pressure.

  15. Super-Hamiltonian Structures and Conservation Laws of a New Six-Component Super-Ablowitz-Kaup-Newell-Segur Hierarchy

    Directory of Open Access Journals (Sweden)

    Fucai You

    2014-01-01

    Full Text Available A six-component super-Ablowitz-Kaup-Newell-Segur (-AKNS hierarchy is proposed by the zero curvature equation associated with Lie superalgebras. Supertrace identity is used to furnish the super-Hamiltonian structures for the resulting nonlinear superintegrable hierarchy. Furthermore, we derive the infinite conservation laws of the first two nonlinear super-AKNS equations in the hierarchy by utilizing spectral parameter expansions. PACS: 02.30.Ik; 02.30.Jr; 02.20.Sv.

  16. Molybdenum-rhenium superconducting suspended nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Aziz, Mohsin; Christopher Hudson, David; Russo, Saverio [Centre for Graphene Science, College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter EX4 4QF (United Kingdom)

    2014-06-09

    Suspended superconducting nanostructures of MoRe 50%/50% by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO{sub 2} sacrificial layer. Suspended superconducting channels as narrow as 50 nm and length 3 μm have a critical temperature of ≈6.5 K, which can increase by 0.5 K upon annealing at 400 °C. A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel widths reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.

  17. Superconducting RF activities at Cornell University

    International Nuclear Information System (INIS)

    Kirchgessner, J.; Moffat, D.; Padamsee, H.; Rubin, D.; Sears, J.; Shu, Q.S.

    1990-01-01

    This paper outlines the RF superconductivity research and development work that has taken place at Cornell Laboratory of Nuclear Studies over the past years. The work that has been performed since the last RF superconductivity workshop is emphasized together with a discussion of the direction of future efforts. Past work is summarized first, focusing on research and development activities in the area of RF superconductivity. Superconducting TeV linear collider is then discussed focusing on the application of superconducting RF to a future TeV linear collider. Linear collider structure development is then described centering on the development of a simpler (thereby cheaper) structure for a TeV linear collider. B-factory with superconducting RF is outlined focusing on the formulation of a conceptual design for a B-factory. B-factory structure development is discussed in relation to the advancement in the capability of SC cavities to carry beam currents of several amperes necessary for a high luminosity storage ring. High gradients are discussed as the key to the realization of a high energy superconducting linac or a superconducting RF B-factory. (N.K.)

  18. Frontiers in Superconducting Materials

    CERN Document Server

    Narlikar, Anant V

    2005-01-01

    Frontiers in Superconducting Materials gives a state-of-the-art report of the most important topics of the current research in superconductive materials and related phenomena. It comprises 30 chapters written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students. It also addresses electronic and electrical engineers. Even non-specialists interested in superconductivity might find some useful answers.

  19. Superconductivity in the actinides

    International Nuclear Information System (INIS)

    Smith, J.L.; Lawson, A.C.

    1985-01-01

    The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials

  20. Superconducting rotating machines

    International Nuclear Information System (INIS)

    Smith, J.L. Jr.; Kirtley, J.L. Jr.; Thullen, P.

    1975-01-01

    The opportunities and limitations of the applications of superconductors in rotating electric machines are given. The relevant properties of superconductors and the fundamental requirements for rotating electric machines are discussed. The current state-of-the-art of superconducting machines is reviewed. Key problems, future developments and the long range potential of superconducting machines are assessed

  1. A novel super-resolution camera model

    Science.gov (United States)

    Shao, Xiaopeng; Wang, Yi; Xu, Jie; Wang, Lin; Liu, Fei; Luo, Qiuhua; Chen, Xiaodong; Bi, Xiangli

    2015-05-01

    Aiming to realize super resolution(SR) to single image and video reconstruction, a super resolution camera model is proposed for the problem that the resolution of the images obtained by traditional cameras behave comparatively low. To achieve this function we put a certain driving device such as piezoelectric ceramics in the camera. By controlling the driving device, a set of continuous low resolution(LR) images can be obtained and stored instantaneity, which reflect the randomness of the displacements and the real-time performance of the storage very well. The low resolution image sequences have different redundant information and some particular priori information, thus it is possible to restore super resolution image factually and effectively. The sample method is used to derive the reconstruction principle of super resolution, which analyzes the possible improvement degree of the resolution in theory. The super resolution algorithm based on learning is used to reconstruct single image and the variational Bayesian algorithm is simulated to reconstruct the low resolution images with random displacements, which models the unknown high resolution image, motion parameters and unknown model parameters in one hierarchical Bayesian framework. Utilizing sub-pixel registration method, a super resolution image of the scene can be reconstructed. The results of 16 images reconstruction show that this camera model can increase the image resolution to 2 times, obtaining images with higher resolution in currently available hardware levels.

  2. Status of superconducting power transformer development

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.C.; McConnell, B.W.; Mehta, S.P. [and others

    1996-03-01

    Development of the superconducting transformer is arguably the most difficult of the ac power applications of superconductivity - this is because of the need for very low ac losses, adequate fault and surge performance, and the rigors of the application environment. This paper briefly summarizes the history of superconducting transformer projects, reviews the key issues for superconducting transformers, and examines the status of HTS transformer development. Both 630-kVA, three-phase and 1-MVA single phase demonstration units are expected to operate in late 1996. Both efforts will further progress toward the development of economical and performance competitive superconducting transformers.

  3. Superconductive analogue of spin glasses

    International Nuclear Information System (INIS)

    Feigel'man, M.; Ioffe, L.; Vinokur, V.; Larkin, A.

    1987-07-01

    The properties of granular superconductors in magnetic fields, namely the existence of a new superconductive state analogue of the low-temperature superconductive state in spin glasses are discussed in the frame of the infinite-range model and the finite-range models. Experiments for elucidation of spin-glass superconductive state in real systems are suggested. 30 refs

  4. Quenches in large superconducting magnets

    International Nuclear Information System (INIS)

    Eberhard, P.H.; Alston-Garnjost, M.; Green, M.A.; Lecomte, P.; Smits, R.G.; Taylor, J.D.; Vuillemin, V.

    1977-08-01

    The development of large high current density superconducting magnets requires an understanding of the quench process by which the magnet goes normal. A theory which describes the quench process in large superconducting magnets is presented and compared with experimental measurements. The use of a quench theory to improve the design of large high current density superconducting magnets is discussed

  5. Quantization of super Teichmueller spaces

    International Nuclear Information System (INIS)

    Aghaei, Nezhla

    2016-08-01

    The quantization of the Teichmueller spaces of Riemann surfaces has found important applications to conformal field theory and N=2 supersymmetric gauge theories. We construct a quantization of the Teichmueller spaces of super Riemann surfaces, using coordinates associated to the ideal triangulations of super Riemann surfaces. A new feature is the non-trivial dependence on the choice of a spin structure which can be encoded combinatorially in a certain refinement of the ideal triangulation. We construct a projective unitary representation of the groupoid of changes of refined ideal triangulations. Therefore, we demonstrate that the dependence of the resulting quantum theory on the choice of a triangulation is inessential. In the quantum Teichmueller theory, it was observed that the key object defining the Teichmueller theory has a close relation to the representation theory of the Borel half of U q (sl(2)). In our research we observed that the role of U q (sl(2)) is taken by quantum superalgebra U q (osp(1 vertical stroke 2)). A Borel half of U q (osp(1 vertical stroke 2)) is the super quantum plane. The canonical element of the Heisenberg double of the quantum super plane is evaluated in certain infinite dimensional representations on L 2 (R) x C 1 vertical stroke 1 and compared to the flip operator from the Teichmueller theory of super Riemann surfaces.

  6. Development of superconducting wind turbine generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2013-01-01

    In this paper, the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors; one is based on high temperature superconductors......; and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are, however, not without their challenges. The superconductors have to be cooled down to somewhere...

  7. Development of Superconducting Wind Turbine Generators

    DEFF Research Database (Denmark)

    Jensen, Bogi Bech; Mijatovic, Nenad; Abrahamsen, Asger Bech

    2012-01-01

    In this paper the commercial activities in the field of superconducting machines, particularly superconducting wind turbine generators, are reviewed and presented. Superconducting generators have the potential to provide a compact and light weight drive train at high torques and slow rotational...... speeds, because high magnetic fields can be produced by coils with very little loss. Three different superconducting wind turbine generator topologies have been proposed by three different companies. One is based on low temperature superconductors (LTS); one is based on high temperature superconductors...... (HTS); and one is a fully superconducting generator based on MgB2. It is concluded that there is large commercial interest in superconducting machines, with an increasing patenting activity. Such generators are however not without their challenges. The superconductors have to be cooled down...

  8. Superconducting fault current-limiter with variable shunt impedance

    Science.gov (United States)

    Llambes, Juan Carlos H; Xiong, Xuming

    2013-11-19

    A superconducting fault current-limiter is provided, including a superconducting element configured to resistively or inductively limit a fault current, and one or more variable-impedance shunts electrically coupled in parallel with the superconducting element. The variable-impedance shunt(s) is configured to present a first impedance during a superconducting state of the superconducting element and a second impedance during a normal resistive state of the superconducting element. The superconducting element transitions from the superconducting state to the normal resistive state responsive to the fault current, and responsive thereto, the variable-impedance shunt(s) transitions from the first to the second impedance. The second impedance of the variable-impedance shunt(s) is a lower impedance than the first impedance, which facilitates current flow through the variable-impedance shunt(s) during a recovery transition of the superconducting element from the normal resistive state to the superconducting state, and thus, facilitates recovery of the superconducting element under load.

  9. Superconducting magnetic energy storage and superconducting self-supplied electromagnetic launcher

    Science.gov (United States)

    Ciceron, Jérémie; Badel, Arnaud; Tixador, Pascal

    2017-10-01

    Superconductors can be used to build energy storage systems called Superconducting Magnetic Energy Storage (SMES), which are promising as inductive pulse power source and suitable for powering electromagnetic launchers. The second generation of high critical temperature superconductors is called coated conductors or REBCO (Rare Earth Barium Copper Oxide) tapes. Their current carrying capability in high magnetic field and their thermal stability are expanding the SMES application field. The BOSSE (Bobine Supraconductrice pour le Stockage d'Energie) project aims to develop and to master the use of these superconducting tapes through two prototypes. The first one is a SMES with high energy density. Thanks to the performances of REBCO tapes, the volume energy and specific energy of existing SMES systems can be surpassed. A study has been undertaken to make the best use of the REBCO tapes and to determine the most adapted topology in order to reach our objective, which is to beat the world record of mass energy density for a superconducting coil. This objective is conflicting with the classical strategies of superconducting coil protection. A different protection approach is proposed. The second prototype of the BOSSE project is a small-scale demonstrator of a Superconducting Self-Supplied Electromagnetic Launcher (S3EL), in which a SMES is integrated around the launcher which benefits from the generated magnetic field to increase the thrust applied to the projectile. The S3EL principle and its design are presented. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2016)", edited by Adel Razek

  10. SuperSegger

    DEFF Research Database (Denmark)

    Stylianidou, Stella; Brennan, Connor; Nissen, Silas B

    2016-01-01

    -colonies with many cells, facilitating the analysis of cell-cycle dynamics in bacteria as well as cell-contact mediated phenomena. This package has a range of built-in capabilities for characterizing bacterial cells, including the identification of cell division events, mother, daughter, and neighboring cells......Many quantitative cell biology questions require fast yet reliable automated image segmentation to identify and link cells from frame-to-frame, and characterize the cell morphology and fluorescence. We present SuperSegger, an automated MATLAB-based image processing package well......-suited to quantitative analysis of high-throughput live-cell fluorescence microscopy of bacterial cells. SuperSegger incorporates machine-learning algorithms to optimize cellular boundaries and automated error resolution to reliably link cells from frame-to-frame. Unlike existing packages, it can reliably segment micro...

  11. Super-Lagrangians

    International Nuclear Information System (INIS)

    Beyl, L.M.

    1979-01-01

    It is shown that the Einstein, Weyl, supergravity and superconformal theories are special cases of gauge transformations in SU(4vertical-barN). This group is shown to contain SU(2,2) x SU(N) x U(1) for its commuting or Bose part, and to contain 8N supersymmetry generators for its anticommuting or Fermi part. Using the electromagnetic Lagrangian as a model, a super-Lagrangian is constructed for vector potentials. Invariance is automatic in free space, but, in the presence of matter, restrictions on the supersymmetry transformations are necessary. The Weyl action and the Einstein cosmological field equations are obtained in the appropriate limits. Finally, a super-Lagrangian is constructed from nongeometric principles which includes the Dirac Lagrangian and except for a sum over symmetry indices resembles the electron-electromagnetic Lagrangian

  12. Stabilized superconducting materials and fabrication process

    International Nuclear Information System (INIS)

    Chevallier, B.; Dance, J.M.; Etourneau, J.; Lozano, L.; Tressaud, A.; Tournier, R.; Sulpice, A.; Chaussy, J.; Lejay, P.

    1989-01-01

    Superconducting ceramics are fluorinated at a temperature ≤ 120 0 C. Are also claimed new superconducting materials with a fluorine concentration gradient decreasing from the surface to the core. Superconductivity is stabilized and/or improved [fr

  13. Superconductivity in MgB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Muranaka, Takahiro; Akimitsu, Jun [Aoyama Gakuin Univ., Kanagawa (Japan). Dept. of Physics and Mathematics

    2011-07-01

    We review superconductivity in MgB{sub 2} in terms of crystal and electronic structure, electron-phonon coupling, two-gap superconductivity and application. Finally, we introduce the development of new superconducting materials in related compounds. (orig.)

  14. Superconducting materials and magnets

    International Nuclear Information System (INIS)

    1991-04-01

    The Technical Committee Meeting on Superconducting Materials and Magnets was convened by the IAEA and held by invitation of the Japanese government on September 4-6, 1989 in Tokyo. The meeting was hosted by the National Research Institute for Metals. Topics of the conference related to superconducting magnets and technology with particular application to fusion and the superconducting supercollider. Technology using both high and low-temperature superconductors was discussed. This document is a compendium of the papers presented at the meeting. Refs, figs and tabs

  15. SuperB A High-Luminosity Asymmetric $e^+ e^-$ Super Flavour Factory : Conceptual Design Report

    CERN Document Server

    Bona, M.; Grauges Pous, E.; Colangelo, P.; De Fazio, F.; Palano, A.; Manghisoni, M.; Re, V.; Traversi, G.; Eigen, G.; Venturini, M.; Soni, N.; Bruschi, M.; De Castro, S.; Faccioli, P.; Gabrieli, A.; Giacobbe, B.; Semprini Cesare, N.; Spighi, R.; Villa, M.; Zoccoli, A.; Hearty, C.; McKenna, J.; Soni, A.; Khan, A.; Barniakov, A.Y.; Barniakov, M.Y.; Blinov, V.E.; Druzhinin, V.P.; Golubev, V.B.; Kononov, S.A.; Koop, I.A.; Kravchenko, E.A.; Levichev, E.B.; Nikitin, S.A.; Onuchin, A.P.; Piminov, P.A.; Serednyakov, S.I.; Shatilov, D.N.; Skovpen, Y.I.; Solodov, E.A.; Cheng, C.H.; Echenard, B.; Fang, F.; Hitlin, D.J.; Porter, F.C.; Asner, D.M.; Pham, T.N.; Fleischer, R.; Giudice, G.F.; Hurth, T.; Mangano, M.; Mancinelli, G.; Meadows, B.T.; Schwartz, A.J.; Sokoloff, M.D.; Soffer, A.; Beard, C.D.; Haas, T.; Mankel, R.; Hiller, G.; Ball, P.; Pappagallo, M.; Pennington, M.R.; Gradl, W.; Playfer, S.; Abada, A.; Becirevic, D.; Descotes-Genon, S.; Pene, O.; Andreotti, D.; Andreotti, M.; Bettoni, D.; Bozzi, C.; Calabresi, R.; Cecchi, A.; Cibinetto, G.; Franchini, P.; Luppi, E.; Negrini, M.; Petrella, A.; Piemontese, L.; Prencipe, E.; Santoro, V.; Stancari, G.; Anulli, F.; Baldini-Ferroli, R.; Biagini, M.E.; Boscolo, M.; Calcaterra, A.; Drago, A.; Finocchiaro, G.; Guiducci, S.; Isidori, G.; Pacetti, S.; Patteri, P.; Peruzzi, I.M.; Piccolo, M.; Preger, M.A.; Raimondi, P.; Rama, M.; Vaccarezza, C.; Zallo, A.; Zobov, M.; De Sangro, R.; Buzzo, A.; Lo Vetere, M.; Macri, M.; Monge, M.R.; Passaggio, S.; Patrignani, C.; Robutti, E.; Tosi, S.; Matias, J.; Panduro Vazquez, W.; Borzumati, F.; Eyges, V.; Prell, S.A.; Pedlar, T.K.; Korpar, S.; Pestonik, R.; Staric, M.; Neubert, M.; Denig, A.G.; Nierste, U.; Agoh, T.; Ohmi, K.; Ohnishi, Y.; Fry, J.R.; Touramanis, C.; Wolski, A.; Golob, B.; Krizan, P.; Flaecher, H.; Bevan, A.J.; Di Lodovico, F.; George, K.A.; Barlow, R.; Lafferty, G.; Jawahery, A.; Roberts, D.A.; Simi, G.; Patel, P.M.; Robertson, S.H.; Lazzaro, A.; Palombo, F.; Kaidalov, A.; Buras, A.J.; Tarantino, C.; Buchalla, G.; Sanda, A.I.; D'Ambrosio, G.; Ricciardi, G.; Bigi, I.; Jessop, C.P.; Losecco, J.M.; Honscheid, K.; Arnaud, N.; Chehab, R.; Fedala, Y.; Polci, F.; Roudeau, P.; Sordini, V.; Soskov, V.; Stocchi, A.; Variola, A.; Vivoli, A.; Wormser, G.; Zomer, F.; Bertolin, A.; Brugnera, R.; Gagliardi, N.; Gaz, A.; Margoni, M.; Morandin, M.; Posocco, M.; Rotondo, M.; Simonetto, F.; Stroili, R.; Bonneaud, G.R.; Lombardo, V.; Calderini, G.; Ratti, L.; Speziali, V.; Biasini, M.; Covarelli, R.; Manoni, E.; Servoli, L.; Angelini, C.; Batignani, G.; Bettarini, S.; Bosi, F.; Carpinelli, M.; Cenci, R.; Cervelli, A.; Dell'Orso, M.; Forti, F.; Giannetti, P.; Giorgi, M.; Lusiani, A.; Marchiori, G.; Massa, M.; Mazur, M.A.; Morsani, F.; Neri, N.; Paoloni, E.; Raffaelli, F.; Rizzo, G.; Walsh, J.; Braun, V.; Lenz, A.; Adams, G.S.; Danko, I.Z.; Baracchini, E.; Bellini, F.; Cavoto, G.; D'Orazio, A.; Del Re, D.; Di Marco, E.; Faccini, R.; Ferrarotto, F.; Gaspero, Mario; Jackson, P.; Martinelli, G.; Mazzoni, M.A.; Morganti, Silvio; Piredda, G.; Renga, F.; Silvestrini, L.; Voena, C.; Catani, L.; Di Ciaccio, A.; Messi, R.; Santovetti, E.; Satta, A.; Ciuchini, M.; Lubicz, V.; Wilson, F.F.; Godang, R.; Chen, X.; Liu, H.; Park, W.; Purohit, M.; Trivedi, A.; White, R.M.; Wilson, J.R.; Allen, M.T.; Aston, D.; Bartoldus, R.; Brodsky, S.J.; Cai, Y.; Coleman, J.; Convery, M.R.; DeBarger, S.; Dingfelder, J.C.; Dubois-Felsmann, G.P.; Ecklund, S.; Fisher, A.S.; Haller, G.; Heifets, S.A.; Kaminski, J.; Kelsey, M.H.; Kocian, M.L.; Leith, D.W.G.S.; Li, N.; Luitz, S.; Luth, V.; MacFarlane, D.; Messner, R.; Muller, D.R.; Nosochkov, Y.; Novokhatski, A.; Pivi, M.; Ratcliff, B.N.; Roodman, A.; Schwiening, J.; Seeman, J.; Snyder, A.; Sullivan, M.; Va'Vra, J.; Wienands, U.; Wisniewski, W.; Stoeck, H.; Cheng, H.Y.; Li, H.N.; Keum, Y.Y.; Gronau, M.; Grossman, Y.; Bianchi, F.; Gamba, D.; Gambino, P.; Marchetto, F.; Menichetti, Ezio A.; Mussa, R.; Pelliccioni, M.; Dalla Betta, G.F.; Bomben, M.; Bosisio, L.; Cartaro, C.; Lanceri, L.; Vitale, L.; Azzolini, V.; Bernabeu, J.; Lopez-March, N.; Martinez-Vidal, F.; Milanes, D.A.; Oyanguren, A.; Paradisi, P.; Pich, A.; Sanchis-Lozano, M.A.; Kowalewski, Robert V.; Roney, J.M.; Back, J.J.; Gershon, T.J.; Harrison, P.F.; Latham, T.E.; Mohanty, G.B.; Petrov, A.A.; Pierini, M.; INFN

    2007-01-01

    The physics objectives of SuperB, an asymmetric electron-positron collider with a luminosity above 10^36/cm^2/s are described, together with the conceptual design of a novel low emittance design that achieves this performance with wallplug power comparable to that of the current B Factories, and an upgraded detector capable of doing the physics in the SuperB environment.

  16. Superconducting self-correcting harmonic coils for pulsed superconducting dipole or multipole magnets

    International Nuclear Information System (INIS)

    Dael, A.; Kircher, F.; Perot, J.

    1975-01-01

    Due to the zero resistance of a superconducting wire, an induced current in a closed superconducting circuit is continuously exactly opposed to its cause. This phenomenon was applied to the correction of the field harmonics of a pulsed magnet by putting short-circuited superconducting coils of particular symmetry in the useful aperture of the magnet. After a review of the main characteristics of such devices, the construction of two correcting coils (quadrupole and sextupole) is described. Experimental results of magnetic efficiency and time behavior are given; they are quite encouraging, since the field harmonics were reduced by one or two orders of magnitude

  17. Development of superconducting ship propulsion system

    International Nuclear Information System (INIS)

    Sakuraba, Junji; Mori, Hiroyuki; Hata, Fumiaki; Sotooka, Koukichi

    1991-01-01

    When we plan displacement-type monohull high speed vessels, it is difficult to get the hull form with the wave-making resistance minimum, because the stern shape is restricted by arrangement of propulsive machines and shafts. A small-sized and light-weight propulsive machines will reduce the limit to full form design. Superconducting technology will have capability of realizing the small-sized and light-weight propulsion motor. The superconducting electric propulsion system which is composed of superconducting propulsion motors and generators, seems to be an ideal propulsion system for future vehicles. We have constructed a 480 kW superconducting DC homopolar laboratory test motor for developing this propulsion system. The characteristic of this motor is that it has a superconducting field winding and a segmented armature drum. The superconducting field winding which operates in the persistent current mode, is cooled by a condensation heat exchanger and helium refigerating system built into the cryostat of the superconducting field winding. The operating parameters of this motor agreed well with the design parameters. Using the design concepts of this motor, we have conceptually designed a 150,000-200,000 PS superconducting electric propulsive system for a displacement-type monohull high speed ship. (author)

  18. Superconductivity Engineering and Its Application for Fusion 3.Superconducting Technology as a Gateway to Future Technology

    Science.gov (United States)

    Asano, Katsuhiko

    Hopes for achieving a new source of energy through nuclear fusion rest on the development of superconducting technology that is needed to make future equipments more energy efficient as well as increase their performance. Superconducting technology has made progress in a wide variety of fields, such as energy, life science, electronics, industrial use and environmental improvement. It enables the actualization of equipment that was unachievable with conventional technology, and will sustain future “IT-Based Quality Life Style”, “Sustainable Environmental” and “Advanced Healthcare” society. Besides coil technology with high magnetic field performance, superconducting electoronics or device technology, such as SQUID and SFQ-circuit, high temperature superconducting material and advanced cryogenics technology might be great significance in the history of nuclear fusion which requires so many wide, high and ultra technology. Superconducting technology seems to be the catalyst for a changing future society with nuclear fusion. As society changes, so will superconducting technology.

  19. Superconductivity in doped insulators

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is shown that many synthetic metals, including high temperature superconductors are ''bad metals'', with such a poor conductivity that the usual meanfield theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. It is argued that the supression of a first order phase transition (phase separation) by the long-range Coulomb interaction leads to high temperature superconductivity accompanied by static or dynamical charge inhomogeneIty. Evidence in support of this picture for high temperature superconductors is described

  20. Development of superconducting equipment for fusion device

    International Nuclear Information System (INIS)

    Konno, Masayuki; Ueda, Toshio; Hiue, Hisaaki; Ohgushi, Kouzou

    1993-01-01

    At Fuji Electric Co., Ltd., the development of superconductivity was started from 1960, and superconducting equipment for fusion device has been developed for ten years. The superconducting equipment, which is developed for fusion by Fuji Electric Co., Ltd., are able to be grouped in three categories which are current lead, superconducting coil and superconducting bus-line. The current lead is an electrical feeder between a superconducting coil and an electrical power supply. The rated current of developed current lead is 30kA at continuous use and 100kA at short time use respectively. The advanced disk type coil is developed for the toroidal field coil and some coils are developed for critical current measurement. Superconductor is applied to the superconducting bus-line between the superconducting coils and the current leads, and the bus-line is being developed for the Large Helical Device. This report describes an abstract of these equipment. (author)

  1. Super capacitor modeling with artificial neural network (ANN)

    Energy Technology Data Exchange (ETDEWEB)

    Marie-Francoise, J.N.; Gualous, H.; Berthon, A. [Universite de Franche-Comte, Lab. en Electronique, Electrotechnique et Systemes (L2ES), UTBM, INRETS (LRE T31) 90 - Belfort (France)

    2004-07-01

    This paper presents super-capacitors modeling using Artificial Neural Network (ANN). The principle consists on a black box nonlinear multiple inputs single output (MISO) model. The system inputs are temperature and current, the output is the super-capacitor voltage. The learning and the validation of the ANN model from experimental charge and discharge of super-capacitor establish the relationship between inputs and output. The learning and the validation of the ANN model use experimental results of 2700 F, 3700 F and a super-capacitor pack. Once the network is trained, the ANN model can predict the super-capacitor behaviour with temperature variations. The update parameters of the ANN model are performed thanks to Levenberg-Marquardt method in order to minimize the error between the output of the system and the predicted output. The obtained results with the ANN model of super-capacitor and experimental ones are in good agreement. (authors)

  2. sl(1|2) Super-Toda Fields

    Science.gov (United States)

    Yang, Zhan-Ying; Xue, Pan-Pan; Zhao, Liu; Shi, Kang-Jie

    2008-11-01

    Explicit exact solution of supersymmetric Toda fields associated with the Lie superalgebra sl(2|1) is constructed. The approach used is a super extension of Leznov Saveliev algebraic analysis, which is based on a pair of chiral and antichiral Drienfeld Sokolov systems. Though such approach is well understood for Toda field theories associated with ordinary Lie algebras, its super analogue was only successful in the super Liouville case with the underlying Lie superalgebra osp(1|2). The problem lies in that a key step in the construction makes use of the tensor product decomposition of the highest weight representations of the underlying Lie superalgebra, which is not clear until recently. So our construction made in this paper presents a first explicit example of Leznov Saveliev analysis for super Toda systems associated with underlying Lie superalgebras of the rank higher than 1.

  3. sl(1|2) Super-Toda Fields

    International Nuclear Information System (INIS)

    Yang Zhanying; Xue Panpan; Zhao Liu; Shi Kangjie

    2008-01-01

    Explicit exact solution of supersymmetric Toda fields associated with the Lie superalgebra sl(2|1) is constructed. The approach used is a super extension of Leznov-Saveliev algebraic analysis, which is based on a pair of chiral and antichiral Drienfeld-Sokolov systems. Though such approach is well understood for Toda field theories associated with ordinary Lie algebras, its super analogue was only successful in the super Liouville case with the underlying Lie superalgebra osp(1|2). The problem lies in that a key step in the construction makes use of the tensor product decomposition of the highest weight representations of the underlying Lie superalgebra, which is not clear until recently. So our construction made in this paper presents a first explicit example of Leznov-Saveliev analysis for super Toda systems associated with underlying Lie superalgebras of the rank higher than 1

  4. Superconducting magnets technologies for large accelerator

    International Nuclear Information System (INIS)

    Ogitsu, Toru

    2017-01-01

    The first hadron collider with superconducting magnet technologies was built at Fermi National Accelerator Laboratory as TEVATRON. Since then, the superconducting magnet technologies are widely used in large accelerator applications. The paper summarizes the superconducting magnet technologies used for large accelerators. (author)

  5. Meissner effect in superconducting microtraps

    International Nuclear Information System (INIS)

    Cano, Daniel

    2009-01-01

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  6. Meissner effect in superconducting microtraps

    Energy Technology Data Exchange (ETDEWEB)

    Cano, Daniel

    2009-04-30

    This thesis investigates the impact of the Meissner effect on magnetic microtraps for ultracold atoms near superconducting microstructures. This task has been accomplished both theoretically and experimentally. The Meissner effect distorts the magnetic fields near superconducting surfaces, thus altering the parameters of magnetic microtraps. Both computer simulations and experimental measurements demonstrate that the Meissner effect shortens the distance between the magnetic microtrap and the superconducting surface, reduces the magnetic-field gradients and dramatically lowers the trap depth. A novel numerical method for calculating magnetic fields in atom chips with superconducting microstructures has been developed. This numerical method overcomes the geometrical limitations of other calculation techniques and can solve superconducting microstructures of arbitrary geometry. The numerical method has been used to calculate the parameters of magnetic microtraps in computer-simulated chips containing thin-film wires. Simulations were carried out for both the superconducting and the normal-conducting state, and the differences between the two cases were analyzed. Computer simulations have been contrasted with experimental measurements. The experimental apparatus generates a magnetic microtrap for ultracold Rubidium atoms near a superconducting Niobium wire of circular cross section. The design and construction of the apparatus has met the challenge of integrating the techniques for producing atomic quantum gases with the techniques for cooling solid bodies to cryogenic temperatures. By monitoring the position of the atom cloud, one can observe how the Meissner effect influences the magnetic microtrap. (orig.)

  7. A superparticle on the 'super' Poincare upper half plane

    International Nuclear Information System (INIS)

    Uehara, S.; Yasui, Yukinora

    1988-01-01

    A non-relativistic superparticle moving freely on the 'super' Poincare upper half plane is investigated. The lagrangian is invariant under the super Moebius transformations SPL (2, R), so that it can be projected into the lagrangian on the super Riemann surface. The quantum hamiltonian becomes the 'super' Laplace-Beltrami operator in the curved superspace. (orig.)

  8. Raspberry Pi super cluster

    CERN Document Server

    Dennis, Andrew K

    2013-01-01

    This book follows a step-by-step, tutorial-based approach which will teach you how to develop your own super cluster using Raspberry Pi computers quickly and efficiently.Raspberry Pi Super Cluster is an introductory guide for those interested in experimenting with parallel computing at home. Aimed at Raspberry Pi enthusiasts, this book is a primer for getting your first cluster up and running.Basic knowledge of C or Java would be helpful but no prior knowledge of parallel computing is necessary.

  9. Thermal optimum analyses and mechanical design of 10-kA, vapor-cooled power leads for SSC superconducting magnet tests at MTL

    International Nuclear Information System (INIS)

    Shu, Q.S.; Demko, J.; Dorman, R.; Finan, D.; Hatfield, D.; Syromyatnikov, I.; Zolotov, A.; Mazur, P.; Peterson, T.

    1992-08-01

    The spiral-fin, 10-kA, helium vapor-cooled power leads have been designed for Superconducting Super Collider superconducting magnet tests at the Magnet Test Laboratory. In order to thermally optimize the parameters of the power leads, the lead diameters-which minimize the Carnot work for several different lengths, two different fin geometries, and two RRR values of the lead materials-were determined. The cryogenic refrigeration and liquefaction loads for supporting the leads have also been calculated. The optimum operational condition with different currents is discussed. An improved mechanical design of the 10-kA power leads was undertaken, with careful consideration of the cryogenic and mechanical performance. In the design, a new thermal barrier device to reduce heat conduction from the vacuum and gas seal area was employed. Therefore, the electric insulation assembly, which isolates the ground potential parts of the lead from the high-power parts, was moved into a warm region in order to prevent vacuum and helium leakage in the 0-ring seals due to transient cold temperature. The instrumentation for testing the power leads is also discussed

  10. The energizing of a NMR superconducting coil by a superconducting rectifier

    International Nuclear Information System (INIS)

    Sikkenga, J.; ten Kate, H.H.J.; van der Klundert, L.J.M.; Knoben, J.; Kraaij, G.J.; Spuorenberg, C.J.G.

    1985-01-01

    NMR magnets require a good homogeneity within a certain volume and an excellent field stability. The homogeneity can be met using a superconducting shim coil system. The field stability requires a constant current, although in many cases the current decay time constant is too low, due to imperfections in the superconducting wire and joints. This can be overcome using a rectifier. The rectifier can also be used to load the coil. The combination and interaction of the superconducting NMR coil (2.0 Tesla and 0.35 m cold bore) and the rectifier (20 W / 1 kA) is tested. The safety of the system is discussed. The shim coil system can compensate the strayfield of the rectifier. The field decay compensation will be discussed

  11. Liquid phase sintered superconducting cermet

    International Nuclear Information System (INIS)

    Ray, S.P.

    1990-01-01

    This patent describes a method of making a superconducting cermet having superconducting properties with improved bulk density, low porosity and in situ stabilization. It comprises: forming a structure of a superconducting ceramic material having the formula RM 2 Cu 3 O (6.5 + x) wherein R is one or more rare earth elements capable of reacting to form a superconducting ceramic, M is one or more alkaline earth metal elements selected from barium and strontium capable of reacting to form a superconducting ceramic, x is greater than 0 and less than 0.5; and a precious metal compound in solid form selected from the class consisting of oxides, sulfides and halides of silver; and liquid phase sintering the mixture at a temperature wherein the precious metal of the precious metal compound is molten and below the melting point of the ceramic material. The liquid phase sintering is carried out for a time less than 36 hours but sufficient to improve the bulk density of the cermet

  12. Japan. Superconductivity for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Hayakawa, K.

    2012-11-15

    Currently, many smart grid projects are running or planned worldwide. These aim at controlling the electricity supply more efficiently and more stably in a new power network system. In Japan, especially superconductivity technology development projects are carried out to contribute to the future smart grid. Japanese cable makers such as Sumitomo Electric and Furukawa Electric are leading in the production of high-temperature superconducting (HTS) power cables. The world's largest electric current and highest voltage superconductivity proving tests have been started this year. Big cities such as Tokyo will be expected to introduce the HTS power cables to reduce transport losses and to meet the increased electricity demand in the near future. Superconducting devices, HTS power cables, Superconducting Magnetic Energy Storage (SMES) and flywheels are the focus of new developments in cooperations between companies, universities and research institutes, funded by the Japanese research and development funding organization New Energy and Industrial Technology Development Organization (NEDO)

  13. Low-velocity superconducting accelerating structures

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1990-01-01

    The present paper reviews the status of RF superconductivity as applied to low-velocity accelerating properties. Heavy-ion accelerators must accelerate efficiently particles which travel at a velocity much smaller than that of light particles, whose velocity changes along accelerator, and also different particles which have different velocity profiles. Heavy-ion superconducting accelerators operate at frequencies which are lower than high-energy superconducting accelerators. The present paper first discusses the basic features of heavy-ion superconducting structures and linacs. Design choices are then addressed focusing on structure geometry, materials, frequency, phase control, and focusing. The report also gives an outline of the status of superconducting booster projects currently under way at the Argonne National Laboratory, SUNY Stony Brook, Weizmann Institute, University of Washington, Florida State, Saclay, Kansas State, Daresbury, Japanese Atomic Energy Research Institute, Legnaro, Bombay, Sao Paulo, ANU (Canberra), and Munich. Recent developments and future prospects are also described. (N.K.) 68 refs

  14. Superconducting cyclotrons

    International Nuclear Information System (INIS)

    Blosser, H.G.; Johnson, D.A.; Burleigh, R.J.

    1976-01-01

    Superconducting cyclotrons are particularly appropriate for acceleration of heavy ions. A review is given of design features of a superconducting cyclotron with energy 440 (Q 2 /A) MeV. A strong magnetic field (4.6 tesla average) leads to small physical size (extraction radius 65 cm) and low construction costs. Operating costs are also low. The design is based on established technology (from present cyclotrons and from large bubble chambers). Two laboratories (in Chalk River, Canada and in East Lansing, Michigan) are proceeding with construction of full-scale prototype components for such cyclotrons

  15. Superconducting phase transition in STM tips

    Energy Technology Data Exchange (ETDEWEB)

    Eltschka, Matthias; Jaeck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland)

    2015-07-01

    The superconducting properties of systems with dimensions comparable to the London penetration depth considerably differ from macroscopic systems. We have studied the superconducting phase transition of vanadium STM tips in external magnetic fields. Employing Maki's theory we extract the superconducting parameters such as the gap or the Zeeman splitting from differential conductance spectra. While the Zeeman splitting follows the theoretical description of a system with s=1/2 and g=2, the superconducting gaps as well as the critical fields depend on the specific tip. For a better understanding of the experimental results, we solve a one dimensional Usadel equation modeling the superconducting tip as a cone with the opening angle α in an external magnetic field. We find that only a small region at the apex of the tip is superconducting in high magnetic fields and that the order of the phase transition is directly determined by α. Further, the spectral broadening increases with α indicating an intrinsic broadening mechanism due to the conical shape of the tip. Comparing these calculations to our experimental results reveals the order of the superconducting phase transition of the STM tips.

  16. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resistan...

  17. Sample of superconducting wiring (Niobium Titanium)

    CERN Multimedia

    About NbTi cable: The cable consists of 36 strands of superconducting wire, each strand has a diameter of 0.825 mm and houses 6300 superconducting filaments of niobium-titanium (Nb-Ti, a superconducting alloy). Each filament has a diameter of about 0.006 mm, i.e. 10 times smaller than a typical human hair. The filaments are embedded in a high-purity copper matrix. Copper is a normal conducting material. The filaments are in the superconductive state when the temperature is below about -263ºC (10.15 K). When the filaments leave the superconductive state, the copper acts as conductor transports the electrical current. Each strand of The NbTi cable (at superconducting state) has a current density of up to above 2000 A/mm2 at 9 T and -271ºC (2.15 K). A cable transport a current of about 13000 A at 10 T and -271ºC (2.15 K). About LHC superconducting wiring: The high magnetic fields needed for the LHC can only be reached using superconductors. At very low temperatures, superconductors have no electrical resista...

  18. BEWARE OF...SUPER GLUES!!

    CERN Multimedia

    2006-01-01

    What happened? A number of accidents have occurred with the use of 'Super Glues'. Some individuals have suffered injuries - severe irritation, or skin bonded together - through getting glue on their face and in their eyes. What are the hazards associated with glues? 'Super Glues' (i.e. cyanoacrylates): Are harmful if swallowed and are chemical irritants to the eyes, respiratory system and skin. Present the risk of polymerization (hardening) leading to skin damage. Be careful ! 'Super Glues' can bond to skin and eyes in seconds. Note: Other glues, resins and hardeners are also chemicals and as such can cause serious damage to the skin, eyes, respiratory or digestive tract. (For example: some components can be toxic, harmful, corrosive, sensitizing agents, etc.). How to prevent accidents in the future? Read the Material Safety Data Sheet (MSDS) for all of the glues you work with. Check the label on the container to find out which of the materials you work with are hazardous. Wear the right Per...

  19. Recovery of the SuperTIGER Instrument and Preparations for the Flight of SuperTIGER-2

    Science.gov (United States)

    Walsh, N. E.; Supertiger Collaboration

    2016-03-01

    On December 8, 2012, the SuperTIGER (Trans-Iron Galactic Element Recorder) instrument began its long-duration balloon flight from Williams Field, Antarctica. Flying for a record-breaking 55 days at a mean altitude of 125,000 feet, the instrument successfully measured the relative elemental abundances of Galactic cosmic ray nuclei having charge (Z) greater than Z=10, showing very well resolved individual element peaks up to Z=40. The instrument measures particle charge and energy through the combined use of two Cherenkov detectors and three scintillation detectors, and determines particle trajectory with a scintillating fiber hodoscope. After cutdown and two years on the ice, SuperTIGER was successfully recovered in January, 2015. Its detectors and hodoscopes are being tested and refurbished, and are expected to be used again for a second flight, SuperTIGER-2. The second flight is aimed at improving SuperTIGER's already excellent charge resolution as well as at accumulating more data to be combined with that of SuperTIGER for improved statistics. In November 2015, a test of the scintillator saturation effect was performed at CERN using a beam of interacted Pb nuclei to help create more accurate charge reconstruction models that will help resolve elements in the range Z=41 to Z=60. This research was supported by NASA under Grants NNX09AC17G, NNX14AB25G, the Peggy and Steve Fossett Foundation and the McDonnell Center for the Space Sciences at Washington University.

  20. SuperHILAC

    International Nuclear Information System (INIS)

    Nemetz, R.; Selph, F.; Barnes, A.C.

    1976-01-01

    A brief discussion is given of improvements, operations, and research programs at the SuperHILAC. Improvements were made in beam injection, ion sources, and computer control systems. The research efficiency ranged between 70 and 90 percent during most of the year

  1. Superconducting quantum circuits theory and application

    Science.gov (United States)

    Deng, Xiuhao

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification. The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to an extra phase factor in wavefunction. We proposed a superconducting quantum Faraday cage to detect temporal interference effect as a consequence of scalar AB phase. Using the superconducting quantum circuit model, the physical system is solved and resulting AB effect is predicted. Further discussion in this chapter shows that treating the experimental apparatus quantum mechanically, spatial scalar AB effect, proposed by Aharanov-Bohm, can't be observed. Either a decoherent interference apparatus is used to observe spatial scalar AB effect, or a quantum Faraday cage is used to observe temporal scalar AB effect. The second study involves protecting a quantum system from losing coherence, which is crucial to any practical quantum computation scheme. We present a theory to encode any qubit, especially superconducting qubits, into a universal quantum degeneracy point (UQDP) where low frequency noise is suppressed significantly. Numerical simulations for superconducting charge qubit using experimental parameters show that its coherence time is prolong by two orders of magnitude using our universal degeneracy point approach. With this improvement, a set of universal quantum gates can be performed at high fidelity without losing too much quantum coherence. Starting in 2004, the use of circuit QED has enabled the manipulation of superconducting qubits with photons. We applied quantum optical approach to model coupled resonators and obtained a four-wave mixing toolbox to operate photons

  2. Superconducting tin core fiber

    International Nuclear Information System (INIS)

    Homa, Daniel; Liang, Yongxuan; Hill, Cary; Kaur, Gurbinder; Pickrell, Gary

    2015-01-01

    In this study, we demonstrated superconductivity in a fiber with a tin core and fused silica cladding. The fibers were fabricated via a modified melt-draw technique and maintained core diameters ranging from 50-300 microns and overall diameters of 125-800 microns. Superconductivity of this fiber design was validated via the traditional four-probe test method in a bath of liquid helium at temperatures on the order of 3.8 K. The synthesis route and fiber design are perquisites to ongoing research dedicated all-fiber optoelectronics and the relationships between superconductivity and the material structures, as well as corresponding fabrication techniques. (orig.)

  3. ESCAR superconducting magnet system

    International Nuclear Information System (INIS)

    Gilbert, W.S.; Meuser, R.B.; Pope, W.L.; Green, M.A.

    1975-01-01

    Twenty-four superconducting dipoles, each about 1 meter long, provide the guide field for the Experimental Superconducting Accelerator Ring proton accelerator--storage ring. Injection of 50 MeV protons corresponds to a 3 kG central dipole field, and a peak proton energy of 4.2 GeV corresponds to a 46 kG central field. Thirty-two quadrupoles provide focusing. The 56 superconducting magnets are contained in 40 cryostats that are cryogenically connected in a novel series ''weir'' arrangement. A single 1500 W refrigeration plant is required. Design and testing of the magnet and cryostat system are described. (U.S.)

  4. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    Science.gov (United States)

    Tian, Hui; Ribeill, Guilhem; Xu, Chen; Reece, Charles E.; Kelley, Michael J.

    2011-03-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  5. A novel approach to characterizing the surface topography of niobium superconducting radio frequency (SRF) accelerator cavities

    International Nuclear Information System (INIS)

    Tian Hui; Ribeill, Guilhem; Xu Chen; Reece, Charles E.; Kelley, Michael J.

    2011-01-01

    As superconducting niobium radio-frequency (SRF) cavities approach fundamental material limits, there is increased interest in understanding the details of topographical influences on realized performance limitations. Micro- and nano-roughness are implicated in both direct geometrical field enhancements as well as complications of the composition of the 50 nm surface layer in which the super-currents typically flow. Interior surface chemical treatments such as buffered chemical polishing (BCP) and electropolishing (EP) used to remove mechanical damage leave surface topography, including pits and protrusions of varying sharpness. These may promote RF magnetic field entry, locally quenching superconductivity, so as to degrade cavity performance. A more incisive analysis of surface topography than the widely used average roughness is needed. In this study, a power spectral density (PSD) approach based on Fourier analysis of surface topography data acquired by both stylus profilometry and atomic force microscopy (AFM) is introduced to distinguish the scale-dependent smoothing effects, resulting in a novel qualitative and quantitative description of Nb surface topography. The topographical evolution of the Nb surface as a function of different steps of well-controlled EP is discussed. This study will greatly help to identify optimum EP parameter sets for controlled and reproducible surface levelling of Nb for cavity production.

  6. Test results from two 5m two-in-one superconducting magnets for the SSC

    International Nuclear Information System (INIS)

    Cottingham, J.G.; Dahl, P.F.; Fernow, R.C.

    1984-01-01

    Two 5m long superconducting dipole magnets with specifications similar to the reference design for the proposed Superconducting Super Collider have been successfully tested. The cos theta coils of the magnets were made from two layers of standard CBA/Tevatron NbTi superconductor, keystoned to an angle of 2.8 degrees. The inner diameter of the inner layer was 3.2 cm. The ends of the coils were flared to increase the minimum bending radius so that future magnets can be wound from prereacted Nb 3 Sn. The windings of the two-aperture magnets were clamped in a two-in-one iron yoke with a tensioned stainless steel shell. The fields of the two apertures were closely coupled, since the flux in one aperture returned through the other. The inner and outer layers of the coil were powered separately so that their short-sample limits would be reached simultaneously. With minimal training the magnets reached a central field of 6 T, the short sample limit of the conductor at the 4.5 K temperature of the liquid helium bath. At 2.6 K, a central field in excess of 7 T was reached, again with minimal training. The measured values of the allowed sextupole and decapole harmonics are within 10% of the calculated values and the non-allowed harmonics are all small or zero, as predicted. 3 references, 6 figures

  7. Superconducting six-axis accelerometer

    Science.gov (United States)

    Paik, H. J.

    1990-01-01

    A new superconducting accelerometer, capable of measuring both linear and angular accelerations, is under development at the University of Maryland. A single superconducting proof mass is magnetically levitated against gravity or any other proof force. Its relative positions and orientations with respect to the platform are monitored by six superconducting inductance bridges sharing a single amplifier, called the Superconducting Quantum Interference Device (SQUID). The six degrees of freedom, the three linear acceleration components and the three angular acceleration components, of the platform are measured simultaneously. In order to improve the linearity and the dynamic range of the instrument, the demodulated outputs of the SQUID are fed back to appropriate levitation coils so that the proof mass remains at the null position for all six inductance bridges. The expected intrinsic noise of the instrument is 4 x 10(exp -12)m s(exp -2) Hz(exp -1/2) for linear acceleration and 3 x 10(exp -11) rad s(exp -2) Hz(exp -1/2) for angular acceleration in 1-g environment. In 0-g, the linear acceleration sensitivity of the superconducting accelerometer could be improved by two orders of magnitude. The design and the operating principle of a laboratory prototype of the new instrument is discussed.

  8. Two-reduction of the super-KP hierarchy

    International Nuclear Information System (INIS)

    McArthur, I.N.

    1994-01-01

    Recursion relations are established for the residues of fractional powers of a two-reduced super-KP operator making use of the Baker-Akhiezer function. These show the integrability of the two-reduced even (or bosonic) flows of the super-KP hierarchy. Similar recursion relations are also proven for the residues of operators associated with the odd (or fermionic) flows of the Mulase-Rabin super-KP hierarchy. Due to the presence of a spectral parameter and itts fermionic partner in the Baker-Akhiezer function, these recursion relations should be relevant to any attempt to prove or disprove a recent proposal that the integrable hierarchy underlying two-dimensional quantum supergravity is the Mulase-Rabin super-KP hierarchy. (orig.)

  9. Superconductivity

    International Nuclear Information System (INIS)

    Narlikar, A.V.

    1993-01-01

    Amongst the numerous scientific discoveries that the 20th century has to its credit, superconductivity stands out as an exceptional example of having retained its original dynamism and excitement even for more than 80 years after its discovery. It has proved itself to be a rich field by continually offering frontal challenges in both research and applications. Indeed, one finds that a majority of internationally renowned condensed matter theorists, at some point of their career, have found excitement in working in this important area. Superconductivity presents a unique example of having fetched Nobel awards as many as four times to date, and yet, interestingly enough, the field still remains open for new insights and discoveries which could undeniably be of immense technological value. 1 fig

  10. On anyon superconductivity--

    International Nuclear Information System (INIS)

    Chen, Y.-H.; Wilczek, F.; Witten, E.; Halperin, B.I.

    1989-01-01

    We investigate the statistical mechanics of a gas of fractional statistics particles in 2 + 1 dimensions. In the case of statistics very close to Fermi statistics (statistical parameter θ = π(1 - 1/n), for large n), the effect of the statistics is a weak attraction. Building upon earlier RPA calculation for the case n = 2, the authors argue that for large n perturbation theory is reliable and exhibits superfluidity (or superconductivity after coupling to electromagnetism). They describe the order parameter for this superconductng phase in terms of spontaneous breaking of commutativity of translations as opposed to the usual pairing order parameters. The vortices of the superconducting anyon gas are charged, and superconducting order parameters of the usual type vanish. They investigate the characteristic P and T violating phenomenology

  11. Super-resolution imaging applied to moving object tracking

    Science.gov (United States)

    Swalaganata, Galandaru; Ratna Sulistyaningrum, Dwi; Setiyono, Budi

    2017-10-01

    Moving object tracking in a video is a method used to detect and analyze changes that occur in an object that being observed. Visual quality and the precision of the tracked target are highly wished in modern tracking system. The fact that the tracked object does not always seem clear causes the tracking result less precise. The reasons are low quality video, system noise, small object, and other factors. In order to improve the precision of the tracked object especially for small object, we propose a two step solution that integrates a super-resolution technique into tracking approach. First step is super-resolution imaging applied into frame sequences. This step was done by cropping the frame in several frame or all of frame. Second step is tracking the result of super-resolution images. Super-resolution image is a technique to obtain high-resolution images from low-resolution images. In this research single frame super-resolution technique is proposed for tracking approach. Single frame super-resolution was a kind of super-resolution that it has the advantage of fast computation time. The method used for tracking is Camshift. The advantages of Camshift was simple calculation based on HSV color that use its histogram for some condition and color of the object varies. The computational complexity and large memory requirements required for the implementation of super-resolution and tracking were reduced and the precision of the tracked target was good. Experiment showed that integrate a super-resolution imaging into tracking technique can track the object precisely with various background, shape changes of the object, and in a good light conditions.

  12. A superconducting isochronous cyclotron stack as a driver for a thorium-cycle power reactor

    International Nuclear Information System (INIS)

    Kim, G.; May, D.; McIntyre, P.; Sattarov, A.

    2001-01-01

    Designs for thorium-cycle power reactors require a proton driver capable of 1 GeV energy and 10 MW total power. For this purpose we have prepared a preliminary design for the magnetic structure for a stack of 5 super-conducting isochronous cyclotrons, each delivering 2 MW beam power. By achieving the required power with multiple independent apertures rather than pushing beyond currently achieved limits, we hope to arrive at a design that is cost-minimum and reliable. Each sector magnet consists of a flux-coupled stack of cold-iron inserts supported within a single warm-iron, in a fashion inspired by the new Riken heavy-ion cyclotron. We have developed a preliminary field design in which in-plane fields are cancelled in all 5 apertures and the field-map is appropriate for the focusing optics of the sector cyclotron

  13. Three dimensional numeric quench simulation of Super-FRS dipole test coil for FAIR project

    International Nuclear Information System (INIS)

    Wu Wei; Ma Lizhen; He Yuan; Yuan Ping

    2013-01-01

    The prototype of superferric dipoles for Super-FRS of Facility for Antiprotons and Ion Research (FAIR) project was designed, fabricated, and tested in China. To investigate the performance of the superconducting coil, a so-called test coil was fabricated and tested in advance. A 3D model based on ANSYS and OPERA 3D was developed in parallel, not only to check if the design matches the numerical simulation, but also to study more details of quench phenomena. The model simplifies the epoxy impregnated coil into an anisotropic continuum medium. The simulation combines ANSYS solver routines for nonlinear transient thermal analysis, the OPERA 3D for magnetic field evaluation and the ANSYS script language for calculations of Joule heat and differential equations of the protection circuits. The time changes of temperature, voltage and current decay, and quench propagation during quench process were analyzed and illustrated. Finally, the test results of the test coil were demonstrated and compared with the results of simulation. (authors)

  14. Mapping ionospheric backscatter measured by the SuperDARN HF radars – Part 2: Assessing SuperDARN virtual height models

    Directory of Open Access Journals (Sweden)

    T. K. Yeoman

    2008-05-01

    Full Text Available The Super Dual Auroral Radar Network (SuperDARN network of HF coherent backscatter radars form a unique global diagnostic of large-scale ionospheric and magnetospheric dynamics in the Northern and Southern Hemispheres. Currently the ground projections of the HF radar returns are routinely determined by a simple rangefinding algorithm, which takes no account of the prevailing, or indeed the average, HF propagation conditions. This is in spite of the fact that both direct E- and F-region backscatter and 1½-hop E- and F-region backscatter are commonly used in geophysical interpretation of the data. In a companion paper, Chisham et al. (2008 have suggested a new virtual height model for SuperDARN, based on average measured propagation paths. Over shorter propagation paths the existing rangefinding algorithm is adequate, but mapping errors become significant for longer paths where the roundness of the Earth becomes important, and a correct assumption of virtual height becomes more difficult. The SuperDARN radar at Hankasalmi has a propagation path to high power HF ionospheric modification facilities at both Tromsø on a ½-hop path and SPEAR on a 1½-hop path. The SuperDARN radar at Þykkvibǽr has propagation paths to both facilities over 1½-hop paths. These paths provide an opportunity to quantitatively test the available SuperDARN virtual height models. It is also possible to use HF radar backscatter which has been artificially induced by the ionospheric heaters as an accurate calibration point for the Hankasalmi elevation angle of arrival data, providing a range correction algorithm for the SuperDARN radars which directly uses elevation angle. These developments enable the accurate mappings of the SuperDARN electric field measurements which are required for the growing number of multi-instrument studies of the Earth's ionosphere and magnetosphere.

  15. Radiation effects on superconductivity

    International Nuclear Information System (INIS)

    Brown, B.S.

    1975-01-01

    The effect of radiation on the superconducting transition temperature (T/sub c/), upper critical field (H/sub c2/), and volume-pinning-force density (F/sub p/) were discussed for the three kinds of superconducting material (elements, alloys, and compounds). 11 figures, 3 tables, 86 references

  16. Theory, analysis and applications of the operation of the superconducting transformer supplying a direct current to a non-dissipative superconducting charge circuit; Theorie, analyse et applications du fonctionnement du transformateur supraconducteur alimentant en courant continu un circuit de charge supraconducteur non dissipatif

    Energy Technology Data Exchange (ETDEWEB)

    Sole, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    The author derives the very simple equations governing the operation of a transformer with superconducting windings supplying direct current to a non-dissipative superconducting charge circuit. An analysis of the various possible modes of operation with direct or slowly varying current raises the problem of the magnetic core. The study. leads to a conclusion which a priori might be surprising: the elimination of the magnetic core and the use of a primary super-conductor. An example of a possible realization of such a transformer is given as an indication, and the present prospects for different applications are considered. (author) [French] L'auteur etablit les equations tres simples de fonctionnement du transformateur a enroulements supraconducteurs alimentant en courant continu un circuit de charge supraconducteur non dissipatif. L'analyse de divers modes de fonctionnement possibles en courant continu ou lentement variable souleve le probleme du noyau magnetique. L'etude aboutit a une conclusion qui a priori aurait pu surprendre: l'elimination du noyau magnetique et l'utilisation d'un primaire supraconducteur. Un exemple de realisation possible d'un tel transformateur est donne a titre indicatif et les perspectives d'applications actuelles sont envisagees. (auteur)

  17. Superconductivity in borides and carbides

    International Nuclear Information System (INIS)

    Muranaka, Takahiro

    2007-01-01

    It was thought that intermetallic superconductors do not exhibit superconductivity at temperatures over 30 K because of the Bardeen-Cooper-Schrieffer (BCS) limit; therefore, researchers have been interested in high-T c cuprates. Our group discovered high-T c superconductivity in MgB 2 at 39 K in 2001. This discovery has initiated a substantial interest in the potential of high-T c superconductivity in intermetallic compounds that include 'light' elements (borides, carbides, etc.). (author)

  18. Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba2Cu3O7-x high-temperature superconducting coil: Towards an ultra-compact super-high field NMR spectrometer operated beyond 1GHz.

    Science.gov (United States)

    Yanagisawa, Y; Piao, R; Iguchi, S; Nakagome, H; Takao, T; Kominato, K; Hamada, M; Matsumoto, S; Suematsu, H; Jin, X; Takahashi, M; Yamazaki, T; Maeda, H

    2014-12-01

    High-temperature superconductors (HTS) are the key technology to achieve super-high magnetic field nuclear magnetic resonance (NMR) spectrometers with an operating frequency far beyond 1GHz (23.5T). (RE)Ba 2 Cu 3 O 7- x (REBCO, RE: rare earth) conductors have an advantage over Bi 2 Sr 2 Ca 2 Cu 3 O 10- x (Bi-2223) and Bi 2 Sr 2 CaCu 2 O 8- x (Bi-2212) conductors in that they have very high tensile strengths and tolerate strong electromagnetic hoop stress, thereby having the potential to act as an ultra-compact super-high field NMR magnet. As a first step, we developed the world's first NMR magnet comprising an inner REBCO coil and outer low-temperature superconducting (LTS) coils. The magnet was successfully charged without degradation and mainly operated at 400MHz (9.39T). Technical problems for the NMR magnet due to screening current in the REBCO coil were clarified and solved as follows: (i) A remarkable temporal drift of the central magnetic field was suppressed by a current sweep reversal method utilizing ∼10% of the peak current. (ii) A Z2 field error harmonic of the main coil cannot be compensated by an outer correction coil and therefore an additional ferromagnetic shim was used. (iii) Large tesseral harmonics emerged that could not be corrected by cryoshim coils. Due to those harmonics, the resolution and sensitivity of NMR spectra are ten-fold lower than those for a conventional LTS NMR magnet. As a result, a HSQC spectrum could be achieved for a protein sample, while a NOESY spectrum could not be obtained. An ultra-compact 1.2GHz NMR magnet could be realized if we effectively take advantage of REBCO conductors, although this will require further research to suppress the effect of the screening current. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Super conducting fault current limiter and inductor design

    International Nuclear Information System (INIS)

    Rogers, J.; Boenig, H.; Chowdhuri, P.; Schermer, R.; Weldon, D.; Wollan, J.

    1983-01-01

    A superconducting fault current limiter (SFCL) that uses a biased superconducting inductor in a diode or thyristor bridge circuit was analyzed for transmission systems in 69, 138, and 230 rms kV utility transmission systems. The limiter was evaluated for costs with all components--superconducting coil, diode and/or SCR power electronics, high voltage insulation, high voltage bushings and vapor cooled leads, dewar, and refrigerator--included. A design was undertaken for the superconducting cable and coils for both diode and SCR 69 kV limiter circuits

  20. Super-leadership and work enjoyment: direct and moderated influences.

    Science.gov (United States)

    Müller, Günter F; Georgianna, Sibylle; Schermelleh-Engel, Karin; Roth, Anne C; Schreiber, Walter A; Sauerland, Martin; Muessigmann, Michael J; Jilg, Franziska

    2013-12-01

    Super-leadership is part of an approach called 'empowering leadership.' Within this approach, super-leadership is assumed to enable subordinates to lead themselves. The current study examined correlates of super-leadership. A questionnaire measuring two dimensions of super-leadership was used to analyze relationships between super-leadership and subordinates' work enjoyment, i.e., job satisfaction, subjective well-being, and emotional organizational commitment. In addition, moderating effects of the organizational context, i.e., organizational decentralization, on the relationships between super-leadership and work enjoyment were explored. 198 German employees from different occupations participated in the study. Latent moderator structural equation analysis revealed that the two factors of super-leadership, "coaching and communicative support" and "facilitation of personal autonomy and responsibility," had direct positive effects on subordinates' work enjoyment. Organizational decentralization moderated the effect of "coaching and communicative support" on work enjoyment but not the relations involving "facilitation of personal autonomy and responsibility." Conclusions for further research and practical applications were discussed.

  1. Superconductivity and magnet technology

    International Nuclear Information System (INIS)

    Lubell, M.S.

    1975-01-01

    The background theory of superconducting behavior is reviewed. Three parameters that characterize superconducting materials with values of commercial materials as examples are discussed. More than 1000 compounds and alloy systems and 26 elements are known to exhibit superconducting properties under normal conditions at very low temperatures. A wide variety of crystal structures are represented among the known superconductors. The most important ones do seem to have cubic symmetry such as the body-centered cubic (NbZr and NbTi), face-centered cubic (NbN), and the A15 or β-tungsten structures (Nb 3 Sn), V 3 Ga, Nb 3 Ge, Nb 3 Al, and V 3 Si). Attempts to understand some of the particular phenomena associated with superconductors as a necessary prelude to constructing superconducting magnets are discussed by the author. The origin of degradation is briefly discussed and methods to stabilize magnets are illustrated. The results of Oak Ridge National Laboratory design studies of toroidal magnet systems for fusion reactors are described

  2. Hybrid superconducting magnetic suspensions

    International Nuclear Information System (INIS)

    Tixador, P.; Hiebel, P.; Brunet, Y.; Chaud, X.; Gautier-Picard, P.

    1996-01-01

    Superconductors, especially high T c ones, are the most attractive materials to design stable and fully passive magnetic suspensions which have to control five degrees of freedom. The hybrid superconducting magnetic suspensions present high performances and a simple cooling mode. They consist of a permanent magnet bearing, stabilized by a suitable magnet-superconductor structure. Several designs are given and compared in terms of forces and stiffnesses. The design of the magnet bearing plays an important part. The superconducting magnetic bearing participates less in levitation but must provide a high stabilizing stiffness. This is achieved by the magnet configuration, a good material in term of critical current density and field cooling. A hybrid superconducting suspension for a flywheel is presented. This system consists of a magnet thrust bearing stabilized by superconductors interacting with an alternating polarity magnet structure. First tests and results are reported. Superconducting materials are magnetically melt-textured YBaCuO

  3. Optimal super dense coding over memory channels

    OpenAIRE

    Shadman, Zahra; Kampermann, Hermann; Macchiavello, Chiara; Bruß, Dagmar

    2011-01-01

    We study the super dense coding capacity in the presence of quantum channels with correlated noise. We investigate both the cases of unitary and non-unitary encoding. Pauli channels for arbitrary dimensions are treated explicitly. The super dense coding capacity for some special channels and resource states is derived for unitary encoding. We also provide an example of a memory channel where non-unitary encoding leads to an improvement in the super dense coding capacity.

  4. Report of the Reference Designs Study Group on the superconducting super collider

    International Nuclear Information System (INIS)

    1984-05-01

    The study was based on three different styles of superconducting magnets, each emphasizing a different configuration aimed at sharply decreasing the cost of producing the needed magnet system below that achievable with existing designs. In the study three key areas were addressed: technical feasibility; economic feasibility; and identification of specific R and D needs. Primary emphasis was on estimating the cost range within which SSC construction can confidently be expected to fall. In doing this, attention was focused on the cost of creating the collider itself. The costs of research equipment, preconstruction R and D, and possible site acquisition are not included in this study. The report of the Reference Designs Study is meant neither as a proposal for SSC construction, nor as a site preference statement. We have concluded that the basic principles of design used successfully for existing accelerators can be conservatively extended to a proton collider having the SSC primary specifications of energy and luminosity. Furthermore, each of the three reference magnet styles studied could serve as the foundation for an SSC facility meeting these specifications. A vigorous R and D program of approximately three years duration will be required to refine the cost estimates for the magnets, to determine their actual performance, to determine their manufacturability and reliability, and to develop cost-effective methods for their assembly and quality assurance. It is anticipted that the magnet options can be narrowed to a single one during an early phase of the R and D program. An important R and D goal will be to produce, using mass-production methods, a significant number of magnets of the chosen style. These magnets would then be thoroughly tested under conditions simulating actual accelerator operations

  5. Super-insulation

    International Nuclear Information System (INIS)

    Gerold, J.

    1985-01-01

    The invention concerns super-insulation, which also acts as spacing between two pressurized surfaces, where the crossing bars in at least two layers are provided, with interposed foil. The super-insulation is designed so that it can take compression forces and limits thermal radiation and thermal conduction sufficiently, where the total density of heat flow is usually limited to a few watts per m 2 . The solution to the problem is characterized by the fact that the bars per layer are parallel and from layer to layer they are at an angle to each other and the crossover positions of the bars of different layers are at fixed places and so form contact columns. The basic idea is that bars crossing over each other to support compression forces are used so that contact columns are formed, which are compressed to a certain extent by the load. (orig./PW) [de

  6. Characterising Super-Earths

    Directory of Open Access Journals (Sweden)

    Valencia D.

    2011-02-01

    Full Text Available The era of Super-Earths has formally begun with the detection of transiting low-mass exoplanets CoRoT-7b and GJ 1214b. In the path of characterising super-Earths, the first step is to infer their composition. While the discovery data for CoRoT-7b, in combination with the high atmospheric mass loss rate inferred from the high insolation, suggested that it was a rocky planet, the new proposed mass values have widened the possibilities. The combined mass range 1−10 M⊕ allows for a volatile-rich (and requires it if the mass is less than 4 M⊕ , an Earth-like or a super-Mercury-like composition. In contrast, the radius of GJ 1214b is too large to admit a solid composition, thus it necessarily to have a substantial gas layer. Some evidence suggests that within this gas layer H/He is a small but non-negligible component. These two planets are the first of many transiting low-mass exoplanets expected to be detected and they exemplify the limitations faced when inferring composition, which come from the degenerate character of the problem and the large error bars in the data.

  7. Spatial distribution of superconducting and charge-density-wave order parameters in cuprates and its influence on the quasiparticle tunnel current (Review Article)

    International Nuclear Information System (INIS)

    Cabovich, Alexander M.; Voitenko, Alexander I.

    2016-01-01

    The state of the art concerning tunnel measurements of energy gaps in cuprate oxides has been analyzed. A detailed review of the relevant literature is made, and original results calculated for the quasiparticle tunnel current J(V) between a metallic tip and a disordered d-wave superconductor partially gapped by charge density waves (CDWs) are reported, because it is this model of high-temperature superconductors that becomes popular owing to recent experiments in which CDWs were observed directly. The current was calculated suggesting the scatter of both the superconducting and CDW order parameters due to the samples intrinsic inhomogeneity. It was shown that peculiarities in the current-voltage characteristics inherent to the case of homogeneous super-conducting material are severely smeared, and the CDW-related features transform into experimentally observed peak-dip-hump structures. Theoretical results were used to fit data measured for YBa_2Cu_3O_7_-_d_e_l_t_a and Bi_2Sr_2CaCu_2O_8_+_d_e_l_t_a. The fitting demonstrated a good qualitative agreement between the experiment and model calculations. The analysis of the energy gaps in high-Tc superconductors is important both per se and as a tool to uncover the nature of superconductivity in cuprates not elucidated so far despite of much theoretical effort and experimental progress.

  8. Development of 50 MVA superconducting generator

    International Nuclear Information System (INIS)

    Ueda, Kiyotaka; Maki, Naoki; Takahashi, Noriyoshi; Ogata, Hisanao; Sanematsu, Toshihiro.

    1984-01-01

    Superconducting synchronous generators are expected to be the large capacity turbogenerators of next generation, but they have the structural features considerably different from conventional generators, such as low temperature multiple cylinder rotors and air gap armature winding. For the purpose of grasping the performance of superconducting generators and establishing the fundamental technology for their practical use, Hitachi Ltd. manufactured a 50 MVA superconducting generator. As the results of test, the precooling operation was smoothly finished for about 40 hours, and the superconducting rotor rotated stably at 3000 rpm. The steady and transient electrical characteristics were able to be grasped. It is intended to reflect these results to the development of a practical generator of 500 MVA class expected as the next step. When the superconducting exciting winding cooled by liquid helium is used, the reduction of weight, the improvement of efficiency and the improvement of the stability of power system can be expected. The structural features and the function of superconducting generators, the present state of the development in the world, the outline of the 50 MVA generator, the test results and the problems and the prospect hereafter are reported. The superconducting winding was made of NbTiZr alloy multicore wires. (Kako, I.)

  9. Recent advances in fullerene superconductivity

    CERN Document Server

    Margadonna, S

    2002-01-01

    Superconducting transition temperatures in bulk chemically intercalated fulleride salts reach 33 K at ambient pressure and in hole-doped C sub 6 sub 0 derivatives in field-effect-transistor (FET) configurations, they reach 117 K. These advances pose important challenges for our understanding of high-temperature superconductivity in these highly correlated organic metals. Here we review the structures and properties of intercalated fullerides, paying particular attention to the correlation between superconductivity and interfullerene separation, orientational order/disorder, valence state, orbital degeneracy, low-symmetry distortions, and metal-C sub 6 sub 0 interactions. The metal-insulator transition at large interfullerene separations is discussed in detail. An overview is also given of the exploding field of gate-induced superconductivity of fullerenes in FET electronic devices.

  10. Superconductivity in Layered Organic Metals

    Directory of Open Access Journals (Sweden)

    Jochen Wosnitza

    2012-04-01

    Full Text Available In this short review, I will give an overview on the current understanding of the superconductivity in quasi-two-dimensional organic metals. Thereby, I will focus on charge-transfer salts based on bis(ethylenedithiotetrathiafulvalene (BEDT-TTF or ET for short. In these materials, strong electronic correlations are clearly evident, resulting in unique phase diagrams. The layered crystallographic structure leads to highly anisotropic electronic as well as superconducting properties. The corresponding very high orbital critical field for in-plane magnetic-field alignment allows for the occurrence of the Fulde–Ferrell– Larkin–Ovchinnikov state as evidenced by thermodynamic measurements. The experimental picture on the nature of the superconducting state is still controversial with evidence both for unconventional as well as for BCS-like superconductivity.

  11. Interplay of magnetism and superconductivity

    International Nuclear Information System (INIS)

    Akhavan, M.

    2006-01-01

    After about two decades of intense research since the discovery of high-temperature superconductivity (HTSC) in cuprates, although many aspects of the physics and chemistry of these cuprate superconductors are now well understood, the underlying pairing mechanism remains elusive. Magnetism and superconductivity are usually thought as incompatible, but in number of special materials including HTSCs these two mutually excluding mechanisms are found to coexist. The presence in a system of superconductivity and magnetism, gives rise to a large number of interesting phenomenon. This article provides perspective on recent developments and their implications for our understanding of the interplay between magnetism and superconductivity in new materials. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  12. Gauge Model of High-Tc Superconductivity

    International Nuclear Information System (INIS)

    Ng, Sze Kui

    2012-01-01

    A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-T c superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature T c is related to the ionization energies of elements and can be computed by a formula of T c . For the high-T c superconductors such as La 2-x Sr x CuO 4 , Y Ba 2 Cu 3 O 7 , and MgB 2 , the computational results of T c agree with the experimental results.

  13. Superconducting active impedance converter

    International Nuclear Information System (INIS)

    Ginley, D.S.; Hietala, V.M.; Martens, J.S.

    1993-01-01

    A transimpedance amplifier for use with high temperature superconducting, other superconducting, and conventional semiconductors allows for appropriate signal amplification and impedance matching to processing electronics. The amplifier incorporates the superconducting flux flow transistor into a differential amplifier configuration which allows for operation over a wide temperature range, and is characterized by high gain, relatively low noise, and response times less than 200 picoseconds over at least a 10-80 K. temperature range. The invention is particularly useful when a signal derived from either far-IR focal plane detectors or from Josephson junctions is to be processed by higher signal/higher impedance electronics, such as conventional semiconductor technology. 12 figures

  14. Superconducting linac booster

    International Nuclear Information System (INIS)

    Srinivasan, B.; Betigeri, M.G.; Pandey, M.K.; Pillay, R.G.; Kurup, M.B.

    1997-01-01

    The report on superconducting LINAC booster, which is a joint project of Bhabha Atomic Research Centre (BARC) and Tata Institute of Fundamental Research (TIFR), brings out the work accomplished so far towards the development of the technology of superconducting LINAC to boost the energy of ions from the 14UD Pelletron. The LINAC is modular in construction with each module comprising of a helium cryostat housing four lead-plated quarter wave resonators. The resonators are superconducting for temperatures below 7.19K. An energy boost of 2 MeV/q per module is expected to be achieved. The first module and the post-tandem superbuncher have been fabricated and tested on the LINAC beam line. This report gives a summary of the technological achievements and also brings out the difficulties encountered during the R and D phase. (author)

  15. Superconductivity in doped two-leg ladder cuprates

    International Nuclear Information System (INIS)

    Qin Jihong; Yuan Feng; Feng Shiping

    2006-01-01

    Within the t-J ladder model, superconductivity with a modified d-wave symmetry in doped two-leg ladder cuprates is investigated based on the kinetic energy driven superconducting mechanism. It is shown that the spin-liquid ground-state at the half-filling evolves into the superconducting ground-state upon doping. In analogy to the doping dependence of the superconducting transition temperature in the planar cuprate superconductors, the superconducting transition temperature in doped two-leg ladder cuprates increases with increasing doping in the underdoped regime, and reaches a maximum in the optimal doping, then decreases in the overdoped regime

  16. Controllable manipulation of superconductivity using magnetic vortices

    International Nuclear Information System (INIS)

    Villegas, J E; Schuller, Ivan K

    2011-01-01

    The magneto-transport of a superconducting/ferromagnetic hybrid structure, consisting of a superconducting thin film in contact with an array of magnetic nanodots in the so-called 'magnetic vortex state', exhibits interesting properties. For certain magnetic states, the stray magnetic field from the vortex array is intense enough to drive the superconducting film into the normal state. In this fashion, the normal-to-superconducting phase transition can be controlled by the magnetic history. The strong coupling between superconducting and magnetic subsystems allows characteristically ferromagnetic properties, such as hysteresis and remanence, to be dramatically transferred into the transport properties of the superconductor.

  17. Superconducting pipes and levitating magnets.

    Science.gov (United States)

    Levin, Yan; Rizzato, Felipe B

    2006-12-01

    Motivated by a beautiful demonstration of the Faraday and the Lenz laws in which a small neodymium magnet falls slowly through a conducting nonferromagnetic tube, we consider the dynamics of a magnet falling coaxially through a superconducting pipe. Unlike the case of normal conducting pipes, in which the magnet quickly reaches the terminal velocity, inside a superconducting tube the magnet falls freely. On the other hand, to enter the pipe the magnet must overcome a large electromagnetic energy barrier. For sufficiently strong magnets, the barrier is so large that the magnet will not be able to penetrate it and will be levitated over the mouth of the pipe. We calculate the work that must done to force the magnet to enter a superconducting tube. The calculations show that superconducting pipes are very efficient at screening magnetic fields. For example, the magnetic field of a dipole at the center of a short pipe of radius a and length L approximately > a decays, in the axial direction, with a characteristic length xi approximately 0.26a. The efficient screening of the magnetic field might be useful for shielding highly sensitive superconducting quantum interference devices. Finally, the motion of the magnet through a superconducting pipe is compared and contrasted to the flow of ions through a trans-membrane channel.

  18. Charm Physics at SuperB

    International Nuclear Information System (INIS)

    Meadows, Brian; Bevan, Adrian

    2010-01-01

    The study of Charm Decays at SuperB provide unique opportunities to understand the Standard Model and constrain new physics, both at the Y(4S), and at charm threshold. We discuss the physics potential of such measurements from the proposed SuperB experiment with 75 ab -1 of data at the Y(4S) and a subsequent run dedicated to exploiting quantum correlations at the charm threshold. (author)

  19. NETL Super Computer

    Data.gov (United States)

    Federal Laboratory Consortium — The NETL Super Computer was designed for performing engineering calculations that apply to fossil energy research. It is one of the world’s larger supercomputers,...

  20. Superconducting Metallic Glass Transition-Edge-Sensors

    Science.gov (United States)

    Hays, Charles C. (Inventor)

    2013-01-01

    A superconducting metallic glass transition-edge sensor (MGTES) and a method for fabricating the MGTES are provided. A single-layer superconducting amorphous metal alloy is deposited on a substrate. The single-layer superconducting amorphous metal alloy is an absorber for the MGTES and is electrically connected to a circuit configured for readout and biasing to sense electromagnetic radiation.

  1. Microsphere-based super-resolution scanning optical microscope.

    Science.gov (United States)

    Huszka, Gergely; Yang, Hui; Gijs, Martin A M

    2017-06-26

    High-refractive index dielectric microspheres positioned within the field of view of a microscope objective in a dielectric medium can focus the light into a so-called photonic nanojet. A sample placed in such nanojet can be imaged by the objective with super-resolution, i.e. with a resolution beyond the classical diffraction limit. However, when imaging nanostructures on a substrate, the propagation distance of a light wave in the dielectric medium in between the substrate and the microsphere must be small enough to reveal the sample's nanometric features. Therefore, only the central part of an image obtained through a microsphere shows super-resolution details, which are typically ∼100 nm using white light (peak at λ = 600 nm). We have performed finite element simulations of the role of this critical distance in the super-resolution effect. Super-resolution imaging of a sample placed beneath the microsphere is only possible within a very restricted central area of ∼10 μm 2 , where the separation distance between the substrate and the microsphere surface is very small (∼1 μm). To generate super-resolution images over larger areas of the sample, we have fixed a microsphere on a frame attached to the microscope objective, which is automatically scanned over the sample in a step-by-step fashion. This generates a set of image tiles, which are subsequently stitched into a single super-resolution image (with resolution of λ/4-λ/5) of a sample area of up to ∼10 4 μm 2 . Scanning a standard optical microscope objective with microsphere therefore enables super-resolution microscopy over the complete field-of-view of the objective.

  2. Superconductivity in bad metals

    International Nuclear Information System (INIS)

    Emery, V.J.; Kivelson, S.A.

    1995-01-01

    It is argued that many synthetic metals, including high temperature superconductors are ''bad metals'' with such a poor conductivity that the usual mean-field theory of superconductivity breaks down because of anomalously large classical and quantum fluctuations of the phase of the superconducting order parameter. Some consequences for high temperature superconductors are described

  3. The SuperB Project: Status and the Physics Reach

    International Nuclear Information System (INIS)

    Neri, Nicola

    2012-01-01

    The SuperB experiment is a next generation Super Flavour Factory expected to accumulate 75 ab −1 of data at the Υ(4S) in five years of nominal running, and will be built at the recently established Cabibbo Laboratory on the outskirts of Rome. In addition to running data at the Υ(4S), SuperB will be able to accumulate data from the ψ(3770) up to the Υ(6S). A polarized electron beam enables unique physics opportunities at SuperB. The large samples of B, D and τ decays that will be recorded at SuperB can be used to provide both stringent constraints on new physics scenarios, and over-constraints on the Standard Model. We present the status of the project as well as the physics potential of SuperB.

  4. Super magnets for interaction regions

    International Nuclear Information System (INIS)

    Biallas, G.; Fowler, W.; Diebold, R.

    1977-01-01

    The feasibility of using superconducting magnets in the beam interaction regions of particle accelerators is discussed. These higher field magnets can be shorter, leaving more room for detectors, but also must have a large aperture and magnetic shielding. The ''kissing geometry'' was investigated, and design and scaling considerations are given. A rough estimate of the cost of such superconducting magnets is given as an aid to the selection of interaction geometry

  5. Super-resolution

    DEFF Research Database (Denmark)

    Nasrollahi, Kamal; Moeslund, Thomas B.

    2014-01-01

    Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real world problems in different fields, from satellite...

  6. Mechanical Design of Superconducting Accelerator Magnets

    International Nuclear Information System (INIS)

    Toral, F

    2014-01-01

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques

  7. Mechanical Design of Superconducting Accelerator Magnets

    CERN Document Server

    Toral, Fernando

    2014-07-17

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  8. Mechanical Design of Superconducting Accelerator Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Toral, F [Madrid, CIEMAT (Spain)

    2014-07-01

    This paper is about the mechanical design of superconducting accelerator magnets. First, we give a brief review of the basic concepts and terms. In the following sections, we describe the particularities of the mechanical design of different types of superconducting accelerator magnets: solenoids, costheta, superferric, and toroids. Special attention is given to the pre-stress principle, which aims to avoid the appearance of tensile stresses in the superconducting coils. A case study on a compact superconducting cyclotron summarizes the main steps and the guidelines that should be followed for a proper mechanical design. Finally, we present some remarks on the measurement techniques.

  9. Can magnetism and superconductivity coexist

    International Nuclear Information System (INIS)

    Ishikawa, M.

    1982-01-01

    Recent syntheses of rare earth (RE) ternary superconductors such as (RE)Mo 6 X 8 (X=S or Se) and (RE)Rh 4 B 4 have provided the first opportunity to explore the interaction between magnetism and superconductivity in detail owing to their particular crystal structure. The regular sublattice of the rare-earth ions in these new ternary compounds undergoes a ferro- or antiferromagnetic phase transition in the superconducting state. If the transition is antiferromagnetic, the superconductivity is preserved so that true coexistence results. If it is ferromagnetic, on the other hand, the superconductivity eventually gives way to uniform ferromagnetism at low temperatures. However, recent theories predict several possible states of coexistence even in ferromagnetic superconductors. This article reviews aspects of these new phase transitions in ternary superconductors. (author)

  10. New world of Gossamer superconductivity

    International Nuclear Information System (INIS)

    Maki, Kazumi; Haas, Stephan; Parker, David; Won, Hyekyung; Dora, Balazs; Virosztek, Attila

    2006-01-01

    Since the discovery of the high-T c cuprate superconductor La 2-x BaCuO 4 in 1986 by Bednorz and Mueller, controversy regarding the nature or origin of this remarkable superconductivity has continued. However, d-wave superconductivity in the hole-doped cuprates, arising due to the anti-paramagnon exchange, was established around 1994. More recently we have shown that the mean field theory, like the BCS theory of superconductivity and Landau's Fermi liquid theory are adequate to describe the cuprates. The keys for this development are the facts that a) the pseudogap phase is d-wave density wave (dDW) and that the high-T c cuprate superconductivity is gossamer (i.e. it exists in the presence of dDW). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Superconducting generator technology--an overview

    International Nuclear Information System (INIS)

    Edmonda, J.S.

    1979-01-01

    Application of superconducting technology to field windings of large ac generators provides virtually unlimited field capability without incurring resistive losses in the winding. Several small-scale superconducting generators have been built and tested demonstrating the feasibility of such concepts. For machines of much larger capacity, conceptual designs for 300 Mva and 1200 Mva have been completed. The development of a 300 Mva generator is projected. Designed, engineered and fabricated as a turbo generator, the superconducting machine is to be installed in a power plant, tested and operated in concert with a prime mover, the steam generator and the auxiliary support systems of the power plant. This will provide answers to the viability of operating a superconducting machine and its cryogenic handling systems in a full time, demanding environment. 21 refs

  12. Heavy-ion superconducting linacs

    International Nuclear Information System (INIS)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs

  13. Heavy-ion superconducting linacs

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, J.R.

    1989-01-01

    This paper reviews the status of the superconducting heavy-ion accelerators. Most of them are linacs used as boosters for tandem electrostatic accelerators, although the technology is being extended to very low velocity to eliminate the need for an injector. The characteristics and features of the various superconducting heavy-ion accelerators are discussed. 45 refs.

  14. RADIOFREQUENCY SUPERCONDUCTIVITY: Workshop

    International Nuclear Information System (INIS)

    Lengeler, Herbert

    1989-01-01

    Superconducting radiofrequency is already playing an important role in the beam acceleration system for the TRISTAN electron-positron collider at the Japanese KEK Laboratory and new such systems are being prepared for other major machines. Thus the fourth Workshop on Radiofrequency Superconductivity, organized by KEK under the chairmanship of local specialist Yuzo Kojima and held just before the International Conference on High Energy Accelerators, had much progress to review and even more to look forward to

  15. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Science.gov (United States)

    Pathan, F. S.; Khan, Z.; Semwal, P.; Raval, D. C.; Joshi, K. S.; Thankey, P. L.; Dhanani, K. R.

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN2 panels during sniffer test and pressure drop test using helium gas.

  16. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R [Institute for Plasma Research, Bhat, Gandhinagar - 382 428, Gujarat (India)], E-mail: firose@ipr.res.in

    2008-05-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN{sub 2} panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN{sub 2} panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN{sub 2} panels during sniffer test and pressure drop test using helium gas.

  17. Quantitative study of sniffer leak rate and pressure drop leak rate of liquid nitrogen panels of SST-1 tokamak

    International Nuclear Information System (INIS)

    Pathan, F S; Khan, Z; Semwal, P; Raval, D C; Joshi, K S; Thankey, P L; Dhanani, K R

    2008-01-01

    Steady State Super-conducting (SST-1) Tokamak is in commissioning stage at Institute for Plasma Research. Vacuum chamber of SST-1 Tokamak consists of 1) Vacuum vessel, an ultra high vacuum (UHV) chamber, 2) Cryostat, a high vacuum (HV) chamber. Cryostat encloses the liquid helium cooled super-conducting magnets (TF and PF), which require the thermal radiation protection against room temperature. Liquid nitrogen (LN2) cooled panels are used to provide thermal shield around super-conducting magnets. During operation, LN 2 panels will be under pressurized condition and its surrounding (cryostat) will be at high vacuum. Hence, LN 2 panels must have very low leak rate. This paper describes an experiment to study the behaviour of the leaks in LN 2 panels during sniffer test and pressure drop test using helium gas

  18. Connectivity and superconductivity

    CERN Document Server

    Rubinstein, Jacob

    2000-01-01

    The motto of connectivity and superconductivity is that the solutions of the Ginzburg--Landau equations are qualitatively influenced by the topology of the boundaries, as in multiply-connected samples. Special attention is paid to the "zero set", the set of the positions (also known as "quantum vortices") where the order parameter vanishes. The effects considered here usually become important in the regime where the coherence length is of the order of the dimensions of the sample. It takes the intuition of physicists and the awareness of mathematicians to find these new effects. In connectivity and superconductivity, theoretical and experimental physicists are brought together with pure and applied mathematicians to review these surprising results. This volume is intended to serve as a reference book for graduate students and researchers in physics or mathematics interested in superconductivity, or in the Schrödinger equation as a limiting case of the Ginzburg--Landau equations.

  19. Large Superconducting Magnet Systems

    CERN Document Server

    Védrine, P.

    2014-07-17

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb$_{3}$Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  20. Superconducting accelerator magnet design

    International Nuclear Information System (INIS)

    Wolff, S.

    1994-01-01

    Superconducting dipoles, quadrupoles and correction magnets are necessary to achieve the high magnetic fields required for big accelerators presently in construction or in the design phase. Different designs of superconducting accelerator magnets are described and the designs chosen at the big accelerator laboratories are presented. The most frequently used cosθ coil configuration is discussed in detail. Approaches for calculating the magnetic field quality including coil end fields are presented. Design details of the cables, coils, mechanical structures, yokes, helium vessels and cryostats including thermal radiation shields and support structures used in superconducting magnets are given. Necessary material properties are mentioned. Finally, the main results of magnetic field measurements and quench statistics are presented. (orig.)

  1. Large Superconducting Magnet Systems

    Energy Technology Data Exchange (ETDEWEB)

    Védrine, P [Saclay (France)

    2014-07-01

    The increase of energy in accelerators over the past decades has led to the design of superconducting magnets for both accelerators and the associated detectors. The use of Nb−Ti superconducting materials allows an increase in the dipole field by up to 10 T compared with the maximum field of 2 T in a conventional magnet. The field bending of the particles in the detectors and generated by the magnets can also be increased. New materials, such as Nb3Sn and high temperature superconductor (HTS) conductors, can open the way to higher fields, in the range 13–20 T. The latest generations of fusion machines producing hot plasma also use large superconducting magnet systems.

  2. Acoustic wave spread in superconducting-normal-superconducting sandwich

    International Nuclear Information System (INIS)

    Urushadze, G.I.

    2004-01-01

    The acoustic wave spread, perpendicular to the boundaries between superconducting and normal metals in superconducting-normal-superconducting (SNS) sandwich has been considered. The alternate current flow sound induced by the Green function method has been found and the coefficient of the acoustic wave transmission through the junction γ=(S 1 -S 2 )/S 1 , (where S 1 and S 2 are average energy flows formed on the first and second boundaries) as a function of the phase difference between superconductors has been investigated. It is shown that while the SNS sandwich is almost transparent for acoustic waves (γ 0 /τ), n=0,1,2, ... (where τ 0 /τ is the ratio of the broadening of the quasiparticle energy levels in impurity normal metal as a result of scattering of the carriers by impurities 1/τ to the spacing between energy levels 1/τ 0 ), γ=2, (S 2 =-S 1 ), which corresponds to the full reflection of the acoustic wave from SNS sandwich. This result is valid for the limit of a pure normal metal but in the main impurity case there are two amplification and reflection regions for acoustic waves. The result obtained shows promise for the SNS sandwich as an ideal mirror for acoustic wave reflection

  3. Valence skipping driven superconductivity and charge Kondo effect

    International Nuclear Information System (INIS)

    Yanagisawa, Takashi; Hase, Izumi

    2013-01-01

    Highlights: •Valence skipping in metallic compounds can give rise to an unconventional superconductivity. •Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. •The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. •We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. •There is a high temperature region near the boundary. -- Abstract: Valence skipping in metallic compounds can give rise to an unconventional superconductivity. Several elements in the periodic table show valence skipping (or valence missing), for example, Bi forms the compounds in valence states +3 and +5. The doping of valence skipping elements will induce superconductivity and this will lead to a possibility of high temperature superconductivity. We consider the Wolf model with negative-U impurities, and show a phase diagram including superconducting phase. The superconducting state is changed into a metallic state with a local singlet as the attractive interaction |U| increases. There is a high temperature region near the boundary

  4. Superconducting magnet

    Science.gov (United States)

    1985-01-01

    Extensive computer based engineering design effort resulted in optimization of a superconducting magnet design with an average bulk current density of approximately 12KA/cm(2). Twisted, stranded 0.0045 inch diameter NbTi superconductor in a copper matrix was selected. Winding the coil from this bundle facilitated uniform winding of the small diameter wire. Test coils were wound using a first lot of the wire. The actual packing density was measured from these. Interwinding voltage break down tests on the test coils indicated the need for adjustment of the wire insulation on the lot of wire subsequently ordered for construction of the delivered superconducting magnet. Using the actual packing densities from the test coils, a final magnet design, with the required enhancement and field profile, was generated. All mechanical and thermal design parameters were then also fixed. The superconducting magnet was then fabricated and tested. The first test was made with the magnet immersed in liquid helium at 4.2K. The second test was conducted at 2K in vacuum. In the latter test, the magnet was conduction cooled from the mounting flange end.

  5. Half-metallic superconducting triplet spin multivalves

    Science.gov (United States)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  6. Fullerides - Superconductivity at the limit

    NARCIS (Netherlands)

    Palstra, Thomas T. M.

    The successful synthesis of highly crystalline Cs3C60, exhibiting superconductivity up to a record temperature for fullerides of 38 K, demonstrates a powerful synthetic route for investigating the origin of superconductivity in this class of materials.

  7. Fast superconducting magnetic field switch

    Science.gov (United States)

    Goren, Yehuda; Mahale, Narayan K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles.

  8. Fast superconducting magnetic field switch

    International Nuclear Information System (INIS)

    Goren, Y.; Mahale, N.K.

    1996-01-01

    The superconducting magnetic switch or fast kicker magnet is employed with electron stream or a bunch of electrons to rapidly change the direction of flow of the electron stream or bunch of electrons. The apparatus employs a beam tube which is coated with a film of superconducting material. The tube is cooled to a temperature below the superconducting transition temperature and is subjected to a constant magnetic field which is produced by an external dc magnet. The magnetic field produced by the dc magnet is less than the critical field for the superconducting material, thus, creating a Meissner Effect condition. A controllable fast electromagnet is used to provide a magnetic field which supplements that of the dc magnet so that when the fast magnet is energized the combined magnetic field is now greater that the critical field and the superconducting material returns to its normal state allowing the magnetic field to penetrate the tube. This produces an internal field which effects the direction of motion and of the electron stream or electron bunch. The switch can also operate as a switching mechanism for charged particles. 6 figs

  9. Superconductivity in compensated and uncompensated semiconductors

    Directory of Open Access Journals (Sweden)

    Youichi Yanase and Naoyuki Yorozu

    2008-01-01

    Full Text Available We investigate the localization and superconductivity in heavily doped semiconductors. The crossover from the superconductivity in the host band to that in the impurity band is described on the basis of the disordered three-dimensional attractive Hubbard model for binary alloys. The microscopic inhomogeneity and the thermal superconducting fluctuation are taken into account using the self-consistent 1-loop order theory. The superconductor-insulator transition accompanies the crossover from the host band to the impurity band. We point out an enhancement of the critical temperature Tc around the crossover. Further localization of electron wave functions leads to the localization of Cooper pairs and induces the pseudogap. We find that both the doping compensation by additional donors and the carrier increase by additional acceptors suppress the superconductivity. A theoretical interpretation is proposed for the superconductivity in the boron-doped diamond, SiC, and Si.

  10. Oblique reconstructions in tomosynthesis. II. Super-resolution

    International Nuclear Information System (INIS)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes.Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system.Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  11. Oblique reconstructions in tomosynthesis. II. Super-resolution

    Science.gov (United States)

    Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2013-01-01

    Purpose: In tomosynthesis, super-resolution has been demonstrated using reconstruction planes parallel to the detector. Super-resolution allows for subpixel resolution relative to the detector. The purpose of this work is to develop an analytical model that generalizes super-resolution to oblique reconstruction planes. Methods: In a digital tomosynthesis system, a sinusoidal test object is modeled along oblique angles (i.e., “pitches”) relative to the plane of the detector in a 3D divergent-beam acquisition geometry. To investigate the potential for super-resolution, the input frequency is specified to be greater than the alias frequency of the detector. Reconstructions are evaluated in an oblique plane along the extent of the object using simple backprojection (SBP) and filtered backprojection (FBP). By comparing the amplitude of the reconstruction against the attenuation coefficient of the object at various frequencies, the modulation transfer function (MTF) is calculated to determine whether modulation is within detectable limits for super-resolution. For experimental validation of super-resolution, a goniometry stand was used to orient a bar pattern phantom along various pitches relative to the breast support in a commercial digital breast tomosynthesis system. Results: Using theoretical modeling, it is shown that a single projection image cannot resolve a sine input whose frequency exceeds the detector alias frequency. The high frequency input is correctly visualized in SBP or FBP reconstruction using a slice along the pitch of the object. The Fourier transform of this reconstructed slice is maximized at the input frequency as proof that the object is resolved. Consistent with the theoretical results, experimental images of a bar pattern phantom showed super-resolution in oblique reconstructions. At various pitches, the highest frequency with detectable modulation was determined by visual inspection of the bar patterns. The dependency of the highest

  12. New world of Gossamer superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Maki, Kazumi; Haas, Stephan; Parker, David [Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089-0484 (United States); Won, Hyekyung [Max-Planck-Institut fuer Physik komplexer Systeme, Noethnitzer Str. 38, 01187, Dresden (Germany); Department of Physics, Hallym University, Chuncheon 200-702 (Korea); Dora, Balazs; Virosztek, Attila [Department of Physics, Budapest University of Technology and Economics, 1521 Budapest (Hungary)

    2006-09-15

    Since the discovery of the high-T {sub c} cuprate superconductor La{sub 2-x}BaCuO{sub 4} in 1986 by Bednorz and Mueller, controversy regarding the nature or origin of this remarkable superconductivity has continued. However, d-wave superconductivity in the hole-doped cuprates, arising due to the anti-paramagnon exchange, was established around 1994. More recently we have shown that the mean field theory, like the BCS theory of superconductivity and Landau's Fermi liquid theory are adequate to describe the cuprates. The keys for this development are the facts that a) the pseudogap phase is d-wave density wave (dDW) and that the high-T{sub c} cuprate superconductivity is gossamer (i.e. it exists in the presence of dDW). (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Earlier and recent aspects of superconductivity

    International Nuclear Information System (INIS)

    Bednorz, J.G.; Muller, K.A.

    1990-01-01

    Contemporary knowledge of superconductivity is set against its historical background in this book. First, the highlights of superconductivity research in the twentieth century are reviewed. Further contributions then describe the basic phenomena resulting from the macroscopic quantum state of superconductivity (such as zero resistivity, the Meissner-Ochsenfeld effect, and flux quantization) and review possible mechanisms, including the classical BCS theory and the more recent alternative theories. The main categories of superconductors - elements, intermetallic phases, chalcogenides, oxides and organic compounds - are described. Common features and differences in their structure and electronic properties are pointed out. This overview of superconductivity is completed by a discussion of properties related to the coherence length

  14. Super-cool Dark Matter arXiv

    CERN Document Server

    Hambye, Thomas; Teresi, Daniele

    In dimension-less theories of dynamical generation of the weak scale, the Universe can undergo a period of low-scale inflation during which all particles are massless and super-cool. This leads to a new mechanism of generation of the cosmological Dark Matter (DM) relic density: super-cooling can easily suppress the amount of DM to the desired level. This is achieved for TeV-scale DM, if super-cooling ends when quark condensates form at the QCD phase transition. Along this scenario, the baryon asymmetry can be generated either at the phase transition or through leptogenesis. We show that the above mechanism takes place in old and new dimension-less models.

  15. A note on the super AKNS equations

    International Nuclear Information System (INIS)

    Li Yishen; Zhang Lining.

    1986-10-01

    We find some relationships between the usual AKNS scheme with the super one, when its elements take value from the Grassmann algebra on a two-dimensional vector space. The solutions of these super AKNS equations are discussed. (author)

  16. N=2 super - W3(2) algebra in superfields

    International Nuclear Information System (INIS)

    Krivonos, S.; Sorin, A.

    1995-05-01

    It is presented a manifestly N=2 supersymmetric formulation of N=2 super-W 3 (2) algebra (its classical version) in terms of the spin 1 unconstrained generating a N=2 superconformal subalgebra and the spins 1/2, 2 fermionic constrained supercurrents. It is considered a superfield reduction of N=2 super-W 3 (2) to N=2 super-W 3 and construct a family of evolution equations for which N=2 super-W 3 (2) provides the second Hamiltonian structure

  17. Superconducting devices at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Dahl, P.F.

    1978-04-01

    The various ongoing programs in applied superconductivity supported by BNL are summarized, including the development of high field ac and dc superconducting magnets for accelerators and other applications, of microwave deflecting cavities for high energy particle beam separators, and of cables for underground power transmission, and materials research on methods of fabricating new superconductors and on metallurgical properties affecting the performance of superconducting devices

  18. Superconductivity and macroscopic quantum phenomena

    International Nuclear Information System (INIS)

    Rogovin, D.; Scully, M.

    1976-01-01

    It is often asserted that superconducting systems are manifestations of quantum mechanics on a macroscopic scale. In this review article it is demonstrated that this quantum assertion is true within the framework of the microscopic theory of superconductivity. (Auth.)

  19. Superconductivity in heavily boron-doped silicon carbide

    Directory of Open Access Journals (Sweden)

    Markus Kriener, Takahiro Muranaka, Junya Kato, Zhi-An Ren, Jun Akimitsu and Yoshiteru Maeno

    2008-01-01

    Full Text Available The discoveries of superconductivity in heavily boron-doped diamond in 2004 and silicon in 2006 have renewed the interest in the superconducting state of semiconductors. Charge-carrier doping of wide-gap semiconductors leads to a metallic phase from which upon further doping superconductivity can emerge. Recently, we discovered superconductivity in a closely related system: heavily boron-doped silicon carbide. The sample used for that study consisted of cubic and hexagonal SiC phase fractions and hence this led to the question which of them participated in the superconductivity. Here we studied a hexagonal SiC sample, free from cubic SiC phase by means of x-ray diffraction, resistivity, and ac susceptibility.

  20. Exact solution of super Liouville model

    International Nuclear Information System (INIS)

    Yang Zhanying; Zhao Liu; Zhen Yi

    2000-01-01

    Using Leznov-Saveliev algebraic analysis and Drinfeld-Sokolov construction, the authors obtained the explicit solutions to the super Liouville system in super covariant form and component form. The explicit solution in component form reduces naturally into the Egnchi-Hanson instanton solution of the usual Liouville equation if all the Grassmann odd components are set equal to zero

  1. A study on metastable superconducting magnets

    International Nuclear Information System (INIS)

    Koyama, Kenichi

    1976-01-01

    It is important to construct superconducting magnets as cheap as possible. One of the methods to achieve such a purpose is to save the superconducting material and operate the magnets at a high current density. Therefore it is useful to investigate the requirements for the operation of metastable superconducting magnets which can work at a current higher than the recovery current. Using the theory of flux jump, we introduce a ''stable current'' below which no flux jump can occur. On a rough approximation, it is given by I sub(s) =√A P sub(i) H sub(e) T sub(o) f(x)/rho where A : cross-section of the composite conductor. P sub(i) : total perimeter of all the superconducting cores. h sub(e) : effective heat transfer coefficient to the liquid helium through the stabilizer. T sub(o) : a characteristic temperature of the superconducting cores. f(x) : a characteristic function for the relative core radius x. rho : effective resistivity of the composite. Then it is shown that superconducting magnets can operate without unexpected normal transitions in the region enclosed by the two curves of I sub(s) and I sub(c). Next, we discuss the characteristics of our saddle shaped superconducting magnet for an one-KW MHD generator. We found that, 1) the magnet does safely operate in the metastable state; 2) the characteristics of the magnet are consistent with our theoretical results. (auth.)

  2. Thermal expansion of coexistence of ferromagnetism and superconductivity

    International Nuclear Information System (INIS)

    Hatayama, Nobukuni; Konno, Rikio

    2010-01-01

    The temperature dependence of thermal expansion of coexistence of ferromag-netism and superconductivity below the superconducting transition temperature T cu of a majority spin conduction band is investigated. Majority spin and minority spin superconducting gaps exist in the coexistent state. We assume that the Curie temperature is much larger than the superconducting transition temperatures. The free energy that Linder et al. [Phys. Rev. B76, 054511 (2007)] derived is used. The thermal expansion of coexistence of ferromagnetism and superconductivity is derived by the application of the method of Takahashi and Nakano [J. Phys.: Condens. Matter 18, 521 (2006)]. We find that we have the anomalies of the thermal expansion in the vicinity of the superconducting transition temperatures.

  3. Superconductivity in multilayer perovskite. Weak coupling analysis

    International Nuclear Information System (INIS)

    Koikegami, Shigeru; Yanagisawa, Takashi

    2006-01-01

    We investigate the superconductivity of a three-dimensional d-p model with a multilayer perovskite structure on the basis of the second-order perturbation theory within the weak coupling framework. Our model has been designed with multilayer high-T c superconducting cuprates in mind. In our model, multiple Fermi surfaces appear, and the component of a superconducting gap function develops on each band. We have found that the multilayer structure can stabilize the superconductivity in a wide doping range. (author)

  4. Crystalline color superconductivity

    International Nuclear Information System (INIS)

    Alford, Mark; Bowers, Jeffrey A.; Rajagopal, Krishna

    2001-01-01

    In any context in which color superconductivity arises in nature, it is likely to involve pairing between species of quarks with differing chemical potentials. For suitable values of the differences between chemical potentials, Cooper pairs with nonzero total momentum are favored, as was first realized by Larkin, Ovchinnikov, Fulde, and Ferrell (LOFF). Condensates of this sort spontaneously break translational and rotational invariance, leading to gaps which vary periodically in a crystalline pattern. Unlike the original LOFF state, these crystalline quark matter condensates include both spin-zero and spin-one Cooper pairs. We explore the range of parameters for which crystalline color superconductivity arises in the QCD phase diagram. If in some shell within the quark matter core of a neutron star (or within a strange quark star) the quark number densities are such that crystalline color superconductivity arises, rotational vortices may be pinned in this shell, making it a locus for glitch phenomena

  5. Civilian applications for superconducting magnet technology developed for defense

    International Nuclear Information System (INIS)

    Johnson, R.A.; Klein, S.W.; Gurol, H.

    1986-01-01

    Seventy years after its discovery, superconducting technology is beginning to play an important role in the civilian sector. Strategic defense initiative (SDI)-related research in space- and ground-based strategic defense weapons, particularly research efforts utilizing superconducting magnet energy storage, magnetohydrodynamics (MHD), and superconducting pulsed-power devices, have direct applications in the civilian sector as well and are discussed in the paper. Other applications of superconducting magnets, which will be indirectly enhanced by the overall advancement in superconducting technology, include high-energy physics accelerators, magnetic resonance imaging, materials purifying, water purifying, superconducting generators, electric power transmission, magnetically levitated trains, magnetic-fusion power plants, and superconducting computers

  6. Ac loss measurements on a superconducting transformer for a 25 kA superconducting rectifier

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; Mulders, J.M.; de Reuver, J.L.; van de Klundert, L.J.M.

    1984-01-01

    Ac loss measurements have been performed on a superconducting transformer. The transformer is a part of a 25 kA thermally switched superconducting rectifier operating at a frequency of 0.1 Hz. The loss measurements have been automatized by means of a microcomputer sampling four relevant signals and

  7. Superconducting three element synchronous ac machine

    International Nuclear Information System (INIS)

    Boyer, L.; Chabrerie, J.P.; Mailfert, A.; Renard, M.

    1975-01-01

    There is a growing interest in ac superconducting machines. Of several new concepts proposed for these machines in the last years one of the most promising seems to be the ''three elements'' concept which allows the cancellation of the torque acting on the superconducting field winding, thus overcoming some of the major contraints. This concept leads to a device of induction-type generator. A synchronous, three element superconducting ac machine is described, in which a room temperature, dc fed rotating winding is inserted between the superconducting field winding and the ac armature. The steady-state machine theory is developed, the flux linkages are established, and the torque expressions are derived. The condition for zero torque on the field winding, as well as the resulting electrical equations of the machine, are given. The theoretical behavior of the machine is studied, using phasor diagrams and assuming for the superconducting field winding either a constant current or a constant flux condition

  8. Controlling superconductivity by tunable quantum critical points.

    Science.gov (United States)

    Seo, S; Park, E; Bauer, E D; Ronning, F; Kim, J N; Shim, J-H; Thompson, J D; Park, Tuson

    2015-03-04

    The heavy fermion compound CeRhIn5 is a rare example where a quantum critical point, hidden by a dome of superconductivity, has been explicitly revealed and found to have a local nature. The lack of additional examples of local types of quantum critical points associated with superconductivity, however, has made it difficult to unravel the role of quantum fluctuations in forming Cooper pairs. Here, we show the precise control of superconductivity by tunable quantum critical points in CeRhIn5. Slight tin-substitution for indium in CeRhIn5 shifts its antiferromagnetic quantum critical point from 2.3 GPa to 1.3 GPa and induces a residual impurity scattering 300 times larger than that of pure CeRhIn5, which should be sufficient to preclude superconductivity. Nevertheless, superconductivity occurs at the quantum critical point of the tin-doped metal. These results underline that fluctuations from the antiferromagnetic quantum criticality promote unconventional superconductivity in CeRhIn5.

  9. Nuclear magnetic resonance with dc SQUID [Super-conducting QUantum Interference Device] preamplifiers

    International Nuclear Information System (INIS)

    Fan, N.Q.; Heaney, M.B.; Clark, J.; Newitt, D.; Wald, L.; Hahn, E.L.; Bierlecki, A.; Pines, A.

    1988-08-01

    Sensitive radio-frequency (rf) amplifiers based on dc Superconducting QUantum Interface Devices (SQUIDS) are available for frequencies up to 200 MHz. At 4.2 K, the gain and noise temperature of a typical tuned amplifier are 18.6 +- 0.5 dB and 1.7 +- 0.5 K at 93 MHz. These amplifiers are being applied to a series of novel experiments on nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR). The high sensitivity of these amplifiers was demonstrated in the observation of ''nuclear spin noise'', the emission of photons by 35 Cl nuclei in a state of zero polarization. In the more conventional experiments in which one applies a large rf pulse to the spins, a Q-spoiler, consisting of a series array of Josephson junctions, is used to reduce the Q of the input circuit to a very low value during the pulse. The Q-spoiler enables the circuit to recover quickly after the pulse, and has been used in an NQR experiment to achieve a sensitivity of about 2 /times/ 10 16 nuclear Bohr magnetons in a single free precession signal with a bandwidth of 10 kHz. In a third experiment, a sample containing 35 Cl nuclei was placed in a capacitor and the signal detected electrically using a tuned SQUID amplifier and Q-spoiler. In this way, the electrical polarization induced by the precessing Cl nuclear quadrupole moments was detected: this is the inverse of the Stark effect in NQR. Two experiments involving NMR have been carried out. In the first, the 30 MHz resonance in 119 Sn nuclei is detected with a tuned amplifier and Q-spoiler, and a single pulse resolution of 10 18 nuclear Bohr magnetons in a bandwidth of 25 kHz has been achieved. For the second, a low frequency NMR system has been developed that uses an untuned input circuit coupled to the SQUID. The resonance in 195 Pt nuclei has been observed at 55 kHz in a field of 60 gauss. 23 refs., 11 figs

  10. Effect of transients on the beam in the Superconducting Supercollider Coupled-Cavity Linac

    International Nuclear Information System (INIS)

    Young, L.M.; Nath, S.

    1992-01-01

    Each module of the Superconducting Super Collider (SSC) Coupled-Cavity Linac (CCL) consists of eight tanks (10 accelerating cells each) coupled with bridge couplers. The radio frequency (rf) power drive is in the center of the module at the bridge coupler between the fourth and fifth tanks. In this simulation of the beam dynamics, the rf power is turned on 10 μs before the beam is turned on. This time lapse allows the fields to build up and stabilize before they are required by the beam. When the beam is turned on, the beam loading causes the fields to change. This transient state of the fields together with their effect on the beam is presented. A model has been developed to calculate field distribution throughout the module as a function of time. Beam dynamics simulations were run with the results of this model at several times during the beam pulse. An estimate of the effect of the transients is given by the results of these simulations

  11. Superconducting quantum circuits theory and application

    OpenAIRE

    Deng, Xiuhao

    2015-01-01

    Superconducting quantum circuit models are widely used to understand superconducting devices. This thesis consists of four studies wherein the superconducting quantum circuit is used to illustrate challenges related to quantum information encoding and processing, quantum simulation, quantum signal detection and amplification.The existence of scalar Aharanov-Bohm phase has been a controversial topic for decades. Scalar AB phase, defined as time integral of electric potential, gives rises to a...

  12. Superconducting Qubit Optical Transducer (SQOT)

    Science.gov (United States)

    2015-08-05

    parts on optical signals and any quasiparticle loss caused by optical photons on microwave signals. Using a superconducting 3D cavity as the microwave...plasmonic and quasiparticle losses. 3. The electro-optic material should be easily integrable with superconducting circuits. A fully integrated

  13. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  14. The elastic buckling of super-graphene and super-square carbon nanotube networks

    International Nuclear Information System (INIS)

    Li Ying; Qiu Xinming; Yin Yajun; Yang Fan; Fan Qinshan

    2010-01-01

    The super-graphene (SG) and super-square (SS) carbon nanotube network are built by the straight single-walled carbon nanotubes and corresponding junctions. The elastic buckling behaviors of these carbon nanotube networks under different boundary conditions are explored through the molecular structural mechanics method. The following results are obtained: (a) The critical buckling forces of the SG and SS networks decrease as the side lengths or aspect ratios of the networks increase. The continuum plate theory could give good predictions to the buckling of the SS network but not the SG network with non-uniform buckling modes. (b) The carbon nanotube networks are more stable structures than the graphene structures with less carbon atoms.

  15. Superconductivity, energy storage and switching

    International Nuclear Information System (INIS)

    Laquer, H.L.

    1974-01-01

    The phenomenon of superconductivity can contribute to the technology of energy storage and switching in two distinct ways. On one hand the zero resistivity of the superconductor can produce essentially infinite time constants so that an inductive storage system can be charged from very low power sources. On the other hand, the recovery of finite resistivity in a normal-going superconducting switch can take place in extremely short times, so that a system can be made to deliver energy at a very high power level. Topics reviewed include: physics of superconductivity, limits to switching speed of superconductors, physical and engineering properties of superconducting materials and assemblies, switching methods, load impedance considerations, refrigeration economics, limitations imposed by present day and near term technology, performance of existing and planned energy storage systems, and a comparison with some alternative methods of storing and switching energy. (U.S.)

  16. Superconductivity in all its states

    CERN Multimedia

    Globe Info

    2011-01-01

    Temporary exhibition at the Saint-Genis-Pouilly Tourist Office. For the 100th anniversary of its discovery, take a plunge into the amazing world of superconductivity. Some materials, when cooled down to extreme temperatures, acquire a remarkable property -  they become superconducting. Superconductivity is a rare example of a quantum effect that can be witnessed on the macroscopic scale and is today at the heart of much research. In laboratories, researchers try to gain a better understanding of its origins, study new superconducting materials, explore the phenomenon at the nanometric scale and pursue their indefatigable search for new applications. Monday to Friday: 09:00 a.m. to 12:00 and 2:30 p.m. to 6:30 p.m. Saturday: 10:00 a.m. to 12:00 noon » Open to all – Admission free For further information: +33 (0)4 50 42 29 37

  17. ASC 84: applied superconductivity conference. Final program and abstracts

    International Nuclear Information System (INIS)

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics

  18. ASC 84: applied superconductivity conference. Final program and abstracts

    Energy Technology Data Exchange (ETDEWEB)

    1984-01-01

    Abstracts are given of presentations covering: superconducting device fabrication; applications of rf superconductivity; conductor stability and losses; detectors and signal processing; fusion magnets; A15 and Nb-Ti conductors; stability, losses, and various conductors; SQUID applications; new applications of superconductivity; advanced conductor materials; high energy physics applications of superconductivity; electronic materials and characterization; general superconducting electronics; ac machinery and new applications; digital devices; fusion and other large scale applications; in-situ and powder process conductors; ac applications; synthesis, properties, and characterization of conductors; superconducting microelectronics. (LEW)

  19. One-dimensional super Calabi-Yau manifolds and their mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Noja, S. [Dipartimento di Matematica, Università degli Studi di Milano,Via Saldini 50, I-20133 Milano (Italy); Cacciatori, S.L. [Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Via Valleggio 11, I-22100 Como (Italy); INFN, Sezione di Milano,Via Celoria 16, I-20133 Milano (Italy); Piazza, F. Dalla [Dipartimento di Scienza e Alta Tecnologia, Università dell’Insubria, Via Valleggio 11, I-22100 Como (Italy); Marrani, A. [Centro Studi e Ricerche ‘Enrico Fermi’,Via Panisperna 89A, I-00184 Roma (Italy); Dipartimento di Fisica e Astronomia ‘Galileo Galilei’, Università di Padova,and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy); Re, R. [Dipartimento di Matematica e Informatica, Università degli Studi di Catania,Viale Andrea Doria 6, 95125 Catania (Italy)

    2017-04-18

    We apply a definition of generalised super Calabi-Yau variety (SCY) to supermanifolds of complex dimension one. One of our results is that there are two SCY’s having reduced manifold equal to ℙ{sup 1}, namely the projective super space ℙ{sup 1|2} and the weighted projective super space Wℙ{sub (2)}{sup 1|1}. Then we compute the corresponding sheaf cohomology of superforms, showing that the cohomology with picture number one is infinite dimensional, while the de Rham cohomology, which is what matters from a physical point of view, remains finite dimensional. Moreover, we provide the complete real and holomorphic de Rham cohomology for generic projective super spaces ℙ{sup n|m}. We also determine the automorphism groups: these always match the dimension of the projective super group with the only exception of ℙ{sup 1|2}, whose automorphism group turns out to be larger than the projective super group. By considering the cohomology of the super tangent sheaf, we compute the deformations of ℙ{sup 1|m}, discovering that the presence of a fermionic structure allows for deformations even if the reduced manifold is rigid. Finally, we show that ℙ{sup 1|2} is self-mirror, whereas Wℙ{sub (2)}{sup 1|1} has a zero dimensional mirror. Also, the mirror map for ℙ{sup 1|2} naturally endows it with a structure of N=2 super Riemann surface.

  20. 75 FR 77670 - SuperMedia, LLC, Formerly Known as Idearc Media, LLC, a Subsidiary of SuperMedia Information...

    Science.gov (United States)

    2010-12-13

    ... Known as Idearc Media, LLC, a Subsidiary of SuperMedia Information Services, LLC Publishing Group, Troy... Subsidiary of SuperMedia Information Services, LLC, Troy, New York, to apply for Trade Adjustment Assistance..., Publishing Group, Troy, New York, who became totally or partially separated from employment on or after...