WorldWideScience

Sample records for superconducting string model

  1. Superconducting cosmic strings in models with spontaneously broken family symmetry

    International Nuclear Information System (INIS)

    Bibilashvili, T.M.; Dvali, G.R.

    1990-01-01

    It is shown that superconducting cosmic strings with some specific properties naturally exist in models of spontaneously broken family symmetry. Superconductivity may be of both types - bosonic and fermionic. There exists a possible mechanism of string conservation. (orig.)

  2. Superconducting cosmic strings

    International Nuclear Information System (INIS)

    Chudnovsky, E.M.; Field, G.B.; Spergel, D.N.; Vilenkin, A.

    1986-01-01

    Superconducting loops of string formed in the early Universe, if they are relatively light, can be an important source of relativistic particles in the Galaxy. They can be observed as sources of synchrotron radiation at centimeter wavelengths. We propose a string model for two recently discovered radio sources, the ''thread'' in the galactic center and the source G357.7-0.1, and predict that the filaments in these sources should move at relativistic speeds. We also consider superheavy superconducting strings, and the possibility that they be observed as extragalactic radio sources

  3. Cooldown of superconducting magnet strings

    International Nuclear Information System (INIS)

    Yuecel, A.; Carcagno, R.H.

    1995-01-01

    A numerical model for the cooldown of the superconducting magnet strings in the Accelerator System String Test (ASST) Facility at the Superconducting Super Collider (SSC) Laboratory is presented. Numerical results are compared with experimental data from the ASST test runs. Agreement between the numerical predictions and experiments is very good over the entire range from room temperature to liquid helium temperatures. The model can be readily adapted to predict the cooldown and warmup behavior of other superconducting magnets or cold masses

  4. Vector superconductivity in cosmic strings

    International Nuclear Information System (INIS)

    Dvali, G.R.; Mahajan, S.M.

    1992-03-01

    We argue that in most realistic cases, the usual Witten-type bosonic superconductivity of the cosmic string is automatically (independent of the existence of superconducting currents) accompanied by the condensation of charged gauge vector bosons in the core giving rise to a new vector type superconductivity. The value of the charged vector condensate is related with the charged scalar expectation value, and vanishes only if the latter goes to zero. The mechanism for the proposed vector superconductivity, differing fundamentally from those in the literature, is delineated using the simplest realistic example of the two Higgs doublet standard model interacting with the extra cosmic string. It is shown that for a wide range of parameters, for which the string becomes scalarly superconducting, W boson condensates (the sources of vector superconductivity) are necessarily excited. (author). 14 refs

  5. Duality relation between charged elastic strings and superconducting cosmic strings

    International Nuclear Information System (INIS)

    Carter, B.

    1989-01-01

    The mechanical properties of macroscopic electromagnetically coupled string models in a flat or curved background are treated using a covariant formalism allowing the construction of a duality transformation that relates the category of uniform ''electric'' string models, constructed as the (nonconducting) charged generalisation of ordinary uncoupled (violin type) elastic strings, to a category of ''magnetic'' string models comprising recently discussed varieties of ''superconducting cosmic strings''. (orig.)

  6. Stability and characteristic propagation speeds in superconducting cosmic and other string models

    International Nuclear Information System (INIS)

    Carter, B.

    1989-01-01

    A bicharacteristic version is obtained for the differential equations of motion in a recently introduced formalism for the (fully covariant) treatment of a broad range of macroscopic 'thin' string models, with applicability extending from ordinary (violin type) elastic strings to superconducting cosmic strings. In any locally stable state there are two bicharacteristic propagation speeds corresponding to group velocities of transverse (extrinsic) and longitudinal (intrinsic) perturbations. The local stability requirement excludes states in which the string tension T is negative or in which its derivative with respect to the energy density (per unit length) U is positive. (orig.)

  7. Non-linear Model Predictive Control for cooling strings of superconducting magnets using superfluid helium

    CERN Document Server

    AUTHOR|(SzGeCERN)673023; Blanco Viñuela, Enrique

    In each of eight arcs of the 27 km circumference Large Hadron Collider (LHC), 2.5 km long strings of super-conducting magnets are cooled with superfluid Helium II at 1.9 K. The temperature stabilisation is a challenging control problem due to complex non-linear dynamics of the magnets temperature and presence of multiple operational constraints. Strong nonlinearities and variable dead-times of the dynamics originate at strongly heat-flux dependent effective heat conductivity of superfluid that varies three orders of magnitude over the range of possible operational conditions. In order to improve the temperature stabilisation, a proof of concept on-line economic output-feedback Non-linear Model Predictive Controller (NMPC) is presented in this thesis. The controller is based on a novel complex first-principles distributed parameters numerical model of the temperature dynamics over a 214 m long sub-sector of the LHC that is characterized by very low computational cost of simulation needed in real-time optimizat...

  8. Metastable cosmic strings in realistic models

    International Nuclear Information System (INIS)

    Holman, R.

    1992-01-01

    The stability of the electroweak Z-string is investigated at high temperatures. The results show that, while finite temperature corrections can improve the stability of the Z-string, their effect is not strong enough to stabilize the Z-string in the standard electroweak model. Consequently, the Z-string will be unstable even under the conditions present during the electroweak phase transition. Phenomenologically viable models based on the gauge group SU(2) L x SU(2) R x U(1) B-L are then considered, and it is shown that metastable strings exist and are stable to small perturbations for a large region of the parameter space for these models. It is also shown that these strings are superconducting with bosonic charge carriers. The string superconductivity may be able to stabilize segments and loops against dynamical contraction. Possible implications of these strings for cosmology are discussed

  9. Electrical characteristics of long strings of SSC superconducting dipoles

    International Nuclear Information System (INIS)

    Shafer, R.E.; Smedley, K.M.

    1992-01-01

    Because long strings of series-connected superconducting magnets have no dc resistance and low ac losses, the string behaves like a shorted transmission line. The string is thus resonant at multiple half-wavelengths unless damped by the inclusion of resistors that couple to the LdI/dt voltage across the magnet inductance. Based on the measured ac characteristics of individual magnets, it is possible to predict the electrical properties of long strings of magnets for a variety of damping resistors. These strings can be simulated using an analytic representation in FORTRAN (using complex-number notation) or a discrete-component equivalent-circuit modelling program (e.g., SPICE). Various electrical parameters, including characteristic impedance, signal velocity, induced power-supply ripple current, attenuation lengths, and driving-point impedances, can be predicted, and the damping resistor value can be optimized. Comparisons will be made to measurements on a long string of superconducting Tevatron magnets, and some predictions will be made for the SSC collider magnet system

  10. Superconducting cosmic string loops as sources for fast radio bursts

    Science.gov (United States)

    Cao, Xiao-Feng; Yu, Yun-Wei

    2018-01-01

    The cusp burst radiation of superconducting cosmic string (SCS) loops is thought to be a possible origin of observed fast radio bursts with the model-predicted radiation spectrum and the redshift- and energy-dependent event rate, we fit the observational redshift and energy distributions of 21 Parkes fast radio bursts and constrain the model parameters. It is found that the model can basically be consistent with the observations, if the current on the SCS loops has a present value of ˜1016μ179 /10 esu s-1 and evolves with redshift as an empirical power law ˜(1 +z )-1.3 , where μ17=μ /1017 g cm-1 is the string tension. This current evolution may provide a clue to probe the evolution of the cosmic magnetic fields and the gathering of the SCS loops to galaxy clusters.

  11. Numerical simulation of bosonic-superconducting-string interactions

    International Nuclear Information System (INIS)

    Laguna, P.; Matzner, R.A.

    1990-01-01

    Numerical simulations show that bosonic superconducting U(1) gauge cosmic strings interact by reconnecting and chopping off in a fashion similar to nonconducting strings. Cancellation of the electromagnetic current occurs when, in one of the strings, the direction of the U(1) gauge magnetic field is opposite to the electromagnetic current flow. Electric charge accumulates on the segments of the reconnected strings where the current is discontinuous or vanishes. A virtual photon appears after the collision and intercommutation, and a bubble of electromagnetic radiation emerges as the currents in the reconnected strings equalize. These phenomena suggest new possible mechanisms for void production in the large-scale distribution of galaxies

  12. Open string model building

    International Nuclear Information System (INIS)

    Ishibashi, Nobuyuki; Onogi, Tetsuya

    1989-01-01

    Consistency conditions of open string theories, which can be a powerful tool in open string model building, are proposed. By making use of these conditions and assuming a simple prescription for the Chan-Paton factors, open string theories in several backgrounds are studied. We show that 1. there exist a large number of consistent bosonic open string theories on Z 2 orbifolds, 2. SO(32) type I superstring is the unique consistent model among fermionic string theories on the ten-dimensional flat Minkowski space, and 3. with our prescription for the Chan-Paton factors, there exist no consistent open superstring theories on (six-dimensional Minkowski space-time) x (Z 2 orbifold). (orig.)

  13. Transmission line properties of long strings of superconducting magnets

    International Nuclear Information System (INIS)

    Shafer, R.E.

    1980-09-01

    The purpose of this paper is to discuss the electrical characteristics of a long string of superconducting magnets, such as in a superconducting storage ring or accelerator. As the magnets have a shunt capacitance to ground as well as a series inductance, travelling waves can propagate along the string, as in a transmission line. As the string is of finite length, standing waves can also exist. In accelerator quality superconducting magnets, considerable effort has been devoted to minimizing ac losses, the net result being that the magnet string has a high Q precisely at the frequencies which are important for the standing and travelling waves. The magnitude of these effects are estimated, and the solution to be used at Fermilab will be discussed

  14. Implications of fast radio bursts for superconducting cosmic strings

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yun-Wei [Institute of Astrophysics, Central China Normal University, 152 Luoyu Road, Wuhan 430079 (China); Cheng, Kwong-Sang [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Shiu, Gary; Tye, Henry, E-mail: yuyw@phy.ccnu.edu.cn, E-mail: hrspksc@hku.hk, E-mail: shiu@ust.hk, E-mail: iastye@ust.hk [Department of Physics and Institute for Advanced Study, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong (China)

    2014-11-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch.

  15. Implications of fast radio bursts for superconducting cosmic strings

    International Nuclear Information System (INIS)

    Yu, Yun-Wei; Cheng, Kwong-Sang; Shiu, Gary; Tye, Henry

    2014-01-01

    Highly beamed, short-duration electromagnetic bursts could be produced by superconducting cosmic string (SCS) loops oscillating in cosmic magnetic fields. We demonstrated that the basic characteristics of SCS bursts such as the electromagnetic frequency and the energy release could be consistently exhibited in the recently discovered fast radio bursts (FRBs). Moreover, it is first showed that the redshift distribution of the FRBs can also be well accounted for by the SCS burst model. Such agreements between the FRBs and SCS bursts suggest that the FRBs could originate from SCS bursts and thus they could provide an effective probe to study SCSs. The obtained values of model parameters indicate that the loops generating the FRBs have a small length scale and they are mostly formed in the radiation-dominated cosmological epoch

  16. A reduced covariant string model for the extrinsic string

    International Nuclear Information System (INIS)

    Botelho, L.C.L.

    1989-01-01

    It is studied a reduced covariant string model for the extrinsic string by using Polyakov's path integral formalism. On the basis of this reduced model it is suggested that the extrinsic string has its critical dimension given by 13. Additionally, it is calculated in a simple way Poliakov's renormalization group law for the string rigidity coupling constants. (A.C.A.S.) [pt

  17. Superconducting cosmic string evolution of quasars

    International Nuclear Information System (INIS)

    Liu Yulin.

    1988-09-01

    The quasars may have been undergoing two evolutionary processes after they formed. As a result of the string loops shrinking at the first stage, the luminosities of the quasars increased gradually up to their maximum value at the redshift z ∼ 2, after then the second evolutionary stage began and the luminosity reduced. This result can be fitted by luminosity counting of quasars. Observable limit of quasars can be obtained naturally. Many phenomena, such as radiomorphology, density distribution between fuzz structure and broad line region and rotational curve may also originate from the first evolutionary stage of quasars as cosmic string. (author). 10 refs

  18. Can superconducting cosmic strings piercing seed black holes generate supermassive black holes in the early universe?

    Energy Technology Data Exchange (ETDEWEB)

    Lake, Matthew J. [The Institute for Fundamental Study, ' ' The Tah Poe Academia Institute' ' , Naresuan University, Phitsanulok (Thailand); Thailand Center of Excellence in Physics, Ministry of Education, Bangkok (Thailand); Harko, Tiberiu [Department of Physics, Babes-Bolyai University, Cluj-Napoca (Romania); Department of Mathematics, University College London (United Kingdom)

    2017-10-15

    The discovery of a large number of supermassive black holes (SMBH) at redshifts z > 6, when the Universe was only 900 million years old, raises the question of how such massive compact objects could form in a cosmologically short time interval. Each of the standard scenarios proposed, involving rapid accretion of seed black holes or black hole mergers, faces severe theoretical difficulties in explaining the short-time formation of supermassive objects. In this work we propose an alternative scenario for the formation of SMBH in the early Universe, in which energy transfer from superconducting cosmic strings piercing small seed black holes is the main physical process leading to rapid mass increase. As a toy model, the accretion rate of a seed black hole pierced by two antipodal strings carrying constant current is considered. Using an effective action approach, which phenomenologically incorporates a large class of superconducting string models, we estimate the minimum current required to form SMBH with masses of order M = 2 x 10{sup 9} M {sub CircleDot} by z = 7.085. This corresponds to the mass of the central black hole powering the quasar ULAS J112001.48+064124.3 and is taken as a test case scenario for early-epoch SMBH formation. For GUT scale strings, the required fractional increase in the string energy density, due to the presence of the current, is of order 10{sup -7}, so that their existence remains consistent with current observational bounds on the string tension. In addition, we consider an ''exotic'' scenario, in which an SMBH is generated when a small seed black hole is pierced by a higher-dimensional F-string, predicted by string theory. We find that both topological defect strings and fundamental strings are able to carry currents large enough to generate early-epoch SMBH via our proposed mechanism. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. Superconducting cosmic strings as sources of cosmological fast radio bursts

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Jiani [University of Science and Technology of China, CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, Hefei, Anhui (China); Chinese Academy of Sciences, Shanghai Astronomical Observatory, Shanghai (China); Stony Brook University, Department of Physics and Astronomy, Stony Brook, NY (United States); University of Chinese Academy of Sciences, Beijing (China); Wang, Kai; Cai, Yi-Fu [University of Science and Technology of China, CAS Key Laboratory for Research in Galaxies and Cosmology, Department of Astronomy, Hefei, Anhui (China); University of Science and Technology of China, School of Astronomy and Space Science, Hefei, Anhui (China)

    2017-11-15

    In this paper we calculate the radio burst signals from three kinds of structures of superconducting cosmic strings. By taking into account the observational factors including scattering and relativistic effects, we derive the event rate of radio bursts as a function of redshift with the theoretical parameters Gμ and I of superconducting strings. Our analyses show that cusps and kinks may have noticeable contributions to the event rate and in most cases cusps would dominate the contribution, while the kink-kink collisions tend to have secondary effects. By fitting theoretical predictions with the normalized data of fast radio bursts, we for the first time constrain the parameter space of superconducting strings and report that the parameter space of Gμ ∝ [10{sup -14}, 10{sup -12}] and I ∝ [10{sup -1}, 10{sup 2}] GeV fit the observation well although the statistic significance is low due to the lack of observational data. Moreover, we derive two types of best fittings, with one being dominated by cusps with a redshift z = 1.3, and the other dominated by kinks at the range of the maximal event rate. (orig.)

  20. Superconducting cosmic strings as sources of cosmological fast radio bursts

    Science.gov (United States)

    Ye, Jiani; Wang, Kai; Cai, Yi-Fu

    2017-11-01

    In this paper we calculate the radio burst signals from three kinds of structures of superconducting cosmic strings. By taking into account the observational factors including scattering and relativistic effects, we derive the event rate of radio bursts as a function of redshift with the theoretical parameters Gμ and I of superconducting strings. Our analyses show that cusps and kinks may have noticeable contributions to the event rate and in most cases cusps would dominate the contribution, while the kink-kink collisions tend to have secondary effects. By fitting theoretical predictions with the normalized data of fast radio bursts, we for the first time constrain the parameter space of superconducting strings and report that the parameter space of Gμ ˜ [10^{-14}, 10^{-12}] and I ˜ [10^{-1}, 102] GeV fit the observation well although the statistic significance is low due to the lack of observational data. Moreover, we derive two types of best fittings, with one being dominated by cusps with a redshift z = 1.3, and the other dominated by kinks at the range of the maximal event rate.

  1. Vacuum strings in FRW models

    Energy Technology Data Exchange (ETDEWEB)

    Dyer, C C; Oattes, L M; Starkman, G D

    1988-01-01

    The authors find that vacuum string solutions cannot be embedded in an FRW model in the spirit of the swiss cheese model for inhomogeneities. Since all standard lensing calculations rely implicitly on the Swiss Cheese model, this result indicates that the previous lensing results for the vacuum string may be in error.

  2. Multiflavor string-net models

    Science.gov (United States)

    Lin, Chien-Hung

    2017-05-01

    We generalize the string-net construction to multiple flavors of strings, each of which is labeled by the elements of an Abelian group Gi. The same flavor of strings can branch, while different flavors of strings can cross one another and thus they form intersecting string nets. We systematically construct the exactly soluble lattice Hamiltonians and the ground-state wave functions for the intersecting string-net condensed phases. We analyze the braiding statistics of the low-energy quasiparticle excitations and find that our model can realize all the topological phases as the string-net model with group G =∏iGi . In this respect, our construction provides various ways of building lattice models which realize topological order G , corresponding to different partitions of G and thus different flavors of string nets. In fact, our construction concretely demonstrates the Künneth formula by constructing various lattice models with the same topological order. As an example, we construct the G =Z2×Z2×Z2 string-net model which realizes a non-Abelian topological phase by properly intersecting three copies of toric codes.

  3. String model of elementary particles

    International Nuclear Information System (INIS)

    Kikkawa, Keiji

    1975-01-01

    Recent development of the models of elementary particles is described. The principal features of elementary particle physics can be expressed by quark model, mass spectrum, the Regge behavior of scattering amplitude, and duality. Venezians showed in 1968 that the B function can express these features. From the analysis of mass spectrum, the string model was introduced. The quantization of the string is performed with the same procedure as the ordinary quantum mechanics. The motion of the string is determined by the Nambu-Goto action integral, and the Schroedinger equation is obtained. Mass spectrum from the string model was same as that from the duality model such as Veneziano model. The interaction between strings can be introduced, and the Lagrangian can be formulated. The relation between the string model and the duality model has been studied. The string model is the first theory of non-local field, and the further development is attractive. The relation between this model and the quark model is still not clear. (Kato, T.)

  4. Baryon string model

    International Nuclear Information System (INIS)

    Klimenko, S.V.; Kochin, V.N.; Plyushchaj, M.S.; Pron'ko, G.P.; Razumov, A.V.; Samarin, A.V.

    1985-01-01

    Partial solutions to classical equations of three-string motion are considered. Simplest solutions, when three-string center moving with high velocity, are co nsidered. Single-mode solutions are studied. Explicit form of their parametrization is obtained and three-string dynamics visualization is made. Means of graphic packet ''Atom'' were used for visualization. A set of processes for graphic representation of multiparametric functions is developed. Peculiarity of these processes is a wide class of functions, which are represented by parametric, coordinate and functional isolines

  5. String bit models for superstring

    International Nuclear Information System (INIS)

    Bergman, O.; Thorn, C.B.

    1995-01-01

    The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D - 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D - 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring

  6. String bit models for superstring

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, O.; Thorn, C.B.

    1995-12-31

    The authors extend the model of string as a polymer of string bits to the case of superstring. They mainly concentrate on type II-B superstring, with some discussion of the obstacles presented by not II-B superstring, together with possible strategies for surmounting them. As with previous work on bosonic string work within the light-cone gauge. The bit model possesses a good deal less symmetry than the continuous string theory. For one thing, the bit model is formulated as a Galilei invariant theory in (D {minus} 2) + 1 dimensional space-time. This means that Poincare invariance is reduced to the Galilei subgroup in D {minus} 2 space dimensions. Naturally the supersymmetry present in the bit model is likewise dramatically reduced. Continuous string can arise in the bit models with the formation of infinitely long polymers of string bits. Under the right circumstances (at the critical dimension) these polymers can behave as string moving in D dimensional space-time enjoying the full N = 2 Poincare supersymmetric dynamics of type II-B superstring.

  7. Warped models in string theory

    International Nuclear Information System (INIS)

    Acharya, B.S.; Benini, F.; Valandro, R.

    2006-12-01

    Warped models, originating with the ideas of Randall and Sundrum, provide a fascinating extension of the standard model with interesting consequences for the LHC. We investigate in detail how string theory realises such models, with emphasis on fermion localisation and the computation of Yukawa couplings. We find, in contrast to the 5d models, that fermions can be localised anywhere in the extra dimension, and that there are new mechanisms to generate exponential hierarchies amongst the Yukawa couplings. We also suggest a way to distinguish these string theory models with data from the LHC. (author)

  8. Quench propagation tests on the LHC superconducting magnet string

    CERN Document Server

    Coull, L; Krainz, G; Rodríguez-Mateos, F; Schmidt, R

    1996-01-01

    The installation and testing of a series connection of superconducting magnets (three 10 m long dipoles and one 3 m long quadrupole) has been a necessary step in the verification of the viability of the Large Hadron Collider at CERN. In the LHC machine, if one of the lattice dipoles or quadrupoles quenches, the current will be by-passed through cold diodes and the whole magnet chain will be de-excited by opening dump switches. In such a scenario it is very important to know whether the quench propagates from the initially quenching magnet to adjacent ones. A series of experiments have been performed with the LHC Test String powered at different current levels and at different de-excitation rates in order to understand possible mechanisms for such a propagation, and the time delays involved. Results of the tests and implications regarding the LHC machine operation are described in this paper.

  9. Quench detector and analyser for a UNK superconducting string

    International Nuclear Information System (INIS)

    Augueres, J.L.; Kircher, F.; Molinie, F.; Sellier, J.C.; Andriichine, A.; Prima, M.; Vassiliev, L.; Yerachin, A.

    1992-01-01

    In a close collaboration between physicists and engineers from IHEP and CEN Saclay, a system for quench detection on a UNK superconducting string (from 4 to 100 magnets) has been designed and is now under construction at Saclay; this system also enables the data analysis in normal conditions or in case of a quench. The paper describes the architectural design of the system, the hardware (microprocessors are used for the whole system) and the software. Emphasis will be put on the main problems of construction friability, quench detection at a low level and in a very short time, high voltages, data transmission on long distances and integration in the general system of the accelerator

  10. Quench Protection and Powering in a String of Superconducting Magnets for the Large Hadron Collider

    CERN Document Server

    Krainz, G

    1997-01-01

    Practical experience has been attained on the LHC Test String (String~1), composed of one 3~m long superconducting twin-aperture prototype quadrupole and three 10~m long superconducting twin-aperture prototype dipoles. The protection diodes are housed in the cold mass of the short straight section. The quench protection system acts on the half-cell level. During the operation of the LHC Test String, magnet quenches have been provoked manually by firing the quench heaters or occured manually by exceeding the critical temperature or critical current density of the superconductor. Most of the data could be measured while some parameters (magnet current, diode current, average temperature, etc.) cannot be directly measured. A simulation progam has been developed to calculate the missing data. The validation of the model has been performed by comparing measured and simulated data. The modelling of the quench behaviour of the final version of the LHC magnets show that hot-spot temperatures and voltages to ground ca...

  11. Semianalytic calculation of cosmic microwave background anisotropies from wiggly and superconducting cosmic strings

    Science.gov (United States)

    Rybak, I. Yu.; Avgoustidis, A.; Martins, C. J. A. P.

    2017-11-01

    We study how the presence of world-sheet currents affects the evolution of cosmic string networks, and their impact on predictions for the cosmic microwave background (CMB) anisotropies generated by these networks. We provide a general description of string networks with currents and explicitly investigate in detail two physically motivated examples: wiggly and superconducting cosmic string networks. By using a modified version of the CMBact code, we show quantitatively how the relevant network parameters in both of these cases influence the predicted CMB signal. Our analysis suggests that previous studies have overestimated the amplitude of the anisotropies for wiggly strings. For superconducting strings the amplitude of the anisotropies depends on parameters which presently are not well known—but which can be measured in future high-resolution numerical simulations.

  12. String model of black hole microstates

    International Nuclear Information System (INIS)

    Larsen, F.

    1997-01-01

    The statistical mechanics of black holes arbitrarily far from extremality is modeled by a gas of weakly interacting strings. As an effective low-energy description of black holes the string model provides several highly nontrivial consistency checks and predictions. Speculations on a fundamental origin of the model suggest surprising simplifications in nonperturbative string theory, even in the absence of supersymmetry. copyright 1997 The American Physical Society

  13. Superconducting current in a bisoliton superconductivity model

    International Nuclear Information System (INIS)

    Ermakov, V.N.; Kruchinin, S.P.; Ponezha, E.A.

    1991-01-01

    It is shown that the transition into a superconducting state with the current which is described by a bisoliton superconductivity model is accompanied by the deformation of the spectrum of one-particle states of the current carriers. The deformation value is proportional to the conducting current force. The residuaby resistance in such state is absent

  14. Sigma models and renormalization of string loops

    International Nuclear Information System (INIS)

    Tseytlin, A.A.

    1989-05-01

    An extension of the ''σ-model β-functions - string equations of motion'' correspondence to the string loop level is discussed. Special emphasis is made on how the renormalization group acts in string loops and, in particular, on the renormalizability property of the generating functional Z-circumflex for string amplitudes (related to the σ model partition function integrated over moduli). Renormalization of Z-circumflex at one and two loop order is analyzed in some detail. We also discuss an approach to renormalization based on operators of insertion of topological fixtures. (author). 70 refs

  15. Dilatation transformation in the string model

    Energy Technology Data Exchange (ETDEWEB)

    Chikashige, Y [Tokyo Univ. (Japan). Coll. of General Education; Hosoda, M; Saito, S

    1975-05-01

    Dilatation transformation is discussed in the string model. We show that it becomes meaningful in the infinite slope limit of Regge trajectories for the motion of a free string. It turns out to be equivalent to the high energy limit of the dual amplitudes, with the Regge slope kept finite, in the case of interacting strings. The scaling phenomenon is explained from this point of view.

  16. Bursts of gravitational radiation from superconducting cosmic strings and the neutrino mass spectrum

    International Nuclear Information System (INIS)

    Mosquera Cuesta, Herman J.

    2001-02-01

    Berezinsky, Hnatyk and Vilenkin showed that superconducting cosmic strings could be central engines for cosmological gamma-ray bursts and for producing the neutrino component of ultra-high energy cosmic rays. A consequence of this mechanism would be that a detectable cusp-triggered gravitational wave burst should be release simultaneously with the γ-ray surge. If contemporary measurements of both γ and ν radiation could be made for any particular source, then the cosmological time-delay between them might be useful for putting unprecedently tight bounds on the neutrino mass spectrum. Such measurements could consistently verify or rule out the model since strictly correlated behaviour is expected for the duration of the event and for the time variability of the spectra. (author)

  17. Gauge invariant actions for string models

    International Nuclear Information System (INIS)

    Banks, T.

    1986-06-01

    String models of unified interactions are elegant sets of Feynman rules for the scattering of gravitons, gauge bosons, and a host of massive excitations. The purpose of these lectures is to describe the progress towards a nonperturbative formulation of the theory. Such a formulation should make the geometrical meaning of string theory manifest and explain the many ''miracles'' exhibited by the string Feynman rules. There are some new results on gauge invariant observables, on the cosmological constant, and on the symmetries of interacting string field theory. 49 refs

  18. A classification of open string models

    International Nuclear Information System (INIS)

    Nahm, W.

    1985-12-01

    Open string models are classified using modular invariance. No good candidates for new models are found, though the existence of an E 8 invariant model in Rsup(17,1), a similar one in Rsup(5,1) and of a supersymmetric model in Rsup(2,1) cannot be excluded by this technique. An intriguing relation between the left moving and right moving sectors of the heterotic string emerges. (orig.)

  19. SSC string test facility for superconducting magnets: Testing capabilities and program for collider magnets

    International Nuclear Information System (INIS)

    Kraushaar, P.; Burgett, W.; Dombeck, T.; McInturff, A.; Robinson, W.; Saladin, V.

    1993-05-01

    The Accelerator Systems String Test (ASST) R ampersand D Testing Facility has been established at the SSC Laboratory to test Collider and High Energy Booster (HEB) superconducting magnet strings. The facility is operational and has had two testing periods utilizing a half cell of collider prototypical magnets with the associated spool pieces and support systems. This paper presents a description of the testing capabilities of the facility with respect to components and supporting subsystems (cryogenic, power, quench protection, controls and instrumentation), the planned testing program for the collider magnets

  20. Differential geometry in string models

    International Nuclear Information System (INIS)

    Alvarez, O.

    1986-01-01

    In this article the author reviews the differential geometric approach to the quantization of strings. A seminal paper demonstrates the connection between the trace anomaly and the critical dimension. The role played by the Faddeev-Popov ghosts has been instrumental in much of the subsequent work on the quantization of strings. This paper discusses the differential geometry of two dimensional surfaces and its importance in the quantization of strings. The path integral quantization approach to strings will be carefully analyzed to determine the correct effective measure for string theories. The choice of measure for the path integral is determined by differential geometric considerations. Once the measure is determined, the manifest diffeomorphism invariance of the theory will have to be broken by using the Faddeev-Popov ansatz. The gauge fixed theory is studied in detail with emphasis on the role of conformal and gravitational anomalies. In the analysis, the path integral formulation of the gauge fixed theory requires summing over all the distinct complex structures on the manifold

  1. Inflation and cosmic strings in models with dynamical symmetry breaking

    International Nuclear Information System (INIS)

    Matheson, A.M.; Brandenberger, R.H.

    1989-01-01

    We derive the effective action for the composite field which in dynamical symmetry breaking plays the role of the Higgs field. We show that this effective action does not give rise to inflation. It is, however, possible to obtain topological defects such as cosmic strings. There will be fermionic zero modes trapped on the strings, and the strings will therefore be superconducting in a generalized sense. (orig.)

  2. σ-models and string theories

    International Nuclear Information System (INIS)

    Randjbar-Daemi, S.

    1987-01-01

    The propagation of closed bosonic strings interacting with background gravitational and dilaton fields is reviewed. The string is treated as a quantum field theory on a compact 2-dimensional manifold. The question is posed as to how the conditions for the vanishing trace anomaly and the ensuing background field equations may depend on global features of the manifold. It is shown that to the leading order in σ-model perturbation theory the string loop effects do not modify the gravitational and the dilaton field equations. However for the purely bosonic strings new terms involving the modular parameter of the world sheet are induced by quantum effects which can be absorbed into a re-definition of the background fields. The authors also discuss some aspects of several regularization schemes such as dimensional, Pauli-Villars and the proper-time cut off in an appendix

  3. The strings connection: MSSM-like models from strings

    Energy Technology Data Exchange (ETDEWEB)

    Nilles, Hans Peter [Bethe Center for Theoretical Physics (BCTP) and Physikalisches Institut der Universitaet Bonn, Bonn (Germany)

    2014-05-15

    String theory constructions towards the MSSM allow us to identify some general properties that could be relevant for tests at the LHC. They originate from the geometric structure of compactification and the location of fields in extra-dimensional space. Within the framework of the heterotic MiniLandscape we extract some generic lessons for supersymmetric model building. Among them is a specific pattern of SUSY breakdown based on mirage mediation and remnants of extended supersymmetry. This leads to a split spectrum with heavy scalars of the first two families of quarks and leptons and suppressed masses for gauginos, top partners and Higgs bosons. The models exhibit some specific form of hidden supersymmetry consistent with the high mass of the Higgs boson and all presently available experimental constraints. The most compelling picture is based on precision gauge coupling unification that might be in the kinematic reach of the LHC. (orig.)

  4. Open-string models with broken supersymmetry

    International Nuclear Information System (INIS)

    Sagnotti, A.

    2002-01-01

    I review the salient features of three classes of open-string models with broken supersymmetry. These suffice to exhibit, in relatively simple settings, the two phenomena of 'brane supersymmetry' and 'brane supersymmetry breaking'. In the first class of models, to lowest order supersymmetry is broken both in the closed and in the open sectors. In the second class of models, to lowest order supersymmetry is broken in the closed sector, but is exact in the open sector, at least for the low-lying modes, and often for entire towers of string excitations. Finally, in the third class of models, to lowest order supersymmetry is exact in the closed (bulk) sector, but is broken in the open sector. Brane supersymmetry breaking provides a natural solution to some old difficulties met in the construction of open-string vacua. (author)

  5. Open-string models with broken supersymmetry

    International Nuclear Information System (INIS)

    Sagnotti, Augusto

    2000-01-01

    We review the salient features of three classes of open-string models with broken supersymmetry. These suffice to exhibit, in relatively simple settings, the two phenomena of 'brane supersymmetry' and 'brane supersymmetry breaking'. In the first class of models, to lowest order supersymmetry is broken both in the closed and in the open sectors. In the second class of models, to lowest order supersymmetry is broken in the closed sector, but is exact in the open sector, at least for the low-lying modes, and often for entire towers of string excitations. Finally, in the third class of models, to lowest order supersymmetry is exact in the closed (bulk) sector, but is broken in the open sector. Brane supersymmetry breaking provides a natural solution to some old difficulties met in the construction of open-string vacua

  6. Kahler stabilized, modular invariant heterotic string models

    International Nuclear Information System (INIS)

    Gaillard, Mary K.; Gaillard, Mary K.; Nelson, Brent D.

    2007-01-01

    We review the theory and phenomenology of effective supergravity theories based on orbifold compactifications of the weakly-coupled heterotic string. In particular, we consider theories in which the four-dimensional theory displays target space modular invariance and where the dilatonic mode undergoes Kahler stabilization. A self-contained exposition of effective Lagrangian approaches to gaugino condensation and heterotic string theory is presented, leading to the development of the models of Bintruy, Gaillard and Wu. Various aspects of the phenomenology of this class of models are considered. These include issues of supersymmetry breaking and superpartner spectra, the role of anomalous U(1) factors, issues of flavor and R-parity conservation, collider signatures, axion physics, and early universe cosmology. For the vast majority of phenomenological considerations the theories reviewed here compare quite favorably to other string-derived models in the literature. Theoretical objections to the framework and directions for further research are identified and discussed

  7. Cosmic strings and galaxy formation

    Science.gov (United States)

    Bertschinger, Edmund

    1989-01-01

    The cosmogonical model proposed by Zel'dovich and Vilenkin (1981), in which superconducting cosmic strings act as seeds for the origin of structure in the universe, is discussed, summarizing the results of recent theoretical investigations. Consideration is given to the formation of cosmic strings, the microscopic structure of strings, gravitational effects, cosmic string evolution, and the formation of galaxies and large-scale structure. Simulation results are presented in graphs, and several outstanding issues are listed and briefly characterized.

  8. The absence of distortion in the cosmic microwave background spectrum and superconducting cosmic strings

    International Nuclear Information System (INIS)

    Sanchez, N.; Signore, M.

    1990-01-01

    From the results of recent measurements we place new constraints on superconducting cosmic strings (SCS) and on their cosmological evolution, independently of numerical simulation results. The absence of distortion in the cosmic microwave background radiation (MBR) spectrum recently reported from the preliminary data of the COBE (Cosmic background explorer) satellite, together with the available MBR angular temperature ΔT/T measurements and the latest fast pulsar timings, allow us to obtain (i) the electromagnetic-to-gravitational radiation ratio released by SCS loops, f -2 , (ii) the chemical potential due to SCS, μ 0SCS -3 , (iii) constraints on the loop evolution parameters which we confront to those given by numerical simulations, and (iv) limits on the string parameter Gμ: those obtained from COBE's data (Gμ -6 ) converge to those given by the latest PSR 1937+21 timing. Both limits on Gμ are reduced by an order of magnitude when taking into account numerical simulation results. (orig.)

  9. The string model of nuclear scattering: an introduction

    International Nuclear Information System (INIS)

    Werner, Klaus

    1995-01-01

    We discuss the string model of hadronic and nuclear scattering at ultrarelativistic energies. The man purpose is to treat theoretical concepts common to essentially all successful models: strings, Pomerons, and their marriage int he string model approach. We stay an introductory level without going into technical details. (author)

  10. Open strings in the SL(2, R) WZWN model with solution for a rigidly rotating string

    DEFF Research Database (Denmark)

    Lomholt, Michael Andersen; Larsen, A.L.

    2003-01-01

    Boundary conditions and gluing conditions for open strings and D-branes in the SL(2, R) WZWN model, corresponding to AdS , are discussed. Some boundary conditions and gluing conditions previously considered in the literature are shown to be incompatible with the variation principle. We then consi......Boundary conditions and gluing conditions for open strings and D-branes in the SL(2, R) WZWN model, corresponding to AdS , are discussed. Some boundary conditions and gluing conditions previously considered in the literature are shown to be incompatible with the variation principle. We...... then consider open string boundary conditions corresponding to a certain field-dependent gluing condition. This allows us to consider open strings with constant energy and angular momentum. Classically, these open strings naturally generalize the open strings in flat Minkowski space. For rigidly rotating open...

  11. Full-power test of a string of magnets comprising a half-cell of the Superconducting Super Collider

    International Nuclear Information System (INIS)

    Burgett, W.; Christianson, M.; Coombes, R.

    1992-10-01

    In this paper we describe the full-powered operation of a string of industrially-fabricated magnets comprising a half-cell of the Superconducting Super Collider (SSC). The completion of these tests marks the first successful operation of a major SSC subsystem. The five 15-m long dipole magnets in the string had an aperture of 50 mm and the single 5-m long quadrupole aperture was 40 mm. Power and cryogenic connections were made to the string through spool pieces that are prototypes for SSC operations. The string was cooled to cryogenic temperatures in early July, 1992, and power tests were performed at progressively higher currents up to the nominal SSC operating point above 6500 amperes achieved in mid-August. In this paper we report on the electrical and cryogenic performance of the string components and the quench protection system during these initial tests

  12. A model for string-breaking in QCD

    International Nuclear Information System (INIS)

    Antonov, Dmitri; Del Debbio, Luigi; Di Giacomo, Adriano

    2003-01-01

    We present a model for string breaking based on the existence of chromoelectric flux tubes. We predict the form of the long-range potential and obtain an estimate of the string breaking length. A prediction is also obtained for the behaviour with temperature of the string breaking length near the deconfinement phase transition. We plan to use this model as a guide for a program of study of string breaking on the lattice. (author)

  13. Exotic hadron and string junction model

    International Nuclear Information System (INIS)

    Imachi, Masahiro

    1978-01-01

    Hadron structure is investigated adopting string junction model as a realization of confinement. Besides exotic hadrons (M 4 , B 5 etc.), unconventional hadrons appear. A mass formula for these hadrons is proposed. New selection rule is introduced which requires the covalence of constituent line at hadron vertex. New duality appears due to the freedom of junction, especially in anti BB→anti BB reaction. A possible assignment of exotic and unconventional hadrons to recently observed narrow meson states is presented. (auth.)

  14. Comparison of string models for heavy ion collisions

    International Nuclear Information System (INIS)

    Werner, K.

    1990-01-01

    An important method to explore new domains in physics is to compare new results with extrapolations from known areas. For heavy ion collision this can be done with string models, which extrapolate from light to heavy systems and which also may be used to extrapolate to higher energies. That does not mean that these string models are only background models, one may easily implement new ideas on top of the known aspects, providing much more reliable models than those formed from scratch. All the models to be considered in this paper have in common that they consist of three independent building blocks: (a) geometry, (b) string formation and (c) string fragmentation. The geometry aspect is treated quite similar in all models: nucleons are distributed inside each nucleus according to some standard parameterization of nuclear densities. The nuclei move through each other on a straight line trajectory, with all the nucleon positions being fixed. Whenever a projectile and a target nucleon come close, they interact. Such an interaction results in string formation. In the last step these strings decay into observable hadrons according to some string fragmentation procedure. The three building blocks are independent, so one can combine different methods in an arbitrary manner. Therefore rather than treating the models one after the other, the author discusses the procedures for string formation and string fragmentation as used by the models. He considers string models in a very general sense, so he includes models where the authors never use the word string, but which may be most naturally interpreted as string models and show strong similarities with real string models. Although very important he does not discuss - for time and space reasons - recent developments concerning secondary scattering

  15. Deconfinement transition and flux-string models

    International Nuclear Information System (INIS)

    Momen, A.; Rosenzweig, C.

    1997-01-01

    Flux-string models can be used to study the deconfining phase transition. In this paper, we study the models proposed by Patel. We also study the large N c limits of Patel model. To discuss the validity of the mean field theory results, the one-loop Coleman-Weinberg effective potential is calculated for N c =3. We argue that the quantum corrections vanish at large N c when the energy of the so-called baryonic vertices scale with N c . copyright 1997 The American Physical Society

  16. The nucleation model of strings and the Hagedorn phase transition

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, Ikuo.

    1990-07-01

    In this paper we discuss a model of interacting strings at finite densities based on nucleation theory, the study of formation of droplets in a supersaturated gas, the analogy being between drops of various sizes and strings with various excitation number. The interaction of the strings is considered to be the usual merging and splitting. We do not assume equilibrium a priori but find equilibrium configurations of strings as a result of their dynamics. We study these configurations as we change the energy density, and find the presence of two phases. A low density 'gas' phase, in which the energy is in strings in the fundamental or the first few excited levels, and a high density 'liquid' phase in which the number of strings is low, all the energy being carried by few very excited strings. For the gas phase we also discuss the thermodynamics of the system. (author). 21 refs, 20 figs, 1 tab

  17. Hosotani model in closed string theory

    International Nuclear Information System (INIS)

    Shiraishi, Kiyoshi.

    1988-11-01

    Hosotani mechanism in the closed string theory with current algebra symmetry is described by the (old covariant) operator method. We compare the gauge symmetry breaking mechanism in a string theory which has SU(2) symmetry with the one in an equivalent compactified closed string theory. We also investigate the difference between Hosotani mechanism and Higgs mechanism in closed string theories by calculation of a fourpoint amplitude of 'Higgs' bosons at tree level. (author)

  18. Les Houches lectures on matrix models and topological strings

    CERN Document Server

    Marino, M

    2004-01-01

    In these lecture notes for the Les Houches School on Applications of Random Matrices in Physics we give an introduction to the connections between matrix models and topological strings. We first review some basic results of matrix model technology and then we focus on type B topological strings. We present the main results of Dijkgraaf and Vafa describing the spacetime string dynamics on certain Calabi-Yau backgrounds in terms of matrix models, and we emphasize the connection to geometric transitions and to large N gauge/string duality. We also use matrix model technology to analyze large N Chern-Simons theory and the Gopakumar-Vafa transition.

  19. A matrix model from string field theory

    Directory of Open Access Journals (Sweden)

    Syoji Zeze

    2016-09-01

    Full Text Available We demonstrate that a Hermitian matrix model can be derived from level truncated open string field theory with Chan-Paton factors. The Hermitian matrix is coupled with a scalar and U(N vectors which are responsible for the D-brane at the tachyon vacuum. Effective potential for the scalar is evaluated both for finite and large N. Increase of potential height is observed in both cases. The large $N$ matrix integral is identified with a system of N ZZ branes and a ghost FZZT brane.

  20. A model of interacting strings and the Hagedorn phase transition

    International Nuclear Information System (INIS)

    Lizzi, F.; Senda, I.

    1990-03-01

    In this letter we introduce a model of interacting string in which the usual ideal gas approximations are not made. The model is constructed in analogy with nucleation models, the formation of droplets in a supersaturate gas. We consider the strings to be interacting and their number not fixed. The equilibrium configuration is the one for which the time derivatives of the number of strings in the various energies vanishes. We evaluate numerically the equilibrium configurations for various values of the energy density. We find that a density of order one in planck units there is a sharp transition, from a 'gas' phase in which there are many strings, all in the massless or first few excited states, to a 'liquid' phase in which all strings have coalesced into one (or few) highly excited string. (author). 14 refs, 4 figs

  1. Gauge threshold corrections for local string models

    International Nuclear Information System (INIS)

    Conlon, Joseph P.

    2009-01-01

    We study gauge threshold corrections for local brane models embedded in a large compact space. A large bulk volume gives important contributions to the Konishi and super-Weyl anomalies and the effective field theory analysis implies the unification scale should be enhanced in a model-independent way from M s to RM s . For local D3/D3 models this result is supported by the explicit string computations. In this case the scale RM s comes from the necessity of global cancellation of RR tadpoles sourced by the local model. We also study D3/D7 models and discuss discrepancies with the effective field theory analysis. We comment on phenomenological implications for gauge coupling unification and for the GUT scale.

  2. Gauge coupling unification in realistic free-fermionic string models

    International Nuclear Information System (INIS)

    Dienes, K.R.; Faraggi, A.E.

    1995-01-01

    We discuss the unification of gauge couplings within the framework of a wide class of realistic free-fermionic string models which have appeared in the literature, including the flipped SU(5), SO(6)xSO(4), and various SU(3)xSU(2)xU(1) models. If the matter spectrum below the string scale is that of the Minimal Supersymmetric Standard Model (MSSM), then string unification is in disagreement with experiment. We therefore examine several effects that may modify the minimal string predictions. First, we develop a systematic procedure for evaluating the one-loop heavy string threshold corrections in free-fermionic string models, and we explicitly evaluate these corrections for each of the realistic models. We find that these string threshold corrections are small, and we provide general arguments explaining why such threshold corrections are suppressed in string theory. Thus heavy thresholds cannot resolve the disagreement with experiment. We also study the effect of non-standard hypercharge normalizations, light SUSY thresholds, and intermediate-scale gauge structure, and similarly conclude that these effects cannot resolve the disagreement with low-energy data. Finally, we examine the effects of additional color triplets and electroweak doublets beyond the MSSM. Although not required in ordinary grand unification scenarios, such states generically appear within the context of certain realistic free-fermionic string models. We show that if these states exist at the appropriate thresholds, then the gauge couplings will indeed unify at the string scale. Thus, within these string models, string unification can be in agreement with low-energy data. (orig.)

  3. With string model to time series forecasting

    Science.gov (United States)

    Pinčák, Richard; Bartoš, Erik

    2015-10-01

    Overwhelming majority of econometric models applied on a long term basis in the financial forex market do not work sufficiently well. The reason is that transaction costs and arbitrage opportunity are not included, as this does not simulate the real financial markets. Analyses are not conducted on the non equidistant date but rather on the aggregate date, which is also not a real financial case. In this paper, we would like to show a new way how to analyze and, moreover, forecast financial market. We utilize the projections of the real exchange rate dynamics onto the string-like topology in the OANDA market. The latter approach allows us to build the stable prediction models in trading in the financial forex market. The real application of the multi-string structures is provided to demonstrate our ideas for the solution of the problem of the robust portfolio selection. The comparison with the trend following strategies was performed, the stability of the algorithm on the transaction costs for long trade periods was confirmed.

  4. Four-dimensional strings: Phenomenology and model building

    International Nuclear Information System (INIS)

    Quiros, M.

    1989-01-01

    In these lectures we will review some of the last developments in string theories leading to the construction of realistic four-dimensional string models. Special attention will be paid to world-sheet and space-time supersymmetry, modular invariance and model building for supersymmetric and (tachyon-free) nonsupersymmetric ten and four-dimensional models. (orig.)

  5. Construction of closed fermionic string models in four dimensions

    International Nuclear Information System (INIS)

    Lewellen, D.C.

    1987-01-01

    It is possible to construct consistent closed string models directly in four space-time dimensions if reparametrization invariance, conformal invariance and world sheet supersymmetry are properly accounted for. In the context of string models whose internal degrees of freedom are represented by free world sheet fermions, it is possible to completely solve for the above requirements, providing a simple set of rules for constructing string models. N = 1 supersymmetric and non-supersymmetric heterotic type string models with chiral fermions and realistic gauge groups, as well as generalized type II models with realistic gauge groups, can easily be constructed. Many other string models can be constructed using similar methods based on free world sheet bosons

  6. Simple model of string with colour degrees of freedom

    Science.gov (United States)

    Hadasz, Leszek

    1994-03-01

    We consider a simple model of string with colour charges on its ends. The model is constructed by rewriting the action describing classical spinless as well as spinning particles with colour charge in terms of fields living on the “string worldsheet” bounded by trajectories of the particles.

  7. String model for the dynamics of glass-forming liquids.

    Science.gov (United States)

    Pazmiño Betancourt, Beatriz A; Douglas, Jack F; Starr, Francis W

    2014-05-28

    We test the applicability of a living polymerization theory to describe cooperative string-like particle rearrangement clusters (strings) observed in simulations of a coarse-grained polymer melt. The theory quantitatively describes the interrelation between the average string length L, configurational entropy Sconf, and the order parameter for string assembly Φ without free parameters. Combining this theory with the Adam-Gibbs model allows us to predict the relaxation time τ in a lower temperature T range than accessible by current simulations. In particular, the combined theories suggest a return to Arrhenius behavior near Tg and a low T residual entropy, thus avoiding a Kauzmann "entropy crisis."

  8. Non-linear σ-models and string theories

    International Nuclear Information System (INIS)

    Sen, A.

    1986-10-01

    The connection between σ-models and string theories is discussed, as well as how the σ-models can be used as tools to prove various results in string theories. Closed bosonic string theory in the light cone gauge is very briefly introduced. Then, closed bosonic string theory in the presence of massless background fields is discussed. The light cone gauge is used, and it is shown that in order to obtain a Lorentz invariant theory, the string theory in the presence of background fields must be described by a two-dimensional conformally invariant theory. The resulting constraints on the background fields are found to be the equations of motion of the string theory. The analysis is extended to the case of the heterotic string theory and the superstring theory in the presence of the massless background fields. It is then shown how to use these results to obtain nontrivial solutions to the string field equations. Another application of these results is shown, namely to prove that the effective cosmological constant after compactification vanishes as a consequence of the classical equations of motion of the string theory. 34 refs

  9. The early years of string theory: The dual resonance model

    International Nuclear Information System (INIS)

    Ramond, P.

    1987-10-01

    This paper reviews the past quantum mechanical history of the dual resonance model which is an early string theory. The content of this paper is listed as follows: historical review, the Veneziano amplitude, the operator formalism, the ghost story, and the string story

  10. Hadronic mass-relations from topological expansion and string model

    International Nuclear Information System (INIS)

    Kaidalov, A.B.

    1980-01-01

    Hadronic mass-relations from topological expansion and string model are derived. For this purpose the space- time picture of hadron interactions at high energies corresponding to planar diagrams of topological expansion is considered. Simple relations between intercepts and slopes of Regge trajectories based on the topological expansion and q anti q-string picture of hadrons are obtained [ru

  11. Flat directions in left-right symmetric string derived models

    International Nuclear Information System (INIS)

    Cleaver, Gerald B.; Clements, David J.; Faraggi, Alon E.

    2002-01-01

    The only string models known to reproduce the minimal supersymmetric standard model in the low energy effective field theory are those constructed in the free fermionic formulation. We demonstrate the existence of quasirealistic free fermionic heterotic string models in which supersymmetric singlet flat directions do not exist. This raises the possibility that supersymmetry is broken perturbatively in such models by the one-loop Fayet-Iliopoulos term. We show, however, that supersymmetric flat directions that utilize vacuum expectation values of some non-Abelian fields in the massless string spectrum do exist in the model. We argue that hidden sector condensates lift the flat directions and break supersymmetry hierarchically

  12. Supersymmetry and String Theory: Beyond the Standard Model

    International Nuclear Information System (INIS)

    Rocek, Martin

    2007-01-01

    When I was asked to review Michael Dine's new book, 'Supersymmetry and String Theory', I was pleased to have a chance to read a book by such an established authority on how string theory might become testable. The book is most useful as a list of current topics of interest in modern theoretical physics. It gives a succinct summary of a huge variety of subjects, including the standard model, symmetry, Yang-Mills theory, quantization of gauge theories, the phenomenology of the standard model, the renormalization group, lattice gauge theory, effective field theories, anomalies, instantons, solitons, monopoles, dualities, technicolor, supersymmetry, the minimal supersymmetric standard model, dynamical supersymmetry breaking, extended supersymmetry, Seiberg-Witten theory, general relativity, cosmology, inflation, bosonic string theory, the superstring, the heterotic string, string compactifications, the quintic, string dualities, large extra dimensions, and, in the appendices, Goldstone's theorem, path integrals, and exact beta-functions in supersymmetric gauge theories. Its breadth is both its strength and its weakness: it is not (and could not possibly be) either a definitive reference for experts, where the details of thorny technical issues are carefully explored, or a textbook for graduate students, with detailed pedagogical expositions. As such, it complements rather than replaces the much narrower and more focussed String Theory I and II volumes by Polchinski, with their deep insights, as well the two older volumes by Green, Schwarz, and Witten, which develop string theory pedagogically. (book review)

  13. Parity doubling in the baryon string model

    International Nuclear Information System (INIS)

    Khokhlachev, S.B.

    1990-01-01

    The nature of parity doubling of baryon states with non-zero angular momentum is considered. The idea of explaining this phenomenon lies in the fact that the rotation of the gluon string leads to a centrifugal potential for quarks. The quarks on the string form a quark-diquark system. Quark tunneling from one end of the string to the other is not probable for systems with large angular momentum due to a large centrifugal potential, and the smallness of the underbarrier transition amplitude explains the small mass difference of the states with opposite parity. (orig.)

  14. Big bang models in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Craps, Ben [Theoretische Natuurkunde, Vrije Universiteit Brussel and The International Solvay Institutes Pleinlaan 2, B-1050 Brussels (Belgium)

    2006-11-07

    These proceedings are based on lectures delivered at the 'RTN Winter School on Strings, Supergravity and Gauge Theories', CERN, 16-20 January 2006. The school was mainly aimed at PhD students and young postdocs. The lectures start with a brief introduction to spacetime singularities and the string theory resolution of certain static singularities. Then they discuss attempts to resolve cosmological singularities in string theory, mainly focusing on two specific examples: the Milne orbifold and the matrix big bang.

  15. Composite vector mesons and string models

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1985-01-01

    The author discusses the general question of gauge mesons in extended supergravities, and whether such theories can produce the gauge mesons corresponding to a group at least as large as SU(3) x SU(2) x U(1). An exciting conjecture in this direction was made a few years ago by previous authors, who suggested that there might be composite SU(8) gauge mesons in a supergravity model known as the N=8 model. Until we have a consistent, renormalizable theory of supergravity we cannot really obtain any indication of the truth or falseness of that conjecture. One form of the Neveu-Schwarz string model has been shown to be a theory of supergravity; it is finite at the one-loop level and probably in any order of perturbation theory. The discussion is within the framework of this model. The author questions whether massive vector mesons can possibly lose their mass due to interactions. Arguments have been given on both sides of this question, and the author believes that this can occur under certain circumstances. Our conclusions is that the FNNS mechanism will create a gauge symmetry in addition to the rigid symmetry

  16. String beta function equations from c=1 matrix model

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R

    1995-01-01

    We derive the \\sigma-model tachyon \\beta-function equation of 2-dimensional string theory, in the background of flat space and linear dilaton, working entirely within the c=1 matrix model. The tachyon \\beta-function equation is satisfied by a \\underbar{nonlocal} and \\underbar{nonlinear} combination of the (massless) scalar field of the matrix model. We discuss the possibility of describing the `discrete states' as well as other possible gravitational and higher tensor backgrounds of 2-dimensional string theory within the c=1 matrix model. We also comment on the realization of the W-infinity symmetry of the matrix model in the string theory. The present work reinforces the viewpoint that a nonlocal (and nonlinear) transform is required to extract the space-time physics of 2-dimensional string theory from the c=1 matrix model.

  17. Heterotic sigma models and non-linear strings

    International Nuclear Information System (INIS)

    Hull, C.M.

    1986-01-01

    The two-dimensional supersymmetric non-linear sigma models are examined with respect to the heterotic string. The paper was presented at the workshop on :Supersymmetry and its applications', Cambridge, United Kingdom, 1985. The non-linear sigma model with Wess-Zumino-type term, the coupling of the fermionic superfields to the sigma model, super-conformal invariance, and the supersymmetric string, are all discussed. (U.K.)

  18. Three level constraints on conformal field theories and string models

    International Nuclear Information System (INIS)

    Lewellen, D.C.

    1989-05-01

    Simple tree level constraints for conformal field theories which follow from the requirement of crossing symmetry of four-point amplitudes are presented, and their utility for probing general properties of string models is briefly illustrated and discussed. 9 refs

  19. Exactly solvable string models of curved space-time backgrounds

    CERN Document Server

    Russo, J.G.; Russo, J G; Tseytlin, A A

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the dilatonic Melvin solution and the uniform magnetic field solution discussed earlier as well as some singular space-times. Solvability of the string sigma model is related to its connection via duality to a much simpler looking model which is a "twisted" product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model as well as a number of generalizations leading to larger classes of exact 4-dimensional string solutions.

  20. Sharpening the flipped SU(5) string model

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L. (Center for Theoretical Physics, Dept. of Physics, Texas A and M Univ., College Station, TX (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, TX (United States)); Nanopoulos, D.V. (Center for Theoretical Physics, Dept. of Physics, Texas A and M Univ., College Station, TX (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, TX (United States) Theoretical Physics Div., CERN, Geneva (Switzerland))

    1991-10-17

    We present an improved version of the flipped SU(5) string model which accommodates numerous existing and expected features of the low-energy physics world, such as (i) two Higgs doublets with adequate mixing between them; (ii) hierarchy of quark and lepton masses, including relations such as m{sub s}/m{sub b}{proportional to}m{sub {mu}}/m{sub {tau}}, and m{sub c}/m{sub t}{sup 1/2.}, (iii) sufficiently suppressed proton decay operators, with gauge-boson mediated decays favoring p{yields}anti {nu}{sub {tau}}{pi}{sup +} and n{yields}anti {nu}{sub {tau}}, {pi}{sup 0}, (iv) nearly massless {nu}{sub {mu}} and {nu}{sub {tau}}, and {nu}{sub e} in the eV range; (v) heavy top quark (m{sub t} < or approx. 170 GeV) and large ratio of vacuum expectation values (tan {beta} < or approx. 33). (orig.).

  1. Two-matrix models and c =1 string theory

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong Chuansheng

    1994-05-01

    We show that the most general two-matrix model with bilinear coupling underlies c = 1 string theory. More precisely we prove that W 1+∞ constraints, a subset of the correlation functions and the integrable hierarchy characterizing such two-matrix model, correspond exactly to the W 1+∞ constraints, to the discrete tachyon correlation functions and the integrable hierarchy of the c = 1 string theory. (orig.)

  2. Dualities in ABJM matrix model from closed string viewpoint

    Energy Technology Data Exchange (ETDEWEB)

    Kiyoshige, Kazuki; Moriyama, Sanefumi [Department of Physics, Graduate School of Science, Osaka City University,3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan)

    2016-11-17

    We propose a new formalism to study the ABJM matrix model. Contrary to expressing the fractional brane background with the Wilson loops in the open string formalism, we formulate the Wilson loop expectation value from the viewpoint of the closed string background. With this new formalism, we can prove some duality relations in the matrix model. /includegraphics[scale=0.7]{abstract.eps}.

  3. String networks in ZN Lotka–Volterra competition models

    International Nuclear Information System (INIS)

    Avelino, P.P.; Bazeia, D.; Menezes, J.; Oliveira, B.F. de

    2014-01-01

    In this Letter we give specific examples of Z N Lotka–Volterra competition models leading to the formation of string networks. We show that, in order to promote coexistence, the species may arrange themselves around regions with a high number density of empty sites generated by predator–prey interactions between competing species. These configurations extend into the third dimension giving rise to string networks. We investigate the corresponding dynamics using both stochastic and mean field theory simulations, showing that the coarsening of these string networks follows a scaling law which is analogous to that found in other physical systems in condensed matter and cosmology

  4. Fermionic models with superconducting circuits

    Energy Technology Data Exchange (ETDEWEB)

    Las Heras, Urtzi; Garcia-Alvarez, Laura; Mezzacapo, Antonio; Lamata, Lucas [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); Solano, Enrique [University of the Basque Country UPV/EHU, Department of Physical Chemistry, Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2015-12-01

    We propose a method for the efficient quantum simulation of fermionic systems with superconducting circuits. It consists in the suitable use of Jordan-Wigner mapping, Trotter decomposition, and multiqubit gates, be with the use of a quantum bus or direct capacitive couplings. We apply our method to the paradigmatic cases of 1D and 2D Fermi-Hubbard models, involving couplings with nearest and next-nearest neighbours. Furthermore, we propose an optimal architecture for this model and discuss the benchmarking of the simulations in realistic circuit quantum electrodynamics setups. (orig.)

  5. Modeling Harpsichord Plucking: The Plectrum and the String

    Science.gov (United States)

    Perng, Jack; Rossing, Thomas; Smith, Julius

    2011-11-01

    The harpsichord is a plucked string keyboard instrument that was popular during the Renaissance and Baroque music eras. Although it was later replaced by the more expressive piano, it has mounted a comeback due to the early music movement today. A physical model of the harpsichord's plucking mechanism is presented, detailing the plectrum-string interaction which illustrates many aspects of the harpsichord's characteristic sound.

  6. Unified model for vortex-string network evolution

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.; Moore, J.N.; Shellard, E.P.S.

    2004-01-01

    We describe and numerically test the velocity-dependent one-scale string evolution model, a simple analytic approach describing a string network with the averaged correlation length and velocity. We show that it accurately reproduces the large-scale behavior (in particular the scaling laws) of numerical simulations of both Goto-Nambu and field theory string networks. We explicitly demonstrate the relation between the high-energy physics approach and the damped and nonrelativistic limits which are relevant for condensed matter physics. We also reproduce experimental results in this context and show that the vortex-string density is significantly reduced by loop production, an effect not included in the usual 'coarse-grained' approach

  7. String and brane models with spontaneously or dynamically induced tension

    International Nuclear Information System (INIS)

    Guendelman, E.I.; Kaganovich, A.; Nissimov, E.; Pacheva, S.

    2002-01-01

    We study in some detail the properties of a previously proposed new class of string and brane models whose world-sheet (world-volume) actions are built with a modified reparametrization-invariant measure of integration and which do not contain any ad hoc dimensionful parameters. The ratio of the new and the standard Riemannian integration measure densities plays the role of a dynamically generated string or brane tension. The latter is identified as (the magnitude of) an effective (non-Abelian) electric field strength on the world-sheet or world-volume obeying the standard Gauss-law constraint. As a result a simple classical mechanism for confinement via modified-measure 'color' strings is proposed where the colorlessness of the 'hadrons' is an automatic consequence of the new string dynamics

  8. String flipped SO(10) model from Z4 orbifold

    International Nuclear Information System (INIS)

    Sato, H.; Shimojo, M.

    1993-01-01

    We search all possible string grand-unified-theory models obtained from heterotic superstrings compactified on a Z 4 orbifold with one Wilson line. It is shown that there is an essentially unique anomaly-free flipped SO(10) model with three generations plus one mirror conjugate generation of matter fields. We derive effective Yukawa interactions and examine the structure of mass matrices as well as a possible scenario of string coupling unification. The four-generation Z 4 orbifold model is a phenomenologically viable model beyond the minimal supersymmetric standard one

  9. Relativistic strings and dual models of strong interactions

    International Nuclear Information System (INIS)

    Marinov, M.S.

    1977-01-01

    The theory of strong interactions,based on the model depicting a hardon as a one-dimentional elastic relativistic system(''string'') is considered. The relationship between this model and the concepts of quarks and partons is discussed. Presented are the principal results relating to the Veneziano dual theory, which may be considered as the consequence of the string model, and to its modifications. The classical string theory is described in detail. Attention is focused on questions of importance to the construction of the quantum theory - the Hamilton mechanisms and conformal symmetry. Quantization is described, and it is shown that it is not contradictory only in the 26-dimentional space and with a special requirement imposed on the spectrum of states. The theory of a string with a distributed spin is considered. The spin is introduced with the aid of the Grassman algebra formalism. In this case quantization is possible only in the 10-dimentional space. The strings interact by their ruptures and gluings. A method for calculating the interaction amplitudes is indicated

  10. sigma model approach to the heterotic string theory

    International Nuclear Information System (INIS)

    Sen, A.

    1985-09-01

    Relation between the equations of motion for the massless fields in the heterotic string theory, and the conformal invariance of the sigma model describing the propagation of the heterotic string in arbitrary background massless fields is discussed. It is emphasized that this sigma model contains complete information about the string theory. Finally, we discuss the extension of the Hull-Witten proof of local gauge and Lorentz invariance of the sigma-model to higher order in α', and the modification of the transformation laws of the antisymmetric tensor field under these symmetries. Presence of anomaly in the naive N = 1/2 supersymmetry transformation is also pointed out in this context. 12 refs

  11. Gauge Model of High-Tc Superconductivity

    International Nuclear Information System (INIS)

    Ng, Sze Kui

    2012-01-01

    A simple gauge model of superconductivity is presented. The seagull vertex term of this gauge model gives an attractive potential between electrons for the forming of Cooper pairs of superconductivity. This gauge model gives a unified description of superconductivity and magnetism including antiferromagnetism, pseudogap phenomenon, stripes phenomenon, paramagnetic Meissner effect, Type I and Type II supeconductivity and high-T c superconductivity. The doping mechanism of superconductivity is found. It is shown that the critical temperature T c is related to the ionization energies of elements and can be computed by a formula of T c . For the high-T c superconductors such as La 2-x Sr x CuO 4 , Y Ba 2 Cu 3 O 7 , and MgB 2 , the computational results of T c agree with the experimental results.

  12. String effects in the 3d gauge Ising model

    International Nuclear Information System (INIS)

    Caselle, Michele; Panero, Marco; Hasenbusch, Martin

    2003-01-01

    We compare the predictions of the effective string description of confinement with a set of Monte Carlo data for the 3d gauge Ising model at finite temperature. Thanks to a new algorithm which makes use of the dual symmetry of the model we can reach very high precisions even for large quark-antiquark distances. We are thus able to explore the large R regime of the effective string. We find that for large enough distances and low enough temperature the data are well described by a pure bosonic string. As the temperature increases higher order corrections become important and cannot be neglected even at large distances. These higher order corrections seem to be well described by the Nambu-Goto action truncated at the first perturbative order. (author)

  13. the tj model and superconductivity

    African Journals Online (AJOL)

    DJFLEX

    Perhaps that in the reason why their explanations of the superconductivity have had limited scope . A proper theory and mechanism of superconductivity in the ceramic cuprates should take account of magnetism inherent in the compounds. For the (214) compound experiment have revealed strong antiferromagnetic (AF).

  14. Testing effective string models of black holes with fixed scalars

    International Nuclear Information System (INIS)

    Krasnitz, M.; Klebanov, I.R.

    1997-01-01

    We solve the problem of mixing between the fixed scalar and metric fluctuations. First, we derive the decoupled fixed scalar equation for the four-dimensional black hole with two different charges. We proceed to the five-dimensional black hole with different electric (one-brane) and magnetic (five-brane) charges, and derive two decoupled equations satisfied by appropriate mixtures of the original fixed scalar fields. The resulting greybody factors are proportional to those that follow from coupling to dimension (2,2) operators on the effective string. In general, however, the string action also contains couplings to chiral operators of dimension (1,3) and (3,1), which cause disagreements with the semiclassical absorption cross sections. Implications of this for the effective string models are discussed. copyright 1997 The American Physical Society

  15. Exactly solvable string models of curved space-time backgrounds

    International Nuclear Information System (INIS)

    Russo, J.G.

    1995-01-01

    We consider a new 3-parameter class of exact 4-dimensional solutions in closed string theory and solve the corresponding string model, determining the physical spectrum and the partition function. The background fields (4-metric, antisymmetric tensor, two Kaluza-Klein vector fields, dilaton and modulus) generically describe axially symmetric stationary rotating (electro)magnetic flux-tube type universes. Backgrounds of this class include both the ''dilatonic'' (a=1) and ''Kaluza-Klein'' (a=√(3)) Melvin solutions and the uniform magnetic field solution, as well as some singular space-times. Solvability of the string σ-model is related to its connection via duality to a simpler model which is a ''twisted'' product of a flat 2-space and a space dual to 2-plane. We discuss some physical properties of this model (tachyonic instabilities in the spectrum, gyromagnetic ratio, issue of singularities, etc.). It provides one of the first examples of a consistent solvable conformal string model with explicit D=4 curved space-time interpretation. (orig.)

  16. Quantization of bosonic closed strings and the Liouville model

    International Nuclear Information System (INIS)

    Paycha, S.

    1988-01-01

    The author shows that by means of a reasonable interpretation of the Lebesgue measure describing the partition function the quantization of closed bosonic strings described by compact surfaces of genus p>1 can be related to that of the Liouville model. (HSI)

  17. Non Linear signa models probing the string structure

    International Nuclear Information System (INIS)

    Abdalla, E.

    1987-01-01

    The introduction of a term depending on the extrinsic curvature to the string action, and related non linear sigma models defined on a symmetric space SO(D)/SO(2) x SO(d-2) is descussed . Coupling to fermions are also treated. (author) [pt

  18. Scattering of long folded strings and mixed correlators in the two-matrix model

    International Nuclear Information System (INIS)

    Bourgine, J.-E.; Hosomichi, K.; Kostov, I.; Matsuo, Y.

    2008-01-01

    We study the interactions of Maldacena's long folded strings in two-dimensional string theory. We find the amplitude for a state containing two long folded strings to come and go back to infinity. We calculate this amplitude both in the worldsheet theory and in the dual matrix model, the matrix quantum mechanics. The matrix model description allows to evaluate the amplitudes involving any number of long strings, which are given by the mixed trace correlators in an effective two-matrix model

  19. Analytic models for the evolution of semilocal string networks

    International Nuclear Information System (INIS)

    Nunes, A. S.; Martins, C. J. A. P.; Avgoustidis, A.; Urrestilla, J.

    2011-01-01

    We revisit previously developed analytic models for defect evolution and adapt them appropriately for the study of semilocal string networks. We thus confirm the expectation (based on numerical simulations) that linear scaling evolution is the attractor solution for a broad range of model parameters. We discuss in detail the evolution of individual semilocal segments, focusing on the phenomenology of segment growth, and also provide a preliminary comparison with existing numerical simulations.

  20. Local models of Gauge Mediated Supersymmetry Breaking in String Theory

    CERN Document Server

    Garcia-Etxebarria, I; Uranga, Angel M; Garcia-Etxebarria, Inaki; Saad, Fouad; Uranga, Angel M.

    2006-01-01

    We describe local Calabi-Yau geometries with two isolated singularities at which systems of D3- and D7-branes are located, leading to chiral sectors corresponding to a semi-realistic visible sector and a hidden sector with dynamical supersymmetry breaking. We provide explicit models with a 3-family MSSM-like visible sector, and a hidden sector breaking supersymmetry at a meta-stable minimum. For singularities separated by a distance smaller than the string scale, this construction leads to a simple realization of gauge mediated supersymmetry breaking in string theory. The models are simple enough to allow the explicit computation of the massive messenger sector, using dimer techniques for branes at singularities. The local character of the configurations makes manifest the UV insensitivity of the supersymmetry breaking mediation.

  1. The search for a realistic flipped SU(5) string model

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, J.L. (Center for Theoretical Physics, Texas A and M Univ., College Station, TX (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, TX (United States)); Nanopoulos, D.V. (Center for Theoretical Physics, Texas A and M Univ., College Station, TX (United States) Astroparticle Physics Group, Houston Advanced Research Center (HARC), The Woodlands, TX (United States)); Yuan, K. (Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL (United States))

    1993-07-05

    We present an extensive search for a class of flipped SU(5) models built within the free fermionic formulation of the heterotic string. We describe a set of algorithms which constitute the basis for a computer program capable of generating systematically the massless spectrum and the superpotential of all possible models within the class we consider. Our search through the huge parameter space to be explored is simplified considerably by the constraint of N=1 spacetime supersymmetry and the need for extra Q, anti Q representations beyond the standard ones in order to possibly achieve string gauge coupling unification at scales of O(10[sup 18] GeV). Our results are remarkably simple and evidence the large degree of redundancy in this kind of constructions. We find one model with gauge group SU(5)xU(1)sub(Y tilde)xSO(10)[sub h]xSU(4)[sub h]xU(1)[sup 5] and fairly acceptable phenomenological properties. We study the D- and F-flatness constraints and the symmetry breaking pattern in this model and conclude that string gauge coupling unification is quite possible. (orig.)

  2. D-term Spectroscopy in Realistic Heterotic-String Models

    CERN Document Server

    Dedes, Athanasios

    2000-01-01

    The emergence of free fermionic string models with solely the MSSM charged spectrum below the string scale provides further evidence to the assertion that the true string vacuum is connected to the Z_2 x Z_2 orbifold in the vicinity of the free fermionic point in the Narain moduli space. An important property of the Z_2 x Z_2 orbifold is the cyclic permutation symmetry between the three twisted sectors. If preserved in the three generations models the cyclic permutation symmetry results in a family universal anomalous U(1)_A, which is instrumental in explaining squark degeneracy, provided that the dominant component of supersymmetry breaking arises from the U(1)_A D-term. Interestingly, the contribution of the family--universal D_A-term to the squark masses may be intra-family non-universal, and may differ from the usual (universal) boundary conditions assumed in the MSSM. We contemplate how D_A--term spectroscopy may be instrumental in studying superstring models irrespective of our ignorance of the details ...

  3. Interacting-string picture of dual-resonance models

    International Nuclear Information System (INIS)

    Mandelstam, S.

    1985-01-01

    Dual-resonance models are an alyzed by means of operators which act within the physical Hilbert space of positive-metric states. The basis of the method is to extend the relativistic-string picture of a previous study to interacting particles. Functional methods are used, but their relation to the operator is evident, and factorization is maintained. An expression is given for the N-point amplitude in terms of physical-particle operators. For the three-point function the Neumann functions which occur in this expression are evaluated, so that we have a formula for the on- and off-energy-shell vertex. The authors assume that the string has no longitudinal degrees of freedom, and their results are Lorentz invariant and dual only if d=26

  4. Matrix models with γstring>0

    International Nuclear Information System (INIS)

    Marzban, C.; Viswanathan, R.R.

    1990-12-01

    Within the framework of c = 1 matrix models, we consider multi-matrix models. A connection is established between a D-dimensional gas of fermions (bosons) for odd (even) values of D. A statistical mechanical analysis yields the scaling law for the free energy, and hence the susceptibility exponents for the various models. The exponents turn out to be positive for the multi-matrix models, suggesting that these could represent models of 2 d-gravity coupled to c>1 matter. Whereas in the c=1 case the density of states itself diverges as one approaches the critical point, in the D-matrix models various derivatives of the density of states diverge, with the order of the derivative depending on D. This qualitatively different behaviour of the density of states could be a signal of the conjectured ''phase transition'' at c=1. (author). 14 refs

  5. Phenomenological Hints from a Class of String Motivated Model Constructions

    Directory of Open Access Journals (Sweden)

    Hans Peter Nilles

    2015-01-01

    Full Text Available We use string theory constructions towards the generalisation of the supersymmetric standard model of strong and electroweak interactions. Properties of the models depend crucially on the location of fields in extradimensional compact space. This allows us to extract some generic lessons for the phenomenological properties of the low energy effective action. Within this scheme we present a compelling model based on local grand unification and mirage mediation of supersymmetry breakdown. We analyse the properties of the specific model towards its possible tests at the LHC and the complementarity to direct dark matter searches.

  6. Strings in the Sun?

    International Nuclear Information System (INIS)

    Chudnovsky, E.; Vilenkin, A.

    1988-01-01

    If light superconducting strings were formed in the early Universe, then it is very likely that now they exist in abundance in the interstellar plasma and in stars. The dynamics of such strings can be dominated by friction, so that they are ''frozen'' into the plasma. Turbulence of the plasma twists and stretches the strings, forming a stochastic string network. Such networks must generate particles and magnetic fields, and may play an important role in the physics of stars and of the Galaxy

  7. String consistency for unified model building

    International Nuclear Information System (INIS)

    Chaudhuri, S.; Chung, S.W.; Hockney, G.; Lykken, J.

    1995-01-01

    We explore the use of real fermionization as a test case for understanding how specific features of phenomenological interest in the low-energy effective superpotential are realized in exact solutions to heterotic superstring theory. We present pedagogic examples of models which realize SO(10) as a level two current algebra on the world-sheet, and discuss in general how higher level current algebras can be realized in the tensor product of simple constituent conformal field theories. We describe formal developments necessary to compute couplings in models built using real fermionization. This allows us to isolate cases of spin structures where the standard prescription for real fermionization may break down. (orig.)

  8. Supersymmetric sigma models and the heterotic string

    International Nuclear Information System (INIS)

    Hull, C.M.; Witten, E.

    1989-01-01

    The authors define the (1 + 1)-dimensional supersymmetry algebra of type (p, q) to be that generated by p right-handed Majorana-Weyl supercharges and q left-handed ones. They construct the non-linear sigma models with supersymmetry of type (1, 0) and (2, 0) and discuss their geometry and their relevance to compactifications of the heterotic superstring. The sigma-model anomalies can be canceled by a mechanism closely related to that used by Green and Schwarz to cancel gravitational and Yang-Mills anomalies for the superstring

  9. From topological strings to minimal models

    International Nuclear Information System (INIS)

    Foda, Omar; Wu, Jian-Feng

    2015-01-01

    We glue four refined topological vertices to obtain the building block of 5D U(2) quiver instanton partition functions. We take the 4D limit of the result to obtain the building block of 4D instanton partition functions which, using the AGT correspondence, are identified with Virasoro conformal blocks. We show that there is a choice of the parameters of the topological vertices that we start with, as well as the parameters and the intermediate states involved in the gluing procedure, such that we obtain Virasoro minimal model conformal blocks.

  10. From topological strings to minimal models

    Energy Technology Data Exchange (ETDEWEB)

    Foda, Omar [School of Mathematics and Statistics, University of Melbourne,Royal Parade, Parkville, VIC 3010 (Australia); Wu, Jian-Feng [Department of Mathematics and Statistics, Henan University,Minglun Street, Kaifeng city, Henan (China); Beijing Institute of Theoretical Physics and Mathematics,3rd Shangdi Street, Beijing (China)

    2015-07-24

    We glue four refined topological vertices to obtain the building block of 5D U(2) quiver instanton partition functions. We take the 4D limit of the result to obtain the building block of 4D instanton partition functions which, using the AGT correspondence, are identified with Virasoro conformal blocks. We show that there is a choice of the parameters of the topological vertices that we start with, as well as the parameters and the intermediate states involved in the gluing procedure, such that we obtain Virasoro minimal model conformal blocks.

  11. String Sigma Models on Curved Supermanifolds

    Directory of Open Access Journals (Sweden)

    Roberto Catenacci

    2018-04-01

    Full Text Available We use the techniques of integral forms to analyze the easiest example of two-dimensional sigma models on a supermanifold. We write the action as an integral of a top integral form over a D = 2 supermanifold, and we show how to interpolate between different superspace actions. Then, we consider curved supermanifolds, and we show that the definitions used for flat supermanifolds can also be used for curved supermanifolds. We prove it by first considering the case of a curved rigid supermanifold and then the case of a generic curved supermanifold described by a single superfield E.

  12. Superconducting solenoid model magnet test results

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; /Fermilab

    2006-08-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests.

  13. Superconducting solenoid model magnet test results

    International Nuclear Information System (INIS)

    Carcagno, R.; Dimarco, J.; Feher, S.; Ginsburg, C.M.; Hess, C.; Kashikhin, V.V.; Orris, D.F.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.A.; Terechkine, I.; Tompkins, J.C.; Wokas, T.; Fermilab

    2006-01-01

    Superconducting solenoid magnets suitable for the room temperature front end of the Fermilab High Intensity Neutrino Source (formerly known as Proton Driver), an 8 GeV superconducting H- linac, have been designed and fabricated at Fermilab, and tested in the Fermilab Magnet Test Facility. We report here results of studies on the first model magnets in this program, including the mechanical properties during fabrication and testing in liquid helium at 4.2 K, quench performance, and magnetic field measurements. We also describe new test facility systems and instrumentation that have been developed to accomplish these tests

  14. Superconductivity

    International Nuclear Information System (INIS)

    Taylor, A.W.B.; Noakes, G.R.

    1981-01-01

    This book is an elementray introduction into superconductivity. The topics are the superconducting state, the magnetic properties of superconductors, type I superconductors, type II superconductors and a chapter on the superconductivity theory. (WL)

  15. Thermo-hydraulic Quench Propagation at the LHC Superconducting Magnet String

    CERN Document Server

    Rodríguez-Mateos, F; Serio, L

    1998-01-01

    The superconducting magnets of the LHC are protected by heaters and cold by-pass diodes. If a magnet quenches, the heaters on this magnet are fired and the magnet chain is de-excited in about two minu tes by opening dump switches in parallel to a resistor. During the time required for the discharge, adjacent magnets might quench due to thermo-hydraulic propagation in the helium bath and/or heat con duction via the bus bar. The number of quenching magnets depends on the mechanisms for the propagation. In this paper we report on quench propagation experiments from a dipole magnet to an adjacent ma gnet. The mechanism for the propagation is hot helium gas expelled from the first quenching magnet. The propagation changes with the pressure opening settings of the quench relief valves.

  16. Model of an LHC superconducting quadrupole magnet

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    Model of a superconducting quadrupole magnet for the LHC project. These magnets are used to focus the beam by squeezing it into a smaller cross-section, a similar effect to a lens focusing light. However, each magnet only focuses the beam in one direction so alternating magnet arrangements are required to produce a fully focused beam.

  17. Bianchi type IX string cosmological model in general relativity

    Indian Academy of Sciences (India)

    Cosmic strings arise during phase transitions after the big-bang explosion as the temperature goes down below some critical temperature [1–3]. These strings have stress energy and couple in a simple way to the gravitational field. The general relativistic formalism of cosmic strings is due to Letelier [4,5]. Stachel [6] has ...

  18. Three-generation flipped SU(5) string models on orbifolds

    Energy Technology Data Exchange (ETDEWEB)

    Burwick, T.T. (Zurich Univ. (Switzerland). Inst. fuer Theoretische Physik); Kaiser, R.K.; Mueller, H.F. (ETH-Hoenggerberg, Zurich (Switzerland). Inst. fuer Theoretische Physik)

    1991-09-16

    We construct four-dimensional twisted string models on non-prime orbifolds which have as gauge group flipped SU(5) with a phenomenologically interesting matter spectrum of k generations plus (k-3) antigenerations. Using generalized selection rules for Yukawa couplings on non-prime orbifolds, we analyse one model in greater detail and obtain the following phenomenologically promising features: We find one pair of H and anti H GUT Higgs fields which break the GUT gauge group into the standard model, and in addition generate large mass terms for the unwanted triplet parts of the standard model Higgs fields, plus one pair of standard model Higgs fields. Moreover, we obtain couplings of the standard model Higgs to quark and lepton fields in all families. (orig.).

  19. The string model with the extrinsic curvature term

    International Nuclear Information System (INIS)

    Itoi, C.; Kubota, Hiroshi

    1988-01-01

    The string model with the extrinsic curvature is studied which is a gauge invariant field theory with higher order derivatives. We present an equivalent action without any higher order derivatives which keeps the gauge invariance. We point out the difficulty caused by the second class constraints in Dirac's canonical method. Following a new method for dynamical systems with second class constraints, we construct a equivalent model which has no second class constraints but has a new gauge invariance. This gauge invariance guarantees the equivalence between the original model and new one. We show that the model can be quantized in this formalism. In a simple model, we show the nilpotence of the BRST charge under certain conditions, and discuss the unitarity of the theory. (author)

  20. Baryon string model. II. Special solutions of classical three-string equations of motion

    International Nuclear Information System (INIS)

    Klimenko, S.V.; Kochin, V.N.; Plyushchai, M.S.; Pron'ko, G.P.

    1986-01-01

    The authors consider special solutions of the classical threestring equations of motion. The basic results needed for construction and analysis of the special solutions are examined. The authors consider very simple solutions in which the three-string node moves with the velocity of light. Singlemode solutions are studied. The graphical packet Atom is used to study and visualize the string dynamics. A new procedure was developed within the packet for graphical representation of many parameter functions. The distinctive feature of these procedures is the large class of functions (including explicit, implicit, and parametric functions) that can be represented by means of parametric, coordinate, and functional isolines

  1. Superconductivity

    CERN Document Server

    Poole, Charles P; Farach, Horacio A

    1995-01-01

    Superconductivity covers the nature of the phenomenon of superconductivity. The book discusses the fundamental principles of superconductivity; the essential features of the superconducting state-the phenomena of zero resistance and perfect diamagnetism; and the properties of the various classes of superconductors, including the organics, the buckministerfullerenes, and the precursors to the cuprates. The text also describes superconductivity from the viewpoint of thermodynamics and provides expressions for the free energy; the Ginzburg-Landau and BCS theories; and the structures of the high

  2. Supersymmetric standard model from the heterotic string (II)

    International Nuclear Information System (INIS)

    Buchmueller, W.; Hamaguchi, K.; Tokyo Univ.; Lebedev, O.; Ratz, M.

    2006-06-01

    We describe in detail a Z 6 orbifold compactification of the heterotic E 8 x E 8 string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)

  3. Chern-Simons Theory, Matrix Models, and Topological Strings

    International Nuclear Information System (INIS)

    Walcher, J

    2006-01-01

    This book is a find. Marino meets the challenge of filling in less than 200 pages the need for an accessible review of topological gauge/gravity duality. He is one of the pioneers of the subject and a clear expositor. It is no surprise that reading this book is a great pleasure. The existence of dualities between gauge theories and theories of gravity remains one of the most surprising recent discoveries in mathematical physics. While it is probably fair to say that we do not yet understand the full reach of such a relation, the impressive amount of evidence that has accumulated over the past years can be regarded as a substitute for a proof, and will certainly help to delineate the question of what is the most fundamental quantum mechanical theory. Here is a brief summary of the book. The journey begins with matrix models and an introduction to various techniques for the computation of integrals including perturbative expansion, large-N approximation, saddle point analysis, and the method of orthogonal polynomials. The second chapter, on Chern-Simons theory, is the longest and probably the most complete one in the book. Starting from the action we meet Wilson loop observables, the associated perturbative 3-manifold invariants, Witten's exact solution via the canonical duality to WZW models, the framing ambiguity, as well as a collection of results on knot invariants that can be derived from Chern-Simons theory and the combinatorics of U (∞) representation theory. The chapter also contains a careful derivation of the large-N expansion of the Chern-Simons partition function, which forms the cornerstone of its interpretation as a closed string theory. Finally, we learn that Chern-Simons theory can sometimes also be represented as a matrix model. The story then turns to the gravity side, with an introduction to topological sigma models (chapter 3) and topological string theory (chapter 4). While this presentation is necessarily rather condensed (and the beginner may

  4. Mean transverse momenta correlations in hadron-hadron collisions in MC toy model with repulsing strings

    International Nuclear Information System (INIS)

    Altsybeev, Igor

    2016-01-01

    In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions

  5. Ultra-relativistic heavy ion collisions in a multi-string model

    International Nuclear Information System (INIS)

    Werner, K.

    1987-01-01

    We present a model for ultra-relativistic heavy ion collisions based on color string formation and subsequent independent string fragmentation. Strings are formed due to color exchange between quarks at each individual nucleon nucleon collision. The fragmentation is treated as in e + e - or lepton nucleon scattering. Calculation for pp, pA, and AA were carried out using the Monte Carlo code VENUS for Very Energetic Nuclear Scattering (version 1.0). 20 refs., 6 figs

  6. Diffeomorphisms as symplectomorphisms in history phase space: Bosonic string model

    International Nuclear Information System (INIS)

    Kouletsis, I.; Kuchar, K.V.

    2002-01-01

    The structure of the history phase space G of a covariant field system and its history group (in the sense of Isham and Linden) is analyzed on an example of a bosonic string. The history space G includes the time map T from the spacetime manifold (the two-sheet) Y to a one-dimensional time manifold T as one of its configuration variables. A canonical history action is posited on G such that its restriction to the configuration history space yields the familiar Polyakov action. The standard Dirac-ADM action is shown to be identical with the canonical history action, the only difference being that the underlying action is expressed in two different coordinate charts on G. The canonical history action encompasses all individual Dirac-ADM actions corresponding to different choices T of foliating Y. The history Poisson brackets of spacetime fields on G induce the ordinary Poisson brackets of spatial fields in the instantaneous phase space G 0 of the Dirac-ADM formalism. The canonical history action is manifestly invariant both under spacetime diffeomorphisms Diff Y and temporal diffeomorphisms Diff T. Both of these diffeomorphisms are explicitly represented by symplectomorphisms on the history phase space G. The resulting classical history phase space formalism is offered as a starting point for projection operator quantization and consistent histories interpretation of the bosonic string model

  7. Reduced-Size Integer Linear Programming Models for String Selection Problems: Application to the Farthest String Problem.

    Science.gov (United States)

    Zörnig, Peter

    2015-08-01

    We present integer programming models for some variants of the farthest string problem. The number of variables and constraints is substantially less than that of the integer linear programming models known in the literature. Moreover, the solution of the linear programming-relaxation contains only a small proportion of noninteger values, which considerably simplifies the rounding process. Numerical tests have shown excellent results, especially when a small set of long sequences is given.

  8. The Consensus String Problem and the Complexity of Comparing Hidden Markov Models

    DEFF Research Database (Denmark)

    Lyngsø, Rune Bang; Pedersen, Christian Nørgaard Storm

    2002-01-01

    The basic theory of hidden Markov models was developed and applied to problems in speech recognition in the late 1960s, and has since then been applied to numerous problems, e.g. biological sequence analysis. Most applications of hidden Markov models are based on efficient algorithms for computing...... the probability of generating a given string, or computing the most likely path generating a given string. In this paper we consider the problem of computing the most likely string, or consensus string, generated by a given model, and its implications on the complexity of comparing hidden Markov models. We show...... that computing the consensus string, and approximating its probability within any constant factor, is NP-hard, and that the same holds for the closely related labeling problem for class hidden Markov models. Furthermore, we establish the NP-hardness of comparing two hidden Markov models under the L∞- and L1...

  9. Justification of the zeta-function renormalization in rigid string model

    International Nuclear Information System (INIS)

    Nesterenko, V.V.; Pirozhenko, I.G.

    1997-01-01

    A consistent procedure for regularization of divergences and for the subsequent renormalization of the string tension is proposed in the framework of the one-loop calculation of the interquark potential generated by the Polyakov-Kleinert string. In this way, a justification of the formal treatment of divergences by analytic continuation of the Riemann and Epstein-Hurwitz zeta-functions is given. A spectral representation for the renormalized string energy at zero temperature is derived, which enables one to find the Casimir energy in this string model at nonzero temperature very easy

  10. A simple solvable model of quantum field theory of open strings

    International Nuclear Information System (INIS)

    Kazakov, V.A.; AN SSSR, Moscow

    1990-01-01

    A model of quantum field theory of open strings without any embedding (D=0) is solved. The world sheets of interacting strings are represented by dynamical planar graphs with dynamical holes of arbitrary sizes. The phenomenon of spontaneous tearing of the world sheet is noticed, which gives a singularity at zero coupling constant of string interaction. This phenomenon can be considered as a nonperturbative effect, similar to renormalons in planar field theories and is closely related to the α' → 0 limit of string field theories. (orig.)

  11. Superconductivity

    International Nuclear Information System (INIS)

    Langone, J.

    1989-01-01

    This book explains the theoretical background of superconductivity. Includes discussion of electricity, material fabrication, maglev trains, the superconducting supercollider, and Japanese-US competition. The authors reports the latest discoveries

  12. Superconductivity

    International Nuclear Information System (INIS)

    Onnes, H.K.

    1988-01-01

    The author traces the development of superconductivity from 1911 to 1986. Some of the areas he explores are the Meissner Effect, theoretical developments, experimental developments, engineering achievements, research in superconducting magnets, and research in superconducting electronics. The article also mentions applications shown to be technically feasible, but not yet commercialized. High-temperature superconductivity may provide enough leverage to bring these applications to the marketplace

  13. Modeling Friction Performance of Drill String Torsional Oscillation Using Dynamic Friction Model

    Directory of Open Access Journals (Sweden)

    Xingming Wang

    2017-01-01

    Full Text Available Drill string torsional and longitudinal oscillation can significantly reduce axial drag in horizontal drilling. An improved theoretical model for the analysis of the frictional force was proposed based on microscopic contact deformation theory and a bristle model. The established model, an improved dynamic friction model established for drill strings in a wellbore, was used to determine the relationship of friction force changes and the drill string torsional vibration. The model results were in good agreement with the experimental data, verifying the accuracy of the established model. The analysis of the influence of drilling mud properties indicated that there is an approximately linear relationship between the axial friction force and dynamic shear and viscosity. The influence of drill string torsional oscillation on the axial friction force is discussed. The results indicated that the drill string transverse velocity is a prerequisite for reducing axial friction. In addition, low amplitude of torsional vibration speed can significantly reduce axial friction. Then, increasing the amplitude of transverse vibration speed, the effect of axial reduction is not significant. In addition, by involving general field drilling parameters, this model can accurately describe the friction behavior and quantitatively predict the frictional resistance in horizontal drilling.

  14. 'Hard' effects in Monte Carlo proton-(anti) proton events of soft two-string dual parton model, e+e- annihilation and cascade scaling break of string and the theory of the open string

    International Nuclear Information System (INIS)

    Lugovoj, V.V.

    1998-01-01

    At proton-(anti) proton scattering in the frame of two-string Dual Parton Model the semihard parton-parton interactions can lead to the valence (anti) (di) quark excitations which lead to the production of up to four fast hadron leaders, and the process of soft colour interaction between constituents leads to formation of two primary strings, which decay into secondary hadrons according to a new cascade model of string breaking, which corresponds to the fundamental interaction of the theory of the open string. Therefore the recent results of the theory of QCD open string (about the small deviations of the string stretch direction near the longitudinal direction) are used in the algorithm of string breaking. For the fitted values of the free parameters in the process of decay of mother string into two daughter strings the energy (momentum) distributions for the first and second daughter strings are similar to momentum distributions for valence quark and antiquark in meson. This Monte Carlo model with 9 free parameters agrees well with the multiplicity, pseudorapidity, transverse momentum (up to p T =4GeV) distributions and correlations between the average transverse momentum and multiplicity of secondary particles produced by ISR, SS, Tevatron experiments (√s=27 to 1800 GeV). There is quantitative (and qualitative) explanation for correlations between the average transverse momentum and multiplicity for different types of secondary particles (antiprotons, kaons, pions) at √s =1800 GeV. A cascade model of string breaking is a new Monte Carlo model for hadronization which agrees well with the experimental multiplicity, rapidity, transverse momentum distributions of secondary particles produced by e + e - annihilation at E c.m. =3GeV. (author)

  15. Some exact solutions of magnetized viscous model in string ...

    Indian Academy of Sciences (India)

    Recently, the string cosmology has received considerable attention in the ... require a quantum theory of gravity, for which string theory seems to be the most promis- ..... where d2 is a constant of integration, which is taken as unity without the loss of ..... The solutions present interesting features in the presence of vis-.

  16. Superconductivity

    International Nuclear Information System (INIS)

    Andersen, N.H.; Mortensen, K.

    1988-12-01

    This report contains lecture notes of the basic lectures presented at the 1st Topsoee Summer School on Superconductivity held at Risoe National Laboratory, June 20-24, 1988. The following lecture notes are included: L.M. Falicov: 'Superconductivity: Phenomenology', A. Bohr and O. Ulfbeck: 'Quantal structure of superconductivity. Gauge angle', G. Aeppli: 'Muons, neutrons and superconductivity', N.F. Pedersen: 'The Josephson junction', C. Michel: 'Physicochemistry of high-T c superconductors', C. Laverick and J.K. Hulm: 'Manufacturing and application of superconducting wires', J. Clarke: 'SQUID concepts and systems'. (orig.) With 10 tabs., 128 figs., 219 refs

  17. D-string fluid in conifold, I: Topological gauge model

    International Nuclear Information System (INIS)

    Ahl Laamara, R.; Drissi, L.B.; Saidi, E.H.

    2006-01-01

    Motivated by similarities between quantum Hall systems a la Susskind and aspects of topological string theory on conifold as well as results obtained in [E.H. Saidi, Topological SL(2) gauge theory on conifold and noncommutative geometry, hep-th/0601020], we study the dynamics of D-string fluids running in deformed conifold in presence of a strong and constant RR background B-field. We first introduce the basis of D-string system in fluid approximation and then derive the holomorphic noncommutative gauge invariant field action describing its dynamics in conifold. This study may be also viewed as embedding Susskind description for Laughlin liquid in type IIB string theory. FQH systems on real manifolds RxS 2 and S 3 are shown to be recovered by restricting conifold to its Lagrangian sub-manifolds. Aspects of quantum behaviour of the string fluid are discussed. ring fluid are discussed

  18. A superconducting nanowire can be modeled by using SPICE

    Science.gov (United States)

    Berggren, Karl K.; Zhao, Qing-Yuan; Abebe, Nathnael; Chen, Minjie; Ravindran, Prasana; McCaughan, Adam; Bardin, Joseph C.

    2018-05-01

    Modeling of superconducting nanowire single-photon detectors typically requires custom simulations or finite-element analysis in one or two dimensions. Here, we demonstrate two simplified one-dimensional SPICE models of a superconducting nanowire that can quickly and efficiently describe the electrical characteristics of a superconducting nanowire. These models may be of particular use in understanding alternative architectures for nanowire detectors and readouts.

  19. Superconductivity

    International Nuclear Information System (INIS)

    Palmieri, V.

    1990-01-01

    This paper reports on superconductivity the absence of electrical resistance has always fascinated the mind of researchers with a promise of applications unachievable by conventional technologies. Since its discovery superconductivity has been posing many questions and challenges to solid state physics, quantum mechanics, chemistry and material science. Simulations arrived to superconductivity from particle physics, astrophysic, electronics, electrical engineering and so on. In seventy-five years the original promises of superconductivity were going to become reality: a microscopical theory gave to superconductivity the cloth of the science and the level of technological advances was getting higher and higher. High field superconducting magnets became commercially available, superconducting electronic devices were invented, high field accelerating gradients were obtained in superconductive cavities and superconducting particle detectors were under study. Other improvements came in a quiet progression when a tornado brought a revolution in the field: new materials had been discovered and superconductivity, from being a phenomenon relegated to the liquid Helium temperatures, became achievable over the liquid Nitrogen temperature. All the physics and the technological implications under superconductivity have to be considered ab initio

  20. Superconductivity

    CERN Document Server

    Thomas, D B

    1974-01-01

    A short general review is presented of the progress made in applied superconductivity as a result of work performed in connection with the high-energy physics program in Europe. The phenomenon of superconductivity and properties of superconductors of Types I and II are outlined. The main body of the paper deals with the development of niobium-titanium superconducting magnets and of radio-frequency superconducting cavities and accelerating structures. Examples of applications in and for high-energy physics experiments are given, including the large superconducting magnet for the Big European Bubble Chamber, prototype synchrotron magnets for the Super Proton Synchrotron, superconducting d.c. beam line magnets, and superconducting RF cavities for use in various laboratories. (0 refs).

  1. Multiquark strings

    International Nuclear Information System (INIS)

    Wang, F.; Chun, W.

    1985-01-01

    The use of basis states described as hadronic (or hadron-hadron) or hidden-colour (or colour-colour) for a system of quarks does not necessarily imply that connected exotic multiquark hadrons do exist. Antisymmetrization of quark wave functions tends to make these descriptions ill defined. It appears necessary to have stable collective structures called strings or bags to provide the physical connections required by quark confinement. The masses of multiquark hadrons can then be estimated by using semplified string, bag and NR potential models. The results turn out to be qualitatively similar in all these models. The stability problem for multiquark strings is briefly discussed

  2. Superconductivity

    International Nuclear Information System (INIS)

    Kakani, S.L.; Kakani, Shubhra

    2007-01-01

    The monograph provides readable introduction to the basics of superconductivity for beginners and experimentalists. For theorists, the monograph provides nice and brief description of the broad spectrum of experimental properties, theoretical concepts with all details, which theorists should learn, and provides a sound basis for students interested in studying superconducting theory at the microscopic level. Special chapter on the theory of high-temperature superconductivity in cuprates is devoted

  3. Evidence for string substructure

    International Nuclear Information System (INIS)

    Bergman, O.

    1996-06-01

    The author argues that the behavior of string theory at high temperature and high longitudinal boosts, combined with the emergence of p-branes as necessary ingredients in various string dualities, point to a possible reformulation of strings, as well as p-branes, as composites of bits. He reviews the string-bit models, and suggests generalizations to incorporate p-branes

  4. Brittle superconducting magnets: an equivilent strain model

    International Nuclear Information System (INIS)

    Barzi, E.; Danuso, M.

    2010-01-01

    To exceed fields of 10 T in accelerator magnets, brittle superconductors like A15 Nb 3 Sn and Nb 3 Al or ceramic High Temperature Superconductors have to be used. For such brittle superconductors it is not their maximum tensile yield stress that limits their structural resistance as much as strain values that provoke deformations in their delicate lattice, which in turn affect their superconducting properties. Work on the sensitivity of Nb 3 Sn cables to strain has been conducted in a number of stress states, including uniaxial and multi-axial, producing usually different results. This has made the need of a constituent design criterion imperative for magnet builders. In conventional structural problems an equivalent stress model is typically used to verify mechanical soundness. In the superconducting community a simple scalar equivalent strain to be used in place of an equivalent stress would be an extremely useful tool. As is well known in fundamental mechanics, there is not one single way to reduce a multiaxial strain state as represented by a 2nd order tensor to a scalar. The conceptual experiment proposed here will help determine the best scalar representation to use in the identification of an equivalent strain model.

  5. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    Science.gov (United States)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  6. Superconductivity

    International Nuclear Information System (INIS)

    Caruana, C.M.

    1988-01-01

    Despite reports of new, high-temperature superconductive materials almost every day, participants at the First Congress on Superconductivity do not anticipate commercial applications with these materials soon. What many do envision is the discovery of superconducting materials that can function at much warmer, perhaps even room temperatures. Others hope superconductivity will usher in a new age of technology as semiconductors and transistors did. This article reviews what the speakers had to say at the four-day congress held in Houston last February. Several speakers voiced concern that the Reagan administration's apparent lack of interest in funding superconductivity research while other countries, notably Japan, continue to pour money into research and development could hamper America's international competitiveness

  7. Computational modelling of string body interaction for the violin family and simulation of wolf notes

    Science.gov (United States)

    Inácio, O.; Antunes, J.; Wright, M. C. M.

    2008-02-01

    Most theoretical studies of bowed-string instruments deal with isolated strings, pinned on fixed supports. In others, the instrument body dynamics have been accounted by using extremely simplified models of the string-body interaction through the instrument bridge. Such models have, nevertheless, been instrumental to the understanding of a very common and musically undesirable phenomenon known as the wolf note—a strong beating interplay between string and body vibrations. Cellos, bad and good, are particularly prone to this problem. In previous work, a computational method that allows efficient time-domain modelling of bowed strings based on a modal approach has been introduced. This has been extended to incorporate the complex dynamics of real-life instrument bodies, and their coupling to the string motions, using experimental dynamical body data. The string is modelled using its unconstrained modes, assuming pinned-pinned boundary conditions at the tailpiece and the nut. At the intermediary bridge location, the string-body coupling is enforced using the body impulse-response or modal data, as measured at the instrument bridge. In the present paper, this computational approach is applied to a specific cello, which provided experimental wolf-behaviour data under several bowing conditions, as well as laboratory measurements of the bridge impulse responses on which the numerical simulations were based. Interesting aspects of the string-body dynamical responses are highlighted by numerical simulations and the corresponding sounds and animations produced. Finally, a qualitative (and, when possible, quantitative) comparison of the experimental and numerical results is presented.

  8. Lattice strings

    International Nuclear Information System (INIS)

    Thorn, C.B.

    1988-01-01

    The possibility of studying non-perturbative effects in string theory using a world sheet lattice is discussed. The light-cone lattice string model of Giles and Thorn is studied numerically to assess the accuracy of ''coarse lattice'' approximations. For free strings a 5 by 15 lattice seems sufficient to obtain better than 10% accuracy for the bosonic string tachyon mass squared. In addition a crude lattice model simulating string like interactions is studied to find out how easily a coarse lattice calculation can pick out effects such as bound states which would qualitatively alter the spectrum of the free theory. The role of the critical dimension in obtaining a finite continuum limit is discussed. Instead of the ''gaussian'' lattice model one could use one of the vertex models, whose continuum limit is the same as a gaussian model on a torus of any radius. Indeed, any critical 2 dimensional statistical system will have a stringy continuum limit in the absence of string interactions. 8 refs., 1 fig. , 9 tabs

  9. Cosmic strings

    International Nuclear Information System (INIS)

    Bennett, D.P.

    1988-07-01

    Cosmic strings are linear topological defects that are predicted by some grand unified theories to form during a spontaneous symmetry breaking phase transition in the early universe. They are the basis for the only theories of galaxy formation aside from quantum fluctuations from inflation that are based on fundamental physics. In contrast to inflation, they can also be observed directly through gravitational lensing and their characteristic microwave background anistropy. It has recently been discovered by F. Bouchet and myself that details of cosmic string evolution are very different from the so-called ''standard model'' that has been assumed in most of the string induced galaxy formation calculations. Therefore, the details of galaxy formation in the cosmic string models are currently very uncertain. 29 refs., 9 figs

  10. A simple model for the evolution of a non-Abelian cosmic string network

    Energy Technology Data Exchange (ETDEWEB)

    Cella, G. [Istituto Nazionale di Fisica Nucleare, sez. Pisa, Largo Bruno Pontecorvo 3, 56126 Pisa (Italy); Pieroni, M., E-mail: giancarlo.cella@pi.infn.it, E-mail: mauro.pieroni@apc.univ-paris7.fr [AstroParticule et Cosmologie, Université Paris Diderot, CNRS, CEA, Observatoire de Paris, Sorbonne Paris Cité, F-75205 Paris Cedex 13 (France)

    2016-06-01

    In this paper we present the results of numerical simulations intended to study the behavior of non-Abelian cosmic strings networks. In particular we are interested in discussing the variations in the asymptotic behavior of the system as we variate the number of generators for the topological defects. A simple model which allows for cosmic strings is presented and its lattice discretization is discussed. The evolution of the generated cosmic string networks is then studied for different values for the number of generators for the topological defects. Scaling solution appears to be approached in most cases and we present an argument to justify the lack of scaling for the residual cases.

  11. String networks in Z{sub N} Lotka–Volterra competition models

    Energy Technology Data Exchange (ETDEWEB)

    Avelino, P.P., E-mail: Pedro.Avelino@astro.up.pt [Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal); Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Bazeia, D. [Instituto de Física, Universidade de São Paulo, 05314-970 São Paulo, SP (Brazil); Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB (Brazil); Menezes, J. [Centro de Física do Porto, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Caixa Postal 1524, 59072-970 Natal, RN (Brazil); Oliveira, B.F. de [Departamento de Física, Universidade Estadual de Maringá, Av. Colombo 5790, 87020-900 Maringá, PR (Brazil)

    2014-01-17

    In this Letter we give specific examples of Z{sub N} Lotka–Volterra competition models leading to the formation of string networks. We show that, in order to promote coexistence, the species may arrange themselves around regions with a high number density of empty sites generated by predator–prey interactions between competing species. These configurations extend into the third dimension giving rise to string networks. We investigate the corresponding dynamics using both stochastic and mean field theory simulations, showing that the coarsening of these string networks follows a scaling law which is analogous to that found in other physical systems in condensed matter and cosmology.

  12. On low rank classical groups in string theory, gauge theory and matrix models

    International Nuclear Information System (INIS)

    Intriligator, Ken; Kraus, Per; Ryzhov, Anton V.; Shigemori, Masaki; Vafa, Cumrun

    2004-01-01

    We consider N=1 supersymmetric U(N), SO(N), and Sp(N) gauge theories, with two-index tensor matter and added tree-level superpotential, for general breaking patterns of the gauge group. By considering the string theory realization and geometric transitions, we clarify when glueball superfields should be included and extremized, or rather set to zero; this issue arises for unbroken group factors of low rank. The string theory results, which are equivalent to those of the matrix model, refer to a particular UV completion of the gauge theory, which could differ from conventional gauge theory results by residual instanton effects. Often, however, these effects exhibit miraculous cancellations, and the string theory or matrix model results end up agreeing with standard gauge theory. In particular, these string theory considerations explain and remove some apparent discrepancies between gauge theories and matrix models in the literature

  13. Possible coexistence of antiferromagnetism and superconductivity in the Hubbard model

    International Nuclear Information System (INIS)

    Su Zhaobin; Dong Jinming; Yu Lu; Shen Juelian

    1988-01-01

    The Hubbard model in the nearly half-filled case was studied in the mean field approximation using the effective Hamiltonian approach. Both antiferromagnetic order parameter and condensation of singlet pairs were considered. In certain parameter ranges the coexistence of antiferromagnetism and superconductivity is energetically favourable. Relevance to the high temperature superconductivity and other theoretical approaches is also discussed. (author). 10 refs, 3 figs

  14. Quantum mechanics vs. general covariance in gravity and string models

    International Nuclear Information System (INIS)

    Martinec, E.J.

    1984-01-01

    Quantization of simple low-dimensional systems embodying general covariance is studied. Functional methods are employed in the calculation of effective actions for fermionic strings and 1 + 1 dimensional gravity. The author finds that regularization breaks apparent symmetries of the theory, providing new dynamics for the string and non-trivial dynamics for 1 + 1 gravity. The author moves on to consider the quantization of some generally covariant systems with a finite number of physical degrees of freedom, assuming the existence of an invariant cutoff. The author finds that the wavefunction of the universe in these cases is given by the solution to simple quantum mechanics problems

  15. Bianchi-V string cosmological model with dark energy anisotropy

    Science.gov (United States)

    Mishra, B.; Tripathy, S. K.; Ray, Pratik P.

    2018-05-01

    The role of anisotropic components on the dark energy and the dynamics of the universe is investigated. An anisotropic dark energy fluid with different pressures along different spatial directions is assumed to incorporate the effect of anisotropy. One dimensional cosmic strings aligned along x-direction supplement some kind of anisotropy. Anisotropy in the dark energy pressure is found to evolve with cosmic expansion at least at late times. At an early phase, the anisotropic effect due to the cosmic strings substantially affect the dynamics of the accelerating universe.

  16. Control system modelling for superconducting accelerator

    International Nuclear Information System (INIS)

    Czarski, T.; Pozniak, K.; Romaniuk, R.

    2006-01-01

    A digital control of superconducting cavities for a linear accelerator is presented. The LLRF - Low Level Radio Frequency system for FLASH project in DESY is introduced. FPGA based controller supported by MATLAB system was developed to investigate the novel firmware implementation. Algebraic model in complex domain is proposed for the system analyzing. Calibration procedure of a signal path is considered for a multi-channel control. Identification of the system parameters is carried out by the least squares method application. Control tables: Feed-Forward and Set- Point are determined for the required cavity performance, according to the recognized process. Feedback loop is tuned by fitting a complex gain of a corrector unit. Adaptive control algorithm is applied for feed-forward and feedback modes. Experimental results are presented for a cavity representative operation. (orig.)

  17. Superconductivity

    CERN Document Server

    Ketterson, John B

    2008-01-01

    Conceived as the definitive reference in a classic and important field of modern physics, this extensive and comprehensive handbook systematically reviews the basic physics, theory and recent advances in the field of superconductivity. Leading researchers, including Nobel laureates, describe the state-of-the-art in conventional and unconventional superconductors at a particularly opportune time, as new experimental techniques and field-theoretical methods have emerged. In addition to full-coverage of novel materials and underlying mechanisms, the handbook reflects continued intense research into electron-phone based superconductivity. Considerable attention is devoted to high-Tc superconductivity, novel superconductivity, including triplet pairing in the ruthenates, novel superconductors, such as heavy-Fermion metals and organic materials, and also granular superconductors. What’s more, several contributions address superconductors with impurities and nanostructured superconductors. Important new results on...

  18. Mechanical and mathematical models of multi-stage horizontal fracturing strings and their application

    Directory of Open Access Journals (Sweden)

    Zhanghua Lian

    2015-03-01

    Full Text Available Multi-stage SRV fracturing in horizontal wells is a new technology developed at home and abroad in recent years to effectively develop shale gas or low-permeability reservoirs, but on the other hand makes the mechanical environment of fracturing strings more complicated at the same time. In view of this, based on the loading features of tubing strings during the multi-stage fracturing of a horizontal well, mechanical models were established for three working cases of multiple packer setting, open differential-pressure sliding sleeve, and open ball-injection sliding sleeve under a hold-down packer. Moreover, mathematical models were respectively built for the above three cases. According to the Lame formula and Von Mises stress calculation formula for the thick-walled cylinder in the theory of elastic mechanics, a mathematical model was also established to calculate the equivalent stress for tubing string safety evaluation when the fracturing string was under the combined action of inner pressure, external squeezing force and axial stress, and another mathematical model was built for the mechanical strength and safety evaluation of multi-stage fracturing strings. In addition, a practical software was developed for the mechanical safety evaluation of horizontal well multi-stage fracturing strings according to the mathematical model developed for the mechanical calculation of the multi-packer string in horizontal wells. The research results were applied and verified in a gas well of Tahe Oilfield in the Tarim Basin with excellent effects, providing a theoretical basis and a simple and reliable technical means for optimal design and safety evaluation of safe operational parameters of multi-stage fracturing strings in horizontal wells.

  19. The solution space of the unitary matrix model string equation and the Sato Grassmannian

    International Nuclear Information System (INIS)

    Anagnostopoulos, K.N.; Bowick, M.J.; Schwarz, A.

    1992-01-01

    The space of all solutions to the string equation of the symmetric unitary one-matrix model is determined. It is shown that the string equations is equivalent to simple conditions on points V 1 and V 2 in the big cell Gr (0) of the Sato Grassmannian Gr. This is a consequence of a well-defined continuum limit in which the string equation has the simple form [P, 2 - ]=1, with P and 2 - 2x2 matrices of differential operators. These conditions on V 1 and V 2 yield a simple system of first order differential equations whose analysis determines the space of all solutions to the string equation. This geometric formulation leads directly to the Virasoro constraints L n (n≥0), where L n annihilate the two modified-KdV τ-functions whose product gives the partition function of the Unitary Matrix Model. (orig.)

  20. Superconductivity in the periodic Anderson model with anisotropic hybridization

    International Nuclear Information System (INIS)

    Sarasua, L.G.; Continentino, Mucio A.

    2003-01-01

    In this work we study superconductivity in the periodic Anderson model with both on-site and intersite hybridization, including the interband Coulomb repulsion. We show that the presence of the intersite hybridization together with the on-site hybridization significantly affects the superconducting properties of the system. The symmetry of the hybridization has a strong influence in the symmetry of the superconducting order parameter of the ground state. The interband Coulomb repulsion may increase or decrease the superconducting critical temperature at small values of this interaction, while is detrimental to superconductivity for strong values. We show that the present model can give rise to positive or negative values of dT c /dP, depending on the values of the system parameters

  1. Some exotic mesons and glueballs from the string model

    International Nuclear Information System (INIS)

    Burden, C.J.; Tassie, L.J.

    1982-01-01

    Planar solutions are found to the relativistic string equation corresponding to rigid-body rotation. These solutions allow for the construction of certain classes of exotic mesons and of glueballs with asymptotically straight Chew-Frautschi plots. We determine the asymtotic slope of the Chew-Frautschi plots for these hadrons. (orig.)

  2. Description of radiative transitions in the relativistic string model

    International Nuclear Information System (INIS)

    Berdnikov, E.B.; Nanobashvili, G.G.; Pron'ko, G.P.

    1991-01-01

    The transition operator for a straight-line string in the electromagnetic field has been built. It's matrix elements between the states of arbitrary spin are calculated in lowest order of perturbation theory. The consistensy conditions for the operator of interaction arising due to quantum constraints are also discussed. 12 refs

  3. Monte Carlo evidence for the gluon-chain model of QCD string formation

    International Nuclear Information System (INIS)

    Greensite, J.; San Francisco State Univ., CA

    1988-08-01

    The Monte Carlo method is used to calculate the overlaps string vertical stroken gluons>, where Ψ string [A] is the Yang-Mills wavefunctional due to a static quark-antiquark pair, and vertical stroken gluons > are orthogonal trial states containing n=0, 1, or 2 gluon operators multiplying the true ground state. The calculation is carried out for SU(2) lattice gauge theory in Coulomb gauge, in D=4 dimensions. It is found that the string state is dominated, at small qanti q separations, by the vacuum ('no-gluon') state, at larger separations by the 1-gluon state, and, at the largest separations attempted, the 2-gluon state begins to dominate. This behavior is in qualitative agreement with the gluon-chain model, which is a large-N colors motivated theory of QCD string formation. (orig.)

  4. A note on probabilistic models over strings: the linear algebra approach.

    Science.gov (United States)

    Bouchard-Côté, Alexandre

    2013-12-01

    Probabilistic models over strings have played a key role in developing methods that take into consideration indels as phylogenetically informative events. There is an extensive literature on using automata and transducers on phylogenies to do inference on these probabilistic models, in which an important theoretical question is the complexity of computing the normalization of a class of string-valued graphical models. This question has been investigated using tools from combinatorics, dynamic programming, and graph theory, and has practical applications in Bayesian phylogenetics. In this work, we revisit this theoretical question from a different point of view, based on linear algebra. The main contribution is a set of results based on this linear algebra view that facilitate the analysis and design of inference algorithms on string-valued graphical models. As an illustration, we use this method to give a new elementary proof of a known result on the complexity of inference on the "TKF91" model, a well-known probabilistic model over strings. Compared to previous work, our proving method is easier to extend to other models, since it relies on a novel weak condition, triangular transducers, which is easy to establish in practice. The linear algebra view provides a concise way of describing transducer algorithms and their compositions, opens the possibility of transferring fast linear algebra libraries (for example, based on GPUs), as well as low rank matrix approximation methods, to string-valued inference problems.

  5. Superconductivity

    CERN Document Server

    Poole, Charles P; Creswick, Richard J; Prozorov, Ruslan

    2014-01-01

    Superconductivity, Third Edition is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphics from all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling. This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. This third edition features extensive revisions throughout, and new chapters on second critical field and iron based superconductors.

  6. Introduction to path integrals, matrix models and strings

    International Nuclear Information System (INIS)

    Jevicki, A.

    1995-01-01

    The major strength of the theory is then that it is integrable and exactly solvable. Its integrable nature leads to understanding of a w ∞ algebra as a space-time symmetry of string theory. This algebra acts in a nonlinear way on the basic collective field representing a massless tachyon. It is interpreted as a spectrum-generating algebra allowing to build an infinite sequence of discrete imaginary energy states which turn out to be remnants of higher string modes in two dimensions. The presence and interplay of discrete modes with the scalar tachyon are particularly interesting. The w ∞ symmetry is seen to serve as an organizational principle and is of much broader relevance. (orig.)

  7. Supersymmetry and string theory beyond the standard model

    CERN Document Server

    Dine, Michael

    2015-01-01

    The past decade has witnessed dramatic developments in the fields of experimental and theoretical particle physics and cosmology. This fully updated second edition is a comprehensive introduction to these recent developments and brings this self-contained textbook right up to date. Brand new material for this edition includes the groundbreaking Higgs discovery, results of the WMAP and Planck experiments. Extensive discussion of theories of dynamical electroweak symmetry breaking and a new chapter on the landscape, as well as a completely rewritten coda on future directions gives readers a modern perspective on this developing field. A focus on three principle areas: supersymmetry, string theory, and astrophysics and cosmology provide the structure for this book which will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password-protected solutions will be available to lecturers at www.cambrid...

  8. General relativistic model of a spinning cosmic string

    International Nuclear Information System (INIS)

    Jensen, B.; Soleng, H.H.

    1991-11-01

    The authors investigate the infinite, straight, rotating cosmic string within the framework of Einstein's General Theory of Relativity. A class of exact interior solutions is derived for which the source satisfies the weak and the dominant energy conditions. The interior metric is matched smoothly to the exterior vacuum. A subclass of these solutions has closed time-like curves both in the interior and the exterior geometry. 39 refs., 2 figs

  9. Magnetization Modeling of Twisted Superconducting Filaments

    CERN Document Server

    Satiramatekul, T; Devred, Arnaud; Leroy, Daniel

    2007-01-01

    This paper presents a new Finite Element numerical method to analyze the coupling between twisted filaments in a superconducting multifilament composite wire. To avoid the large number of elements required by a 3D code, the proposed method makes use of the energy balance principle in a 2D code. The relationship between superconductor critical current density and local magnetic flux density is implemented in the program for the Bean and modified Kim models. The modeled wire is made up of six filaments twisted together and embedded in a lowresistivity matrix. Computations of magnetization cycle and of the electric field pattern have been performed for various twist pitch values in the case of a pure copper matrix. The results confirm that the maximum magnetization depends on the matrix conductivity, the superconductor critical current density, the applied field frequency, and the filament twist pitch. The simulations also lead to a practical criterion for wire design that can be used to assess whether or not th...

  10. Superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Batistoni, Paola; De Marco, Francesco; Pieroni, Leonardo [ed.

    2005-07-01

    Research on superconductivity at ENEA is mainly devoted to projects related to the ITER magnet system. In this framework, ENEA has been strongly involved in the design, manufacturing and test campaigns of the ITER toroidal field model coil (TFMC), which reached a world record in operating current (up to 80 kA). Further to this result, the activities in 2004 were devoted to optimising the ITER conductor performance. ENEA participated in the tasks launched by EFDA to define and produce industrial-scale advanced Nb3Sn strand to be used in manufacturing the ITER high-field central solenoid (CS) and toroidal field (TF) magnets. As well as contributing to the design of the new strand and the final conductor layout, ENEA will also perform characterisation tests, addressing in particular the influence of mechanical stress on the Nb3Sn performance. As a member of the international ITER-magnet testing group, ENEA plays a central role in the measurement campaigns and data analyses for each ITER-related conductor and coil. The next phase in the R and D of the ITER magnets will be their mechanical characterisation in order to define the fabrication route of the coils and structures. During 2004 the cryogenic measurement campaign on the Large Hadron Collider (LHC) by-pass diode stacks was completed. As the diode-test activity was the only LHC contract to be finished on schedule, the 'Centre Europeenne pour la Recherche Nucleaire' (CERN) asked ENEA to participate in an international tender for the cold check of the current leads for the LHC magnets. The contract was obtained, and during 2004, the experimental setup was designed and realised and the data acquisition system was developed. The measurement campaign was successfully started at the end of 2004 and will be completed in 2006.

  11. Frequency-Zooming ARMA Modeling for Analysis of Noisy String Instrument Tones

    Directory of Open Access Journals (Sweden)

    Paulo A. A. Esquef

    2003-09-01

    Full Text Available This paper addresses model-based analysis of string instrument sounds. In particular, it reviews the application of autoregressive (AR modeling to sound analysis/synthesis purposes. Moreover, a frequency-zooming autoregressive moving average (FZ-ARMA modeling scheme is described. The performance of the FZ-ARMA method on modeling the modal behavior of isolated groups of resonance frequencies is evaluated for both synthetic and real string instrument tones immersed in background noise. We demonstrate that the FZ-ARMA modeling is a robust tool to estimate the decay time and frequency of partials of noisy tones. Finally, we discuss the use of the method in synthesis of string instrument sounds.

  12. String flipped SO(10) model from [ital Z][sub 4] orbifold

    Energy Technology Data Exchange (ETDEWEB)

    Sato, H. (Department of Physics, Hyogo University of Education, Yashiro-cho, Hyogo 673-14 (Japan)); Shimojo, M. (Department of Electronics and Information Engineering, Fukui National College of Technology, Sabae, Fukui 916 (Japan))

    1993-12-15

    We search all possible string grand-unified-theory models obtained from heterotic superstrings compactified on a [ital Z][sub 4] orbifold with one Wilson line. It is shown that there is an essentially unique anomaly-free flipped SO(10) model with three generations plus one mirror conjugate generation of matter fields. We derive effective Yukawa interactions and examine the structure of mass matrices as well as a possible scenario of string coupling unification. The four-generation [ital Z][sub 4] orbifold model is a phenomenologically viable model beyond the minimal supersymmetric standard one.

  13. Color symmetrical superconductivity in a schematic nuclear quark model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; da Providencia, J.

    2010-01-01

    In this letter, a novel BCS-type formalism is constructed in the framework of a schematic QCD inspired quark model, having in mind the description of color symmetrical superconducting states. In the usual approach to color superconductivity, the pairing correlations affect only the quasi-particle...... states of two colors, the single-particle states of the third color remaining unaffected by the pairing correlations. In the theory of color symmetrical superconductivity here proposed, the pairing correlations affect symmetrically the quasi-particle states of the three colors and vanishing net color...

  14. Boundary effects relevant for the string interpretation of σ-models

    International Nuclear Information System (INIS)

    Behrndt, K.; Dorn, H.

    1991-01-01

    At first a short discussion of the on/off boundary position dependence of the renormalization counter terms and β-functions for generalized σ-models on manifolds with boundary is given. Treating the energy-momentum tensor of such models as a two-dimensional distribution one can show that contrary to the first impression this does not imply any obstruction for the string interpretation of such models. The analysis is extended to the effect of dual loop corrections to string induced equations of motion, too. (orig.)

  15. The string prediction models as an invariants of time series in forex market

    OpenAIRE

    Richard Pincak; Marian Repasan

    2011-01-01

    In this paper we apply a new approach of the string theory to the real financial market. It is direct extension and application of the work [1] into prediction of prices. The models are constructed with an idea of prediction models based on the string invariants (PMBSI). The performance of PMBSI is compared to support vector machines (SVM) and artificial neural networks (ANN) on an artificial and a financial time series. Brief overview of the results and analysis is given. The first model is ...

  16. Cool Runnings For String 2

    CERN Multimedia

    2001-01-01

    String 2 is a series of superconducting magnets that are prototypes of those which will be installed in the LHC. It was cooled down to 1.9 Kelvin on September 14th. On Thursday last week, the dipoles of String 2 were successfully taken to nominal current, 11850 A.

  17. String phenomenology

    CERN Document Server

    Ibáñez, Luis E

    2015-01-01

    This chapter reviews a number of topics in the field of string phenomenology, focusing on orientifold/F-theory models yielding semirealistic low-energy physics. The emphasis is on the extraction of the low-energy effective action and possible tests of specific models at the LHC.

  18. One-loop potential in the new string model with negative stiffness

    International Nuclear Information System (INIS)

    Kleinert, H.; Chervyakov, A.M.; Nesterenko, V.V.

    1996-01-01

    The color-electric flux tube between quarks has a finite thickness therefore also a finite curvature stiffness. Contrary to earlier rigid-string proposal by Polyakov and Kleinert and motivated by the properties of a magnetic flux tube in a type-II superconductor, we put forward the hypothesis that the stiffness is negative. We set up and study the properties of an idealized string model with such negative stiffness. In contrast to the rigid string, the propagator in the new model has no unphysical pole. One-loop calculations show that the model generates an interquark potential which does not contain the square root singularity even for moderate values of a negative stiffness. At large distances, the potential has usual linearly rising term with the universal Luescher correction

  19. Searching for the standard model in the string landscape: SUSY GUTs

    Science.gov (United States)

    Raby, Stuart

    2011-03-01

    The standard model is the theory describing all observational data from the highest energies to the largest distances. (There is, however, one caveat: additional forms of energy, not part of the standard model, known as dark matter and dark energy must be included in order to describe the Universe at galactic scales and larger.) High energies refers to physics at the highest energy particle accelerators, including CERN's LEP II (which ceased operation in 2000 to begin construction of the Large Hadron Collider now in operation) and Fermilab's Tevatron, as well as to the energies obtained in particle jets created in so-called active galactic nuclei scattered throughout the visible Universe. Some of these extra-galactic particles bombard our own Earth in the form of cosmic rays, or super-energetic protons which scatter off nucei in the upper atmosphere. String theory is, on the other hand, an unfinished theoretical construct which attempts to describe all matter and their interactions in terms of the harmonic oscillations of open and/or closed strings. It is regarded as unfinished since at present it is a collection of ideas, tied together by powerful consistency conditions, called dualities, with the ultimate goal of finding the completed string theory. At the moment we only have descriptions which are valid in different mutually exclusive limits with names such as type I, IIA, IIB, heterotic, M and F theory. The string landscape has been described in the pages of many scholarly and popular works. It is perhaps best understood as the collection of possible solutions to the string equations; albeit these solutions look totally different in the different limiting descriptions. What do we know about the string landscape? We know that there are such a large number of possible solutions that the only way to represent this number is as 10500 or a 1 followed by 500 zeros. Note that this is not a precise value since the uncertainty is given by a number just as large

  20. Searching for the standard model in the string landscape: SUSY GUTs

    International Nuclear Information System (INIS)

    Raby, Stuart

    2011-01-01

    The standard model is the theory describing all observational data from the highest energies to the largest distances. (There is, however, one caveat: additional forms of energy, not part of the standard model, known as dark matter and dark energy must be included in order to describe the Universe at galactic scales and larger.) High energies refers to physics at the highest energy particle accelerators, including CERN's LEP II (which ceased operation in 2000 to begin construction of the Large Hadron Collider now in operation) and Fermilab's Tevatron, as well as to the energies obtained in particle jets created in so-called active galactic nuclei scattered throughout the visible Universe. Some of these extra-galactic particles bombard our own Earth in the form of cosmic rays, or super-energetic protons which scatter off nucei in the upper atmosphere. String theory is, on the other hand, an unfinished theoretical construct which attempts to describe all matter and their interactions in terms of the harmonic oscillations of open and/or closed strings. It is regarded as unfinished since at present it is a collection of ideas, tied together by powerful consistency conditions, called dualities, with the ultimate goal of finding the completed string theory. At the moment we only have descriptions which are valid in different mutually exclusive limits with names such as type I, IIA, IIB, heterotic, M and F theory. The string landscape has been described in the pages of many scholarly and popular works. It is perhaps best understood as the collection of possible solutions to the string equations; albeit these solutions look totally different in the different limiting descriptions. What do we know about the string landscape? We know that there are such a large number of possible solutions that the only way to represent this number is as 10 500 or a 1 followed by 500 zeros. Note that this is not a precise value since the uncertainty is given by a number just as large

  1. Superconductivity

    International Nuclear Information System (INIS)

    Narlikar, A.V.

    1993-01-01

    Amongst the numerous scientific discoveries that the 20th century has to its credit, superconductivity stands out as an exceptional example of having retained its original dynamism and excitement even for more than 80 years after its discovery. It has proved itself to be a rich field by continually offering frontal challenges in both research and applications. Indeed, one finds that a majority of internationally renowned condensed matter theorists, at some point of their career, have found excitement in working in this important area. Superconductivity presents a unique example of having fetched Nobel awards as many as four times to date, and yet, interestingly enough, the field still remains open for new insights and discoveries which could undeniably be of immense technological value. 1 fig

  2. Superconductivity

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book profiles the research activity of 42 companies in the superconductivity field, worldwide. It forms a unique and comprehensive directory to this emerging technology. For each research site, it details the various projects in progress, analyzes the level of activity, pinpoints applications and R and D areas, reviews strategies and provides complete contact information. It lists key individuals, offers international comparisons of government funding, reviews market forecasts and development timetables and features a bibliography of selected articles on the subject

  3. Superconductivity

    International Nuclear Information System (INIS)

    Buller, L.; Carrillo, F.; Dietert, R.; Kotziapashis, A.

    1989-01-01

    Superconductors are materials which combine the property of zero electric resistance with the capability to exclude any adjacent magnetic field. This leads to many large scale applications such as the much publicized levitating train, generation of magnetic fields in MHD electric generators, and special medical diagnostic equipment. On a smaller-scale, superconductive materials could replace existing resistive connectors and decrease signal delays by reducing the RLC time constants. Thus, a computer could operate at much higher speeds, and consequently at lower power levels which would reduce the need for heat removal and allow closer spacing of circuitry. Although technical advances and proposed applications are constantly being published, it should be recognized that superconductivity is a slowly developing technology. It has taken scientists almost eighty years to learn what they now know about this material and its function. The present paper provides an overview of the historical development of superconductivity and describes some of the potential applications for this new technology as it pertains to the electronics industry

  4. String GUTs

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1995-01-01

    Standard SUSY-GUTs such as those based on SU(5) or SO(10) lead to predictions for the values of α s and sin 2 θ W in amazing agreement with experiment. In this article we investigate how these models may be obtained from string theory, thus bringing them into the only known consistent framework for quantum gravity. String models with matter in standard GUT representations require the realization of affine Lie algebras at higher levels. We start by describing some methods to build level k=2 symmetric orbifold string models with gauge groups SU(5) or SO(10). We present several examples and identify generic features of the type of models constructed. Chiral fields appropriate to break the symmetry down to the standard model generically appear in the massless spectrum. However, unlike in standard SUSY-GUTs, they often behave as string moduli, i.e., they do not have self-couplings. We also discuss briefly the doublet-triplet Higgs splitting. We find that, in some models, built-in sliding-singlet type of couplings exist. (orig.)

  5. Topological open string amplitudes on local toric del Pezzo surfaces via remodeling the B-model

    International Nuclear Information System (INIS)

    Manabe, Masahide

    2009-01-01

    We study topological strings on local toric del Pezzo surfaces by a method called remodeling the B-model which was recently proposed by Bouchard, Klemm, Marino and Pasquetti. For a large class of local toric del Pezzo surfaces we prove a functional formula of the Bergman kernel which is the basic constituent of the topological string amplitudes by the topological recursion relation of Eynard and Orantin. Because this formula is written as a functional of the period, we can obtain the topological string amplitudes at any point of the moduli space by a simple change of variables of the Picard-Fuchs equations for the period. By this formula and mirror symmetry we compute the A-model amplitudes on K F 2 , and predict the open orbifold Gromov-Witten invariants of C 3 /Z 4 .

  6. Nonlinearity of the forward-backward correlation function in the model with string fusion

    Science.gov (United States)

    Vechernin, Vladimir

    2017-12-01

    The behavior of the forward-backward correlation functions and the corresponding correlation coefficients between multiplicities and transverse momenta of particles produced in high energy hadronic interactions is analyzed by analytical and MC calculations in the models with and without string fusion. The string fusion is taking into account in simplified form by introducing the lattice in the transverse plane. The results obtained with two alternative definitions of the forward-backward correlation coefficient are compared. It is shown that the nonlinearity of correlation functions increases with the width of observation windows, leading at small string density to a strong dependence of correlation coefficient value on the definition. The results of the modeling enable qualitatively to explain the experimentally observed features in the behavior of the correlation functions between multiplicities and mean transverse momenta at small and large multiplicities.

  7. Bosonisation of four dimensional real fermionic string models and asymmetric orbifolds

    International Nuclear Information System (INIS)

    Bailin, D.; Dunbar, D.C.; Love, A.

    1990-01-01

    Models of four dimensional strings based on internal world-sheet fermions are bosonised and the partition functions are compared with the partition functions of asymmetric Z 2 M orbifold models. Selection rules and couplings are also compared between the two formations. (orig.)

  8. A non-linear σ-model related to the fine structure of strings

    International Nuclear Information System (INIS)

    Abdalla, E.; Abdalla, M.C.B.; Lima Santos, A.

    1986-07-01

    It is shown that a σ-model related to the strings via Polyakov's construction is classically (but not quantum mechanically) integrable. When fermions are suitably introduced the exact on shell solution is discussed. In the locally supersymmetric case the 1/D expansion is used to integrate out the σ-model fields leaving an effective action for graviton and gravitino. (author)

  9. Fidelity study of superconductivity in extended Hubbard models

    Science.gov (United States)

    Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.

    2015-07-01

    The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.

  10. Investigation, modelling and control of the 1.9 K cooling loop for superconducting magnets for the Large Hadron Collider

    CERN Document Server

    Flemsæter, Bjorn

    2000-01-01

    The temperature of the superconducting magnets for the 27 km LHC particle accelerator under construction at CERN is a control parameter with strict operating constraints imposed by (a) the maximum temperature at which the magnets can operate, (b) the cooling capacity of the cryogenic system, (c) the variability of applied heat loads and (d) the accuracy of the instrumentation. A pilot plant for studying aspects beyond single magnet testing has been constructed. This magnet test string is a 35-m full-scale model if the LHC and consists of four superconducting cryogmagnets operating in a static bath of He II at 1.9 K. An experimental investigation of the properties dynamic characteristics of the 1.9 K cooling loop of the magnet test string has been carried out. A first principle model of the system has been created. A series of experiments designed for system identification purposes have been carried out, and black box models of the system have been created on the basis on the recorded data. A Model Predictive ...

  11. SUPERCOLLIDER: String test success

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    On 14 August at the Superconducting Supercollider (SSC) Laboratory in Ellis County, Texas, the Accelerator Systems String Test (ASST) successfully met its objective by operating a half-cell of five collider dipole magnets, one quadrupole magnet, and two spool pieces at the design current of 6500 amperes

  12. Cosmic strings and inflation

    International Nuclear Information System (INIS)

    Vishniac, E.T.

    1987-01-01

    We examine the compatibility of inflation with the cosmic string theory for galaxy formation. There is a general conflict between having sufficient string tension to effect galaxy formation, and reheating after inflation to a high enough temperature that strings may form in a thermal phase transition. To escape this conflict, we propose a class of models where the inflation is coupled to the string-producing field. The strings are formed late in inflation as the inflaton rolls towards its zero-temperature value. A large subset of these models have a novel large-scale distribution of galaxies that is fractal, displays biasing without dynamics or feedback mechanisms, and contains voids. (orig.)

  13. Superconductivity

    International Nuclear Information System (INIS)

    2007-01-01

    During 2007, a large amount of the work was centred on the ITER project and related tasks. The activities based on low-temperature superconducting (LTS) materials included the manufacture and qualification of ITER full-size conductors under relevant operating conditions, the design of conductors and magnets for the JT-60SA tokamak and the manufacture of the conductors for the European dipole facility. A preliminary study was also performed to develop a new test facility at ENEA in order to test long-length ITER or DEMO full-size conductors. Several studies on different superconducting materials were also started to create a more complete database of superconductor properties, and also for use in magnet design. In this context, an extensive measurement campaign on transport and magnetic properties was carried out on commercially available NbTi strands. Work was started on characterising MgB 2 wire and bulk samples to optimise their performance. In addition, an intense experimental study was started to clarify the effect of mechanical loads on the transport properties of multi-filamentary Nb 3 Sn strands with twisted or untwisted superconducting filaments. The experimental activity on high-temperature superconducting (HTS) materials was mainly focussed on the development and characterisation of YBa 2 Cu 3 O 7-X (YBCO) based coated conductors. Several characteristics regarding YBCO deposition, current transport performance and tape manufacture were investigated. In the framework of chemical approaches for YBCO film growth, a new method, developed in collaboration with the Technical University of Cluj-Napoca (TUCN), Romania, was studied to obtain YBCO film via chemical solution deposition, which modifies the well-assessed metallic organic deposition trifluoroacetate (MOD-TFA) approach. The results are promising in terms of critical current and film thickness values. YBCO properties in films with artificially added pinning sites were characterised in collaboration with

  14. New Higgs transitions between dual N=2 string models

    International Nuclear Information System (INIS)

    Berglund, P.; Katz, S.; Klemm, A.; Mayr, P.

    1997-01-01

    We describe a new kind of transition between topologically distinct N=2 type II Calabi-Yau vacua through points with enhanced non-abelian gauge symmetries together with fundamental charged matter hyper multiplets. We connect the appearance of matter to the local geometry of the singularity and discuss the relation between the instanton numbers of the Calabi-Yau manifolds taking part in the transition. In a dual heterotic string theory on K3 x T 2 the process corresponds to Higgsing a semi-classical gauge group or equivalently to a variation of the gauge bundle. In special cases the situation reduces to simple conifold transitions in the Coulomb phase of the non-abelian gauge symmetries. (orig.)

  15. Large-N behaviour of string solutions in the Heisenberg model

    CERN Document Server

    Fujita, T; Takahashi, H

    2003-01-01

    We investigate the large-N behaviour of the complex solutions for the two-magnon system in the S = 1/2 Heisenberg XXZ model. The Bethe ansatz equations are numerically solved for the string solutions with a new iteration method. Clear evidence of the violation of the string configurations is found at N = 22, 62, 121, 200, 299, 417, but the broken states are still Bethe states. The number of Bethe states is consistent with the exact diagonalization, except for one singular state.

  16. The string prediction models as invariants of time series in the forex market

    Science.gov (United States)

    Pincak, R.

    2013-12-01

    In this paper we apply a new approach of string theory to the real financial market. The models are constructed with an idea of prediction models based on the string invariants (PMBSI). The performance of PMBSI is compared to support vector machines (SVM) and artificial neural networks (ANN) on an artificial and a financial time series. A brief overview of the results and analysis is given. The first model is based on the correlation function as invariant and the second one is an application based on the deviations from the closed string/pattern form (PMBCS). We found the difference between these two approaches. The first model cannot predict the behavior of the forex market with good efficiency in comparison with the second one which is, in addition, able to make relevant profit per year. The presented string models could be useful for portfolio creation and financial risk management in the banking sector as well as for a nonlinear statistical approach to data optimization.

  17. Cosmological model with the negative Λ term and strings of an infinite length

    International Nuclear Information System (INIS)

    Kardashev, N.S.

    1986-01-01

    It is shown that the solution of the Friedmann equation with negative vacuum density and with an account for the density of strings going beyond the horizon (infinite strings) is the same for spaces of negative, zero and positive curvature. This is connected with the fact that in the equation the term, accounting for the space curvature, and the term describing the strings have the same structure. The model presented satisfies the value of the deceleration parameter q 0 0.5, of the expansion parameter H 0 =50 km/s x Mpc, and yields the age of the Universe from the beginning of the expansion of 16 billion years. The model also predicts a stop in the expansion and the subsequent contraction of the Universe. For a flat space and for the present density of the nonrelativistic matter 5x10 -31 g/cm 3 , the model yields the vacuum density - 2x10 -30 g/cm 3 , the string density 6x10 -30 g/cm 3 ; the stop will occur 43 billion years after the beginning of the expansion. Other features of the model as well as possible observational tests are discussed

  18. On a relation between massive Yang-Mills theories and dual string models

    International Nuclear Information System (INIS)

    Mickelsson, J.

    1983-01-01

    The relations between mass terms in Yang-Mills theories, projective representations of the group of gauge transformations, boundary conditions on vector potentials and Schwinger terms in local charge algebra commutation relations are discussed. The commutation relations (with Schwinger terms) are similar to the current algebra commutation relations of the SU(N) extended dual string model. (orig.)

  19. Minimal open strings

    International Nuclear Information System (INIS)

    Hosomichi, Kazuo

    2008-01-01

    We study FZZT-branes and open string amplitudes in (p, q) minimal string theory. We focus on the simplest boundary changing operators in two-matrix models, and identify the corresponding operators in worldsheet theory through the comparison of amplitudes. Along the way, we find a novel linear relation among FZZT boundary states in minimal string theory. We also show that the boundary ground ring is realized on physical open string operators in a very simple manner, and discuss its use for perturbative computation of higher open string amplitudes.

  20. 3D-Ising model as a string theory in three-dimensional euclidean space

    International Nuclear Information System (INIS)

    Sedrakyan, A.

    1992-11-01

    A three-dimensional string model is analyzed in the strong coupling regime. The contribution of surfaces with different topology to the partition function is essential. A set of corresponding models is discovered. Their critical indices, which depend on two integers (m,n) are calculated analytically. The critical indices of the three-dimensional Ising model should belong to this set. A possible connection with the chain of three dimensional lattice Pott's models is pointed out. (author) 22 refs.; 2 figs

  1. Some five-dimensional Bianchi type-iii string cosmological models in general relativity

    International Nuclear Information System (INIS)

    Samanta, G.C.; Biswal, S.K.; Mohanty, G.; Rameswarpatna, Bhubaneswar

    2011-01-01

    In this paper we have constructed some five-dimensional Bianchi type-III cosmological models in general relativity when source of gravitational field is a massive string. We obtained different classes of solutions by considering different functional forms of metric potentials. It is also observed that one of the models is not physically acceptable and the other models possess big-bang singularity. The physical and kinematical behaviors of the models are discussed

  2. A Hybrid Resynthesis Model for Hammer-String Interaction of Piano Tones

    Directory of Open Access Journals (Sweden)

    Jensen Kristoffer

    2004-01-01

    Full Text Available This paper presents a source/resonator model of hammer-string interaction that produces realistic piano sound. The source is generated using a subtractive signal model. Digital waveguides are used to simulate the propagation of waves in the resonator. This hybrid model allows resynthesis of the vibration measured on an experimental setup. In particular, the nonlinear behavior of the hammer-string interaction is taken into account in the source model and is well reproduced. The behavior of the model parameters (the resonant part and the excitation part is studied with respect to the velocities and the notes played. This model exhibits physically and perceptually related parameters, allowing easy control of the sound produced. This research is an essential step in the design of a complete piano model.

  3. Closed Strings From Nothing

    Energy Technology Data Exchange (ETDEWEB)

    Lawrence, Albion

    2001-07-25

    We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order {alpha}' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting.

  4. Closed Strings From Nothing

    International Nuclear Information System (INIS)

    Lawrence, Albion

    2001-01-01

    We study the physics of open strings in bosonic and type II string theories in the presence of unstable D-branes. When the potential energy of the open string tachyon is at its minimum, Sen has argued that only closed strings remain in the perturbative spectrum. We explore the scenario of Yi and of Bergman, Hori and Yi, who argue that the open string degrees of freedom are strongly coupled and disappear through confinement. We discuss arguments using open string field theory and worldsheet boundary RG flows, which seem to indicate otherwise. We then describe a solitonic excitation of the open string tachyon and gauge field with the charge and tension of a fundamental closed string. This requires a double scaling limit where the tachyon is taken to its minimal value and the electric field is taken to its maximum value. The resulting flux tube has an unconstrained spatial profile; and for large fundamental string charge, it appears to have light, weakly coupled open strings living in the core. We argue that the flux tube acquires a size or order α' through sigma model and string coupling effects; and we argue that confinement effects make the light degrees of freedom heavy and strongly interacting

  5. Modeling the Physics of Sliding Objects on Rotating Space Elevators and Other Non-relativistic Strings

    Science.gov (United States)

    Golubovic, Leonardo; Knudsen, Steven

    2017-01-01

    We consider general problem of modeling the dynamics of objects sliding on moving strings. We introduce a powerful computational algorithm that can be used to investigate the dynamics of objects sliding along non-relativistic strings. We use the algorithm to numerically explore fundamental physics of sliding climbers on a unique class of dynamical systems, Rotating Space Elevators (RSE). Objects sliding along RSE strings do not require internal engines or propulsion to be transported from the Earth's surface into outer space. By extensive numerical simulations, we find that sliding climbers may display interesting non-linear dynamics exhibiting both quasi-periodic and chaotic states of motion. While our main interest in this study is in the climber dynamics on RSEs, our results for the dynamics of sliding object are of more general interest. In particular, we designed tools capable of dealing with strongly nonlinear phenomena involving moving strings of any kind, such as the chaotic dynamics of sliding climbers observed in our simulations.

  6. Strings, texture, and inflation

    International Nuclear Information System (INIS)

    Hodges, H.M.; Primack, J.R.

    1991-01-01

    We examine mechanisms, several of which are proposed here, to generate structure formation, or to just add large-scale features, through either gauged or global cosmic strings or global texture, within the framework of inflation. We first explore the possibility that strings or texture form if there is no coupling between the topological theory and the inflaton or spacetime curvature, via (1) quantum creation, and (2) a sufficiently high reheat temperature. In addition, we examine the prospects for the inflaton field itself to generate strings or texture. Then, models with the string/texture field coupled to the curvature, and an equivalent model with coupling to the inflaton field, are considered in detail. The requirement that inflationary density fluctuations are not so large as to conflict with observations leads to a number of constraints on model parameters. We find that strings of relevance for structure formation can form in the absence of coupling to the inflaton or curvature through the process of quantum creation, but only if the strings are strongly type I, or if they are global strings. If formed after reheating, naturalness suggests that gauged cosmic strings correspond to a type-I superconductor. Similarly, gauged strings formed during inflation via conformal coupling ξ=1/6 to the spacetime curvature (in a model suggested by Yokoyama in order to evade the millisecond pulsar constraint on cosmic strings) are expected to be strongly type I

  7. Perturbative and non-perturbative approaches to string sigma-models in AdS/CFT

    Energy Technology Data Exchange (ETDEWEB)

    Vescovi, Edoardo

    2016-10-05

    This thesis discusses quantum aspects of type II superstring theories in AdS{sub 5} x S{sup 5} and AdS{sub 4} x CP{sup 3} backgrounds relevant for the AdS/CFT correspondence, using perturbative methods at large string tension and lattice field theory techniques inspired by a work of Roiban and McKeown. We review the construction of the supercoset sigma-model for strings in the AdS{sub 5} x S{sup 5} background, whereas the general quantum dynamics of the superstring in AdS{sub 4} x CP{sup 3} is described by a double dimensional reduction of the supermembrane action in AdS{sub 4} x S{sup 7}. We present a manifestly covariant formalism for semiclassical quantization of strings around arbitrary minimal-area surfaces in AdS{sub 5} x S{sup 5}, expressing the fluctuation operators in terms of intrinsic and extrinsic invariants of the background geometry. We exactly solve the spectral problem for a fourth-order generalization of the Lame differential equation with doubly periodic coefficients in a complex variable. This calculates the one-loop energy of the (J{sub 1},J{sub 2})-string in the SU(2) sector in the limit described by a quantum Landau-Lifshitz model and the bosonic contribution to the energy of the (S,J)-string rotating in AdS{sub 5} and S{sup 5}. Similar techniques calculate the 1/4-BPS latitude Wilson loops in N=4 SYM theory at one loop, normalized to the 1/2-BPS circular loop. Our regularization scheme reproduces the next-to-leading order predicted by supersymmetric localization, up to a remainder function that we discuss upon. We also study the AdS{sub 4} x CP{sup 3} string action expanded around the null cusp background and compute the cusp anomaly up to two loops. This agrees with an all-loop conjectured expression of the ABJM interpolating function. We finally discretize the AdS{sub 5} x S{sup 5} superstring theory in the AdS light-cone gauge and perform lattice simulations at finite coupling with a Monte Carlo algorithm. We measure the string action

  8. Propagation of cosmic rays through the atmosphere in the quark-gluon strings model

    Science.gov (United States)

    Erlykin, A. D.; Krutikova, N. P.; Shabelski, Y. M.

    1985-01-01

    The quark-gluon strings model succeeds in the description of multiple hadron production in the central rapidity region of nucleon-nucleon interctions. This model was developed for hadron-nucleus interactions and used for calculation of the cosmic ray propagation through the atmosphere. It is shown that at energies 10 to the 11th power to the 12th power eV, this model gives a satisfactory description of experimental data. But with the increase of the energy up to approximately 10 to the 14th power eV, results of calculations and of experiments begin to differ and this difference rises with the energy. It may indicate that the scaling violation in the fragmentation region of inclusive spectra for hadron-nucleus interactions is stronger than in the quark-gluon strings model.

  9. submitter Thermal, Hydraulic, and Electromagnetic Modeling of Superconducting Magnet Systems

    CERN Document Server

    Bottura, L

    2016-01-01

    Modeling techniques and tailored computational tools are becoming increasingly relevant to the design and analysis of large-scale superconducting magnet systems. Efficient and reliable tools are useful to provide an optimal forecast of the envelope of operating conditions and margins, which are difficult to test even when a prototype is available. This knowledge can be used to considerably reduce the design margins of the system, and thus the overall cost, or increase reliability during operation. An integrated analysis of a superconducting magnet system is, however, a complex matter, governed by very diverse physics. This paper reviews the wide spectrum of phenomena and provides an estimate of the time scales of thermal, hydraulic, and electromagnetic mechanisms affecting the performance of superconducting magnet systems. The analysis is useful to provide guidelines on how to divide the complex problem into building blocks that can be integrated in a design and analysis framework for a consistent multiphysic...

  10. Anomalous superconductivity in the tJ model; moment approach

    DEFF Research Database (Denmark)

    Sørensen, Mads Peter; Rodriguez-Nunez, J.J.

    1997-01-01

    By extending the moment approach of Nolting (Z, Phys, 225 (1972) 25) in the superconducting phase, we have constructed the one-particle spectral functions (diagonal and off-diagonal) for the tJ model in any dimensions. We propose that both the diagonal and the off-diagonal spectral functions...... Hartree shift which in the end result enlarges the bandwidth of the free carriers allowing us to take relative high values of J/t and allowing superconductivity to live in the T-c-rho phase diagram, in agreement with numerical calculations in a cluster, We have calculated the static spin susceptibility......, chi(T), and the specific heat, C-v(T), within the moment approach. We find that all the relevant physical quantities show the signature of superconductivity at T-c in the form of kinks (anomalous behavior) or jumps, for low density, in agreement with recent published literature, showing a generic...

  11. Modeling the static fringe field of superconducting magnets.

    Science.gov (United States)

    Jeglic, P; Lebar, A; Apih, T; Dolinsek, J

    2001-05-01

    The resonance frequency-space and the frequency gradient-space relations are evaluated analytically for the static fringe magnetic field of superconducting magnets used in the NMR diffusion measurements. The model takes into account the actual design of the high-homogeneity magnet coil system that consists of the main coil and the cryoshim coils and enables a precise calibration of the on-axis magnetic field gradient and the resonance frequency inside and outside of the superconducting coil. Copyright 2001 Academic Press.

  12. Light-light and heavy-light mesons in the model of QCD string with quarks at the ends

    CERN Document Server

    Nefediev, A V

    2002-01-01

    The variational einbein field method is applied to the model of the QCD string with quarks at the ends for the case of light-light and heavy-light mesons. Special attention is payed to the proper string dynamics. The correct string slope of the Regge trajectories is reproduced for light-light states which comes out from the picture of rotating string. Masses of several low-lying orbitally and radially excited states in the D, D_s, B, and B_s meson spectra are calculated and a good agreement with the experimental data as well as with recent lattice calculations is found. The role of the string correction to the interquark interaction is discussed at the example of the identification of D*'(2637) state recently claimed by DELPHI Collaboration. For the heavy-light mesons the standard constants used in Heavy Quark Effective Theory are extracted and compared to the results of other approaches.

  13. Detailed modeling of superconducting magnetic energy storage (SMES) system

    NARCIS (Netherlands)

    Chen, L.; Liu, Y.; Arsoy, A.B.; Ribeiro, P.F.; Steurer, M.; Iravani, M.R.

    2006-01-01

    This paper presents a detailed model for simulation of a Superconducting Magnetic Energy Storage (SMES) system. SMES technology has the potential to bring real power storage characteristic to the utility transmission and distribution systems. The principle of SMES system operation is reviewed in

  14. Nonintersecting string model and graphical approach: equivalence with a Potts model

    International Nuclear Information System (INIS)

    Perk, J.H.H.; Wu, F.Y.

    1986-01-01

    Using a graphical method the authors establish the exact equivalence of the partition function of a q-state nonintersecting string (NIS) model on an arbitrary planar, even-valenced lattice with that of a q 2 -state Potts model on a relaxed lattice. The NIS model considered in this paper is one in which the vertex weights are expressible as sums of those of basic vertex types, and the resulting Potts model generally has multispin interactions. For the square and Kagome lattices this leads to the equivalence of a staggered NIS model with Potts models with anisotropic pair interactions, indicating that these NIS models have a first-order transition for q greater than 2. For the triangular lattice the NIS model turns out to be the five-vertex model of Wu and Lin and it relates to a Potts model with two- and three-site interactions. The most general model the authors discuss is an oriented NIS model which contains the six-vertex model and the NIS models of Stroganov and Schultz as special cases

  15. Gauge coupling unification in heterotic string models with gauge mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Anandakrishnan, Archana; Raby, Stuart

    2011-01-01

    We calculate the weak scale minimal supersymmetric standard model spectrum starting from a heterotic string theory compactified on an anisotropic orbifold. Supersymmetry breaking is mediated by vectorlike exotics that arise naturally in heterotic string theories. The messengers that mediate supersymmetry breaking come in incomplete grand unified theory (GUT) multiplets and give rise to nonuniversal gaugino masses at the GUT scale. Models with nonuniversal gaugino masses at the GUT scale have the attractive feature of allowing for precision gauge coupling unification at the GUT scale with negligible contributions from threshold corrections near the unification scale. The unique features of this minimally supersymmetric standard model spectrum are light gluinos and also large mass differences between the lightest and the next-to-lightest neutralinos and charginos which could lead to interesting signatures at the colliders.

  16. Superconducting characteristics of the Penson-Kolb model

    International Nuclear Information System (INIS)

    Czart, W.R.; Robaszkiewicz, S.

    2000-01-01

    We study superconducting properties of the Penson-Kolb model, i. e. the tight-binding model with the pair-hopping (intersite charge exchange) interaction J. The evolution of the critical fields, the coherence length, the Ginzburg ratio, and London penetration depth with particle concentration n and pairing strength are determined. The results are compared with those found earlier for the attractive Hubbard model. (author)

  17. String states, loops and effective actions in noncommutative field theory and matrix models

    Directory of Open Access Journals (Sweden)

    Harold C. Steinacker

    2016-09-01

    Full Text Available Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  18. De Sitter vacua in no-scale supergravities and Calabi-Yau string models

    CERN Document Server

    Covi, Laura; Gross, Christian; Louis, Jan; Palma, Gonzalo A; Scrucca, Claudio A

    2008-01-01

    We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N=1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kahler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the `sGoldstino' masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kahler potential which b...

  19. String states, loops and effective actions in noncommutative field theory and matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Steinacker, Harold C., E-mail: harold.steinacker@univie.ac.at

    2016-09-15

    Refining previous work by Iso, Kawai and Kitazawa, we discuss bi-local string states as a tool for loop computations in noncommutative field theory and matrix models. Defined in terms of coherent states, they exhibit the stringy features of noncommutative field theory. This leads to a closed form for the 1-loop effective action in position space, capturing the long-range non-local UV/IR mixing for scalar fields. The formalism applies to generic fuzzy spaces. The non-locality is tamed in the maximally supersymmetric IKKT or IIB model, where it gives rise to supergravity. The linearized supergravity interactions are obtained directly in position space at one loop using string states on generic noncommutative branes.

  20. Borel and Stokes Nonperturbative Phenomena in Topological String Theory and c=1 Matrix Models

    CERN Document Server

    Pasquetti, Sara

    2010-01-01

    We address the nonperturbative structure of topological strings and c=1 matrix models, focusing on understanding the nature of instanton effects alongside with exploring their relation to the large-order behavior of the 1/N expansion. We consider the Gaussian, Penner and Chern-Simons matrix models, together with their holographic duals, the c=1 minimal string at self-dual radius and topological string theory on the resolved conifold. We employ Borel analysis to obtain the exact all-loop multi-instanton corrections to the free energies of the aforementioned models, and show that the leading poles in the Borel plane control the large-order behavior of perturbation theory. We understand the nonperturbative effects in terms of the Schwinger effect and provide a semiclassical picture in terms of eigenvalue tunneling between critical points of the multi-sheeted matrix model effective potentials. In particular, we relate instantons to Stokes phenomena via a hyperasymptotic analysis, providing a smoothing of the nonp...

  1. Superconductivity: A testing ground for models of confinement

    International Nuclear Information System (INIS)

    Ball, J.S.; Caticha, A.

    1988-01-01

    The interaction of a magnetic monopole-antimonopole pair in a superconductor is calculated as a function of their separation and the value of the Landau-Ginzburg parameter. This direct numerical result is then compared to the bag approximation to the same interaction in a superconducting medium. The actual potential exhibits the same general features as those obtained in the bag calculation. If the bag pressure is used as a phenomenological parameter, rather than the value fixed by the superconducting energy density, the agreement is excellent. Numerically the actual problem was actually no more difficult than the bag calculation. The interaction between magnetic monopoles and antimonopoles in the superconducting vacuum state is similar to the interaction of heavy colored quarks in a flux-confining physical QCD vacuum state. This means that our results are probably a good indication of the general behavior of the QCD potential and of the reliability of the bag approximation in the calculation of this potential. Our results also show that the bag model is a good approximation to a dual superconductor. This indicates that a dual superconducting picture of QCD would lead to the same heavy-quark potential and perhaps retain more of the physics than the bag model

  2. Correlations in simple multi-string models of pp collisions at ISR energies

    International Nuclear Information System (INIS)

    Lugovoj, V.V.; Chudakov, V.M.

    1989-01-01

    Simple statistical simulation algorithms are suggested for formation and breaking of a few quark-gluon strings in inelastic pp collisions. Theoretical multiplicity distributions, semi-inclusive quasirapidity spectra, forward-backward correlations of charged secondaries and seagull effect agree well with the experimental data at ISR energies. In the framework of the model, the semi-inclusive two-particle correlations of quasirapidities depend upon the fraction of the spherical chains. The seagull effect is qualitatively interpretated

  3. Introduction to string theory and string compactifications

    International Nuclear Information System (INIS)

    GarcIa-Compean, Hugo

    2005-01-01

    Basics of some topics on perturbative and non-perturbative string theory are reviewed. After a mathematical survey of the Standard Model of particle physics and GUTs, the bosonic string kinematics for the free case and with interaction is described. The effective action of the bosonic string and the spectrum is also discussed. T-duality in closed and open strings and the definition of D-brane are surveyed. Five perturbative superstring theories and their spectra is briefly outlined. Calabi-Yau three-fold compactifications of heterotic strings and their relation to some four-dimensional physics are given. Finally, non-perturbative issues like S-duality, M-theory and F-theory are also reviewed

  4. QCD and string theories

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1990-01-01

    This paper is devoted to a review of the connections between quantumchromodynamics (QCD) and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality

  5. QCD and hadronic strings

    International Nuclear Information System (INIS)

    Cohen-Tannoudji, G.

    1989-01-01

    This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)

  6. Discrete state moduli of string theory from c=1 matrix model

    CERN Document Server

    Dhar, A; Wadia, S R; Dhar, Avinash; Mandal, Gautam; Wadia, Spenta R

    1995-01-01

    We propose a new formulation of the space-time interpretation of the c=1 matrix model. Our formulation uses the well-known leg-pole factor that relates the matrix model amplitudes to that of the 2-dimensional string theory, but includes fluctuations around the fermi vacuum on {\\sl both sides} of the inverted harmonic oscillator potential of the double-scaled model, even when the fluctuations are small and confined entirely within the asymptotes in the phase plane. We argue that including fluctuations on both sides of the potential is essential for a consistent interpretation of the leg-pole transformed theory as a theory of space-time gravity. We reproduce the known results for the string theory tree level scattering amplitudes for flat space and linear dilaton background as a special case. We show that the generic case corresponds to more general space-time backgrounds. In particular, we identify the parameter corresponding to background metric perturbation in string theory (black hole mass) in terms of the ...

  7. Exact string theory model of closed timelike curves and cosmological singularities

    International Nuclear Information System (INIS)

    Johnson, Clifford V.; Svendsen, Harald G.

    2004-01-01

    We study an exact model of string theory propagating in a space-time containing regions with closed timelike curves (CTCs) separated from a finite cosmological region bounded by a big bang and a big crunch. The model is an nontrivial embedding of the Taub-NUT geometry into heterotic string theory with a full conformal field theory (CFT) definition, discovered over a decade ago as a heterotic coset model. Having a CFT definition makes this an excellent laboratory for the study of the stringy fate of CTCs, the Taub cosmology, and the Milne/Misner-type chronology horizon which separates them. In an effort to uncover the role of stringy corrections to such geometries, we calculate the complete set of α ' corrections to the geometry. We observe that the key features of Taub-NUT persist in the exact theory, together with the emergence of a region of space with Euclidean signature bounded by timelike curvature singularities. Although such remarks are premature, their persistence in the exact geometry is suggestive that string theory is able to make physical sense of the Milne/Misner singularities and the CTCs, despite their pathological character in general relativity. This may also support the possibility that CTCs may be viable in some physical situations, and may be a natural ingredient in pre-big bang cosmological scenarios

  8. De Sitter vacua and inflation in no-scale string models

    Energy Technology Data Exchange (ETDEWEB)

    Gross, Christian

    2009-09-15

    This thesis studies the question of how de Sitter vacua and slow-roll inflation may be realized in string-motivated models. More specifically, we consider 4d N = 1 supergravity theories (without vector multiplets) with Kaehler potentials which are 'no-scale' at leading order. Such theories frequently arise in the moduli sector of string compactifications. We discuss a condition on the scalar geometry (defined by the Kaehler potential) and on the direction of supersymmetry breaking in the scalar manifold, which has to be met in order for the average of the masses of the sGoldstinos to be positive, and hence for metastable vacua to be possible. This condition also turns out to be necessary for the existence of trajectories admitting slow-roll inflation. Its implications for certain scalar manifolds which arise from Calabi-Yau string compactifications are discussed. In particular, for two-moduli models arising from compactifications of heterotic- and type IIB string theory, a simple criterion on the intersection numbers needs to be satisfied for possible de Sitter phases to exist. In addition, we show that subleading corrections breaking the no-scale property may allow the condition on the scalar geometry to be fulfilled, even when it is violated at leading order. Finally, we develop a procedure to construct superpotentials for a given viable Kaehler potential, such that the scalar potential has a realistic local minimum. We propose two-moduli models, with superpotentials which could arise from flux backgrounds and non-perturbative effects, which have a viable vacuum without employing subleading corrections or an uplifting sector. (orig.)

  9. Feature-Based and String-Based Models for Predicting RNA-Protein Interaction

    Directory of Open Access Journals (Sweden)

    Donald Adjeroh

    2018-03-01

    Full Text Available In this work, we study two approaches for the problem of RNA-Protein Interaction (RPI. In the first approach, we use a feature-based technique by combining extracted features from both sequences and secondary structures. The feature-based approach enhanced the prediction accuracy as it included much more available information about the RNA-protein pairs. In the second approach, we apply search algorithms and data structures to extract effective string patterns for prediction of RPI, using both sequence information (protein and RNA sequences, and structure information (protein and RNA secondary structures. This led to different string-based models for predicting interacting RNA-protein pairs. We show results that demonstrate the effectiveness of the proposed approaches, including comparative results against leading state-of-the-art methods.

  10. LHC Phenomenology and Cosmology of String-Inspired Intersecting D-Brane Models

    CERN Document Server

    Anchordoqui, Luis A.; Goldberg, Haim; Huang, Xing; Lust, Dieter; Taylor, Tomasz R.; Vlcek, Brian

    2012-01-01

    We discuss the phenomenology and cosmology of a Standard-like Model inspired by string theory, in which the gauge fields are localized on D-branes wrapping certain compact cycles on an underlying geometry, whose intersection can give rise to chiral fermions. The energy scale associated with string physics is assumed to be near the Planck mass. To develop our program in the simplest way, we work within the construct of a minimal model with gauge-extended sector U (3)_B \\times Sp (1)_L \\times U (1)_{I_R} \\times U (1)_L. The resulting U (1) content gauges the baryon number B, the lepton number L, and a third additional abelian charge I_R which acts as the third isospin component of an SU(2)_R. All mixing angles and gauge couplings are fixed by rotation of the U(1) gauge fields to a basis diagonal in hypercharge Y and in an anomaly free linear combination of I_R and B-L. The anomalous $Z'$ gauge boson obtains a string scale St\\"uckelberg mass via a 4D version of the Green-Schwarz mechanism. To keep the realizatio...

  11. Unitary-matrix models as exactly solvable string theories

    Science.gov (United States)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  12. The 10-D chiral null model and the relation to 4-D string solutions

    International Nuclear Information System (INIS)

    Behrndt, K.

    1994-12-01

    The chiral null model is a generalization of the fundamental string and gravitational wave background. It is an example of a conformally invariant model in all orders in α' and has unbroken supersymmetries. In a Kaluza-Klein approach we start in 10 dimensions and reduce the model down to 4 dimensions without making any restrictions. The 4-D field content is given by the metric, torsion, dilaton, a moduli field and 6 gauge fields. This model is self-dual and near the singularities asymptotically free. The relation to known IWP, Taub-NUT and rotating black hole solutions is discussed. (orig.)

  13. LRS Bianchi Type II Massive String Cosmological Models with Magnetic Field in Lyra's Geometry

    Directory of Open Access Journals (Sweden)

    Raj Bali

    2013-01-01

    Full Text Available Bianchi type II massive string cosmological models with magnetic field and time dependent gauge function ( in the frame work of Lyra's geometry are investigated. The magnetic field is in -plane. To get the deterministic solution, we have assumed that the shear ( is proportional to the expansion (. This leads to , where and are metric potentials and is a constant. We find that the models start with a big bang at initial singularity and expansion decreases due to lapse of time. The anisotropy is maintained throughout but the model isotropizes when . The physical and geometrical aspects of the model in the presence and absence of magnetic field are also discussed.

  14. Topics in string theory

    International Nuclear Information System (INIS)

    Neveu, A.

    1986-01-01

    There exist several string models. In the first lecture, the simplest one, the open bosonic string, which turns out to live most naturally in 26 dimensions will be described in some detail. In the second lecture, the closed bosonic strings, and the open and closed 10-dimensional strings (superstrings) are reviewed. In the third lecture, various compactification schemes which have been proposed to deal with the extra space dimensions, from 4 to 10 or 26 are dealt with; in particular, the Frenkel-Kac construction which builds non-Abelian internal symmetry groups out of the compactified dimensions, and the resulting heterotic string are described. Finally, in the fourth lecture, the important problem of the second quantization of string theories, and of the underlying gauge invariance which is responsible for the possibility of dealing, in a consistent fashion, with interacting high-spin states without negative metric is addressed. 41 references, 8 figures

  15. Correlation mediated superconductivity in a 'High-Tsub(c)' model

    International Nuclear Information System (INIS)

    Long, M.W.

    1987-08-01

    A simple model is presented to account for the High-Tsub(c) perovskite superconductors. The superconducting mechanism is purely electronic and comes from local Hubbard correlations. The model comprises a Hubbard model for the copper sites with a single particle oxygen band between the two copper Hubbard bands. The electrons move only between nearest neighbour atoms which are of different types. Using two very different approximation schemes, one related to 'Slave-Boson' mean field theory and the other based on an exact local Fermion transformation, the possibility of copper-oxygen or a mixture of copper-oxygen and oxygen-oxygen pairing is shown. The author believes that the most promising situation for superconductivity is with the Oxygen band over half-filled and closer in energy to the lower Hubbard band. (author)

  16. Exotic superconducting states in the extended attractive Hubbard model.

    Science.gov (United States)

    Nayak, Swagatam; Kumar, Sanjeev

    2018-04-04

    We show that the extended attractive Hubbard model on a square lattice allows for a variety of superconducting phases, including exotic mixed-symmetry phases with [Formula: see text] and [Formula: see text] symmetries, and a novel [Formula: see text] state. The calculations are performed within the Hartree-Fock Bardeen-Cooper-Schrieffer framework. The ground states of the mean-field Hamiltonian are obtained via a minimization scheme that relaxes the symmetry constraints on the superconducting solutions, hence allowing for a mixing of s-, p- and d-wave order parameters. The results are obtained within the assumption of uniform-density states. Our results show that extended attractive Hubbard model can serve as an effective model for investigating properties of exotic superconductors.

  17. Thermodynamics of quantum strings

    CERN Document Server

    Morgan, M J

    1994-01-01

    A statistical mechanical analysis of an ideal gas of non-relativistic quantum strings is presented, in which the thermodynamic properties of the string gas are calculated from a canonical partition function. This toy model enables students to gain insight into the thermodynamics of a simple 'quantum field' theory, and provides a useful pedagogical introduction to the more complicated relativistic string theories. A review is also given of the thermodynamics of the open bosonic string gas and the type I (open) superstring gas. (author)

  18. Coexistence of incommensurate magnetism and superconductivity in the two-dimensional Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Yamase, Hiroyuki [Max Planck Institute for Solid State Research, Stuttgart (Germany); National Institute for Materials Science, Tsukuba (Japan); Eberlein, Andreas [Max Planck Institute for Solid State Research, Stuttgart (Germany); Department of Physics, Harvard University, Cambridge (United States); Metzner, Walter [Max Planck Institute for Solid State Research, Stuttgart (Germany)

    2016-07-01

    We analyze the competition of magnetism and superconductivity in the two-dimensional Hubbard model with a moderate interaction strength, including the possibility of incommensurate spiral magnetic order. Using an unbiased renormalization group approach, we compute magnetic and superconducting order parameters in the ground state. In addition to previously established regions of Neel order coexisting with d-wave superconductivity, the calculations reveal further coexistence regions where superconductivity is accompanied by incommensurate magnetic order.

  19. Antiferromagnetism and d-wave superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Krahl, H.C.

    2007-07-25

    The two-dimensional Hubbard model is a promising effective model for the electronic degrees of freedom in the copper-oxide planes of high temperature superconductors. We present a functional renormalization group approach to this model with focus on antiferromagnetism and d-wave superconductivity. In order to make the relevant degrees of freedom more explicitly accessible on all length scales, we introduce composite bosonic fields mediating the interaction between the fermions. Spontaneous symmetry breaking is reflected in a non-vanishing expectation value of a bosonic field. The emergence of a coupling in the d-wave pairing channel triggered by spin wave fluctuations is demonstrated. Furthermore, the highest temperature at which the interaction strength for the electrons diverges in the renormalization flow is calculated for both antiferromagnetism and d-wave superconductivity over a wide range of doping. This ''pseudo-critical'' temperature signals the onset of local ordering. Moreover, the temperature dependence of d-wave superconducting order is studied within a simplified model characterized by a single coupling in the d-wave pairing channel. The phase transition within this model is found to be of the Kosterlitz-Thouless type. (orig.)

  20. Order α'(two-loop) equivalence of the string equations of motion and the σ-model Weyl invariance conditions

    International Nuclear Information System (INIS)

    Metsaev, R.R.; Tseytlin, A.A.

    1987-01-01

    We prove the on-shell equivalence of the order α' terms in the string effective equations (for the graviton, dilaton and the antisymmetric tensor) to the vanishing of the corresponding (two-loop) terms in the Weyl anomaly coefficients for the general bosonic σ-model. We first determine the α' term in the string effective action starting with the known expression for the 3- and 4-point string amplitudes. Then we compute the two-loop β-function in the general σ-model with the antisymmetric tensor coupling. Special emphasis is made on the renormalization scheme dependence of the β-function. Our result disagrees with the previously known one and cannot be manifestly expressed in terms of the generalized curvature for the connection with torsion. We also prove (to the order α' 2 ) that the parallelizable spaces are solutions of the string equations of motion and establish the complete 3-loop expression for the 'central charge' coefficient. (orig.)

  1. Chern-Simons matrix models and unoriented strings

    International Nuclear Information System (INIS)

    Halmagyi, Nick; Yasnov, Vadim

    2004-01-01

    For matrix models with measure on the Lie algebra of SO/Sp, the sub-leading free energy is given by F 1 (S) ±{1/4}({δF 0 (S)}/{δS}). Motivated by the fact that this relationship does not hold for Chern-Simons theory on S 3 , we calculate the sub-leading free energy in the matrix model for this theory, which is a Gaussian matrix model with Haar measure on the group SO/Sp. We derive a quantum loop equation for this matrix model and then find that F 1 is an integral of the leading order resolvent over the spectral curve. We explicitly calculate this integral for quadratic potential and find agreement with previous studies of SO/Sp Chern-Simons theory. (author)

  2. String tension in the three-dimensional Abelian Higgs model

    International Nuclear Information System (INIS)

    Farakos, K.; Koutsoumbas, G.; Sarantakos, S.

    1988-01-01

    We measure the expectation values of the Wilson loops for the radially active Abelian Higgs model in three dimensions with Higgs charge q = 1 and q = 2. We observe a drastic fall-off of the area term as we pass to the Higgs phase, as well as a peak of the perimetric term at the phase transition. Implications of our results for other Higgs models are also discussed. (orig.)

  3. Quark potential of spontaneous strings

    International Nuclear Information System (INIS)

    German, G.; Kleinert, H.

    1989-01-01

    The authors present some recent developments in string models with an extrinsic curvature term in action. Particular emphasis is placed upon the static quark potential and on the thermal deconfinement properties of spontaneous strings

  4. Type IIA string theory on T"6/(Z_2 x Z_6 x ΩR). Model building and string phenomenology with intersecting D6-branes

    International Nuclear Information System (INIS)

    Ecker, Jill

    2016-01-01

    In this doctoral thesis, various aspects of string model building and phenomenology are investigated within the framework of Type IIA string theory on the T"6/(Z_2 x Z_6 x ΩR) orbifold with discrete torsion. The aim is the reproduction of supersymmetric versions of well-known particle physics models using intersecting rigid D6-branes wrapped on fractional three-cycles. The models analyzed include the minimal supersymmetric Standard Model as well as supersymmetric Pati-Salam models, left-right symmetric models and SU(5) models. Systematic computer scans test numerous combinations of intersecting D6-branes in order to detect those that give rise to the correct chiral particle content of the considered models. For each type of the afore mentioned models, concrete examples will be found which satisfy the constraints on the particle spectrum and fulfill all consistency conditions. Finally, the thesis focuses on phenomenological aspects of the particle physics models found, including the detection of massless U(1) combinations, discrete Z_n-symmetries and cubic couplings such as the Yukawa couplings.

  5. A polaronic model of superconductivity in doped fulleride systems

    International Nuclear Information System (INIS)

    Tiwari, S.C.

    2007-01-01

    Full text: A polaronic model of superconductivity in doped fulleride systems is presented. The normal and anomalous one-particle Green's functions are derived for a system with strong electron phonon coupling. The study of collapse of the electron band and the phonon vacuum is presented within the mean-field approximation. Self consistent equation for the superconducting order parameter is derived using Green's function technique and following Lang and Firsov transformations. Expressions for specific heat, density of states, free energy and critical field based on this model have been derived. The theory is applied to explain the experimental results in the systems K 3 C 60 and Rb 3 C 6 O. These results are in good agreement with the available experimental data. (authors)

  6. String theory

    International Nuclear Information System (INIS)

    Chan Hongmo.

    1987-10-01

    The paper traces the development of the String Theory, and was presented at Professor Sir Rudolf Peierls' 80sup(th) Birthday Symposium. The String theory is discussed with respect to the interaction of strings, the inclusion of both gauge theory and gravitation, inconsistencies in the theory, and the role of space-time. The physical principles underlying string theory are also outlined. (U.K.)

  7. Semilocal and electroweak strings

    NARCIS (Netherlands)

    Achucarro, A; Vachaspati, T

    We review a class of non-topological defects in the standard electroweak model, and their implications. Starting with the semilocal string, which provides a counterexample to many well-known properties of topological vortices, we discuss electroweak strings and their stability with and without

  8. A rotating string

    International Nuclear Information System (INIS)

    Jensen, B.

    1993-06-01

    The author presents a global solution of Einstein's equations which represents a rotating cosmic string with a finite coreradius. The importance of pressure for the generation of closed timelike curves outside the coreregion of such strings is clearly displayed in this model due to the simplicity of the source. 10 refs

  9. Extension of One-Dimensional Models for Hyperelastic String Structures under Coulomb Friction with Adhesion

    Directory of Open Access Journals (Sweden)

    Vladimir Shiryaev

    2018-04-01

    Full Text Available A stretching behavior of knitted and woven textiles is modeled. In our work, the yarns are modeled as one-dimensional hyperelastic strings with frictional contact. Capstan law known for Coulomb’s friction of yarns is extended to an additional adhesion due to gluing of filaments on the yarn surface or some chemical reaction. Two-step Newton’s method is applied for the solution of the large stretching with sliding evolution in the contact nodes. The approach is illustrated on a hysteresis of knitted textile and on the force-strain curve for a woven pattern and both compared with experimental effective curves.

  10. String field theory solution for any open string background

    Czech Academy of Sciences Publication Activity Database

    Erler, T.; Maccaferri, Carlo

    2014-01-01

    Roč. 10, Oct (2014), 1-37 ISSN 1029-8479 R&D Projects: GA ČR GBP201/12/G028 Institutional support: RVO:68378271 Keywords : tachyon condensation * string field theory * conformal field models in string theory * bosonic strings Subject RIV: BE - Theoretical Physics Impact factor: 6.111, year: 2014

  11. String Threshold corrections in models with spondaneously broken supersymmetry

    CERN Document Server

    Kiritsis, Elias B; Petropoulos, P M; Rizos, J

    1999-01-01

    We analyse a class of four-dimensional heterotic ground states with N=2 space-time supersymmetry. From the ten-dimensional perspective, such models can be viewed as compactifications on a six-dimensional manifold with SU(2) holonomy, which is locally but not globally K3 x T^2. The maximal N=4 supersymmetry is spontaneously broken to N=2. The masses of the two massive gravitinos depend on the (T,U) moduli of T^2. We evaluate the one-loop threshold corrections of gauge and R^2 couplings and we show that they fall in several universality classes, in contrast to what happens in usual K3 x T^2 compactifications, where the N=4 supersymmetry is explicitly broken to N=2, and where a single universality class appears. These universality properties follow from the structure of the elliptic genus. The behaviour of the threshold corrections as functions of the moduli is analysed in detail: it is singular across several rational lines of the T^2 moduli because of the appearance of extra massless states, and suffers only f...

  12. Classification of three-family grand unification in string theory. II. The SU(5) and SU(6) models

    International Nuclear Information System (INIS)

    Kakushadze, Z.; Tye, S.H.

    1997-01-01

    Requiring that supersymmetric SU(5) and SU(6) grand unifications in the heterotic string theory must have three chiral families, adjoint (or higher representation) Higgs fields in the grand unified gauge group, and a non-Abelian hidden sector, we construct such string models within the framework of free conformal field theory and asymmetric orbifolds. Within this framework, we construct all such string models via Z 6 asymmetric orbifolds that include a Z 3 outerautomorphism, the latter yielding a level-three current algebra for the grand unification gauge group SU(5) or SU(6). We then classify all such Z 6 asymmetric orbifolds that result in models with a non-Abelian hidden sector. All models classified in this paper have only one adjoint (but no other higher representation) Higgs field in the grand unified gauge group. This Higgs field is neutral under all other gauge symmetries. The list of hidden sectors for three-family SU(6) string models are SU(2), SU(3), and SU(2)circle-times SU(2). In addition to these, three-family SU(5) string models can also have an SU(4) hidden sector. Some of the models have an apparent anomalous U(1) gauge symmetry. copyright 1997 The American Physical Society

  13. Hyperbolic strings

    International Nuclear Information System (INIS)

    Popov, A.D.

    1991-01-01

    We introduce hyperbolic strings as closed bosonic strings with the target space R d-1,1 xT q+1,1 which has an additional time-like dimension in the internal space. The Fock spaces of the q-parametric family of standard bosonic, fermionic and heterotic strings with the target spaces of dimension n≤d+q are shown to be embedded into the Fock space of hyperbolic strings. The condition of the absence of anomaly fixes d and q for all three types of strings written in a bosonized form. (orig.)

  14. [Research programs on elementary particle and field theories and superconductivity

    International Nuclear Information System (INIS)

    Khuri, N.N.

    1992-01-01

    Research of staff members in theoretical physics is presented in the following areas: super string theory, a new approach to path integrals, new ideas on the renormalization group, nonperturbative chiral gauge theories, the standard model, K meson decays, and the CP problem. Work on high-T c superconductivity and protein folding is also related

  15. The STRING database in 2011

    DEFF Research Database (Denmark)

    Szklarczyk, Damian; Franceschini, Andrea; Kuhn, Michael

    2011-01-01

    present an update on the online database resource Search Tool for the Retrieval of Interacting Genes (STRING); it provides uniquely comprehensive coverage and ease of access to both experimental as well as predicted interaction information. Interactions in STRING are provided with a confidence score...... models, extensive data updates and strongly improved connectivity and integration with third-party resources. Version 9.0 of STRING covers more than 1100 completely sequenced organisms; the resource can be reached at http://string-db.org....

  16. Models for large superconducting toroidal magnet systems

    International Nuclear Information System (INIS)

    Arendt, F.; Brechna, H.; Erb, J.; Komarek, P.; Krauth, H.; Maurer, W.

    1976-01-01

    Prior to the design of large GJ toroidal magnet systems it is appropriate to procure small scale models, which can simulate their pertinent properties and allow to investigate their relevant phenomena. The important feature of the model is to show under which circumstances the system performance can be extrapolated to large magnets. Based on parameters such as the maximum magnetic field and the current density, the maximum tolerable magneto-mechanical stresses, a simple method of designing model magnets is presented. It is shown how pertinent design parameters are changed when the toroidal dimensions are altered. In addition some conductor cost estimations are given based on reactor power output and wall loading

  17. Topological superconductivity in the extended Kitaev-Heisenberg model

    Science.gov (United States)

    Schmidt, Johann; Scherer, Daniel D.; Black-Schaffer, Annica M.

    2018-01-01

    We study superconducting pairing in the doped Kitaev-Heisenberg model by taking into account the recently proposed symmetric off-diagonal exchange Γ . By performing a mean-field analysis, we classify all possible superconducting phases in terms of symmetry, explicitly taking into account effects of spin-orbit coupling. Solving the resulting gap equations self-consistently, we map out a phase diagram that involves several topologically nontrivial states. For Γ breaking chiral phase with Chern number ±1 and a time-reversal symmetric nematic phase that breaks the rotational symmetry of the lattice. On the other hand, for Γ ≥0 we find a time-reversal symmetric phase that preserves all the lattice symmetries, thus yielding clearly distinguishable experimental signatures for all superconducting phases. Both of the time-reversal symmetric phases display a transition to a Z2 nontrivial phase at high doping levels. Finally, we also include a symmetry-allowed spin-orbit coupling kinetic energy and show that it destroys a tentative symmetry-protected topological order at lower doping levels. However, it can be used to tune the time-reversal symmetric phases into a Z2 nontrivial phase even at lower doping.

  18. Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras

    Science.gov (United States)

    Ashwinkumar, Meer; Cao, Jingnan; Luo, Yuan; Tan, Meng-Chwan; Zhao, Qin

    2018-03-01

    We study the ground states and left-excited states of the Ak-1 N = (2 , 0) little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU (k). The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.

  19. Regularities in hadron systematics, Regge trajectories and a string quark model

    International Nuclear Information System (INIS)

    Chekanov, S.V.; Levchenko, B.B.

    2006-08-01

    An empirical principle for the construction of a linear relationship between the total angular momentum and squared-mass of baryons is proposed. In order to examine linearity of the trajectories, a rigorous least-squares regression analysis was performed. Unlike the standard Regge-Chew-Frautschi approach, the constructed trajectories do not have non-linear behaviour. A similar regularity may exist for lowest-mass mesons. The linear baryonic trajectories are well described by a semi-classical picture based on a spinning relativistic string with tension. The obtained numerical solution of this model was used to extract the (di)quark masses. (orig.)

  20. Little strings, quasi-topological sigma model on loop group, and toroidal Lie algebras

    Directory of Open Access Journals (Sweden)

    Meer Ashwinkumar

    2018-03-01

    Full Text Available We study the ground states and left-excited states of the Ak−1 N=(2,0 little string theory. Via a theorem by Atiyah [1], these sectors can be captured by a supersymmetric nonlinear sigma model on CP1 with target space the based loop group of SU(k. The ground states, described by L2-cohomology classes, form modules over an affine Lie algebra, while the left-excited states, described by chiral differential operators, form modules over a toroidal Lie algebra. We also apply our results to analyze the 1/2 and 1/4 BPS sectors of the M5-brane worldvolume theory.

  1. Cosmic strings and galaxy formation

    International Nuclear Information System (INIS)

    Bertschinger, E.

    1989-01-01

    Cosmic strings have become increasingly popular candidates as seeds for the formation of structure in the universe. This scenario, remains a serious cosmogonical model despite close scrutiny. In constrast, magnetic monopoles and domain walls - relic topological defects as are cosmic strings - are disastrous for cosmology if they are left over from the early universe. The production of heavy cosmic strings is speculative, as it depends on the details of ultrahigh energy physics. Fortunately, speculation about cosmic strings is not entirely idle because, if they exist and are heavy enough to seed galaxy formation, cosmic strings can be detected astronomically. Failure to detect cosmic strings would impose some constraints on grand unified theories (GUTs); their discovery would have exciting consequences for high energy physics and cosmology. This article reviews the basic physics of nonsuperconducting cosmic strings, highlighting the field theory aspects, and provides a progress report on calculations of structure formation with cosmic strings

  2. String necklaces and primordial black holes from type IIB strings

    International Nuclear Information System (INIS)

    Lake, Matthew; Thomas, Steve; Ward, John

    2009-01-01

    We consider a model of static cosmic string loops in type IIB string theory, where the strings wrap cycles within the internal space. The strings are not topologically stabilised, however the presence of a lifting potential traps the windings giving rise to kinky cycloops. We find that PBH formation occurs at early times in a small window, whilst at late times we observe the formation of dark matter relics in the scaling regime. This is in stark contrast to previous predictions based on field theoretic models. We also consider the PBH contribution to the mass density of the universe, and use the experimental data to impose bounds on the string theory parameters.

  3. Percolation modelling for highly aligned polycrystalline superconducting tapes

    Energy Technology Data Exchange (ETDEWEB)

    Rutter, N A; Glowacki, B A; Evetts, J E [Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge CB2 3QZ (United Kingdom); IRC in Superconductivity, Madingley Road, Cambridge CB3 0HE (United Kingdom)

    2000-11-01

    Surface and bulk texture measurements have been carried out on highly aligned NiFe tapes, suitable for use as coated conductor substrates. Data from small-area electron backscatter diffraction measurements are compared with those from bulk x-ray analysis in the development of a two-dimensional percolation model, and the two are shown to give very similar results. No evidence of grain-to-grain correlation is found. The model is then developed to assess how the properties of a superconducting layer grown epitaxially on buffered tapes will depend on parameters such as sample size, grain size and the extent of grain alignment. (author)

  4. Iteration schemes for parallelizing models of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P.A. [Michigan State Univ., East Lansing, MI (United States)

    1996-12-31

    The time dependent Lawrence-Doniach model, valid for high fields and high values of the Ginzburg-Landau parameter, is often used for studying vortex dynamics in layered high-T{sub c} superconductors. When solving these equations numerically, the added degrees of complexity due to the coupling and nonlinearity of the model often warrant the use of high-performance computers for their solution. However, the interdependence between the layers can be manipulated so as to allow parallelization of the computations at an individual layer level. The reduced parallel tasks may then be solved independently using a heterogeneous cluster of networked workstations connected together with Parallel Virtual Machine (PVM) software. Here, this parallelization of the model is discussed and several computational implementations of varying degrees of parallelism are presented. Computational results are also given which contrast properties of convergence speed, stability, and consistency of these implementations. Included in these results are models involving the motion of vortices due to an applied current and pinning effects due to various material properties.

  5. Strings as multi-particle states of quantum sigma-models

    International Nuclear Information System (INIS)

    Gromov, Nikolay; Kazakov, Vladimir; Sakai, Kazuhiro; Vieira, Pedro

    2007-01-01

    We study the quantum Bethe ansatz equations in the O(2n) sigma-model for physical particles on a circle, with the interaction given by the Zamolodchikovs'S-matrix, in view of its application to quantization of the string on the S 2n-1 xR t space. For a finite number of particles, the system looks like an inhomogeneous integrable O(2n) spin chain. Similarly to OSp(2m+n|2m) conformal sigma-model considered by Mann and Polchinski, we reproduce in the limit of large density of particles the finite gap Kazakov-Marshakov-Minahan-Zarembo solution for the classical string and its generalization to the S 5 xR t sector of the Green-Schwarz-Metsaev-Tseytlin superstring. We also reproduce some quantum effects: the BMN limit and the quantum homogeneous spin chain similar to the one describing the bosonic sector of the one-loop N=4 super-Yang-Mills theory. We discuss the prospects of generalization of these Bethe equations to the full superstring sigma-model

  6. Computer modelling of superconductive fault current limiters

    Energy Technology Data Exchange (ETDEWEB)

    Weller, R.A.; Campbell, A.M.; Coombs, T.A.; Cardwell, D.A.; Storey, R.J. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Hancox, J. [Rolls Royce, Applied Science Division, Derby (United Kingdom)

    1998-05-01

    Investigations are being carried out on the use of superconductors for fault current limiting applications. A number of computer programs are being developed to predict the behavior of different `resistive` fault current limiter designs under a variety of fault conditions. The programs achieve solution by iterative methods based around real measured data rather than theoretical models in order to achieve accuracy at high current densities. (orig.) 5 refs.

  7. Anisotropic string cosmological model in Brans–Dicke theory of gravitation with time-dependent deceleration parameter

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, D. Ch., E-mail: dcmaurya563@gmail.com; Zia, R., E-mail: rashidzya@gmail.com; Pradhan, A., E-mail: pradhan.anirudh@gmail.com [GLA University, Department of Mathematics, Institute of Applied Sciences and Humanities (India)

    2016-10-15

    We discuss a spatially homogeneous and anisotropic string cosmological models in the Brans–Dicke theory of gravitation. For a spatially homogeneous metric, it is assumed that the expansion scalar θ is proportional to the shear scalar σ. This condition leads to A = kB{sup m}, where k and m are constants. With these assumptions and also assuming a variable scale factor a = a(t), we find solutions of the Brans–Dicke field equations. Various phenomena like the Big Bang, expanding universe, and shift from anisotropy to isotropy are observed in the model. It can also be seen that in early stage of the evolution of the universe, strings dominate over particles, whereas the universe is dominated by massive strings at the late time. Some physical and geometrical behaviors of the models are also discussed and observed to be in good agreement with the recent observations of SNe la supernovae.

  8. Multiple production of hadrons at high energies in the model of quark-gluon strings

    International Nuclear Information System (INIS)

    Kaidalov, A.B.; Ter-Martirosyan, K.A.

    1983-01-01

    Multiple production of hadrons at high energies is considered in the framework of the approach based on a picture of formation and subsequent fission of the quark-gluon strings, corresponding to the Pomeron with αsub(P)(0) > 1. The topological (1/nsub(f))-expansion and the colour-tube model is used. Inclusive cross-sections are expressed in therms of the structure functions and fragmentation functions of quarks and their limiting values are in an agreement with the results of the reggeon theory. It is pointed out that an account of rapidity fluctuations of the ends of the quark-gluon strings, connected to valence or sea quarks, allows one to explain a number of characteristic features of the multiple production of hadrons. In particular the model, which takes into account multipomeron configurations, reproduces the experimentally observed rise of inclusive spectra in a central region and well describes both rapidity and multiplicity distributions of charged particles up to energies of the SPS-collider. It is shown that in this approach the KNO-scaling is only approximately satisfied and the pattern of its violation at energies √ s approximately 10 3 GeV is predicted. Inclusive spectra are investigated in the whole region 0 or approximately 0.1) Feynman scaling is violated only logarithmically and deviations from it are very rsmall at s 3 +10 4 GeV

  9. Physically Inspired Models for the Synthesis of Stiff Strings with Dispersive Waveguides

    Directory of Open Access Journals (Sweden)

    Testa I

    2004-01-01

    Full Text Available We review the derivation and design of digital waveguides from physical models of stiff systems, useful for the synthesis of sounds from strings, rods, and similar objects. A transform method approach is proposed to solve the classic fourth-order equations of stiff systems in order to reduce it to two second-order equations. By introducing scattering boundary matrices, the eigenfrequencies are determined and their dependency is discussed for the clamped, hinged, and intermediate cases. On the basis of the frequency-domain physical model, the numerical discretization is carried out, showing how the insertion of an all-pass delay line generalizes the Karplus-Strong algorithm for the synthesis of ideally flexible vibrating strings. Knowing the physical parameters, the synthesis can proceed using the generalized structure. Another point of view is offered by Laguerre expansions and frequency warping, which are introduced in order to show that a stiff system can be treated as a nonstiff one, provided that the solutions are warped. A method to compute the all-pass chain coefficients and the optimum warping curves from sound samples is discussed. Once the optimum warping characteristic is found, the length of the dispersive delay line to be employed in the simulation is simply determined from the requirement of matching the desired fundamental frequency. The regularization of the dispersion curves by means of optimum unwarping is experimentally evaluated.

  10. One-loop correlation functions in the model of noncritical fermionic strings

    International Nuclear Information System (INIS)

    Belokurov, V.V.; Iofa, M.Z.

    1996-01-01

    In the model of noncritical fermionic strings, the David-Distler-Kawai ansatz is used to study one-loop n-point (n≤4) correlation functions for the vertex operators of massless bosonic states. The action functional of the model is the sum of super-Liouville action functional for the conformal mode and the action functional of d scalar supermultiplets. It is assumed that the total cosmological term is equal to zero. The amplitudes are calculated as the residues at the pole of the correlation function that corresponds to the conservation of Liouville momentum in the form Σβi=Q(1-h), where Q=√(9-d)/2 and h is the genus of the work sheet. In the one-loop approximation, the amplitudes can be obtained in the modular-invariant form, provided that the coefficients appearing in the sum over spin structures depend on moduli. In this case, the modular measure is defined up to a modular-invariant factor. This arbitrariness can be used to represent one-point correlation functions in the same functional form as for strings of critical dimension

  11. de Sitter vacua in no-scale supergravities and Calabi-Yau string models

    International Nuclear Information System (INIS)

    Covi, L.; Gross, C.; Scrucca, C.A.

    2008-04-01

    We perform a general analysis on the possibility of obtaining metastable vacua with spontaneously broken N = 1 supersymmetry and non-negative cosmological constant in the moduli sector of string models. More specifically, we study the condition under which the scalar partners of the Goldstino are non-tachyonic, which depends only on the Kaehler potential. This condition is not only necessary but also sufficient, in the sense that all of the other scalar fields can be given arbitrarily large positive square masses if the superpotential is suitably tuned. We consider both heterotic and orientifold string compactifications in the large-volume limit and show that the no-scale property shared by these models severely restricts the allowed values for the 'sGoldstino' masses in the superpotential parameter space. We find that a positive mass term may be achieved only for certain types of compactifications and specific Goldstino directions. Additionally, we show how subleading corrections to the Kaehler potential which break the no-scale property may allow to lift these masses. (orig.)

  12. Renormalization group approach to a p-wave superconducting model

    International Nuclear Information System (INIS)

    Continentino, Mucio A.; Deus, Fernanda; Caldas, Heron

    2014-01-01

    We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.

  13. Superconducting instabilities in the finite U Anderson lattice model

    International Nuclear Information System (INIS)

    Karbowski, J.

    1995-01-01

    We have investigated superconducting instabilities in the finite U Anderson lattice model within the Zou-Anderson slave boson representation in the Kondo lattice limit appropriate for heavy fermion systems. We found Cooper instability in the p channel and a repulsion in both the s and d channels. Based on the above mechanism of pairing, we have derived a ratio of the Gruneisen parameters Γ(T c )/Γ(T K ) which can be negative or positive, consistent with the experimental data. This result cannot be achieved in the U=∞ limit, which gives only positive values for this ratio. ((orig.))

  14. Confusing the heterotic string

    International Nuclear Information System (INIS)

    Benett, D.L.; Mizrachi, L.

    1986-01-01

    A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8 's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model. (orig.)

  15. Confusing the heterotic string

    Science.gov (United States)

    Benett, D.; Brene, N.; Mizrachi, Leah; Nielsen, H. B.

    1986-10-01

    A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E 8's of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E 8 only, thereby removing the shadow world from the original model.

  16. Confusing the heterotic string

    Energy Technology Data Exchange (ETDEWEB)

    Benett, D.L.; Brene, N.; Nielsen, H.B.; Mizrachi, L.

    1986-10-02

    A confusion mechanism is proposed as a global modification of the heterotic string model. It envolves a confusion hypersurface across which the two E/sub 8/'s of the heterotic string are permuted. A remarkable numerical coincidence is found which prevents an inconsistency in the model. The low energy limit of this theory (after compactification) is typically invariant under one E/sub 8/ only, thereby removing the shadow world from the original model.

  17. Lattice gravity and strings

    International Nuclear Information System (INIS)

    Jevicki, A.; Ninomiya, M.

    1985-01-01

    We are concerned with applications of the simplicial discretization method (Regge calculus) to two-dimensional quantum gravity with emphasis on the physically relevant string model. Beginning with the discretization of gravity and matter we exhibit a discrete version of the conformal trace anomaly. Proceeding to the string problem we show how the direct approach of (finite difference) discretization based on Nambu action corresponds to unsatisfactory treatment of gravitational degrees. Based on the Regge approach we then propose a discretization corresponding to the Polyakov string. In this context we are led to a natural geometric version of the associated Liouville model and two-dimensional gravity. (orig.)

  18. Bowed Strings

    Science.gov (United States)

    Rossing, Thomas D.; Hanson, Roger J.

    In the next eight chapters, we consider some aspects of the science of bowed string instruments, old and new. In this chapter, we present a brief discussion of bowed strings, a subject that will be developed much more thoroughly in Chap. 16. Chapters 13-15 discuss the violin, the cello, and the double bass. Chapter 17 discusses viols and other historic string instruments, and Chap. 18 discusses the Hutchins-Schelleng violin octet.

  19. The role of local repulsion in superconductivity in the Hubbard–Holstein model

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Chungwei, E-mail: clin@merl.com; Wang, Bingnan; Teo, Koon Hoo

    2017-01-15

    Highlights: • There exists an optimal Boson energy for superconductivity in Hubbard–Holstein model. • The electron-Boson coupling is essential for superconductivity, but the same coupling can lead to polaron insulator, which is against superconductivity. • The local Coulomb repulsion can sometimes enhance superconductivity. - Abstract: We examine the superconducting solution in the Hubbard–Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard–Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizes the S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  20. Anisotropic Bianchi Type-I and Type-II Bulk Viscous String Cosmological Models Coupled with Zero Mass Scalar Field

    Science.gov (United States)

    Venkateswarlu, R.; Sreenivas, K.

    2014-06-01

    The LRS Bianchi type-I and type-II string cosmological models are studied when the source for the energy momentum tensor is a bulk viscous stiff fluid containing one dimensional strings together with zero-mass scalar field. We have obtained the solutions of the field equations assuming a functional relationship between metric coefficients when the metric is Bianchi type-I and constant deceleration parameter in case of Bianchi type-II metric. The physical and kinematical properties of the models are discussed in each case. The effects of Viscosity on the physical and kinematical properties are also studied.

  1. Fermion Mass Textures in an M-Inspired Flipped SU(5) Model Derived from String

    CERN Document Server

    Ellis, Jonathan Richard; Lola, S; Nanopoulos, Dimitri V

    1998-01-01

    We are inspired by the facts that M-theory may reconcile the supersymmetric GUT scale with that of quantum gravity, and that it provides new avenues for low-energy supersymmetry breaking, to re-examine a flipped SU(5) model that has been derived from string and may possess an elevation to a fully-fledged M-phenomenological model. Using a complete analysis of all superpotential terms through the sixth order, we explore in this model a new flat potential direction that provides a pair of light Higgs doublets, yields realistic textures for the fermion mass matrices, and is free of R-violating interactions and dimension-five proton decay operators.

  2. Modeling nonlinear problems in the mechanics of strings and rods the role of the balance laws

    CERN Document Server

    O'Reilly, Oliver M

    2017-01-01

    This book presents theories of deformable elastic strings and rods and their application to broad classes of problems. Readers will gain insights into the formulation and analysis of models for mechanical and biological systems. Emphasis is placed on how the balance laws interplay with constitutive relations to form a set of governing equations. For certain classes of problems, it is shown how a balance of material momentum can play a key role in forming the equations of motion. The first half of the book is devoted to the purely mechanical theory of a string and its applications. The second half of the book is devoted to rod theories, including Euler’s theory of the elastica, Kirchhoff ’s theory of an elastic rod, and a range of Cosserat rod theories. A variety of classic and recent applications of these rod theories are examined. Two supplemental chapters, the first on continuum mechanics of three-dimensional continua and the second on methods from variational calculus, are included to provide relevant ...

  3. Superconductivity of the two-dimensional Penson-Kolb model

    International Nuclear Information System (INIS)

    Czart, W.R.; Robaszkiewicz, S.

    2001-01-01

    Two-dimensional (d = 2) Penson-Kolb model, i.e. the tight-binding model with the pair-hopping (intersite charge exchange) interaction, is considered and the effects of phase fluctuations on the s-wave superconductivity of this system are discussed within Kosterlitz-Thouless scenario. The London penetration depth λ at T = 0, the Kosterlitz Thouless critical temperature T c , and the Hartree-Fock approximation critical temperature T p are determined as a function of particle concentration and interaction. The Uemura type plots (T c vs. λ -2 (0)) are derived. Beyond weak coupling and for low concentrations they show the existence of universal scaling: T c ∼ 1/λ 2 (0), as it previously found for the attractive Hubbard model and for the models intersite electron pairing. (author)

  4. Color-symmetric superconductivity in a phenomenological QCD model

    DEFF Research Database (Denmark)

    Bohr, Henrik; Providencia, C.; Providencia, J. da

    2009-01-01

    In this paper, we construct a theory of the NJL type where superconductivity is present, and yet the superconducting state remains, in the average, color symmetric. This shows that the present approach to color superconductivity is consistent with color singletness. Indeed, quarks are free...... in the deconfined phase, but the deconfined phase itself is believed to be a color singlet. The usual description of the color superconducting state violates color singletness. On the other hand, the color superconducting state here proposed is color symmetric in the sense that an arbitrary color rotation leads...

  5. Formation region and amplitude of colour superconductivity in an instanton-induced model

    CERN Document Server

    Liao Jin Feng

    2002-01-01

    Colour superconductivity is investigated in the frame of a two flavour instanton-induced model. The ratio of diquark to quark-antiquark coupling constants is restricted to be c/(N sub c -1) with 1 <=c <=2.87 and controls the formation region and amplitude of colour superconductivity. While the finite current quark mass changes the chiral transition significantly, it does not considerably change the colour superconductivity

  6. Anisotropic Bulk Viscous String Cosmological Model in a Scalar-Tensor Theory of Gravitation

    Directory of Open Access Journals (Sweden)

    D. R. K. Reddy

    2013-01-01

    Full Text Available Spatially homogeneous, anisotropic, and tilted Bianchi type-VI0 model is investigated in a new scalar-tensor theory of gravitation proposed by Saez and Ballester (1986 when the source for energy momentum tensor is a bulk viscous fluid containing one-dimensional cosmic strings. Exact solution of the highly nonlinear field equations is obtained using the following plausible physical conditions: (i scalar expansion of the space-time which is proportional to the shear scalar, (ii the barotropic equations of state for pressure and energy density, and (iii a special law of variation for Hubble’s parameter proposed by Berman (1983. Some physical and kinematical properties of the model are also discussed.

  7. Free-fermion descriptions of parafermion chains and string-net models

    Science.gov (United States)

    Meichanetzidis, Konstantinos; Turner, Christopher J.; Farjami, Ashk; Papić, Zlatko; Pachos, Jiannis K.

    2018-03-01

    Topological phases of matter remain a focus of interest due to their unique properties: fractionalization, ground-state degeneracy, and exotic excitations. While some of these properties can occur in systems of free fermions, their emergence is generally associated with interactions between particles. Here, we quantify the role of interactions in general classes of topological states of matter in one and two spatial dimensions, including parafermion chains and string-net models. Surprisingly, we find that certain topological states can be exactly described by free fermions, while others saturate the maximum possible distance from their optimal free-fermion description [C. J. Turner et al., Nat. Commun. 8, 14926 (2017), 10.1038/ncomms14926]. Our work opens the door to understanding the complexity of topological models by establishing new types of fermionization procedures to describe their low-energy physics, thus making them amenable to experimental realizations.

  8. Toward the realistic three-generation model in the (2,0) heterotic string compactification

    International Nuclear Information System (INIS)

    Asatryan, H.M.; Murayama, A.

    1992-01-01

    In this paper, the three generation models with SUSY SO(10) or SU(5) GUTs derived from the (2,0) compactification of E 8 x E' 8 heterotic string, the massless matter field spectra at the GUT scale M X and the breaking directions of GUT symmetries are discussed. A pseudo-left-right symmetric Pati-Salam model is naturally deduced in the SUSY SO(10) GUT and shown to have an interesting property, M x ≅ M P1 , M R ≅ 10 10 GeV and M S ( the scale of superpartner masses) ≅ 10 4 GeV, as a result of the renormalization group equation analysis using the new precise LEP data

  9. Theory of superconductivity

    International Nuclear Information System (INIS)

    Crisan, M.

    1988-01-01

    This book discusses the most important aspects of the theory. The phenomenological model is followed by the microscopic theory of superconductivity, in which modern formalism of the many-body theory is used to treat most important problems such as superconducting alloys, coexistence of superconductivity with the magnetic order, and superconductivity in quasi-one-dimensional systems. It concludes with a discussion on models for exotic and high temperature superconductivity. Its main aim is to review, as complete as possible, the theory of superconductivity from classical models and methods up to the 1987 results on high temperature superconductivity. Contents: Phenomenological Theory of Superconductivity; Microscopic Theory of Superconductivity; Theory of Superconducting Alloys; Superconductors in a Magnetic Field; Superconductivity and Magnetic Order; Superconductivity in Quasi-One-Dimensional Systems; and Non-Conventional Superconductivity

  10. A statistical model for field emission in superconducting cavities

    International Nuclear Information System (INIS)

    Padamsee, H.; Green, K.; Jost, W.; Wright, B.

    1993-01-01

    A statistical model is used to account for several features of performance of an ensemble of superconducting cavities. The input parameters are: the number of emitters/area, a distribution function for emitter β values, a distribution function for emissive areas, and a processing threshold. The power deposited by emitters is calculated from the field emission current and electron impact energy. The model can successfully account for the fraction of tests that reach the maximum field Epk in an ensemble of cavities, for eg, 1-cells at sign 3 GHz or 5-cells at sign 1.5 GHz. The model is used to predict the level of power needed to successfully process cavities of various surface areas with high pulsed power processing (HPP)

  11. An evaluation of string theory for the prediction of dynamic tire properties using scale model aircraft tires

    Science.gov (United States)

    Clark, S. K.; Dodge, R. N.; Nybakken, G. H.

    1972-01-01

    The string theory was evaluated for predicting lateral tire dynamic properties as obtained from scaled model tests. The experimental data and string theory predictions are in generally good agreement using lateral stiffness and relaxation length values obtained from the static or slowly rolling tire. The results indicate that lateral forces and self-aligning torques are linearly proportional to tire lateral stiffness and to the amplitude of either steer or lateral displacement. In addition, the results show that the ratio of input excitation frequency to road speed is the proper independent variable by which frequency should be measured.

  12. Bosonic strings

    CERN Document Server

    Jost, Jürgen

    2007-01-01

    This book presents a mathematical treatment of Bosonic string theory from the point of view of global geometry. As motivation, Jost presents the theory of point particles and Feynman path integrals. He provides detailed background material, including the geometry of Teichmüller space, the conformal and complex geometry of Riemann surfaces, and the subtleties of boundary regularity questions. The high point is the description of the partition function for Bosonic strings as a finite-dimensional integral over a moduli space of Riemann surfaces. Jost concludes with some topics related to open and closed strings and D-branes. Bosonic Strings is suitable for graduate students and researchers interested in the mathematics underlying string theory.

  13. Fermions on the electroweak string

    CERN Document Server

    Moreno, J M; Quirós, Mariano; Moreno, J M; Oaknin, D H; Quiros, M

    1995-01-01

    We construct a simple class of exact solutions of the electroweak theory including the naked Z--string and fermion fields. It consists in the Z--string configuration (\\phi,Z_\\theta), the {\\it time} and z components of the neutral gauge bosons (Z_{0,3},A_{0,3}) and a fermion condensate (lepton or quark) zero mode. The Z--string is not altered (no feed back from the rest of fields on the Z--string) while fermion condensates are zero modes of the Dirac equation in the presence of the Z--string background (no feed back from the {\\it time} and z components of the neutral gauge bosons on the fermion fields). For the case of the n--vortex Z--string the number of zero modes found for charged leptons and quarks is (according to previous results by Jackiw and Rossi) equal to |n|, while for (massless) neutrinos is |n|-1. The presence of fermion fields in its core make the obtained configuration a superconducting string, but their presence (as well as that of Z_{0,3},A_{0,3}) does not enhance the stability of the Z--stri...

  14. Regularized strings with extrinsic curvature

    International Nuclear Information System (INIS)

    Ambjoern, J.; Durhuus, B.

    1987-07-01

    We analyze models of discretized string theories, where the path integral over world sheet variables is regularized by summing over triangulated surfaces. The inclusion of curvature in the action is a necessity for the scaling of the string tension. We discuss the physical properties of models with extrinsic curvature terms in the action and show that the string tension vanishes at the critical point where the bare extrinsic curvature coupling tends to infinity. Similar results are derived for models with intrinsic curvature. (orig.)

  15. The role of local repulsion in superconductivity in the Hubbard-Holstein model

    Science.gov (United States)

    Lin, Chungwei; Wang, Bingnan; Teo, Koon Hoo

    2017-01-01

    We examine the superconducting solution in the Hubbard-Holstein model using Dynamical Mean Field Theory. The Holstein term introduces the site-independent Boson fields coupling to local electron density, and has two competing influences on superconductivity: The Boson field mediates the effective electron-electron attraction, which is essential for the S-wave electron pairing; the same coupling to the Boson fields also induces the polaron effect, which makes the system less metallic and thus suppresses superconductivity. The Hubbard term introduces an energy penalty U when two electrons occupy the same site, which is expected to suppress superconductivity. By solving the Hubbard-Holstein model using Dynamical Mean Field theory, we find that the Hubbard U can be beneficial to superconductivity under some circumstances. In particular, we demonstrate that when the Boson energy Ω is small, a weak local repulsion actually stabilizesthe S-wave superconducting state. This behavior can be understood as an interplay between superconductivity, the polaron effect, and the on-site repulsion: As the polaron effect is strong and suppresses superconductivity in the small Ω regime, the weak on-site repulsion reduces the polaron effect and effectively enhances superconductivity. Our calculation elucidates the role of local repulsion in the conventional S-wave superconductors.

  16. Color superconductivity from the chiral quark-meson model

    Science.gov (United States)

    Sedrakian, Armen; Tripolt, Ralf-Arno; Wambach, Jochen

    2018-05-01

    We study the two-flavor color superconductivity of low-temperature quark matter in the vicinity of chiral phase transition in the quark-meson model where the interactions between quarks are generated by pion and sigma exchanges. Starting from the Nambu-Gorkov propagator in real-time formulation we obtain finite temperature (real axis) Eliashberg-type equations for the quark self-energies (gap functions) in terms of the in-medium spectral function of mesons. Exact numerical solutions of the coupled nonlinear integral equations for the real and imaginary parts of the gap function are obtained in the zero temperature limit using a model input spectral function. We find that these components of the gap display a complicated structure with the real part being strongly suppressed above 2Δ0, where Δ0 is its on-shell value. We find Δ0 ≃ 40MeV close to the chiral phase transition.

  17. Vanishing of the vacuum amplitude of heterotic string compactified on a tensor product of N=2 superconformal models

    International Nuclear Information System (INIS)

    Kei Ito.

    1988-07-01

    The vacuum amplitude of heterotic string compactified on a tensor product of nine copies of c=1, N=2 superconformal models is shown to vanish due to a generalized Riemann's theta identity associated with the 12x12 matrix identity t BB=6 2 I 12 , identity B ij =-5(i=j), 1(i≠j). (author). 4 refs

  18. From b → sγ to the LSP detection rates in minimal string unification models

    International Nuclear Information System (INIS)

    Khalil, S.; Masiero, A.; Shafi, Q.

    1997-04-01

    We exploit the measured branching ratio for b → sγ to derive lower limits on the sparticle and Higgs masses in the minimal string unification models. For the LSP ('bino'), chargino and the lightest Higgs, these turn out to be 50, 90 and 75 GeV respectively. Taking account of the upper bounds on the mass spectrum from the LSP relic abundance, we estimate the direct detection rate for the latter to vary from 10 -1 to 10 -4 events/kg/day. The muon flux, produced by neutrinos from the annihilating LSP's, varies in the range 10 -2 - 10 -9 muons/m 2 /day. (author). 26 refs, 9 figs

  19. Matrix String Theory

    CERN Document Server

    Dijkgraaf, R; Verlinde, Herman L

    1997-01-01

    Via compactification on a circle, the matrix model of M-theory proposed by Banks et al suggests a concrete identification between the large N limit of two-dimensional N=8 supersymmetric Yang-Mills theory and type IIA string theory. In this paper we collect evidence that supports this identification. We explicitly identify the perturbative string states and their interactions, and describe the appearance of D-particle and D-membrane states.

  20. Two exercises in supersymmetry: a low-energy supergravity model and free string field theory

    International Nuclear Information System (INIS)

    Preitschopf, C.R.

    1986-09-01

    The new features of a supersymmetric standard model in the presence of heavy families are studied. The minimal set of Higgs fields, the desert between the electroweak and the grand unification scale and perturbative values of the dimensionless parameters throughout this region are assumed. Using the numerical as well as the approximate analytic solution of the renormalization group equations, the evolution of all the parameters of the theory are studied in the case of large Yukawa couplings for the fourth family. The desired spontaneous symmetry breaking of the electroweak symmetry takes place only for a rather unnatural choice of the initial values of certain mass parameters at the grand unification scale. If it is gravitino mass smaller than 200 GeV the vacuum expectation values of the Higgs fields emerge necessarily in an interplay of the tree level Higgs potential and its quantum corrections and are approximately equal. The qurak masses of the fourth family are roughly 135 GeV, while the mass of the fourth charged lepton has an upper bound of 90 GeV. Further characteristic features of this scenario are one light neutral Higgs field of mass 50 GeV and gluino masses below 75 GeV. If the gravitino mass is higher than 200 GeV one obtains a scaled up version of the well-known three family, heavy top scenario with quark masses between 40 and 205 GeV and all superparticle masses heavier than 150 GeV except the photino, gluino, one chargino and one neutralino. The gauge-invariant theory of the free bosonic open string is generalized to treat closed strings and superstrings. All of these theories can be written as theories of string differential forms defined on suitable spaces. All of the bosonic theories have exactly the same structure; the Ramond theory takes an analogous first-order form. We show explicitly, how to gauge-fix each action to the light-cone gauge and to the Feynman-Siegel gauge

  1. Prediction Model of Mechanical Extending Limits in Horizontal Drilling and Design Methods of Tubular Strings to Improve Limits

    Directory of Open Access Journals (Sweden)

    Wenjun Huang

    2017-01-01

    Full Text Available Mechanical extending limit in horizontal drilling means the maximum horizontal extending length of a horizontal well under certain ground and down-hole mechanical constraint conditions. Around this concept, the constrained optimization model of mechanical extending limits is built and simplified analytical results for pick-up and slack-off operations are deduced. The horizontal extending limits for kinds of tubular strings under different drilling parameters are calculated and drawn. To improve extending limits, an optimal design model of drill strings is built and applied to a case study. The results indicate that horizontal extending limits are underestimated a lot when the effects of friction force on critical helical buckling loads are neglected. Horizontal extending limits firstly increase and tend to stable values with vertical depths. Horizontal extending limits increase faster but finally become smaller with the increase of horizontal pushing forces for tubular strings of smaller modulus-weight ratio. Sliding slack-off is the main limit operation and high axial friction is the main constraint factor constraining horizontal extending limits. A sophisticated installation of multiple tubular strings can greatly inhibit helical buckling and increase horizontal extending limits. The optimal design model is called only once to obtain design results, which greatly increases the calculation efficiency.

  2. Cell percolation model for electrical conduction of granular superconducting composites. 2

    International Nuclear Information System (INIS)

    Horvath, G.; Bankuti, J.

    1990-01-01

    The percolation of the electrical conductivity of the uniform cells is studied in an in-situ elongated granular superconducting composite on the basis of the uniform cell model improved previously. The critical temperatures are determined in the macroscopic superconducting state of the two- and the three-dimensional composites. (author)

  3. The QCD Effective String

    International Nuclear Information System (INIS)

    Espriu, D.

    2003-01-01

    QCD can be described in a certain kinematical regime by an effective string theory. This string must couple to background chiral fields in a chirally invariant manner, thus taking into account the true chirally non-invariant QCD vacuum. By requiring conformal symmetry of the string and the unitarity constraint on chiral fields we reconstruct the equations of motion for the latter ones. These provide a consistent background for the propagation of the string. By further requiring locality of the effective action we recover the Lagrangian of non-linear sigma model of pion interactions. The prediction is unambiguous and parameter-free. The estimated chiral structural constants of Gasser and Leutwyler fit very well the phenomenological values. (author)

  4. String theory compactifications

    CERN Document Server

    Graña, Mariana

    2017-01-01

    The lectures in this book provide graduate students and non-specialist researchers with a concise introduction to the concepts and formalism required to reduce the ten-dimensional string theories to the observable four-dimensional space-time - a procedure called string compactification. The text starts with a very brief introduction to string theory, first working out its massless spectrum and showing how the condition on the number of dimensions arises. It then dwells on the different possible internal manifolds, from the simplest to the most relevant phenomenologically, thereby showing that the most elegant description is through an extension of ordinary Riemannian geometry termed generalized geometry, which was first introduced by Hitchin. Last but not least, the authors review open problems in string phenomenology, such as the embedding of the Standard Model and obtaining de Sitter solutions.

  5. Modelling of the quenching process in complex superconducting magnet systems

    International Nuclear Information System (INIS)

    Hagedorn, D.; Rodriguez-Mateos, F.

    1992-01-01

    This paper reports that the superconducting twin bore dipole magnet for the proposed Large Hadron Collider (LHC) at CERN shows a complex winding structure consisting of eight compact layers each of them electromagnetically and thermally coupled with the others. This magnet is only one part of an electrical circuit; test and operation conditions are characterized by different circuits. In order to study the quenching process in this complex system, design adequate protection schemes, and provide a basis for the dimensioning of protection devices such as heaters, current breakers and dump resistors, a general simulation tool called QUABER has been developed using the analog system analysis program SABER. A complete set of electro-thermal models has been crated for the propagation of normal regions. Any network extension or modification is easy to implement without rewriting the whole set of differential equations

  6. Effective mapping of spin-1 chains onto integrable fermionic models. A study of string and Neel correlation functions

    International Nuclear Information System (INIS)

    Boschi, C Degli Esposti; Di Dio, M; Morandi, G; Roncaglia, M

    2009-01-01

    We derive the dominant contribution to the large-distance decay laws of correlation functions towards their asymptotic limits for a spin chain model that exhibits both Haldane and Neel phases in its ground-state phase diagram. The analytic results are obtained by means of an approximate mapping between a spin-1 anisotropic Hamiltonian onto a fermionic model of noninteracting Bogoliubov quasiparticles related in turn (via Jordan-Wigner transformation) to the XY spin-1/2 chain in a transverse field. This approach allows us to express the spin-1 string operators in terms of fermionic operators so that the dominant contribution to the string correlators at large distances can be computed using the technique of Toeplitz determinants. As expected, we find long-range string order both in the longitudinal and in the transverse channel in the Haldane phase, while in the Neel phase only the longitudinal order survives. In this way, the long-range string order can be explicitly related to the components of the magnetization of the XY model. Moreover, apart from the critical line, where the decay is algebraic, we find that in the gapped phases the decay is governed by an exponential tail multiplied by power-law factors. As regards the usual two points correlation functions, we show that the longitudinal one behaves in a 'dual' fashion with respect to the transverse string correlator, namely both the asymptotic values and the decay laws exchange when the transition line is crossed. For the transverse spin-spin correlator, we always find a finite characteristic length which is an unexpected feature at the critical point. The results of this analysis prove some conjectures put forward in the past. We also comment briefly on the entanglement features of the original system versus those of the effective model. The goodness of the approximation and the analytical predictions are checked versus density-matrix renormalization group calculations

  7. Magnetic strings

    International Nuclear Information System (INIS)

    Chaves, Max

    2006-01-01

    The conception of the magnetic string is presented as an infinitely thin bundle of magnetic flux lines. The magnetic strings are surrounded by a film of current that rotates around them, and are a solution of Maxwell's equations. The magnetic potential contains a line singularity, and its stability can be established topologically. A few comments are added on the possibility that they may exist at a cosmological scale as relics of the Big Bang. (author) [es

  8. The infinite range Heisenberg model and high temperature superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil

    1992-01-01

    The thesis deals with the theory of high temperature superconductivity from the standpoint of three-band Hubbard models.Chapter 1 of the thesis proposes a strongly coupled variational wavefunction that has the three-spin system of an oxygen hole and its two neighboring copper spins in a doublet and the background Cu spins in an eigenstate of the infinite range antiferromagnet. This wavefunction is expected to be a good "zeroth order" wavefunction in the superconducting regime of dopings. The three-spin polaron is stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic coupling Jpd. Considering the effect of the copper-copper antiferromagnetic coupling Jdd, we show that the three-spin polaron cannot be pure Emery (Dg), but must have a non-negligible amount of doublet-u (Du) character for hopping stabilization. Finally, an estimate is made for the magnitude of the attractive coupling of oxygen holes.Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into two pieces: one for the spin degrees of freedom of the copper and oxygen holes, and the other for the charge degrees of freedom of the oxygen holes. The spinon part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic relations for the phase shifts.Finally, we show that the nearest neighbor Cu-Cu spin correlation increases linearly with doping and becomes positive at x [...] 0.70.

  9. The social structure of ''experimental'' strings at Fermilab; a physics and detector driven model

    International Nuclear Information System (INIS)

    Bodnarczuk, M.

    1990-01-01

    Physicists in HEP have been forced to organize large scientific projects without a well defined organizational or sociological model to guide them. In the absence of such models, what structures do experimentalists use to develop social structures in HEP? In this paper, I claim that physicists organize around what they know best, the physics problems they study and the detectors and devices they study them with. After describing the advent of ''management'' in HEP, I use a case study of 4 Fermilab experiments as the base upon which to propose a physics and detector driven model of social structure for experiments. In addition, I show how this model can be extended to describe ''strings'' of experiments, where continuities of physics interests, spectrometer design, and a core group of physicists become a definable sociological unit that can exist for over 15 years. A dominate theme that emerges from my analysis is the conscious attempt on the part of experimenters to remove the uncertainties that are part of the practice of HEP

  10. Long-range string orders and topological quantum phase transitions in the one-dimensional quantum compass model.

    Science.gov (United States)

    Wang, Hai Tao; Cho, Sam Young

    2015-01-14

    In order to investigate the quantum phase transition in the one-dimensional quantum compass model, we numerically calculate non-local string correlations, entanglement entropy and fidelity per lattice site by using the infinite matrix product state representation with the infinite time evolving block decimation method. In the whole range of the interaction parameters, we find that four distinct string orders characterize the four different Haldane phases and the topological quantum phase transition occurs between the Haldane phases. The critical exponents of the string order parameters β = 1/8 and the cental charges c = 1/2 at the critical points show that the topological phase transitions between the phases belong to an Ising type of universality classes. In addition to the string order parameters, the singularities of the second derivative of the ground state energies per site, the continuous and singular behaviors of the Von Neumann entropy and the pinch points of the fidelity per lattice site manifest that the phase transitions between the phases are of the second-order, in contrast to the first-order transition suggested in previous studies.

  11. Introduction to strings and superstrings

    International Nuclear Information System (INIS)

    Traubenberg, M.R. de.

    1988-01-01

    We discuss the main features on the formulation of string theory that, in a primitive level, describe the hadronic phenomenon of duality. We also study an extension of the models of closed and strings with spin. Then, by using supersymmetry, it is formulated the theory of superstrings and heterotic strings with the aim of unify the fundamental interactions and matter. (M.W.O.) [pt

  12. CT-QMC-simulations on the single impurity Anderson model with a superconducting bath

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Florian; Pruschke, Thomas [Institut fuer theoretische Physik, Universitaet Goettingen, Friedrich-Hund-Platz 1, 37077 Goettingen (Germany)

    2016-07-01

    Coupling a heavy fermion impurity to a superconducting lead induces a competition between the Kondo effect and superconductivity in the low temperature regime. This situation has been modeled with a single impurity Anderson model, where the normal state bath is replaced by a BCS-type superconducting bath in mean field approximation. We study this model using a continuous-time quantum Monte Carlo hybridization expansion algorithm. Results include the impurity Green's functions as well as the corresponding spectral functions obtained from analytic continuation. Two side bands are observed which we discuss in the light of Yu-Shiba-Rusinov states.

  13. Phenomenology of mixed modulus-anomaly mediation in fluxed string compactifications and brane models

    International Nuclear Information System (INIS)

    Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi

    2005-01-01

    In some string compactifications, for instance the recently proposed KKLT set-up, light moduli are stabilized by nonperturbative effects at supersymmetric AdS vacuum which is lifted to a dS vacuum by supersymmetry breaking uplifting potential. In such models, soft supersymmetry breaking terms are determined by a specific mixed modulus-anomaly mediation in which the two mediations typically give comparable contributions to soft parameters. Similar pattern of soft terms can arise also in brane models to stabilize the radion by nonperturbative effects. We examine some phenomenological consequences of this mixed modulus-anomaly mediation, including the pattern of low energy sparticle spectrum and the possibility of electroweak symmetry breaking. It is noted that adding the anomaly-mediated contributions at M GUT amounts to replacing the messenger scale of the modulus mediation by a mirage messenger scale (m 3/2 /M Pl ) α/2 M GUT where α = m 3/2 /[M 0 ln (M Pl /m 3/2 )] for M 0 denoting the modulus-mediated contribution to the gaugino mass at M GUT . The minimal KKLT set-up predicts α = 1. As a consequence, for α = O(1), the model can lead to a highly distinctive pattern of sparticle masses at TeV scale, particularly when α = 2

  14. Fermilab Tevatron and CERN LEP II probes of minimal and string-motivated supergravity models

    International Nuclear Information System (INIS)

    Baer, H.; Gunion, J.F.; Kao, C.; Pois, H.

    1995-01-01

    We explore the ability of the Fermilab Tevatron to probe minimal supersymmetry with high-energy-scale boundary conditions motivated by supersymmetry breaking in the context of minimal and string-motivated supergravity theory. A number of boundary condition possibilities are considered: dilatonlike string boundary conditions applied at the standard GUT unification scale or alternatively at the string scale; and extreme (''no-scale'') minimal supergravity boundary conditions imposed at the GUT scale or string scale. For numerous specific cases within each scenario the sparticle spectra are computed and then fed into ISAGET 7.07 so that explicit signatures can be examined in detail. We find that, for some of the boundary condition choices, large regions of parameter space can be explored via same-sign dilepton and isolated trilepton signals. For other choices, the mass reach of Tevatron collider experiments is much more limited. We also compare the mass reach of Tevatron experiments with the corresponding reach at CERN LEP 200

  15. Windings of twisted strings

    Science.gov (United States)

    Casali, Eduardo; Tourkine, Piotr

    2018-03-01

    Twistor string models have been known for more than a decade now but have come back under the spotlight recently with the advent of the scattering equation formalism which has greatly generalized the scope of these models. A striking ubiquitous feature of these models has always been that, contrary to usual string theory, they do not admit vibrational modes and thus describe only conventional field theory. In this paper we report on the surprising discovery of a whole new sector of one of these theories which we call "twisted strings," when spacetime has compact directions. We find that the spectrum is enhanced from a finite number of states to an infinite number of interacting higher spin massive states. We describe both bosonic and world sheet supersymmetric models, their spectra and scattering amplitudes. These models have distinctive features of both string and field theory, for example they are invariant under stringy T-duality but have the high energy behavior typical of field theory. Therefore they describe a new kind of field theories in target space, sitting on their own halfway between string and field theory.

  16. Comparing double string theory actions

    International Nuclear Information System (INIS)

    De Angelis, L.; Gionti, S.J.G.; Marotta, R.; Pezzella, F.

    2014-01-01

    Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed

  17. Comparing double string theory actions

    Energy Technology Data Exchange (ETDEWEB)

    De Angelis, L. [Dipartimento di Fisica, Università degli Studi “Federico II” di Napoli,Complesso Universitario Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy); Gionti, S.J.G. [Specola Vaticana, Vatican City, V-00120, Vatican City State and Vatican Observatory Research Group, Steward Observatory, The University Of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721 (United States); Marotta, R.; Pezzella, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Napoli,Complesso Universitario di Monte S. Angelo ed. 6, via Cintia, 80126 Napoli (Italy)

    2014-04-28

    Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so “doubling” the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like “non-commuting” phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed.

  18. Numerical solution of High-kappa model of superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Karamikhova, R. [Univ. of Texas, Arlington, TX (United States)

    1996-12-31

    We present formulation and finite element approximations of High-kappa model of superconductivity which is valid in the high {kappa}, high magnetic field setting and accounts for applied magnetic field and current. Major part of this work deals with steady-state and dynamic computational experiments which illustrate our theoretical results numerically. In our experiments we use Galerkin discretization in space along with Backward-Euler and Crank-Nicolson schemes in time. We show that for moderate values of {kappa}, steady states of the model system, computed using the High-kappa model, are virtually identical with results computed using the full Ginzburg-Landau (G-L) equations. We illustrate numerically optimal rates of convergence in space and time for the L{sup 2} and H{sup 1} norms of the error in the High-kappa solution. Finally, our numerical approximations demonstrate some well-known experimentally observed properties of high-temperature superconductors, such as appearance of vortices, effects of increasing the applied magnetic field and the sample size, and the effect of applied constant current.

  19. String Theory in a Nutshell

    CERN Document Server

    Kiritsis, Elias

    2007-01-01

    This book is the essential new introduction to modern string theory, by one of the world's authorities on the subject. Concise, clearly presented, and up-to-date, String Theory in a Nutshell brings together the best understood and most important aspects of a theory that has been evolving since the early 1980s. A core model of physics that substitutes one-dimensional extended ""strings"" for zero-dimensional point-like particles (as in quantum field theory), string theory has been the leading candidate for a theory that would successfully unify all fundamental forces of nature, includin

  20. Splitting strings on integrable backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Vicedo, Benoit

    2011-05-15

    We use integrability to construct the general classical splitting string solution on R x S{sup 3}. Namely, given any incoming string solution satisfying a necessary self-intersection property at some given instant in time, we use the integrability of the worldsheet {sigma}-model to construct the pair of outgoing strings resulting from a split. The solution for each outgoing string is expressed recursively through a sequence of dressing transformations, the parameters of which are determined by the solutions to Birkhoff factorization problems in an appropriate real form of the loop group of SL{sub 2}(C). (orig.)

  1. Non-hermitian symmetric N = 2 coset models, Poincare polynomials, and string compactification

    International Nuclear Information System (INIS)

    Fuchs, J.; Schweigert, C.

    1994-01-01

    The field identification problem, including fixed point resolution, is solved for the non-hermitian symmetric N = 2 superconformal coset theories. Thereby these models are finally identified as well-defined modular invariant conformal field theories. As an application, the theories are used as subtheories in N = 2 tensor products with c = 9, which in turn are taken as the inner sector of heterotic superstring compactifications. All string theories of this type are classified, and the chiral ring as well as the number of massless generations and anti-generations are computed with the help of the extended Poincare polynomial. Several equivalences between a priori different non-hermitian coset theories show up; in particular there is a level-rank duality for an infinite series of coset theories based on C-type Lie algebras. Further, some general results for generic N = 2 coset theories are proven: a simple formula for the number of identification currents is found, and it is shown that the set of Ramond ground states of any N = 2 coset model is invariant under charge conjugation. (orig.)

  2. Non-material finite element modelling of large vibrations of axially moving strings and beams

    Science.gov (United States)

    Vetyukov, Yury

    2018-02-01

    We present a new mathematical model for the dynamics of a beam or a string, which moves in a given axial direction across a particular domain. Large in-plane vibrations are coupled with the gross axial motion, and a Lagrangian (material) form of the equations of structural mechanics becomes inefficient. The proposed mixed Eulerian-Lagrangian description features mechanical fields as functions of a spatial coordinate in the axial direction. The material travels across a finite element mesh, and the boundary conditions are applied in fixed nodes. Beginning with the variational equation of virtual work in its material form, we analytically derive the Lagrange's equations of motion of the second kind for the considered case of a discretized non-material control domain and for geometrically exact kinematics. The dynamic analysis is straightforward as soon as the strain and the kinetic energies of the control domain are available. In numerical simulations we demonstrate the rapid mesh convergence of the model, the effect of the bending stiffness and the dynamic instability when the axial velocity gets high. We also show correspondence to the results of fully Lagrangian benchmark solutions.

  3. LHC magnet string in 1994

    CERN Multimedia

    1994-01-01

    On 6-7 December 1994, a string of powerful superconducting magnets for CERN's next particle accelerator, the Large Hadron Collider (LHC), ran successfully at 8.36 tesla for 24 hours. This magnetic field is 100 000 times that of the Earth and is required to keep beams of protons travelling on the correct circular path over 27 km at 7 TeV in the new LHC accelerator.

  4. Functional integral approach to string theories

    International Nuclear Information System (INIS)

    Sakita, B.

    1987-01-01

    Fermionic string theory can be made supersymmetric: the superstring. It contains among others mass zero gauge fields of spin 1 and 2. The recent revival of interests in string field theories is due to the recognition of the compactified superstring theory as a viable theory of grandunification of all interactions, especially after Green and Schwarz's discovery of the gauge and gravitational anomaly cancellation in 0(32) superstring theory. New developments include string phenomenology, general discussions of compactification, new models, especially the heterotic string. These are either applications or extensions of string field theories. Although these are very exciting developments, the author limits his attention to the basics of the bosonic string theory

  5. String Theory for Pedestrians (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  6. String Theory for Pedestrians (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  7. String Theory for Pedestrians (3/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    This is a non-technical rapid course on string theory. Lecture 1 is an introduction to the basics of the subject: classical and quantum strings, D(irichlet) branes and string-string dualities. In lecture 2 I will discuss string unification of the fundamental forces, covering both its successes and failures. Finally in lecture 3 I will review string models of black hole microstates, the holographic gauge/gravity duality and, if time permits, potential applications to the physics of the strong interactions.

  8. Solutions stability of one-dimensional parametric superconducting magnetic levitation model analysis by the first approximation

    International Nuclear Information System (INIS)

    Shvets', D.V.

    2009-01-01

    By the first approximation analyzing stability conditions of unperturbed solution of one-dimensional dynamic model with magnetic interaction between two superconducting rings obtained. The stability region in the frozen magnetic flux parameters space was constructed.

  9. Monte Carlo study of superconductivity in the three-band Emery model

    International Nuclear Information System (INIS)

    Frick, M.; Pattnaik, P.C.; Morgenstern, I.; Newns, D.M.; von der Linden, W.

    1990-01-01

    We have examined the three-band Hubbard model for the copper oxide planes in high-temperature superconductors using the projector quantum Monte Carlo method. We find no evidence for s-wave superconductivity

  10. Modeling and Development of Superconducting Nanowire Single Photon Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal outlines a research project as the central component of a Ph.D. program focused on the device physics of superconducting nanowire single photon...

  11. Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Friederich, Simon

    2010-12-08

    Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T{sub c} cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)

  12. Functional renormalization for antiferromagnetism and superconductivity in the Hubbard model

    International Nuclear Information System (INIS)

    Friederich, Simon

    2010-01-01

    Despite its apparent simplicity, the two-dimensional Hubbard model for locally interacting fermions on a square lattice is widely considered as a promising approach for the understanding of Cooper pair formation in the quasi two-dimensional high-T c cuprate materials. In the present work this model is investigated by means of the functional renormalization group, based on an exact flow equation for the effective average action. In addition to the fermionic degrees of freedom of the Hubbard Hamiltonian, bosonic fields are introduced which correspond to the different possible collective orders of the system, for example magnetism and superconductivity. The interactions between bosons and fermions are determined by means of the method of ''rebosonization'' (or ''flowing bosonization''), which can be described as a continuous, scale-dependent Hubbard-Stratonovich transformation. This method allows an efficient parameterization of the momentum-dependent effective two-particle interaction between fermions (four-point vertex), and it makes it possible to follow the flow of the running couplings into the regimes exhibiting spontaneous symmetry breaking, where bosonic fluctuations determine the types of order which are present on large length scales. Numerical results for the phase diagram are presented, which include the mutual influence of different, competing types of order. (orig.)

  13. Lumped element modelling of superconducting circuits with SPICE

    CERN Document Server

    Baveco, Maurice Antoine

    2015-01-01

    In this project research is carried out aimed at benchmarking a general-purpose circuit simulation software tool (”SPICE”). The project lasted for 8 weeks, from 29 June 2015 until 21 August 2015 at Performance Evaluation section at CERN. The goal was to apply it on a model of superconducting magnets, namely the main dipole circuit (RB circuit) of the the LHC (Large Hadron Collider), developed by members of the section. Then the strengths and the flaws of the tool were investigated. Transient effects were the main simulation focus point. In the first stage a simplified RB circuit was modelled in SPICE based on subcircuits. The first results were promising but still not with a perfect agreement. After implementing more detailed subcircuits there is an improvement and promising agreement achieved between SPICE and the results of the paper (PSpice) [2]. In general there are more strengths than drawbacks of simulating with SPICE. For example, it should have a shorter simulation time than PSpice for the same mo...

  14. Symmetries and Interactions in Matrix String Theory

    NARCIS (Netherlands)

    Hacquebord, F.H.

    1999-01-01

    This PhD-thesis reviews matrix string theory and recent developments therein. The emphasis is put on symmetries, interactions and scattering processes in the matrix model. We start with an introduction to matrix string theory and a review of the orbifold model that flows out of matrix string theory

  15. Non-commutative analytic geometry and a new model for the field theory of closed bosonic strings

    International Nuclear Information System (INIS)

    Awada, M.A.

    1986-07-01

    We propose a new model for the field theory of interacting closed bosonic strings. The key ingredient in our constructions is based on the assumption that the action is written in terms of two independent states rather than one state. The first state is chiral while the second state is antichiral. The new picture of the corresponding vertex operator is not just an overlap ''δ'' functional

  16. Some properties of the product manifold of the solutions of string generated gravity models

    International Nuclear Information System (INIS)

    Ghika, G.

    1989-01-01

    Assuming that M 1 and M 2 are Einstein manifolds with M 2 compact and dim M 2 = n > 2 we show that the internal space M 2 is of constant curvature. If M 1 is flat and M 2 is Einstein then M 2 is also flat. We prove that if M 2 is spin, M 2 compact and A(M 2 )≠0 then R 1 must be negative. For n=4, M 2 Einstein and R 1 =0, the product of the gravitational constant and slope parameter is expressed by the Euler characteristic of M 2 divided by the integral over M 2 of the scalar curvature of M 2 . The model is then coupled to the dilaton field φ. In that case if M 1 is maximal symmetric, M 2 compact Einstein with n≥2, R 1 R 2 ≥0 and φ depends only on the variables of M 2 then on obtains the result that φ is constant and M 2 is flat. Other combinations of the second order in the curvatures arising from the bosonic and supersymmetric string theories are analyzed in the same global product case.(author)

  17. Singleton strings

    International Nuclear Information System (INIS)

    Engquist, J.; Sundell, P.; Tamassia, L.

    2007-01-01

    The group theoretical structure underlying physics in anti de Sitter (AdS) spacetime is intrinsically different with respect to the flat case, due to the presence of special ultra-short representations, named singletons, that do not admit a flat space limit. The purpose of this collaboration is to exploit this feature in the study of string and brane dynamics in AdS spacetime, in particular while trying to establish a connection between String Theory in AdS backgrounds (in the tensionless limit) and Higher-Spin Gauge Theory. (orig.)

  18. Superconducting, magnetic, and charge correlations in the doped two-chain Hubbard model

    International Nuclear Information System (INIS)

    Asai, Y.

    1995-01-01

    We have studied the superconducting, magnetic, and charge correlation functions and the spin excitation spectrum in the doped two-chain Hubbard model by projector Monte Carlo and Lanczos diagonalization methods. The exponent of the interchain singlet superconducting correlation function, γ, is found to be close to 2.0 as long as two distinct noninteracting bands cross the Fermi level. Magnetic and charge correlation functions decay more rapidly than or as fast as the interchain singlet superconducting correlation function along the chains. The superconducting correlation in the doped two-chain Hubbard model is the most long-range correlation studied here. Implications of the results for the possible universality class of the doped two-chain Hubbard model are discussed

  19. Microscopic simulation model of superconducting transmission lines for standard microwave CAD programs

    International Nuclear Information System (INIS)

    Hoefer, G.J.; Kratz, H.A.

    1993-01-01

    Superconducting lines are very promising candidates for fast signal transmission in integrated circuits, because of their low losses and dispersion, which result in large usable bandwidths. Coplanar waveguides are of special interest, since only one superconducting layer is needed for their implementation. This requirement fits well the present day capabilities of the high temperature superconductor technology. At present, the major drawback of this type of transmission line is the lack of accurate and fast CAD models including the special properties of superconducting electrodes. In the following we will briefly describe the essentials of a model for the case of superconducting lines. For a complete description the reader is referenced to. The model has been proven to be useful in conjunction with commercially available microwave CAD programs. (orig.)

  20. Perspectives on string phenomenology

    CERN Document Server

    Kane, Gordon; Kumar, Piyush

    2015-01-01

    The remarkable recent discovery of the Higgs boson at the CERN Large Hadron Collider completed the Standard Model of particle physics and has paved the way for understanding the physics which may lie beyond it. String/M theory has emerged as a broad framework for describing a plethora of diverse physical systems, which includes condensed matter systems, gravitational systems as well as elementary particle physics interactions. If string/M theory is to be considered as a candidate theory of Nature, it must contain an effectively four-dimensional universe among its solutions that is indistinguishable from our own. In these solutions, the extra dimensions of string/M Theory are “compactified” on tiny scales which are often comparable to the Planck length. String phenomenology is the branch of string/M theory that studies such solutions, relates their properties to data, and aims to answer many of the outstanding questions of particle physics beyond the Standard Model. This book contains perspectives on stri...

  1. String Theory Methods for Condensed Matter Physics

    Science.gov (United States)

    Nastase, Horatiu

    2017-09-01

    Preface; Acknowledgments; Introduction; Part I. Condensed Matter Models and Problems: 1. Lightning review of statistical mechanics, thermodynamics, phases and phase transitions; 2. Magnetism in solids; 3. Electrons in solids: Fermi gas vs. Fermi liquid; 4. Bosonic quasi-particles: phonons and plasmons; 5. Spin-charge separation in 1+1 dimensional solids: spinons and holons; 6. The Ising model and the Heisenberg spin chain; 7. Spin chains and integrable systems; 8. The thermodynamic Bethe ansatz; 9. Conformal field theories and quantum phase transitions; 10. Classical vs. quantum Hall effect; 11. Superconductivity: Landau-Ginzburg, London and BCS; 12. Topology and statistics: Berry and Chern-Simons, anyons and nonabelions; 13. Insulators; 14. The Kondo effect and the Kondo problem; 15. Hydrodynamics and transport properties: from Boltzmann to Navier-Stokes; Part II. Elements of General Relativity and String Theory: 16. The Einstein equation and the Schwarzschild solution; 17. The Reissner-Nordstrom and Kerr-Newman solutions and thermodynamic properties of black holes; 18. Extra dimensions and Kaluza-Klein; 19. Electromagnetism and gravity in various dimensions. Consistent truncations; 20. Gravity plus matter: black holes and p-branes in various dimensions; 21. Weak/strong coupling dualities in 1+1, 2+1, 3+1 and d+1 dimensions; 22. The relativistic point particle and the relativistic string; 23. Lightcone strings and quantization; 24. D-branes and gauge fields; 25. Electromagnetic fields on D-branes. Supersymmetry and N = 4 SYM. T-duality of closed strings; 26. Dualities and M theory; 27. The AdS/CFT correspondence: definition and motivation; Part III. Applying String Theory to Condensed Matter Problems: 28. The pp wave correspondence: string Hamiltonian from N = 4 SYM; 29. Spin chains from N = 4 SYM; 30. The Bethe ansatz: Bethe strings from classical strings in AdS; 31. Integrability and AdS/CFT; 32. AdS/CFT phenomenology: Lifshitz, Galilean and Schrodinger

  2. The string difference equation of the D = 1 matrix model and W1+∞ symmetry of the KP hierarchy

    International Nuclear Information System (INIS)

    Awada, M.A.; Sin, S.J.

    1992-01-01

    In this paper, the authors give a connection between the D = 1 matrix model and the generalized KP hierarchy. First, the authors find a difference equation satisfied by F, the Legendre transformation of the free energy of the D = 1 matrix model on a circle of radius R. Then the authors show that it is a special case of the difference equation of the generalized KP hierarchy with its zero mode identified with the scaling variable of the D = 1 string theory. The authors propose that the massive D = 1 matrix model is described by the generalized KP hierarchy, which implies the manifest integrability of D = 1 string theory. The authors also show that the (generalized) KP hierarchy has an underlying W 1 + ∞ symmetry. By reduction, we prove that the generalized KdV hierarchy has a subalgebra of the above symmetry which again forms a W 1+ ∞ . The authors argue that there are no W constraints in D = 1 string theory, which is in contrast to D 1 + ∞ constraints

  3. Superconductivity in the Penson-Kolb Model on a Triangular Lattice

    Science.gov (United States)

    Ptok, A.; Mierzejewski, M.

    2008-07-01

    We investigate properties of the two-dimensional Penson-Kolb model with repulsive pair hopping interaction. In the case of a bipartite square lattice this interaction may lead to the η-type pairing, when the phase of superconducting order parameter changes from one lattice site to the neighboring one. We show that this interaction may be responsible for the onset of superconductivity also for a triangular lattice. We discuss the spatial dependence of the superconducting order parameter and demonstrate that the total momentum of the paired electrons is determined by the lattice geometry.

  4. Two-fluid model of the superconductivity in the BCS's theory

    International Nuclear Information System (INIS)

    Rangelov, J.

    1977-01-01

    The coefficients of Bogolubov-Valatin's transformation are chosen in accordance with the two-fluid model of superconductivity. The energy spectrum of superconducting quasi-particles is obtained as a solution of the linearized equation of motion of interacting particles. The energy distribution of the superconducting and normal quasi-particles is discussed from a new view-point. The correlation between the quasi-particles forming the Cooper's pair is discussed in accordance with the proposed ideas. The tunnelling of the normal quasi-particles in systems M-I-S and S 1 -I-S 2 is investigated qualitatively

  5. Modelling of hysteresis in thin superconducting screens for mixed-mu suspension systems

    International Nuclear Information System (INIS)

    Asher, G.M.; Williams, J.T.; Walters, C.R.; Joyce, H.; Paul, R.J.A.

    1982-01-01

    Mixed-mu levitation is the principle whereby iron is levitated in a magnetic field and stabilized by the proximity of diamagnetic superconducting screens. In a dynamic environment, the screens are subject to changing magnetic fields thus causing hysteresis losses in the superconducting material. This paper is concerned with the modeling of such hysteresis. A finite difference approximation to the current and field distributions is employed, the current distribution being made consistent with critical current values by iteration. Square and disc shaped screen samples are studied and hysteresis curves computed. It is shown that the method represents a fair approximation to the hysteresis behavior of thin superconducting screens. 8 refs

  6. Open strings on AdS2 branes

    International Nuclear Information System (INIS)

    Lee, Peter; Ooguri, Hirosi.; Park, Jongwon; Tannenhauser, Jonathan

    2001-01-01

    We study the spectrum of open strings on AdS 2 branes in AdS 3 in an NS-NS background, using the SL(2,R) WZW model. When the brane carries no fundamental string charge, the open string spectrum is the holomorphic square root of the spectrum of closed strings in AdS 3 . It contains short and long strings, and is invariant under spectral flow. When the brane carries fundamental string charge, the open string spectrum again contains short and long strings in all winding sectors. However, branes with fundamental string charge break half the spectral flow symmetry. This has different implications for short and long strings. As the fundamental string charge increases, the brane approaches the boundary of AdS 3 . In this limit, the induced electric field on the worldvolume reaches its critical value, producing noncommutative open string theory on AdS 2

  7. A brief history of string theory. From dual models to M-theory

    Energy Technology Data Exchange (ETDEWEB)

    Rickles, Dean [Sydney Univ. (Australia). Unit for History and Philosophy of Science

    2014-04-01

    First monograph devoted to the history of superstring theory. Objective presentation of a controversial area of physics enabling readers to see through the divisive hype and hysteria forming the 'String Wars'. Interweaves conceptual issues with the wider historical development. Reveals string theory's historically close connections with other areas of physics. Self-contained approach brings string theory within the grasp of non-specialists. During its forty year lifespan, string theory has always had the power to divide, being called both a 'theory of everything' and a 'theory of nothing'. Critics have even questioned whether it qualifies as a scientific theory at all. This book adopts an objective stance, standing back from the question of the truth or falsity of string theory and instead focusing on how it came to be and how it came to occupy its present position in physics. An unexpectedly rich history is revealed, with deep connections to our most well-established physical theories. Fully self-contained and written in a lively fashion, the book will appeal to a wide variety of readers from novice to specialist.

  8. A brief history of string theory. From dual models to M-theory

    International Nuclear Information System (INIS)

    Rickles, Dean

    2014-01-01

    First monograph devoted to the history of superstring theory. Objective presentation of a controversial area of physics enabling readers to see through the divisive hype and hysteria forming the 'String Wars'. Interweaves conceptual issues with the wider historical development. Reveals string theory's historically close connections with other areas of physics. Self-contained approach brings string theory within the grasp of non-specialists. During its forty year lifespan, string theory has always had the power to divide, being called both a 'theory of everything' and a 'theory of nothing'. Critics have even questioned whether it qualifies as a scientific theory at all. This book adopts an objective stance, standing back from the question of the truth or falsity of string theory and instead focusing on how it came to be and how it came to occupy its present position in physics. An unexpectedly rich history is revealed, with deep connections to our most well-established physical theories. Fully self-contained and written in a lively fashion, the book will appeal to a wide variety of readers from novice to specialist.

  9. Model for cryogenic particle detectors with superconducting phase transition thermometers

    International Nuclear Information System (INIS)

    Proebst, F.; Frank, M.; Cooper, S.; Colling, P.; Dummer, D.; Ferger, P.; Nucciotti, A.; Seidel, W.; Stodolsky, L.

    1994-09-01

    We present data on a detector composed of an 18 g Si crystal and a superconducting phase transition thermometer which could be operated over a wide temperature range. An energy resolution of 1 keV (FWHM) has been obtained for 60 keV photons. The signals consist of two components: A fast one and a slow one, with decay times of 1.5 ms and 30-60 ms, respectively. In this paper we present a simple model which takes thermal and non-thermal phonon processes into account and provides a description of the observed temperature dependence of the pulse shape. The fast component, which completely dominates the signal at low temperatures, is due to high-frequency non-thermal phonons being absorbed in the thermometer. Thermalization of these phonons then leads to a temperature rise of the absorber, which causes the slow thermal component. At the highest operating temperatures (T∼80 mK) the amplitude of the slow component is roughly as expected from the heat capacity of the absorber. The strong suppression of the slow component at low temperatures is explained mostly as a consequence of the weak thermal coupling between electrons and phonons in the thermometer at low temperatures. (orig.)

  10. Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids

    International Nuclear Information System (INIS)

    Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

    2010-01-01

    The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

  11. Symmetry breaking in string theory

    International Nuclear Information System (INIS)

    Potting, R.

    1998-01-01

    A mechanism for a spontaneous breakdown of CPT symmetry appears in string theory, with possible implications for particle models. A realistic string theory might exhibit CPT violation at levels detectable in current or future experiments. A possible new mechanism for baryogenesis in the early Universe is also discussed

  12. Strings for quantumchromodynamics

    International Nuclear Information System (INIS)

    Schomerus, V.

    2007-04-01

    During the last decade, intriguing dualities between gauge and string theory have been found and explored. they provide a novel window on strongly couplde gauge physics, including QCD-like models. Based on a short historical review of modern string theory, we explain how so-called AdS/CFT dualities emerged at the end of the 1990s. Some of their concrete implications and remarkable recent progress are then illustrated for the simplest example, namely the multicolor limit of N=4 SYM theory in four dimensions. We end with a few comments on existing extensions to more realistic models and applications, in particular to the sQGP. This text is meant as a non-technical introduction to gauge/string dualities for (particle) physicists. (orig.)

  13. Strings for quantumchromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Schomerus, V.

    2007-04-15

    During the last decade, intriguing dualities between gauge and string theory have been found and explored. they provide a novel window on strongly couplde gauge physics, including QCD-like models. Based on a short historical review of modern string theory, we explain how so-called AdS/CFT dualities emerged at the end of the 1990s. Some of their concrete implications and remarkable recent progress are then illustrated for the simplest example, namely the multicolor limit of N=4 SYM theory in four dimensions. We end with a few comments on existing extensions to more realistic models and applications, in particular to the sQGP. This text is meant as a non-technical introduction to gauge/string dualities for (particle) physicists. (orig.)

  14. Excitonic Order and Superconductivity in the Two-Orbital Hubbard Model: Variational Cluster Approach

    Science.gov (United States)

    Fujiuchi, Ryo; Sugimoto, Koudai; Ohta, Yukinori

    2018-06-01

    Using the variational cluster approach based on the self-energy functional theory, we study the possible occurrence of excitonic order and superconductivity in the two-orbital Hubbard model with intra- and inter-orbital Coulomb interactions. It is known that an antiferromagnetic Mott insulator state appears in the regime of strong intra-orbital interaction, a band insulator state appears in the regime of strong inter-orbital interaction, and an excitonic insulator state appears between them. In addition to these states, we find that the s±-wave superconducting state appears in the small-correlation regime, and the dx2 - y2-wave superconducting state appears on the boundary of the antiferromagnetic Mott insulator state. We calculate the single-particle spectral function of the model and compare the band gap formation due to the superconducting and excitonic orders.

  15. Tadpole resummations in string theory

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2008-01-01

    While R-R tadpoles should be canceled for consistency, string models with broken supersymmetry generally have uncanceled NS-NS tadpoles. Their presence signals that the background does not solve the field equations, so that these models are in 'wrong' vacua. In this Letter we investigate, with reference to some prototype examples, whether the true values of physical quantities can be recovered resumming the NS-NS tadpoles, hence by an approach that is related to the analysis based on String Field Theory by open-closed duality. We show that, indeed, the positive classical vacuum energy of a Dp-brane of the bosonic string is exactly canceled by the negative contribution arising from tree-level tadpole resummation, in complete agreement with Sen's conjecture on open-string tachyon condensation and with the consequent analysis based on String Field Theory. We also show that the vanishing classical vacuum energy of the SO(8192) unoriented bosonic open-string theory does not receive any tree-level corrections from the tadpole resummation. This result is consistent with the fact that this (unstable) configuration is free from tadpoles of massless closed-string modes, although there is a tadpole of the closed string tachyon. The application of this method to superstring models with broken supersymmetry is also discussed

  16. The issue of supersymmetry breaking in strings

    International Nuclear Information System (INIS)

    Binetruy, P.

    1989-12-01

    We discuss the central role that supersymmetry plays in string models, both in spacetime and at the level of the string world-sheet. The problems associated with supersymmetry-breaking are reviewed together with some of the attempts to solve them, in the string as well as the field theory approach

  17. The flipped SU(5)xU(1) string model revamped

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I.; Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V. (European Organization for Nuclear Research, Geneva (Switzerland))

    1989-11-02

    We present a refined version of our three-generation flipped SU(5)xU(1) string model with the following properties. The complete massless spectrum is derived and shown to be free of all gauge and mixed anomalies apart from a single anomalous U(1). The imaginary part of the dilaton supermultiplet is eaten by the anomalous U(1) gauge boson, and the corresponding D-term is cancelled by large VEVs for singlet fields that break surplus U(1) gauge factors, leaving a supersymmetric vacuum with an SU(5)xU(1) visible gauge group and an SO(10)xSO(6) hidden gauge group. There are sufficient Higgs multiplets to break the visible gauge symmetry down to the standard model in an essentially unique way. All trilinear superpotential couplings have been calculated and there are in particular some giving m{sub t}, m{sub b}, m{sub tau}ne0. A renormalization group analysis shows that m{sub t}<190 GeV and m{sub b}{approx equal}3m{sub tau}. Light Higgs doublets are split automatically from heavy Higgs triplets, leaving no residual dimension-five operators for baryon decay, and the baryon lifetime tau{sub B} {approx equal} 2x10{sup 34{plus minus}2} yr. There are no tree-level flavour-changing neutral currents, but muyieldsegamma may occur at a detectable level: B(muyieldsegamma){proportional to} 10{sup -11}-10{sup -14}. (orig.).

  18. Dyon Condensation and Dual Superconductivity in Abelian Higgs Model of QCD

    Directory of Open Access Journals (Sweden)

    B. S. Rajput

    2010-01-01

    Full Text Available Constructing the effective action for dyonic field in Abelian projection of QCD, it has been demonstrated that any charge (electrical or magnetic of dyon screens its own direct potential to which it minimally couples and antiscreens the dual potential leading to dual superconductivity in accordance with generalized Meissner effect. Taking the Abelian projection of QCD, an Abelian Higgs model, incorporating dual superconductivity and confinement, has been constructed and its representation has been obtained in terms of average of Wilson loop.

  19. TRILEX and G W +EDMFT approach to d -wave superconductivity in the Hubbard model

    Science.gov (United States)

    Vučičević, J.; Ayral, T.; Parcollet, O.

    2017-09-01

    We generalize the recently introduced TRILEX approach (TRiply irreducible local EXpansion) to superconducting phases. The method treats simultaneously Mott and spin-fluctuation physics using an Eliashberg theory supplemented by local vertex corrections determined by a self-consistent quantum impurity model. We show that, in the two-dimensional Hubbard model, at strong coupling, TRILEX yields a d -wave superconducting dome as a function of doping. Contrary to the standard cluster dynamical mean field theory (DMFT) approaches, TRILEX can capture d -wave pairing using only a single-site effective impurity model. We also systematically explore the dependence of the superconducting temperature on the bare dispersion at weak coupling, which shows a clear link between strong antiferromagnetic (AF) correlations and the onset of superconductivity. We identify a combination of hopping amplitudes particularly favorable to superconductivity at intermediate doping. Finally, we study within G W +EDMFT the low-temperature d -wave superconducting phase at strong coupling in a region of parameter space with reduced AF fluctuations.

  20. Interacting loop-current model of superconducting networks

    International Nuclear Information System (INIS)

    Chi, C.C.; Santhanam, P.; Bloechl, P.E.

    1992-01-01

    The authors review their recent approximation scheme to calculate the normal-superconducting phase boundary, T c (H), of a superconducting wire network in a magnetic field in terms of interacting loop currents. The theory is based on the London approximation of the linearized Ginzburg-Landau equation. An approximate general formula is derived for any two-dimensional space-filling lattice comprising tiles of two shapes. Many examples are provided illustrating the use of this method, with a particular emphasis on the fluxoid distribution. In addition to periodic lattices, quasiperiodic lattices and fractal Sierpinski gaskets are also discussed

  1. Improved constraint on the primordial gravitational-wave density using recent cosmological data and its impact on cosmic string models

    International Nuclear Information System (INIS)

    Henrot-Versillé, Sophie; Robinet, Florent; Leroy, Nicolas; Plaszczynski, Stéphane; Arnaud, Nicolas; Bizouard, Marie-Anne; Cavalier, Fabien; Christensen, Nelson; Couchot, François; Franco, Samuel; Hello, Patrice; Huet, Dominique; Kasprzack, Marie; Perdereau, Olivier; Spinelli, Marta; Tristram, Matthieu

    2015-01-01

    The production of a primordial stochastic gravitational-wave (GW) background by processes occuring in the early Universe is expected in a broad range of models. Observing this background would open a unique window onto the Universe's evolutionary history. Probes like the cosmic microwave background (CMB) or the baryon acoustic oscillations (BAO) can be used to set upper limits on the stochastic GW background energy density Ω GW for frequencies above 10 −15 Hz. We perform a profile likelihood analysis of the Planck CMB temperature anisotropies and gravitational lensing data combined with WMAP low-ℓ polarization, BAO, South Pole Telescope and Atacama Cosmology Telescope data. We find that Ω GW h 0 2 <3.8×10 −6 at a 95% confidence level for adiabatic initial conditions, which improves over the previous limit by a factor 2.3. Assuming that the primordial GW has been produced by a network of cosmic strings, we have derived exclusion limits in the cosmic string parameter space. If the size of the loops is determined by gravitational back-reaction, string tension values greater than ∼4 × 10 −9 are excluded for a reconnection probability of 10 −3 . (paper)

  2. The minimal SUSY B−L model: simultaneous Wilson lines and string thresholds

    Energy Technology Data Exchange (ETDEWEB)

    Deen, Rehan; Ovrut, Burt A. [Department of Physics, University of Pennsylvania,209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Purves, Austin [Department of Physics, University of Pennsylvania,209 South 33rd Street, Philadelphia, PA 19104-6396 (United States); Department of Physics, Manhattanville College,2900 Purchase Street, Purchase, NY 10577 (United States)

    2016-07-08

    In previous work, we presented a statistical scan over the soft supersymmetry breaking parameters of the minimal SUSY B−L model. For specificity of calculation, unification of the gauge parameters was enforced by allowing the two ℤ{sub 3}×ℤ{sub 3} Wilson lines to have mass scales separated by approximately an order of magnitude. This introduced an additional “left-right” sector below the unification scale. In this paper, for three important reasons, we modify our previous analysis by demanding that the mass scales of the two Wilson lines be simultaneous and equal to an “average unification” mass 〈M{sub U}〉. The present analysis is 1) more “natural” than the previous calculations, which were only valid in a very specific region of the Calabi-Yau moduli space, 2) the theory is conceptually simpler in that the left-right sector has been removed and 3) in the present analysis the lack of gauge unification is due to threshold effects — particularly heavy string thresholds, which we calculate statistically in detail. As in our previous work, the theory is renormalization group evolved from 〈M{sub U}〉 to the electroweak scale — being subjected, sequentially, to the requirement of radiative B−L and electroweak symmetry breaking, the present experimental lower bounds on the B−L vector boson and sparticle masses, as well as the lightest neutral Higgs mass of ∼125 GeV. The subspace of soft supersymmetry breaking masses that satisfies all such constraints is presented and shown to be substantial.

  3. d-wave superconductivity in the frustrated two-dimensional periodic Anderson model

    Directory of Open Access Journals (Sweden)

    Wei Wu

    2015-02-01

    Full Text Available Superconductivity in heavy-fermion materials can sometimes appear in the incoherent regime and in proximity to an antiferromagnetic quantum critical point. Here, we study these phenomena using large-scale determinant quantum Monte Carlo simulations and the dynamical cluster approximation with various impurity solvers for the periodic Anderson model with frustrated hybridization. We obtain solid evidence for a d_{x^{2}−y^{2}} superconducting phase arising from an incoherent normal state in the vicinity of an antiferromagnetic quantum critical point. There is a coexistence region, and the width of the superconducting dome increases with frustration. Through a study of the pairing dynamics, we find that the retarded spin fluctuations give the main contribution to the pairing glue. These results are relevant for unconventional superconductivity in the Ce-115 family of heavy fermions.

  4. Infinite-range Heisenberg model and high-temperature superconductivity

    Science.gov (United States)

    Tahir-Kheli, Jamil; Goddard, William A., III

    1993-11-01

    A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.

  5. Computational and Mathematical Modeling of Coupled Superconducting Quantum Interference Devices

    Science.gov (United States)

    Berggren, Susan Anne Elizabeth

    This research focuses on conducting an extensive computational investigation and mathematical analysis into the average voltage response of arrays of Superconducting Quantum Interference Devices (SQUIDs). These arrays will serve as the basis for the development of a sensitive, low noise, significantly lower Size, Weight and Power (SWaP) antenna integrated with Low-Noise Amplifier (LNA) using the SQUID technology. The goal for this antenna is to be capable of meeting all requirements for Guided Missile Destroyers (DDG) 1000 class ships for Information Operations/Signals Intelligence (IO/SIGINT) applications in Very High Frequency/Ultra High Frequency (V/UHF) bands. The device will increase the listening capability of receivers by moving technology into a new regime of energy detection allowing wider band, smaller size, more sensitive, stealthier systems. The smaller size and greater sensitivity will allow for ships to be “de-cluttered” of their current large dishes and devices, replacing everything with fewer and smaller SQUID antenna devices. The fewer devices present on the deck of a ship, the more invisible the ship will be to enemy forces. We invent new arrays of SQUIDs, optimized for signal detection with very high dynamic range and excellent spur-free dynamic range, while maintaining extreme small size (and low radar cross section), wide bandwidth, and environmentally noise limited sensitivity, effectively shifting the bottle neck of receiver systems forever away from the antenna itself deeper into the receiver chain. To accomplish these goals we develop and validate mathematical models for different designs of SQUID arrays and use them to invent a new device and systems design. This design is capable of significantly exceeding, per size weight and power, state-of-the-art receiver system measures of performance, such as bandwidth, sensitivity, dynamic range, and spurious-free dynamic range.

  6. Help from the strings

    CERN Multimedia

    2007-01-01

    "How can the nature of basic particles be defined beyond the mechanisms presiding over their creation? Besides the standard model of particle physics - resulting from the postulations of quantum mechanics - contemporary science has pinned its hopes on the totally new unifying notion provided by the highly mathematical string theory."(2 pages)

  7. On exceptional instanton strings

    NARCIS (Netherlands)

    Del Zotto, M.; Lockhart, G.

    According to a recent classification of 6d (1, 0) theories within F-theory there are only six “pure” 6d gauge theories which have a UV superconformal fixed point. The corresponding gauge groups are SU(3), SO(8), F4, E6, E7, and E8. These exceptional models have BPS strings which are also instantons

  8. Strings, conformal fields and topology

    International Nuclear Information System (INIS)

    Kaku, Michio

    1991-01-01

    String Theory has advanced at an astonishing pace in the last few years, and this book aims to acquaint the reader with the most active topics of research in the field. Building on the foundations laid in his Introduction to Superstrings, Professor Kaku discusses such topics as the classification of conformal string theories, knot theory, the Yang-Baxter relation, quantum groups, the non-polynominal closed string field theory, matrix models, and topological field theory. Several chapters review the fundamentals of string theory, making the presentation of the material self-contained while keeping overlap with the earlier book to a minimum. The book conveys the vitality of current research in string theory and places readers at its forefront. (orig.) With 40 figs. in 50 parts

  9. String-localized quantum fields

    International Nuclear Information System (INIS)

    Mund, Jens; Santos, Jose Amancio dos; Silva, Cristhiano Duarte; Oliveira, Erichardson de

    2009-01-01

    Full text. The principles of physics admit (unobservable) quantum fields which are localized not on points, but on strings in the sense of Mandelstam: a string emanates from a point in Minkowski space and extends to infinity in some space-like direction. This type of localization might permit the construction of new models, for various reasons: (a) in general, weaker localization implies better UV behaviour. Therefore, the class of renormalizable interactions in the string-localized has a chance to be larger than in the point-localized case; (b) for certain particle types, there are no point-localized (free) quantum fields - for example Anyons in d = 2 + 1, and Wigner's massless 'infinite spin' particles. For the latter, free string-localized quantum fields have been constructed; (c) in contrast to the point-localized case, string-localization admits covariant vector/tensor potentials for fotons and gravitons in a Hilbert space representation with positive energy. We shall present free string-localized quantum fields for various particle types, and some ideas about the perturbative construction of interacting string-localized fields. A central point will be an analogue of gauge theories, completely within a Hilbert space and without ghosts, trading gauge dependence with dependence on the direction of the localization string. In order to discuss renormalizability (item (a)), methods from microlocal analysis (wave front set and scaling degree) are needed. (author)

  10. Progress in string theory research

    CERN Document Server

    2016-01-01

    At the first look, the String Theory seems just an interesting and non-trivial application of the quantum mechanics and the special relativity to vibrating strings. By itself, the quantization of relativistic strings does not call the attention of the particle physicist as a significant paradigm shift. However, when the string quantization is performed by applying the standard rules of the perturbative Quantum Field Theory, one discovers that the strings in certain states have the same physical properties as the gravity in the flat space-time. Chapter one of this book reviews the construction of the thermal bosonic string and D-brane in the framework of the Thermo Field Dynamics (TFD). It briefly recalls the wellknown light-cone quantization of the bosonic string in the conformal gauge in flat space-time, and gives a bird’s eye view of the fundamental concepts of the TFD. Chapter two examines a visual model inspired by string theory, on the system of interacting anyons. Chapter three investigate the late-ti...

  11. The Superconducting Super Collider: A status report

    International Nuclear Information System (INIS)

    Schwitters, R.F.

    1993-04-01

    The design of the Superconducting Super Collider (SSC) is briefly reviewed, including its key machine parameters. The scientific objectives are twofold: (1) investigation of high-mass, low-rate, rare phenomena beyond the standard model; and (2) investigation of processes within the domain of the standard model. Machine luminosity, a key parameter, is a function of beam brightness and current, and it must be preserved through the injector chain. Features of the various injectors are discussed. The superconducting magnet system is reviewed in terms of model magnet performance, including the highly successful Accelerator System String Test Various magnet design modifications are noted, reflecting minor changes in the collider arcs and improved installation procedures. The paper concludes with construction scenarios and priority issues for ensuring the earliest collider commissioning

  12. Superconducting digital logic amplifier

    International Nuclear Information System (INIS)

    Przybysz, J.X.

    1989-01-01

    This paper describes a superconducting digital logic amplifier for interfacing between a Josephson junction logic circuit having output current and a higher voltage semiconductor circuit input. The amplifier comprising: an input terminal for connection to a; an output terminal for connection to a semiconductor circuit input; an input, lower critical current, Josephson junction having first and second terminals; a first series string of at least three lower critical current Josephson junctions. The first series string being connected to the first terminal of the input Josephson junction such that the first series string is in series with the input Josephson junction to provide a series combination. The input terminal being connected to the first terminal of the input Josephson junction, and with the critical current of the lower critical current Josephson junctions of the input Josephson junction and the first series Josephson junctions being less than the output current of the low voltage Josephson junction circuit; a second series string of at least four higher critical current Josephson junctions. The second string being connected in parallel with the series combination to provide parallel strings having an upper common connection and a lower common connection. The lower common connection being connected to the second terminal of the input Josephson junction and the upper common connection being connected to the output terminal; and a pulsed DC current source connected the parallel strings at the upper common connection. The DC current source having a current at least equal to the critical current of the higher critical current Josephson junctions

  13. Bianchi Type-I Massive String Magnetized Barotropic Perfect Fluid Cosmological Model in the Bimetric Theory of Gravitation

    International Nuclear Information System (INIS)

    Gaikwad, N. P.; Borkar, M. S.; Charjan, S. S.

    2011-01-01

    We investigate the Bianchi type-I massive string magnetized barotropic perfect fluid cosmological model in Rosen's bimetric theory of gravitation with and without a magnetic field by applying the techniques used by Latelier (1979, 1980) and Stachel (1983). To obtain a deterministic model of the universe, it is assumed that the universe is filled with barotropic perfect fluid distribution. The physical and geometrical significance of the model are discussed. By comparing our model with the model of Bali et al. (2007), it is realized that there are no big-bang and big-crunch singularities in our model and T = 0 is not the time of the big bang, whereas the model of Bali et al. starts with a big bang at T = 0. Further, our model is in agreement with Bali et al. (2007) as time increases in the presence, as well as in the absence, of a magnetic field. (geophysics, astronomy, and astrophysics)

  14. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Directory of Open Access Journals (Sweden)

    Lin Yang

    2016-12-01

    Full Text Available A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  15. A multiple-field coupled resistive transition model for superconducting Nb3Sn

    Science.gov (United States)

    Yang, Lin; Ding, He; Zhang, Xin; Qiao, Li

    2016-12-01

    A study on the superconducting transition width as functions of the applied magnetic field and strain is performed in superconducting Nb3Sn. A quantitative, yet universal phenomenological resistivity model is proposed. The numerical simulation by the proposed model shows predicted resistive transition characteristics under variable magnetic fields and strain, which in good agreement with the experimental observations. Furthermore, a temperature-modulated magnetoresistance transition behavior in filamentary Nb3Sn conductors can also be well described by the given model. The multiple-field coupled resistive transition model is helpful for making objective determinations of the high-dimensional critical surface of Nb3Sn in the multi-parameter space, offering some preliminary information about the basic vortex-pinning mechanisms, and guiding the design of the quench protection system of Nb3Sn superconducting magnets.

  16. Interactions between $U(1)$ Cosmic Strings: An Analytical Study

    OpenAIRE

    Bettencourt, L. M. A.; Rivers, R. J.

    1994-01-01

    We derive analytic expressions for the interaction energy between two general $U(1)$ cosmic strings as the function of their relative orientation and the ratio of the coupling constants in the model. The results are relevant to the statistic description of strings away from critical coupling and shed some light on the mechanisms involved in string formation and the evolution of string networks.

  17. A brief history of string theory from dual models to M-theory

    CERN Document Server

    Rickles, Dean

    2014-01-01

    During its forty year lifespan, string theory has always had the power to divide, being called both a 'theory of everything' and a 'theory of nothing'. Critics have even questioned whether it qualifies as a scientific theory at all. This book adopts an objective stance, standing back from the question of the truth or falsity of string theory and instead focusing on how it came to be and how it came to occupy its present position in physics. An unexpectedly rich history is revealed, with deep connections to our most well-established physical theories. Fully self-contained and written in a lively fashion, the book will appeal to a wide variety of readers from novice to specialist.

  18. Tensions and Luescher terms for (2+1)-dimensional k-strings from holographic models

    International Nuclear Information System (INIS)

    Doran, Christopher A.; Rodgers, Vincent G.J.; Stiffler, Kory; Zayas, Leopoldo A. Pando

    2009-01-01

    The leading term for the energy of a bound state of k-quarks and k-antiquarks is proportional to its separation L. These k-string configurations have a Luescher term associated with their quantum fluctuations which is typically a 1/L correction to the energy. We review the status of tensions and Luescher terms in the context of lattice gauge theory, Hamiltonian methods, and gauge/gravity correspondence. Furthermore we explore how different representations of the k-string manifest themselves in the gauge/gravity duality. We calculate the Luescher term for a strongly coupled SU(N) gauge theory in (2+1) dimensions using the gauge/gravity correspondence. Namely, we compute one-loop corrections to a probe D4-brane embedded in the Cvetic, Gibbons, Lue, and Pope supergravity background. We investigate quantum fluctuations of both the bosonic and the fermionic sectors.

  19. Strings draw theorists together

    International Nuclear Information System (INIS)

    Green, Michael

    2000-01-01

    has been learned about the non-perturbative extension of string theory now known as ''M theory'' and this has shed light on many previously mysterious aspects of quantum field theory. The range of new and potentially important developments is indeed impressive. One example is the accumulation of results on the role of ''noncommutative geometry'' in string theory. Another major theme of the meeting was the new ideas on how string theory may describe observed physics, such as the forces and particles in nature and their properties. The recent work by Lisa Randall of Princeton University and Raman Sundrum of Boston University is a variant of the ''brane world'' idea that has come to the fore over the past couple of years. According to this idea, which was reviewed by Randall at the conference, our four-dimensional universe can be thought of as a membrane (known as a three-brane) that is embedded inside a higher-dimensional universe. The number of higher dimensions is predicted by the structure of string theory. The possible consequences of this are striking. For example, in such a universe the fundamental energy scale of the theory may be much smaller than the Planck energy of 10 19 GeV. Indeed, the scale could be so small that it will be accessible to direct experimental observation using the next generation of accelerators, such as the Large Hadron Collider that is currently under construction at CERN. This theme was further developed by Steven Hawking, who conjectured on how such a universe might have evolved from the initial quantum state that preceded the big bang. One of the most exciting developments over the past few years has been in understanding how so-called Yang-Mills gauge theories - the bread and butter of the Standard Model of particle physics - are related to quantum gravity by string theory. Particularly important is the so-called ''Maldacena correspondence'', first developed by Juan Maldacena of Harvard University. This correspondence gives an explicit

  20. A novel class of string models with Scherk-Schwarz supersymmetry breaking

    CERN Document Server

    Scrucca, Claudio A; Scrucca, Claudio A.; Serone, Marco

    2001-01-01

    A new type of four-dimensional string vacua with Scherk--Schwarz supersymmetry breaking is considered. The construction involves Z_N x Z_M' freely acting orbifolds, defined in terms of rotations and translations in the internal space. Tachyons are either absent or limited to a given region of the tree-level moduli space. Particular attention is devoted to an interesting Z_3 x Z_3' heterotic example.

  1. Bec Model of HIGH-Tc Superconductivity in Layered Cuprates

    Science.gov (United States)

    Lomnitz, M.; Villarreal, C.; de Llano, M.

    2013-11-01

    High-Tc superconductivity in layered cuprates is described in a BCS-BEC formalism with linearly-dispersive s- and d-wave Cooper pairs moving in quasi-2D finite-width layers around the CuO2 planes. This yields a closed formula for Tc involving the layer width, the Debye frequency, the pairing energy and the in-plane penetration depth. The new formula has no free parameters and reasonably reproduces empirical values of superconducting Tcs for 11 different layered superconductors over a wide doping regime including YBCO itself as well as other compounds like LSCO, BSCCO and TBCCO. In agreement with the London formalism, the formula also yields a fair description of the Tc dependence of the lower critical magnetic field in highly underdoped YBCO.

  2. Modeling and Error Analysis of a Superconducting Gravity Gradiometer.

    Science.gov (United States)

    1979-08-01

    quantum (bij magnetic flux linking elements i and u b N noise flux of SQUID W natural angular frequency W f angular frequency of forcing function Wi...SQUID superconducting quantum interference device TBAN tolerable background acceleration noise VIC voltage to current converter -xxiii- .4 Chapter I...to detect the minute vibrations induced in a 1 ton, cryogenically cooled and magnetically levitated gravitational wave antenna. The antenna concept

  3. Phenomenology of the hierarchical lepton mass spectrum in the flipped SU(5)xU(1) string model

    Energy Technology Data Exchange (ETDEWEB)

    Leontaris, G.K.; Nanopoulos, D.V.

    1988-09-29

    A detailed phenomenological analysis of the lepton mass matrices and their implications in the low energy theory are discussed, within the recently proposed SU(5)xU(1) string model. The unification scale is highly constrained while the Yukawa couplings lie in a natural region. The flavour changing decays ..mu.. -> e..gamma.., ..mu.. -> 3e, ..mu.. -> e are highly suppressed while the depletion in the flux of muon neutrinos reported by the Kamiokande is explained through ..nu../sub ..mu../ reversible ..nu../sub tau/ oscillations.

  4. 3D Magnetic field modeling of a new superconducting synchronous machine using reluctance network method

    Science.gov (United States)

    Kelouaz, Moussa; Ouazir, Youcef; Hadjout, Larbi; Mezani, Smail; Lubin, Thiery; Berger, Kévin; Lévêque, Jean

    2018-05-01

    In this paper a new superconducting inductor topology intended for synchronous machine is presented. The studied machine has a standard 3-phase armature and a new kind of 2-poles inductor (claw-pole structure) excited by two coaxial superconducting coils. The air-gap spatial variation of the radial flux density is obtained by inserting a superconducting bulk, which deviates the magnetic field due to the coils. The complex geometry of this inductor usually needs 3D finite elements (FEM) for its analysis. However, to avoid a long computational time inherent to 3D FEM, we propose in this work an alternative modeling, which uses a 3D meshed reluctance network. The results obtained with the developed model are compared to 3D FEM computations as well as to measurements carried out on a laboratory prototype. Finally, a 3D FEM study of the shielding properties of the superconducting screen demonstrates the suitability of using a diamagnetic-like model of the superconducting screen.

  5. LHC di-photon excess and gauge coupling unification in extra Z{sup '} heterotic-string derived models

    Energy Technology Data Exchange (ETDEWEB)

    Ashfaque, J. [University of Liverpool, Department of Mathematical Sciences, Liverpool (United Kingdom); Delle Rose, L. [University of Southampton, School of Physics and Astronomy, Southampton (United Kingdom); Faraggi, A.E. [Rutherford Appleton Laboratory, Department of Particle Physics, Chilton, Didcot (United Kingdom); Marzo, C. [Universita del Salento, Dipartimento di Matematica e Fisica ' ' Ennio De Giorgi' ' , Lecce (Italy); INFN, Lecce (Italy)

    2016-10-15

    A di-photon excess at the LHC can be explained as a Standard Model singlet that is produced and decays by heavy vector-like colour triplets and electroweak doublets in one-loop diagrams. The characteristics of the required spectrum are well motivated in heterotic-string constructions that allow for a light Z{sup '}. Anomaly cancellation of the U(1){sub Z'} symmetry requires the existence of the Standard Model singlet and vector-like states in the vicinity of the U(1){sub Z'} breaking scale. In this paper we show that the agreement with the gauge coupling data at one-loop is identical to the case of the Minimal Supersymmetric Standard Model, owing to cancellations between the additional states. We further show that effects arising from heavy thresholds may push the supersymmetric spectrum beyond the reach of the LHC, while maintaining the agreement with the gauge coupling data. We show that the string-inspired model can indeed produce an observable signal and discuss the feasibility of obtaining viable scalar mass spectrum. (orig.)

  6. Two aspects of one loop structure: Unitarity delay in the Standard Model and modular invariance in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, C.

    1989-08-01

    We study two aspects of one loop structures in quantum field theories which describe two different areas of particle physics: the one loop unitarity behavior of the Standard Model of electroweak interactions and modular invariance of string model theory. Loop expansion has its importance in that it contains quantum fluctuations due to all physical states in the theory. Therefore, by studying the various models to one loop, we can understand how the contents of the theory can contribute to physically measurable quantities and how the consistency at quantum level restricts the physical states of the theory, as well. In the first half of the thesis, we study one loop corrections to the process {ital e}{sup +}{ital e}{sup {minus}} {yields} {ital W}{sup +}{ital W}{sup {minus}}. In this process, there is a delicate unitarity-saving cancellation between s-channel and t-channel tree level Feynman diagrams. If the one loop contribution due to heavy particles corrects the channels asymmetrically, the cancellation, hence unitarity, will be delayed up to the mass scale of these heavy particles. We refer to this phenomena as the unitarity delay effect. Due to this effect, cross section below these mass scales can have significant radiative corrections which may provide an appropriate window through which we can see the high energy structure of the Standard Model from relatively low energy experiments. In the second half, we will show how quantum consistency can restrict the physical states in string theory. 53 refs., 13 figs.

  7. The LHC test string first operational experience

    CERN Document Server

    Bézaguet, Alain-Arthur; Casas-Cubillos, J; Coull, L; Cruikshank, P; Dahlerup-Petersen, K; Faugeras, Paul E; Flemsæter, B; Guinaudeau, H; Hagedorn, Dietrich; Hilbert, B; Krainz, G; Kos, N; Lavielle, D; Lebrun, P; Leo, G; Mathewson, A G; Missiaen, D; Momal, F; Parma, Vittorio; Quesnel, Jean Pierre; Richter, D; Riddone, G; Rijllart, A; Rodríguez-Mateos, F; Rohmig, P; Saban, R I; Schmidt, R; Serio, L; Skiadelli, M; Suraci, A; Tavian, L; Walckiers, L; Wallén, E; Van Weelderen, R; Williams, L; McInturff, A

    1996-01-01

    CERN operates the first version of the LHC Test String which consists of one quadrupole and three 10-m twin aperture dipole magnets. An experimental programme aiming at the validation of the LHC systems started in February 1995. During this programme the string has been powered 100 times 35 of which at 12.4 kA or above. The experiments have yielded a number of results some of which, like quench recovery for cryogenics, have modified the design of subsystems of LHC. Others, like controlled helium leaks in the cold bore and quench propagation bewteen magnets, have given a better understanding on the evolution of the phenomena inside a string of superconducting magnets cooled at superfluid helium temperatures. Following the experimental programme, the string will be powered up and powered down in one hour cycles as a fatigue test of the structure thus simulating 20 years of operation of LHC.

  8. String Gas Cosmology

    OpenAIRE

    Brandenberger, Robert H.

    2008-01-01

    String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the curren...

  9. Closed string field theory

    International Nuclear Information System (INIS)

    Strominger, A.

    1987-01-01

    A gauge invariant cubic action describing bosonic closed string field theory is constructed. The gauge symmetries include local spacetime diffeomorphisms. The conventional closed string spectrum and trilinear couplings are reproduced after spontaneous symmetry breaking. The action S is constructed from the usual ''open string'' field of ghost number minus one half. It is given by the associator of the string field product which is non-vanishing because of associativity anomalies. S does not describe open string propagation because open string states associate and can thereby be shifted away. A field theory of closed and open strings can be obtained by adding to S the cubic open string action. (orig.)

  10. Plucked Strings and the Harpsichord

    Science.gov (United States)

    GIORDANO, N.; WINANS, J. P.

    1999-07-01

    The excitation of a harpsichord string when it is set into motion, i.e., plucked, by a plectrum is studied. We find that the amplitude of the resulting string vibration is approximately independent of the velocity with which the key is depressed. This result is in accord with conventional wisdom, but at odds with a recent theoretical model. A more realistic theoretical treatment of the plucking process is then described, and shown to be consistent with our measurements. The experiments reveal several other interesting aspects of the plectrum-string interaction.

  11. Modeling and comparison of superconducting linear actuators for highly dynamic motion

    Directory of Open Access Journals (Sweden)

    Bruyn B.J.H. de

    2015-12-01

    Full Text Available This paper presents a numerical modeling method for AC losses in highly dynamic linear actuators with high temperature superconducting (HTS tapes. The AC losses and generated force of two actuators, with different placement of the cryostats, are compared. In these actuators, the main loss component in the superconducting tapes are hysteresis losses, which result from both the non-sinusoidal phase currents and movement of the permanent magnets. The modeling method, based on the H-formulation of the magnetic fields, takes into account permanent magnetization and movement of permanent magnets. Calculated losses as function of the peak phase current of both superconducting actuators are compared to those of an equivalent non-cryogenic actuator.

  12. A novel string field theory solving string theory by liberating left and right movers

    International Nuclear Information System (INIS)

    Nielsen, Holger B.; Ninomiya, Masao

    2014-01-01

    We put forward ideas to a novel string field theory based on making some “objects” that essentially describe “liberated” left- and right- mover fields X L μ (τ+σ) and X R μ (τ−σ) on the string. Our novel string field theory is completely definitely different from any other string theory in as far as a “null set” of information in the string field theory Fock space has been removed relatively, to the usual string field theories. So our theory is definitely new. The main progress is that we manage to make our novel string field theory provide the correct mass square spectrum for the string. We finally suggest how to obtain the Veneziano amplitude in our model

  13. The modelling and measurement of super-conducting rock joints

    International Nuclear Information System (INIS)

    Barton, N.; Makurat, A.; Vik, G.; Loset, F.

    1985-01-01

    Rock joints exhibiting exceptionally high conductivity have been responsible for severe inflows (10-50 m 3 /min.) and flooding in recent Norwegian tunneling projects. These events may be explained by channeling of flow in partially outwashed mineral fillings, associated with deep weathering in ancient basement rocks. There is also evidence to suggest extensional strain with consistent relationships to regional faulting patterns (Selmer-Olsen 1981). Hydraulic fractures making connection with joint systems that are sheared as a result of increased fluid pressure, has been deduced as the mechanism explaining unusually large fluid losses in the geothermal project in Cornwall, England (Pine and Batchelor, 1984). Such mechanisms also introduce uncertainty into water flood and MHF stimulation treatment of fractured oil and gas reservoirs, particularly when principal stress and joint orientations are poorly understood due to coring and stress measurement problems in weak, overstressed reservoir rocks. The possibility of permanent disposal of nuclear waste in crystalline rock, has also focussed attention on highly conductive (''super-conducting'') joints in nuclear waste programmes in Canada, the USA and in Europe. The bi-modal distributions of joint spacing, continuity, apertures and conductivities resulting from the discovery of super-conducting joints has important implications for the location of planned repositories, due to their dramatic impact on potential transport times. In the laboratory a class of super-conducting joints can be created by shear displacement that causes dilation when shearing non-planar features. Recent biaxial shear testing of rock joints recovered in jointed core has identified a strong coupling of conductivity and shear displacement. The theoretical predictions of constitutive relationships for coupled flow in rock joints (Barton et al. 1985) have been broadly verified

  14. Basic features of proton-proton interactions at ultra-relativistic energies and RFT-based quark-gluon string model

    Directory of Open Access Journals (Sweden)

    Zabrodin E.

    2017-01-01

    Full Text Available Proton-proton collisions at energies from √s = 200 GeV up to √s = 14 TeV are studied within the microscopic quark-gluon string model. The model is based on Gribov’s Reggeon Field Theory accomplished by string phenomenology. Comparison with experimental data shows that QGSM describes well particle yields, rapidity - and transverse momentum spectra, rise of mean 〈 pT 〉 and forward-backward multiplicity correlations. The latter arise in QGSM because of the addition of various processes with different mean multiplicities. The model also indicates fulfillment of extended longitudinal scaling and violation of Koba-Nielsen-Olesen scaling at LHC. The origin of both features is traced to short-range particle correlations in the strings. Predictions are made for √s = 14 TeV.

  15. SNS Superconducting RF cavity modeling-iterative learning control

    International Nuclear Information System (INIS)

    Kwon, S.-I.; Regan, Amy; Wang, Y.-M.

    2002-01-01

    The Spallation Neutron Source (SNS) Superconducting RF (SRF) linear accelerator is operated with a pulsed beam. For the SRF control system to track the repetitive electromagnetic field reference trajectory, both feedback and feedforward controllers have been proposed. The feedback controller is utilized to guarantee the closed loop system stability and the feedforward controller is used to improve the tracking performance for the repetitive reference trajectory and to suppress repetitive disturbances. As the iteration number increases, the feedforward controller decreases the tracking error. Numerical simulations demonstrate that inclusion of the feedforward controller significantly improves the control system performance over its performance with just the feedback controller

  16. SNS Superconducting RF cavity modeling-iterative learning control

    CERN Document Server

    Kwon, S I; Wang, Y M

    2002-01-01

    The Spallation Neutron Source (SNS) Superconducting RF (SRF) linear accelerator is operated with a pulsed beam. For the SRF control system to track the repetitive electromagnetic field reference trajectory, both feedback and feedforward controllers have been proposed. The feedback controller is utilized to guarantee the closed loop system stability and the feedforward controller is used to improve the tracking performance for the repetitive reference trajectory and to suppress repetitive disturbances. As the iteration number increases, the feedforward controller decreases the tracking error. Numerical simulations demonstrate that inclusion of the feedforward controller significantly improves the control system performance over its performance with just the feedback controller.

  17. Complex networks generated by the Penna bit-string model: Emergence of small-world and assortative mixing

    Science.gov (United States)

    Li, Chunguang; Maini, Philip K.

    2005-10-01

    The Penna bit-string model successfully encompasses many phenomena of population evolution, including inheritance, mutation, evolution, and aging. If we consider social interactions among individuals in the Penna model, the population will form a complex network. In this paper, we first modify the Verhulst factor to control only the birth rate, and introduce activity-based preferential reproduction of offspring in the Penna model. The social interactions among individuals are generated by both inheritance and activity-based preferential increase. Then we study the properties of the complex network generated by the modified Penna model. We find that the resulting complex network has a small-world effect and the assortative mixing property.

  18. Boson-fermion mass splittings in four-dimensional heterotic string models with anomalous U(1) gauge groups

    International Nuclear Information System (INIS)

    Yamaguchi, Masahiro; Yamamoto, Hisashi; Onogi, Tetsuya

    1989-01-01

    In four-dimensional heterotic string models with anomalous U(1) gauge groups, space-time supersymmetry (SUSY) breaks down spontaneously at one loop. In this paper, the Ward-Takahashi identity of broken SUSY in one-loop two-point amplitudes is investigated in all generalities. The boson-fermion mass splitting of any supersymmetric pair in an arbitrary model is proportional to the product of the D-term expectation value (the sum of (chirality)x(U(1) charge) of massless fermions in the model) and the U(1) charge of the external particle. In order to give a better understanding of the results, we present some examples of the mass splittings in a simple Z 3 orbifold model. (orig.)

  19. String Formation Beyond Leading Colour

    CERN Document Server

    Christiansen, Jesper R.

    2015-08-03

    We present a new model for the hadronisation of multi-parton systems, in which colour correlations beyond leading $N_C$ are allowed to influence the formation of confining potentials (strings). The multiplet structure of $SU(3)$ is combined with a minimisation of the string potential energy, to decide between which partons strings should form, allowing also for "baryonic" configurations (e.g., two colours can combine coherently to form an anticolour). In $e^+e^-$collisions, modifications to the leading-colour picture are small, suppressed by both colour and kinematics factors. But in $pp$ collisions, multi-parton interactions increase the number of possible subleading connections, counteracting their naive $1/N_C^2$ suppression. Moreover, those that reduce the overall string lengths are kinematically favoured. The model, which we have implemented in the PYTHIA 8 generator, is capable of reaching agreement not only with the important $\\left(n_\\mathrm{charged})$ distribution but also with measured rates (and ra...

  20. Single spin asymmetry in inclusive pion production, Collins effect and the string model

    International Nuclear Information System (INIS)

    Artru, X.; Czyzewski, J.; Yabuki, H.

    1994-05-01

    We calculate the single spin asymmetry in the inclusive pion production in proton-proton collisions. We generate the asymmetry at the level of fragmentation function (Collins effect) by the Lund coloured string mechanism. We compare our results with the Fermilab E704 data from p ↑p collisions at 200 GeV. We show that the transversely polarized quark densities at high Bjorken x strongly differ from these predicted by the SU(6) proton wave function. (authors). 18 refs., 7 figs

  1. A double-superconducting axial bearing system for an energy storage flywheel model

    Science.gov (United States)

    Deng, Z.; Lin, Q.; Ma, G.; Zheng, J.; Zhang, Y.; Wang, S.; Wang, J.

    2008-02-01

    The bulk high temperature superconductors (HTSCs) with unique flux-pinning property have been applied to fabricate two superconducting axial bearings for an energy storage flywheel model. The two superconducting axial bearings are respectively fixed at two ends of the vertical rotational shaft, whose stator is composed of seven melt-textured YBa2Cu3O7-x (YBCO) bulks with diameter of 30 mm, height of 18 mm and rotor is made of three cylindrical axial-magnetized NdFeB permanent magnets (PM) by superposition with diameter of 63 mm, height of 27 mm. The experimental results show the total levitation and lateral force produced by the two superconducting bearings are enough to levitate and stabilize the 2.4 kg rotational shaft. When the two YBCO stators were both field cooled to the liquid nitrogen temperature at respective axial distances above or below the PM rotor, the shaft could be automatically levitated between the two stators without any contact. In the case of a driving motor, it can be stably rotated along the central axis besides the resonance frequency. This double-superconducting axial bearing system can be used to demonstrate the flux-pinning property of bulk HTSC for stable levitation and suspension and the principle of superconducting flywheel energy storage system to visitors.

  2. String cosmology. Large-field inflation in string theory

    International Nuclear Information System (INIS)

    Westphal, Alexander

    2014-09-01

    This is a short review of string cosmology. We wish to connect string-scale physics as closely as possible to observables accessible to current or near-future experiments. Our possible best hope to do so is a description of inflation in string theory. The energy scale of inflation can be as high as that of Grand Unification (GUT). If this is the case, this is the closest we can possibly get in energy scales to string-scale physics. Hence, GUT-scale inflation may be our best candidate phenomenon to preserve traces of string-scale dynamics. Our chance to look for such traces is the primordial gravitational wave, or tensor mode signal produced during inflation. For GUT-scale inflation this is strong enough to be potentially visible as a B-mode polarization of the cosmic microwave background (CMB). Moreover, a GUT-scale inflation model has a trans-Planckian excursion of the inflaton scalar field during the observable amount of inflation. Such large-field models of inflation have a clear need for symmetry protection against quantum corrections. This makes them ideal candidates for a description in a candidate fundamental theory like string theory. At the same time the need of large-field inflation models for UV completion makes them particularly susceptible to preserve imprints of their string-scale dynamics in the inflationary observables, the spectral index n s and the fractional tensor mode power r. Hence, we focus this review on axion monodromy inflation as a mechanism of large-field inflation in string theory.

  3. Phase separation of superconducting phases in the Penson–Kolb–Hubbard model

    International Nuclear Information System (INIS)

    Kapcia, Konrad Jerzy; Czart, Wojciech Robert; Ptok, Andrzej

    2016-01-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson–Kolb–Hubbard model for two dimensional square lattice within Hartree–Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed. (author)

  4. Phase Separation of Superconducting Phases in the Penson-Kolb-Hubbard Model

    Science.gov (United States)

    Jerzy Kapcia, Konrad; Czart, Wojciech Robert; Ptok, Andrzej

    2016-04-01

    In this paper, we determine the phase diagrams (for T = 0 as well as T > 0) of the Penson-Kolb-Hubbard model for two dimensional square lattice within Hartree-Fock mean-field theory focusing on an investigation of superconducting phases and on a possibility of the occurrence of the phase separation. We obtain that the phase separation, which is a state of coexistence of two different superconducting phases (with s- and η-wave symmetries), occurs in definite ranges of the electron concentration. In addition, increasing temperature can change the symmetry of the superconducting order parameter (from η-wave into s-wave). The system considered exhibits also an interesting multicritical behaviour including bicritical points. The relevance of the results to experiments for real materials is also discussed.

  5. Correlation mediated superconductivity in a Spin Peierls Phase of the Hubbard Model

    International Nuclear Information System (INIS)

    Long, M.W.

    1987-08-01

    The author explores the consequences of a mapping of the Hubbard Hamiltonian with a view to finding possible superconducting phases. The transformation pairs up all the sites and is therefore a much more natural starting point for describing a 'Spin Peierls' transition, generating enhanced singlet correlations for this pairing, than it is for describing the 'Resonating Valence Bond' state. It is shown that in the less than half filling case, an effective non-linear hopping Hamiltonian is quite useful in describing half of the electrons. This effective Hamiltonian can show a form of superconducting instability when nearest neighbour hopping is introduced to stabilise it. This superconducting phase seems to be a very unlikely possibility for the standard Hubbard model. (author)

  6. Two-stage dissipation in a superconducting microbridge: experiment and modeling

    International Nuclear Information System (INIS)

    Del Rio, L; Altshuler, E; Niratisairak, S; Haugen, Oe; Johansen, T H; Davidson, B A; Testa, G; Sarnelli, E

    2010-01-01

    Using fluorescent microthermal imaging we have investigated the origin of 'two-step' behavior in I-V curves for a current-carrying YBa 2 Cu 3 O x superconducting bridge. High resolution temperature maps reveal that as the applied current increases the first step in the voltage corresponds to local dissipation (hot spot), whereas the second step is associated with the onset of global dissipation throughout the entire bridge. A quantitative explanation of the experimental results is provided by a simple model for an inhomogeneous superconductor, assuming that the hot spot nucleates at a location with slightly depressed superconducting properties.

  7. On the relationship between string low-energy effective actions and O(α'3) σ-model β-functions

    International Nuclear Information System (INIS)

    Jack, I.; Ross, D.A.; Jones, D.R.T.

    1988-01-01

    We examine in detail the connection between low-energy string effective actions and the σ-model β-functions up to O(α' 3 ) in the torsion-free case. In particular we show that the relationship between, on the one hand, the equations of motion derived from the O(α' 3 ) string effective action, and, on the other hand, the O(α' 3 ) σ-model β-functions necessarily involves derivative operators acting on the β-functions. (orig.)

  8. Two-Polarisation Physical Model of Bowed Strings with Nonlinear Contact and Friction Forces, and Application to Gesture-Based Sound Synthesis

    Directory of Open Access Journals (Sweden)

    Charlotte Desvages

    2016-05-01

    Full Text Available Recent bowed string sound synthesis has relied on physical modelling techniques; the achievable realism and flexibility of gestural control are appealing, and the heavier computational cost becomes less significant as technology improves. A bowed string sound synthesis algorithm is designed, by simulating two-polarisation string motion, discretising the partial differential equations governing the string’s behaviour with the finite difference method. A globally energy balanced scheme is used, as a guarantee of numerical stability under highly nonlinear conditions. In one polarisation, a nonlinear contact model is used for the normal forces exerted by the dynamic bow hair, left hand fingers, and fingerboard. In the other polarisation, a force-velocity friction curve is used for the resulting tangential forces. The scheme update requires the solution of two nonlinear vector equations. The dynamic input parameters allow for simulating a wide range of gestures; some typical bow and left hand gestures are presented, along with synthetic sound and video demonstrations.

  9. Computational model for superconducting toroidal-field magnets for a tokamak reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Abdou, M.A.

    1978-01-01

    A computational model for predicting the performance characteristics and cost of superconducting toroidal-field (TF) magnets in tokamak reactors is presented. The model can be used to compare the technical and economic merits of different approaches to the design of TF magnets for a reactor system. The model has been integrated into the ANL Systems Analysis Program. Samples of results obtainable with the model are presented

  10. Strings draw theorists together

    Energy Technology Data Exchange (ETDEWEB)

    Green, Michael [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge (United Kingdom)

    2000-03-01

    string theorists over the past decade. Much has been learned about the non-perturbative extension of string theory now known as ''M theory'' and this has shed light on many previously mysterious aspects of quantum field theory. The range of new and potentially important developments is indeed impressive. One example is the accumulation of results on the role of ''noncommutative geometry'' in string theory. Another major theme of the meeting was the new ideas on how string theory may describe observed physics, such as the forces and particles in nature and their properties. The recent work by Lisa Randall of Princeton University and Raman Sundrum of Boston University is a variant of the ''brane world'' idea that has come to the fore over the past couple of years. According to this idea, which was reviewed by Randall at the conference, our four-dimensional universe can be thought of as a membrane (known as a three-brane) that is embedded inside a higher-dimensional universe. The number of higher dimensions is predicted by the structure of string theory. The possible consequences of this are striking. For example, in such a universe the fundamental energy scale of the theory may be much smaller than the Planck energy of 10{sup 19} GeV. Indeed, the scale could be so small that it will be accessible to direct experimental observation using the next generation of accelerators, such as the Large Hadron Collider that is currently under construction at CERN. This theme was further developed by Steven Hawking, who conjectured on how such a universe might have evolved from the initial quantum state that preceded the big bang. One of the most exciting developments over the past few years has been in understanding how so-called Yang-Mills gauge theories - the bread and butter of the Standard Model of particle physics - are related to quantum gravity by string theory. Particularly important is the so-called &apos

  11. The T-J model and superconductivity | Umo | Global Journal of Pure ...

    African Journals Online (AJOL)

    The t-J model written in terms of Hubbard operators is studied with a view to contributing to the search for the mechanism of high temperature superconductivity in the cuprates. The method of irreducible Green function is used to obtain the spectrum of quasiparticles excitation and d-wave pairing gap function.

  12. Towards an observational appraisal of string cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Mulryne, David J [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS (United Kingdom); Ward, John, E-mail: d.mulryne@qmul.ac.uk, E-mail: jwa@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada)

    2011-10-21

    We review the current observational status of string cosmology when confronted with experimental datasets. We begin by defining common observational parameters and discuss how they are determined for a given model. Then we review the observable footprints of several string theoretic models, discussing the significance of various potential signals. Throughout we comment on present and future prospects of finding evidence for string theory in cosmology and on significant issues for the future.

  13. Towards an observational appraisal of string cosmology

    International Nuclear Information System (INIS)

    Mulryne, David J; Ward, John

    2011-01-01

    We review the current observational status of string cosmology when confronted with experimental datasets. We begin by defining common observational parameters and discuss how they are determined for a given model. Then we review the observable footprints of several string theoretic models, discussing the significance of various potential signals. Throughout we comment on present and future prospects of finding evidence for string theory in cosmology and on significant issues for the future.

  14. Cosmic global strings

    International Nuclear Information System (INIS)

    Sikivie, P.

    1991-01-01

    The topics are: global strings; the gravitational field of a straight global string; how do global strings behave?; the axion cosmological energy density; computer simulations of the motion and decay of global strings; electromagnetic radiation from the conversion of Nambu-Goldstone bosons in astrophysical magnetic fields. (orig.)

  15. Stringing physics along

    Energy Technology Data Exchange (ETDEWEB)

    Riordan, M. [Stanford University and the University of California, Santa Cruz (United States)]. E-mail: mriordan@ucsc.edu

    2007-02-15

    In the last few decades, however, physical theory has drifted away from the professional norms advocated by Newton and other enlightenment philosophers. A vast outpouring of hypotheses has occurred under the umbrella of what is widely called string theory. But string theory is not really a 'theory' at all - at least not in the strict sense that scientists generally use the term. It is instead a dense, weedy thicket of hypotheses and conjectures badly in need of pruning. That pruning, however, can come only from observation and experiment, to which string theory (a phrase I will grudgingly continue using) is largely inaccessible. String theory was invented in the 1970s in the wake of the Standard Model of particle physics. Encouraged by the success of gauge theories of the strong, weak and electromagnetic forces, theorists tried to extend similar ideas to energy and distance scales that are orders of magnitude beyond what can be readily observed or measured. The normal, healthy intercourse between theory and experiment - which had led to the Standard Model - has broken down, and fundamental physics now finds itself in a state of crisis. So it is refreshing to hear from a theorist - one who was deeply involved with string theory and championed it in his previous book, Three Roads to Quantum Gravity - that all is not well in this closeted realm. Smolin argues from the outset that viable hypotheses must lead to observable consequences by which they can be tested and judged. String theory by its very nature does not allow for such probing, according to Smolin, and therefore it must be considered as an unprovable conjecture. Towards the end of his book, Smolin suggests other directions fundamental physics can take, particularly in the realm of quantum gravity, to resolve its crisis and reconnect with the observable world. From my perspective, he leans a bit too heavily towards highly speculative ideas such as doubly special relativity, modified Newtonian

  16. String theory and quantum gravity '92

    International Nuclear Information System (INIS)

    Harvey, J.; Iengo, R.; Narain, K.S.; Randjbar Daemi, S.; Verlinde, H.

    1993-01-01

    These proceedings of the 1992 Trieste Spring School and Workshop on String Theory and Quantum Gravity contains introductions and overviews of recent work on the use of two-dimensional string inspired models in the study of black holes, a lecture on gravitational scattering at planckian energies, another on the physical properties of higher-dimensional black holes and black strings in string theory, a discussion on N=2 superconformal field theories, a lecture about the application of matrix model techniques to the study of string theory in two dimensions, and an overview of the current status and developments in string field theory. Connections with models in statistical mechanics are also discussed. These proceedings contain seven lectures and ten contributions. Refs and figs

  17. String moduli inflation. An overview

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quevedo, Fernando [Cambridge Univ. (United Kingdom). DAMTP/CMS; Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)

    2011-06-15

    We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the {eta}-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)

  18. String moduli inflation. An overview

    International Nuclear Information System (INIS)

    Cicoli, Michele; Quevedo, Fernando

    2011-06-01

    We present an overview of inflationary models derived from string theory focusing mostly on closed string moduli as inflatons. After a detailed discussion of the η-problem and different approaches to address it, we describe possible ways to obtain a de Sitter vacuum with all closed string moduli stabilised. We then look for inflationary directions and present some of the most promising scenarios where the inflatons are either the real or the imaginary part of Kaehler moduli. We pay particular attention on extracting potential observable implications, showing how most of the scenarios predict negligible gravitational waves and could therefore be ruled out by the Planck satellite. We conclude by briefly mentioning some open challenges in string cosmology beyond deriving just inflation. (orig.)

  19. Coupling of open to closed bosonic strings in four dimensions

    International Nuclear Information System (INIS)

    Bern, Z.; Dunbar, D.C.

    1987-11-01

    We study the construction of D < 26 open bosonic string theories using the fermionic formulation for the internal degrees of freedom. The various models are specified by the boundary conditions of the world sheet fermions on the annulus. Using the fact that open string loops can be transformed into closed string exchanges, we determine possible open string models which may be coupled to known D < 26 closed string models. Finally, as a verification of consistency, we examine particular open string non-planar amplitudes. (orig.)

  20. A model for Intelligent Random Access Memory architecture (IRAM) cellular automata algorithms on the Associative String Processing machine (ASTRA)

    CERN Document Server

    Rohrbach, F; Vesztergombi, G

    1997-01-01

    In the near future, the computer performance will be completely determined by how long it takes to access memory. There are bottle-necks in memory latency and memory-to processor interface bandwidth. The IRAM initiative could be the answer by putting Processor-In-Memory (PIM). Starting from the massively parallel processing concept, one reached a similar conclusion. The MPPC (Massively Parallel Processing Collaboration) project and the 8K processor ASTRA machine (Associative String Test bench for Research \\& Applications) developed at CERN \\cite{kuala} can be regarded as a forerunner of the IRAM concept. The computing power of the ASTRA machine, regarded as an IRAM with 64 one-bit processors on a 64$\\times$64 bit-matrix memory chip machine, has been demonstrated by running statistical physics algorithms: one-dimensional stochastic cellular automata, as a simple model for dynamical phase transitions. As a relevant result for physics, the damage spreading of this model has been investigated.

  1. String driven inflation

    International Nuclear Information System (INIS)

    Turok, N.

    1987-11-01

    It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation. 17 refs., 1 fig

  2. Hot String Soup

    OpenAIRE

    Lowe, D. A.; Thorlacius, L.

    1994-01-01

    Above the Hagedorn energy density closed fundamental strings form a long string phase. The dynamics of weakly interacting long strings is described by a simple Boltzmann equation which can be solved explicitly for equilibrium distributions. The average total number of long strings grows logarithmically with total energy in the microcanonical ensemble. This is consistent with calculations of the free single string density of states provided the thermodynamic limit is carefully defined. If the ...

  3. String-driven inflation

    International Nuclear Information System (INIS)

    Turok, N.

    1988-01-01

    It is argued that, in fundamental string theories, as one traces the universe back in time a point is reached when the expansion rate is so fast that the rate of string creation due to quantum effects balances the dilution of the string density due to the expansion. One is therefore led into a phase of constant string density and an exponentially expanding universe. Fundamental strings therefore seem to lead naturally to inflation

  4. Open spinning strings

    International Nuclear Information System (INIS)

    Stefanski, B. Jr.

    2004-01-01

    We find classical open string solutions in the AdS 5 x S 5 /Z 2 orientifold with angular momenta along the five-sphere. The energy of these solutions has an expansion in integral powers of λ with sigma-model corrections suppressed by inverse powers of J - the total angular momentum. This gives a prediction for the exact anomalous dimensions of operators in the large N limit of an N = 2 Sp, Super-Yang-Mills theory with matter. We also find a simple map between open and closed string solutions. This gives a prediction for an all-loop planar relationship between the anomalous dimensions of single-trace and two-quark operators in the dual gauge theory. (author)

  5. Fractional bosonic strings

    Science.gov (United States)

    Diaz, Victor Alfonzo; Giusti, Andrea

    2018-03-01

    The aim of this paper is to present a simple generalization of bosonic string theory in the framework of the theory of fractional variational problems. Specifically, we present a fractional extension of the Polyakov action, for which we compute the general form of the equations of motion and discuss the connection between the new fractional action and a generalization the Nambu-Goto action. Consequently, we analyze the symmetries of the modified Polyakov action and try to fix the gauge, following the classical procedures. Then we solve the equations of motion in a simplified setting. Finally, we present a Hamiltonian description of the classical fractional bosonic string and introduce the fractional light-cone gauge. It is important to remark that, throughout the whole paper, we thoroughly discuss how to recover the known results as an "integer" limit of the presented model.

  6. Dynamics of chaotic strings

    International Nuclear Information System (INIS)

    Schaefer, Mirko

    2011-01-01

    The main topic of this thesis is the investigation of dynamical properties of coupled Tchebycheff map networks. The results give insights into the chaotic string model and its network generalization from a dynamical point of view. As a first approach, discrete symmetry transformations of the model are studied. These transformations are formulated in a general way in order to be also applicable to similar dynamics on bipartite network structures. The dynamics is studied numerically via Lyapunov measures, spatial correlations, and ergodic properties. It is shown that the zeros of the interaction energy are distinguished only with respect to this specific observable, but not by a more general dynamical principle. The original chaotic string model is defined on a one-dimensional lattice (ring-network) as the underlying network topology. This thesis studies a modification of the model based on the introduction of tunable disorder. The effects of inhomogeneous coupling weights as well as small-world perturbations of the ring-network structure on the interaction energy are discussed. Synchronization properties of the chaotic string model and its network generalization are studied in later chapters of this thesis. The analysis is based on the master stability formalism, which relates the stability of the synchronized state to the spectral properties of the network. Apart from complete synchronization, where the dynamics at all nodes of the network coincide, also two-cluster synchronization on bipartite networks is studied. For both types of synchronization it is shown that depending on the type of coupling the synchronized dynamics can display chaotic as well as periodic or quasi-periodic behaviour. The semi-analytical calculations reveal that the respective synchronized states are often stable for a wide range of coupling values even for the ring-network, although the respective basins of attraction may inhabit only a small fraction of the phase space. To provide

  7. Thermodynamical string fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Nadine [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden); School of Physics and Astronomy, Monash University,Wellington Road, Clayton, VIC-3800 (Australia); Sjöstrand, Torbjörn [Theoretical Particle Physics, Department of Astronomy and Theoretical Physics, Lund University,Sölvegatan 14A, Lund, SE-223 62 (Sweden)

    2017-01-31

    The observation of heavy-ion-like behaviour in pp collisions at the LHC suggests that more physics mechanisms are at play than traditionally assumed. The introduction e.g. of quark-gluon plasma or colour rope formation can describe several of the observations, but as of yet there is no established paradigm. In this article we study a few possible modifications to the Pythia event generator, which describes a wealth of data but fails for a number of recent observations. Firstly, we present a new model for generating the transverse momentum of hadrons during the string fragmentation process, inspired by thermodynamics, where heavier hadrons naturally are suppressed in rate but obtain a higher average transverse momentum. Secondly, close-packing of strings is taken into account by making the temperature or string tension environment-dependent. Thirdly, a simple model for hadron rescattering is added. The effect of these modifications is studied, individually and taken together, and compared with data mainly from the LHC. While some improvements can be noted, it turns out to be nontrivial to obtain effects as big as required, and further work is called for.

  8. Building GUTs from strings

    International Nuclear Information System (INIS)

    Aldazabal, G.; Ibanez, L.E.; Uranga, A.M.

    1996-01-01

    We study in detail the structure of Grand Unified Theories derived as the low-energy limit of orbifold four-dimensional strings. To this aim, new techniques for building level-two symmetric orbifold theories are presented. New classes of GUTs in the context of symmetric orbifolds are then constructed. The method of permutation modding is further explored and SO(10) GUTs with both 45- or 54-plets are obtained. SU(5) models are also found through this method. It is shown that, in the context of symmetric orbifold SO(10) GUTs, only a single GUT Higgs, either a 54 or a 45, can be present and it always resides in an order-two untwisted sector. Very restrictive results also hold in the case of SU(5). General properties and selection rules for string GUTs are described. Some of these selection rules forbid the presence of some particular GUT-Higgs couplings which are sometimes used in SUSY-GUT model building. Some semi-realistic string GUT examples are presented and their properties briefly discussed. (orig.)

  9. A Model of Triadic Post-Tonality for a Neoconservative Postmodern String Quartet by Sky Macklay

    Directory of Open Access Journals (Sweden)

    Zane Gillespie

    2017-09-01

    Full Text Available This article proposes a non-plural perspective on the analysis of triadic music, offering Sky Macklay’s Many Many Cadences as a case study. Part one is a discussion of the work’s harmony-voice leading nexus, followed by a discussion of the five conditions of correspondence as implied by this string quartet that articulate a single tonal identity. Part three focuses on a strictly kinematic analysis of the work’s harmonic progressions that evinces this identity and establishes its general applicability. In the final section, the data generated by this analysis conveys the inherent possibility of a single, all-encompassing kinematic, thereby pointing beyond the particularities of Many Many Cadences while informing my formal interpretation of the work.

  10. A global string with an event horizon

    International Nuclear Information System (INIS)

    Harari, D.; Polychronakos, A.P.

    1990-01-01

    An idealized infinite straight global string in flat space-time has a logarithmically divergent energy per unit length. With gravity included, the standard field theoretical model for a straight global string has been shown to give rise to a repulsive gravitational field, and to develop a curvature singularity at a finite proper distance off the string core. Here we point out that alternative (although probably unrealistic) equations of state for the core of the global string produce a non-singular cylindrically symmetric metric with an event horizon at a finite proper distance off the core, such that timelike observers beyond the horizon are bound to move away from the string. The same geometric structure applies to the standard field theoretical model for a vortex in (2+1)-dimensional gravity. Thermal effects in a quantum field theory around the string due to the presence of the horizon are also calculated. (orig.)

  11. String theory on the edge

    International Nuclear Information System (INIS)

    Thorlacius, L.

    1989-01-01

    Open string vacuum configurations are described in terms of a one-dimensional field theory on the worldsheet boundary. The one-dimensional path integral has direct physical interpretation as a source term for closed string fields. This means that the vacuum divergences (Mobius infinities) of the path integral must be renormalized correctly. The author shows that reparametrization invariance Ward identities, apart from specifying the equations of motion of spacetime background gauge fields, also serve to fix the renormalization scheme of the vacuum divergences. He argues that vacuum configurations of open strings correspond to Caldeira-Leggett models of dissipative quantum mechanics (DQM) evaluated at a delocalization critical point. This connection reveals that critical DQM will manifest reparametrization invariance (inherited from the conformal invariance of string theory) rather than just scale invariance. This connection should open up new ways of constructing analytic and approximate solutions of open string theory (in particular, topological solitons such as monopoles and instantons). Type I superstring theory gives rise to a supersymmetric boundary field theory. Bose-Fermi cancellation eliminates vacuum divergences but the one-loop beta function remains the same as in the bosonic theory. Reparametrization invariance Ward identities dictate a boundary state normalization which yields consistent string-loop corrections to spacetime equations of motion, in both the periodic and anti-periodic fermion sectors

  12. Gauge models of planar high-temperature superconductivity without parity violation

    International Nuclear Information System (INIS)

    Mavromatos, N.E.; Grenoble-1 Univ., 74 - Annecy

    1993-02-01

    A status report is given of a parity-invariant model of two-dimensional superconductivity. The model consists of two-species of fermions coupled with opposite sign to an Abelian gauge field and is closely related to QED 3 . The dynamical generation of a parity-conserving fermion mass and the finite temperature symmetry restoration transition is studied, and it is shown, how the parity-invariant model arises as an effective long-wavelength theory of the dynamics of holes in a two-dimensional quantum antiferromagnetic system on a bi-partite lattice. The model exhibits type-II superconductivity without parity or time-reversal symmetry violation, a high value of 2 Δ /k B T c , flux quantization with quantum hc/2e and a two-dimensional Meissner effect. (author) 82 refs.; 15 figs.; 4 tabs

  13. The heterotic string

    International Nuclear Information System (INIS)

    Gross, D.J.

    1986-01-01

    Traditional string theories, either bosonic or supersymmetric, came in two varieties, closed string theories and open string theories. Closed string are neutral objects which describe at low energies gravity or supergravity. Open strings have geometrically invariant ends to which charge can be attached, thereby obtaining, in addition to gravity, Yang-Mills gauge interactions. Recently a new kind of string theory was discovered--the heterotic string, which is a chiral hybrid of the closed superstring and the closed bosonic string, and which produces by an internal dynamical mechanism gauge interactions of a totally specified kind. Although this theory is found in an attempt to produce a superstring theory which would yield a low energy E/sub 8/xE/sub 8/ supersymmetric, anomaly free, gauge theory, as suggested by the anomaly cancellation mechanism of Green and Schwarz, it fits naturally into the general framework of consistent string theories

  14. An inequality relating gauge group coupling constants and the number of generations in a string inspired model

    International Nuclear Information System (INIS)

    Nielsen, H.B.; Bennett, D.L.

    1987-12-01

    Using a model with a regularized (e.g. latticized) Kaluza-Klein space-time at the fundamental scale with Yang-Mills fields in the compactified dimensions, we examine the β-function for a dimensionless expression for the coupling constants g in D-dimensions. In going from the Planck scale of D > 4 down in energy to the scale where D goes from D > 4 to D = 4, it is argued that couplings are weakened by a factor roughly equal to the number of fundamental string regions that can be accommadated in the volume of the compactification space. Subsequently this factor is claimed to be greater than the number of generations by using an argument reminiscent of that often encountered in string model T.O.E. in which various quark and lepton generations are said to correspond to various zero modes of a Weyl operator in the compactifying space. Finally, it is argued that the inequality, which can be shown to be more saturated the larger the gauge group, is already near saturation for the group factors of the SMG. This fact leads to several conclusions: 1. there is not room for many more than 3 generations; 2. G.U.T. can be accommadated only at scales very close to the fundamental scale; 3. No new blossoms are expected to be found in the desert; 4. the compactifying space should not be 'larger than necessary'; 5. at the fundamental scale, couplings are expected to be close to (but not suspiciousely close to) β crit. . (orig./HSI)

  15. Model SSC [Superconducting Super Collider] dipole magnet cryostat assembly at Fermilab

    International Nuclear Information System (INIS)

    Niemann, R.C.

    1989-03-01

    The Superconducting Super Collider (SSC) magnet development program includes the design, fabrication and testing of full length model dipole magnets. A result of the program has been the development of a magnet cryostat design. The cryostat subsystems consist of cold mass connection-slide, suspension, thermal shields, insulation, vacuum vessel and interconnections. Design details are presented along with model magnet production experience. 6 refs., 13 figs

  16. On the s-d model for coexistence of ferromagnetism and superconductivity

    International Nuclear Information System (INIS)

    Tonchev, N.S.; Brankov, J.G.

    1979-09-01

    The Vonsovsky - Zener model for a superconductor with regularly positioned magnetic impurities is considered. Two theorems are given which prove the exact solvability of the thermodynamic problem by the approximating hamiltonian method. Exact analytical solutions for the zero-temperature order parameters and the ground state energy of the mixed phase are derived. The comparison of the energies of the different phases confirms the known result that ferromagnetism and superconductivity cannot coexist in the ground state of the model. (author)

  17. 3D multiphysics modeling of superconducting cavities with a massively parallel simulation suite

    Directory of Open Access Journals (Sweden)

    Oleksiy Kononenko

    2017-10-01

    Full Text Available Radiofrequency cavities based on superconducting technology are widely used in particle accelerators for various applications. The cavities usually have high quality factors and hence narrow bandwidths, so the field stability is sensitive to detuning from the Lorentz force and external loads, including vibrations and helium pressure variations. If not properly controlled, the detuning can result in a serious performance degradation of a superconducting accelerator, so an understanding of the underlying detuning mechanisms can be very helpful. Recent advances in the simulation suite ace3p have enabled realistic multiphysics characterization of such complex accelerator systems on supercomputers. In this paper, we present the new capabilities in ace3p for large-scale 3D multiphysics modeling of superconducting cavities, in particular, a parallel eigensolver for determining mechanical resonances, a parallel harmonic response solver to calculate the response of a cavity to external vibrations, and a numerical procedure to decompose mechanical loads, such as from the Lorentz force or piezoactuators, into the corresponding mechanical modes. These capabilities have been used to do an extensive rf-mechanical analysis of dressed TESLA-type superconducting cavities. The simulation results and their implications for the operational stability of the Linac Coherent Light Source-II are discussed.

  18. Minimal string theories and integrable hierarchies

    Science.gov (United States)

    Iyer, Ramakrishnan

    Well-defined, non-perturbative formulations of the physics of string theories in specific minimal or superminimal model backgrounds can be obtained by solving matrix models in the double scaling limit. They provide us with the first examples of completely solvable string theories. Despite being relatively simple compared to higher dimensional critical string theories, they furnish non-perturbative descriptions of interesting physical phenomena such as geometrical transitions between D-branes and fluxes, tachyon condensation and holography. The physics of these theories in the minimal model backgrounds is succinctly encoded in a non-linear differential equation known as the string equation, along with an associated hierarchy of integrable partial differential equations (PDEs). The bosonic string in (2,2m-1) conformal minimal model backgrounds and the type 0A string in (2,4 m) superconformal minimal model backgrounds have the Korteweg-de Vries system, while type 0B in (2,4m) backgrounds has the Zakharov-Shabat system. The integrable PDE hierarchy governs flows between backgrounds with different m. In this thesis, we explore this interesting connection between minimal string theories and integrable hierarchies further. We uncover the remarkable role that an infinite hierarchy of non-linear differential equations plays in organizing and connecting certain minimal string theories non-perturbatively. We are able to embed the type 0A and 0B (A,A) minimal string theories into this single framework. The string theories arise as special limits of a rich system of equations underpinned by an integrable system known as the dispersive water wave hierarchy. We find that there are several other string-like limits of the system, and conjecture that some of them are type IIA and IIB (A,D) minimal string backgrounds. We explain how these and several other string-like special points arise and are connected. In some cases, the framework endows the theories with a non

  19. Cosmic R-string in thermal history

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics; Ohashi, Keisuke [Osaka City Univ. (Japan). Dept. of Mathematics and Physics; Ookouchi, Yutaka [Kyoto Univ. (Japan). Dept. of Physics; Kyoto Univ. (Japan). The Hakubi Center for Advanced Research

    2013-03-15

    We study stabilization of an unstable cosmic string associated with spontaneously broken U(1){sub R} symmetry, which otherwise causes a dangerous roll-over process. We demonstrate that in a gauge mediation model, messengers can receive enough corrections from the thermal plasma of the supersymmetric standard model particles to stabilize the unstable modes of the string.

  20. Application of a phenomenological model for the surface impedance in high temperature superconducting films

    International Nuclear Information System (INIS)

    Mosquera, A.S.; Landinez Tellez, D.A.; Roa-Rojas, J.

    2007-01-01

    We report the application of a phenomenological model for the microwave surface impedance in high temperature superconducting films. This model is based on the modified two-fluid model, in which the real and imaginary parts of the surface impedance use the modelling parameter γ. This is responsible for the superconducting and normal charge carrier density and is used for the description of the temperature dependence of the London penetration depth λ L (T) including λ L (0). The relaxation time model also uses the γ parameter in combination with the residual resistance parameter α. The parameter δ 1 1 , γ, α, and δ 2 . The parameter δ 2 n (T) is a result of the competition between the increase of the relaxation time and the decrease of the normal charge-carrier density. We applied this model to analyze experimental results of MgB 2 , YBa 2 Cu 3 O 7-δ and GdBa 2 Cu 3 O 7-δ superconducting material. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Methods and results of modeling and transmission-line calculations of the superconducting dipole chains of CERN's LHC collider

    CERN Document Server

    Bourgeois, F

    2001-01-01

    Electrical modeling and simulation of the LHC magnet strings are being used to determine the key parameters that are needed for the design of the powering and energy extraction equipment. Poles and zeros of the Laplace expression approximating the Bode plot of the measured coil impedance are used to synthesize an R/L/C model of the magnet. Subsequently, this model is used to simulate the behavior of the LHC main dipole magnet string. Lumped transmission line behavior, impedance, resonance, propagation of the power supply ripple, ramping errors, energy extraction transients and their damping are presented in this paper. (3 refs).

  2. Lumped-Element Dynamic Electro-Thermal model of a superconducting magnet

    Science.gov (United States)

    Ravaioli, E.; Auchmann, B.; Maciejewski, M.; ten Kate, H. H. J.; Verweij, A. P.

    2016-12-01

    Modeling accurately electro-thermal transients occurring in a superconducting magnet is challenging. The behavior of the magnet is the result of complex phenomena occurring in distinct physical domains (electrical, magnetic and thermal) at very different spatial and time scales. Combined multi-domain effects significantly affect the dynamic behavior of the system and are to be taken into account in a coherent and consistent model. A new methodology for developing a Lumped-Element Dynamic Electro-Thermal (LEDET) model of a superconducting magnet is presented. This model includes non-linear dynamic effects such as the dependence of the magnet's differential self-inductance on the presence of inter-filament and inter-strand coupling currents in the conductor. These effects are usually not taken into account because superconducting magnets are primarily operated in stationary conditions. However, they often have significant impact on magnet performance, particularly when the magnet is subject to high ramp rates. Following the LEDET method, the complex interdependence between the electro-magnetic and thermal domains can be modeled with three sub-networks of lumped-elements, reproducing the electrical transient in the main magnet circuit, the thermal transient in the coil cross-section, and the electro-magnetic transient of the inter-filament and inter-strand coupling currents in the superconductor. The same simulation environment can simultaneously model macroscopic electrical transients and phenomena at the level of superconducting strands. The model developed is a very useful tool for reproducing and predicting the performance of conventional quench protection systems based on energy extraction and quench heaters, and of the innovative CLIQ protection system as well.

  3. Joining-Splitting Interaction of Noncritical String

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    The joining-splitting interaction of noncritical bosonic string is analyzed in the light-cone formulation. The Mandelstam method of constructing tree string amplitudes is extended to the bosonic massive string models of the discrete series. The general properties of the Liouville longitudinal excitations which are necessary and sufficient for the Lorentz covariance of the light-cone amplitudes are derived. The results suggest that the covariant and the light-cone approach are equivalent also in the noncritical dimensions. Some aspects of unitarity of interacting noncritical massive string theory are discussed.

  4. Scaling laws for nonintercommuting cosmic string networks

    International Nuclear Information System (INIS)

    Martins, C.J.A.P.

    2004-01-01

    We study the evolution of noninteracting and entangled cosmic string networks in the context of the velocity-dependent one-scale model. Such networks may be formed in several contexts, including brane inflation. We show that the frozen network solution L∝a, although generic, is only a transient one, and that the asymptotic solution is still L∝t as in the case of ordinary (intercommuting) strings, although in the present context the universe will usually be string dominated. Thus the behavior of two strings when they cross does not seem to affect their scaling laws, but only their densities relative to the background

  5. Investigation of Thermal and Vacuum Transients on the LHC Prototype Magnet String

    CERN Document Server

    Cruikshank, P; Riddone, G; Tavian, L

    1996-01-01

    The prototype magnet string, described in a companion paper, is a full-scale working model of a 50-m length of the future Large Hadron Collider (LHC), CERN's new accelerator project, which will use high-field superconducting magnets operating below 2 K in superfluid helium. As such, it provides an excellent test bed for practising standard operating modes of LHC insulation vacuum and cryogenics, as well as for experimentally assessing accidental behaviour and failure modes, and thus verifying design calculations. We present experimental investigation of insulation vacuum pumpdown, magnet forced-flow cooldown and warmup, and evolution of residual vacuum pressures and temperatures in natural warmup, as well as catastrophic loss of insulation vacuum. In all these transient modes, experimental results are compared with simulated behaviour, using a non-linear, one-dimensional thermal model of the magnet string.

  6. A String-Inspired Model for the Low-$\\ell$ CMB

    CERN Document Server

    Kitazawa, N.

    2015-07-09

    We present a semi--analytic exploration of some low--$\\ell$ angular power spectra inspired by "Brane Supersymmetry Breaking". This mechanism splits Bose and Fermi excitations in String Theory, leaving behind an exponential potential that is just too steep for the inflaton to emerge from the initial singularity while descending it. As a result, the scalar generically bounces against the exponential wall, which typically introduces an infrared depression and a pre--inflationary peak in the power spectrum of scalar perturbations. We elaborate on a possible link between this phenomenon and the low--$\\ell$ CMB. For the first 32 multipoles, combining the hard exponential with a milder one leading to $n_s\\simeq 0.96$ and with a small gaussian bump we have attained a reduction of $\\chi^{\\,2}$ to about 46% of the standard $\\Lambda$CDM setting, with both WMAP9 and PLANCK 2013 data. This result corresponds to a $\\chi^{\\,2}/DOF$ of about 0.45, to be compared with a $\\Lambda$CDM value of about 0.85. The preferred choices ...

  7. (MS)SM-like models on smooth Calabi-Yau manifolds from all three heterotic string theories

    International Nuclear Information System (INIS)

    Groot Nibbelink, Stefan

    2015-09-01

    We perform model searches on smooth Calabi-Yau compactifications for both the supersymmetric E 8 x E 8 and SO(32) as well as for the non-supersymmetric SO(16) x SO(16) heterotic strings simultaneously. We consider line bundle backgrounds on both favorable CICYs with relatively small h 11 and the Schoen manifold. Using Gram matrices we systematically analyze the combined consequences of the Bianchi identities and the tree-level Donaldson-Uhlenbeck-Yau equations inside the Kaehler cone. In order to evaluate the model building potential of the three heterotic theories on the various geometries, we perform computer-aided scans. We have generated a large number of GUT-like models (up to over a few hundred thousand on the various geometries for the three heterotic theories) which become (MS)SM-like upon using a freely acting Wilson line. For all three heterotic theories we present tables and figures summarizing the potentially phenomenologically interesting models which were obtained during our model scans.

  8. Relativistic classical strings. II

    International Nuclear Information System (INIS)

    Galvao, C.A.P.

    1985-01-01

    The interactions of strings with electromagnetic and gravitational fields are extensively discussed. Some concepts of differential geometry are reviewed. Strings in Kaluza-Klein manifolds are studied. (L.C.) [pt

  9. Inflationary string theory?

    Indian Academy of Sciences (India)

    strongly motivate a detailed search for inflation within string theory, although it has ... between string theory and observations provides a strong incentive for ..... sonably be expected to arise for any system having very many degrees of freedom.

  10. Model for Predicting DC Flashover Voltage of Pre-Contaminated and Ice-Covered Long Insulator Strings under Low Air Pressure

    Directory of Open Access Journals (Sweden)

    Zhijin Zhang

    2011-04-01

    Full Text Available In the current study, a multi-arc predicting model for DC critical flashover voltage of iced and pre-contaminated long insulator strings under low atmospheric pressure is developed. The model is composed of a series of different polarity surface arcs, icicle-icicle air gap arcs, and residual layer resistance. The calculation method of the residual resistance of the ice layer under DC multi-arc condition is established. To validate the model, 7-unit and 15-unit insulator strings were tested in a multi-function artificial climate chamber under the coexistent conditions of low air pressure, pollution, and icing. The test results showed that the values calculated by the model satisfactorily agreed with those experimentally measured, with the errors within the range of 10%, validating the rationality of the model.

  11. Collisions of cosmic F- and D-strings

    International Nuclear Information System (INIS)

    Jones, N.

    2004-01-01

    Recent theoretical advances and upcoming experimental measurements make the testing of generic predictions of string theory models of cosmology feasible. Brane anti-brane models of inflation within superstring theory are promising as string theory descriptions of the physics of the early universe. While varied in their construction, these models can have the generic and observable consequence that cosmic strings will be abundant in the early universe. This leads to possible detectable effects in the cosmic microwave background, gravitational wave physics and gravitational lensing. Detailed calculations of cosmic string interactions within string theory are presented, in order to distinguish these cosmic strings from those in more conventional theories; these interaction probabilities can be very different from conventional 4-dimension strings, providing the possibility of experimental tests of string theory. (authors)

  12. Bipolar superconductivity

    International Nuclear Information System (INIS)

    Pankratov, S.G.

    1987-01-01

    A model of bipolaron superconductivity suggested by Soviet scientist Alexandrov A.S. and French scientist Ranninger is presentes in a popular way. It is noted that the bipolaron theory gives a good explanation of certain properties of new superconductors, high critical temperature, in particular

  13. String fragmentation; La fragmentation des cordes

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J.; Werner, K. [Laboratoire de Physique Subatomique et des Technologies Associees - SUBATECH, Centre National de la Recherche Scientifique, 44 - Nantes (France)

    1997-10-01

    The classical string model is used in VENUS as a fragmentation model. For the soft domain simple 2-parton strings were sufficient, whereas for higher energies up to LHC, the perturbative regime of the QCD gives additional soft gluons, which are mapped on the string as so called kinks, energy singularities between the leading partons. The kinky string model is chosen to handle fragmentation of these strings by application of the Lorentz invariant area law. The `kinky strings` model, corresponding to the perturbative gluons coming from pQCD, takes into consideration this effect by treating the partons and gluons on the same footing. The decay law is always the Artru-Menessier area law which is the most realistic since it is invariant to the Lorentz and gauge transformations. For low mass strings a manipulation of the rupture point is necessary if the string corresponds already to an elementary particle determined by the mass and the flavor content. By means of the fragmentation model it will be possible to simulate the data from future experiments at LHC and RHIC 3 refs.

  14. A quark-antiquark potential from a superconducting model of confinement

    Directory of Open Access Journals (Sweden)

    J.W. Alcock

    1983-10-01

    Full Text Available The Landau-Ginzburg phenomenological theory of superconductivity is used as a model of flux confinement. A monopole pair of sources is included to simulate a quark-antiquark system. The interaction energy is found in the static approximation appropriate for heavy quark systems, and equated with the interquark potential. This potential is compared with other suggested phenomenological potentials and succeeds in reproducing heavy quark spectra.

  15. Why string theory?

    CERN Document Server

    Conlon, Joseph

    2016-01-01

    Is string theory a fraud or one of the great scientific advances? Why do so many physicists work on string theory if it cannot be tested? This book provides insight into why such a theory, with little direct experimental support, plays such a prominent role in theoretical physics. The book gives a modern and accurate account of string theory and science, explaining what string theory is, why it is regarded as so promising, and why it is hard to test.

  16. Development of a theoretical model for polycrystalline superconducting anisotropic using the effective medium approximation

    International Nuclear Information System (INIS)

    Cruz-García, A.; Muné, P; Govea-Alcaide, E.

    2008-01-01

    Full text: In this paper, is a study of the transport properties in anisotropic polycrystalline superconducting. The presence of certain order of orientation of grains in polycrystalline superconducting (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+delta , is modeled by introducing a probability of orientation, gamma factor. In addition, is included in the model the concentration c, which characterize the contribution of porosity to the decrease in the conductivity of the Crystal, transparent. Assumes that pores and pimples are ellipsoid flattened with similar dimensions and takes into account the values of conductivity of beads in each direction. The calculation is based on the application of a generalization of the approximation of the effective way to the study of heterogeneous media, which is called coherent potential approximation (APC). The results are compared with an empirical model developed recently for samples of YBa 2 Cu 3 O 7 -delta (YBCO) which enriches its employment and applied to ceramic superconducting in general. (author)

  17. Color superconductivity in the Nambu-Jona-Lasinio model complemented by a Polyakov loop

    Energy Technology Data Exchange (ETDEWEB)

    Blanquier, Eric

    2017-06-15

    The color superconductivity is studied with the Nambu and Jona-Lasinio (NJL) model. This one is coupled to a Polyakov loop, to form the PNJL model. A μ-dependent Polyakov loop potential is also considered (μPNJL model). An objective is to detail the analytical calculations that lead to the equations to be solved, in all of the treated cases. They are the normal quark (NQ), 2-flavor color-superconducting (2SC) and color-flavor-locked (CFL) phases, in an SU(3){sub f} x SU(3){sub c} description. The calculations are performed according to the temperature T, the chemical potentials μ{sub f} or the densities ρ{sub f}, with or without the isospin symmetry. The relation between the μ{sub f} and ρ{sub f} results is studied. The influence of the color superconductivity and the Polyakov loop on the found data is analyzed. A triple coincidence is observed at low T between the chiral restoration, the deconfinement transition described by the Polyakov loop and the NQ/2SC phase transition. Furthermore, an sSC phase is identified in the ρ{sub q}, ρ{sub s} plane. Possible links between certain of the obtained results and physical systems are pointed out. (orig.)

  18. Random surfaces and strings

    International Nuclear Information System (INIS)

    Ambjoern, J.

    1987-08-01

    The theory of strings is the theory of random surfaces. I review the present attempts to regularize the world sheet of the string by triangulation. The corresponding statistical theory of triangulated random surfaces has a surprising rich structure, but the connection to conventional string theory seems non-trivial. (orig.)

  19. Dynamics of Carroll strings

    Energy Technology Data Exchange (ETDEWEB)

    Cardona, Biel [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Gomis, Joaquim [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Department of Physics, Faculty of Science, Chulalongkorn University,Bangkok 10330 (Thailand); Pons, Josep M. [Departament d’Estructura i Constituents de la Matèriaand Institut de Ciències del Cosmos (ICCUB) Facultat de Física, Universitat de Barcelona,Diagonal 647, E-08028 Barcelona, Catalonia (Spain)

    2016-07-11

    We construct the canonical action of a Carroll string doing the Carroll limit of a canonical relativistic string. We also study the Killing symmetries of the Carroll string, which close under an infinite dimensional algebra. The tensionless limit and the Carroll p-brane action are also discussed.

  20. String Math 2017

    CERN Document Server

    The series of String-Math conferences has developed into a central event on the interface between mathematics and physics related to string theory, quantum field theory and neighboring subjects. The conference will take place from July 24-28 in the main building of Hamburg university. The String-Math conference is organised by the University of Hamburg jointly with DESY Hamburg.

  1. A General Model for Thermal, Hydraulic and Electric Analysis of Superconducting Cables

    CERN Document Server

    Bottura, L; Rosso, C

    2000-01-01

    In this paper we describe a generic, multi-component and multi-channel model for the analysis of superconducting cables. The aim of the model is to treat in a general and consistent manner simultaneous thermal, electric and hydraulic transients in cables. The model is devised for most general situations, but reduces in limiting cases to most common approximations without loss of efficiency. We discuss here the governing equations, and we write them in a matrix form that is well adapted to numerical treatment. We finally demonstrate the model capability by comparison with published experimental data on current distribution in a two-strand cable.

  2. EFFECTIVE ACTIONS FOR HETEROTIC STRING THEORY

    NARCIS (Netherlands)

    SUELMANN, H

    Heterotic String Theory is an attempt to construct a description of nature that is more satisfying than the Standard Model. A major problem is that it is very difficult to do explicit calculations in string theory. Therefore, it is useful to construct a 'normal' field theory that approximates HST.

  3. String loop effect on the BRST charge

    International Nuclear Information System (INIS)

    Das, A.; Nishino, H.

    1987-07-01

    An effective BRST charge Q BRST which incorporates the string one-loop corrections is presented for the closed bosonic string in an arbitrary background. The effective σ-model action which leads to such a Q BRST is obtained and some consequences are discussed. (author). 14 refs, 1 fig

  4. Ultrasensitive string-based temperature sensors

    DEFF Research Database (Denmark)

    Larsen, Tom; Schmid, Silvan; Gronberg, L.

    2011-01-01

    Resonant strings are a promising concept for ultra sensitive temperature detection. We present an analytical model for the sensitivity with which we optimize the temperature response of resonant strings by varying geometry and material. The temperature sensitivity of silicon nitride and aluminum ...

  5. String field representation of the Virasoro algebra

    Czech Academy of Sciences Publication Activity Database

    Mertes, N.; Schnabl, Martin

    2016-01-01

    Roč. 2016, č. 12 (2016), 1-14, č. článku 151. ISSN 1029-8479 R&D Projects: GA ČR(CZ) GA14-31689S Institutional support: RVO:68378271 Keywords : String Held Theory * Conformal Field Models in String Theory Subject RIV: BE - Theoretical Physics Impact factor: 6.063, year: 2016

  6. Quantum Geometry of Refined Topological Strings

    NARCIS (Netherlands)

    Aganagic, M.; Cheng, M.C.N.; Dijkgraaf, R.; Kreft, D.; Vafa, C.

    2012-01-01

    We consider branes in refined topological strings. We argue that their wavefunctions satisfy a Schrödinger equation depending on multiple times and prove this in the case where the topological string has a dual matrix model description. Furthermore, in the limit where one of the equivariant

  7. Introduction to strings and superstrings

    International Nuclear Information System (INIS)

    Rausch de Traubenberg, M.

    1988-01-01

    The string theory is applied in the construction of a theory which allows the coupling of the four fundamental interactions and matter. The original model of the string theory describes the hadronic phenomenon of duality. The model extension, which describes the closed strings and those with a spin, is studied. The supersymmetry and the supersymmetric partner concepts are considered, in order to obtain a superstrings theory. The supersymmetry allows the formulation of a ''supertheory'', including matter, fields and gravitation. In order to explain the mass of the observable particles, the mechanism of symmetry breaking must be taken into account. The scalar state concept, originated from the supersymmetry breaking, is analyzed. This ''supertheory'' is not entirely accepted by the scientific world [fr

  8. Novel complete non-compact symmetries for the Wheeler-DeWitt equation in a wormhole scalar model and axion-dilaton string cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben; Granados, Victor D [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del IPN, Unidad Profesional Adolfo Lopez Mateos, Edificio 9, 07738 Mexico DF (Mexico); Mota, Roberto D, E-mail: cordero@esfm.ipn.mx, E-mail: granados@esfm.ipn.mx, E-mail: rmotae@ipn.mx [Departamento de ICE de la Escuela Superior de IngenierIa Mecanica y Electrica del IPN, Unidad Culhuacan. Av. Santa Ana No 1000, San Francisco Culhuacan, Coyoacan Mexico DF, CP 04430 (Mexico)

    2011-09-21

    We find the full symmetries of the Wheeler-DeWitt equation for the Hawking and Page wormhole model and an axion-dilaton string cosmology. We show that the Wheeler-DeWitt Hamiltonian admits a U(1, 1) hidden symmetry for the Hawking and Page model and U(2, 1) for the axion-dilaton string cosmology. If we consider the existence of matter-energy renormalization, for each of these models we find that the Wheeler-DeWitt Hamiltonian accepts an additional SL(2, R) dynamical symmetry. In this case, we show that the SL(2, R) dynamical symmetry generators transform the states from one energy Hilbert eigensubspace to another. Some new wormhole-type solutions for both models are found.

  9. Topological strings and quantum curves

    NARCIS (Netherlands)

    Hollands, L.

    2009-01-01

    This thesis presents several new insights on the interface between mathematics and theoretical physics, with a central role for Riemann surfaces. First of all, the duality between Vafa-Witten theory and WZW models is embedded in string theory. Secondly, this model is generalized to a web of

  10. A universality test of the quantum string Bethe ansatz

    DEFF Research Database (Denmark)

    Freyhult, L.; Kristjansen, C.

    2006-01-01

    We show that the quantum corrected string Bethe ansatz passes an important universality test by demonstrating that it correctly incorporates the non-analytical terms in the string sigma model one-loop correction for rational three-spin strings with two out of the three spins identical. Subsequent......, we use the quantum corrected string Bethe ansatz to predict the exact form of the non-analytic terms for the generic rational three-spin string.......We show that the quantum corrected string Bethe ansatz passes an important universality test by demonstrating that it correctly incorporates the non-analytical terms in the string sigma model one-loop correction for rational three-spin strings with two out of the three spins identical. Subsequently...

  11. Cosmology from string theory

    International Nuclear Information System (INIS)

    Anchordoqui, Luis; Nawata, Satoshi; Goldberg, Haim; Nunez, Carlos

    2007-01-01

    We explore the cosmological content of Salam-Sezgin six-dimensional supergravity, and find a solution to the field equations in qualitative agreement with observation of distant supernovae, primordial nucleosynthesis abundances, and recent measurements of the cosmic microwave background. The carrier of the acceleration in the present de Sitter epoch is a quintessence field slowly rolling down its exponential potential. Intrinsic to this model is a second modulus which is automatically stabilized and acts as a source of cold dark matter, with a mass proportional to an exponential function of the quintessence field (hence realizing varying mass particle models within a string context). However, any attempt to saturate the present cold dark matter component in this manner leads to unacceptable deviations from cosmological data--a numerical study reveals that this source can account for up to about 7% of the total cold dark matter budget. We also show that (1) the model will support a de Sitter energy in agreement with observation at the expense of a miniscule breaking of supersymmetry in the compact space; (2) variations in the fine structure constant are controlled by the stabilized modulus and are negligible; (3) ''fifth'' forces are carried by the stabilized modulus and are short range; (4) the long time behavior of the model in four dimensions is that of a Robertson-Walker universe with a constant expansion rate (w=-1/3). Finally, we present a string theory background by lifting our six-dimensional cosmological solution to ten dimensions

  12. Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of a driven drill-string

    Energy Technology Data Exchange (ETDEWEB)

    Balanov, A.G.; Janson, N.B. E-mail: n.janson@lancaster.ac.uk; McClintock, P.V.E.; Tucker, R.W.; Wang, C.H.T

    2003-01-01

    Using techniques from dynamical systems analysis we explore numerically the solution space, under parametric variation, of a neutral differential delay equation that arises naturally in the Cosserat description of torsional waves on a driven drill-string.

  13. Bifurcation analysis of a neutral delay differential equation modelling the torsional motion of a driven drill-string

    International Nuclear Information System (INIS)

    Balanov, A.G.; Janson, N.B.; McClintock, P.V.E.; Tucker, R.W.; Wang, C.H.T.

    2003-01-01

    Using techniques from dynamical systems analysis we explore numerically the solution space, under parametric variation, of a neutral differential delay equation that arises naturally in the Cosserat description of torsional waves on a driven drill-string

  14. Effect of Inhomogeneity on s-wave Superconductivity in the Attractive Hubbard Model

    Energy Technology Data Exchange (ETDEWEB)

    Aryanpour, K. A. [University of California, Davis; Dagotto, Elbio R [ORNL; Mayr, Matthias [Max-Planck-Institut fur Feskorperforschung, Stuttgart, Germany; Paiva, T. [Universidade Federal do Rio de Janeiro, Brazil; Pickett, W. E. [University of California, Davis; Scalettar, Richard T [ORNL

    2006-01-01

    Inhomogeneous s-wave superconductivity is studied in the two-dimensional, square lattice attractive Hubbard Hamiltonian using the Bogoliubov-de Gennes BdG mean field approximation. We find that at weak coupling, and for densities mainly below half-filling, an inhomogeneous interaction in which the on-site interaction Ui takes on two values, Ui=0, 2U results in a larger zero temperature pairing amplitude, and that the superconducting Tc can also be significantly increased, relative to a uniform system with Ui=U on all sites. These effects are observed for stripe, checkerboard, and even random patterns of the attractive centers, suggesting that the pattern of inhomogeneity is unimportant. Monte Carlo calculations which reintroduce some of the fluctuations neglected within the BdG approach see the same effect, both for the attractive Hubbard model and a Hamiltonian with d-wave pairing symmetry.

  15. Modeling of the free space and focused magnetic field profiles of the ORNL superconducting motor

    International Nuclear Information System (INIS)

    Bailey, J.M.; Rader, M.; Sohns, C.W.; McKeever, J.; Schwenterly, S.W.

    1992-01-01

    The ORNL superconducting motor, is a device consisting of 4 DC superconducting magnets in a square cross section. These coils are arranged in a N-S-N-S configuration and at present have no iron flux return paths. Experimentally the device has been operated and has been shown to produce 102.3 kg-m of locked rotor torque at 100 Ampers winding current. The superconductors were operating at 40 Kelvin. The peak magnetic field at 2,100 amperes operating current was 2 Tesla on the cryostat face. Recently there has been an effort under way to improve the operating parameters of the device by improving the flux utilization of the device. This was to be accomplished by the use of flux focusing pole pieces. The effects of the pole pieces and the vacuum magnetic field have been modeled with the MSC EMAS code to see the possible benefit of adding pole pieces to the in situ experiment

  16. Analytical Model of Thermo-electrical Behaviour in Superconducting Resistive Core Cables

    CERN Document Server

    Calvi, M; Breschi, M; Coccoli, M; Granieri, P; Iriart, G; Lecci, F; Siemko, A

    2006-01-01

    High field superconducting Nb$_{3}$Sn accelerators magnets above 14 T, for future High Energy Physics applications, call for improvements in the design of the protection system against resistive transitions. The longitudinal quench propagation velocity (vq) is one of the parameters defining the requirements of the protection. Up to now vq has been always considered as a physical parameter defined by the operating conditions (the bath temperature, cooling conditions, the magnetic field and the over all current density) and the type of superconductor and stabilizer used. It is possible to enhance the quench propagation velocity by segregating a percent of the stabilizer into the core, although keeping the total amount constant and tuning the contact resistance between the superconducting strands and the core. Analytical model and computer simulations are presented to explain the phenomenon. The consequences with respect to minimum quench energy are evidenced and the strategy to optimize the cable designed is di...

  17. Moment approach for the attractive Hubbard model in two dimensions: superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Nunez, J.J.; Cordeiro, C.; Delfino, A. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Fisica

    1997-12-31

    Full text. Using the moment of Nolting (Z. Phys. 225, 25 (1972) for the attractive Hubbard model in the superconducting phase, we have derived a set of three non-linear equations, the electron density, the superconducting order parameter, and the narrowing factor. Our starting point is the Ansatz that the diagonal spectral density is composed of three peaks while the off-diagonal spectral functional is composed of two. The third band, or upper Hubbard band, strongly renormalizes the other two, making the energy gap K dependent while the order parameter is pure s-wave. Our approach recuperates the BCS limit, weak coupling (U/t <<1) in a natural way. We solve these non-linear equations in a self-consistent way for intermediate coupling for U/t {approx} -4.0. Here we report the order parameter as function of temperature and compare it with the BCS result. (author)

  18. Effect of superconducting solenoid model cores on spanwise iron magnet roll control

    Science.gov (United States)

    Britcher, C. P.

    1985-01-01

    Compared with conventional ferromagnetic fuselage cores, superconducting solenoid cores appear to offer significant reductions in the projected cost of a large wind tunnel magnetic suspension and balance system. The provision of sufficient magnetic roll torque capability has been a long-standing problem with all magnetic suspension and balance systems; and the spanwise iron magnet scheme appears to be the most powerful system available. This scheme utilizes iron cores which are installed in the wings of the model. It was anticipated that the magnetization of these cores, and hence the roll torque generated, would be affected by the powerful external magnetic field of the superconducting solenoid. A preliminary study has been made of the effect of the superconducting solenoid fuselage model core concept on the spanwise iron magnet roll torque generation schemes. Computed data for one representative configuration indicate that reductions in available roll torque occur over a range of applied magnetic field levels. These results indicate that a 30-percent increase in roll electromagnet capacity over that previously determined will be required for a representative 8-foot wind tunnel magnetic suspension and balance system design.

  19. Superconducting spiral phase in the two-dimensional t-J model

    International Nuclear Information System (INIS)

    Sushkov, Oleg P.; Kotov, Valeri N.

    2004-01-01

    We analyze the t-t ' -t '' -J model, relevant to the superconducting cuprates. By using chiral perturbation theory we have determined the ground state to be a spiral for small doping δ1 near half filling. In this limit the solution does not contain any uncontrolled approximations. We evaluate the spin-wave Green's functions and address the issue of stability of the spiral state, leading to the phase diagram of the model. At t ' =t '' =0 the spiral state is unstable towards a local enhancement of the spiral pitch, and the nature of the true ground state remains unclear. However, for values of t ' and t '' corresponding to real cuprates the (1,0) spiral state is stabilized by quantum fluctuations ('order from disorder' effect). We show that at δ≅0.119 the spiral is commensurate with the lattice with a period of eight lattice spacings. It is also demonstrated that spin-wave mediated superconductivity develops in the spiral state and a lower limit for the superconducting gap is derived. Even though one cannot classify the gap symmetry according to the lattice representations (s,p,d, ellipsis (horizontal)) since the symmetry of the lattice is spontaneously broken by the spiral, the gap always has lines of nodes along the (1,±1) directions

  20. Pairing and superconductivity from weak to strong coupling in the attractive Hubbard model

    International Nuclear Information System (INIS)

    Toschi, A; Barone, P; Capone, M; Castellani, C

    2005-01-01

    The finite-temperature phase diagram of the attractive Hubbard model is studied by means of the dynamical mean-field theory. We first consider the normal phase of the model by explicitly frustrating the superconducting ordering. In this case, we obtain a first-order pairing transition between a metallic phase and a paired phase formed by strongly coupled incoherent pairs. The transition line ends in a finite temperature critical point, but a crossover between two qualitatively different solutions still occurs at higher temperature. Comparing the superconducting- and the normal-phase solutions, we find that the superconducting instability always occurs before the pairing transition in the normal phase, i.e. T c > T pairing . Nevertheless, the high-temperature phase diagram at T > T c is still characterized by a crossover from a metallic phase to a preformed pair phase. We characterize this crossover by computing different observables that can be used to identify the pseudogap region, like the spin susceptibility, the specific heat and the single-particle spectral function

  1. Topological Strings and Integrable Hierarchies

    CERN Document Server

    Aganagic, M; Klemm, A D; Marino, M; Vafa, C; Aganagic, Mina; Dijkgraaf, Robbert; Klemm, Albrecht; Marino, Marcos; Vafa, Cumrun

    2006-01-01

    We consider the topological B-model on local Calabi-Yau geometries. We show how one can solve for the amplitudes by using W-algebra symmetries which encodes the symmetries of holomorphic diffeomorphisms of the Calabi-Yau. In the highly effective fermionic/brane formulation this leads to a free fermion description of the amplitudes. Furthermore we argue that topological strings on Calabi-Yau geometries provide a unifying picture connecting non-critical (super)strings, integrable hierarchies, and various matrix models. In particular we show how the ordinary matrix model, the double scaling limit of matrix models, and Kontsevich-like matrix model are all related and arise from studying branes in specific local Calabi-Yau three-folds. We also show how A-model topological string on P^1 and local toric threefolds (and in particular the topological vertex) can be realized and solved as B-model topological string amplitudes on a Calabi-Yau manifold.

  2. String Resonances at Hadron Colliders

    CERN Document Server

    Anchordoqui, Luis A; Dai, De-Chang; Feng, Wan-Zhe; Goldberg, Haim; Huang, Xing; Lust, Dieter; Stojkovic, Dejan; Taylor, Tomasz R

    2014-01-01

    [Abridged] We consider extensions of the standard model based on open strings ending on D-branes. Assuming that the fundamental string mass scale M_s is in the TeV range and that the theory is weakly coupled, we discuss possible signals of string physics at the upcoming HL-LHC run (3000 fb^{-1}) with \\sqrt{s} = 14 TeV, and at potential future pp colliders, HE-LHC and VLHC, operating at \\sqrt{s} = 33 and 100 TeV, respectively. In such D-brane constructions, the dominant contributions to full-fledged string amplitudes for all the common QCD parton subprocesses leading to dijets and \\gamma + jet are completely independent of the details of compactification, and can be evaluated in a parameter-free manner. We make use of these amplitudes evaluated near the first (n=1) and second (n=2) resonant poles to determine the discovery potential for Regge excitations of the quark, the gluon, and the color singlet living on the QCD stack. We show that for string scales as large as 7.1 TeV (6.1 TeV), lowest massive Regge exc...

  3. From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.

    Science.gov (United States)

    Pepe, M; Wiese, U-J

    2009-05-15

    We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model.

  4. A short model excitation of an asymmetric force free superconducting transmission line magnet

    Energy Technology Data Exchange (ETDEWEB)

    Wake, M.; Sato, H.; /KEK, Tsukuba; Carcagno, R.; Foster, W.; Hays, S.; Kashikhin, V.; Oleck, A.; Piekarz, H.; Rabehl, R,; /Fermilab

    2005-09-01

    A short model of asymmetric force free magnet with single beam aperture was tested at Fermilab together with the excitation test of VLHC transmission line magnet. The design concept of asymmetric force free superconducting magnet was verified by the test. The testing reached up to 104 kA current and no indication of force imbalance was observed. Since the model magnet length was only 10cm, A 0.75m model was constructed and tested at KEK with low current to ensure the validity of the design. The cool down and the excitation at KEK were also successful finding very small thermal contraction of the conductor and reasonable field homogeneity.

  5. Non-perturbative topological strings and conformal blocks

    NARCIS (Netherlands)

    Cheng, M.C.N.; Dijkgraaf, R.; Vafa, C.

    2011-01-01

    We give a non-perturbative completion of a class of closed topological string theories in terms of building blocks of dual open strings. In the specific case where the open string is given by a matrix model these blocks correspond to a choice of integration contour. We then apply this definition to

  6. A one-loop test of string duality

    International Nuclear Information System (INIS)

    Vafa, C.

    1995-01-01

    We test Type IIA-heterotic string duality in six dimensions by showing that the sigma model anomaly of the heterotic string is generated by a combination of a tree level and a string one-loop correction on the Type IIA side. (orig.)

  7. Hunting for TeV Scale Strings at the LHC

    CERN Document Server

    Bars, Itzhak

    2010-01-01

    In this paper I review the possibility of TeV scale strings that may be detectable by the Large Hadron Collider (LHC). This possibility was investigated extensively in a series of phenomenological papers during 1984-1985 in connection with the Superconducting Super Collider (SSC). The work was mainly based on a model independent systematic parametrization of scattering amplitudes and cross sections, for Standard Model particles, quarks and leptons, that were assumed to behave like strings, while gluons, photons, $W^{\\pm},Z$ were taken as elementary. By using Veneziano type beta functions consistent with crossing symmetry, duality and Regge behavior, bosonic or fermionic resonances in each channel were included, while the low energy behavior was matched to effective field theory non-renormalizable interactions consistent with the Standard Model SU(3)xSU(2)xU(1) gauge symmetry as well as global flavor and family symmetries. The motivation for this approach at that time was the possible compositeness of quarks a...

  8. String Theory in a Nutshell

    International Nuclear Information System (INIS)

    Skenderis, Kostas

    2007-01-01

    The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to

  9. A family-universal anomalous U(1) in string models as the origin of supersymmetry breaking and squark degeneracy

    International Nuclear Information System (INIS)

    Faraggi, A.E.; Pati, J.C.

    1997-12-01

    Recently a promising mechanism for supersymmetry breaking that utilizes both an anomalous U(1) gauge symmetry and an effective mass term m ∼ 1TeV of certain relevant fields has been proposed. In this paper we examine whether such a mechanism can emerge in superstring derived free fermionic models. We observe that certain three generation string solutions, though not all, lead to an anomalous U(1) which couples universally to all three families. The advantages of this three-family universality of U(1) A , compared to the two-family case, proposed in earlier works, in yielding squark degeneracy, while avoiding radiative breaking of color and charge, are noted. The root cause of the flavor universality of U(1) A is the cyclic permutation symmetry that characterizes the Z 2 x Z 2 orbifold compactification with standard embedding, realized in the free fermionic models by the NAHE set. It is shown that nonrenormalizable terms which contain hidden-sector condensates, generate the required suppression of the relevant mass term m, compared to the Planck scale. While the D-term of the family universal U(1) A leads to squark degeneracy, those of the family dependent U(1)'s, remarkably enough, are found to vanish for the solutions considered, owing to minimization of the potential

  10. Simulations of the flipping images and microparameters of molecular orientations in liquids according to the molecule string model

    International Nuclear Information System (INIS)

    Wang Li-Na; Zhao Xing-Yu; Zhang Li-Li; Huang Yi-Neng

    2012-01-01

    The relaxation dynamics of liquids is one of the fundamental problems in liquid physics, and it is also one of the key issues to understand the glass transition mechanism. It will undoubtedly provide enlightenment on understanding and calculating the relaxation dynamics if the molecular orientation flipping images and relevant microparameters of liquids are studied. In this paper, we first give five microparameters to describe the individual molecular string (MS) relaxation based on the dynamical Hamiltonian of the MS model, and then simulate the images of individual MS ensemble, and at the same time calculate the parameters of the equilibrium state. The results show that the main molecular orientation flipping image in liquids (including supercooled liquid) is similar to the random walk. In addition, two pairs of the parameters are equal, and one can be ignored compared with the other. This conclusion will effectively reduce the difficulties in calculating the individual MS relaxation based on the single-molecule orientation flipping rate of the general Glauber type, and the computer simulation time of interaction MS relaxation. Moreover, the conclusion is of reference significance for solving and simulating the multi-state MS model. (condensed matter: structural, mechanical, and thermal properties)

  11. The arithmetic of strings

    International Nuclear Information System (INIS)

    Freund, P.G.O.

    1988-01-01

    According to the author nobody has succeeded as yet in extracting any new numbers from string theory. This paper discusses how if one cannot get new numbers from string theory, maybe one can get new strings out of number theory. Number theory is generally regarded as the purest form of mathematics. So how can it conceivably make contact with physics which aims at describing nature? The author discusses how the connecting link of these two disciplines is provided by the compact Riemann surfaces. These appear as world sheets of interacting strings. For instance, string-string scattering at the three-loop level involves the four external strings attaching themselves to a genus three compact surface

  12. QCD string in the baryon

    International Nuclear Information System (INIS)

    Kalashnikova, Yu.S.; Nefediev, A.V.

    1997-01-01

    The QCD-motivated constituent string model is extended to consider the baryon. The system of three quarks propagating in the confining background field is studied in the Wilson loop approach, and the effective action is obtained. The resulting Lagrangian at large interquark distances corresponds to the Mercedes Benz string configuration. Assuming the quarks to be heavy enough to allow the adiabatic separation of quark and string junction motion and using the hyperspherical expansion for the quark subsystem we write out and solve the classical equation of motion for the junction. We quantize the motion of the junction and demonstrate that the account of these modes leads to the effective swelling of baryon in comparison with standard potential picture. The effects of finite gluonic correlation length which do not affect the excited states but appear to be substantial for the baryonic ground state, reducing the swelling considerably is discussed

  13. STRING v9.1

    DEFF Research Database (Denmark)

    Franceschini, A.; Simonovic, M.; Roth, A.

    2013-01-01

    for certain model organisms and functional systems. Currently, protein interactions and associations are annotated at various levels of detail in online resources, ranging from raw data repositories to highly formalized pathway databases. For many applications, a global view of all the available interaction...... data is desirable, including lower-quality data and/or computational predictions. The STRING database (http://string-db.org/) aims to provide such a global perspective for as many organisms as feasible. Known and predicted associations are scored and integrated, resulting in comprehensive protein...... networks covering >1100 organisms. Here, we describe the update to version 9.1 of STRING, introducing several improvements: (i) we extend the automated mining of scientific texts for interaction information, to now also include full-text articles; (ii) we entirely re-designed the algorithm for transferring...

  14. Diffusion of massive particles around an Abelian-Higgs string

    Science.gov (United States)

    Saha, Abhisek; Sanyal, Soma

    2018-03-01

    We study the diffusion of massive particles in the space time of an Abelian Higgs string. The particles in the early universe plasma execute Brownian motion. This motion of the particles is modeled as a two dimensional random walk in the plane of the Abelian Higgs string. The particles move randomly in the space time of the string according to their geodesic equations. We observe that for certain values of their energy and angular momentum, an overdensity of particles is observed close to the string. We find that the string parameters determine the distribution of the particles. We make an estimate of the density fluctuation generated around the string as a function of the deficit angle. Though the thickness of the string is small, the length is large and the overdensity close to the string may have cosmological consequences in the early universe.

  15. String description of quarks degrees of freedom

    International Nuclear Information System (INIS)

    Hadasz, L.

    1994-01-01

    This work presents a simple way of incorporating quark degrees of freedom (spin, charge and colour) into the classical string model. We introduce the model and derive from it the classical equations of motion. (author)

  16. String description of quarks degrees of freedom

    Energy Technology Data Exchange (ETDEWEB)

    Hadasz, L. [Jagiellonian Univ., Inst. of Physics, Cracow (Poland)

    1994-10-01

    This work presents a simple way of incorporating quark degrees of freedom (spin, charge and colour) into the classical string model. We introduce the model and derive from it the classical equations of motion. (author). 7 refs.

  17. Majorana zero modes in the hopping-modulated one-dimensional p-wave superconducting model.

    Science.gov (United States)

    Gao, Yi; Zhou, Tao; Huang, Huaixiang; Huang, Ran

    2015-11-20

    We investigate the one-dimensional p-wave superconducting model with periodically modulated hopping and show that under time-reversal symmetry, the number of the Majorana zero modes (MZMs) strongly depends on the modulation period. If the modulation period is odd, there can be at most one MZM. However if the period is even, the number of the MZMs can be zero, one and two. In addition, the MZMs will disappear as the chemical potential varies. We derive the condition for the existence of the MZMs and show that the topological properties in this model are dramatically different from the one with periodically modulated potential.

  18. Nonlinear observer design for a nonlinear string/cable FEM model using contraction theory

    DEFF Research Database (Denmark)

    Turkyilmaz, Yilmaz; Jouffroy, Jerome; Egeland, Olav

    model is presented in the form of partial differential equations (PDE). Galerkin's method is then applied to obtain a set of ordinary differential equations such that the cable model is approximated by a FEM model. Based on the FEM model, a nonlinear observer is designed to estimate the cable...

  19. Applied superconductivity

    CERN Document Server

    Newhouse, Vernon L

    1975-01-01

    Applied Superconductivity, Volume II, is part of a two-volume series on applied superconductivity. The first volume dealt with electronic applications and radiation detection, and contains a chapter on liquid helium refrigeration. The present volume discusses magnets, electromechanical applications, accelerators, and microwave and rf devices. The book opens with a chapter on high-field superconducting magnets, covering applications and magnet design. Subsequent chapters discuss superconductive machinery such as superconductive bearings and motors; rf superconducting devices; and future prospec

  20. BRST invariant mixed string vertex for the bosonic string

    International Nuclear Information System (INIS)

    Clarizia, A.; Pezzella, F.

    1987-09-01

    We construct a BRST invariant (N+M)-string vertex including both open and closed string states. When we saturate it with N open string and M closed string physical states it reproduces their corresponding scattering amplitude. As a particular case we obtain BRST invariant vertex for the open-closed string transition. (orig.)